[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019143223A9 - Polycyclic compound and organic light-emitting diode comprising same - Google Patents

Polycyclic compound and organic light-emitting diode comprising same Download PDF

Info

Publication number
WO2019143223A9
WO2019143223A9 PCT/KR2019/000898 KR2019000898W WO2019143223A9 WO 2019143223 A9 WO2019143223 A9 WO 2019143223A9 KR 2019000898 W KR2019000898 W KR 2019000898W WO 2019143223 A9 WO2019143223 A9 WO 2019143223A9
Authority
WO
WIPO (PCT)
Prior art keywords
formula
substituted
group
light emitting
compound
Prior art date
Application number
PCT/KR2019/000898
Other languages
French (fr)
Korean (ko)
Other versions
WO2019143223A1 (en
Inventor
정민우
이동훈
장분재
이정하
한수진
박슬찬
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980003838.7A priority Critical patent/CN111032645B/en
Publication of WO2019143223A1 publication Critical patent/WO2019143223A1/en
Publication of WO2019143223A9 publication Critical patent/WO2019143223A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present specification relates to a polycyclic compound and an organic light emitting device including the same.
  • an organic light emitting device is a light emitting device using an organic semiconductor material and requires an exchange of holes and / or electrons between an electrode and an organic semiconductor material.
  • the organic light emitting device can be classified into two types according to the operation principle. First, an exciton is formed in the organic layer by photons introduced into the device from an external light source, and the exciton is separated into electrons and holes, and these electrons and holes are transferred to different electrodes to be used as current sources (voltage sources). It is a light emitting element of the form.
  • the second is a light emitting device in which holes and / or electrons are injected into the organic semiconductor material layer that interfaces with the electrodes by applying voltage or current to two or more electrodes, and is operated by the injected electrons and holes.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon usually has a structure including an anode, a cathode and an organic material layer therebetween.
  • the organic material layer is often made of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer.
  • organic light emitting devices When the voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer at the anode, and electrons are injected into the organic material layer, and excitons are formed when the injected holes and the electrons meet each other. When it falls back to the ground, it glows.
  • organic light emitting devices are known to have characteristics such as self-luminous, high brightness, high efficiency, low driving voltage, wide viewing angle, and high contrast.
  • the material used as the organic material layer in the organic light emitting device may be classified into a light emitting material and a charge transport material such as a hole injection material, a hole transport material, an electron transport material, an electron injection material and the like according to a function.
  • the light emitting materials include blue, green, and red light emitting materials, and yellow and orange light emitting materials required to realize better natural colors, depending on the light emission color.
  • a host / dopant system may be used as the light emitting material in order to increase luminous efficiency through an increase in color purity and energy transfer.
  • the principle is that when a small amount of dopant having a smaller energy band gap and excellent luminous efficiency than a host mainly constituting the light emitting layer is mixed in the light emitting layer, excitons generated in the host are transported to the dopant to give high efficiency light.
  • the wavelength of the host shifts to the wavelength of the dopant, light having a desired wavelength can be obtained according to the type of dopant to be used.
  • a material constituting the organic material layer in the device such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, etc., is supported by a stable and efficient material.
  • a hole injection material such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, etc.
  • One embodiment of the present specification is to provide a compound represented by the following formula (1) or formula (2).
  • X1 to X3 are each independently N or CR
  • At least two of X1 to X3 are N,
  • R is hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • L 1 is a direct bond; A substituted or unsubstituted arylene group having 6 to 10 carbon atoms; Or a substituted or unsubstituted heterocyclic group,
  • L2 is a substituted or unsubstituted arylene group having 6 to 10 carbon atoms; Or a substituted or unsubstituted heterocyclic group,
  • R1 is a substituted or unsubstituted aryl group
  • R2 and R3 are each independently hydrogen; Or deuterium,
  • a is an integer of 0 to 7
  • b is an integer from 0 to 8
  • substituents in parentheses are the same or different from each other, and adjacent R2 or R3 may combine with each other to form a substituted or unsubstituted indolocarbazole or indenocarbazole.
  • the first electrode A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound.
  • the compound described herein can be used as the material of the organic material layer of the organic light emitting device.
  • the compound according to at least one embodiment may improve the lifespan and / or characteristics in the organic light emitting device.
  • the compounds described herein can be used as a material of a hole injection layer, a hole transport layer, an electron suppression layer, a light emitting layer, a hole suppression layer, an electron transport layer, an electron injection layer.
  • FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3 and a cathode 4. As shown in FIG.
  • FIG. 2 shows an example of an organic light emitting element consisting of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8 and a cathode 4. It is.
  • the present specification provides a compound represented by Formula 1 or Formula 2 below.
  • the compound represented by the following formula (1) or (2) is used in the organic material layer of the organic light emitting device, the efficiency of the organic light emitting device is always.
  • X1 to X3 are each independently N or CR
  • At least two of X1 to X3 are N,
  • R is hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • L 1 is a direct bond; A substituted or unsubstituted arylene group having 6 to 10 carbon atoms; Or a substituted or unsubstituted heterocyclic group,
  • L2 is a substituted or unsubstituted arylene group having 6 to 10 carbon atoms; Or a substituted or unsubstituted heterocyclic group,
  • R1 is a substituted or unsubstituted aryl group
  • R2 and R3 are each independently hydrogen; Or deuterium,
  • a is an integer of 0 to 7
  • b is an integer from 0 to 8
  • substituted means that a hydrogen atom bonded to a carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where the substituent can be substituted, if two or more substituted , Two or more substituents may be the same or different from each other.
  • substituted or unsubstituted is deuterium; Halogen group; Cyano group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted arylamine group; Substituted or unsubstituted aryl group; And it is substituted with one or two or more substituents selected from the group consisting of a substituted or unsubstituted heterocyclic group, or two or more of the substituents exemplified above are substituted with a substituent, or means that do not have any substituents.
  • a substituent to which two or more substituents are linked may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are linked.
  • examples of the halogen group include fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 60. According to an exemplary embodiment, the alkyl group has 1 to 30 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group and n-jade Although there exist a tilt group, it is not limited to these.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and the like, but is not limited thereto.
  • examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group.
  • the aryl group in the arylamine group may be a monocyclic aryl group, may be a polycyclic aryl group.
  • the arylamine group including two or more aryl groups may simultaneously include a monocyclic aryl group, a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group.
  • arylamine group examples include phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, 3-methyl-phenylamine group, 4-methyl-naphthylamine group, and 2-methyl-biphenylamine.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as the monocyclic aryl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, peryllenyl group, triphenyl group, chrysenyl group, fluorenyl group and the like, but is not limited thereto.
  • a fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the heterocyclic group is a ring group including one or more of N, O, P, S, Si, and Se as hetero atoms, and the carbon number is not particularly limited, but is preferably 2 to 60 carbon atoms. According to an exemplary embodiment, the heterocyclic group has 2 to 30 carbon atoms.
  • the heterocyclic group include pyridyl group, pyrrole group, pyrimidyl group, pyridazinyl group, furanyl group, thiophenyl group, imidazole group, pyrazole group, dibenzofuranyl group, dibenzothiophenyl group, and the like. It is not limited only to.
  • heterocyclic group may be applied except that the heteroaryl group is aromatic.
  • adjacent The group may mean a substituent substituted with an atom directly connected to an atom in which the corresponding substituent is substituted, a substituent positioned closest to the substituent in stereo structure, or another substituent substituted with an atom in which the substituent is substituted.
  • two substituents substituted at the ortho position in the benzene ring and two substituents substituted at the same carbon in the aliphatic ring may be interpreted as "adjacent" groups.
  • a “ring” in a substituted or unsubstituted ring in which adjacent groups are bonded to each other, a “ring” means a substituted or unsubstituted hydrocarbon ring; Or a substituted or unsubstituted hetero ring.
  • the hydrocarbon ring may be an aromatic, aliphatic or a condensed ring of aromatic and aliphatic, and may be selected from examples of the cycloalkyl group or aryl group except for the above-mentioned monovalent one.
  • the description of the aryl group may be applied except that the aromatic hydrocarbon ring is monovalent.
  • the heterocycle includes one or more atoms other than carbon and heteroatoms, and specifically, the heteroatoms include one or more atoms selected from the group consisting of N, O, P, S, Si, and Se. can do.
  • the heterocycle may be monocyclic or polycyclic, and may be aromatic, aliphatic or a condensed ring of aromatic and aliphatic, and the aromatic heterocycle may be selected from examples of the heteroaryl group except that it is not monovalent.
  • Chemical Formula 1 is represented by any one of the following Chemical Formulas 3 to 6.
  • X1 to X3, L1, R1, R2 and a are as defined above.
  • X1 and X2 are N, X3 is CR.
  • X1 and X3 is N, X2 is CR.
  • X2 and X3 is N, X1 is CR.
  • X1 to X3 is N.
  • R is hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms; Substituted or unsubstituted aryl group having 6 to 30 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms.
  • R is hydrogen; Or deuterium.
  • L1 is a direct bond; A substituted or unsubstituted arylene group having 6 to 10 carbon atoms; Or a substituted or unsubstituted heteroring group.
  • L2 is a substituted or unsubstituted arylene group having 6 to 10 carbon atoms; Or a substituted or unsubstituted heteroring group.
  • L1 is a direct bond.
  • L1 and L2 are each independently a substituted or unsubstituted arylene group having 6 to 10 carbon atoms or a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms.
  • L1 and L2 are each independently a substituted or unsubstituted arylene group having 6 to 10 carbon atoms or a substituted or unsubstituted heterocyclic group having 2 to 15 carbon atoms.
  • L1 and L2 are each independently a substituted or unsubstituted arylene group having 6 to 10 carbon atoms.
  • L1 and L2 are each independently a substituted or unsubstituted phenylene group.
  • R1 is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • R1 is a substituted or unsubstituted aryl group having 6 to 15 carbon atoms.
  • R1 is a substituted or unsubstituted phenyl group.
  • R1 is a phenyl group.
  • R2 and R3 are each independently hydrogen; Or deuterium.
  • R2 and R3 is hydrogen.
  • R2 is hydrogen, or may combine with adjacent groups to form a substituted or unsubstituted indolocarbazole or indenocarbazole.
  • R2 is hydrogen, or may be combined with adjacent groups to form a ring of the following structure.
  • A1 to A5 are each independently hydrogen; heavy hydrogen; Halogen group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group, a1 and a2 are each an integer of 0 to 4, and * indicates a position to be substituted.
  • Chemical Formula 2 is represented by any one of the following Chemical Formulas 7 to 9.
  • A1 to A5 are each independently hydrogen; heavy hydrogen; Halogen group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • A6 to A8 are each independently hydrogen or deuterium
  • a1 and a2 are each an integer of 0 to 4,
  • a6 and a7 are each an integer of 0 to 6
  • a8 is an integer of 0-8.
  • A1 and A2 are hydrogen.
  • A3 to A5 are each independently a substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • A3 to A5 are each independently a substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group.
  • A3 and A4 are each independently a substituted or unsubstituted alkyl group.
  • A3 and A4 are a methyl group.
  • A5 is a substituted or unsubstituted aryl group.
  • A5 is a substituted or unsubstituted phenyl group.
  • A5 is a phenyl group.
  • A6 to A8 are each independently hydrogen or deuterium.
  • A6 to A8 is hydrogen.
  • a and b is 0 or 1.
  • adjacent R2 or R3 may combine with each other to form a substituted or unsubstituted indolocarbazole or indenocarbazole.
  • a and b are each independently 2 or more, adjacent R2 or R3 are bonded to each other to form an indolocarbazole or indenocarbazole unsubstituted or substituted with an aryl group having 6 to 30 carbon atoms. Can be formed.
  • a and b are each independently 2 or more, adjacent R2 or R3 are bonded to each other to replace the indolocarbazole or indenocarbazole unsubstituted or substituted with an aryl group having 6 to 15 carbon atoms Can be formed.
  • adjacent R2 or R3 may be combined with each other to form an indolocarbazole or indenocarbazole substituted or unsubstituted with a phenyl group.
  • Formula 1 is represented by any one of the following structures.
  • Formula 2 is represented by any one of the following structures.
  • the conjugation length of the compound and the energy bandgap are closely related. Specifically, the longer the conjugation length of the compound, the smaller the energy bandgap.
  • a compound having various energy band gaps can be synthesized by introducing various substituents into the core structure as described above.
  • the HOMO and LUMO energy levels of the compound may be adjusted by introducing various substituents into the core structure of the above structure.
  • the compound which has the intrinsic property of the introduced substituent can be synthesize
  • the organic light emitting device comprises a first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound of Formula 1 or Formula 2.
  • the organic light emitting device of the present invention may be manufactured by a conventional method and material for manufacturing an organic light emitting device, except that at least one organic material layer is formed using the above-described compound.
  • the compound may be formed as an organic layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
  • the solution coating method means spin coating, dip coating, inkjet printing, screen printing, spraying method, roll coating and the like, but is not limited thereto.
  • the organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and the like as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.
  • the organic material layer may include an electron transport layer or an electron injection layer, and the electron transport layer or the electron injection layer may include a compound represented by Formula 1 or Formula 2.
  • the organic material layer may include a hole injection layer or a hole transport layer
  • the hole injection layer or hole transport layer may include a compound represented by the formula (1) or (2).
  • the organic material layer includes a light emitting layer, and the light emitting layer includes a compound represented by Formula 1 or Formula 2.
  • the organic material layer may include a light emitting layer, and the light emitting layer may include a compound represented by Formula 1 or Formula 2 as a host of the light emitting layer.
  • the organic material layer including the compound represented by Chemical Formula 1 or Chemical Formula 2 includes the compound represented by Chemical Formula 1 or Chemical Formula 2 as a host, and further includes a fluorescent host or a phosphorescent host.
  • Organic compounds, metals or metal compounds may be included as dopants.
  • the organic material layer including the compound represented by Formula 1 or Formula 2 includes the compound represented by Formula 1 or Formula 2 as a host, further includes a fluorescent host or a phosphorescent host, and includes an iridium-based ( Ir) can be used with dopants.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is an anode.
  • the structure of the organic light emitting device of the present invention may have a structure as shown in FIGS. 1 and 2, but is not limited thereto.
  • FIG. 1 illustrates a structure of an organic light emitting device in which an anode 2, a light emitting layer 3, and a cathode 4 are sequentially stacked on a substrate 1.
  • the compound may be included in the light emitting layer (3).
  • FIG. 2 illustrates an organic light emitting device in which an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8, and a cathode 4 are sequentially stacked on a substrate 1.
  • the structure is illustrated.
  • the compound may be included in the hole injection layer 5, the hole transport layer 6, the light emitting layer 7, or the electron transport layer 8.
  • the organic light emitting device uses a metal vapor deposition (PVD) method, such as sputtering or e-beam evaporation, to form a metal oxide or a metal oxide or an alloy thereof on a substrate.
  • PVD metal vapor deposition
  • It can be prepared by depositing an anode to form an anode, an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the organic material layer may have a multilayer structure including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer, but is not limited thereto and may have a single layer structure.
  • the organic material layer may be formed by using a variety of polymer materials, and by using a method such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer, rather than a deposition method. It can be prepared in layers.
  • the anode material a material having a large work function is usually preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); A combination of a metal and an oxide such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
  • the hole injection material is a material capable of well injecting holes from the anode at a low voltage, and the highest occupied molecular orbital (HOMO) of the hole injection material is preferably between the work function of the anode material and the HOMO of the surrounding organic material layer.
  • hole injection materials include metal porphyrine, oligothiophene, arylamine-based organics, hexanitrile hexaazatriphenylene-based organics, quinacridone-based organics, and perylene-based Organic materials, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transporting material a material capable of transporting holes from the anode or the hole injection layer and transferring the holes to the light emitting layer is suitable.
  • a material capable of transporting holes from the anode or the hole injection layer and transferring the holes to the light emitting layer is suitable.
  • Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the emission layer may emit red, green, or blue light, and may be formed of a phosphor or a fluorescent material.
  • the light emitting material is a material capable of emitting light in the visible region by receiving and combining holes and electrons from the hole transporting layer and the electron transporting layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • Specific examples thereof include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
  • Alq 3 8-hydroxyquinoline aluminum complex
  • Carbazole series compounds Dimerized styryl compounds
  • BAlq 10-hydroxybenzo quinoline-metal compound
  • Benzoxazole, benzthiazole and benzimidazole series compounds include Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
  • PSV poly (p-phenylenevinylene)
  • the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocyclic containing compounds include carbazole derivatives, dibenzofuran derivatives and ladder types. Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • Iridium complex used as the dopant of the light emitting layer is as follows, but is not limited thereto.
  • the electron transporting material a material capable of injecting electrons well from the cathode and transferring the electrons to the light emitting layer is suitable.
  • Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the organic light emitting device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used.
  • 2,4-dichloro-6-phenyl-1,3,5-triazine (50.0g, 222.2mmol) and phenanthren-9-ylboronic acid (49.4g, 222.2mmol) were added to 800 ml of tetrahydrofuran and stirred in a nitrogen atmosphere.
  • Potassium carbonate (61.4 g, 444.5 mmol) was added while dissolved in water.
  • heated to reflux tetrakis (triphenylphosphine) palladium (0) (2.6 g, 1 mol%) was slowly added. After the reaction proceeds for about 9 hours the reaction was terminated. After the reaction was completed, the temperature was lowered to room temperature (25 ° C.), and the produced solid was filtered.
  • the filtered solid was dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered.
  • the filtrate was distilled under reduced pressure.
  • the concentrate was purified through a silica column using chloroform and ethyl acetate to prepare an intermediate 1A (40.0 g, yield: 49%) as a white solid compound.
  • the filtered solid was dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered.
  • the filtrate was distilled under reduced pressure.
  • the concentrate was purified through a silica column using chloroform and ethyl acetate to prepare an intermediate 1B (27.1 g, yield: 75%) as a white solid compound.
  • 2,4-dichloro-6-phenyl-1,3,5-triazine (50.0g, 222.2mmol) and phenanthren-2-ylboronic acid (49.4g, 222.2mmol) were added to 800 ml of tetrahydrofuran and stirred in a nitrogen atmosphere.
  • Potassium carbonate (61.4 g, 444.5 mmol) was added while dissolved in water.
  • heated to reflux tetrakis (triphenylphosphine) palladium (0) (2.6 g, 1 mol%) was slowly added. After the reaction proceeds for about 9 hours the reaction was terminated. After the reaction was completed, the temperature was lowered to room temperature (25 ° C.), and the produced solid was filtered.
  • the filtered solid was dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure.
  • the concentrate was purified through a silica column using chloroform and ethyl acetate to give an intermediate 2A (47.3 g, yield: 58%) as a white solid compound.
  • the filtered solid was dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure.
  • the concentrate was purified through a silica column using chloroform and ethyl acetate to give an intermediate 2B (25.3 g, yield: 70%) as a white solid compound.
  • 2,4-dichloro-6-phenyl-1,3,5-triazine (50.0g, 222.2mmol) and phenanthren-3-ylboronic acid (49.4g, 222.2mmol) were added to 800 ml of tetrahydrofuran and stirred in a nitrogen atmosphere.
  • Potassium carbonate (61.4 g, 444.5 mmol) was added while dissolved in water.
  • heated to reflux tetrakis (triphenylphosphine) palladium (0) (2.6 g, 1 mol%) was slowly added. After the reaction proceeds for about 9 hours the reaction was terminated. After the reaction was completed, the temperature was lowered to room temperature (25 ° C.), and the produced solid was filtered.
  • the filtered solid was dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure.
  • the concentrate was purified through a silica column using chloroform and ethyl acetate to give an intermediate 3A (40.8 g, yield: 50%) as a white solid compound.
  • the filtered solid was dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure.
  • the concentrate was purified through a silica column using chloroform and ethyl acetate to give an intermediate 3B (27.8 g, yield: 77%) as a white solid compound.
  • intermediate 1A (15.0 g, 66.7 mmol) and (9-phenyl-9H-carbazol-1-yl) boronic acid (16.2 g, 66.7 mmol) were added to dioxane (200 mL) and stirred and refluxed. Thereafter, potassium carbonate (27.6 g, 200.0 mmol) was dissolved in water, and sufficiently stirred, followed by bis (tri-t-butylphosphine) palladium (0) (2.3 g, mol%). After 9 hours of reaction, the temperature was lowered to room temperature and filtered. The filtrate was extracted with chloroform and water, and the organic layer was dried over magnesium sulfate. After distilling under reduced pressure, the organic layer was recrystallized using a mixed solution of tetrahydrofuran and ethyl acetate. The resulting solid was filtered and dried to prepare compound 1 (16.7 g, yield 46%).
  • intermediate 1B (15.0 g, 66.7 mmol) and (9-phenyl-9H-carbazol-2-yl) boronic acid (16.2 g, 66.7 mmol) were added to dioxane (200 mL) and stirred and refluxed. Thereafter, potassium carbonate (27.6 g, 200.0 mmol) was dissolved in water, and sufficiently stirred, followed by bis (tri-t-butylphosphine) palladium (0) (2.3 g, mol%). After 9 hours of reaction, the temperature was lowered to room temperature and filtered. The filtrate was extracted with chloroform and water, and the organic layer was dried over magnesium sulfate. After distilling under reduced pressure, the organic layer was recrystallized using a mixed solution of tetrahydrofuran and ethyl acetate. The resulting solid was filtered and dried to prepare compound 5 (18.5 g, yield 51%).
  • intermediate 2A (15.0 g, 66.7 mmol) and (9-phenyl-9H-carbazol-2-yl) boronic acid (16.2 g, 66.7 mmol) were added to dioxane (200 mL) and stirred and refluxed. Thereafter, potassium carbonate (27.6 g, 200.0 mmol) was dissolved in water, and sufficiently stirred, followed by bis (tri-t-butylphosphine) palladium (0) (2.3 g, mol%). After 9 hours of reaction, the temperature was lowered to room temperature and filtered. The filtrate was extracted with chloroform and water, and the organic layer was dried over magnesium sulfate. After distilling under reduced pressure, the organic layer was recrystallized using a mixed solution of tetrahydrofuran and ethyl acetate. The resulting solid was filtered and dried to prepare compound 11 (7.7 g, yield 33%).
  • the glass substrate coated with ITO (indium tin oxide) having a thickness of 1,300 kPa was put in distilled water in which detergent was dissolved and ultrasonically cleaned.
  • ITO indium tin oxide
  • Fischer Co. was used as a detergent
  • distilled water was filtered secondly as a filter of Millipore Co. as a distilled water.
  • ultrasonic washing was performed twice with distilled water for 10 minutes.
  • ultrasonic washing with a solvent of isopropyl alcohol, acetone, methanol dried and transported to a plasma cleaner.
  • the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
  • the following HI-1 compound was thermally vacuum deposited to a thickness of 50 kPa to form a hole injection layer.
  • a hole transport layer was formed by thermal vacuum deposition of the following HT-1 compound to a thickness of 250 kPa on the hole injection layer, and an electron blocking layer was formed by vacuum depositing the following HT-2 compound to a thickness of 50 kPa on the HT-1 deposition film.
  • Compound 1, the following YGH-1 compound, and phosphorescent dopant YGD-1 which were prepared in Preparation Example 1 as a light emitting layer on the HT-2 deposited film, were co-deposited at a weight ratio of 44:44:12 to form a light emitting layer having a thickness of 400 kHz.
  • ET-1 compound was vacuum deposited to a thickness of 250 kPa on the light emitting layer to form an electron transport layer
  • the following ET-2 compound and Li were vacuum deposited on the electron transport layer at a weight ratio of 98: 2 to form an electron injection layer having a thickness of 100 kW.
  • Aluminum was deposited to a thickness of 1000 ⁇ on the electron injection layer to form a cathode.
  • the deposition rate of the organic material was maintained at 0.4 ⁇ 0.7 ⁇ / sec
  • the aluminum was maintained at the deposition rate of 2 ⁇ / sec
  • the vacuum during deposition was maintained at 1 ⁇ 10 -7 ⁇ 5 ⁇ 10 -8 torr It was.
  • An organic light emitting diode was manufactured according to the same method as Experimental Example 1 except for using the compound described in Table 1 below instead of compound 1 of Synthesis Example 1 in Experimental Example 1.
  • An organic light emitting diode was manufactured according to the same method as Experimental Example 1 except for using the compound described in Table 1 below instead of compound 1 of Synthesis Example 1 in Experimental Example 1.
  • the compounds of CE1 to CE6 in Table 1 are as follows.
  • the organic light emitting diodes were measured voltage and efficiency at a current density of 10 mA / cm 2 , and lifespan was measured at a current density of 50 mA / cm 2 , and the results are shown in Table 1 below.
  • LT 95 refers to a time when the luminance becomes 95% of the initial luminance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present specification provides a compound represented by chemical formula (1) or chemical formula (2) and an organic light-emitting diode comprising same.

