[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019156023A1 - Method for manufacturing object detection device, vehicle manufacturing method and program - Google Patents

Method for manufacturing object detection device, vehicle manufacturing method and program Download PDF

Info

Publication number
WO2019156023A1
WO2019156023A1 PCT/JP2019/003852 JP2019003852W WO2019156023A1 WO 2019156023 A1 WO2019156023 A1 WO 2019156023A1 JP 2019003852 W JP2019003852 W JP 2019003852W WO 2019156023 A1 WO2019156023 A1 WO 2019156023A1
Authority
WO
WIPO (PCT)
Prior art keywords
target detection
detection device
derived
deriving
angle
Prior art date
Application number
PCT/JP2019/003852
Other languages
French (fr)
Japanese (ja)
Inventor
スタニスラス ペテル
パスカル ロレ
Original Assignee
ヴィオニア スウェーデン エービー
スタニスラス ペテル
パスカル ロレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヴィオニア スウェーデン エービー, スタニスラス ペテル, パスカル ロレ filed Critical ヴィオニア スウェーデン エービー
Publication of WO2019156023A1 publication Critical patent/WO2019156023A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating

Definitions

  • the present invention relates to a method for manufacturing a target detection device, a method for manufacturing a vehicle, and a program.
  • an on-vehicle radar device is used to detect other vehicles that can be a collision target, or a target such as a structure provided on a side road, and based on the distance or azimuth angle with these targets, the vehicle
  • a target detection device laser radar device
  • Patent Document 1 a target detection device that alerts the operator
  • the radar optical axis inspection method of the target detection apparatus described in Patent Document 1 uses an inspection imaging device in a vehicle manufacturing process so that the camera axis coincides with the reference optical axis. And the inspection is performed by the imaging apparatus.
  • the radar optical axis inspection method of the target detection apparatus of Patent Document 1 has a problem in that the time required for the manufacturing process is increased because the vehicle transport must be stopped in the manufacturing process including the optical axis inspection.
  • This invention is made in view of such a situation, and it aims at providing the manufacturing method of the target detection apparatus etc. which can manufacture the target detection apparatus mounted in a vehicle efficiently.
  • the manufacturing method of the target detection apparatus which concerns on 1 aspect of this indication is a manufacturing method of the target detection apparatus mounted in the vehicle conveyed by the predetermined conveyance speed in the conveyance path of a production line, Comprising: The said conveyance speed The target detecting device transmits the transmission wave a plurality of times before and after the vehicle passes through the object provided on the side of the conveyance path at the conveyance speed, A reference detection point for deriving a reference distance between the target detection device and the object is derived based on the step of receiving the reflected wave reflected by the object a plurality of times and the reflected waves received a plurality of times.
  • the information includes a step of storing in a predetermined storage area.
  • the entire correction angle that depends on the mounting angle of the target detection device is derived without stopping the transportation of the vehicle on which the target detection device is mounted.
  • the time required for manufacturing can be shortened, and the target detection apparatus can be manufactured efficiently.
  • the derived overall correction angle is stored in a predetermined storage area, an individual overall correction angle can be set for each target detection device. Therefore, it is possible to manufacture a target detection device that individually corresponds to variations in the mounting position or mounting angle of the target detection device in the vehicle.
  • the step of deriving the reference detection point is performed in each of the reflected waves received a plurality of times.
  • the reference distance can be accurately derived based on the reference detection point. it can.
  • the step of determining the reference detection point is derived from each of two reflected waves received in succession in each of the reflected waves received a plurality of times.
  • a step of deriving a reference detection point based on each of the two reflected waves is included.
  • the reference detection point is determined based on the two reflected waves. Therefore, the reference distance can be accurately derived based on the reference detection point.
  • the azimuth angle between the target detection device and the object in each of the reflected waves received a plurality of times after the step of deriving the reference detection point is determined.
  • the method includes a step of deriving an individual correction angle for each reflected wave based on the conveyance speed, the derived azimuth angle, and the time difference, and a step of storing information on the derived individual correction angle in a predetermined storage area.
  • the individual correction angle in each reflected wave is derived, and the information related to the derived individual correction angle is stored in a predetermined storage area. Therefore, the target detection apparatus in which the individual correction angle corresponding to each azimuth angle is stored. Can be efficiently manufactured.
  • the distance and direction between the target detection device and the object in each of the reflected waves received a plurality of times after the step of deriving the reference detection point.
  • the step of storing in the predetermined storage area includes the azimuth angle and the individual correction angle in each of the received reflected waves, or the azimuth angle and the overall correction.
  • the azimuth angle and the individual correction angle in each received reflected wave, or the sum of the azimuth angle and the overall correction angle and the individual correction angle are registered in a table format and stored in a predetermined storage area.
  • the step of storing in the predetermined storage area is a transmission transmitted by the target detection device based on individual correction angles in an arbitrary plurality of azimuth angles.
  • An individual correction angle corresponding to each of the rated azimuth angles obtained by dividing the transmission angle of the transmission range in the horizontal direction of the wave by a predetermined angle unit is derived, and the rated azimuth angle and the individual correction angle corresponding to the derived rated azimuth angle are obtained.
  • a step of storing in a predetermined storage area in association with each other is included.
  • the step of storing in the predetermined storage area associates the rated azimuth angle with an individual correction angle corresponding to the rated azimuth angle in a table format. Including the step of registering.
  • the rated azimuth angle and the individual correction angle can be efficiently stored and read out.
  • a method for manufacturing a vehicle according to one aspect of the present disclosure is a method for manufacturing a vehicle on which the target detection device is mounted and is transported at a predetermined transport speed on a transport path of a manufacturing line.
  • the manufacturing method of the target detection apparatus which concerns on.
  • the overall correction angle based on the mounting position or the mounting angle of the target detection device is derived without stopping the transportation of the vehicle on which the target detection device is mounted, the time required for manufacturing the vehicle is reduced.
  • the vehicle can be shortened and manufactured efficiently. Since the derived overall correction angle is stored in a predetermined storage area, it is possible to manufacture a vehicle equipped with a target detection device that individually corresponds to variations in mounting position.
  • a program acquires a conveyance speed on a conveyance path of a production line that conveys a vehicle on which a target detection device is mounted on a computer, and the object is provided on the side of the conveyance path.
  • An object of the present invention is to provide a method of manufacturing a target detection device that can efficiently manufacture a target detection device mounted on a vehicle.
  • FIG. It is a schematic diagram which shows an example of the vehicle provided with the target detection apparatus manufactured by the manufacturing process which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the target detection apparatus which concerns on Embodiment 1.
  • FIG. It is explanatory drawing regarding the manufacturing line of the vehicle by which the target detection apparatus is mounted. It is explanatory drawing regarding the reflective point of the reflected wave received before and behind passing through a target object. It is explanatory drawing regarding the relative velocity and azimuth
  • FIG. 1 is a schematic diagram illustrating an example of a vehicle including a target detection device manufactured by a manufacturing process according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the target detection device 3 according to the first embodiment. First, the target detection device 3 and the vehicle 1 including the target detection device 3 will be described.
  • the vehicle 1 includes a front bumper 11, a rear bumper 12, a vehicle body frame 10, and a target detection device 3 including a radar device 4 and a radar ECU (Electronic Control Unit) 5.
  • a radar device 4 and a radar ECU (Electronic Control Unit) 5.
  • a radar ECU Electronic Control Unit
  • the radar device 4 is provided at each of the front and rear corners of the vehicle 1.
  • the front and rear corners of the vehicle 1 include the front bumper 11, the rear bumper 12, and the body frame 10.
  • the radar devices 4 are provided at the left and right corners of the front bumper 11 and the rear bumper 12, respectively.
  • Each radar ECU 5 is connected to a corresponding radar ECU 5, and each of these radar ECUs 5 is connected to a body ECU 6 by an in-vehicle LAN (Local Area Network) 2 described later.
  • LAN Local Area Network
  • the radar devices 4 are provided at the left and right corners of the front bumper 11 and the rear bumper 12, respectively.
  • the horizontal transmission angle ( ⁇ FL) of the radar device 4 provided at the left corner of the front bumper 11 is set to be 90 ° or more.
  • the horizontal transmission angles ( ⁇ FR, ⁇ BL, ⁇ BR) of the radar devices 4 provided at the right corner of the front bumper 11 and the left and right corners of the rear bumper 12 are also set to 90 ° or more. It is set.
  • the direction of the radar apparatus 4 is such that the transmission range of the radio wave transmitted from the radar apparatus 4 is substantially perpendicular to the direction in which each radar apparatus 4 is laterally lateral to the outside of the vehicle 1, that is, the traveling direction of the vehicle 1. It is set to include direction.
  • the transmission range of the radar device 4 provided on the right side of the front bumper 11 is a direction from approximately 335 ° ( ⁇ 25 °) to approximately 115 ° in the horizontal direction. including.
  • the transmission range of the radar device 4 provided on the left side of the front bumper 11 includes a direction from approximately 65 ° to approximately 205 ° in the horizontal direction.
  • the transmission range of the radar apparatus 4 provided on the left side of the rear bumper 12 includes a direction from approximately 155 ° to approximately 295 ° in the horizontal direction.
  • the transmission range of the radar device 4 provided on the right side of the rear bumper 12 includes a direction from approximately 245 ° to approximately 25 ° (385 °) in the horizontal direction.
  • each radar device 4 when the transmission angle ( ⁇ FL, ⁇ FR, ⁇ BL, ⁇ BR) of each radar device 4 is 140 °, this optical axis is based on the optical axis (baudite / boresight) that is the center line that is half the transmission angle. Radio waves (transmission waves) are transmitted from each of the radar devices 4 in a range of ⁇ 70 ° in the horizontal direction.
  • the angle of the optical axis with respect to the traveling direction of the vehicle 1 is the mounting angle of the radar device 4.
  • the installation location of the radar device 4 is described as the front and rear corners of the vehicle 1, it is not limited to this.
  • the radar apparatus 4 may be installed in the center part of the left and right side surfaces of the vehicle 1 or in the front and rear center parts.
  • the radar apparatus 4 includes a transmission unit 41, a transmission antenna 42, a reception unit 43, and a reception antenna 44.
  • the transmission unit 41 is connected to the radar ECU 5 via an input / output interface 54 described later, and transmits a radio wave (transmission wave) based on a signal from a control unit 51 of the radar ECU 5 described later.
  • the transmission wave is, for example, a radio wave in the millimeter wave band of 30 GHz to 300 GHz or a radio wave in the microwave frequency band of 10 GHz to 30 GHz.
  • the transmission antenna 42 is a transmission direction of a transmission wave, that is, a directional antenna having directivity.
  • a transmission range is set in the horizontal direction as described above, and the transmission range is used for detecting a target described later.
  • the transmission antenna 42 is connected to the transmission unit 41, and transmits a radio wave (transmission wave) by output from the transmission unit 41.
  • the receiving antenna 44 is connected to the receiving unit 43 and is disposed so as to face substantially the same direction as the transmitting antenna 42.
  • the receiving antenna 44 receives the reflected wave reflected by the target and outputs it to the receiving unit 43.
  • the receiving unit 43 is connected to the radar ECU 5 via an input / output interface 54 described later, and acquires the reflected wave reflected by the target via the receiving antenna 44.
  • the target includes, for example, other vehicles that travel around the host vehicle, facilities provided on the side edges of the road, pedestrians, and the like.
  • the receiving unit 43 performs A / D conversion on the acquired reflected wave, for example, and outputs the result to the control unit 51.
  • the transmission unit 41 transmits a radio wave (transmission wave) whose frequency changes in proportion to time, and the reception unit 43 receives a target.
  • the beat signal obtained by mixing the reflected wave and the transmission wave reflected by is received.
  • the radar ECU 5 includes a control unit 51, a storage unit 52, a communication unit 53, and an input / output interface 54.
  • the control unit 51 is configured by a CPU (Central Processing Unit) or an MPU (Micro Processing Unit), and various control processes and data are read and executed by reading and executing a control program and data stored in the storage unit 52 in advance. Arithmetic processing and the like are performed.
  • the control unit 51 functions as a target detection unit, a distance deriving unit, an azimuth angle deriving unit, and a relative speed deriving unit by executing a control program stored in the storage unit 52.
  • the control unit 51 has a clock function, and stores the time when the reflected wave is received in the storage unit 52 when functioning as a target detection unit.
  • control unit 51 is responsible for each process such as a process of deriving and storing a correction angle (overall correction angle, individual correction angle) for correcting the derived azimuth angle in a method for manufacturing a target detection apparatus to be described later.
  • the radar ECU 5 corrects the derived azimuth angle based on the correction angle stored in the storage unit 52 with respect to the azimuth angle derived by analyzing the reflected wave when functioning as the azimuth angle deriving unit. Improve the accuracy of the azimuth angle.
  • the target detection unit transmits a radio wave (transmission wave) whose frequency changes in proportion to time by using a known method such as the FMCW method, and a reflected wave in which the transmission wave is reflected by the target.
  • the target is detected by receiving.
  • the distance deriving unit receives a beat signal in which a transmission wave and a reflected wave are mixed, and analyzes the beat signal frequency by performing FFT analysis (Fast Fourier Transform) on the beat signal. Based on the analysis result, the distance between the vehicle and the target is derived.
  • FFT analysis Fast Fourier Transform
  • the azimuth angle deriving unit analyzes the frequency of the beat signal in the same manner as the distance deriving unit, and derives the azimuth angle with the target with respect to the host vehicle based on the analysis result of the frequency.
  • the relative speed deriving unit analyzes the frequency of the beat signal in the same manner as the distance deriving unit, and derives the relative speed of the target vehicle with respect to the host vehicle based on the analysis result of the frequency.
  • the receiving unit 43 of the radar device 4 has a computing capability such as Fourier transform, and may function as a target detecting unit, a distance deriving unit, an azimuth angle deriving unit, or a relative velocity deriving unit.
  • the receiving unit 43 of the radar apparatus 4 and the control unit 51 of the radar ECU 5 may function together to function as a target detection unit, a distance deriving unit, an azimuth angle deriving unit, or a relative speed deriving unit.
  • the control unit 61 of the body ECU 6 described later executes a control program, communicates with and controls the control unit 51 of the radar device 4 or the radar ECU 5, or cooperates with the target detection unit, the distance deriving unit, and the direction.
  • control unit 61 of the body ECU 6 communicates and controls or cooperates with the control unit 51 of the radar device 4 or the radar ECU 5 to perform each step in the method of manufacturing the target detection device described later. May be.
  • the storage unit 52 is configured by a volatile memory element such as a RAM (Random Access Memory) or a non-volatile memory element such as a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable ROM), or a flash memory.
  • a control program and data to be referred to during processing are stored in advance.
  • the control program stored in the storage unit 52 may store a control program read from the recording medium 521 that can be read by the target detection device 3.
  • a control program may be downloaded from an external computer (not shown) connected to a communication network (not shown) and stored in the storage unit 52.
  • the storage unit 52 stores azimuth angles and correction angles corresponding to the azimuth angles.
  • the storage unit 52 stores the angle of the optical axis of each radar device 4 with respect to the traveling direction of the vehicle 1, that is, the mounting angle of each radar device 4.
  • the communication unit 53 is a communication interface using a communication protocol such as CAN (Control Area Network), LIN (Local Interconnect Network), or Ethernet (registered trademark), and is connected to an in-vehicle device such as a body ECU 6 connected to the in-vehicle LAN 2. Communicate with each other.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • Ethernet registered trademark
  • the input / output interface 54 is connected to the transmission unit 41 and the reception unit 43 of the radar apparatus 4 by a serial cable or the like, and inputs / outputs data between the control unit 51 and the transmission unit 41 and the reception unit 43. Interface.
  • the target detection device 3 is described with the radar device 4 and the radar ECU 5 as separate bodies, but is not limited to this.
  • the radar device 4 and the radar ECU 5 may be modularized and integrated with the target detection device 3.
  • the vehicle 1 is provided with in-vehicle devices such as a vehicle speed detection unit 9 and a notification unit 8, and the in-vehicle devices such as the notification unit 8 are, for example, via a body ECU 6 and an input / output interface 64 included in the body ECU 6. It is connected.
  • in-vehicle devices such as a vehicle speed detection unit 9 and a notification unit 8
  • the in-vehicle devices such as the notification unit 8 are, for example, via a body ECU 6 and an input / output interface 64 included in the body ECU 6. It is connected.
  • the body ECU 6 includes a control unit 61, a storage unit 62, a communication unit 63, and an input / output interface 64 like the radar ECU 5.
  • the control unit 61 is configured by a CPU (Central Processing Unit) or an MPU (Micro Processing Unit), and by reading and executing a control program and data stored in the storage unit 62 in advance, various control processes and Arithmetic processing and the like are performed.
  • CPU Central Processing Unit
  • MPU Micro Processing Unit
  • the storage unit 62 is configured by a volatile memory element such as a RAM (Random Access Memory) or a nonvolatile memory element such as a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable ROM), or a flash memory.
  • a volatile memory element such as a RAM (Random Access Memory) or a nonvolatile memory element such as a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable ROM), or a flash memory.
  • ROM Read Only Memory
  • EEPROM Electrical Erasable Programmable ROM
  • the communication unit 63 is a communication interface using a communication protocol such as CAN (Control Area Network), LIN (Local Interconnect Network), or Ethernet (registered trademark), and is connected to an in-vehicle device such as a radar ECU 5 connected to the in-vehicle LAN 2. Communicate with each other.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • Ethernet registered trademark
  • the input / output interface 64 is an interface group that is connected to in-vehicle devices such as the vehicle speed detection unit 9 and the notification unit 8 by a serial cable or the like, and inputs / outputs data between the control unit 61 and these in-vehicle devices. .
  • the vehicle speed detection unit 9 is a vehicle speed sensor composed of, for example, a hall element, and detects the traveling speed (vehicle speed) of the vehicle 1 and outputs the detected data related to the vehicle speed to the body ECU 6 via the input / output interface 64. To do.
  • the notification unit 8 includes, for example, a speaker or a display, and is connected to the body ECU 6 via the input / output interface 64. Based on an output from the body ECU 6, a display such as an alert for a target located around the vehicle 1 is displayed. Or an audio
  • the output from the body ECU 6 includes the output from the radar ECU 5 obtained by the body ECU 6, that is, the output from the radar ECU 5 to the notification unit 8 when the body ECU 6 relays the output.
  • the vehicle speed detection unit 9 and the notification unit 8 are connected to the input / output interface 64 of the body ECU 6.
  • the present invention is not limited to this.
  • the vehicle speed detection unit 9 and the notification unit 8 may be connected to the input / output interface 54 of the radar ECU 5 and input / output may be performed directly with the radar ECU 5.
  • the vehicle speed detection unit 9 and the notification unit 8 are connected to an ECU other than the body ECU 6 and the radar ECU 5, and the radar ECU 5 communicates with the other ECUs, so that input / output between the vehicle speed detection unit 9 and the like is performed. May be performed.
  • FIG. 3 is an explanatory diagram relating to the production line 7 of the vehicle 1 on which the target detection device 3 is mounted.
  • the vehicle 1 transported by the transport path 71 of the production line 7 is transported with the target detection device 3 already mounted.
  • the vehicle 1 is transported at a predetermined transport speed (vline [m / s]) with the front portion of the vehicle 1, that is, the front bumper 11 in front.
  • An object 72 is provided in a stationary state at a predetermined position that is lateral to the conveyance direction of the conveyance path 71.
  • the object 72 is an inspection target made of a material having a high reflectivity so that the transmission wave transmitted by the target detection device 3 is strongly reflected.
  • the target detection device 3 Can analyze the reflected wave and specify the target (detection point) of the reflected wave having a predetermined peak or more as the object 72 (inspection target).
  • FIG. 4 is an explanatory diagram regarding the reflection point of the reflected wave received before and after passing through the object 72.