Description

다환 화합물 및 이를 포함하는 유기 발광 소자Polycyclic compound and organic light emitting device comprising the same
본 발명은 2018년 01월 22일에 한국특허청에 제출된 한국 특허 출원 제10-2018-0007646호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.The present invention claims the benefit of the filing date of Korean Patent Application No. 10-2018-0007646 filed with the Korea Intellectual Property Office on January 22, 2018, the entire contents of which are incorporated herein.
본 명세서는 다환 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present specification relates to a polycyclic compound and an organic light emitting device including the same.
본 명세서에서, 유기 발광 소자란 유기 반도체 물질을 이용한 발광 소자로서, 전극과 유기 반도체 물질 사이에서의 정공 및/또는 전자의 교류를 필요로 한다. 유기 발광 소자는 동작 원리에 따라 하기와 같이 크게 두 가지로 나눌 수 있다. 첫째는 외부의 광원으로부터 소자로 유입된 광자에 의하여 유기물층에서 엑시톤(exiton)이 형성되고, 이 엑시톤이 전자와 정공으로 분리되고, 이 전자와 정공이 각각 다른 전극으로 전달되어 전류원(전압원)으로 사용되는 형태의 발광 소자이다. 둘째는 2개 이상의 전극에 전압 또는 전류를 가하여 전극과 계면을 이루는 유기 반도체 물질층에 정공 및/또는 전자를 주입하고, 주입된 전자와 정공에 의하여 작동하는 형태의 발광 소자이다.In the present specification, an organic light emitting device is a light emitting device using an organic semiconductor material and requires an exchange of holes and / or electrons between an electrode and an organic semiconductor material. The organic light emitting device can be classified into two types according to the operation principle. First, an exciton is formed in the organic layer by photons introduced into the device from an external light source, and the exciton is separated into electrons and holes, and these electrons and holes are transferred to different electrodes to be used as current sources (voltage sources). It is a light emitting element of the form. The second is a light emitting device in which holes and / or electrons are injected into the organic semiconductor material layer that interfaces with the electrodes by applying voltage or current to two or more electrodes, and is operated by the injected electrons and holes.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어 질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 이러한 유기 발광 소자는 자발광, 고휘도, 고효율, 낮은 구동 전압, 넓은 시야각, 높은 콘트라스트 등의 특성을 갖는 것으로 알려져 있다.In general, organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material. An organic light emitting device using an organic light emitting phenomenon usually has a structure including an anode, a cathode and an organic material layer therebetween. In this case, the organic material layer is often made of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer. When the voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer at the anode, and electrons are injected into the organic material layer, and excitons are formed when the injected holes and the electrons meet each other. When it falls back to the ground, it glows. Such organic light emitting devices are known to have characteristics such as self-luminous, high brightness, high efficiency, low driving voltage, wide viewing angle, and high contrast.
유기 발광 소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공 주입 재료, 정공 수송 재료, 전자 수송 재료, 전자 주입 재료 등으로 분류될 수 있다. 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료가 있다.The material used as the organic material layer in the organic light emitting device may be classified into a light emitting material and a charge transport material such as a hole injection material, a hole transport material, an electron transport material, an electron injection material and the like according to a function. The light emitting materials include blue, green, and red light emitting materials, and yellow and orange light emitting materials required to realize better natural colors, depending on the light emission color.
또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 재료로서 호스트/도펀트 계를 사용할 수 있다. 그 원리는 발광층을 주로 구성하는 호스트보다 에너지 대역 간극이 작고 발광 효율이 우수한 도펀트를 발광층에 소량 혼합하면, 호스트에서 발생한 엑시톤이 도펀트로 수송되어 효율이 높은 빛을 내는 것이다. 이 때 호스트의 파장이 도펀트의 파장대로 이동하므로, 이용하는 도펀트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.In addition, a host / dopant system may be used as the light emitting material in order to increase luminous efficiency through an increase in color purity and energy transfer. The principle is that when a small amount of dopant having a smaller energy band gap and excellent luminous efficiency than a host mainly constituting the light emitting layer is mixed in the light emitting layer, excitons generated in the host are transported to the dopant to give high efficiency light. At this time, since the wavelength of the host shifts to the wavelength of the dopant, light having a desired wavelength can be obtained according to the type of dopant to be used.
전술한 유기 발광 소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공 주입 물질, 정공 수송 물질, 발광 물질, 전자 수송 물질, 전자 주입 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되므로 새로운 재료의 개발이 계속 요구되고 있다.In order to fully exhibit the excellent characteristics of the above-described organic light emitting device, a material constituting the organic material layer in the device, such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, etc., is supported by a stable and efficient material. The development of new materials continues to be demanded.
본 명세서에는 다환 화합물 및 이를 포함하는 유기 발광 소자가 기재된다. In the present specification, a polycyclic compound and an organic light emitting device including the same are described.
본 명세서의 일 실시상태는 하기 화학식 1 또는 화학식 2로 표시되는 것인 화합물을 제공하고자 한다.One embodiment of the present specification is to provide a compound represented by the following formula (1) or formula (2).
[화학식 1][Formula 1]
Figure PCTKR2019000898-appb-I000001
Figure PCTKR2019000898-appb-I000001
[화학식 2][Formula 2]
Figure PCTKR2019000898-appb-I000002
Figure PCTKR2019000898-appb-I000002
화학식 1 및 화학식 2에 있어서, In Chemical Formula 1 and Chemical Formula 2,
X1 내지 X3은 각각 독립적으로, N 또는 CR이며,X1 to X3 are each independently N or CR,
X1 내지 X3 중 적어도 두 개 이상은 N이며,At least two of X1 to X3 are N,
R은 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,R is hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
L1은 직접결합; 치환 또는 비치환된 탄소수 6 내지 10의 아릴렌기; 또는 치환 또는 비치환된 헤테로고리기이며, L 1 is a direct bond; A substituted or unsubstituted arylene group having 6 to 10 carbon atoms; Or a substituted or unsubstituted heterocyclic group,
L2는 치환 또는 비치환된 탄소수 6 내지 10의 아릴렌기; 또는 치환 또는 비치환된 헤테로고리기이며,L2 is a substituted or unsubstituted arylene group having 6 to 10 carbon atoms; Or a substituted or unsubstituted heterocyclic group,
R1은 치환 또는 비치환된 아릴기이며,R1 is a substituted or unsubstituted aryl group,
R2 및 R3는 각각 독립적으로 수소; 또는 중수소이며,R2 and R3 are each independently hydrogen; Or deuterium,
a는 0 내지 7의 정수이고,a is an integer of 0 to 7,
b는 0 내지 8의 정수이고,b is an integer from 0 to 8,
a 및 b가 각각 독립적으로 2 이상인 경우 괄호 안의 치환기는 서로 같거나 상이하며, 인접한 R2 또는 R3은 서로 결합하여 치환 또는 비치환된 인돌로카바졸 또는 인데노카바졸을 형성할 수 있다.When a and b are each independently 2 or more, the substituents in parentheses are the same or different from each other, and adjacent R2 or R3 may combine with each other to form a substituted or unsubstituted indolocarbazole or indenocarbazole.
또한, 본 명세서의 일 실시상태에 따르면, 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상이 상기 화합물을 포함하는 것인 유기 발광 소자를 제공한다.Further, according to one embodiment of the present specification, the first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound.
본 명세서에 기재된 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있다. 적어도 하나의 실시상태에 따른 화합물은 유기 발광 소자에서 및/또는 수명 특성을 향상시킬 수 있다. 특히, 본 명세서에 기재된 화합물은 정공주입층, 정공수송층, 전자억제층, 발광층, 정공억제층, 전자수송층, 전자주입층의 재료로 사용될 수 있다.The compound described herein can be used as the material of the organic material layer of the organic light emitting device. The compound according to at least one embodiment may improve the lifespan and / or characteristics in the organic light emitting device. In particular, the compounds described herein can be used as a material of a hole injection layer, a hole transport layer, an electron suppression layer, a light emitting layer, a hole suppression layer, an electron transport layer, an electron injection layer.
도 1은 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3 and a cathode 4. As shown in FIG.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.2 shows an example of an organic light emitting element consisting of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8 and a cathode 4. It is.
<부호의 설명><Code description>
1: 기판1: substrate
2: 양극2: anode
3: 발광층3: light emitting layer
4: 음극4: cathode
5: 정공주입층5: hole injection layer
6: 정공수송층6: hole transport layer
7: 발광층7: light emitting layer
8: 전자수송층8: electron transport layer
이하 본 명세서에 대하여 더욱 상세히 설명한다. Hereinafter, the present specification will be described in more detail.
본 명세서는 하기 화학식 1 또는 화학식 2로 표시되는 화합물을 제공한다. 하기 화학식 1 또는 화학식 2로 표시되는 화합물을 유기 발광 소자의 유기물층에 사용하는 경우, 유기 발광 소자의 효율이 항상된다.The present specification provides a compound represented by Formula 1 or Formula 2 below. When the compound represented by the following formula (1) or (2) is used in the organic material layer of the organic light emitting device, the efficiency of the organic light emitting device is always.
[화학식 1] [Formula 1]
Figure PCTKR2019000898-appb-I000003
Figure PCTKR2019000898-appb-I000003
[화학식 2][Formula 2]
Figure PCTKR2019000898-appb-I000004
Figure PCTKR2019000898-appb-I000004
화학식 1 및 화학식 2에 있어서, In Chemical Formula 1 and Chemical Formula 2,
X1 내지 X3은 각각 독립적으로, N 또는 CR이며,X1 to X3 are each independently N or CR,
X1 내지 X3 중 적어도 두 개 이상은 N이며,At least two of X1 to X3 are N,
R은 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,R is hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
L1은 직접결합; 치환 또는 비치환된 탄소수 6 내지 10의 아릴렌기; 또는 치환 또는 비치환된 헤테로고리기이며, L 1 is a direct bond; A substituted or unsubstituted arylene group having 6 to 10 carbon atoms; Or a substituted or unsubstituted heterocyclic group,
L2는 치환 또는 비치환된 탄소수 6 내지 10의 아릴렌기; 또는 치환 또는 비치환된 헤테로고리기이며,L2 is a substituted or unsubstituted arylene group having 6 to 10 carbon atoms; Or a substituted or unsubstituted heterocyclic group,
R1은 치환 또는 비치환된 아릴기이며,R1 is a substituted or unsubstituted aryl group,
R2 및 R3는 각각 독립적으로 수소; 또는 중수소이며,R2 and R3 are each independently hydrogen; Or deuterium,
a는 0 내지 7의 정수이고,a is an integer of 0 to 7,
b는 0 내지 8의 정수이고,b is an integer from 0 to 8,
a 및 b가 각각 독립적으로 2 이상인 경우 괄호 안의 치환기는 서로 같거나 상이하며, 인접한 R2 또는 R3은 서로 결합하여 인돌로카바졸 또는 인데노카바졸을 형성할 수 있다.When a and b are each independently 2 or more, the substituents in parentheses are the same or different from each other, and adjacent R2 or R3 may combine with each other to form indolocarbazole or indenocarbazole.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In the present specification, when a part "includes" a certain component, this means that it may further include other components, without excluding other components, unless specifically stated otherwise.
본 명세서에 있어서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.In this specification, when a member is located "on" another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.Examples of substituents herein are described below, but are not limited thereto.
상기 "치환" 이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.The term "substituted" means that a hydrogen atom bonded to a carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where the substituent can be substituted, if two or more substituted , Two or more substituents may be the same or different from each other.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 도 있다.As used herein, the term "substituted or unsubstituted" is deuterium; Halogen group; Cyano group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted arylamine group; Substituted or unsubstituted aryl group; And it is substituted with one or two or more substituents selected from the group consisting of a substituted or unsubstituted heterocyclic group, or two or more of the substituents exemplified above are substituted with a substituent, or means that do not have any substituents. For example, "a substituent to which two or more substituents are linked" may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are linked.
상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다. Examples of the substituents are described below, but are not limited thereto.
본 명세서에 있어서, 할로겐기의 예로는 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)가 있다.In the present specification, examples of the halogen group include fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 30이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 알킬기의 구체적인 예로는 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, tert-부틸기, n-펜틸기, n-헥실기, n-헵틸기, n-옥틸기 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 60. According to an exemplary embodiment, the alkyl group has 1 to 30 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group and n-jade Although there exist a tilt group, it is not limited to these.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되지 않는다. In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and the like, but is not limited thereto.
명세서에 있어서, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있다. 상기 아릴아민기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기일 수 있다. 상기 2 이상의 아릴기를 포함하는 아릴아민기는 단환식 아릴기, 다환식 아릴기, 또는 단환식 아릴기와 다환식 아릴기를 동시에 포함할 수 있다. In the specification, examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group. The aryl group in the arylamine group may be a monocyclic aryl group, may be a polycyclic aryl group. The arylamine group including two or more aryl groups may simultaneously include a monocyclic aryl group, a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group.
아릴아민기의 구체적인 예로는 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 3-메틸-페닐아민기, 4-메틸-나프틸아민기, 2-메틸-비페닐아민기, 9-메틸-안트라세닐아민기, 디페닐 아민기, 페닐 나프틸 아민기, 바이페닐 페닐 아민기 등이 있으나, 이에 한정되는 것은 아니다.Specific examples of the arylamine group include phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, 3-methyl-phenylamine group, 4-methyl-naphthylamine group, and 2-methyl-biphenylamine. Groups, 9-methyl-anthracenylamine groups, diphenyl amine groups, phenyl naphthyl amine groups, biphenyl phenyl amine groups, and the like, but are not limited thereto.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 트리페닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as the monocyclic aryl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, peryllenyl group, triphenyl group, chrysenyl group, fluorenyl group and the like, but is not limited thereto.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다.In the present specification, a fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2019000898-appb-I000005
등의 스피로플루오레닐기,
Figure PCTKR2019000898-appb-I000006
(9,9-디메틸플루오레닐기), 및
Figure PCTKR2019000898-appb-I000007
(9,9-디페닐플루오레닐기) 등의 치환된 플루오레닐기가 될 수 있다. 다만, 이에 한정되는 것은 아니다.
When the fluorenyl group is substituted,
Figure PCTKR2019000898-appb-I000005
Spirofluorenyl groups such as
Figure PCTKR2019000898-appb-I000006
(9,9-dimethylfluorenyl group), and
Figure PCTKR2019000898-appb-I000007
Substituted fluorenyl groups such as (9,9-diphenylfluorenyl group). However, the present invention is not limited thereto.
본 명세서에 있어서, 헤테로고리기는 이종원자로 N, O, P, S, Si 및 Se 중 1개 이상을 포함하는 고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 헤테로고리기의 탄소수는 2 내지 30이다. 헤테로 고리기의 예로는 예로는 피리딜기, 피롤기, 피리미딜기, 피리다지닐기, 퓨라닐기, 티오페닐기, 이미다졸기, 피라졸기, 디벤조퓨라닐기, 디벤조티오페닐기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, the heterocyclic group is a ring group including one or more of N, O, P, S, Si, and Se as hetero atoms, and the carbon number is not particularly limited, but is preferably 2 to 60 carbon atoms. According to an exemplary embodiment, the heterocyclic group has 2 to 30 carbon atoms. Examples of the heterocyclic group include pyridyl group, pyrrole group, pyrimidyl group, pyridazinyl group, furanyl group, thiophenyl group, imidazole group, pyrazole group, dibenzofuranyl group, dibenzothiophenyl group, and the like. It is not limited only to.
본 명세서에 있어서, 헤테로아릴기는 방향족인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.In the present specification, the description of the aforementioned heterocyclic group may be applied except that the heteroaryl group is aromatic.
본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오쏘(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 "인접한"기로 해석될 수 있다.In the present specification, "adjacent" The group may mean a substituent substituted with an atom directly connected to an atom in which the corresponding substituent is substituted, a substituent positioned closest to the substituent in stereo structure, or another substituent substituted with an atom in which the substituent is substituted. For example, two substituents substituted at the ortho position in the benzene ring and two substituents substituted at the same carbon in the aliphatic ring may be interpreted as "adjacent" groups.
본 명세서에 있어서, 인접한 기가 서로 결합하여 형성되는 치환 또는 비치환된 고리에서, "고리"는 치환 또는 비치환된 탄화수소고리; 또는 치환 또는 비치환된 헤테로고리를 의미한다.In the present specification, in a substituted or unsubstituted ring in which adjacent groups are bonded to each other, a “ring” means a substituted or unsubstituted hydrocarbon ring; Or a substituted or unsubstituted hetero ring.
본 명세서에 있어서, 탄화수소고리는 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 상기 1가가 아닌 것을 제외하고 상기 시클로알킬기 또는 아릴기의 예시 중에서 선택될 수 있다.In the present specification, the hydrocarbon ring may be an aromatic, aliphatic or a condensed ring of aromatic and aliphatic, and may be selected from examples of the cycloalkyl group or aryl group except for the above-mentioned monovalent one.
본 명세서에 있어서, 방향족 탄화수소고리는 1가인 것을 제외하고는 아릴기에 관한 설명이 적용될 수 있다.In the present specification, the description of the aryl group may be applied except that the aromatic hydrocarbon ring is monovalent.
본 명세서에 있어서, 헤테로고리는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 N, O, P, S, Si 및 Se 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 상기 헤테로고리는 단환 또는 다환일 수 있으며, 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 방향족 헤테로고리는 1가가 아닌 것을 제외하고 상기 헤테로아릴기의 예시 중에서 선택될 수 있다.In the present specification, the heterocycle includes one or more atoms other than carbon and heteroatoms, and specifically, the heteroatoms include one or more atoms selected from the group consisting of N, O, P, S, Si, and Se. can do. The heterocycle may be monocyclic or polycyclic, and may be aromatic, aliphatic or a condensed ring of aromatic and aliphatic, and the aromatic heterocycle may be selected from examples of the heteroaryl group except that it is not monovalent.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1은 하기 화학식 3 내지 6 중 어느 하나로 표시된다.According to an exemplary embodiment of the present specification, Chemical Formula 1 is represented by any one of the following Chemical Formulas 3 to 6.
[화학식 3][Formula 3]
Figure PCTKR2019000898-appb-I000008
Figure PCTKR2019000898-appb-I000008
[화학식 4][Formula 4]
Figure PCTKR2019000898-appb-I000009
Figure PCTKR2019000898-appb-I000009
[화학식 5][Formula 5]
Figure PCTKR2019000898-appb-I000010
Figure PCTKR2019000898-appb-I000010
[화학식 6][Formula 6]
Figure PCTKR2019000898-appb-I000011
Figure PCTKR2019000898-appb-I000011
화학식 3 내지 6에 있어서,In Chemical Formulas 3 to 6,
X1 내지 X3, L1, R1, R2 및 a는 상기 정의한 바와 같다.X1 to X3, L1, R1, R2 and a are as defined above.
본 명세서의 일 실시상태에 따르면, X1 및 X2는 N이고, X3는 CR이다. According to an exemplary embodiment of the present disclosure, X1 and X2 are N, X3 is CR.
본 명세서의 일 실시상태에 따르면, X1 및 X3은 N이고, X2는 CR이다.According to an exemplary embodiment of the present disclosure, X1 and X3 is N, X2 is CR.
본 명세서의 일 실시상태에 따르면, X2 및 X3은 N이고, X1은 CR이다.According to an exemplary embodiment of the present disclosure, X2 and X3 is N, X1 is CR.
본 명세서의 일 실시상태에 따르면, X1 내지 X3은 N이다.According to an exemplary embodiment of the present disclosure, X1 to X3 is N.
본 명세서의 일 실시상태에 따르면, R은 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로고리기이다.According to an exemplary embodiment of the present disclosure, R is hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms; Substituted or unsubstituted aryl group having 6 to 30 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms.
본 명세서의 일 실시상태에 따르면, R은 수소; 또는 중수소이다.According to an exemplary embodiment of the present disclosure, R is hydrogen; Or deuterium.
본 명세서의 일 실시상태에 따르면, L1은 직접결합; 치환 또는 비치환된 탄소수 6 내지 10의 아릴렌기; 또는 치환 또는 비치환된 헤테로고리기이다.According to an exemplary embodiment of the present disclosure, L1 is a direct bond; A substituted or unsubstituted arylene group having 6 to 10 carbon atoms; Or a substituted or unsubstituted heteroring group.
본 명세서의 일 실시상태에 따르면, L2는 치환 또는 비치환된 탄소수 6 내지 10의 아릴렌기; 또는 치환 또는 비치환된 헤테로고리기이다.According to an exemplary embodiment of the present specification, L2 is a substituted or unsubstituted arylene group having 6 to 10 carbon atoms; Or a substituted or unsubstituted heteroring group.
본 명세서의 일 실시상태에 따르면, L1은 직접결합이다.According to an exemplary embodiment of the present disclosure, L1 is a direct bond.
본 명세서의 일 실시상태에 따르면, L1 및 L2는 각각 독립적으로 치환 또는 비치환된 탄소수 탄소수 6 내지 10의 아릴렌기 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로고리기이다.According to an exemplary embodiment of the present specification, L1 and L2 are each independently a substituted or unsubstituted arylene group having 6 to 10 carbon atoms or a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms.
본 명세서의 일 실시상태에 따르면, L1 및 L2는 각각 독립적으로 치환 또는 비치환된 탄소수 탄소수 6 내지 10의 아릴렌기 또는 치환 또는 비치환된 탄소수 2 내지 15의 헤테로고리기이다.According to an exemplary embodiment of the present specification, L1 and L2 are each independently a substituted or unsubstituted arylene group having 6 to 10 carbon atoms or a substituted or unsubstituted heterocyclic group having 2 to 15 carbon atoms.
본 명세서의 일 실시상태에 따르면, L1 및 L2는 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 10의 아릴렌기이다.According to an exemplary embodiment of the present specification, L1 and L2 are each independently a substituted or unsubstituted arylene group having 6 to 10 carbon atoms.
본 명세서의 일 실시상태에 따르면, L1 및 L2는 각각 독립적으로 치환 또는 비치환된 페닐렌기이다.According to an exemplary embodiment of the present specification, L1 and L2 are each independently a substituted or unsubstituted phenylene group.
본 명세서의 일 실시상태에 따르면, R1은 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.According to an exemplary embodiment of the present specification, R1 is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
본 명세서의 일 실시상태에 따르면, R1은 치환 또는 비치환된 탄소수 6 내지 15의 아릴기이다.According to an exemplary embodiment of the present specification, R1 is a substituted or unsubstituted aryl group having 6 to 15 carbon atoms.
본 명세서의 일 실시상태에 따르면, R1은 치환 또는 비치환된 페닐기이다. According to an exemplary embodiment of the present specification, R1 is a substituted or unsubstituted phenyl group.
본 명세서의 일 실시상태에 따르면, R1은 페닐기이다. According to an exemplary embodiment of the present disclosure, R1 is a phenyl group.
본 명세서의 일 실시상태에 따르면, R2 및 R3는 각각 독립적으로 수소; 또는 중수소이다.According to an exemplary embodiment of the present disclosure, R2 and R3 are each independently hydrogen; Or deuterium.
본 명세서의 일 실시상태에 따르면, R2 및 R3는 수소이다.According to an exemplary embodiment of the present disclosure, R2 and R3 is hydrogen.
본 명세서의 일 실시상태에 따르면, R2는 수소이거나, 인접한 기와 서로 결합하여 치환 또는 비치환된 인돌로카바졸 또는 인데노카바졸을 형성할 수 있다.According to an exemplary embodiment of the present disclosure, R2 is hydrogen, or may combine with adjacent groups to form a substituted or unsubstituted indolocarbazole or indenocarbazole.
본 명세서의 일 실시상태에 따르면, R2는 수소이거나, 인접한 기와 서로 결합하여 하기 구조의 고리를 형성할 수 있다.According to an exemplary embodiment of the present disclosure, R2 is hydrogen, or may be combined with adjacent groups to form a ring of the following structure.
Figure PCTKR2019000898-appb-I000012
Figure PCTKR2019000898-appb-I000012
상기 구조에서, A1 내지 A5는 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고, a1 및 a2는 각각 0 내지 4의 정수이고, *는 치환되는 위치를 표시한 것이다.In the above structure, A1 to A5 are each independently hydrogen; heavy hydrogen; Halogen group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group, a1 and a2 are each an integer of 0 to 4, and * indicates a position to be substituted.
본 명세서의 일 실시상태에 따르면, 상기 화학식 2는 하기 화학식 7 내지 9 중 어느 하나로 표시된다.According to an exemplary embodiment of the present specification, Chemical Formula 2 is represented by any one of the following Chemical Formulas 7 to 9.
[화학식 7][Formula 7]
Figure PCTKR2019000898-appb-I000013
Figure PCTKR2019000898-appb-I000013
[화학식 8][Formula 8]
Figure PCTKR2019000898-appb-I000014
Figure PCTKR2019000898-appb-I000014
[화학식 9][Formula 9]
Figure PCTKR2019000898-appb-I000015
Figure PCTKR2019000898-appb-I000015
화학식 7 내지 9에 있어서,In Chemical Formulas 7 to 9,
L2 는 상기 정의한 바와 같고,L2 is as defined above,
A1 내지 A5는 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며, A1 to A5 are each independently hydrogen; heavy hydrogen; Halogen group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
A6 내지 A8은 각각 독립적으로 수소 또는 중수소이고, A6 to A8 are each independently hydrogen or deuterium,
a1 및 a2는 각각 0 내지 4의 정수이고, a1 and a2 are each an integer of 0 to 4,
a6 및 a7은 각각 0내지 6의 정수이며,a6 and a7 are each an integer of 0 to 6,
a8은 0내지 8의 정수이다.a8 is an integer of 0-8.
본 명세서의 일 실시상태에 따르면, A1 및 A2는 수소이다.According to an exemplary embodiment of the present disclosure, A1 and A2 are hydrogen.
본 명세서의 일 실시상태에 따르면, A3 내지 A5는 각각 독립적으로 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다. According to an exemplary embodiment of the present specification, A3 to A5 are each independently a substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
본 명세서의 일 실시상태에 따르면, A3 내지 A5는 각각 독립적으로 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이다.According to an exemplary embodiment of the present specification, A3 to A5 are each independently a substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group.
본 명세서의 일 실시상태에 따르면, A3 및 A4는 각각 독립적으로 치환 또는 비치환된 알킬기이다.According to an exemplary embodiment of the present specification, A3 and A4 are each independently a substituted or unsubstituted alkyl group.
본 명세서의 일 실시상태에 따르면, A3 및 A4는 메틸기이다.According to an exemplary embodiment of the present specification, A3 and A4 are a methyl group.
본 명세서의 일 실시상태에 따르면, A5는 치환 또는 비치환된 아릴기이다.According to an exemplary embodiment of the present specification, A5 is a substituted or unsubstituted aryl group.
본 명세서의 일 실시상태에 따르면, A5는 치환 또는 비치환된 페닐기이다.According to an exemplary embodiment of the present specification, A5 is a substituted or unsubstituted phenyl group.
본 명세서의 일 실시상태에 따르면, A5는 페닐기이다.According to an exemplary embodiment of the present specification, A5 is a phenyl group.
본 명세서의 일 실시상태에 따르면, A6 내지 A8은 각각 독립적으로 수소 또는 중수소이다.According to an exemplary embodiment of the present specification, A6 to A8 are each independently hydrogen or deuterium.
본 명세서의 일 실시상태에 따르면, A6 내지 A8은 수소이다.According to an exemplary embodiment of the present disclosure, A6 to A8 is hydrogen.
본 명세서의 일 실시상태에 따르면, a 및 b는 0 또는 1이다.According to an exemplary embodiment of the present specification, a and b is 0 or 1.
본 명세서의 일 실시상태에 따르면, a 및 b가 각각 독립적으로 2 이상인 경우, 인접한 R2 또는 R3은 서로 결합하여 치환 또는 비치환된 인돌로카바졸 또는 인데노카바졸을 형성할 수 있다.According to an exemplary embodiment of the present specification, when a and b are each independently 2 or more, adjacent R2 or R3 may combine with each other to form a substituted or unsubstituted indolocarbazole or indenocarbazole.