  • the vehicle 1 on which the target detection device 3 is mounted is transported on the transport path 71 and approaches the object 72, for example, from a control system (not shown) that controls the entire production line 7, the target detection device.
  • a signal including the conveyance speed in the conveyance path 71 is output to the third radar ECU 5.
  • Radar ECU5 exhibits the function for taking the process of manufacturing the target detection apparatus 3 mentioned later, such as transmitting a transmission wave by acquiring the signal containing the said conveyance speed.
  • the radar ECU 5 transmits a transmission wave a plurality of times at a predetermined cycle, and receives a reflected wave obtained by reflecting the transmission wave by the object 72 a plurality of times.
  • the transmission wave is transmitted a plurality of times before and after the vehicle 1 on which the target detection device 3 is mounted passes through the object 72.
  • the transmission angle of the transmission range of the radar device 4 is 140 °
  • 141 transmission waves are transmitted when the azimuth angle between the radar device 4 and the object 72 is set to a resolution of 1 °.
  • the conveyance speed (vline [m / s]) and the transmission wave are set so that the azimuth angle between the 141 transmission waves transmitted in a predetermined cycle and the object 72 changes in units of 1 °.
  • the distance to the target detection device 3 mounted on the vehicle 1 when starting the transmission of is set.
  • the azimuth angle between the object 72 and the radar device 4 of the target detection device 3 in the description of FIG. 4 is derived based on the transport direction, that is, the traveling direction when the vehicle 1 travels. Therefore, as will be described later, the relative speed between the object 72 and the target detection device 3 is vline ⁇ cos ⁇ ( ⁇ is, for example, ⁇ A, ⁇ B, ⁇ C).
  • FIG. 4A shows the azimuth angle ( ⁇ A) and the distance (1A) derived based on the reflected wave received before the target detection device 3 passes through the object 72.
  • the relative speed between the target detection device 3 and the object 72 is calculated by vline ⁇ cos ⁇ A.
  • FIG. 4B is based on the reflected wave received when the target detection device 3 passes through the target object 72, that is, when the target object 72 is positioned substantially perpendicular to the conveyance direction.
  • the derived azimuth angle ( ⁇ B) and distance (1B) are shown. Accordingly, the azimuth angle ( ⁇ B) at this point is approximately 90 ° with respect to the transport direction.
  • the distance (1B) at this time point is the shortest distance between the target detection device 3 and the target object 72, and is a substantially vertical direction component with respect to the conveyance direction in the distance from the target object 72 derived in other reflected waves.
  • FIG. 4C shows the azimuth angle ( ⁇ C) and the distance (1C) derived based on the reflected wave received after the target detection device 3 passes through the object 72.
  • the relative speed between the target detection device 3 and the object 72 is calculated by vline ⁇ cos ⁇ C.
  • the target detection device 3 transmits the transmission wave a plurality of times, so that the target detection device 3 In each state where the relative position to the object 72 is different, the reflected wave reflected by the object 72 is received a plurality of times.
  • the angle (mounting angle) of the optical axis (bauxite) is determined with respect to the traveling direction of the vehicle 1 as described above. Accordingly, the radar ECU 5 takes into account the angle (mounting angle) of the optical axis (baudite) of the radar device 4 and the object 72 with a reference angle that sets the optical axis (baudite) of the radar device 4 to 0 °, for example.
  • the azimuth angle may be determined.
  • FIG. 5 is an explanatory diagram regarding the relative velocity and azimuth angle at the reflection point of the received reflected wave.
  • the horizontal axis in FIG. 5 is the azimuth angle between the target detection device 3 and the object 72.
  • the left vertical axis in FIG. 5 is the distance between the target detection device 3 and the object 72.
  • the right vertical axis in FIG. 5 is the relative speed between the target detection device 3 and the object 72.
  • the solid line is the distance between the target detection device 3 and the object 72.
  • a broken line is a relative speed between the target detection device 3 and the object 72.
  • the distance in the vertical direction (reference distance Ydist) between the target detection device 3 and the object 72 in the transport direction is set to 1 m, for example.
  • the conveyance speed (vline) is set to 1 m / s, for example.
  • the control unit 51 of the radar ECU 5 can derive the distance, the azimuth angle, and the relative speed between the target detection device 3 and the target object 72 by analyzing the plurality of received reflected waves. Since the control unit 51 of the radar ECU 5 has a clock function, the reception time of each of the plurality of received reflected waves is acquired. That is, the control unit derives a detection point of the reflected wave based on the analysis result of the reflected wave.
  • the information related to the detection point includes the distance between the reflection point and the target detection device 3 in the reflected wave, the relative speed, the azimuth angle, the radio wave intensity, and whether or not it is a stationary point.
  • the relative speed between the target detection device 3 and the target object 72 is initially a negative value, the target detection apparatus 3 is approaching the target object 72, and the relative speed is 0 [m / s]. Exceeds the value, it indicates a positive value, indicating that the target detection device 3 is moving away from the object 72.
  • the azimuth angle at which the relative speed is 0 [m / s] is, for example, 0 °.
  • the distance between the target detection device 3 and the object 72 also changes so that the distance becomes small at first, and after the time when the distance becomes the minimum value, the distance changes so as to become large.
  • This time point when the distance becomes the minimum value coincides with a time point when the relative speed becomes 0 [m / s].
  • the minimum value of the distance can be regarded as a vertical component (reference distance) with respect to the conveyance direction in the radar device 4 of the target detection device 3 and the object 72. Therefore, the radar ECU 5 can derive a vertical component (reference distance) with respect to the conveyance direction in the radar device 4 of the target detection device 3 and the object 72 by analyzing the plurality of received reflected waves.
  • FIG. 6 is an explanatory diagram regarding the correspondence (table) with the azimuth angle and the individual correction angle.
  • a correction angle with respect to an azimuth angle (rated azimuth angle) obtained by dividing a transmission angle in a transmission range of a transmission wave by a predetermined unit in a table format as shown in FIG. And stored in the storage unit 52.
  • the rated azimuth angle is an azimuth angle divided in units of 1 ° when the transmission angle of the transmission wave from the radar device 4 is 140 °, for example.
  • the correction angle includes an overall correction angle and an individual correction angle.
  • the overall correction angle is for correcting the deviation of the optical axis (bauxite) depending on the mounting angle or mounting position of the radar device 4.
  • the individual correction angle is used to correct a deviation due to a detection error or the like with respect to each azimuth angle derived in the reflected wave. Moreover, the total value of the whole correction angle and the individual correction angle may be registered in the table. Alternatively, the correction angle of either the whole correction angle or the individual correction angle may be registered in the table.
  • the method of manufacturing the target detection device 3 in the present embodiment includes, for example, an overall correction angle that depends on the mounting state of the radar device 4 and an individual azimuth angle (rated azimuth angle) determined in the table.
  • the method includes the steps of deriving different individual correction angles for each azimuth angle and registering these correction angles (overall correction angle and individual correction angle).
  • the target detection device 3 When the target detection device 3 is mounted on the vehicle 1, variations in the mounting angle or the mounting position may occur in the individual target detection devices 3 due to tolerances or the like.
  • FIG. 7 is a flowchart showing a manufacturing process (processing of the control unit 51) according to Embodiment 1 (shortest distance, conveyance speed).
  • the control unit 51 of the radar ECU 5 of the target detection device 3 performs the following when the target detection device 3 is already carried on the vehicle 1 on the conveyance path 71 of the production line 7 of the vehicle 1. Processing is performed, and the manufacturing process of the target detection device 3 is performed.
  • the control unit 51 of the radar ECU 5 acquires the transport speed of the transport path 71 included in the control signal, for example, by acquiring a control signal from a control system that performs overall control of the production line 7 (S101).
  • the control unit 51 may acquire a control signal including the conveyance speed via, for example, the body ECU 6.
  • the control part 51 may acquire the control signal containing a conveyance speed with the output from the apparatus for an inspection mounted in the vehicle 1.
  • the control unit 51 transmits the transmission wave a plurality of times at a predetermined cycle via the transmission unit 41 of the radar device 4 (S102). Since the target detection device 3 is mounted on the vehicle 1 and the vehicle 1 is transported at a predetermined transport speed on the transport path 71, the control unit 51 transports, that is, moves, the target detection device 3. In the state of being transmitted, the transmission wave is transmitted a plurality of times. That is, the control unit 51 transmits the transmission wave a plurality of times without stopping the conveyance of the vehicle 1.
  • the control unit 51 receives the reflected wave reflected by the object 72 (inspection target) a plurality of times via the receiving unit 43 of the radar apparatus 4 (S103).
  • transmission of transmission waves and reception of reflected waves are described separately, but it goes without saying that transmission and reception are actually performed a plurality of times in a predetermined cycle.
  • the control unit 51 analyzes the received plurality of reflected waves (S104).
  • the reflected wave is analyzed by, for example, FFT analysis, and the control unit 51 derives the distance, the azimuth angle, and the relative velocity between the object 72 and the radar device 4 in each reflected wave by performing the analysis.
  • the control unit 51 has a clock function and acquires the reception time in each reflected wave.
  • the control unit 51 associates the reception time, distance, azimuth angle, and relative speed of each of the derived reflected waves, and stores them in the storage unit 52 as the detection points of the reflected waves.
  • the control unit 51 derives a reference detection point based on the distance from the object 72 (S105).
  • the control unit 51 derives the detection point of the reflected wave having the shortest distance from the object 72 as the reference detection point in the plurality of received reflected waves.
  • the radar device 4 is present beside the object 72, that is, at a position substantially perpendicular to the transport direction (see FIG. 4B). Can be considered.
  • the control unit 51 derives a reference distance from the object 72 (S106). This reference distance corresponds to a vertical component with respect to the transport direction at the distance between the radar apparatus 4 and the object 72.
  • the reference detection point derived in S105 is the detection point having the shortest distance from the object 72, and the control unit 51 derives the shortest distance from the object 72 as the reference distance.
  • the control unit 51 derives and stores the overall correction angle (S107).
  • the azimuth angle with the object 72 at the reference detection point should be perpendicular to the conveyance direction, that is, 90 °. If the azimuth angle derived by the reference detection point is not 90 °, the difference between these angles is the radar device. 4 corresponds to the overall correction angle depending on the mounting position or mounting angle.
  • the control unit 51 derives an overall correction angle based on the difference between the azimuth angle derived from the reference detection point and 90 °, and stores the overall correction angle in the nonvolatile storage unit 52.
  • the control part 51 may memorize
  • the storage area in which the entire correction angle is stored is not limited to the storage unit 52 of the radar ECU 5, but includes all storage areas that the radar ECU 5 can refer to, for example, via the in-vehicle LAN 2, such as the storage unit 62 of the body ECU 6. .
  • the control unit 51 derives a traveling direction component of the distance from the object 72 based on the reception time of each reflected wave received a plurality of times (S108).
  • the reflected wave whose difference is a negative value is received before passing through the object 72
  • the reflected wave whose difference is a positive value is received after passing through the object 72.
  • the control unit 51 derives an individual correction angle for each of the reflected waves received a plurality of times (S109). Based on the traveling direction component (Xdist) of the distance between the radar apparatus 4 and the object 72 derived in S108 and the reference distance (Ydist) derived in S106, the control unit 51 uses the radar apparatus 4 and the object 72. An assumed azimuth angle is derived. The assumed azimuth angle is calculated by arctan (reference distance (Ydist) / traveling direction component (Xdist)) using, for example, a trigonometric function.
  • the control unit 51 derives, as the individual correction angle, the difference between the derived assumed angle and the azimuth angle derived in the process of S104 in each of the reflected waves received a plurality of times.
  • the control unit 51 stores the individual correction angle of each derived reflected wave in the storage unit 52 as in the process of S104. Accordingly, in this step, the reception time, distance, azimuth angle, relative speed, and individual correction angle of each reflected wave are associated and stored in the storage unit 52.
  • the control unit 51 derives the individual correction angle of the rated azimuth angle based on the individual correction angle, and stores it in the storage unit 52 (S110). As shown in FIG. 6, each individual correction angle is stored as corresponding to a rated azimuth angle obtained by dividing the transmission angle in the transmission range of the transmission wave, for example, in units of 1 °. However, the azimuth angle of each reflected wave derived by the process of S104 may not coincide with such a rated azimuth angle.
  • control unit 51 calculates a rated azimuth angle by using an interpolation method with respect to an arbitrary plurality of azimuth angles, and based on the individual correction angles corresponding to the arbitrary plural azimuth angles, An individual correction angle corresponding to the azimuth angle is derived.
  • the individual correction angle of the rated azimuth angle 68 ° can be derived as 0.03 °.
  • a reflected wave that becomes a plurality of azimuth angles that increase or decrease with respect to the rated azimuth angle is identified, and a weighted average obtained by multiplying each correction angle by a weight based on the deviation between the azimuth angle and the rated azimuth angle is used to obtain the rated azimuth angle.
  • a corresponding individual correction angle may be derived.
  • the control unit 51 stores the individual correction angle corresponding to the derived rated azimuth angle in the storage unit 52 in association with the rated azimuth angle.
  • the control part 51 may memorize
  • the rated azimuth angle corresponds to the azimuth angle between the target detected by the target detection device 3 and the vehicle 1 during normal driving of the vehicle 1.
  • the production line 7 can produce the target detection device 3 or the vehicle 1 on which the target detection device 3 is mounted without stopping the conveyance of the vehicle 1, the time required for the production process can be shortened. it can.
  • the shortest distance between the object 72 (inspection target) installed next to the transport path 71 of the production line 7 and the radar device 4 is the reference distance, that is, the object 72.
  • An angle can be derived.
  • an individual correction angle corresponding to a predetermined rated azimuth angle is derived, and by storing the rated azimuth angle and the individual correction angle in association with each other, the direction derived by the vehicle 1 during traveling is derived.
  • Angle correction can be performed by simple processing, and processing time can be reduced.
  • FIG. 8 is a flowchart showing a manufacturing process (processing of the control unit 51) according to the second embodiment (relative speed, distance).
  • the manufacturing process according to the second embodiment is different from the first embodiment in that a reference detection point is derived based on the relative speed with the object 72.
  • the processing from S201 to S204 is the same as the processing from S101 to S104 of the first embodiment.
  • the control unit 51 derives a reference detection point based on the relative speed with the object 72 (S205).
  • the relative speed between the object 72 and the radar apparatus 4 in each of the plurality of reflected waves is derived and stored in the storage unit 52 by the process of S204.
  • the relative speed between the object 72 and the radar apparatus 4 is reversed between positive and negative depending on the positional relationship between the object 72 and the radar apparatus 4 in the conveyance path 71. That is, in two reflected waves received in succession, when the relative velocity of one of these reflected waves is positive and the other relative velocity is negative, the radar device 4 receives the two reflected waves. ,
  • the object 72 is passed.
  • the control unit 51 identifies two consecutively received reflected waves in which one relative velocity is positive and the other relative velocity is negative, and includes the two reflected waves or the two reflected waves. Based on the plurality of reflected waves, a virtual reference detection point having a relative velocity of 0 m / s is derived using, for example, an interpolation method. Then, the control unit 51 determines the radar apparatus 4 and the target at the virtual reference detection point where the relative speed is 0 m / s based on the relative speed and distance between the radar apparatus 4 and the object 72 for each of the two reflected waves. The distance from the object 72 is derived.
  • the process of deriving the virtual reference detection point is performed by, for example, interpolation method or the like, based on the two reflected waves, the reception time at which the relative velocity is assumed to be 0 m / s, and the radar device 4 and the object at the reception time.
  • the process of deriving the distance to 72 and the relative distance is included.
  • the control part 51 may determine the reflected wave with the smallest absolute value of relative velocity with the target object 72 as a reference
  • the control unit 51 derives a reference distance from the object 72 (S206).
  • the control unit 51 derives the distance at the virtual reference detection point derived in S205 as the reference distance from the object 72.
  • the process of 207 is the same as the process of S107 of the first embodiment.
  • the control unit 51 derives the distance from the object 72 in each reflected wave (S208). Based on the analysis result of the reflected wave, which is the process of S204, the control unit 51 derives the distance from the object 72 in each reflected wave (detection point).
  • the control unit 51 derives an individual correction angle for each reflected wave (S209).
  • the control unit 51 assumes each reflected wave (detection point) based on the distance (R) between the radar apparatus 4 and the object 72 in each reflected wave (detection point) derived in S208 and the reference distance derived in S206.
  • the assumed azimuth angle between the radar device 4 and the object 72 is derived.
  • the control unit 51 uses, for example, a trigonometric function to derive an assumed azimuth angle based on arcsin (reference distance / distance (R) between the radar device 4 and the object 72).
  • the control unit 51 derives the difference between the azimuth angle of each reflected wave (detection point) and the assumed azimuth angle as an individual correction angle.
  • the process of S210 is the same as the process of S110 of the first embodiment.
  • the radar apparatus 4 Based on two consecutively received reflected waves in which one relative velocity is positive and the other relative velocity is negative, the radar apparatus 4 and the object 72 at the virtual reference detection point where the relative velocity is 0 m / s. Since the distance (reference distance) is derived, the reference distance can be accurately derived. Based on the reference distance, the overall correction angle and the individual correction angle can be accurately derived.
  • FIG. 9 is an explanatory diagram regarding the correspondence (table) between the azimuth angle and the individual correction angle in the manufacturing process according to the first modification.
  • the manufacturing process according to Modification 1 is different from Embodiments 1 and 2 in that the detected azimuth angle itself and the individual correction angle corresponding to the azimuth angle are stored in the storage unit 52.
  • an individual correction angle corresponding to a predetermined azimuth angle predetermined in a table format is derived, and the rated azimuth angle and the individual correction angle are associated with each other and stored.
  • the present invention is not limited to this.
  • the control unit 51 of the radar ECU 5 stores the detected azimuth angle itself and the individual correction angle corresponding to the azimuth angle in the storage unit 52 by, for example, registering them in a table. Good.
  • the manufacturing process can be simplified by storing the detected azimuth angle itself and the individual correction angle corresponding to the azimuth angle in association with each other.
  • FIG. 10 is an explanatory diagram relating to the production line 7 in the production process according to the second modification.
  • the manufacturing process according to the modified example 1 is different from that of the first embodiment in that transmission waves are transmitted from the front and rear of the vehicle 1, that is, the radar devices 4 provided on the front bumper 11 and the rear bumper 12 and the like.
  • a transmission wave is transmitted from the radar device 4 mounted on the left side of the front bumper 11, and a correction angle corresponding to each azimuth angle is derived and stored based on the received reflected wave.
  • the radar device 4 is provided in front of and behind the vehicle 1, that is, in each of the front bumper 11 and the rear bumper 12, and transmits a transmission wave from each radar device 4 according to the conveyance state of the vehicle 1. The step of receiving the reflected wave reflected may be started.
  • the required time in the manufacturing process can be shortened by performing at least a part of the manufacturing process of the radar apparatus 4 provided before and after the vehicle 1 in parallel with the same object 72.
  • the target object 72 is installed on the left side with respect to the conveyance path 71, it is not limited to this.
  • the object 72 may be installed on the right side with respect to the conveyance path 71, and the object 72 may be installed on each of the left and right sides of the conveyance path 71.
  • the radar apparatus 4 is provided on the front and rear sides and right and left sides of the vehicle 1, that is, on the left and right sides of the front bumper 11 and the left and right sides of the rear bumper 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