본 명세서의 일 실시상태에 따르면, a 및 b가 각각 독립적으로 2 이상인 경우, 인접한 R2 또는 R3은 서로 결합하여 탄소수 6 내지 30의 아릴기로 치환 또는 비치환된 인돌로카바졸 또는 인데노카바졸을 형성할 수 있다.According to an exemplary embodiment of the present specification, when a and b are each independently 2 or more, adjacent R2 or R3 are bonded to each other to form an indolocarbazole or indenocarbazole unsubstituted or substituted with an aryl group having 6 to 30 carbon atoms. Can be formed.
본 명세서의 일 실시상태에 따르면, a 및 b가 각각 독립적으로 2 이상인 경우, 인접한 R2 또는 R3은 서로 결합하여 탄소수 6 내지 15의 아릴기로 치환 또는 비치환된 인돌로카바졸 또는 인데노카바졸을 형성할 수 있다.According to an exemplary embodiment of the present specification, when a and b are each independently 2 or more, adjacent R2 or R3 are bonded to each other to replace the indolocarbazole or indenocarbazole unsubstituted or substituted with an aryl group having 6 to 15 carbon atoms Can be formed.
본 명세서의 일 실시상태에 따르면, a 및 b가 각각 독립적으로 2 이상인 경우, 인접한 R2 또는 R3은 서로 결합하여 페닐기로 치환 또는 비치환된 인돌로카바졸 또는 인데노카바졸을 형성할 수 있다.According to an exemplary embodiment of the present specification, when a and b are each independently 2 or more, adjacent R2 or R3 may be combined with each other to form an indolocarbazole or indenocarbazole substituted or unsubstituted with a phenyl group.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1은 하기 구조들 중 어느 하나로 표시된다.According to an exemplary embodiment of the present specification, Formula 1 is represented by any one of the following structures.
Figure PCTKR2019000898-appb-I000016
Figure PCTKR2019000898-appb-I000016
Figure PCTKR2019000898-appb-I000017
Figure PCTKR2019000898-appb-I000017
본 명세서의 일 실시상태에 따르면, 상기 화학식 2는 하기 구조들 중 어느 하나로 표시된다.According to an exemplary embodiment of the present specification, Formula 2 is represented by any one of the following structures.
Figure PCTKR2019000898-appb-I000018
Figure PCTKR2019000898-appb-I000018
본 명세서의 화학식 1 또는 화학식 2의 화합물의 치환기는 당 기술분야에 알려져 있는 방법에 의하여 결합될 수 있으며, 치환기의 종류, 위치 및 개수는 당 기술분야에 알려져 있는 기술에 따라 변경될 수 있다.Substituents of compounds of Formula 1 or Formula 2 herein may be combined by methods known in the art, and the type, position, and number of substituents may be changed according to techniques known in the art.
화합물의 컨쥬게이션 길이와 에너지 밴드갭은 밀접한 관계가 있다. 구체적으로, 화합물의 컨쥬게이션 길이가 길수록 에너지 밴드갭이 작아진다. The conjugation length of the compound and the energy bandgap are closely related. Specifically, the longer the conjugation length of the compound, the smaller the energy bandgap.
본 발명에서는 상기와 같이 코어 구조에 다양한 치환기를 도입함으로써 다양한 에너지 밴드갭을 갖는 화합물을 합성할 수 있다. 또한, 본 발명에서는 상기와 같은 구조의 코어 구조에 다양한 치환기를 도입함으로써 화합물의 HOMO 및 LUMO 에너지 준위도 조절할 수 있다.In the present invention, a compound having various energy band gaps can be synthesized by introducing various substituents into the core structure as described above. In addition, in the present invention, the HOMO and LUMO energy levels of the compound may be adjusted by introducing various substituents into the core structure of the above structure.
또한, 상기와 같은 구조의 코어 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공 주입층 물질, 정공 수송용 물질, 발광층 물질 및 전자 수송층 물질에 주로 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.Moreover, the compound which has the intrinsic property of the introduced substituent can be synthesize | combined by introducing various substituents into the core structure of the above structure. For example, by introducing a substituent mainly used in the hole injection layer material, the hole transport material, the light emitting layer material and the electron transport layer material used in the manufacture of the organic light emitting device to the core structure to synthesize a material that meets the requirements for each organic material layer. Can be.
또한, 본 발명에 따른 유기 발광 소자는 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1 또는 화학식 2의 화합물을 포함하는 것을 특징으로 한다.In addition, the organic light emitting device according to the present invention comprises a first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound of Formula 1 or Formula 2.
본 발명의 유기 발광 소자는 전술한 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.The organic light emitting device of the present invention may be manufactured by a conventional method and material for manufacturing an organic light emitting device, except that at least one organic material layer is formed using the above-described compound.
상기 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.The compound may be formed as an organic layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device. Here, the solution coating method means spin coating, dip coating, inkjet printing, screen printing, spraying method, roll coating and the like, but is not limited thereto.
본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다.The organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and the like as an organic material layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.
본 발명의 유기 발광 소자에서, 상기 유기물층은 전자수송층 또는 전자주입층을 포함할 수 있고, 상기 전자수송층 또는 전자주입층은 상기 화학식 1 또는 화학식 2로 표시되는 화합물을 포함할 수 있다.In the organic light emitting device of the present invention, the organic material layer may include an electron transport layer or an electron injection layer, and the electron transport layer or the electron injection layer may include a compound represented by Formula 1 or Formula 2.
본 발명의 유기 발광 소자에서, 상기 유기물층은 정공주입층 또는 정공수송층을 포함할 수 있고, 상기 정공주입층 또는 정공수송층은 상기 화학식 1 또는 화학식 2로 표시되는 화합물을 포함할 수 있다.In the organic light emitting device of the present invention, the organic material layer may include a hole injection layer or a hole transport layer, the hole injection layer or hole transport layer may include a compound represented by the formula (1) or (2).
또 하나의 실시 상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층이 상기 화학식 1 또는 화학식 2로 표시되는 화합물을 포함한다. In another exemplary embodiment, the organic material layer includes a light emitting layer, and the light emitting layer includes a compound represented by Formula 1 or Formula 2.
또 하나의 실시 상태에 따르면, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1 또는 화학식 2로 표시되는 화합물을 발광층의 호스트로서 포함할 수 있다. According to another exemplary embodiment, the organic material layer may include a light emitting layer, and the light emitting layer may include a compound represented by Formula 1 or Formula 2 as a host of the light emitting layer.
또 하나의 실시상태에 있어서, 상기 화학식 1 또는 화학식 2로 표시되는 화합물을 포함하는 유기물층은 상기 화학식 1 또는 화학식 2로 표시되는 화합물을 호스트로서 포함하고, 형광 호스트 또는 인광 호스트를 더 포함하며, 다른 유기화합물, 금속 또는 금속화합물을 도펀트로 포함할 수 있다.In another exemplary embodiment, the organic material layer including the compound represented by Chemical Formula 1 or Chemical Formula 2 includes the compound represented by Chemical Formula 1 or Chemical Formula 2 as a host, and further includes a fluorescent host or a phosphorescent host. Organic compounds, metals or metal compounds may be included as dopants.
또 하나의 예로서, 상기 화학식 1 또는 화학식 2로 표시되는 화합물을 포함하는 유기물층은 상기 화학식 1 또는 화학식 2로 표시되는 화합물을 호스트로서 포함하고, 형광 호스트 또는 인광 호스트를 더 포함하며, 이리듐계(Ir) 도펀트와 함께 사용할 수 있다.As another example, the organic material layer including the compound represented by Formula 1 or Formula 2 includes the compound represented by Formula 1 or Formula 2 as a host, further includes a fluorescent host or a phosphorescent host, and includes an iridium-based ( Ir) can be used with dopants.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 제2 전극은 음극이다.In one embodiment of the present specification, the first electrode is an anode, and the second electrode is a cathode.
또 하나의 일 실시상태에 따르면, 상기 제1 전극은 음극이고, 제2 전극은 양극이다.According to another exemplary embodiment, the first electrode is a cathode and the second electrode is an anode.
본 발명의 유기 발광 소자의 구조는 도 1 및 도 2에 나타낸 것과 같은 구조를 가질 수 있으나, 이에만 한정되는 것은 아니다.The structure of the organic light emitting device of the present invention may have a structure as shown in FIGS. 1 and 2, but is not limited thereto.
도 1에는 기판(1) 위에 양극(2), 발광층(3) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 발광층(3)에 포함될 수 있다.1 illustrates a structure of an organic light emitting device in which an anode 2, a light emitting layer 3, and a cathode 4 are sequentially stacked on a substrate 1. In such a structure, the compound may be included in the light emitting layer (3).
도 2에는 기판(1) 위에 양극(2), 정공 주입층(5), 정공 수송층(6), 발광층(7), 전자 수송층(8) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 정공 주입층(5), 정공 수송층(6), 발광층(7) 또는 전자 수송층(8)에 포함될 수 있다.2 illustrates an organic light emitting device in which an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8, and a cathode 4 are sequentially stacked on a substrate 1. The structure is illustrated. In such a structure, the compound may be included in the hole injection layer 5, the hole transport layer 6, the light emitting layer 7, or the electron transport layer 8.
예컨대, 본 발명에 따른 유기 발광 소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다.For example, the organic light emitting device according to the present invention uses a metal vapor deposition (PVD) method, such as sputtering or e-beam evaporation, to form a metal oxide or a metal oxide or an alloy thereof on a substrate. It can be prepared by depositing an anode to form an anode, an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon. In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
상기 유기물층은 정공 주입층, 정공 수송층, 발광층 및 전자 수송층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용매 공정(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.The organic material layer may have a multilayer structure including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer, but is not limited thereto and may have a single layer structure. In addition, the organic material layer may be formed by using a variety of polymer materials, and by using a method such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer, rather than a deposition method. It can be prepared in layers.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.As the anode material, a material having a large work function is usually preferred to facilitate hole injection into the organic material layer. Specific examples of the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); A combination of a metal and an oxide such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, and the like, but are not limited thereto.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.It is preferable that the cathode material is a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
상기 정공 주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입 받을 수 있는 물질로서, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.The hole injection material is a material capable of well injecting holes from the anode at a low voltage, and the highest occupied molecular orbital (HOMO) of the hole injection material is preferably between the work function of the anode material and the HOMO of the surrounding organic material layer. Specific examples of hole injection materials include metal porphyrine, oligothiophene, arylamine-based organics, hexanitrile hexaazatriphenylene-based organics, quinacridone-based organics, and perylene-based Organic materials, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
상기 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.As the hole transporting material, a material capable of transporting holes from the anode or the hole injection layer and transferring the holes to the light emitting layer is suitable. Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
상기 발광층은 적색, 녹색 또는 청색을 발광할 수 있으며, 인광 물질 또는 형광 물질로 이루어질 수 있다. 상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.The emission layer may emit red, green, or blue light, and may be formed of a phosphor or a fluorescent material. The light emitting material is a material capable of emitting light in the visible region by receiving and combining holes and electrons from the hole transporting layer and the electron transporting layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable. Specific examples thereof include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
발광층의 호스트 재료로는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.As a host material of a light emitting layer, a condensed aromatic ring derivative, a heterocyclic containing compound, etc. are mentioned. Specifically, the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds, and heterocyclic containing compounds include carbazole derivatives, dibenzofuran derivatives and ladder types. Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
발광층의 도펀트로 사용되는 이리듐계 착물은 하기와 같으나, 이에 한정되지 않는다.Iridium complex used as the dopant of the light emitting layer is as follows, but is not limited thereto.
Figure PCTKR2019000898-appb-I000019
Figure PCTKR2019000898-appb-I000019
Figure PCTKR2019000898-appb-I000020
Figure PCTKR2019000898-appb-I000020
상기 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.As the electron transporting material, a material capable of injecting electrons well from the cathode and transferring the electrons to the light emitting layer is suitable. Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.The organic light emitting device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하기 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 출원의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 출원의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present disclosure may be modified in various other forms, and the scope of the present application is not interpreted to be limited to the embodiments described below. Embodiments of the present application are provided to more fully describe the present specification to those skilled in the art.
[합성예]Synthesis Example
가. 중간체 1A 내지 1D의 합성end. Synthesis of Intermediates 1A to 1D
[제조예 1-1] 중간체 1A의 합성Preparation Example 1-1 Synthesis of Intermediate 1A
Figure PCTKR2019000898-appb-I000021
Figure PCTKR2019000898-appb-I000021
질소 분위기에서 2,4-dichloro-6-phenyl-1,3,5-triazine (50.0g, 222.2mmol) 및 phenanthren-9-ylboronic acid (49.4g, 222.2mmol)을 테트라하이드로퓨란 800ml에 첨가하고 교반하면서 포타슘 카보네이트(61.4g, 444.5mmol)를 물에 녹여 첨가하였다. 이후 가열하여 환류상태에서 테트라키스(트리페닐포스핀)팔라듐(0) (2.6g, 1mol%)을 천천히 첨가하였다. 이후 약 9시간 동안 반응 진행 후 반응을 종료하였다. 반응이 완결되면 상온(25℃)으로 온도를 낮춘 후 생성된 고체를 여과하였다. 여과된 고체를 클로로포름에 녹이고, 물로 2 회 세척 후에 유기물 층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물인 중간체 1A (40.0 g, 수율: 49%)을 제조하였다.2,4-dichloro-6-phenyl-1,3,5-triazine (50.0g, 222.2mmol) and phenanthren-9-ylboronic acid (49.4g, 222.2mmol) were added to 800 ml of tetrahydrofuran and stirred in a nitrogen atmosphere. Potassium carbonate (61.4 g, 444.5 mmol) was added while dissolved in water. Then heated to reflux tetrakis (triphenylphosphine) palladium (0) (2.6 g, 1 mol%) was slowly added. After the reaction proceeds for about 9 hours the reaction was terminated. After the reaction was completed, the temperature was lowered to room temperature (25 ° C.), and the produced solid was filtered. The filtered solid was dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrate was purified through a silica column using chloroform and ethyl acetate to prepare an intermediate 1A (40.0 g, yield: 49%) as a white solid compound.
MS: [M+H]+ = 368MS: [M + H] &lt; + &gt; = 368
[제조예 1-2] 중간체 1B의 합성Preparation Example 1-2 Synthesis of Intermediate 1B
Figure PCTKR2019000898-appb-I000022
Figure PCTKR2019000898-appb-I000022
질소 분위기에서 화학식 1A (30.0g, 81.7mmol) 및 (4-chlorophenyl)boronic acid (20.0g, 89.9mmol) 을 테트라하이드로퓨란 400ml에 첨가하고 교반하면서 포타슘 카보네이트(33.9g, 245.2 mmol)를 물에 녹여 첨가하였다. 이후 가열하여 환류상태에서 테트라키스(트리페닐포스핀)팔라듐(0) (2.8g, 3mol%) 을 천천히 첨가하였다. 이후 약 4시간 동안 반응 진행 후 반응을 종료하였다. 반응이 완결되면 상온(25℃)으로 온도를 낮춘 후 생성된 고체를 여과하였다. 여과된 고체를 클로로포름 에 녹이고, 물로 2 회 세척 후에 유기물 층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물인 중간체 1B (27.1g, 수율: 75%)을 제조하였다.In a nitrogen atmosphere, Chemical Formulas 1A (30.0g, 81.7mmol) and (4-chlorophenyl) boronic acid (20.0g, 89.9mmol) were added to 400ml of tetrahydrofuran and, while stirring, potassium carbonate (33.9g, 245.2mmol) was dissolved in water. Added. After heating, tetrakis (triphenylphosphine) palladium (0) (2.8 g, 3 mol%) was slowly added at reflux. After the reaction proceeded for about 4 hours and the reaction was terminated. After the reaction was completed, the temperature was lowered to room temperature (25 ° C.), and the produced solid was filtered. The filtered solid was dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrate was purified through a silica column using chloroform and ethyl acetate to prepare an intermediate 1B (27.1 g, yield: 75%) as a white solid compound.
MS: [M+H]+ = 444MS: [M + H] &lt; + &gt; = 444
[제조예 1-3] 중간체 1C의 합성Preparation Example 1-3 Synthesis of Intermediate 1C
Figure PCTKR2019000898-appb-I000023
Figure PCTKR2019000898-appb-I000023
(4-chlorophenyl)boronic acid (20.0g, 89.9mmol) 대신에 (3-chlorophenyl)boronic acid (20.0g, 89.9mmol)를 사용한 것을 제외하고는 제조예 1-2의 중간체 1B의 합성과 동일하게 중간체 1C(24.9g, 수율: 69%)를 제조하였다.Intermediate as in Synthesis of Intermediate 1B of Preparation Example 1-2, except that (3-chlorophenyl) boronic acid (20.0g, 89.9mmol) was used instead of (4-chlorophenyl) boronic acid (20.0g, 89.9mmol) 1C (24.9 g, yield: 69%) was prepared.
MS: [M+H]+ = 444MS: [M + H] &lt; + &gt; = 444
[제조예 1-4] 중간체 1D의 합성Preparation Example 1-4 Synthesis of Intermediate 1D
Figure PCTKR2019000898-appb-I000024
Figure PCTKR2019000898-appb-I000024
(4-chlorophenyl)boronic acid (20.0g, 89.9mmol) 대신에 (2-chlorophenyl)boronic acid (20.0g, 89.9mmol)를 사용한 것을 제외하고는 제조예 1-2의 중간체 1B의 합성과 동일하게 중간체 1D(21.0g, 수율: 58%)를 제조하였다.Intermediate was the same as the synthesis of Intermediate 1B of Preparation Example 1-2, except that (2-chlorophenyl) boronic acid (20.0g, 89.9mmol) was used instead of (4-chlorophenyl) boronic acid (20.0g, 89.9mmol). 1D (21.0 g, yield: 58%) was prepared.
MS: [M+H]+ = 444MS: [M + H] &lt; + &gt; = 444
나. 중간체 2A 및 2B의 합성I. Synthesis of Intermediates 2A and 2B
[제조예 2-1] 중간체 2A의 합성Preparation Example 2-1 Synthesis of Intermediate 2A
Figure PCTKR2019000898-appb-I000025
Figure PCTKR2019000898-appb-I000025
질소 분위기에서 2,4-dichloro-6-phenyl-1,3,5-triazine (50.0g, 222.2mmol) 및 phenanthren-2-ylboronic acid (49.4g, 222.2mmol)을 테트라하이드로퓨란 800ml에 첨가하고 교반하면서 포타슘 카보네이트(61.4g, 444.5mmol)를 물에 녹여 첨가하였다. 이후 가열하여 환류상태에서 테트라키스(트리페닐포스핀)팔라듐(0) (2.6g, 1mol%)을 천천히 첨가하였다. 이후 약 9시간 동안 반응 진행 후 반응을 종료하였다. 반응이 완결되면 상온(25℃)으로 온도를 낮춘 후 생성된 고체를 여과하였다. 여과된 고체를 클로로포름에 녹이고, 물로 2 회 세척 후에 유기물 층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물인 중간체 2A (47.3 g, 수율: 58%)을 제조하였다.2,4-dichloro-6-phenyl-1,3,5-triazine (50.0g, 222.2mmol) and phenanthren-2-ylboronic acid (49.4g, 222.2mmol) were added to 800 ml of tetrahydrofuran and stirred in a nitrogen atmosphere. Potassium carbonate (61.4 g, 444.5 mmol) was added while dissolved in water. Then heated to reflux tetrakis (triphenylphosphine) palladium (0) (2.6 g, 1 mol%) was slowly added. After the reaction proceeds for about 9 hours the reaction was terminated. After the reaction was completed, the temperature was lowered to room temperature (25 ° C.), and the produced solid was filtered. The filtered solid was dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrate was purified through a silica column using chloroform and ethyl acetate to give an intermediate 2A (47.3 g, yield: 58%) as a white solid compound.
MS: [M+H]+ = 368MS: [M + H] &lt; + &gt; = 368
[제조예 2-2] 중간체 2B의 합성Preparation Example 2-2 Synthesis of Intermediate 2B
Figure PCTKR2019000898-appb-I000026
Figure PCTKR2019000898-appb-I000026
질소 분위기에서 화학식 2A (30.0g, 81.7mmol) 및 (4-chlorophenyl)boronic acid (20.0g, 89.9mmol)을 테트라하이드로퓨란 400ml에 첨가하고 교반하면서 포타슘 카보네이트(33.9g, 245.2 mmol)를 물에 녹여 첨가하였다. 이후 가열하여 환류상태에서 테트라키스(트리페닐포스핀)팔라듐(0) (2.8g, 3mol%)을 천천히 첨가하였다. 이후 약 4시간 동안 반응 진행 후 반응을 종료하였다. 반응이 완결되면 상온(25℃)으로 온도를 낮춘 후 생성된 고체를 여과하였다. 여과된 고체를 클로로포름에 녹이고, 물로 2 회 세척 후에 유기물 층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물인 중간체 2B (25.3g, 수율: 70%)을 제조하였다.In a nitrogen atmosphere, Chemical Formulas 2A (30.0 g, 81.7 mmol) and (4-chlorophenyl) boronic acid (20.0 g, 89.9 mmol) were added to 400 ml of tetrahydrofuran and potassium carbonate (33.9 g, 245.2 mmol) was dissolved in water with stirring. Added. After heating, tetrakis (triphenylphosphine) palladium (0) (2.8 g, 3 mol%) was slowly added at reflux. After the reaction proceeded for about 4 hours and the reaction was terminated. After the reaction was completed, the temperature was lowered to room temperature (25 ° C.), and the produced solid was filtered. The filtered solid was dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrate was purified through a silica column using chloroform and ethyl acetate to give an intermediate 2B (25.3 g, yield: 70%) as a white solid compound.
MS: [M+H]+ = 444MS: [M + H] &lt; + &gt; = 444
다. 중간체 3A 및 3B의 합성All. Synthesis of Intermediates 3A and 3B
[제조예 3-1] 중간체 3A의 합성Preparation Example 3-1 Synthesis of Intermediate 3A
Figure PCTKR2019000898-appb-I000027
Figure PCTKR2019000898-appb-I000027
질소 분위기에서 2,4-dichloro-6-phenyl-1,3,5-triazine (50.0g, 222.2mmol) 및 phenanthren-3-ylboronic acid (49.4g, 222.2mmol)을 테트라하이드로퓨란 800ml에 첨가하고 교반하면서 포타슘 카보네이트(61.4g, 444.5mmol)를 물에 녹여 첨가하였다. 이후 가열하여 환류상태에서 테트라키스(트리페닐포스핀)팔라듐(0) (2.6g, 1mol%)을 천천히 첨가하였다. 이후 약 9시간 동안 반응 진행 후 반응을 종료하였다. 반응이 완결되면 상온(25℃)으로 온도를 낮춘 후 생성된 고체를 여과하였다. 여과된 고체를 클로로포름에 녹이고, 물로 2 회 세척 후에 유기물 층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물인 중간체 3A (40.8 g, 수율: 50%)을 제조하였다.2,4-dichloro-6-phenyl-1,3,5-triazine (50.0g, 222.2mmol) and phenanthren-3-ylboronic acid (49.4g, 222.2mmol) were added to 800 ml of tetrahydrofuran and stirred in a nitrogen atmosphere. Potassium carbonate (61.4 g, 444.5 mmol) was added while dissolved in water. Then heated to reflux tetrakis (triphenylphosphine) palladium (0) (2.6 g, 1 mol%) was slowly added. After the reaction proceeds for about 9 hours the reaction was terminated. After the reaction was completed, the temperature was lowered to room temperature (25 ° C.), and the produced solid was filtered. The filtered solid was dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrate was purified through a silica column using chloroform and ethyl acetate to give an intermediate 3A (40.8 g, yield: 50%) as a white solid compound.
MS: [M+H]+ = 368MS: [M + H] &lt; + &gt; = 368
[제조예 3-2] 중간체 3B의 합성Preparation Example 3-2 Synthesis of Intermediate 3B
Figure PCTKR2019000898-appb-I000028
Figure PCTKR2019000898-appb-I000028
질소 분위기에서 화학식 3A (30.0g, 81.7mmol) 및 (4-chlorophenyl)boronic acid (20.0g, 89.9mmol)을 테트라하이드로퓨란 400ml에 첨가하고 교반하면서 포타슘 카보네이트(33.9g, 245.2 mmol)를 물에 녹여 첨가하였다. 이후 가열하여 환류상태에서 테트라키스(트리페닐포스핀)팔라듐(0) (2.8g, 3mol%)을 천천히 첨가하였다. 이후 약 4시간 동안 반응 진행 후 반응을 종료하였다. 반응이 완결되면 상온(25℃)으로 온도를 낮춘 후 생성된 고체를 여과하였다. 여과된 고체를 클로로포름에 녹이고, 물로 2 회 세척 후에 유기물 층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물인 중간체 3B (27.8g, 수율: 77%)을 제조하였다.In a nitrogen atmosphere, chemical formulas 3A (30.0 g, 81.7 mmol) and (4-chlorophenyl) boronic acid (20.0 g, 89.9 mmol) were added to 400 ml of tetrahydrofuran, and potassium carbonate (33.9 g, 245.2 mmol) was dissolved in water while stirring. Added. After heating, tetrakis (triphenylphosphine) palladium (0) (2.8 g, 3 mol%) was slowly added at reflux. After the reaction proceeded for about 4 hours and the reaction was terminated. After the reaction was completed, the temperature was lowered to room temperature (25 ° C.), and the produced solid was filtered. The filtered solid was dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrate was purified through a silica column using chloroform and ethyl acetate to give an intermediate 3B (27.8 g, yield: 77%) as a white solid compound.
MS: [M+H]+ = 444MS: [M + H] &lt; + &gt; = 444
라. 화합물 1 내지 14의 합성la. Synthesis of Compounds 1-14
[합성예 1] 화합물 1의 합성Synthesis Example 1 Synthesis of Compound 1
Figure PCTKR2019000898-appb-I000029
Figure PCTKR2019000898-appb-I000029
질소 분위기에서 중간체 1A(15.0 g, 66.7 mmol)와 (9-phenyl-9H-carbazol-1-yl)boronic acid (16.2 g, 66.7 mmol)를 다이옥세인(200 mL)에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(27.6 g, 200.0 mmol)를 물에 녹여 투입한 충분히 교반한 후 비스(트리-t-부틸포스핀)팔라듐(0)(2.3 g, mol%)을 투입하였다. 9시간 반응 후 상온으로 온도를 낮추고 여과하였다. 여과물을 클로로포름과 물로 추출한 후 유기층을 황산마그네슘을 이용해 건조하였다. 이후 유기층을 감압증류 후 테트라하이드로퓨란과 에틸아세테이트 혼합용액을 이용해 재결정하였다. 생성된 고체를 여과 후 건조하여 화합물 1(16.7 g, 수율 46%)을 제조하였다.In a nitrogen atmosphere, intermediate 1A (15.0 g, 66.7 mmol) and (9-phenyl-9H-carbazol-1-yl) boronic acid (16.2 g, 66.7 mmol) were added to dioxane (200 mL) and stirred and refluxed. Thereafter, potassium carbonate (27.6 g, 200.0 mmol) was dissolved in water, and sufficiently stirred, followed by bis (tri-t-butylphosphine) palladium (0) (2.3 g, mol%). After 9 hours of reaction, the temperature was lowered to room temperature and filtered. The filtrate was extracted with chloroform and water, and the organic layer was dried over magnesium sulfate. After distilling under reduced pressure, the organic layer was recrystallized using a mixed solution of tetrahydrofuran and ethyl acetate. The resulting solid was filtered and dried to prepare compound 1 (16.7 g, yield 46%).
MS: [M+H]+ = 575MS: [M + H] &lt; + &gt; = 575
[합성예 2] 화합물 2의 합성Synthesis Example 2 Synthesis of Compound 2
Figure PCTKR2019000898-appb-I000030
Figure PCTKR2019000898-appb-I000030
(9-phenyl-9H-carbazol-1-yl)boronic acid (16.2 g, 66.7 mmol) 대신에 (9-phenyl-9H-carbazol-2-yl)boronic acid (16.2 g, 66.7 mmol)를 사용한 것을 제외하고는 합성예 1의 화합물 1의 합성과 동일하게 화합물 2(13.8g, 수율: 38%)를 제조하였다.Except for using (9-phenyl-9H-carbazol-2-yl) boronic acid (16.2 g, 66.7 mmol) instead of (9-phenyl-9H-carbazol-1-yl) boronic acid (16.2 g, 66.7 mmol) Then, Compound 2 (13.8 g, yield: 38%) was prepared in the same manner as the synthesis of Compound 1 of Synthesis Example 1.
MS: [M+H]+ = 575MS: [M + H] &lt; + &gt; = 575
[합성예 3] 화합물 3의 합성Synthesis Example 3 Synthesis of Compound 3
Figure PCTKR2019000898-appb-I000031
Figure PCTKR2019000898-appb-I000031
(9-phenyl-9H-carbazol-1-yl)boronic acid (16.2 g, 66.7 mmol) 대신에 (9-phenyl-9H-carbazol-3-yl)boronic acid (16.2 g, 66.7 mmol)를 사용한 것을 제외하고는 합성예 1의 화합물 1의 합성과 동일하게 화합물 3(18.5g, 수율: 51%)을 제조하였다.Except for using (9-phenyl-9H-carbazol-3-yl) boronic acid (16.2 g, 66.7 mmol) instead of (9-phenyl-9H-carbazol-1-yl) boronic acid (16.2 g, 66.7 mmol) Compound 3 (18.5g, yield: 51%) was prepared in the same manner as in Synthesis of Compound 1 of Synthesis Example 1.
MS: [M+H]+ = 575MS: [M + H] &lt; + &gt; = 575
[합성예 4] 화합물 4의 합성Synthesis Example 4 Synthesis of Compound 4
Figure PCTKR2019000898-appb-I000032
Figure PCTKR2019000898-appb-I000032
(9-phenyl-9H-carbazol-1-yl)boronic acid (16.2 g, 66.7 mmol) 대신에 (9-phenyl-9H-carbazol-4-yl)boronic acid (16.2 g, 66.7 mmol)를 사용한 것을 제외하고는 합성예 1의 화합물 1의 합성과 동일하게 화합물 4(10.9g, 수율: 30%)를 제조하였다.Except for using (9-phenyl-9H-carbazol-4-yl) boronic acid (16.2 g, 66.7 mmol) instead of (9-phenyl-9H-carbazol-1-yl) boronic acid (16.2 g, 66.7 mmol) Then, Compound 4 (10.9 g, yield: 30%) was prepared in the same manner as in Synthesis of Compound 1 of Synthesis Example 1.
MS: [M+H]+ = 575MS: [M + H] &lt; + &gt; = 575
[합성예 5] 화합물 5의 합성Synthesis Example 5 Synthesis of Compound 5
Figure PCTKR2019000898-appb-I000033
Figure PCTKR2019000898-appb-I000033