Provided is a method for manufacturing an object detection device which is to be mounted on a vehicle being conveyed at a prescribed conveyance speed on a conveyance path of a manufacturing line, the method comprising a step for acquiring information about the conveyance speed, a step, implemented by the object detection device, for, before and after a vehicle passes an object disposed alongside the conveyance path at the conveyance speed, transmitting transmission waves multiple times and receiving, multiple times, waves reflected by the object, a step for deriving, on the basis of the multiple reflective waves that have been received, a reference detection point used to derive a reference distance between the object detection device and the object, a step for deriving an azimuth between the object and the object detection device at the derived reference detection point; a step for deriving an overall correction angle of the object detection device on the basis of the derived azimuth; and a step for storing information concerning the derived overall correction angle in a prescribed storage area.

Description

物標検出装置の製造方法、車両の製造方法及びプログラムMethod for manufacturing target detection apparatus, method for manufacturing vehicle, and program
 本発明は、物標検出装置の製造方法、車両の製造方法及びプログラムに関する。 The present invention relates to a method for manufacturing a target detection device, a method for manufacturing a vehicle, and a program.
 従来、車載用のレーダ装置を用いて、衝突対象となりうる他車両、又は側道に設けられている構造物等の物標を検出し、これら物標との距離又は方位角度に基づいて、車両の操作者に注意喚起を発する物標検出装置(レーザレーダ装置)が知られている(例えば、特許文献1)。 Conventionally, an on-vehicle radar device is used to detect other vehicles that can be a collision target, or a target such as a structure provided on a side road, and based on the distance or azimuth angle with these targets, the vehicle There is known a target detection device (laser radar device) that alerts the operator (for example, Patent Document 1).
 当該物標検出装置が搭載された車両の製造工程において、物標検出装置の搭載角度(基準光軸の角度)が、基準設置軸と一致しているかを検査する必要がある。これに対し、特許文献1に記載の物標検出装置のレーダの光軸検査方法は、車両の製造工程において、当該基準光軸に対し、カメラ軸が一致するように検査用の撮像装置を車両に取付け、この撮像装置によって当該検査を行うものとしている。 In the manufacturing process of the vehicle on which the target detection device is mounted, it is necessary to inspect whether the mounting angle (reference optical axis angle) of the target detection device matches the reference installation axis. On the other hand, the radar optical axis inspection method of the target detection apparatus described in Patent Document 1 uses an inspection imaging device in a vehicle manufacturing process so that the camera axis coincides with the reference optical axis. And the inspection is performed by the imaging apparatus.
特開2012-215523号公報JP 2012-215523 A
 しかしながら、車両の製造工程において、撮像装置の取付け及び取り外しを行うためには、製造ラインにおける車両の搬送を停止する必要がある。従って、特許文献1の物標検出装置のレーダの光軸検査方法は、この光軸検査を含む製造工程において車両の搬送の停止を要するため、製造工程の所要時間が長くなるという問題点がある However, in order to attach and remove the imaging device in the vehicle manufacturing process, it is necessary to stop the transportation of the vehicle on the production line. Therefore, the radar optical axis inspection method of the target detection apparatus of Patent Document 1 has a problem in that the time required for the manufacturing process is increased because the vehicle transport must be stopped in the manufacturing process including the optical axis inspection.
 本発明は斯かる事情に鑑みてなされたものであり、車両に搭載される物標検出装置を効率的に製造することができる物標検出装置の製造方法等を提供することを目的とする。 This invention is made in view of such a situation, and it aims at providing the manufacturing method of the target detection apparatus etc. which can manufacture the target detection apparatus mounted in a vehicle efficiently.
 本開示の一態様に係る物標検出装置の製造方法は、製造ラインの搬送路にて所定の搬送速度で搬送される車両に搭載される物標検出装置の製造方法であって、前記搬送速度に関する情報を取得する工程と、前記車両が前記搬送路の横に設けられた対象物を前記搬送速度にて通過する前後にて、該物標検出装置が、送信波を複数回送信し、該対象物によって反射された反射波を複数回受信する工程と、複数回受信した反射波夫々に基づいて、前記物標検出装置と前記対象物との基準距離を導出するための基準検知点を導出する工程と、導出した前記基準検知点における物標検出装置と対象物との方位角度を導出する工程と、導出した前記方位角度に基づいて、前記物標検出装置の全体補正角度を導出する工程と、導出した前記全体補正角度に関する情報を、所定の記憶領域に記憶する工程とを含む。 The manufacturing method of the target detection apparatus which concerns on 1 aspect of this indication is a manufacturing method of the target detection apparatus mounted in the vehicle conveyed by the predetermined conveyance speed in the conveyance path of a production line, Comprising: The said conveyance speed The target detecting device transmits the transmission wave a plurality of times before and after the vehicle passes through the object provided on the side of the conveyance path at the conveyance speed, A reference detection point for deriving a reference distance between the target detection device and the object is derived based on the step of receiving the reflected wave reflected by the object a plurality of times and the reflected waves received a plurality of times. A step of deriving an azimuth angle between the target detection device and the object at the derived reference detection point, and a step of deriving an overall correction angle of the target detection device based on the derived azimuth angle. And the derived overall correction angle The information includes a step of storing in a predetermined storage area.
 本態様にあたっては、物標検出装置が搭載された車両の搬送を停止することなく、物標検出装置の取付け角度に依拠した全体補正角度を導出するため、車両に搭載される物標検出装置の製造に要する時間を短縮し、効率的に物標検出装置を製造することができる。導出した全体補正角度は所定の記憶領域に記憶されるため、物標検出装置毎に、個々の全体補正角度を設定することができる。従って、車両における物標検出装置の搭載位置又は搭載角度のばらつきを個別に対応した物標検出装置を製造することができる。 In this aspect, the entire correction angle that depends on the mounting angle of the target detection device is derived without stopping the transportation of the vehicle on which the target detection device is mounted. The time required for manufacturing can be shortened, and the target detection apparatus can be manufactured efficiently. Since the derived overall correction angle is stored in a predetermined storage area, an individual overall correction angle can be set for each target detection device. Therefore, it is possible to manufacture a target detection device that individually corresponds to variations in the mounting position or mounting angle of the target detection device in the vehicle.
 本開示の一態様に係る物標検出装置の製造方法は、前記基準検知点を導出する工程は、複数回受信した反射波夫々において、該反射波夫々にて導出される物標検出装置と対象物との距離が、最も短い距離の反射波の検知点を基準検知点として導出する工程を含む。 In the method of manufacturing a target detection device according to an aspect of the present disclosure, the step of deriving the reference detection point is performed in each of the reflected waves received a plurality of times. A step of deriving the detection point of the reflected wave having the shortest distance from the object as a reference detection point.
 本態様にあたっては、物標検出装置と対象物との距離が、最も短い距離の反射波の検知点を基準検知点として導出するため、当該基準検知点に基づき精度よく基準距離を導出することができる。 In this aspect, since the detection point of the reflected wave with the shortest distance is derived as the reference detection point, the reference distance can be accurately derived based on the reference detection point. it can.
 本開示の一態様に係る物標検出装置の製造方法は、前記基準検知点を決定する工程は、複数回受信した反射波夫々において、連続して受信した2つの反射波夫々にて導出される物標検出装置と対象物との相対速度の正負が逆転する場合、当該2つの反射波夫々に基づき基準検知点を導出する工程を含む。 In the method of manufacturing a target detection device according to an aspect of the present disclosure, the step of determining the reference detection point is derived from each of two reflected waves received in succession in each of the reflected waves received a plurality of times. When the sign of the relative speed between the target detection device and the target is reversed, a step of deriving a reference detection point based on each of the two reflected waves is included.
 本態様にあたっては、連続して受信した2つの反射波夫々にて導出される物標検出装置と対象物との相対速度の正負が逆転する場合、当該2つの反射波に基づいて、基準検知点を決定するため、当該基準検知点に基づき精度よく基準距離を導出することができる。 In this aspect, when the sign of the relative velocity between the target detection device derived from the two reflected waves successively received and the object is reversed, the reference detection point is determined based on the two reflected waves. Therefore, the reference distance can be accurately derived based on the reference detection point.
 本開示の一態様に係る物標検出装置の製造方法は、前記基準検知点を導出する工程以降に、複数回受信した反射波夫々における前記物標検出装置と前記対象物との方位角度夫々を導出する工程と、前記基準検知点の反射波を受信した基準受信時刻と、複数回受信した反射波夫々を受信した受信時刻夫々との時間差夫々を導出する工程と、前記基準距離、前記取得した搬送速度、前記導出した方位角度夫々及び時間差夫々に基づいて、前記反射波夫々における個別補正角度を導出する工程と、導出した個別補正角度に関する情報を所定の記憶領域に記憶する工程とを含む。 In the method for manufacturing the target detection device according to one aspect of the present disclosure, the azimuth angle between the target detection device and the object in each of the reflected waves received a plurality of times after the step of deriving the reference detection point is determined. A step of deriving, a step of deriving a time difference between a reference reception time at which the reflected wave at the reference detection point is received and a reception time at which each of the reflected waves received a plurality of times is received, the reference distance, the acquired The method includes a step of deriving an individual correction angle for each reflected wave based on the conveyance speed, the derived azimuth angle, and the time difference, and a step of storing information on the derived individual correction angle in a predetermined storage area.
 本態様にあたっては、反射波夫々における個別補正角度を導出し、導出した個別補正角度に関する情報を所定の記憶領域に記憶するため、方位角度夫々に対応した個別補正角度が記憶された物標検出装置を効率的に製造することができる。 In this embodiment, the individual correction angle in each reflected wave is derived, and the information related to the derived individual correction angle is stored in a predetermined storage area. Therefore, the target detection apparatus in which the individual correction angle corresponding to each azimuth angle is stored. Can be efficiently manufactured.
 本開示の一態様に係る物標検出装置の製造方法は、前記基準検知点を導出する工程以降に、複数回受信した反射波夫々における前記物標検出装置と前記対象物との距離夫々及び方位角度夫々を導出する工程と、前記基準距離、前記導出した距離夫々及び方位角度夫々に基づいて、前記反射波夫々における個別補正角度を導出する工程と、導出した個別補正角度に関する情報を所定の記憶領域に記憶する工程とを含む。 In the method for manufacturing the target detection device according to one aspect of the present disclosure, the distance and direction between the target detection device and the object in each of the reflected waves received a plurality of times after the step of deriving the reference detection point. A step of deriving each angle; a step of deriving an individual correction angle in each of the reflected waves based on the reference distance, the derived distance and an azimuth angle; and information on the derived individual correction angle Storing in the area.
 本態様にあたっては、基準距離、前記導出した距離夫々及び方位角度夫々に基づいて、前記反射波夫々における個別補正角度を導出するため、方位角度夫々に対応した個別補正角度を精度よく導出することができる。 In this aspect, since the individual correction angle in each reflected wave is derived based on the reference distance, each of the derived distance, and each azimuth angle, it is possible to accurately derive the individual correction angle corresponding to each azimuth angle. it can.
 本開示の一態様に係る物標検出装置の製造方法は、前記所定の記憶領域に記憶する工程は、前記受信した反射波夫々における方位角度及び個別補正角度又は、該方位角度及び、前記全体補正角度と個別補正角度との合算値をテーブル形式で登録する工程を含む。 In the method for manufacturing a target detection apparatus according to an aspect of the present disclosure, the step of storing in the predetermined storage area includes the azimuth angle and the individual correction angle in each of the received reflected waves, or the azimuth angle and the overall correction. A step of registering the sum of the angle and the individual correction angle in a table format.
 本態様にあたっては、受信した反射波夫々における方位角度及び個別補正角度、又は、方位角度及び全体補正角度と個別補正角度の合算値を、テーブル形式で登録して、所定の記憶領域に記憶するため、効率よく個別補正角度等の記憶及び読み出しを行うことができる。 In this aspect, the azimuth angle and the individual correction angle in each received reflected wave, or the sum of the azimuth angle and the overall correction angle and the individual correction angle are registered in a table format and stored in a predetermined storage area. Thus, it is possible to efficiently store and read out the individual correction angle and the like.
 本開示の一態様に係る物標検出装置の製造方法は、前記所定の記憶領域に記憶する工程は、任意の複数の方位角度における個別補正角度に基づいて、物標検出装置によって送信される送信波の水平方向における送信範囲の送信角度を所定角度単位で分けた定格方位角度夫々に対応する個別補正角度を導出し、該定格方位角度と導出した該定格方位角度に対応する個別補正角度とを関連づけて、所定の記憶領域に記憶する工程を含む。 In the method for manufacturing a target detection device according to an aspect of the present disclosure, the step of storing in the predetermined storage area is a transmission transmitted by the target detection device based on individual correction angles in an arbitrary plurality of azimuth angles. An individual correction angle corresponding to each of the rated azimuth angles obtained by dividing the transmission angle of the transmission range in the horizontal direction of the wave by a predetermined angle unit is derived, and the rated azimuth angle and the individual correction angle corresponding to the derived rated azimuth angle are obtained. A step of storing in a predetermined storage area in association with each other is included.
 本態様にあたっては、効率的に当該定格方位角度夫々に対応する個別補正角度を登録することができる。 In this aspect, it is possible to efficiently register individual correction angles corresponding to the rated azimuth angles.
 本開示の一態様に係る物標検出装置の製造方法は、前記所定の記憶領域に記憶する工程は、該定格方位角度と該定格方位角度に対応する個別補正角度とを関連づけて、テーブル形式で登録する工程を含む。 In the method for manufacturing a target detection device according to an aspect of the present disclosure, the step of storing in the predetermined storage area associates the rated azimuth angle with an individual correction angle corresponding to the rated azimuth angle in a table format. Including the step of registering.
 本態様にあたっては、テーブル形式で登録して、所定の記憶領域に記憶するため、効率よく定格方位角度及び個別補正角度の記憶及び読み出しを行うことができる。 In this aspect, since it is registered in a table format and stored in a predetermined storage area, the rated azimuth angle and the individual correction angle can be efficiently stored and read out.
 本開示の一態様に係る車両の製造方法は、前記物標検出装置が搭載され、製造ラインの搬送路にて所定の搬送速度で搬送される車両の製造方法であって、本開示の一態様に係る物標検出装置の製造方法を含む。 A method for manufacturing a vehicle according to one aspect of the present disclosure is a method for manufacturing a vehicle on which the target detection device is mounted and is transported at a predetermined transport speed on a transport path of a manufacturing line. The manufacturing method of the target detection apparatus which concerns on.
 本態様にあたっては、物標検出装置が搭載された車両の搬送を停止することなく、物標検出装置の取付位置又は取付角度に依拠した全体補正角度を導出するため、車両の製造に要する時間を短縮し、効率的に車両を製造することができる。導出した全体補正角度は所定の記憶領域に記憶されるため、搭載位置のばらつきを個別に対応した物標検出装置を搭載した車両を製造することができる。 In this aspect, since the overall correction angle based on the mounting position or the mounting angle of the target detection device is derived without stopping the transportation of the vehicle on which the target detection device is mounted, the time required for manufacturing the vehicle is reduced. The vehicle can be shortened and manufactured efficiently. Since the derived overall correction angle is stored in a predetermined storage area, it is possible to manufacture a vehicle equipped with a target detection device that individually corresponds to variations in mounting position.
 本開示の一態様に係るプログラムは、コンピュータに物標検出装置が搭載された車両を搬送する製造ラインの搬送路における搬送速度を取得し、前記車両が前記搬送路の横に設けられた対象物を前記搬送速度にて通過する前後にて、該物標検出装置によって複数回送信された送信波の該対象物により反射された反射波夫々を取得し、取得した反射波夫々に基づいて、前記物標検出装置と前記対象物との基準距離を導出するための基準検知点を導出し、導出した前記基準検知点における物標検出装置と対象物との方位角度を導出し、導出した前記方位角度に基づいて、前記物標検出装置の全体補正角度を導出し、導出した前記全体補正角度に関する情報を、所定の記憶領域に記憶する処理を実行させる。 A program according to an aspect of the present disclosure acquires a conveyance speed on a conveyance path of a production line that conveys a vehicle on which a target detection device is mounted on a computer, and the object is provided on the side of the conveyance path. Before and after passing at the transport speed, to obtain each reflected wave reflected by the object of the transmission wave transmitted a plurality of times by the target detection device, based on each obtained reflected wave, Deriving a reference detection point for deriving a reference distance between the target detection device and the object, deriving an azimuth angle between the target detection device and the object at the derived reference detection point, and deriving the direction Based on the angle, an overall correction angle of the target detection apparatus is derived, and a process of storing information on the derived overall correction angle in a predetermined storage area is executed.