질소 분위기에서 중간체 1B(15.0 g, 66.7 mmol)와 (9-phenyl-9H-carbazol-2-yl)boronic acid (16.2 g, 66.7 mmol)를 다이옥세인(200 mL)에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(27.6 g, 200.0 mmol)를 물에 녹여 투입한 충분히 교반한 후 비스(트리-t-부틸포스핀)팔라듐(0)(2.3 g, mol%)을 투입하였다. 9시간 반응 후 상온으로 온도를 낮추고 여과하였다. 여과물을 클로로포름과 물로 추출한 후 유기층을 황산마그네슘을 이용해 건조하였다. 이후 유기층을 감압증류 후 테트라하이드로퓨란과 에틸아세테이트 혼합용액을 이용해 재결정하였다. 생성된 고체를 여과 후 건조하여 화합물 5(18.5 g, 수율 51%)를 제조하였다.In a nitrogen atmosphere, intermediate 1B (15.0 g, 66.7 mmol) and (9-phenyl-9H-carbazol-2-yl) boronic acid (16.2 g, 66.7 mmol) were added to dioxane (200 mL) and stirred and refluxed. Thereafter, potassium carbonate (27.6 g, 200.0 mmol) was dissolved in water, and sufficiently stirred, followed by bis (tri-t-butylphosphine) palladium (0) (2.3 g, mol%). After 9 hours of reaction, the temperature was lowered to room temperature and filtered. The filtrate was extracted with chloroform and water, and the organic layer was dried over magnesium sulfate. After distilling under reduced pressure, the organic layer was recrystallized using a mixed solution of tetrahydrofuran and ethyl acetate. The resulting solid was filtered and dried to prepare compound 5 (18.5 g, yield 51%).
MS: [M+H]+ = 575MS: [M + H] &lt; + &gt; = 575
[합성예 6] 화합물 6의 합성Synthesis Example 6 Synthesis of Compound 6
Figure PCTKR2019000898-appb-I000034
Figure PCTKR2019000898-appb-I000034
중간체 1B (15.0 g, 66.7 mmol) 대신에 중간체 1C를 사용한 것을 제외하고는 합성예 5의 화합물 5의 합성과 동일하게 화합물 6(16.0g, 수율: 44%)을 제조하였다.Compound 6 (16.0 g, yield: 44%) was prepared in the same manner as in the synthesis of Compound 5 of Synthesis Example 5, except that Intermediate 1C was used instead of Intermediate 1B (15.0 g, 66.7 mmol).
[합성예 7] 화합물 7의 합성Synthesis Example 7 Synthesis of Compound 7
Figure PCTKR2019000898-appb-I000035
Figure PCTKR2019000898-appb-I000035
중간체 1B (15.0 g, 66.7 mmol) 대신에 중간체 1D를 사용한 것을 제외하고는 합성예 5의 화합물 5의 합성과 동일하게 화합물 7(9.1g, 수율: 25%)을 제조하였다.Compound 7 (9.1 g, yield: 25%) was prepared in the same manner as in the synthesis of Compound 5 of Synthesis Example 5, except that Intermediate 1D was used instead of Intermediate 1B (15.0 g, 66.7 mmol).
[합성예 8] 화합물 8의 합성Synthesis Example 8 Synthesis of Compound 8
Figure PCTKR2019000898-appb-I000036
Figure PCTKR2019000898-appb-I000036
중간체 1C (15.0 g, 33.9 mmol)과 9H-카바졸 (5.7 g, 33.9 mmol)을 자일렌 100mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드 (6.5g, 67.7 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.5g, 3mol%)을 투입하여 12시간 환류 교반시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 700mL에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 옅은 옅은 녹색의 고체 화합물 8(10.5 g, 54%)을 제조하였다.Intermediate 1C (15.0 g, 33.9 mmol) and 9H-carbazole (5.7 g, 33.9 mmol) were added to 100 mL of xylene to dissolve, and sodium tert-butoxide (6.5 g, 67.7 mmol) was added to warm. Bis (tri tert-butylphosphine) palladium (0.5 g, 3 mol%) was added thereto, followed by stirring under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 700 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to prepare a pale green solid compound 8 (10.5 g, 54%).
MS:[M+H]+=575MS: [M + H] + = 575
[합성예 9] 화합물 9의 합성Synthesis Example 9 Synthesis of Compound 9
Figure PCTKR2019000898-appb-I000037
Figure PCTKR2019000898-appb-I000037
9H-카바졸 (5.7 g, 33.8 mmol) 대신에 7,7-dimethyl-5,7-dihydroindeno[2,1-b]carbazole(9.6g, 33.8 mmol)를 사용한 것을 제외하고는 합성예 8의 화합물 8의 합성과 동일하게 화합물 9(7.7g, 수율: 33%)를 제조하였다.Compound of Synthesis Example 8, except that 7,7-dimethyl-5,7-dihydroindeno [2,1-b] carbazole (9.6 g, 33.8 mmol) was used instead of 9H-carbazole (5.7 g, 33.8 mmol) Compound 9 (7.7 g, yield: 33%) was prepared in the same manner as in the synthesis of 8.
MS:[M+H]+=691MS: [M + H] + = 691
[합성예 10] 화합물 10의 합성Synthesis Example 10 Synthesis of Compound 10
Figure PCTKR2019000898-appb-I000038
Figure PCTKR2019000898-appb-I000038
9H-카바졸 (5.7 g, 33.8 mmol) 대신에 5-phenyl-5,7-dihydroindolo[2,3-b]carbazole (9.6g, 33.8 mmol)를 사용한 것을 제외하고는 합성예 8의 화합물 8의 합성과 동일하게 화합물 10(10.3g, 수율: 41%)을 제조하였다. Compound 8 of Synthesis Example 8, except that 5-phenyl-5,7-dihydroindolo [2,3-b] carbazole (9.6 g, 33.8 mmol) was used instead of 9H-carbazole (5.7 g, 33.8 mmol). Compound 10 (10.3 g, yield: 41%) was prepared in the same manner as the synthesis.
MS:[M+H]+=740MS: [M + H] + = 740
[합성예 11] 화합물 11의 합성Synthesis Example 11 Synthesis of Compound 11
Figure PCTKR2019000898-appb-I000039
Figure PCTKR2019000898-appb-I000039
질소 분위기에서 중간체 2A(15.0 g, 66.7 mmol)와 (9-phenyl-9H-carbazol-2-yl)boronic acid (16.2 g, 66.7 mmol)를 다이옥세인(200 mL)에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(27.6 g, 200.0 mmol)를 물에 녹여 투입한 충분히 교반한 후 비스(트리-t-부틸포스핀)팔라듐(0)(2.3 g, mol%)을 투입하였다. 9시간 반응 후 상온으로 온도를 낮추고 여과하였다. 여과물을 클로로포름과 물로 추출한 후 유기층을 황산마그네슘을 이용해 건조하였다. 이후 유기층을 감압증류 후 테트라하이드로퓨란과 에틸아세테이트 혼합용액을 이용해 재결정하였다. 생성된 고체를 여과 후 건조하여 화합물 11(7.7 g, 수율 33%)를 제조하였다.In a nitrogen atmosphere, intermediate 2A (15.0 g, 66.7 mmol) and (9-phenyl-9H-carbazol-2-yl) boronic acid (16.2 g, 66.7 mmol) were added to dioxane (200 mL) and stirred and refluxed. Thereafter, potassium carbonate (27.6 g, 200.0 mmol) was dissolved in water, and sufficiently stirred, followed by bis (tri-t-butylphosphine) palladium (0) (2.3 g, mol%). After 9 hours of reaction, the temperature was lowered to room temperature and filtered. The filtrate was extracted with chloroform and water, and the organic layer was dried over magnesium sulfate. After distilling under reduced pressure, the organic layer was recrystallized using a mixed solution of tetrahydrofuran and ethyl acetate. The resulting solid was filtered and dried to prepare compound 11 (7.7 g, yield 33%).
MS: [M+H]+ = 575MS: [M + H] &lt; + &gt; = 575
[합성예 12] 화합물 12의 합성Synthesis Example 12 Synthesis of Compound 12
Figure PCTKR2019000898-appb-I000040
Figure PCTKR2019000898-appb-I000040
중간체 2A (15.0 g, 66.7 mmol) 대신에 중간체 3A를 사용한 것을 제외하고는 합성예 11의 화합물 11의 합성과 동일하게 화합물 12(9.1g, 수율: 25%)를 제조하였다.Compound 12 (9.1 g, yield: 25%) was prepared in the same manner as in the synthesis of Compound 11 of Synthesis Example 11, except that Intermediate 3A was used instead of Intermediate 2A (15.0 g, 66.7 mmol).
MS:[M+H]+=575MS: [M + H] + = 575
[합성예 13] 화합물 13의 합성Synthesis Example 13 Synthesis of Compound 13
Figure PCTKR2019000898-appb-I000041
Figure PCTKR2019000898-appb-I000041
중간체 1C (15.0 g, 33.9 mmol) 대신에 2B를 사용한 것을 사용한 것을 제외하고는 합성예 9의 화합물 9의 합성과 동일하게 화합물 13(10.5g, 수율: 45%)을 제조하였다Compound 13 (10.5 g, yield: 45%) was prepared in the same manner as in the synthesis of Compound 9 of Synthesis Example 9, except that 2B was used instead of Intermediate 1C (15.0 g, 33.9 mmol).
MS:[M+H]+=691MS: [M + H] + = 691
[합성예 14] 화합물 14의 합성Synthesis Example 14 Synthesis of Compound 14
Figure PCTKR2019000898-appb-I000042
Figure PCTKR2019000898-appb-I000042
중간체 1C (15.0 g, 33.9 mmol) 대신에 3B를 사용한 것을 사용한 것을 제외하고는 합성예 9의 화합물 9의 합성과 동일하게 화합물 14(11.9g, 수율: 51%)를 제조하였다Compound 14 (11.9 g, yield: 51%) was prepared in the same manner as the synthesis of Compound 9 of Synthesis Example 9, except that 3B was used instead of Intermediate 1C (15.0 g, 33.9 mmol).
MS:[M+H]+=691MS: [M + H] + = 691
[실험예]Experimental Example
<실험예 1>Experimental Example 1
ITO(indium tin oxide)가 1,300Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.The glass substrate coated with ITO (indium tin oxide) having a thickness of 1,300 kPa was put in distilled water in which detergent was dissolved and ultrasonically cleaned. In this case, Fischer Co. was used as a detergent, and distilled water was filtered secondly as a filter of Millipore Co. as a distilled water. After ITO was washed for 30 minutes, ultrasonic washing was performed twice with distilled water for 10 minutes. After the distilled water was washed, ultrasonic washing with a solvent of isopropyl alcohol, acetone, methanol, dried and transported to a plasma cleaner. In addition, the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
상기와 같이 준비된 ITO 투명 전극 위에 하기 HI-1 화합물을 50Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 위에 하기 HT-1 화합물을 250Å의 두께로 열 진공 증착하여 정공수송층을 형성하고, HT-1 증착막 위에 하기 HT-2 화합물을 50Å 두께로 진공 증착하여 전자저지층을 형성하였다. 상기 HT-2 증착막 위에 발광층으로서 앞서 제조예 1에서 제조한 화합물 1, 하기 YGH-1 화합물, 및 인광도펀트 YGD-1을 44:44:12의 중량비로 공증착하여 400Å 두께의 발광층을 형성하였다. 상기 발광층 위에 하기 ET-1 화합물을 250Å의 두께로 진공 증착하여 전자수송층을 형성하고, 상기 전자수송층 위에 하기 ET-2 화합물 및 Li를 98:2의 중량비로 진공 증착하여 100Å 두께의 전자주입층을 형성하였다. 상기 전자주입층 위에 1000Å 두께로 알루미늄을 증착하여 음극을 형성하였다. On the ITO transparent electrode prepared as above, the following HI-1 compound was thermally vacuum deposited to a thickness of 50 kPa to form a hole injection layer. A hole transport layer was formed by thermal vacuum deposition of the following HT-1 compound to a thickness of 250 kPa on the hole injection layer, and an electron blocking layer was formed by vacuum depositing the following HT-2 compound to a thickness of 50 kPa on the HT-1 deposition film. Compound 1, the following YGH-1 compound, and phosphorescent dopant YGD-1, which were prepared in Preparation Example 1 as a light emitting layer on the HT-2 deposited film, were co-deposited at a weight ratio of 44:44:12 to form a light emitting layer having a thickness of 400 kHz. The following ET-1 compound was vacuum deposited to a thickness of 250 kPa on the light emitting layer to form an electron transport layer, and the following ET-2 compound and Li were vacuum deposited on the electron transport layer at a weight ratio of 98: 2 to form an electron injection layer having a thickness of 100 kW. Formed. Aluminum was deposited to a thickness of 1000 Å on the electron injection layer to form a cathode.
Figure PCTKR2019000898-appb-I000043
Figure PCTKR2019000898-appb-I000043
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 Å/sec를 유지하였고, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 × 10-7 ~ 5 × 10-8 torr를 유지하였다.In the above process, the deposition rate of the organic material was maintained at 0.4 ~ 0.7 Å / sec, the aluminum was maintained at the deposition rate of 2 Å / sec, the vacuum during deposition was maintained at 1 × 10 -7 ~ 5 × 10 -8 torr It was.
<실험예 2 내지 14>Experimental Examples 2 to 14
상기 실험예 1에서 합성예 1의 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. An organic light emitting diode was manufactured according to the same method as Experimental Example 1 except for using the compound described in Table 1 below instead of compound 1 of Synthesis Example 1 in Experimental Example 1.
<비교 실험예 1 내지 6><Comparative Experimental Examples 1 to 6>
상기 실험예 1에서 합성예 1의 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 1의 CE1 내지 CE6의 화합물은 하기와 같다.An organic light emitting diode was manufactured according to the same method as Experimental Example 1 except for using the compound described in Table 1 below instead of compound 1 of Synthesis Example 1 in Experimental Example 1. The compounds of CE1 to CE6 in Table 1 are as follows.
Figure PCTKR2019000898-appb-I000044
Figure PCTKR2019000898-appb-I000044
상기 실험예 및 비교실험예에서 유기 발광 소자를 10mA/cm2의 전류 밀도에서 전압과 효율을 측정하였고, 50mA/cm2의 전류 밀도에서 수명을 측정하여 그 결과를 하기 표 1에 나타내었다. 이때, LT95는 초기 휘도 대비 95%가 되는 시간을 의미한다. In the above experimental examples and comparative examples, the organic light emitting diodes were measured voltage and efficiency at a current density of 10 mA / cm 2 , and lifespan was measured at a current density of 50 mA / cm 2 , and the results are shown in Table 1 below. In this case, LT 95 refers to a time when the luminance becomes 95% of the initial luminance.
화합물compound 전압(V)(@10mA/cm2)Voltage (V) (@ 10mA / cm 2 ) 효율(Cd/A)(@10mA/cm2)Efficiency (Cd / A) (@ 10mA / cm 2 ) 색좌표(x,y)Color coordinates (x, y) 수명(h)(LT95 at 50mA/cm2)Life (h) (LT 95 at 50mA / cm 2 )
실험예 1Experimental Example 1 화합물 1Compound 1 4.04.0 8080 0.46, 0.540.46, 0.54 110110
실험예 2Experimental Example 2 화합물 2Compound 2 3.83.8 8484 0.45, 0.530.45, 0.53 195195
실험예 3Experimental Example 3 화합물 3Compound 3 4.14.1 8181 0.46, 0.530.46, 0.53 180180
실험예 4Experimental Example 4 화합물 4Compound 4 3.93.9 8585 0.45, 0.540.45, 0.54 195195
실험예 5Experimental Example 5 화합물 5Compound 5 3.83.8 8585 0.46, 0.540.46, 0.54 140140
실험예 6Experimental Example 6 화합물 6Compound 6 3.73.7 8888 0.46, 0.530.46, 0.53 160160
실험예 7Experimental Example 7 화합물 7Compound 7 3.93.9 8686 0.46, 0.540.46, 0.54 115115
실험예 8Experimental Example 8 화합물 8Compound 8 3.83.8 8888 0.46, 0.540.46, 0.54 180180
실험예 9Experimental Example 9 화합물 9Compound 9 4.04.0 8383 0.46, 0.550.46, 0.55 195195
실험예 10Experimental Example 10 화합물 10Compound 10 4.14.1 8080 0.46, 0.530.46, 0.53 185185
실험예 11Experimental Example 11 화합물 11Compound 11 3.83.8 8383 0.46, 0.540.46, 0.54 220220
실험예 12Experimental Example 12 화합물 12Compound 12 3.83.8 8484 0.46, 0.530.46, 0.53 200200
실험예 13Experimental Example 13 화합물 13Compound 13 4.04.0 8080 0.46, 0.540.46, 0.54 175175
실험예 14Experimental Example 14 화합물 14Compound 14 4.04.0 8282 0.46, 0.540.46, 0.54 165165
비교실험예 1Comparative Experimental Example 1 CE1CE1 4.54.5 7070 0.46, 0.540.46, 0.54 9090
비교실험예 2Comparative Experiment 2 CE2CE2 5.05.0 6464 0.46, 0.550.46, 0.55 1111
비교실험예 3Comparative Experiment 3 CE3CE3 4.24.2 8080 0.46, 0.550.46, 0.55 9090
비교실험예 4Comparative Experiment 4 CE4CE4 4.44.4 7979 0.47, 0.600.47, 0.60 2020
비교실험예 5Comparative Example 5 CE5CE5 4.74.7 6161 0.58, 0.610.58, 0.61 55
비교실험예 6Comparative Experiment 6 CE6CE6 4.84.8 7070 0.44, 0.530.44, 0.53 1One
상기 표 1에서 나타난 바와 같이, 본 발명의 화합물을 발광층 물질로 사용할 경우, 비교 실험예에 비하여 효율 및 수명이 우수한 특성을 나타내는 것을 확인할 수 있었다. 이는 트리아진 유닛에 트라이페닐기 결합 및 트라이진 유닛에 카바졸기 결합 조합에 의해 물질의 안정성이 뛰어나 소자의 효율, 수명 등이 우수한 것이다. 또한 카바졸과 트리아진 간에 거리가 먼것보다는 1개 정도인 것이 수명에 유리하다.As shown in Table 1, when the compound of the present invention is used as a light emitting layer material, it was confirmed that exhibits excellent efficiency and lifespan as compared to the comparative experimental example. This is a combination of a triphenyl group bond to a triazine unit and a carbazole group bond to a triazine unit, which is excellent in the stability of the material and excellent in efficiency, lifetime, and the like of the device. In addition, the distance between the carbazole and the triazine is about one long rather than far, which is advantageous for life.