 本態様にあたっては、効率的に物標検出装置を製造することができるプログラムをコンピュータに実行させることができる。 In this aspect, it is possible to cause a computer to execute a program that can efficiently manufacture a target detection apparatus.
 車両に搭載される物標検出装置を効率的に製造することができる物標検出装置の製造方法等を提供することを目的とする。 An object of the present invention is to provide a method of manufacturing a target detection device that can efficiently manufacture a target detection device mounted on a vehicle.
実施形態1に係る製造工程によって製造される物標検出装置を備える車両の一例を示す模式図である。It is a schematic diagram which shows an example of the vehicle provided with the target detection apparatus manufactured by the manufacturing process which concerns on Embodiment 1. FIG. 実施形態1に係る物標検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the target detection apparatus which concerns on Embodiment 1. FIG. 物標検出装置が搭載された車両の製造ラインに関する説明図である。It is explanatory drawing regarding the manufacturing line of the vehicle by which the target detection apparatus is mounted. 対象物を通過する前後において受信した反射波の反射点に関する説明図である。It is explanatory drawing regarding the reflective point of the reflected wave received before and behind passing through a target object. 受信した反射波の反射点における相対速度と方位角度に関する説明図である。It is explanatory drawing regarding the relative velocity and azimuth | direction angle in the reflective point of the received reflected wave. 方位角度及び個別補正角度との対応(テーブル)に関する説明図である。It is explanatory drawing regarding a response | compatibility (table) with an azimuth angle and an individual correction angle. 実施形態1(最短距離、搬送速度)に係る製造工程(制御部の処理)を示すフローチャートである。It is a flowchart which shows the manufacturing process (process of a control part) which concerns on Embodiment 1 (shortest distance, conveyance speed). 実施形態2(相対速度、距離)に係る製造工程(制御部の処理)を示すフローチャートである。It is a flowchart which shows the manufacturing process (process of a control part) which concerns on Embodiment 2 (relative speed, distance). 変形例1に係る製造工程による方位角度及び個別補正角度との対応(テーブル)に関する説明図である。It is explanatory drawing regarding the response | compatibility (table) with the azimuth | direction angle by the manufacturing process which concerns on the modification 1, and an individual correction angle. 変形例2に係る製造工程における製造ラインに関する説明図である。10 is an explanatory diagram relating to a production line in a production process according to Modification 2. FIG.
(実施形態1)
 以下、実施の形態について、図面に基づいて説明する。図1は、実施形態1に係る製造工程によって製造される物標検出装置を備える車両の一例を示す模式図である。図2は、実施形態1に係る物標検出装置3の構成を示すブロック図である。まずは、物標検出装置3及び当該物標検出装置3を備える車両1について説明する。
(Embodiment 1)
Hereinafter, embodiments will be described with reference to the drawings. FIG. 1 is a schematic diagram illustrating an example of a vehicle including a target detection device manufactured by a manufacturing process according to the first embodiment. FIG. 2 is a block diagram illustrating a configuration of the target detection device 3 according to the first embodiment. First, the target detection device 3 and the vehicle 1 including the target detection device 3 will be described.
 車両1は、フロントバンパー11、リアバンパー12、車体フレーム10、及びレーダ装置4とレーダECU(Electronic Control Unit)5とを含む物標検出装置3を備える。 The vehicle 1 includes a front bumper 11, a rear bumper 12, a vehicle body frame 10, and a target detection device 3 including a radar device 4 and a radar ECU (Electronic Control Unit) 5.
 レーダ装置4は、車両1の前方及び後方の夫々の角部に設けられている。車両1の前方及び後方の夫々の角部は、フロントバンパー11、リアバンパー12及び車体フレーム10の夫々の角部を含む。 The radar device 4 is provided at each of the front and rear corners of the vehicle 1. The front and rear corners of the vehicle 1 include the front bumper 11, the rear bumper 12, and the body frame 10.
 レーダ装置4夫々は、フロントバンパー11及びリアバンパー12の左右の角部夫々に設けられている。レーダ装置4夫々には、対応するレーダECU5夫々が接続されており、これらレーダECU5夫々は、後述する車内LAN(Local Area Network)2によってボディECU6に接続されている。 The radar devices 4 are provided at the left and right corners of the front bumper 11 and the rear bumper 12, respectively. Each radar ECU 5 is connected to a corresponding radar ECU 5, and each of these radar ECUs 5 is connected to a body ECU 6 by an in-vehicle LAN (Local Area Network) 2 described later.
 レーダ装置4夫々は、フロントバンパー11及びリアバンパー12の左右の角部夫々に設けられている。フロントバンパー11の左の角部に設けられているレーダ装置4の水平方向の送信角度(θFL)は、90°以上となるように設定してある。同様にフロントバンパー11の右の角部、及びリアバンパー12の左右の角部に設けられているレーダ装置4夫々の水平方向の送信角度(θFR、θBL、θBR)も、90°以上となるように設定してある。レーダ装置4の向きは、レーダ装置4から送信される電波の送信範囲が、レーダ装置4夫々から車両1の外側に向かって真横となる方向、すなわち車両1の進行方向に対し外側へ略垂直の方向を含むように、設定されている。従って、車両1の直進時の前進方向を90°とした場合、フロントバンパー11の右側に設けられたレーダ装置4の送信範囲は、水平方向において略335°(-25°)から略115°の方向を含む。フロントバンパー11の左側に設けられたレーダ装置4の送信範囲は、水平方向において略65°から略205°の方向を含む。リアバンパー12の左側に設けられたレーダ装置4の送信範囲は、水平方向において略155°から略295°の方向を含む。リアバンパー12の右側に設けられたレーダ装置4の送信範囲は、水平方向において略245°から略25°(385°)の方向を含む。すなわち、レーダ装置4夫々の送信角度(θFL、θFR、θBL、θBR)を140°とした場合、送信角度の半分となる中心線となる光軸(ボーサイト/boresight)を基準に、この光軸より水平方向に±70°の範囲で、レーダ装置4夫々から電波(送信波)が送信されている。車両1の進行方向に対する当該光軸の角度が、レーダ装置4の取付角度となる。レーダ装置4の設置場所は、車両1の前方及び後方の角部と記載したがこれに限定されない。レーダ装置4は、車両1の左右側面の中央部、又は前後の中央部に設置されていてもよい。 The radar devices 4 are provided at the left and right corners of the front bumper 11 and the rear bumper 12, respectively. The horizontal transmission angle (θFL) of the radar device 4 provided at the left corner of the front bumper 11 is set to be 90 ° or more. Similarly, the horizontal transmission angles (θFR, θBL, θBR) of the radar devices 4 provided at the right corner of the front bumper 11 and the left and right corners of the rear bumper 12 are also set to 90 ° or more. It is set. The direction of the radar apparatus 4 is such that the transmission range of the radio wave transmitted from the radar apparatus 4 is substantially perpendicular to the direction in which each radar apparatus 4 is laterally lateral to the outside of the vehicle 1, that is, the traveling direction of the vehicle 1. It is set to include direction. Accordingly, when the forward direction of the vehicle 1 when traveling straight is 90 °, the transmission range of the radar device 4 provided on the right side of the front bumper 11 is a direction from approximately 335 ° (−25 °) to approximately 115 ° in the horizontal direction. including. The transmission range of the radar device 4 provided on the left side of the front bumper 11 includes a direction from approximately 65 ° to approximately 205 ° in the horizontal direction. The transmission range of the radar apparatus 4 provided on the left side of the rear bumper 12 includes a direction from approximately 155 ° to approximately 295 ° in the horizontal direction. The transmission range of the radar device 4 provided on the right side of the rear bumper 12 includes a direction from approximately 245 ° to approximately 25 ° (385 °) in the horizontal direction. That is, when the transmission angle (θFL, θFR, θBL, θBR) of each radar device 4 is 140 °, this optical axis is based on the optical axis (baudite / boresight) that is the center line that is half the transmission angle. Radio waves (transmission waves) are transmitted from each of the radar devices 4 in a range of ± 70 ° in the horizontal direction. The angle of the optical axis with respect to the traveling direction of the vehicle 1 is the mounting angle of the radar device 4. Although the installation location of the radar device 4 is described as the front and rear corners of the vehicle 1, it is not limited to this. The radar apparatus 4 may be installed in the center part of the left and right side surfaces of the vehicle 1 or in the front and rear center parts.
 レーダ装置4は、送信部41、送信アンテナ42、受信部43及び受信アンテナ44を含む。送信部41は、レーダECU5と後述する入出力インターフェイス54を介して接続されており、後述するレーダECU5の制御部51からの信号に基づき、電波(送信波)を送信する。送信波は、例えば、30GHzから300GHzのミリ波帯の周波数帯の電波、又は10GHzから30GHzのマイクロ波の周波数帯の電波である。 The radar apparatus 4 includes a transmission unit 41, a transmission antenna 42, a reception unit 43, and a reception antenna 44. The transmission unit 41 is connected to the radar ECU 5 via an input / output interface 54 described later, and transmits a radio wave (transmission wave) based on a signal from a control unit 51 of the radar ECU 5 described later. The transmission wave is, for example, a radio wave in the millimeter wave band of 30 GHz to 300 GHz or a radio wave in the microwave frequency band of 10 GHz to 30 GHz.
 送信アンテナ42は、送信波の送信方向、すなわち指向性を有する指向性アンテナであり、上述のごとく水平方向において送信範囲が設定されており、当該送信範囲が、後述する物標を検出するための検出範囲となる。送信アンテナ42は、送信部41と接続されており、当該送信部41から出力によって電波(送信波)を送信する。 The transmission antenna 42 is a transmission direction of a transmission wave, that is, a directional antenna having directivity. A transmission range is set in the horizontal direction as described above, and the transmission range is used for detecting a target described later. The detection range. The transmission antenna 42 is connected to the transmission unit 41, and transmits a radio wave (transmission wave) by output from the transmission unit 41.
 受信アンテナ44は、受信部43と接続されており、送信アンテナ42と略同方向に向くように配置されている。受信アンテナ44は、物標によって反射された反射波を受信し、受信部43に出力する。 The receiving antenna 44 is connected to the receiving unit 43 and is disposed so as to face substantially the same direction as the transmitting antenna 42. The receiving antenna 44 receives the reflected wave reflected by the target and outputs it to the receiving unit 43.
 受信部43は、レーダECU5と後述する入出力インターフェイス54を介して接続されており、物標によって反射された反射波を、受信アンテナ44を介して取得する。物標は、例えば自車の周辺を走行する他の車両、道路の側縁に設けられた設備及び歩行者等を含む。受信部43は、取得した反射波を例えば、A/D変換して制御部51に出力する。 The receiving unit 43 is connected to the radar ECU 5 via an input / output interface 54 described later, and acquires the reflected wave reflected by the target via the receiving antenna 44. The target includes, for example, other vehicles that travel around the host vehicle, facilities provided on the side edges of the road, pedestrians, and the like. The receiving unit 43 performs A / D conversion on the acquired reflected wave, for example, and outputs the result to the control unit 51.
 レーダ装置4が、例えばFMCW方式(Frequency Modulated Continuous Wave)を用いている場合、送信部41は、周波数が時間に比例して変化した電波(送信波)を送信し、受信部43は、物標によって反射された反射波及び送信波が混合したビート信号を受信する。 When the radar apparatus 4 uses, for example, the FMCW method (Frequency Modulated Continuous Wave), the transmission unit 41 transmits a radio wave (transmission wave) whose frequency changes in proportion to time, and the reception unit 43 receives a target. The beat signal obtained by mixing the reflected wave and the transmission wave reflected by is received.
 レーダECU5は、制御部51、記憶部52、通信部53及び入出力インターフェイス54を含む。制御部51は、CPU(Central Processing Unit)又はMPU(Micro Processing Unit)等により構成してあり、記憶部52に予め記憶された制御プログラム及びデータを読み出して実行することにより、種々の制御処理及び演算処理等を行うようにしてある。制御部51は、記憶部52に記憶されている制御プログラムを実行することによって、物標検出部、距離導出部、方位角度導出部、相対速度導出部として機能する。制御部51は、時計機能を有しており、物標検出部として機能するにあたり、反射波を受信した時刻を記憶部52に記憶する。更に制御部51は、後述する物標検出装置の製造方法において、導出した方位角度を補正するための補正角度(全体補正角度、個別補正角度)を導出し記憶する工程等の各工程を担う。レーダECU5は、方位角度導出部として機能するにあたり、反射波を解析して導出した方位角度に対し、記憶部52に記憶されている補正角度に基づいて、導出した方位角度を補正することによって、当該方位角度の精度を向上させる。 The radar ECU 5 includes a control unit 51, a storage unit 52, a communication unit 53, and an input / output interface 54. The control unit 51 is configured by a CPU (Central Processing Unit) or an MPU (Micro Processing Unit), and various control processes and data are read and executed by reading and executing a control program and data stored in the storage unit 52 in advance. Arithmetic processing and the like are performed. The control unit 51 functions as a target detection unit, a distance deriving unit, an azimuth angle deriving unit, and a relative speed deriving unit by executing a control program stored in the storage unit 52. The control unit 51 has a clock function, and stores the time when the reflected wave is received in the storage unit 52 when functioning as a target detection unit. Further, the control unit 51 is responsible for each process such as a process of deriving and storing a correction angle (overall correction angle, individual correction angle) for correcting the derived azimuth angle in a method for manufacturing a target detection apparatus to be described later. The radar ECU 5 corrects the derived azimuth angle based on the correction angle stored in the storage unit 52 with respect to the azimuth angle derived by analyzing the reflected wave when functioning as the azimuth angle deriving unit. Improve the accuracy of the azimuth angle.
 物標検出部は、例えばFMCW方式等の既知の方式を用いることによって、周波数が時間に比例して変化した電波(送信波)を送信し、物標によって当該送信波が反射された反射波を受信することによって物標を検出する。 The target detection unit transmits a radio wave (transmission wave) whose frequency changes in proportion to time by using a known method such as the FMCW method, and a reflected wave in which the transmission wave is reflected by the target. The target is detected by receiving.
 距離導出部は、例えばFMCW方式の場合、送信波と反射波とが混在したビート信号を受信し、当該ビート信号をFFT解析(Fast Fourier Transform)することによってビート信号の周波数を解析し、当該周波数の解析結果に基づいて、自車と物標との距離を導出する。 For example, in the case of the FMCW system, the distance deriving unit receives a beat signal in which a transmission wave and a reflected wave are mixed, and analyzes the beat signal frequency by performing FFT analysis (Fast Fourier Transform) on the beat signal. Based on the analysis result, the distance between the vehicle and the target is derived.
 方位角度導出部は、距離導出部と同様にビート信号の周波数を解析し、当該周波数の解析結果に基づいて、自車に対する物標との方位角度を導出する。 The azimuth angle deriving unit analyzes the frequency of the beat signal in the same manner as the distance deriving unit, and derives the azimuth angle with the target with respect to the host vehicle based on the analysis result of the frequency.
 相対速度導出部は、距離導出部と同様にビート信号の周波数を解析し、当該周波数の解析結果に基づいて、自車に対する物標との相対速度を導出する。 The relative speed deriving unit analyzes the frequency of the beat signal in the same manner as the distance deriving unit, and derives the relative speed of the target vehicle with respect to the host vehicle based on the analysis result of the frequency.
 レーダ装置4の受信部43が、フーリエ変換等の演算能力を有しており、物標検出部、距離導出部、方位角度導出部、又は相対速度導出部として機能してもよい。または、レーダ装置4の受信部43とレーダECU5の制御部51とが協働して、物標検出部、距離導出部、方位角度導出部、又は相対速度導出部として機能してもよい。または、後述するボディECU6の制御部61が、制御プログラムを実行し、レーダ装置4又はレーダECU5の制御部51と通信し制御して、又は協働して物標検出部、距離導出部、方位角度導出部、又は相対速度導出部として機能してもよい。更に、ボディECU6の制御部61が、レーダ装置4又はレーダECU5の制御部51と通信し制御して、又は協働して、後述する物標検出装置の製造方法における各工程を担うものであってもよい。 The receiving unit 43 of the radar device 4 has a computing capability such as Fourier transform, and may function as a target detecting unit, a distance deriving unit, an azimuth angle deriving unit, or a relative velocity deriving unit. Alternatively, the receiving unit 43 of the radar apparatus 4 and the control unit 51 of the radar ECU 5 may function together to function as a target detection unit, a distance deriving unit, an azimuth angle deriving unit, or a relative speed deriving unit. Alternatively, the control unit 61 of the body ECU 6 described later executes a control program, communicates with and controls the control unit 51 of the radar device 4 or the radar ECU 5, or cooperates with the target detection unit, the distance deriving unit, and the direction. It may function as an angle deriving unit or a relative speed deriving unit. Further, the control unit 61 of the body ECU 6 communicates and controls or cooperates with the control unit 51 of the radar device 4 or the radar ECU 5 to perform each step in the method of manufacturing the target detection device described later. May be.
 記憶部52は、RAM(Random Access Memory)等の揮発性のメモリ素子又は、ROM(Read Only Memory)、EEPROM(Electrically Erasable Programmable ROM)若しくはフラッシュメモリ等の不揮発性のメモリ素子により構成してあり、制御プログラム及び処理時に参照するデータがあらかじめ記憶してある。記憶部52に記憶された制御プログラムは、物標検出装置3が読み取り可能な記録媒体521から読み出された制御プログラムを記憶したものであってもよい。また、図示しない通信網に接続されている図示しない外部コンピュータから制御プログラムをダウンロードし、記憶部52に記憶させたものであってもよい。詳細は後述するが、記憶部52には、方位角度夫々及び当該方位角度夫々に対応する補正角度が記憶されている。記憶部52には、車両1の進行方向に対するレーダ装置4夫々の光軸の角度、すなわちレーダ装置4夫々の取付角度が記憶されている。 The storage unit 52 is configured by a volatile memory element such as a RAM (Random Access Memory) or a non-volatile memory element such as a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable ROM), or a flash memory. A control program and data to be referred to during processing are stored in advance. The control program stored in the storage unit 52 may store a control program read from the recording medium 521 that can be read by the target detection device 3. Alternatively, a control program may be downloaded from an external computer (not shown) connected to a communication network (not shown) and stored in the storage unit 52. Although details will be described later, the storage unit 52 stores azimuth angles and correction angles corresponding to the azimuth angles. The storage unit 52 stores the angle of the optical axis of each radar device 4 with respect to the traveling direction of the vehicle 1, that is, the mounting angle of each radar device 4.
 通信部53は、CAN(Control Area Network)、LIN(Local Interconnect Network)又はEthernet(登録商標)等の通信プロトコルを用いた通信インターフェイスであり、車内LAN2に接続されているボディECU6等の車載機器と相互に通信する。 The communication unit 53 is a communication interface using a communication protocol such as CAN (Control Area Network), LIN (Local Interconnect Network), or Ethernet (registered trademark), and is connected to an in-vehicle device such as a body ECU 6 connected to the in-vehicle LAN 2. Communicate with each other.
 入出力インターフェイス54は、シリアルケーブル等によってレーダ装置4の送信部41及び受信部43と接続し、制御部51と、送信部41及び受信部43との間でのデータの入出力を行うためのインターフェイスである。 The input / output interface 54 is connected to the transmission unit 41 and the reception unit 43 of the radar apparatus 4 by a serial cable or the like, and inputs / outputs data between the control unit 51 and the transmission unit 41 and the reception unit 43. Interface.
 物標検出装置3は、レーダ装置4及びレーダECU5を別体として記載したが、これに限定されない。レーダ装置4及びレーダECU5を、例えばモジュール化し、一体化された物標検出装置3であってもよい。 The target detection device 3 is described with the radar device 4 and the radar ECU 5 as separate bodies, but is not limited to this. For example, the radar device 4 and the radar ECU 5 may be modularized and integrated with the target detection device 3.
 車両1には、車速検出部9、報知部8等の車載機器が設けられており、報知部8等の車載機器は、例えばボディECU6と、当該ボディECU6に含まれる入出力インターフェイス64を介して接続されている。 The vehicle 1 is provided with in-vehicle devices such as a vehicle speed detection unit 9 and a notification unit 8, and the in-vehicle devices such as the notification unit 8 are, for example, via a body ECU 6 and an input / output interface 64 included in the body ECU 6. It is connected.
 ボディECU6は、レーダECU5と同様に制御部61、記憶部62、通信部63及び入出力インターフェイス64を含む。制御部61は、CPU(Central Processing Unit)又はMPU(Micro Processing Unit)等により構成してあり、記憶部62に予め記憶された制御プログラム及びデータを読み出して実行することにより、種々の制御処理及び演算処理等を行うようにしてある。 The body ECU 6 includes a control unit 61, a storage unit 62, a communication unit 63, and an input / output interface 64 like the radar ECU 5. The control unit 61 is configured by a CPU (Central Processing Unit) or an MPU (Micro Processing Unit), and by reading and executing a control program and data stored in the storage unit 62 in advance, various control processes and Arithmetic processing and the like are performed.
 記憶部62は、RAM(Random Access Memory)等の揮発性のメモリ素子又は、ROM(Read Only Memory)、EEPROM(Electrically Erasable Programmable ROM)若しくはフラッシュメモリ等の不揮発性のメモリ素子により構成してあり、制御プログラム及び処理時に参照するデータがあらかじめ記憶してある。 The storage unit 62 is configured by a volatile memory element such as a RAM (Random Access Memory) or a nonvolatile memory element such as a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable ROM), or a flash memory. A control program and data to be referred to during processing are stored in advance.
 通信部63は、CAN(Control Area Network)、LIN(Local Interconnect Network)又はEthernet(登録商標)等の通信プロトコルを用いた通信インターフェイスであり、車内LAN2に接続されているレーダECU5等の車載機器と相互に通信する。 The communication unit 63 is a communication interface using a communication protocol such as CAN (Control Area Network), LIN (Local Interconnect Network), or Ethernet (registered trademark), and is connected to an in-vehicle device such as a radar ECU 5 connected to the in-vehicle LAN 2. Communicate with each other.
 入出力インターフェイス64は、シリアルケーブル等によって車速検出部9、報知部8等の車載機器と接続し、制御部61とこれら車載機器との間でのデータの入出力を行うためのインターフェイス群である。 The input / output interface 64 is an interface group that is connected to in-vehicle devices such as the vehicle speed detection unit 9 and the notification unit 8 by a serial cable or the like, and inputs / outputs data between the control unit 61 and these in-vehicle devices. .
 車速検出部9は、例えばホール素子等で構成された車速センサであり、車両1の走行速度(車速)を検出し、検出した車速に関するデータを、入出力インターフェイス64を介して、ボディECU6に出力する。 The vehicle speed detection unit 9 is a vehicle speed sensor composed of, for example, a hall element, and detects the traveling speed (vehicle speed) of the vehicle 1 and outputs the detected data related to the vehicle speed to the body ECU 6 via the input / output interface 64. To do.
 報知部8は、例えばスピーカ又はディスプレイにより構成され、入出力インターフェイス64を介してボディECU6に接続され、ボディECU6からの出力に基づいて、車両1の周辺に位置する物標に関する注意喚起等の表示又は音声出力を行い、車両1の操作者に報知する。 The notification unit 8 includes, for example, a speaker or a display, and is connected to the body ECU 6 via the input / output interface 64. Based on an output from the body ECU 6, a display such as an alert for a target located around the vehicle 1 is displayed. Or an audio | voice output is performed and the operator of the vehicle 1 is alert | reported.
 当該ボディECU6からの出力は、レーダECU5からの出力をボディECU6が取得して出力したもの、すなわちレーダECU5からの出力をボディECU6が中継することによって報知部8に出力されたものも含む。本実施形態において、車速検出部9、報知部8は、ボディECU6の入出力インターフェイス64に接続されるものとしたが、これに限定されない。車速検出部9、報知部8は、レーダECU5の入出力インターフェイス54に接続され、レーダECU5との間で直接、入出力が行われてもよい。または、車速検出部9、報知部8は、ボディECU6及びレーダECU5以外の他のECUと接続され、レーダECU5が当該他のECUと通信することによって、車速検出部9等の間での入出力が行われてもよい。 The output from the body ECU 6 includes the output from the radar ECU 5 obtained by the body ECU 6, that is, the output from the radar ECU 5 to the notification unit 8 when the body ECU 6 relays the output. In the present embodiment, the vehicle speed detection unit 9 and the notification unit 8 are connected to the input / output interface 64 of the body ECU 6. However, the present invention is not limited to this. The vehicle speed detection unit 9 and the notification unit 8 may be connected to the input / output interface 54 of the radar ECU 5 and input / output may be performed directly with the radar ECU 5. Alternatively, the vehicle speed detection unit 9 and the notification unit 8 are connected to an ECU other than the body ECU 6 and the radar ECU 5, and the radar ECU 5 communicates with the other ECUs, so that input / output between the vehicle speed detection unit 9 and the like is performed. May be performed.
 図3は、物標検出装置3が搭載された車両1の製造ライン7に関する説明図である。製造ライン7の搬送路71によって搬送される車両1は、既に物標検出装置3が搭載された状態で、搬送されている。車両1は、車両1の前部、すなわちフロントバンパー11を前方にして、所定の搬送速度(vline[m/s])で搬送される。搬送路71の搬送方向に対し、横方向となる所定の位置には、対象物72が静止した状態で設けられている。対象物72は、物標検出装置3が送信した送信波が、強く反射するように反射率の高い材料で構成された検査用物標である。対象物72(検査用物標)で反射された反射波のエネルギー(db)は、搬送路71の周辺に設けられている生産設備等と比較し、高いものとなるため、物標検出装置3は、反射波を解析し、所定のピーク以上の反射波の物標(検知点)を対象物72(検査用物標)として特定することができる。 FIG. 3 is an explanatory diagram relating to the production line 7 of the vehicle 1 on which the target detection device 3 is mounted. The vehicle 1 transported by the transport path 71 of the production line 7 is transported with the target detection device 3 already mounted. The vehicle 1 is transported at a predetermined transport speed (vline [m / s]) with the front portion of the vehicle 1, that is, the front bumper 11 in front. An object 72 is provided in a stationary state at a predetermined position that is lateral to the conveyance direction of the conveyance path 71. The object 72 is an inspection target made of a material having a high reflectivity so that the transmission wave transmitted by the target detection device 3 is strongly reflected. Since the energy (db) of the reflected wave reflected by the object 72 (inspection target) is higher than that of production facilities provided around the conveyance path 71, the target detection device 3 Can analyze the reflected wave and specify the target (detection point) of the reflected wave having a predetermined peak or more as the object 72 (inspection target).
 図4は、対象物72を通過する前後において受信した反射波の反射点に関する説明図である。物標検出装置3が搭載された車両1が搬送路71にて搬送され対象物72に近づいた場合、例えば、製造ライン7の全体制御を行う制御システム(図示せず)から、物標検出装置3のレーダECU5に対し、搬送路71における搬送速度を含む信号が出力される。レーダECU5は、当該搬送速度を含む信号を取得することによって、送信波を送信する等、後述する物標検出装置3を製造する工程を担うための機能を発揮する。 FIG. 4 is an explanatory diagram regarding the reflection point of the reflected wave received before and after passing through the object 72. When the vehicle 1 on which the target detection device 3 is mounted is transported on the transport path 71 and approaches the object 72, for example, from a control system (not shown) that controls the entire production line 7, the target detection device. A signal including the conveyance speed in the conveyance path 71 is output to the third radar ECU 5. Radar ECU5 exhibits the function for taking the process of manufacturing the target detection apparatus 3 mentioned later, such as transmitting a transmission wave by acquiring the signal containing the said conveyance speed.
 レーダECU5は、所定の周期によって送信波を複数回送信し、対象物72によって送信波が反射された反射波を複数回受信する。送信波の複数回送信は、物標検出装置3が搭載された車両1が対象物72を通過する前後に亘って、行われる。例えば、レーダ装置4の送信範囲の送信角が140°の場合、レーダ装置4と対象物72との方位角度を1°単位での分解能とする場合、141回の送信波を送信する。そして、所定の周期にて送信される141回の送信波と対象物72との方位角度が、1°単位で変化していくように、搬送速度(vline[m/s])、及び送信波の送信を開始するにあたっての車両1に搭載された物標検出装置3との距離が設定される。 The radar ECU 5 transmits a transmission wave a plurality of times at a predetermined cycle, and receives a reflected wave obtained by reflecting the transmission wave by the object 72 a plurality of times. The transmission wave is transmitted a plurality of times before and after the vehicle 1 on which the target detection device 3 is mounted passes through the object 72. For example, when the transmission angle of the transmission range of the radar device 4 is 140 °, 141 transmission waves are transmitted when the azimuth angle between the radar device 4 and the object 72 is set to a resolution of 1 °. Then, the conveyance speed (vline [m / s]) and the transmission wave are set so that the azimuth angle between the 141 transmission waves transmitted in a predetermined cycle and the object 72 changes in units of 1 °. The distance to the target detection device 3 mounted on the vehicle 1 when starting the transmission of is set.
 図4の説明における対象物72と物標検出装置3のレーダ装置4との方位角度は、搬送方向、すなわち車両1が走行する際の進行方向を基準に導出するものとしている。従って、後述するように、対象物72と物標検出装置3との相対速度は、vline×cosθ(θは、例えばθA、θB、θC)となる。 4, the azimuth angle between the object 72 and the radar device 4 of the target detection device 3 in the description of FIG. 4 is derived based on the transport direction, that is, the traveling direction when the vehicle 1 travels. Therefore, as will be described later, the relative speed between the object 72 and the target detection device 3 is vline × cos θ (θ is, for example, θA, θB, θC).
 図4Aは、物標検出装置3が対象物72を通過する前の時点に受信した反射波に基づき導出される方位角度(θA)及び距離(lA)を示したものである。物標検出装置3と対象物72との相対速度は、vline×cosθAで算出される。 FIG. 4A shows the azimuth angle (θA) and the distance (1A) derived based on the reflected wave received before the target detection device 3 passes through the object 72. The relative speed between the target detection device 3 and the object 72 is calculated by vline × cos θA.
 図4Bは、物標検出装置3が対象物72を通過する際、すなわち、物標検出装置3に対し、対象物72が搬送方向に対し略垂直方向に位置する時点に受信した反射波に基づき導出される方位角度(θB)及び距離(lB)を示したものである。従って、この時点における方位角度(θB)は、搬送方向に対し略90°となる。この時点における距離(lB)は、物標検出装置3と対象物72との最短距離となり、他の反射波において導出された対象物72との距離における搬送方向に対し略垂直方向成分となる。物標検出装置3と対象物72との相対速度は、vline×cosθB(θB=略90°)であり、略0m/sとなる。従って、この時点におけるドップラー効果は無くなり、送信波と反射波との周波数は略同じとなる。 FIG. 4B is based on the reflected wave received when the target detection device 3 passes through the target object 72, that is, when the target object 72 is positioned substantially perpendicular to the conveyance direction. The derived azimuth angle (θB) and distance (1B) are shown. Accordingly, the azimuth angle (θB) at this point is approximately 90 ° with respect to the transport direction. The distance (1B) at this time point is the shortest distance between the target detection device 3 and the target object 72, and is a substantially vertical direction component with respect to the conveyance direction in the distance from the target object 72 derived in other reflected waves. The relative speed between the target detection device 3 and the object 72 is vline × cos θB (θB = approximately 90 °), which is approximately 0 m / s. Accordingly, the Doppler effect at this point disappears, and the frequencies of the transmitted wave and the reflected wave are substantially the same.
 図4Cは、物標検出装置3が対象物72を通過する後の時点に受信した反射波に基づき導出される方位角度(θC)及び距離(lC)を示したものである。物標検出装置3と対象物72との相対速度は、vline×cosθCで算出される。 FIG. 4C shows the azimuth angle (θC) and the distance (1C) derived based on the reflected wave received after the target detection device 3 passes through the object 72. The relative speed between the target detection device 3 and the object 72 is calculated by vline × cos θC.
 図4に示すごとく、車両1が搬送されて、物標検出装置3が対象物72を通過する前後において、物標検出装置3は送信波を複数回送信することで、物標検出装置3と対象物72との相対位置が異なる状態夫々において、当該対象物72によって反射された反射波を複数回受信する。 As shown in FIG. 4, before and after the vehicle 1 is transported and the target detection device 3 passes through the object 72, the target detection device 3 transmits the transmission wave a plurality of times, so that the target detection device 3 In each state where the relative position to the object 72 is different, the reflected wave reflected by the object 72 is received a plurality of times.
 レーダ装置4は、上述のごとく光軸(ボーサイト)の角度(取付角度)が、車両1の進行方向に対し定められている。従って、レーダECU5は、レーダ装置4の光軸(ボーサイト)の角度(取付角度)を加味し、レーダ装置4の光軸(ボーサイト)を例えば0°とする基準角度によって、対象物72との方位角度を決定してもよい。 In the radar apparatus 4, the angle (mounting angle) of the optical axis (bauxite) is determined with respect to the traveling direction of the vehicle 1 as described above. Accordingly, the radar ECU 5 takes into account the angle (mounting angle) of the optical axis (baudite) of the radar device 4 and the object 72 with a reference angle that sets the optical axis (baudite) of the radar device 4 to 0 °, for example. The azimuth angle may be determined.
 図5は、受信した反射波の反射点における相対速度と方位角度に関する説明図である。図5の横軸は、物標検出装置3と対象物72との方位角度である。図5の左側縦軸は、物標検出装置3と対象物72との距離である。図5の右側縦軸は、物標検出装置3と対象物72との相対速度である。実線は、物標検出装置3と対象物72との距離である。破線は、物標検出装置3と対象物72との相対速度である。物標検出装置3と対象物72との搬送方向に対する垂直方向の距離(基準距離Ydist)は、例えば1mに設定してある。搬送速度(vline)は、例えば1m/sに設定してある。 FIG. 5 is an explanatory diagram regarding the relative velocity and azimuth angle at the reflection point of the received reflected wave. The horizontal axis in FIG. 5 is the azimuth angle between the target detection device 3 and the object 72. The left vertical axis in FIG. 5 is the distance between the target detection device 3 and the object 72. The right vertical axis in FIG. 5 is the relative speed between the target detection device 3 and the object 72. The solid line is the distance between the target detection device 3 and the object 72. A broken line is a relative speed between the target detection device 3 and the object 72. The distance in the vertical direction (reference distance Ydist) between the target detection device 3 and the object 72 in the transport direction is set to 1 m, for example. The conveyance speed (vline) is set to 1 m / s, for example.