Claims (9)

  1. 하기 화학식 1 또는 화학식 2로 표시되는 것인 화합물:Compound represented by the following formula (1) or formula (2):
    [화학식 1][Formula 1]
    Figure PCTKR2019000898-appb-I000045
    Figure PCTKR2019000898-appb-I000045
    [화학식 2][Formula 2]
    Figure PCTKR2019000898-appb-I000046
    Figure PCTKR2019000898-appb-I000046
    화학식 1 및 화학식 2에 있어서, In Chemical Formula 1 and Chemical Formula 2,
    X1 내지 X3은 각각 독립적으로, N 또는 CR이며,X1 to X3 are each independently N or CR,
    X1 내지 X3 중 적어도 두 개 이상은 N이며,At least two of X1 to X3 are N,
    R은 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,R is hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
    L1은 직접결합; 치환 또는 비치환된 탄소수 6 내지 10의 아릴렌기; 또는 치환 또는 비치환된 헤테로고리기이며,L 1 is a direct bond; A substituted or unsubstituted arylene group having 6 to 10 carbon atoms; Or a substituted or unsubstituted heterocyclic group,
    L2는 치환 또는 비치환된 탄소수 6 내지 10의 아릴렌기; 또는 치환 또는 비치환된 헤테로고리기이며,L2 is a substituted or unsubstituted arylene group having 6 to 10 carbon atoms; Or a substituted or unsubstituted heterocyclic group,
    R1은 치환 또는 비치환된 아릴기이며,R1 is a substituted or unsubstituted aryl group,
    R2 및 R3는 각각 독립적으로 수소; 또는 중수소이며,R2 and R3 are each independently hydrogen; Or deuterium,
    a는 0 내지 7의 정수이고,a is an integer of 0 to 7,
    b는 0 내지 8의 정수이고,b is an integer from 0 to 8,
    a 및 b가 각각 독립적으로 2 이상인 경우 괄호 안의 치환기는 서로 같거나 상이하며, 인접한 R2 또는 R3은 서로 결합하여 치환 또는 비치환된 인돌로카바졸 또는 인데노카바졸을 형성할 수 있다.When a and b are each independently 2 or more, the substituents in parentheses are the same or different from each other, and adjacent R2 or R3 may combine with each other to form a substituted or unsubstituted indolocarbazole or indenocarbazole.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 화학식 1은 하기 화학식 3 내지 6 중 어느 하나로 표시되는 것인 화합물:Formula 1 is a compound represented by any one of the following formulas 3 to:
    [화학식 3][Formula 3]
    Figure PCTKR2019000898-appb-I000047
    Figure PCTKR2019000898-appb-I000047
    [화학식 4][Formula 4]
    Figure PCTKR2019000898-appb-I000048
    Figure PCTKR2019000898-appb-I000048
    [화학식 5][Formula 5]
    Figure PCTKR2019000898-appb-I000049
    Figure PCTKR2019000898-appb-I000049
    [화학식 6][Formula 6]
    Figure PCTKR2019000898-appb-I000050
    Figure PCTKR2019000898-appb-I000050
    화학식 3 내지 6에 있어서,In Chemical Formulas 3 to 6,
    X1 내지 X3, L1, R1, R2 및 a는 청구항 1에서 정의한 바와 같다.X1 to X3, L1, R1, R2 and a are as defined in claim 1.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 화학식 2는 하기 화학식 7 내지 9 중 어느 하나로 표시되는 것인 화합물:Formula 2 is a compound represented by any one of the following formula 7 to 9:
    [화학식 7][Formula 7]
    Figure PCTKR2019000898-appb-I000051
    Figure PCTKR2019000898-appb-I000051
    [화학식 8][Formula 8]
    Figure PCTKR2019000898-appb-I000052
    Figure PCTKR2019000898-appb-I000052
    [화학식 9][Formula 9]
    Figure PCTKR2019000898-appb-I000053
    Figure PCTKR2019000898-appb-I000053
    화학식 7 내지 9에 있어서,In Chemical Formulas 7 to 9,
    L2 는 청구항 1에서 정의한 바와 같고,L2 is as defined in claim 1,
    A1 내지 A5는 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며, A1 to A5 are each independently hydrogen; heavy hydrogen; Halogen group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
    A6 내지 A8은 각각 독립적으로 수소 또는 중수소이고, A6 to A8 are each independently hydrogen or deuterium,
    a1 및 a2는 각각 0 내지 4의 정수이며, a1 and a2 are each an integer of 0 to 4,
    a6 및 a7은 각각 0내지 6의 정수이며,a6 and a7 are each an integer of 0 to 6,
    a8은 0내지 8의 정수이다.a8 is an integer of 0-8.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 화학식 1은 하기 구조들 중 어느 하나로 표시되는 것인 화합물:Formula 1 is a compound represented by any one of the following structures:
    Figure PCTKR2019000898-appb-I000054
    Figure PCTKR2019000898-appb-I000054
    Figure PCTKR2019000898-appb-I000055
    .
    Figure PCTKR2019000898-appb-I000055
    .
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 화학식 2는 구조들 중 어느 하나로 표시되는 것인 화합물:Formula 2 is a compound represented by any one of the structures:
    Figure PCTKR2019000898-appb-I000056
    .
    Figure PCTKR2019000898-appb-I000056
    .
  6. 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상이 청구항 1 내지 5 중 어느 한 항에 따른 화합물을 포함하는 것인 유기 발광 소자.A first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound according to any one of claims 1 to 5. Light emitting element.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 유기물층은 정공주입층 또는 정공수송층을 포함하고, 상기 정공주입층 또는 정공수송층은 상기 화학식 1 또는 화학식 2의 화합물을 포함하는 것인 유기 발광 소자.The organic material layer comprises a hole injection layer or a hole transport layer, the hole injection layer or hole transport layer is an organic light emitting device comprising the compound of Formula 1 or Formula 2.
  8. 청구항 6에 있어서,The method according to claim 6,
    상기 유기물층은 전자수송층 또는 전자주입층을 포함하고, 상기 전자수송층 또는 전자주입층은 상기 화학식 1 또는 화학식 2로 표시되는 화합물을 포함하는 것인 유기 발광 소자.The organic material layer comprises an electron transport layer or an electron injection layer, the electron transport layer or an electron injection layer is an organic light emitting device comprising a compound represented by the formula (1) or (2).
  9. 청구항 6에 있어서,The method according to claim 6,
    상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1 또는 화학식 2로 표시되는 화합물을 포함하는 것인 유기 발광 소자.The organic material layer comprises a light emitting layer, the light emitting layer is an organic light emitting device comprising a compound represented by the formula (1) or (2).
PCT/KR2019/000898 2018-01-22 2019-01-22 Polycyclic compound and organic light-emitting diode comprising same WO2019143223A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980003838.7A CN111032645B (en) 2018-01-22 2019-01-22 Polycyclic compound and organic light emitting device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180007646 2018-01-22
KR10-2018-0007646 2018-01-22

Publications (2)

Publication Number Publication Date
WO2019143223A1 WO2019143223A1 (en) 2019-07-25
WO2019143223A9 true WO2019143223A9 (en) 2020-03-05

Family

ID=67302225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000898 WO2019143223A1 (en) 2018-01-22 2019-01-22 Polycyclic compound and organic light-emitting diode comprising same

Country Status (3)

Country Link
KR (1) KR102133665B1 (en)
CN (1) CN111032645B (en)
WO (1) WO2019143223A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538056B (en) * 2019-09-20 2022-06-28 南京高光半导体材料有限公司 Electron transport material and organic electroluminescent device containing same
EP4163988A4 (en) * 2020-07-15 2024-01-24 Lg Chem, Ltd. Organic light-emitting element
KR102708695B1 (en) * 2020-07-17 2024-09-24 주식회사 엘지화학 Organic light emitting device
CN113004295B (en) * 2021-03-11 2022-07-19 吉林奥来德光电材料股份有限公司 Triazine electron transport material, preparation method and application thereof
CN113735861B (en) * 2021-09-01 2023-10-31 陕西莱特迈思光电材料有限公司 Organic compound, and electronic component and electronic device using same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288557B1 (en) * 2008-12-24 2013-07-22 제일모직주식회사 Novel compound for organic photoelectric device and organic photoelectric device including the same
KR20110108575A (en) 2010-03-29 2011-10-06 대주전자재료 주식회사 Multi-cyclic aromatic derivatives and organic electroluminescent diode comprising the same
KR102132102B1 (en) * 2010-08-20 2020-07-09 유니버셜 디스플레이 코포레이션 Bicarbazole compounds for oleds
KR101709379B1 (en) * 2014-10-01 2017-02-23 주식회사 엘지화학 Organic light emitting device
KR20170109430A (en) * 2016-03-21 2017-09-29 주식회사 엘지화학 Hetero-cyclic compound and organic light emitting device comprising the same
CN108884059B (en) * 2016-03-30 2022-03-18 株式会社Lg化学 Compound and organic light-emitting element using same
KR102078302B1 (en) * 2016-11-29 2020-02-18 주식회사 엘지화학 Organic light emitting device
WO2018101691A1 (en) * 2016-11-29 2018-06-07 주식회사 엘지화학 Organic light-emitting element

Also Published As

Publication number Publication date
KR102133665B1 (en) 2020-07-13
KR20190089764A (en) 2019-07-31
CN111032645A (en) 2020-04-17
CN111032645B (en) 2023-03-10
WO2019143223A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
WO2020009519A1 (en) Polycyclic compound and organic light emitting diode comprising same
WO2012173369A2 (en) Novel compounds and organic electronic device using same
WO2014081168A1 (en) Fluoranthene compound, and organic electronic device comprising same
WO2017179911A1 (en) Compound, and organic electronic element comprising same
WO2014010823A1 (en) Heterocyclic compound and organic electronic element containing same
WO2013191429A1 (en) Nitrogen-containing heterocyclic compound and organic electronic element comprising same
WO2020138963A1 (en) Compound and organic light emitting diode comprising same
WO2019143223A9 (en) Polycyclic compound and organic light-emitting diode comprising same
WO2020009492A1 (en) Polycyclic compound and organic light emitting diode comprising same
WO2019164218A1 (en) Polycyclic compound and organic light emitting diode comprising same
WO2019160315A1 (en) Heterocyclic compound and organic light emitting device comprising same
WO2017171375A1 (en) Compound, and organic electronic element comprising same
WO2020159279A1 (en) Polycyclic compound and organic light-emitting element comprising same
WO2020171530A1 (en) Compound and organic light-emitting device comprising same
WO2020145693A1 (en) Compound and organic light emitting diode comprising same
WO2019143224A1 (en) Polycyclic compound and organic light-emitting diode comprising same
WO2020022811A1 (en) Organic light emitting device
WO2020055059A1 (en) Organic light-emitting diode
WO2019177393A1 (en) Compound and organic light emitting device comprising same
WO2022010087A1 (en) Compound, and organic light-emitting element including same
WO2021040467A1 (en) Novel heterocyclic compound and organic light-emitting device using same
WO2020149609A1 (en) Organic light emitting diode
WO2020145692A1 (en) Compound and organic light emitting device comprising same
WO2020091526A1 (en) Compound and organic light-emitting device comprising same
WO2019190231A1 (en) Polycyclic compound and organic light emitting diode comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19740917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19740917

Country of ref document: EP

Kind code of ref document: A1