 レーダECU5の制御部51は、受信した複数の反射波を解析することにより、物標検出装置3と対象物72との距離、方位角度及び相対速度を導出することができる。レーダECU5の制御部51は、時計機能を有しているため、受信した複数の反射波夫々の受信時刻を取得する。すなわち、制御部は、反射波の解析結果に基づき、当該反射波の検知点を導出する。この検知点に関する情報は、当該反射波における反射点と物標検出装置3との距離、相対速度、方位角度、電波強度及び静止点であるか否を含む。 The control unit 51 of the radar ECU 5 can derive the distance, the azimuth angle, and the relative speed between the target detection device 3 and the target object 72 by analyzing the plurality of received reflected waves. Since the control unit 51 of the radar ECU 5 has a clock function, the reception time of each of the plurality of received reflected waves is acquired. That is, the control unit derives a detection point of the reflected wave based on the analysis result of the reflected wave. The information related to the detection point includes the distance between the reflection point and the target detection device 3 in the reflected wave, the relative speed, the azimuth angle, the radio wave intensity, and whether or not it is a stationary point.
 図5に示すごとく、物標検出装置3と対象物72との相対速度は、最初は負の値となり物標検出装置3が対象物72に近づいており、相対速度が0[m/s]を越えると正の値となり、物標検出装置3が対象物72から遠ざかっていることを表している。相対速度が0[m/s]となる方位角度は、例えば0°になるとしている。 As shown in FIG. 5, the relative speed between the target detection device 3 and the target object 72 is initially a negative value, the target detection apparatus 3 is approaching the target object 72, and the relative speed is 0 [m / s]. Exceeds the value, it indicates a positive value, indicating that the target detection device 3 is moving away from the object 72. The azimuth angle at which the relative speed is 0 [m / s] is, for example, 0 °.
 物標検出装置3と対象物72との距離においても、最初は当該距離が小さくなるように変化し、距離が最小値となる時点以降は、当該距離が大きくなるように変化している。この、距離が最小値となる時点は、相対速度が0[m/s]となる時点と一致している。そして、この距離の最小値は、物標検出装置3のレーダ装置4と対象物72とにおける、搬送方向に対する垂直成分(基準距離)とみなすことができる。従って、レーダECU5は、受信した複数の反射波を解析することにより、物標検出装置3のレーダ装置4と対象物72とにおける、搬送方向に対する垂直成分(基準距離)を導出することができる。 The distance between the target detection device 3 and the object 72 also changes so that the distance becomes small at first, and after the time when the distance becomes the minimum value, the distance changes so as to become large. This time point when the distance becomes the minimum value coincides with a time point when the relative speed becomes 0 [m / s]. The minimum value of the distance can be regarded as a vertical component (reference distance) with respect to the conveyance direction in the radar device 4 of the target detection device 3 and the object 72. Therefore, the radar ECU 5 can derive a vertical component (reference distance) with respect to the conveyance direction in the radar device 4 of the target detection device 3 and the object 72 by analyzing the plurality of received reflected waves.
 図6は、方位角度及び個別補正角度との対応(テーブル)に関する説明図である。物標検出装置3の記憶部52には、例えば図6に示されるようなテーブル形式で、送信波の送信範囲における送信角度を所定の単位で分けた方位角度(定格方位角度)に対する補正角度が、記憶部52に記憶される。定格方位角度は、例えばレーダ装置4からの送信波の送信角度を140°とした場合、1°単位で分けた方位角度である。補正角度は、全体補正角度及び個別補正角度を含む。全体補正角度は、レーダ装置4の取付角度又は取付位置に依拠した光軸(ボーサイト)のずれを補正するものである。個別補正角度は、反射波において導出された方位角度夫々に対し、検出誤差等によるずれを補正するものである。また、テーブルには、全体補正角度及び個別補正角度の合算値が登録されるものであってもよい。または、テーブルには、全体補正角度又は個別補正角度のいずれかの補正角度が登録されるものであってもよい。 FIG. 6 is an explanatory diagram regarding the correspondence (table) with the azimuth angle and the individual correction angle. In the storage unit 52 of the target detection device 3, for example, a correction angle with respect to an azimuth angle (rated azimuth angle) obtained by dividing a transmission angle in a transmission range of a transmission wave by a predetermined unit in a table format as shown in FIG. And stored in the storage unit 52. The rated azimuth angle is an azimuth angle divided in units of 1 ° when the transmission angle of the transmission wave from the radar device 4 is 140 °, for example. The correction angle includes an overall correction angle and an individual correction angle. The overall correction angle is for correcting the deviation of the optical axis (bauxite) depending on the mounting angle or mounting position of the radar device 4. The individual correction angle is used to correct a deviation due to a detection error or the like with respect to each azimuth angle derived in the reflected wave. Moreover, the total value of the whole correction angle and the individual correction angle may be registered in the table. Alternatively, the correction angle of either the whole correction angle or the individual correction angle may be registered in the table.
 本実施形態における物標検出装置3の製造方法は、例えば当該テーブルにて定められている個々の方位角度(定格方位角度)に対し、レーダ装置4の取付け状態に依拠する全体補正角度及び、個々の方位角度毎に異なる個別補正角度を導出し、これら補正角度(全体補正角度及び個別補正角度)を登録する工程を含むものである。 The method of manufacturing the target detection device 3 in the present embodiment includes, for example, an overall correction angle that depends on the mounting state of the radar device 4 and an individual azimuth angle (rated azimuth angle) determined in the table. The method includes the steps of deriving different individual correction angles for each azimuth angle and registering these correction angles (overall correction angle and individual correction angle).
 物標検出装置3が車両1に搭載されるにあたり、公差等によって、取付角度又は取付位置のばらつきが個々の物標検出装置3において発生する場合がある。これに対し、製造工程において、個々の物標検出装置3に応じた補正角度が例えばテーブル形式で登録されて記憶されている物標検出装置3、又は物標検出装置3が搭載されている車両1を製造することによって、当該ばらつきを解消することができる。 When the target detection device 3 is mounted on the vehicle 1, variations in the mounting angle or the mounting position may occur in the individual target detection devices 3 due to tolerances or the like. On the other hand, in the manufacturing process, the target detection device 3 in which the correction angle corresponding to each target detection device 3 is registered and stored in a table format, for example, or the vehicle on which the target detection device 3 is mounted. By manufacturing 1, the variation can be eliminated.
 図7は、実施形態1(最短距離、搬送速度)に係る製造工程(制御部51の処理)を示すフローチャートである。物標検出装置3のレーダECU5の制御部51は、車両1の製造ライン7の搬送路71にて、既に当該物標検出装置3が車両1に搭載された状態で搬送される際に以下の処理を行い、物標検出装置3の製造工程を担う。 FIG. 7 is a flowchart showing a manufacturing process (processing of the control unit 51) according to Embodiment 1 (shortest distance, conveyance speed). The control unit 51 of the radar ECU 5 of the target detection device 3 performs the following when the target detection device 3 is already carried on the vehicle 1 on the conveyance path 71 of the production line 7 of the vehicle 1. Processing is performed, and the manufacturing process of the target detection device 3 is performed.
 レーダECU5の制御部51は、例えば、製造ライン7の全体制御を行う制御システムからの制御信号を取得することによって、当該制御信号に含まれる搬送路71の搬送速度を取得する(S101)。制御部51は、搬送速度を含む制御信号を、例えばボディECU6を介して、取得するものであってもよい。または、制御部51は、車両1に搭載された検査用機器からの出力によって、搬送速度を含む制御信号を取得するものであってもよい。 The control unit 51 of the radar ECU 5 acquires the transport speed of the transport path 71 included in the control signal, for example, by acquiring a control signal from a control system that performs overall control of the production line 7 (S101). The control unit 51 may acquire a control signal including the conveyance speed via, for example, the body ECU 6. Or the control part 51 may acquire the control signal containing a conveyance speed with the output from the apparatus for an inspection mounted in the vehicle 1. FIG.
 制御部51は、レーダ装置4の送信部41を介し、所定周期にて送信波を複数回送信する(S102)。物標検出装置3は車両1に搭載され、当該車両1は、搬送路71にて所定の搬送速度で搬送されているので、制御部51は、物標検出装置3が搬送、すなわち移動している状態にて、送信波を複数回送信する。すなわち、車両1の搬送を停止することなく、制御部51は、送信波を複数回送信する。 The control unit 51 transmits the transmission wave a plurality of times at a predetermined cycle via the transmission unit 41 of the radar device 4 (S102). Since the target detection device 3 is mounted on the vehicle 1 and the vehicle 1 is transported at a predetermined transport speed on the transport path 71, the control unit 51 transports, that is, moves, the target detection device 3. In the state of being transmitted, the transmission wave is transmitted a plurality of times. That is, the control unit 51 transmits the transmission wave a plurality of times without stopping the conveyance of the vehicle 1.
 制御部51は、レーダ装置4の受信部43を介し、対象物72(検査用物標)によって反射された反射波を複数回受信する(S103)。フローチャートの説明上、送信波の送信と反射波の受信を別個に記載しているが、実際は、送信及び受信を所定周期にて複数回行うものであることは、言うまでもない。 The control unit 51 receives the reflected wave reflected by the object 72 (inspection target) a plurality of times via the receiving unit 43 of the radar apparatus 4 (S103). In the description of the flowchart, transmission of transmission waves and reception of reflected waves are described separately, but it goes without saying that transmission and reception are actually performed a plurality of times in a predetermined cycle.
 制御部51は、受信した複数の反射波を解析する(S104)。反射波を解析は、例えばFFT解析によって行われ、制御部51は、当該解析を行うことによって、反射波夫々における対象物72とレーダ装置4との距離、方位角度及び相対速度を導出する。制御部51は、時計機能を有しており、反射波夫々における受信時刻を取得する。制御部51は、これら導出した反射波夫々の受信時刻、距離、方位角度及び相対速度を関連づけ、反射波夫々の検知点夫々として記憶部52に記憶する。 The control unit 51 analyzes the received plurality of reflected waves (S104). The reflected wave is analyzed by, for example, FFT analysis, and the control unit 51 derives the distance, the azimuth angle, and the relative velocity between the object 72 and the radar device 4 in each reflected wave by performing the analysis. The control unit 51 has a clock function and acquires the reception time in each reflected wave. The control unit 51 associates the reception time, distance, azimuth angle, and relative speed of each of the derived reflected waves, and stores them in the storage unit 52 as the detection points of the reflected waves.
 制御部51は、対象物72との距離に基づき、基準検知点を導出する(S105)。制御部51は、受信した複数の反射波において、対象物72との距離が最も短い反射波の検知点を基準検知点として導出する。対象物72との距離が最も短い検知点となる反射波を受信した時点において、レーダ装置4は、対象物72の真横、すなわち搬送方向に対し略垂直方向の位置(図4B参照)に存在しているとみなすことができる。 The control unit 51 derives a reference detection point based on the distance from the object 72 (S105). The control unit 51 derives the detection point of the reflected wave having the shortest distance from the object 72 as the reference detection point in the plurality of received reflected waves. At the time of receiving the reflected wave that is the detection point with the shortest distance to the object 72, the radar device 4 is present beside the object 72, that is, at a position substantially perpendicular to the transport direction (see FIG. 4B). Can be considered.
 制御部51は、対象物72との基準距離を導出する(S106)。この基準距離とは、レーダ装置4と対象物72との距離における搬送方向に対する垂直成分に相当する。S105で導出した基準検知点は、対象物72との距離が最も短い検知点であり、制御部51は、この対象物72との最も短い距離を、基準距離として導出する。 The control unit 51 derives a reference distance from the object 72 (S106). This reference distance corresponds to a vertical component with respect to the transport direction at the distance between the radar apparatus 4 and the object 72. The reference detection point derived in S105 is the detection point having the shortest distance from the object 72, and the control unit 51 derives the shortest distance from the object 72 as the reference distance.
 制御部51は、全体補正角度を導出し記憶する(S107)。基準検知点における対象物72との方位角度は、搬送方向に対し垂直、すなわち90°となるべきところ、基準検知点によって導出された方位角度が90°でない場合、これら角度の差異が、レーダ装置4の取付位置又は取付角度に依拠する全体補正角度に相当する。制御部51は、基準検知点によって導出された方位角度と、90°との差異に基づき、全体補正角度を導出し、不揮発性の記憶部52に当該全体補正角度を記憶する。制御部51は、例えばテーブル(図6参照)に登録することよって、全体補正角度を記憶してもよい。全体補正角度が記憶される記憶領域は、レーダECU5の記憶部52に限定されず、ボディECU6の記憶部62等、レーダECU5が例えば車内LAN2を介して参照することができる全ての記憶領域を含む。 The control unit 51 derives and stores the overall correction angle (S107). The azimuth angle with the object 72 at the reference detection point should be perpendicular to the conveyance direction, that is, 90 °. If the azimuth angle derived by the reference detection point is not 90 °, the difference between these angles is the radar device. 4 corresponds to the overall correction angle depending on the mounting position or mounting angle. The control unit 51 derives an overall correction angle based on the difference between the azimuth angle derived from the reference detection point and 90 °, and stores the overall correction angle in the nonvolatile storage unit 52. The control part 51 may memorize | store the whole correction angle by registering in a table (refer FIG. 6), for example. The storage area in which the entire correction angle is stored is not limited to the storage unit 52 of the radar ECU 5, but includes all storage areas that the radar ECU 5 can refer to, for example, via the in-vehicle LAN 2, such as the storage unit 62 of the body ECU 6. .
 制御部51は、複数回受信した反射波夫々の受信時刻に基づき、対象物72との距離の進行方向成分を導出する(S108)。制御部51は、基準検知点の反射波の受信時刻と、複数回受信した反射波夫々の受信時刻との差異を算出する。例えば、当該差異(dt[s])を、反射波夫々の受信時刻から、基準検知点の反射波の受信時刻を減算(差異=反射波の受信時刻-基準検知点の反射波の受信時刻)とする。この場合、差異が負の値となる反射波は、対象物72を通過する前に受信したものであり、差異が正の値となる反射波は、対象物72を通過した後に受信したものである。車両1は、搬送路71において所定の搬送速度(vline[m/s])で搬送されているため、搬送速度に差異を乗算(vline[m/s]×dt[s])することによって、反射波夫々を受信した時点におけるレーダ装置4及び対象物72の距離における搬送方向との平行成分、すなわち進行方向成分(Xdist)及び前後方向を導出することができる。 The control unit 51 derives a traveling direction component of the distance from the object 72 based on the reception time of each reflected wave received a plurality of times (S108). The control unit 51 calculates a difference between the reception time of the reflected wave at the reference detection point and the reception time of each of the reflected waves received a plurality of times. For example, the difference (dt [s]) is obtained by subtracting the reception time of the reflected wave at the reference detection point from the reception time of each reflected wave (difference = reception time of the reflected wave−reception time of the reflected wave at the reference detection point). And In this case, the reflected wave whose difference is a negative value is received before passing through the object 72, and the reflected wave whose difference is a positive value is received after passing through the object 72. is there. Since the vehicle 1 is transported at a predetermined transport speed (vline [m / s]) in the transport path 71, by multiplying the transport speed by a difference (vline [m / s] × dt [s]), It is possible to derive a parallel component with respect to the conveyance direction at the distance between the radar device 4 and the object 72 at the time of receiving each reflected wave, that is, the traveling direction component (Xdist) and the front-rear direction.
 制御部51は、複数回受信した反射波夫々において、個別補正角度を導出する(S109)。制御部51は、S108で導出したレーダ装置4と対象物72との距離の進行方向成分(Xdist)と、S106で導出した基準距離(Ydist)に基づいて、レーダ装置4と対象物72とによる想定方位角度を導出する。想定方位角度は、例えば三角関数を用い、arctan(基準距離(Ydist)/進行方向成分(Xdist))によって算出される。 The control unit 51 derives an individual correction angle for each of the reflected waves received a plurality of times (S109). Based on the traveling direction component (Xdist) of the distance between the radar apparatus 4 and the object 72 derived in S108 and the reference distance (Ydist) derived in S106, the control unit 51 uses the radar apparatus 4 and the object 72. An assumed azimuth angle is derived. The assumed azimuth angle is calculated by arctan (reference distance (Ydist) / traveling direction component (Xdist)) using, for example, a trigonometric function.
 制御部51は、複数回受信した反射波夫々において、導出した想定角度と、S104の処理にて導出した方位角度との差異を個別補正角度として導出する。制御部51は、導出した反射波夫々の個別補正角度を、S104の処理と同様に、記憶部52に記憶する。従って、この工程において、反射波夫々の受信時刻、距離、方位角度、相対速度及び個別補正角度が、関連づけられて記憶部52に記憶されている状態となる。 The control unit 51 derives, as the individual correction angle, the difference between the derived assumed angle and the azimuth angle derived in the process of S104 in each of the reflected waves received a plurality of times. The control unit 51 stores the individual correction angle of each derived reflected wave in the storage unit 52 as in the process of S104. Accordingly, in this step, the reception time, distance, azimuth angle, relative speed, and individual correction angle of each reflected wave are associated and stored in the storage unit 52.
 制御部51は、個別補正角度に基づき定格方位角度の個別補正角度を導出し、記憶部52に記憶する(S110)。図6に示すごとく、個別補正角度夫々は、送信波の送信範囲での送信角度を例えば1°単位で分けた定格方位角度に対応するものとして記憶されている。しかしながら、S104の処理によって導出された反射波夫々の方位角度は、このような定格方位角度に一致しない場合がある。そこで、制御部51は、例えば、任意の複数の方位角度に対し内挿法を用いることによって定格方位角度を算出し、これら任意の複数の方位角度に対応する個別補正角度に基づいて、当該定格方位角度に対応する個別補正角度を導出する。 The control unit 51 derives the individual correction angle of the rated azimuth angle based on the individual correction angle, and stores it in the storage unit 52 (S110). As shown in FIG. 6, each individual correction angle is stored as corresponding to a rated azimuth angle obtained by dividing the transmission angle in the transmission range of the transmission wave, for example, in units of 1 °. However, the azimuth angle of each reflected wave derived by the process of S104 may not coincide with such a rated azimuth angle. Therefore, for example, the control unit 51 calculates a rated azimuth angle by using an interpolation method with respect to an arbitrary plurality of azimuth angles, and based on the individual correction angles corresponding to the arbitrary plural azimuth angles, An individual correction angle corresponding to the azimuth angle is derived.
 例えば、定格方位角度68°に対し、方位角度が67.5°となる第1反射波と、68.5°となる第2反射波があり、第1反射波の補正角度が0.02°、第2反射波の補正角度が0.04°であれば、定格方位角度68°の個別補正角度は、0.03°として導出することができる。定格方位角度に対し増減する複数の方位角度となる反射波を特定し、当該方位角度夫々と定格方位角度との偏倚に基づく重みづけを夫々の補正角度に乗算した加重平均によって、定格方位角度に対応する個別補正角度を導出してもよい。 For example, with respect to the rated azimuth angle of 68 °, there are a first reflected wave with an azimuth angle of 67.5 ° and a second reflected wave with an angle of 68.5 °, and the correction angle of the first reflected wave is 0.02 °. If the correction angle of the second reflected wave is 0.04 °, the individual correction angle of the rated azimuth angle 68 ° can be derived as 0.03 °. A reflected wave that becomes a plurality of azimuth angles that increase or decrease with respect to the rated azimuth angle is identified, and a weighted average obtained by multiplying each correction angle by a weight based on the deviation between the azimuth angle and the rated azimuth angle is used to obtain the rated azimuth angle. A corresponding individual correction angle may be derived.
 制御部51は、導出した定格方位角度に対応する個別補正角度を、当該定格方位角度と関連づけて記憶部52に記憶する。制御部51は、例えばテーブル(図6参照)に登録することよって、個別補正角度を記憶してもよい。なお、定格方位角度は、車両1の通常走行時において、物標検出装置3が検出した物標と車両1との方位角度に対応するものである。 The control unit 51 stores the individual correction angle corresponding to the derived rated azimuth angle in the storage unit 52 in association with the rated azimuth angle. The control part 51 may memorize | store an individual correction angle by registering in a table (refer FIG. 6), for example. The rated azimuth angle corresponds to the azimuth angle between the target detected by the target detection device 3 and the vehicle 1 during normal driving of the vehicle 1.
 製造ライン7において、車両1の搬送を停止することなく、物標検出装置3又は物標検出装置3が搭載された車両1を製造することができるため、製造工程に要する時間を短縮することができる。 Since the production line 7 can produce the target detection device 3 or the vehicle 1 on which the target detection device 3 is mounted without stopping the conveyance of the vehicle 1, the time required for the production process can be shortened. it can.
 車両1が搬送される際において、製造ライン7の搬送路71の横に設置された対象物72(検査用物標)と、レーダ装置4との最短距離を、基準距離、すなわち対象物72とレーダ装置4との距離の搬送方向に対する垂直成分とすることで、精度よくレーダ装置4の取付位置等に依拠する全体補正角度を導出することができる。 When the vehicle 1 is transported, the shortest distance between the object 72 (inspection target) installed next to the transport path 71 of the production line 7 and the radar device 4 is the reference distance, that is, the object 72. By using a vertical component of the distance to the radar apparatus 4 with respect to the transport direction, it is possible to accurately derive the overall correction angle that depends on the mounting position of the radar apparatus 4 and the like.
 この基準距離、及び搬送速度によって導出される対象物72とレーダ装置4との距離の搬送方向に対する並行成分(進行方向成分)によって、反射波夫々にて導出される方位角度夫々に対応した個別補正角度を導出することができる。 The individual correction corresponding to each azimuth angle derived from each reflected wave by the parallel component (traveling direction component) of the distance between the object 72 and the radar apparatus 4 derived from the reference distance and the conveyance speed with respect to the conveyance direction. An angle can be derived.
 これら個別補正角度に基づき、予め定められている定格方位角度に対応する個別補正角度を導出し、当該定格方位角度と個別補正角度とを関連づけて記憶することで、車両1が走行時に導出した方位角度の補正を簡易な処理で行うことができ、処理時間を低減することができる。 Based on these individual correction angles, an individual correction angle corresponding to a predetermined rated azimuth angle is derived, and by storing the rated azimuth angle and the individual correction angle in association with each other, the direction derived by the vehicle 1 during traveling is derived. Angle correction can be performed by simple processing, and processing time can be reduced.
(実施形態2)
 図8は、実施形態2(相対速度、距離)に係る製造工程(制御部51の処理)を示すフローチャートである。実施形態2に係る製造工程は、対象物72との相対速度に基づき基準検知点を導出する点等で、実施形態1と異なる。S201からS204までの処理は、実施形態1のS101からS104までの処理と同様である。
(Embodiment 2)
FIG. 8 is a flowchart showing a manufacturing process (processing of the control unit 51) according to the second embodiment (relative speed, distance). The manufacturing process according to the second embodiment is different from the first embodiment in that a reference detection point is derived based on the relative speed with the object 72. The processing from S201 to S204 is the same as the processing from S101 to S104 of the first embodiment.
 制御部51は、対象物72との相対速度に基づき基準検知点を導出する(S205)。S204の処理によって、複数の反射波夫々における対象物72とレーダ装置4との相対速度は導出され、記憶部52に記憶されている。対象物72とレーダ装置4との相対速度は、搬送路71における対象物72とレーダ装置4との前後の位置関係によって、正負が逆転する。すなわち、連続して受信した2つの反射波において、これら反射波の一方の相対速度が正であり、他方の相対速度が負の場合、レーダ装置4は、当該2つの反射波を受信する間に、対象物72を通過したものとなる。制御部51は、このような一方の相対速度が正となり他方の相対速度が負となる連続して受信した2つの反射波を特定し、当該2つの反射波、又は当該2つの反射波を含む複数の反射波に基づいて、例えば内挿法を用いて、相対速度が0m/sとなる仮想の基準検知点を導出する。そして、制御部51は、当該2つの反射波夫々のレーダ装置4と対象物72との相対速度、距離に基づき、相対速度が0m/sとなる当該仮想の基準検知点のレーダ装置4と対象物72との距離を導出する。仮想の基準検知点を導出する処理は、例えば内挿法等により、当該2つの反射波に基づき、相対速度が0m/sとなると想定される受信時刻、当該受信時刻におけるレーダ装置4と対象物72との距離及び相対距離を導出する処理を含む。または、制御部51は、対象物72との相対速度の絶対値が最も小さい反射波を基準検知点として決定してもよい。 The control unit 51 derives a reference detection point based on the relative speed with the object 72 (S205). The relative speed between the object 72 and the radar apparatus 4 in each of the plurality of reflected waves is derived and stored in the storage unit 52 by the process of S204. The relative speed between the object 72 and the radar apparatus 4 is reversed between positive and negative depending on the positional relationship between the object 72 and the radar apparatus 4 in the conveyance path 71. That is, in two reflected waves received in succession, when the relative velocity of one of these reflected waves is positive and the other relative velocity is negative, the radar device 4 receives the two reflected waves. , The object 72 is passed. The control unit 51 identifies two consecutively received reflected waves in which one relative velocity is positive and the other relative velocity is negative, and includes the two reflected waves or the two reflected waves. Based on the plurality of reflected waves, a virtual reference detection point having a relative velocity of 0 m / s is derived using, for example, an interpolation method. Then, the control unit 51 determines the radar apparatus 4 and the target at the virtual reference detection point where the relative speed is 0 m / s based on the relative speed and distance between the radar apparatus 4 and the object 72 for each of the two reflected waves. The distance from the object 72 is derived. The process of deriving the virtual reference detection point is performed by, for example, interpolation method or the like, based on the two reflected waves, the reception time at which the relative velocity is assumed to be 0 m / s, and the radar device 4 and the object at the reception time. The process of deriving the distance to 72 and the relative distance is included. Or the control part 51 may determine the reflected wave with the smallest absolute value of relative velocity with the target object 72 as a reference | standard detection point.
 制御部51は、対象物72との基準距離を導出する(S206)。制御部51は、S205で導出した仮想の基準検知点における距離を、対象物72との基準距離として導出する。207の処理は、実施形態1のS107と処理と同様である。 The control unit 51 derives a reference distance from the object 72 (S206). The control unit 51 derives the distance at the virtual reference detection point derived in S205 as the reference distance from the object 72. The process of 207 is the same as the process of S107 of the first embodiment.
 制御部51は、反射波夫々における対象物72と距離を導出する(S208)。S204の処理である反射波の解析結果に基づき、制御部51は、反射波(検知点)夫々における対象物72と距離を導出する。 The control unit 51 derives the distance from the object 72 in each reflected wave (S208). Based on the analysis result of the reflected wave, which is the process of S204, the control unit 51 derives the distance from the object 72 in each reflected wave (detection point).
 制御部51は、反射波夫々における個別補正角度を導出する(S209)。制御部51は、S208で導出した反射波(検知点)夫々におけるレーダ装置4と対象物72との距離(R)と、S206で導出した基準距離に基づき、反射波(検知点)夫々において想定されるレーダ装置4と対象物72との想定方位角度を導出する。制御部51は、例えば、三角関数を用い、arcsin(基準距離/レーダ装置4と対象物72との距離(R))によって、想定方位角度を導出する。制御部51は、反射波(検知点)夫々の方位角度と想定方位角度との差異を、個別補正角度として導出する。S210の処理は、実施形態1のS110と処理と同様である。 The control unit 51 derives an individual correction angle for each reflected wave (S209). The control unit 51 assumes each reflected wave (detection point) based on the distance (R) between the radar apparatus 4 and the object 72 in each reflected wave (detection point) derived in S208 and the reference distance derived in S206. The assumed azimuth angle between the radar device 4 and the object 72 is derived. The control unit 51 uses, for example, a trigonometric function to derive an assumed azimuth angle based on arcsin (reference distance / distance (R) between the radar device 4 and the object 72). The control unit 51 derives the difference between the azimuth angle of each reflected wave (detection point) and the assumed azimuth angle as an individual correction angle. The process of S210 is the same as the process of S110 of the first embodiment.
 一方の相対速度が正となり他方の相対速度が負となる連続して受信した2つの反射波に基づき、相対速度が0m/sとなる仮想の基準検知点におけるレーダ装置4と対象物72との距離(基準距離)を導出するため、精度よく基準距離を導出することができる。当該基準距離に基づき、全体補正角度及び個別補正角度を精度よく導出することができる。 Based on two consecutively received reflected waves in which one relative velocity is positive and the other relative velocity is negative, the radar apparatus 4 and the object 72 at the virtual reference detection point where the relative velocity is 0 m / s. Since the distance (reference distance) is derived, the reference distance can be accurately derived. Based on the reference distance, the overall correction angle and the individual correction angle can be accurately derived.
(変形例1)
 図9は、変形例1に係る製造工程による方位角度及び個別補正角度との対応(テーブル)に関する説明図である。変形例1に係る製造工程は、検出した方位角度自体と、当該方位角度に対応する個別補正角度を記憶部52に記憶する点で、実施形態1,2と異なる。
(Modification 1)
FIG. 9 is an explanatory diagram regarding the correspondence (table) between the azimuth angle and the individual correction angle in the manufacturing process according to the first modification. The manufacturing process according to Modification 1 is different from Embodiments 1 and 2 in that the detected azimuth angle itself and the individual correction angle corresponding to the azimuth angle are stored in the storage unit 52.
 実施形態1,2において、検出した方位角度に基づき、例えばテーブル形式で予め定められている定格方位角度に対応する個別補正角度を導出し、これら定格方位角度と個別補正角度とを関連づけて記憶部52に記憶するとしたが、これに限定されない。レーダECU5の制御部51は、図9に示すごとく、例えばテーブルに登録することによって、検出した方位角度自体と、当該方位角度に対応する個別補正角度とを関連づけて記憶部52に記憶してもよい。 In the first and second embodiments, based on the detected azimuth angle, for example, an individual correction angle corresponding to a predetermined azimuth angle predetermined in a table format is derived, and the rated azimuth angle and the individual correction angle are associated with each other and stored. However, the present invention is not limited to this. As shown in FIG. 9, the control unit 51 of the radar ECU 5 stores the detected azimuth angle itself and the individual correction angle corresponding to the azimuth angle in the storage unit 52 by, for example, registering them in a table. Good.
 検出した方位角度自体と、当該方位角度に対応する個別補正角度とを関連づけて記憶することにより、製造工程を簡易化することができる。 The manufacturing process can be simplified by storing the detected azimuth angle itself and the individual correction angle corresponding to the azimuth angle in association with each other.
 (変形例2)
 図10は、変形例2に係る製造工程における製造ライン7に関する説明図である。変形例1に係る製造工程は、車両1の前後、すなわちフロントバンパー11等及びリアバンパー12等に設けられたレーダ装置4夫々から送信波を送信等する点で、実施形態1と異なる。
(Modification 2)
FIG. 10 is an explanatory diagram relating to the production line 7 in the production process according to the second modification. The manufacturing process according to the modified example 1 is different from that of the first embodiment in that transmission waves are transmitted from the front and rear of the vehicle 1, that is, the radar devices 4 provided on the front bumper 11 and the rear bumper 12 and the like.
 実施形態1の説明において、フロントバンパー11の左側に搭載されたレーダ装置4から送信波を送信し、受信した反射波に基づき、方位角度夫々に対応する補正角度を導出し、記憶するものとしたが、これに限定されない。レーダ装置4は、車両1の前後、すなわちフロントバンパー11及びリアバンパー12の夫々に設けられており、車両1の搬送状態に応じて、夫々のレーダ装置4から送信波を送信し、対象物72によって反射された反射波を受信する工程を開始してもよい。 In the description of the first embodiment, a transmission wave is transmitted from the radar device 4 mounted on the left side of the front bumper 11, and a correction angle corresponding to each azimuth angle is derived and stored based on the received reflected wave. However, the present invention is not limited to this. The radar device 4 is provided in front of and behind the vehicle 1, that is, in each of the front bumper 11 and the rear bumper 12, and transmits a transmission wave from each radar device 4 according to the conveyance state of the vehicle 1. The step of receiving the reflected wave reflected may be started.
 同じ対象物72によって、車両1の前後に設けられたレーダ装置4の製造工程の少なくとも一部を平行に行うことによって、製造工程における所要時間を短縮することができる。 The required time in the manufacturing process can be shortened by performing at least a part of the manufacturing process of the radar apparatus 4 provided before and after the vehicle 1 in parallel with the same object 72.
 対象物72は、搬送路71に対し左側に設置しているが、これに限定されない。対象物72は、搬送路71に対し右側に設置されてあってもよく、また搬送路71の左右夫々に対象物72が設置されていてもよい。 Although the target object 72 is installed on the left side with respect to the conveyance path 71, it is not limited to this. The object 72 may be installed on the right side with respect to the conveyance path 71, and the object 72 may be installed on each of the left and right sides of the conveyance path 71.
 対象物72を搬送路71の左右夫々に設置することにより、レーダ装置4が車両1の前後左右、すなわちフロントバンパー11の左右及びリアバンパー12の左右に設けられている場合であっても、これら4つのレーダ装置4の製造工程の少なくとも一部を平行に行うことによって、製造工程における所要時間を短縮することができる。 By installing the object 72 on each of the left and right sides of the conveyance path 71, the radar apparatus 4 is provided on the front and rear sides and right and left sides of the vehicle 1, that is, on the left and right sides of the front bumper 11 and the left and right sides of the rear bumper 12. By performing at least a part of the manufacturing process of one radar device 4 in parallel, the time required for the manufacturing process can be shortened.
 今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 車両
 10 車体フレーム
 11 フロントバンパー
 12 リアバンパー
 13 保持部材
 2 車内LAN
 3 物標検出装置
 4 レーダ装置
 41 送信部
 42 送信アンテナ
 43 受信部
 44 受信アンテナ
 5 レーダECU
 51 制御部
 52 記憶部
 521 記録媒体
 53 通信部
 54 入出力インターフェイス
 6 ボディECU
 61 制御部
 62 記憶部
 63 通信部
 64 入出力インターフェイス
 7 製造ライン
 71 搬送路
 72 対象物(検査用物標)
 8 報知部
 9 車速検出部
 
DESCRIPTION OF SYMBOLS 1 Vehicle 10 Body frame 11 Front bumper 12 Rear bumper 13 Holding member 2 Car interior LAN
DESCRIPTION OF SYMBOLS 3 Target detection apparatus 4 Radar apparatus 41 Transmission part 42 Transmission antenna 43 Reception part 44 Reception antenna 5 Radar ECU
51 Control Unit 52 Storage Unit 521 Recording Medium 53 Communication Unit 54 Input / Output Interface 6 Body ECU
61 Control Unit 62 Storage Unit 63 Communication Unit 64 Input / Output Interface 7 Production Line 71 Transport Path 72 Object (Inspection Target)
8 Notification unit 9 Vehicle speed detection unit

Claims (10)

  1.  製造ラインの搬送路にて所定の搬送速度で搬送される車両に搭載される物標検出装置の製造方法であって、
     前記搬送速度に関する情報を取得する工程と、
     前記車両が前記搬送路の横に設けられた対象物を前記搬送速度にて通過する前後にて、該物標検出装置が、送信波を複数回送信し、該対象物によって反射された反射波を複数回受信する工程と、
     複数回受信した反射波夫々に基づいて、前記物標検出装置と前記対象物との基準距離を導出するための基準検知点を導出する工程と、
     導出した前記基準検知点における物標検出装置と対象物との方位角度を導出する工程と、
     導出した前記方位角度に基づいて、前記物標検出装置の全体補正角度を導出する工程と、
     導出した前記全体補正角度に関する情報を、所定の記憶領域に記憶する工程と
     を含むことを特徴とする物標検出装置の製造方法。
    A method for manufacturing a target detection device mounted on a vehicle transported at a predetermined transport speed on a transport path of a production line,
    Obtaining information on the transport speed;
    Before and after the vehicle passes through an object provided on the side of the conveyance path at the conveyance speed, the target detection device transmits a transmission wave a plurality of times, and is reflected by the object. Receiving a plurality of times,
    Deriving a reference detection point for deriving a reference distance between the target detection device and the object based on each of the reflected waves received a plurality of times;
    Deriving an azimuth angle between the target detection device and the object at the derived reference detection point;
    Deriving an overall correction angle of the target detection device based on the derived azimuth angle;
    Storing the derived information relating to the overall correction angle in a predetermined storage area.
  2.  前記基準検知点を導出する工程は、
     複数回受信した反射波夫々において、該反射波夫々にて導出される物標検出装置と対象物との距離が、最も短い距離の反射波の検知点を基準検知点として導出する工程を含む
     ことを特徴とする請求項1に記載の物標検出装置の製造方法。
    The step of deriving the reference detection point includes
    In each of the reflected waves received a plurality of times, a step of deriving the detection point of the reflected wave with the shortest distance as the reference detection point is the distance between the target detection device derived from each of the reflected waves and the object. The manufacturing method of the target detection apparatus of Claim 1 characterized by these.
  3.  前記基準検知点を決定する工程は、
     複数回受信した反射波夫々において、連続して受信した2つの反射波夫々にて導出される物標検出装置と対象物との相対速度の正負が逆転する場合、当該2つの反射波夫々に基づき基準検知点を導出する工程を含む
     ことを特徴とする請求項1又は請求項2に記載の物標検出装置の製造方法。
    The step of determining the reference detection point includes
    In each of the reflected waves received a plurality of times, when the sign of the relative velocity between the target detection device and the object derived from the two consecutively received reflected waves is reversed, based on each of the two reflected waves The method for producing a target detection apparatus according to claim 1, further comprising a step of deriving a reference detection point.
  4.  前記基準検知点を導出する工程以降に、
     複数回受信した反射波夫々における前記物標検出装置と前記対象物との方位角度夫々を導出する工程と、
     前記基準検知点の反射波を受信した基準受信時刻と、複数回受信した反射波夫々を受信した受信時刻夫々との時間差夫々を導出する工程と、
     前記基準距離、前記取得した搬送速度、前記導出した方位角度夫々及び時間差夫々に基づいて、前記反射波夫々における個別補正角度を導出する工程と、
     導出した個別補正角度に関する情報を所定の記憶領域に記憶する工程と
     を含むことを特徴とする請求項1から請求項3のいずれか一つに記載の物標検出装置の製造方法。
    After the step of deriving the reference detection point,
    Deriving each azimuth angle between the target detection device and the object in each of the reflected waves received a plurality of times;
    Deriving a time difference between a reference reception time at which the reflected wave at the reference detection point is received and a reception time at which each of the reflected waves received a plurality of times is received;
    Deriving an individual correction angle in each of the reflected waves based on the reference distance, the acquired transport speed, each of the derived azimuth angles and each of the time differences;
    The method for manufacturing a target detection apparatus according to any one of claims 1 to 3, further comprising: storing information on the derived individual correction angle in a predetermined storage area.
  5.  前記基準検知点を導出する工程以降に、
     複数回受信した反射波夫々における前記物標検出装置と前記対象物との距離夫々及び方位角度夫々を導出する工程と、
     前記基準距離、前記導出した距離夫々及び方位角度夫々に基づいて、前記反射波夫々における個別補正角度を導出する工程と、
     導出した個別補正角度に関する情報を所定の記憶領域に記憶する工程と
     を含むことを特徴とする請求項1から請求項3のいずれか一つに記載の物標検出装置の製造方法。
    After the step of deriving the reference detection point,
    Deriving each distance and azimuth angle between the target detection device and the object in each of the reflected waves received a plurality of times;
    Deriving an individual correction angle in each of the reflected waves based on the reference distance, each of the derived distances and each of the azimuth angles;
    The method for manufacturing a target detection apparatus according to any one of claims 1 to 3, further comprising: storing information on the derived individual correction angle in a predetermined storage area.
  6.  前記所定の記憶領域に記憶する工程は、
     前記受信した反射波夫々における方位角度及び個別補正角度又は、該方位角度及び、前記全体補正角度と個別補正角度との合算値をテーブル形式で登録する工程を含む
     ことを特徴とする請求項4又は請求項5に記載の物標検出装置の製造方法。
    The step of storing in the predetermined storage area includes:
    The method further comprises a step of registering, in a table format, an azimuth angle and an individual correction angle in each of the received reflected waves, or a sum of the azimuth angle and the overall correction angle and the individual correction angle. The manufacturing method of the target detection apparatus of Claim 5.
  7.  前記所定の記憶領域に記憶する工程は、
     任意の複数の方位角度における個別補正角度に基づいて、物標検出装置によって送信される送信波の水平方向における送信範囲の送信角度を所定角度単位で分けた定格方位角度夫々に対応する個別補正角度を導出し、該定格方位角度と導出した該定格方位角度に対応する個別補正角度とを関連づけて、所定の記憶領域に記憶する工程を含む
     ことを特徴とする請求項4から請求項6のいずれか一つに記載の物標検出装置の製造方法。
    The step of storing in the predetermined storage area includes:
    An individual correction angle corresponding to each of the rated azimuth angles obtained by dividing the transmission angle of the transmission range in the horizontal direction of the transmission wave transmitted by the target detection device in a predetermined angle unit based on the individual correction angles at an arbitrary plurality of azimuth angles. The method includes: a step of deriving and storing the rated azimuth angle and the individual correction angle corresponding to the derived rated azimuth angle in association with each other in a predetermined storage area. The manufacturing method of the target detection apparatus as described in any one.
  8.  前記所定の記憶領域に記憶する工程は、
     該定格方位角度と該定格方位角度に対応する個別補正角度とを関連づけて、テーブル形式で登録する工程を含む
     ことを特徴とする請求項7に記載の物標検出装置の製造方法。
    The step of storing in the predetermined storage area includes:
    The method for manufacturing a target detection apparatus according to claim 7, further comprising: registering the rated azimuth angle and an individual correction angle corresponding to the rated azimuth angle in a table format.
  9.  前記物標検出装置が搭載され、製造ラインの搬送路にて所定の搬送速度で搬送される車両の製造方法であって、
     請求項1から請求項8のいずれか一つに記載の物標検出装置の製造方法を含む
     ことを特徴とする車両の製造方法。
    A method for manufacturing a vehicle in which the target detection device is mounted and transported at a predetermined transport speed on a transport path of a manufacturing line,
    A method for manufacturing a vehicle, comprising the method for manufacturing a target detection device according to any one of claims 1 to 8.
  10.  コンピュータに
     物標検出装置が搭載された車両を搬送する製造ラインの搬送路における搬送速度を取得し、
     前記車両が前記搬送路の横に設けられた対象物を前記搬送速度にて通過する前後にて、該物標検出装置によって複数回送信された送信波の該対象物により反射された反射波夫々を取得し、
     取得した反射波夫々に基づいて、前記物標検出装置と前記対象物との基準距離を導出するための基準検知点を導出し、
     導出した前記基準検知点における物標検出装置と対象物との方位角度を導出し、
     導出した前記方位角度に基づいて、前記物標検出装置の全体補正角度を導出し、
     導出した前記全体補正角度に関する情報を、所定の記憶領域に記憶する
     処理を実行させることを特徴とするプログラム。
     
    Obtain the transport speed on the transport path of the production line that transports the vehicle equipped with the target detection device on the computer,
    Each of the reflected waves reflected by the object of the transmission wave transmitted a plurality of times by the target detection device before and after the vehicle passes through the object provided on the side of the conveyance path at the conveyance speed. Get
    Based on each of the acquired reflected waves, a reference detection point for deriving a reference distance between the target detection device and the object is derived.
    Deriving the azimuth angle between the target detection device and the object at the derived reference detection point,
    Based on the derived azimuth angle, an overall correction angle of the target detection device is derived,
    A program for executing a process of storing information on the derived overall correction angle in a predetermined storage area.
PCT/JP2019/003852 2018-02-06 2019-02-04 Method for manufacturing object detection device, vehicle manufacturing method and program WO2019156023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018019651A JP6971161B2 (en) 2018-02-06 2018-02-06 Manufacturing method of target detection device, manufacturing method and program of vehicle
JP2018-019651 2018-02-06

Publications (1)

Publication Number Publication Date
WO2019156023A1 true WO2019156023A1 (en) 2019-08-15

Family

ID=67549628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003852 WO2019156023A1 (en) 2018-02-06 2019-02-04 Method for manufacturing object detection device, vehicle manufacturing method and program

Country Status (2)

Country Link
JP (1) JP6971161B2 (en)
WO (1) WO2019156023A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054315A (en) * 2016-09-26 2018-04-05 株式会社デンソー Axis deviation estimation device
CN113030996A (en) * 2021-03-03 2021-06-25 首钢京唐钢铁联合有限责任公司 Production line equipment position offset detection method, system, equipment and medium
WO2022244316A1 (en) * 2021-05-17 2022-11-24 日立Astemo株式会社 Radar device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958725B1 (en) * 1979-06-29 2005-10-25 Bae Systems Electronics Limited Radome aberration correcting system
JP2007248058A (en) * 2006-03-13 2007-09-27 Murata Mfg Co Ltd Optical axis adjustment method of radar device
US20100066591A1 (en) * 2008-09-16 2010-03-18 Erich Kolmhofer Radar system characteristic determination
JP2017009574A (en) * 2015-06-24 2017-01-12 パナソニック株式会社 Radar axis deviation-amount calculation device and radar axis deviation-amount calculation method
WO2017186868A1 (en) * 2016-04-29 2017-11-02 Autoliv Development Ab Misalignment detection for a vehicle radar sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958725B1 (en) * 1979-06-29 2005-10-25 Bae Systems Electronics Limited Radome aberration correcting system
JP2007248058A (en) * 2006-03-13 2007-09-27 Murata Mfg Co Ltd Optical axis adjustment method of radar device
US20100066591A1 (en) * 2008-09-16 2010-03-18 Erich Kolmhofer Radar system characteristic determination
JP2017009574A (en) * 2015-06-24 2017-01-12 パナソニック株式会社 Radar axis deviation-amount calculation device and radar axis deviation-amount calculation method
WO2017186868A1 (en) * 2016-04-29 2017-11-02 Autoliv Development Ab Misalignment detection for a vehicle radar sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054315A (en) * 2016-09-26 2018-04-05 株式会社デンソー Axis deviation estimation device
CN113030996A (en) * 2021-03-03 2021-06-25 首钢京唐钢铁联合有限责任公司 Production line equipment position offset detection method, system, equipment and medium
CN113030996B (en) * 2021-03-03 2022-12-13 首钢京唐钢铁联合有限责任公司 Production line equipment position offset detection method, system, equipment and medium
WO2022244316A1 (en) * 2021-05-17 2022-11-24 日立Astemo株式会社 Radar device

Also Published As

Publication number Publication date
JP2021060195A (en) 2021-04-15
JP6971161B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
US20220410912A1 (en) Electronic Control Unit, Gateway Circuit for an Airbag Electronic Control Unit, Safety System for a Vehicle, and Environmental Sensor Element
US10852422B2 (en) Method for calibrating a sensor of a motor vehicle for measuring angles, computing device, driver assistance system and motor vehicle
EP3260882B1 (en) Radar apparatus mounted on moving body and azimuth angle correction method for use in radar apparatus mounted on moving body
CN111366901B (en) Method and device for calibrating azimuth angle installation deviation of vehicle-mounted millimeter wave radar
JP5042558B2 (en) Radar equipment
US8077077B2 (en) Recognition system for vehicle
WO2019156023A1 (en) Method for manufacturing object detection device, vehicle manufacturing method and program
CN106980111B (en) Vehicle-mounted side rear-view anti-collision radar calibration device and calibration method thereof
JP2001099930A (en) Sensor for monitoring periphery
CN112415502B (en) Radar apparatus
US10191148B2 (en) Radar system for vehicle and method for measuring azimuth therein
JP6933986B2 (en) Target detection device, target detection method and program
US20200025905A1 (en) In-vehicle radar device
JP2009281862A (en) Axis adjusting method of radar device and axis adjusting device
WO2020054392A1 (en) Device for detecting axial deviation of radar, vehicle-mounted system comprising same, and method for detecting axial deviation of radar
CN114839611A (en) Self-calibration method and device of millimeter wave radar
US20170254881A1 (en) Apparatus for detecting axial misalignment
JP7357632B2 (en) Electronic equipment, electronic equipment control method, and electronic equipment control program
JP2004085258A (en) Radar equipment
CN104103095A (en) Positioning method, device and system
JP4850531B2 (en) In-vehicle radar system
US11332135B2 (en) Driving assistance device, driving assistance method, and computer program
CN110967040B (en) Method and system for identifying horizontal deviation angle of sensor
CN114502433B (en) Control device
JP2001195685A (en) Device for identifying vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570734

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP