[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019142647A1 - 空間環境制御システム、空間環境制御装置及び空間環境制御方法 - Google Patents

空間環境制御システム、空間環境制御装置及び空間環境制御方法 Download PDF

Info

Publication number
WO2019142647A1
WO2019142647A1 PCT/JP2018/048326 JP2018048326W WO2019142647A1 WO 2019142647 A1 WO2019142647 A1 WO 2019142647A1 JP 2018048326 W JP2018048326 W JP 2018048326W WO 2019142647 A1 WO2019142647 A1 WO 2019142647A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
concentration
range
pathogen
control unit
Prior art date
Application number
PCT/JP2018/048326
Other languages
English (en)
French (fr)
Inventor
訓明 福本
正彦 塩井
修 赤坂
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019566399A priority Critical patent/JPWO2019142647A1/ja
Publication of WO2019142647A1 publication Critical patent/WO2019142647A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air

Definitions

  • the present disclosure relates to a space environment control system, a space environment control device, and a space environment control method.
  • An air conditioning control system that performs sterilization of a space by adding an additive such as a sterilizing agent to air in the space (see, for example, Patent Document 1).
  • the present disclosure provides a space environment control system, a space environment control device, and a space environment control method that can achieve both comfort for people and weakening the infectivity of pathogens.
  • a space environment control system includes a pathogen sensor that detects a pathogen present in a space, and at least one of temperature, humidity, chlorine concentration, and ozone concentration of the space.
  • An environmental sensor for detecting an environmental value to be indicated, an adjustment device for adjusting the environment of the space, and a control unit for controlling the adjustment device, the control unit is configured to detect the space of the pathogen detected by the pathogen sensor
  • permissible_range of the said environmental value is set based on the pathogen density
  • a space environment control device includes a control unit that controls an adjustment device that adjusts a space environment, and the control unit is a pathogen sensor that detects a pathogen present in the space. Based on the pathogen concentration that is the concentration of the detected pathogen in the space, an acceptable range of environmental values indicating at least one of temperature, humidity, chlorine concentration and ozone concentration of the space is set, and the set allowable range is set. Control the adjustment device such that the environmental value is contained.
  • a temperature of the space is detected based on a pathogen concentration that is a concentration in the space of a pathogen detected by a pathogen sensor that detects a pathogen present in the space;
  • permissible_range of the environmental value which shows at least one of humidity, chlorine concentration, and ozone concentration is set, and the adjustment apparatus which adjusts the environment of the said space so that the said environmental value may be settled in the set tolerance is controlled.
  • one aspect of the present disclosure can be realized as a program for causing a computer to execute the space environment control method.
  • it may be realized as a computer readable recording medium storing the program.
  • FIG. 1 is a diagram showing a space to be controlled by the space environment control system according to each embodiment.
  • FIG. 2 is a block diagram showing the configuration of the space environment control system according to the first embodiment.
  • FIG. 3 is a flowchart showing the operation of the space environment control system according to the first embodiment.
  • FIG. 4 is a diagram showing a temporal change of the temperature of the space during operation of the space environment control system according to the first embodiment.
  • FIG. 5 is a block diagram showing the configuration of the space environment control system according to the second embodiment.
  • FIG. 6 is a flowchart showing the operation of the space environment control system according to the second embodiment.
  • FIG. 7 is a diagram showing temporal changes in humidity of the space during operation of the space environment control system according to the second embodiment.
  • FIG. 1 is a diagram showing a space to be controlled by the space environment control system according to each embodiment.
  • FIG. 2 is a block diagram showing the configuration of the space environment control system according to the first embodiment.
  • FIG. 3 is a
  • FIG. 8 is a block diagram showing the configuration of the space environment control system according to the third embodiment.
  • FIG. 9 is a flowchart showing the operation of the space environment control system according to the third embodiment.
  • FIG. 10 is a diagram showing temporal change of chlorine concentration in a space during operation of the space environment control system according to the third embodiment.
  • FIG. 11 is a block diagram showing a configuration of a space environment control system according to a modification of the third embodiment.
  • FIG. 12 is a block diagram showing the configuration of the space environment control system according to the fourth embodiment.
  • FIG. 13 is a diagram showing the correspondence between the concentration classification of pathogen concentration and the candidate range of the allowable range in the space environment control system according to the first modification of the embodiment.
  • FIG. 14 is a flowchart showing the operation of the space environment control system according to the first modification of the embodiment.
  • FIG. 15 is a block diagram showing the configuration of the space environment control device according to the second modification of the embodiment.
  • FIG. 16 is a diagram showing an example of the correspondence between the concentration classification of pathogen concentration and the candidate range of the allowable range in the space environment control system according to the second modification of the embodiment.
  • FIG. 17 is a diagram showing another example of the correspondence relationship between the concentration classification of pathogen concentration and the candidate range of the allowable range in the space environment control system according to the second modification of the embodiment.
  • FIG. 18 is a diagram showing another example of the correspondence relationship between the concentration classification of pathogen concentration and the candidate range of the allowable range in the space environment control system according to the second modification of the embodiment.
  • FIG. 18 is a diagram showing another example of the correspondence relationship between the concentration classification of pathogen concentration and the candidate range of the allowable range in the space environment control system according to the second modification of the embodiment.
  • FIG. 19 is a diagram showing another example of the correspondence relationship between the concentration division of pathogen concentration and the candidate range of the allowable range in the space environment control system according to the second modification of the embodiment.
  • FIG. 20 is a block diagram showing the configuration of the space environment control device according to the third modification of the embodiment.
  • FIG. 21 is a diagram showing a display example on the display device of the space environment control system according to the third modification of the embodiment.
  • Pathogens have high or low infectivity depending on the space environment. Therefore, the infectivity of the pathogen can be weakened by the adjustment device adjusting the space environment. For example, by increasing the temperature or humidity of the space, the spread of pathogens can be suppressed and the infectivity can be reduced. Also, for example, by increasing the concentration of chlorine or ozone, pathogens can be removed, and the infectivity can be reduced.
  • a space environment control system detects a pathogen sensor that detects a pathogen present in a space, and detects an environmental value indicating at least one of temperature, humidity, chlorine concentration, and ozone concentration of the space.
  • permissible_range of the said environmental value is set based on a pathogen density
  • permissible_range of an environmental value is set based on pathogen concentration by this, for example, when pathogen concentration is low, a tolerance
  • control unit when the pathogen concentration is lower than a predetermined threshold, sets the allowable range to a first range, and when the pathogen concentration is higher than the threshold, the controller sets the allowable range to the first threshold. It may be set to a second range wider than the first range.
  • the tolerance range is wider than when the pathogen concentration is lower than the threshold, and thus the comfort may be somewhat impaired, but the priority is given to weakening the pathogen's infectivity. be able to.
  • the pathogen concentration is lower than the threshold, the pathogen's infectivity is weak at first, and therefore, by setting the tolerance range narrower than when the pathogen concentration is higher than the threshold, a comfortable environment for people can be secured. .
  • the space environment control system according to the present embodiment, it is possible to achieve both the comfort for people and the weakening of the infectivity of pathogens.
  • control unit determines which of the plurality of concentration divisions divided by one or more threshold values includes the pathogen concentration, and a plurality of mutually different plurality corresponding to the plurality of concentration divisions.
  • the allowable range may be set in a range corresponding to a concentration category including the pathogen concentration in the range.
  • control unit may change at least one of the one or more thresholds and the plurality of ranges based on date and time information on at least one of time and date.
  • pathogens have infectivity depending on not only the space environment but also the time of day, such as the season.
  • an appropriate tolerance is easily set based on not only pathogen concentration but also date and time information, so it is possible to achieve both comfort for people and weakening of pathogen infectivity. Can be done more effectively.
  • control unit may set the allowable range each time a predetermined period has elapsed.
  • permissible_range is set every time a predetermined period passes, for example, when pathogen concentration increases, the infectivity of a pathogen can be weakened rapidly. Also, conversely, when the pathogen concentration is low, the space can be quickly returned to a comfortable space for people. As described above, according to the space environment control system according to this aspect, it is possible to more effectively achieve the coexistence of the human comfort and the weakening of the infectivity of the pathogen.
  • control unit may control the adjustment device such that the environmental value matches the upper limit value within the set allowable range.
  • the infectivity of the pathogen can be weakened in a short period of time. Therefore, priority can be given to weakening the infectivity, and the period during which comfort may be lost can be shortened, so it is even more effective to achieve a balance between human comfort and the infectivity of pathogens. Can be done.
  • the space environment control system includes at least one of the adjustment devices, and at least one of the adjustment devices is a temperature adjustment device that adjusts the temperature of the space, a humidity adjustment device that adjusts the humidity of the space,
  • the method may include at least one of a hypochlorous acid generator that emits hypochlorous acid into the space, and an ozone generator that emits ozone into the space.
  • the space environment control system includes at least one adjusting device for adjusting temperature, humidity, chlorine concentration or ozone concentration, thereby reducing human comfort and pathogen infectivity. Can be done effectively.
  • a space environment control device includes a control unit that controls an adjustment device that adjusts a space environment, and the control unit detects a pathogen present in the space.
  • the tolerance of the environmental value indicating at least one of temperature, humidity, chlorine concentration and ozone concentration of the space is set based on the pathogen concentration which is the concentration in the space of the pathogen detected by the sensor, and the set allowance
  • the adjusting device is controlled so that the environmental value falls within a range.
  • the space concentration of pathogens detected by a pathogen sensor that detects pathogens present in space is the concentration of pathogens in the space.
  • a program according to an aspect of the present disclosure is a program for causing a computer to execute the space environment control method.
  • each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
  • FIG. 1 is a diagram showing a space 10 to be controlled by the space environment control system according to each embodiment.
  • a space 10 is an indoor space, for example, an internal space of one room of a building such as a house, an apartment, an office, a hospital, a care facility, and the like.
  • the space 10 is connected to another space or the outside by opening the door 43, the window 44 and the like, and it is possible for people to enter and leave, exchange of air, and the like.
  • pathogens 11 are present in the space 10. Specifically, the pathogen 11 is suspended in the space 10.
  • the pathogen 11 is a microorganism or a virus such as bacteria that causes diseases in humans.
  • the pathogen 11 includes bacteria such as Mycobacterium tuberculosis or MRSA (methicillin resistant Staphylococcus aureus), pneumococci, or viruses such as influenza virus, norovirus, RS virus, and measles virus.
  • a pathogen sensor 20 for detecting a pathogen 11 is disposed in the space 10.
  • a temperature and humidity sensor 30 and an air quality sensor 31 are disposed in the space 10.
  • the temperature and humidity sensor 30 is an example of an environment sensor that detects the temperature and humidity of the space 10.
  • the air quality sensor 31 is an example of an environment sensor that detects the chlorine concentration or the ozone concentration of the space 10.
  • an air conditioner 40 and a purification substance generator 41 which are an example of an adjustment device for adjusting the environment of the space 10, are disposed.
  • the door 43, the window 44, and the blind 45 are each provided as an example of an adjustment apparatus.
  • a control device 50 that controls these adjustment devices is disposed.
  • the air conditioner 40 is an example of a temperature adjustment device that adjusts the temperature of the space 10, for example.
  • the air conditioner 40 is also an example of a humidity adjustment device that adjusts the humidity of the space 10.
  • the air conditioner 40 adjusts at least one of the temperature and the humidity of the space 10 based on control by the controller 50.
  • the purification substance generator 41 releases the purification substance 42 to the space 10.
  • the purification substance 42 is a misty liquid or gas, and is a substance that can be removed by, for example, decomposing the pathogen 11.
  • the purification substance 42 is misted hypochlorous acid water or ozone water. That is, the purification substance generator 41 is an example of a hypochlorous acid generator that releases hypochlorous acid to the space 10 or an example of an ozone generator that releases ozone to the space 10.
  • the purification substance generator 41 adjusts the emission amount of hypochlorous acid or ozone based on control by the control device 50. Depending on the release amount, the chlorine concentration or ozone concentration of the space 10 is increased or suppressed.
  • Opening and closing of the door 43, the window 44 and the blind 45 are controlled by the control device 50, respectively.
  • air in the space 10 can be replaced.
  • the pathogen 11 floating in the space 10 can be released outdoors or to another space, and the concentration of the pathogen 11 in the space 10 can be lowered.
  • replacement of air can release the purified substance 42 released into the space 10 outdoors or to another space, and the concentration of the purified substance 42 in the space 10 can be lowered.
  • the blind 45 it is possible to adjust the light collection amount of sunlight. Since sunlight contains ultraviolet light, the amount of ultraviolet light introduced into the space 10 can be adjusted. The introduced ultraviolet light is irradiated to the pathogen 11 so that the pathogen 11 is decomposed, and the concentration of the pathogen 11 in the space 10 can be lowered.
  • the control device 50 controls one or more adjustment devices that adjust the environment of the space 10.
  • the control device 50 is, for example, a terminal device installed on a wall of the space 10 or the like.
  • the control device 50 is connected to each of the air conditioner 40, the purification substance generator 41, the door 43, the window 44, and the blind 45 in a wired or wireless manner, and controls the operation of each.
  • the space environment control system controls the environment of the space 10.
  • the environment of the space 10 includes, for example, the temperature and humidity of the space 10, the concentration of chlorine and ozone contained in the air that fills the space 10, and the amount of illumination light or sunlight that illuminates the space 10.
  • the space environment control system controls at least one of the plurality of adjustment devices based on the detection results of the pathogen sensor 20 and the environment sensor.
  • the space environment control system adjusts the environment of the space 10 to weaken the infectivity of the pathogen 11.
  • the space environment control system controls at least one of the plurality of adjustment devices to form a comfortable environment for a person present in the space 10. Detailed operations will be described in each embodiment.
  • each sensor in each space 10 shown by FIG. 1 and each apparatus is only an example.
  • at least one of the air conditioner 40 and the purification substance generator 41 may not be disposed.
  • both the hypochlorous acid generator and the ozone generator may be disposed as the purification substance generator 41.
  • At least one of the door 43 and the window 44 may not be provided.
  • the window 44 may not have the blind 45.
  • At least one of the pathogen sensor 20, the temperature and humidity sensor 30, and the air quality sensor 31 may be provided in at least one of the air conditioner 40 and the purification substance generator 41.
  • a temperature sensor that detects only the temperature may be disposed.
  • a humidity sensor that detects only humidity may be disposed in the space 10. Only the chlorine concentration sensor may be disposed in the space 10, and only the ozone concentration sensor may be disposed.
  • a dust amount sensor that detects the amount of dust suspended in the space 10 may be disposed.
  • a UV light source that emits ultraviolet light may be disposed in the space 10.
  • a ventilating device may be disposed to exchange the air in the space 10 with the air in the outdoor or other space.
  • control device 50 may not be disposed in the space 10, and may be provided outside the space 10.
  • the control device 50 and each sensor and each adjustment device may be capable of wired or wireless communication.
  • Embodiment 1 Subsequently, the first embodiment will be described.
  • FIG. 2 is a block diagram showing the configuration of the space environment control system 100 according to the present embodiment.
  • the space environment control system 100 includes a pathogen sensor 120, a temperature sensor 130, a temperature adjustment device 140, and a space environment control device 150.
  • the space environment control system 100 controls the temperature of the space 10.
  • the pathogen sensor 120 detects the pathogen 11 present in the space 10. Specifically, the pathogen sensor 120 collects a fixed amount of air in the space 10, and counts the number of pathogens 11 contained in the collected air. The pathogen sensor 120 outputs pathogen concentration information indicating the pathogen concentration to the spatial environment control device 150 as a detection result. The pathogen concentration is represented, for example, by the number of pathogens 11 per unit volume. The pathogen sensor 120 corresponds to, for example, the pathogen sensor 20 shown in FIG.
  • the temperature sensor 130 is an example of an environmental sensor that detects the temperature of the space 10 as an example of an environmental value.
  • the temperature sensor 130 outputs temperature information indicating the detected temperature to the space environment control device 150.
  • the temperature sensor 130 corresponds to, for example, the temperature and humidity sensor 30 shown in FIG.
  • the temperature control device 140 is a device that adjusts the temperature of the space 10. Specifically, the temperature control device 140 heats or cools the space 10 to raise and / or lower the temperature of the space 10.
  • the temperature control device 140 corresponds to, for example, the air conditioner 40 shown in FIG.
  • the temperature control device 140 may be at least one of a fan heater, a stove, a heating device such as a halogen heater and a carbon heater, and a cooling device such as a cooler, a cold air fan, and a cold air machine.
  • the space environment control device 150 controls the temperature adjustment device 140 based on the detection results of the pathogen sensor 120 and the temperature sensor 130.
  • the space environment control device 150 corresponds to, for example, the control device 50 shown in FIG. As shown in FIG. 2, the space environment control device 150 includes a pathogen concentration information acquisition unit 151, a temperature information acquisition unit 152, and a control unit 153.
  • the pathogen concentration information acquisition unit 151 acquires pathogen concentration information output from the pathogen sensor 120.
  • the pathogen concentration information acquisition unit 151 is realized by a communication interface connected to the pathogen sensor 120 by wire or wirelessly.
  • the temperature information acquisition unit 152 acquires the temperature information output from the temperature sensor 130.
  • the temperature information acquisition unit 152 is realized by a communication interface connected to the temperature sensor 130 in a wired or wireless manner.
  • the control unit 153 controls the temperature adjustment device 140 based on the pathogen concentration information and the temperature information.
  • the control unit 153 is realized by a non-volatile memory in which a program is stored, a volatile memory which is a temporary storage area for executing a program, an input / output port, a processor that executes the program, or the like.
  • the control unit 153 may be realized by a dedicated electronic circuit.
  • control unit 153 sets the allowable range of the temperature based on the pathogen concentration indicated by the pathogen concentration information, and controls the temperature adjustment device 140 so that the temperature falls within the set allowable range.
  • control unit 153 sets the allowable temperature range to the first temperature range when the pathogen concentration is lower than the predetermined threshold, and the allowable temperature range when the pathogen concentration is higher than the threshold. , And a second temperature range wider than the first temperature range.
  • the first temperature range and the second temperature range are ranges defined by the upper limit value and the lower limit value of the temperature, respectively.
  • the first temperature range is included, for example, in a second temperature range.
  • the lower limit value of the first temperature range is a value greater than or equal to the lower limit value of the second temperature range
  • the upper limit value of the first temperature range is a value less than or equal to the upper limit value of the second temperature range It is.
  • the first temperature range is a temperature range defined as a comfortable environment for people.
  • the first temperature range is, for example, a range of temperatures determined as comfortable based on the ISO (International Organization for Standardization) standard or the PMV (Expected Average Thermal Sensation Declaration) method.
  • the first temperature range is a range of 22 ° C. or more and 27 ° C. or less, but is not limited thereto.
  • the first temperature range may be a range of 20 ° C. or more and 32 ° C. or less, or may be a range included in the range.
  • the second temperature range is the temperature range at which the infectivity of the pathogen 11 can be weakened.
  • the second temperature range also includes a range that is perceived as unpleasant for a person.
  • the second temperature range includes a range of temperatures higher or lower than a comfortable temperature range.
  • the second temperature range is a range of 22 ° C. or more and 31 ° C. or less, but is not limited thereto.
  • the lower limit value of the second temperature range may not be equal to the lower limit value of the first temperature range.
  • the second temperature range may be a range of 15 ° C. or more and 35 ° C. or less, or may be a range included in the range.
  • the threshold value of the pathogen concentration is, for example, a value determined based on the type of pathogen 11 and its infectivity.
  • the threshold is, for example, a value serving as a determination criterion as to whether or not the risk of infection by the pathogen 11 occurs.
  • the pathogen concentration is above the threshold, the risk of infection by the pathogen 11 occurs.
  • the pathogen concentration is below the threshold, infection with pathogen 11 hardly occurs.
  • the control unit 153 sets, for example, an allowable temperature range each time a predetermined period has elapsed.
  • the pathogen sensor 120 detects the pathogen 11 every time a predetermined time period elapses, and pathogen concentration information is output.
  • the control unit 153 sets the allowable range of temperature based on the acquired concentration information each time the pathogen concentration information acquisition unit 151 acquires the concentration information.
  • the control unit 153 operates in one mode selected from a plurality of operation modes including, for example, the purification mode and the comfort mode.
  • the control unit 153 controls the temperature adjustment device 140 so that the temperature of the space 10 falls within the set allowable range in any mode.
  • the control unit 153 outputs a control signal to the temperature adjustment device 140.
  • the control signal includes instructions such as start and stop of the operation of the temperature control device 140, the content of the operation, and the set allowable range.
  • the contents of the operation are, for example, heating and cooling, and a set temperature.
  • the purification mode is an operation mode for weakening the infectivity of the pathogen 11 present in the space 10.
  • the control unit 153 controls the temperature adjustment device 140 such that the temperature of the space 10 matches the upper limit value within the allowable range.
  • the allowable temperature range in the purification mode is, for example, the second temperature range.
  • the comfort mode is an operation mode for making the space 10 a comfortable temperature environment for people.
  • the control unit 153 controls the temperature adjustment device 140 so that the temperature of the space 10 matches the predetermined value within the allowable range.
  • the allowable temperature range in the comfort mode is, for example, the first temperature range.
  • FIG. 3 is a flowchart showing the operation of the space environment control system 100 according to the present embodiment.
  • the space environment control device 150 obtains pathogen concentration (S110). Specifically, the pathogen sensor 120 detects the pathogen 11 present in the space 10, and outputs pathogen concentration information generated based on the detection result to the space environment control device 150.
  • the pathogen concentration information acquisition unit 151 acquires the output pathogen concentration information, and outputs the pathogen concentration information to the control unit 153.
  • control unit 153 determines whether the pathogen concentration indicated by the pathogen concentration information is higher than a threshold (S112). If the pathogen concentration is higher than the threshold (Yes in S112), the control unit 153 sets the allowable temperature range to the second temperature range (S114). The control unit 153 heats the space 10 by controlling the temperature control device 140 so that the temperature falls within the second temperature range (S116).
  • Viruses such as influenza virus have reduced survival rates under high temperature conditions. Therefore, by increasing the temperature of the space 10, the number of pathogens 11 can be reduced and the infectivity can be reduced.
  • the control unit 153 operates in the purification mode. That is, when the pathogen concentration is higher than the threshold value, the control unit 153 gives priority to purification of the pathogen 11 by widening the tolerance range.
  • the control unit 153 sets the allowable temperature range to the first temperature range (S118).
  • the control unit 153 maintains the space 10 in a comfortable environment by controlling the temperature control device 140 so that the temperature falls within the first temperature range (S120).
  • the control unit 153 operates in the comfort mode.
  • the allowable temperature range may be set to the first temperature range or may be set to the second temperature range.
  • the state is maintained until the predetermined period has elapsed (No in S122). After the predetermined period has elapsed (Yes in S122), the process returns to step S110, and the processing from the acquisition of the pathogen concentration is repeated.
  • the predetermined period is, for example, in the range of 10 minutes to 1 hour, but is not limited thereto.
  • FIG. 4 is a diagram showing temporal changes in temperature of the space 10 during operation of the space environment control system 100 according to the present embodiment.
  • the horizontal axis indicates time
  • the vertical axis indicates the temperature of the space 10.
  • the pathogen sensor 120 detects the pathogen 11 at each of the times t 1 to t 5 .
  • the period from time t 1 to time t 2 corresponds to the predetermined period in step S122 shown in FIG.
  • the predetermined period may not always be a fixed period, but may include different periods. For example, it may be different from the period from the period and the time t 2 from time t 1 to time t 2 to time t 3.
  • the allowable range is the first temperature range, and a comfortable environment is formed in the space 10.
  • the temperature of the space 10 is maintained at 23 ° C. by the control unit 153 controlling the temperature adjustment device 140.
  • the first temperature range is a range in which the lower limit value T1 min is 22 ° C. and the upper limit value T1 max is 27 ° C., and is a range in which human comfort is prioritized.
  • the control unit 153 by controlling the temperature adjustment device 140 to maintain a comfortable environment.
  • the control unit 153 sets the allowable range to the second temperature range, to operate the temperature adjustment device 140 in the heating.
  • the second temperature range is a range in which the lower limit T2min is 22 ° C. and the upper limit T2max is 31 ° C., and is a range in which the purification of the pathogen 11 is prioritized.
  • temperature adjustment device 140 performs the heating operation, the time t 2 later, the temperature of the space 10 is increased. Since the allowable range is changed from the first temperature range to the second temperature range, the temperature of the space 10 rises above 27 ° C., which is the upper limit T1max of the first temperature range. At this time, the control unit 153 controls the temperature adjustment device 140 so as not to exceed 31 ° C., which is the upper limit value T2max of the second temperature range.
  • the control unit 153 maintains an acceptable range while the second temperature range.
  • the control unit 153 controls the temperature control device 140 so that the temperature of the space 10 is maintained at 31 ° C. Since the temperature of the space 10 becomes high from time t 2 to time t 4 , the survival rate of the pathogen 11 decreases and the pathogen concentration decreases.
  • the control unit 153 returns the allowable range to the first temperature range, to operate in a cooling temperature adjustment device 140. Temperature adjustment device 140 by performing the cooling operation, the time t 4 later, the temperature of the space 10 decreases. The control unit 153 controls the temperature adjustment device 140 so that the temperature of the space 10 is maintained within the range that falls within the first temperature range below the upper limit T1max of the first temperature range.
  • the control unit 153 controls the temperature control device 140 so that the temperature of the space 10 becomes a temperature close to the center of the first temperature range. Not limited to this.
  • the control unit 153 may control the temperature control device 140 so that the temperature of the space 10 is maintained at the lower limit T1 min of the first temperature range, and the temperature of the space 10 is the upper limit of the first temperature range
  • the temperature control device 140 may be controlled to be kept at the value T1max.
  • the control unit 153 controls the temperature adjustment device 140 so that the temperature of the space 10 is maintained at the upper limit value T2max of the second temperature range, but the present invention is not limited thereto.
  • the control unit 153 is included in the second temperature range and not included in the first temperature range, that is, the upper limit T1max or more of the first temperature range, and the upper limit of the second temperature range.
  • the temperature control device 140 may be controlled so that the temperature of the space 10 falls within the range of T2max or less.
  • the control unit 153 may control the temperature adjustment device 140 such that the temperature of the space 10 matches the median value between the upper limit value T1max and the upper limit value T2max.
  • the allowable temperature range is set based on the pathogen concentration. Therefore, for example, when the pathogen concentration is higher than the threshold and the risk of infection is high, the space 10 can be heated to reduce the survival rate of the pathogen 11. Thereby, when the risk of infection by the pathogen 11 is increased, the infectivity of the pathogen 11 can be weakened although there may be some loss of comfort. Also, if the pathogen concentration is below the threshold and the risk of infection is low, the space 10 can be kept in a comfortable environment for humans.
  • the temperature tolerance range is set based on the pathogen concentration, it is possible to achieve both a comfortable environment for humans and a weakening of the infectivity of the pathogen 11.
  • the humidity of the space is controlled in the present embodiment.
  • the space 10 shown in FIG. 1 is a space to be controlled by the space environment control system according to the present embodiment will be described as an example. In the following description, differences from the first embodiment will be mainly described, and the description of the common points will be omitted or simplified.
  • FIG. 5 is a block diagram showing the configuration of the space environment control system 200 according to the present embodiment.
  • the space environment control system 200 includes a pathogen sensor 120, a humidity sensor 230, a humidity adjustment device 240, and a space environment control device 250.
  • the space environment control system 200 according to the present embodiment controls the humidity of the space 10.
  • the humidity sensor 230 is an example of an environment sensor that detects the humidity of the space 10 as an example of an environmental value.
  • the humidity sensor 230 outputs humidity information indicating the detected humidity to the space environment control device 250.
  • the humidity sensor 230 corresponds to, for example, the temperature and humidity sensor 30 shown in FIG.
  • the humidity adjustment device 240 is a device that adjusts the humidity of the space 10. Specifically, the humidity adjustment device 240 humidifies or dehumidifies the space 10 to increase and / or decrease the humidity of the space 10.
  • the humidity adjustment device 240 corresponds to, for example, the air conditioner 40 shown in FIG.
  • the humidity adjustment device 240 may be at least one of a humidifier and a dehumidifier.
  • the space environment control device 250 controls the humidity adjustment device 240 based on the detection results of the pathogen sensor 120 and the humidity sensor 230.
  • the space environment control device 250 corresponds to, for example, the control device 50 shown in FIG. As shown in FIG. 5, the space environment control device 250 includes a pathogen concentration information acquisition unit 151, a humidity information acquisition unit 252, and a control unit 253.
  • the humidity information acquisition unit 252 acquires the humidity information output from the humidity sensor 230.
  • the humidity information acquisition unit 252 is realized by a communication interface connected to the humidity sensor 230 in a wired or wireless manner.
  • the control unit 253 controls the humidity adjustment device 240 based on the pathogen concentration information and the humidity information.
  • the control unit 253 is realized by a non-volatile memory storing a program, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor executing the program, or the like.
  • Control unit 253 may be realized by a dedicated electronic circuit.
  • control unit 253 sets the allowable range of humidity based on the pathogen concentration indicated by the pathogen concentration information, and controls the humidity adjustment device 240 so that the humidity falls within the set allowable range.
  • control unit 253 sets the allowable range of humidity to the first humidity range when the pathogen concentration is lower than the predetermined threshold, and the allowable range of humidity when the pathogen concentration is higher than the threshold. , And a second humidity range wider than the first humidity range.
  • the first humidity range and the second humidity range are ranges defined by the upper limit value and the lower limit value of humidity, respectively.
  • the first humidity range is included, for example, in a second humidity range.
  • the lower limit value of the first humidity range is a value greater than or equal to the lower limit value of the second humidity range
  • the upper limit value of the first humidity range is a value less than the upper limit value of the second humidity range It is.
  • the first humidity range is a range of humidity defined as a comfortable environment for people.
  • the first humidity range is, for example, the range of humidity which is determined as comfortable based on the Building Sanitation Law.
  • the first humidity range is in the range of 50% to 70%, but is not limited thereto.
  • the first humidity range may be, for example, a range of 40% or more and 75% or less, or a range included in the range.
  • the second humidity range is a range of humidity that can weaken the infectivity of the pathogen 11.
  • the second humidity range also includes a range that is perceived as unpleasant for a person.
  • the second humidity range includes a range of high humidity or low humidity than the comfortable humidity range.
  • the second humidity range is in the range of 50% to 90%, but is not limited thereto.
  • the second humidity range may be, for example, a range of 20% to 90%, and may be a range included in the range.
  • the control unit 253 operates in one mode selected from a plurality of operation modes including, for example, the purification mode and the comfort mode.
  • the control unit 253 controls the humidity adjustment device 240 so that the humidity of the space 10 falls within the set allowable range in any mode.
  • the control unit 253 outputs a control signal to the humidity adjustment device 240.
  • the control signal includes instructions such as start and stop of the operation of the humidity adjustment device 240, the content of the operation, and the set allowable range.
  • the contents of the operation are, for example, humidification and dehumidification, set humidity and the like.
  • the purification mode is an operation mode for weakening the infectivity of the pathogen 11 present in the space 10.
  • the control unit 253 controls the humidity adjustment device 240 such that the humidity of the space 10 matches the upper limit value within the allowable range.
  • the allowable range of the humidity in the purification mode is, for example, the second humidity range.
  • the comfort mode is an operation mode for making the space 10 a comfortable humidity environment for people.
  • the control unit 253 controls the humidity adjustment device 240 such that the humidity of the space 10 matches the predetermined value within the allowable range.
  • the acceptable range of humidity in the comfort mode is, for example, the first humidity range.
  • FIG. 6 is a flowchart showing the operation of the space environment control system 200 according to the present embodiment.
  • the processing up to the determination processing (S112) of the pathogen concentration and the threshold is the same as that of the first embodiment.
  • control unit 253 sets the allowable range of humidity to the second humidity range (S214).
  • the control unit 253 humidifies the space 10 by controlling the humidity adjustment device 240 such that the humidity falls within the second humidity range (S216).
  • Viruses such as influenza virus have a low survival rate under high humidity environment. Therefore, by increasing the humidity of the space 10, the number of pathogens 11 can be reduced and the infectivity can be reduced.
  • the control unit 253 operates in the purification mode. That is, when the pathogen concentration is higher than the threshold, the control unit 253 prioritizes purification of the pathogen 11 by widening the allowable range of the humidity.
  • the control unit 253 sets the allowable range of humidity to the first humidity range (S218).
  • the control unit 253 maintains the space 10 in a comfortable environment by controlling the humidity adjustment device 240 so that the humidity falls within the first humidity range (S220). As such, when the pathogen concentration is lower than the threshold, the control unit 253 operates in the comfort mode.
  • the allowable range of humidity may be set to the first humidity range or may be set to the second humidity range.
  • FIG. 7 is a diagram showing temporal changes in humidity of the space 10 during operation of the space environment control system 200 according to the present embodiment.
  • the horizontal axis indicates time
  • the vertical axis indicates the humidity of the space 10.
  • the allowable range is a first humidity range
  • the humidity of the space 10 is maintained at 55% by the control unit 253 controlling the humidity adjustment device 240.
  • the first humidity range is a range in which the lower limit value H1min is 50% and the upper limit value H1max is 70%, and is a range in which human comfort is prioritized.
  • the control unit 253 by controlling the humidity adjustment device 240 to maintain a comfortable environment.
  • the control unit 253 sets the allowable range to a second humidity range, to operate the humidity control device 240 in humidifier.
  • the second humidity range is a range in which the lower limit H2min is 50% and the upper limit H2max is 90%, and is a range in which the purification of the pathogen 11 is prioritized.
  • the control unit 253 controls the humidity adjustment device 240 so as not to exceed 90% which is the upper limit value H2max of the second humidity range.
  • the control unit 253 maintains an acceptable range while the second humidity range.
  • the control unit 253 controls the humidity adjustment device 240 such that the humidity of the space 10 is maintained at 90%. Since the humidity of the space 10 becomes high humidity from time t 2 to time t 4 , the survival rate of the pathogen 11 decreases and the pathogen concentration decreases.
  • the control unit 253 At time t 4, since it is determined that the pathogen concentration below the threshold, the control unit 253 returns the allowable range in a first humidity range, it is operated by dehumidifying the humidity adjustment device 240. By humidity adjusting device 240 performs a dehumidifying operation, the time t 4 later, the humidity of the space 10 decreases.
  • the control unit 253 controls the humidity adjustment device 240 such that the humidity of the space 10 is maintained within the range which falls below the upper limit value H1max of the first humidity range and falls within the first humidity range.
  • the control unit 253 controls the humidity adjustment device 240 so that the humidity of the space 10 becomes the humidity near the center of the first humidity range.
  • the control unit 253 may control the humidity adjustment device 240 so that the humidity of the space 10 is maintained at the lower limit value H1 min of the first humidity range, and the humidity of the space 10 is the upper limit of the first humidity range
  • the humidity adjustment device 240 may be controlled to be maintained at the value H1max.
  • the control unit 253 controls the humidity adjustment device 240 such that the humidity of the space 10 is maintained at the upper limit value H2max of the second humidity range, but the present invention is not limited thereto.
  • the control unit 253 is included in the second humidity range and not included in the first humidity range, that is, the upper limit H1max of the first humidity range or more, the upper limit of the second humidity range
  • the humidity adjustment device 240 may be controlled so that the humidity of the space 10 falls within the range of H2max or less.
  • the control unit 253 may control the humidity adjustment device 240 such that the humidity of the space 10 matches the median between the upper limit H1max and the upper limit H2max.
  • the allowable range of humidity is set based on the pathogen concentration. Therefore, for example, when the pathogen concentration is higher than the threshold value and the risk of infection is high, the space 10 can be humidified to reduce the survival rate of the pathogen 11. Thereby, when the risk of infection by the pathogen 11 is increased, the infectivity of the pathogen 11 can be weakened although there may be some loss of comfort. Also, if the pathogen concentration is below the threshold and the risk of infection is low, the space 10 can be kept in a comfortable environment for humans.
  • the allowable range of humidity is set based on the pathogen concentration, it is possible to achieve both a comfortable environment for people and a weakening of the infectivity of the pathogen 11.
  • the concentration of the purification substance in the space is controlled by releasing the purification substance into the space.
  • the space 10 shown in FIG. 1 is a space to be controlled by the space environment control system according to the present embodiment will be described as an example. In the following description, differences from the first embodiment will be mainly described, and the description of the common points will be omitted or simplified.
  • FIG. 8 is a block diagram showing the configuration of the space environment control system 300 according to the present embodiment.
  • the space environment control system 300 includes a pathogen sensor 120, a chlorine concentration sensor 331, a hypochlorous acid generator 341, a ventilator 342, and a space environment control device 350.
  • the space environment control system 300 according to the present embodiment releases atomized hypochlorous acid water as the purification substance 42 to the space 10.
  • the chlorine concentration sensor 331 is an example of an environment sensor that detects the chlorine concentration of the space 10 as an example of an environmental value.
  • the chlorine concentration sensor 331 outputs chlorine concentration information indicating the detected chlorine concentration to the space environment control device 350.
  • the chlorine concentration sensor 331 corresponds to, for example, the air quality sensor 31 shown in FIG.
  • the hypochlorous acid generator 341 is an apparatus for releasing hypochlorous acid to the space 10.
  • the hypochlorous acid generator 341 generates hypochlorous acid water, and atomizes and discharges the generated hypochlorous acid water.
  • the hypochlorous acid generator 341 increases the chlorine concentration in the space 10 by adjusting the amount of hypochlorous acid water released.
  • the hypochlorous acid generator 341 corresponds to, for example, the purification substance generator 41 shown in FIG.
  • the ventilation device 342 is a device that replaces the air in the space 10 with the outside or another space.
  • the ventilation device 342 reduces the chlorine concentration in the space 10 by replacing the air in which the concentration of hypochlorous acid is increased with the outside air.
  • the ventilator 342 corresponds to the door 43 and the window 44 shown in FIG.
  • the ventilator 342 may be a ventilation fan or a dedicated ventilator.
  • the space environment control system 300 may include an air purifier instead of the ventilator 342.
  • the space environment control device 350 controls at least one of the hypochlorous acid generator 341 and the ventilator 342 based on the detection results of the pathogen sensor 120 and the chlorine concentration sensor 331.
  • the space environment control device 350 corresponds to, for example, the control device 50 shown in FIG. As shown in FIG. 8, the space environment control device 350 includes a pathogen concentration information acquisition unit 151, a chlorine concentration information acquisition unit 352, and a control unit 353.
  • the chlorine concentration information acquisition unit 352 acquires chlorine concentration information output from the chlorine concentration sensor 331.
  • the chlorine concentration information acquisition unit 352 is realized by a communication interface connected to the chlorine concentration sensor 331 in a wired or wireless manner.
  • the control unit 353 controls at least one of the hypochlorous acid generator 341 and the ventilator 342 based on the pathogen concentration information and the chlorine concentration information.
  • the control unit 353 is realized by a non-volatile memory in which a program is stored, a volatile memory which is a temporary storage area for executing a program, an input / output port, a processor which executes the program, or the like.
  • Control unit 353 may be realized by a dedicated electronic circuit.
  • control unit 353 sets the allowable range of the chlorine concentration based on the pathogen concentration indicated by the pathogen concentration information, and the hypochlorous acid generator 341 and the chlorine concentration fall within the set allowable range.
  • control unit 353 sets the allowable range of chlorine concentration to the first concentration range when the pathogen concentration is lower than a predetermined threshold, and permits chlorine concentration when the pathogen concentration is higher than the threshold.
  • the range is set to a second concentration range wider than the first concentration range.
  • the first concentration range and the second concentration range are ranges defined by the upper limit value and the lower limit value of the chlorine concentration, respectively.
  • the first concentration range is included, for example, in a second concentration range.
  • the lower limit value of the first concentration range is a value greater than or equal to the lower limit value of the second concentration range
  • the upper limit value of the first concentration range is a value less than the upper limit value of the second concentration range It is.
  • the first concentration range is a range of chlorine concentration defined as a comfortable environment for people.
  • the first concentration range is, for example, a range of chlorine concentration determined based on work environment evaluation criteria.
  • the first concentration range is a range of 0 ppm or more and 0.01 ppm or less, but is not limited thereto.
  • the first concentration range may be, for example, a range of 0 ppm or more and 0.03 ppm or less, or a range included in the range.
  • the second concentration range is a range of chlorine concentrations that can reduce the infectivity of pathogen 11.
  • the second concentration range also includes a range that a person feels unpleasant due to a chlorine smell.
  • the second concentration range includes a range in which the concentration is higher than the comfortable concentration range.
  • the second concentration range is a range of 0 ppm or more and 0.1 ppm or less, but is not limited thereto.
  • the second concentration range may be, for example, a range of 0 ppm or more and 0.5 ppm or less, or may be a range included in the range.
  • the control unit 353 operates in one mode selected from a plurality of operation modes including the purification mode and the comfort mode.
  • the control unit 353 controls the hypochlorous acid generator 341 and the ventilation device 342 so that the chlorine concentration of the space 10 falls within the set allowable range in any mode.
  • the control unit 353 outputs a control signal to each of the hypochlorous acid generator 341 and the ventilator 342.
  • the control signal output to the hypochlorous acid generator 341 includes instructions such as start and stop of operation of the hypochlorous acid generator 341, the amount of hypochlorous acid released, and the set allowable range.
  • the control signal output to the ventilator 342 includes instructions such as start and stop of operation of the ventilator 342, a ventilation amount, and a set tolerance.
  • the control signal may include, for example, an indication of the opening and closing amount of the door 43 or the window 44 instead of the ventilation amount.
  • the purification mode is an operation mode for weakening the infectivity of the pathogen 11 present in the space 10.
  • the control unit 353 controls the hypochlorous acid generator 341 so that the chlorine concentration in the space 10 matches the upper limit value within the allowable range.
  • the allowable range of chlorine concentration in the purification mode is, for example, the second concentration range.
  • the comfort mode is an operation mode for making the space 10 a comfortable odor environment for people, such as a substantially odorless state.
  • the control unit 353 controls the hypochlorous acid generator 341 and the ventilator 342 so that the chlorine concentration in the space 10 matches the predetermined value within the allowable range.
  • the allowable range of chlorine concentration in the comfort mode is, for example, the first concentration range.
  • FIG. 9 is a flowchart showing the operation of the space environment control system 300 according to the present embodiment.
  • the processing up to the determination processing (S112) of the pathogen concentration and the threshold is the same as that of the first embodiment.
  • the control unit 353 sets the allowable range of chlorine concentration to the second concentration range (S314).
  • the control unit 353 releases hypochlorous acid to the space 10 by controlling the hypochlorous acid generator 341 so that the chlorine concentration falls within the second concentration range (S316).
  • the control unit 353 may stop the operation of the ventilator 342 or may decrease the ventilation volume by the ventilator 342.
  • Substances having oxidizing power such as hypochlorous acid can decompose and remove pathogen 11 such as influenza virus. Therefore, by releasing hypochlorous acid to the space 10, the number of pathogens 11 can be reduced and the infectivity can be reduced.
  • the control unit 353 operates in the purification mode. That is, when the pathogen concentration is higher than the threshold, the control unit 353 gives priority to purification of the pathogen 11 by widening the allowable range of the chlorine concentration.
  • the control unit 353 sets the allowable range of chlorine concentration to the first concentration range (S318).
  • the control unit 353 maintains the space 10 in a comfortable environment by controlling the ventilator 342 so that the chlorine concentration falls within the first concentration range (S320).
  • the control unit 353 stops the operation of the hypochlorous acid generator 341 or the hypochlorous acid from the hypochlorous acid generator 341 The amount generated may be reduced.
  • the control unit 353 operates in the comfort mode.
  • the allowable range of chlorine concentration may be set to the first concentration range or may be set to the second concentration range.
  • FIG. 10 is a view showing temporal change of chlorine concentration of the space 10 during operation of the space environment control system 300 according to the present embodiment.
  • the horizontal axis indicates time
  • the vertical axis indicates the chlorine concentration of the space 10.
  • the allowable range is a first concentration range, and is comfortable environment is formed in the space 10.
  • the first concentration range is a range in which the lower limit value C1 min is 0 ppm and the upper limit value C1 max is 0.01 ppm, and is a range in which human comfort is prioritized.
  • the upper limit value C1max being 0.01 ppm, it is possible for the person sensitive to odor to hardly feel the chlorine odor.
  • 0 ppm not only means that there is no chlorine at all, but also means that it is not detected at the ppm level, that is, it is below the detection limit. That is, in the space 10, chlorine may exist at the ppt level. The same applies to the ozone concentration described later.
  • the control unit 353, by controlling the ventilator 342, to maintain a comfortable environment.
  • the control unit 353 sets the allowable range in a second concentration range, and starts the operation of hypochlorite generator 341, hypochlorous acid Generate
  • the second concentration range is a range in which the lower limit C2min is 0 ppm and the upper limit C2max is 0.5 ppm, and is a range in which the purification of the pathogen 11 is prioritized.
  • 0.5 ppm is the control allowable concentration (TWA: Time-Weighted Average) of chlorine, and even when the allowable range is set to the second concentration range, the adverse effect on the human body can be suppressed.
  • hypochlorite generator 341 By hypochlorite generator 341 generates the hypochlorous acid, the time t 2 later, the chlorine concentration of the space 10 rises. Since the allowable range is changed from the first concentration range to the second concentration range, the chlorine concentration of the space 10 rises above 0.01 ppm which is the upper limit value C1max of the first concentration range. At this time, the control unit 353 controls the hypochlorous acid generator 341 and the ventilation device 342 so as not to exceed 90% which is the upper limit value C2max of the second concentration range.
  • the control unit 353 At time t 3, since it is determined that the pathogen concentration higher than the threshold, the control unit 353 maintains an acceptable range while the second concentration range.
  • the control unit 353 controls the hypochlorous acid generator 341 and the ventilator 342 so that the chlorine concentration in the space 10 is also maintained at 0.5 ppm. Since hypochlorous acid is present in the space 10 from time t 2 to time t 4 , the survival rate of the pathogen 11 decreases and the pathogen concentration decreases.
  • the control unit 353 At time t 4, since it is determined that the pathogen concentration below the threshold, the control unit 353 returns the allowable range in a first concentration range, stops the operation of hypochlorite generator 341, ventilation device 342 To ventilate space 10. By ventilator 342 to ventilate the time t 4 later, the chlorine concentration of space 10 decreases. The control unit 353 controls the ventilator 342 so that the chlorine concentration in the space 10 is maintained within the range falling within the first concentration range below the upper limit value C1max of the first concentration range.
  • the control unit 353 sets the hypochlorous acid generator 341 so that the chlorine concentration of the space 10 matches the lower limit C1 min of the first concentration range. Stopped operating, but not limited to this.
  • the control unit 353 may control the hypochlorous acid generator 341 and the ventilation device 342 such that the chlorine concentration of the space 10 is maintained at the median or upper limit C1max of the first concentration range.
  • the control unit 353 controls the hypochlorous acid generator 341 and the ventilator 342 so that the chlorine concentration in the space 10 is maintained at the upper limit C2max of the second concentration range.
  • the control unit 353 is included in the second concentration range and not included in the first concentration range, that is, the upper limit C1max or more of the first concentration range, and the upper limit of the second concentration range.
  • the hypochlorous acid generator 341 and the ventilator 342 may be controlled so that the chlorine concentration of the space 10 falls within the range of C2max or less.
  • the control unit 353 may control the hypochlorous acid generator 341 and the ventilator 342 such that the chlorine concentration in the space 10 matches the median between the upper limit C1max and the upper limit C2max.
  • FIG. 11 is a block diagram showing a configuration of a space environment control system 400 according to the present modification.
  • the space environment control system 400 includes a pathogen sensor 120, an ozone concentration sensor 431, an ozone generator 441, a ventilator 342, and a space environment control device 450.
  • ozone is released as the purification substance 42 instead of hypochlorous acid.
  • the ozone concentration sensor 431 is an example of an environment sensor that detects the ozone concentration of the space 10 as an example of an environmental value.
  • the ozone concentration sensor 431 outputs ozone concentration information indicating the detected ozone concentration to the space environment control device 450.
  • the ozone concentration sensor 431 corresponds to, for example, the air quality sensor 31 shown in FIG.
  • the ozone generator 441 is a device that emits ozone to the space 10. For example, the ozone generator 441 generates ozone water, and mists and releases the generated ozone water. The ozone generator 441 increases the ozone concentration of the space 10 by adjusting the amount of ozone water released.
  • the ozone generator 441 corresponds to, for example, the purification substance generator 41 shown in FIG.
  • the space environment control device 450 controls at least one of the ozone generator 441 and the ventilator 342 based on the detection results of the pathogen sensor 120 and the ozone concentration sensor 431.
  • the space environment control device 450 corresponds to, for example, the control device 50 shown in FIG. As shown in FIG. 11, the space environment control device 450 includes a pathogen concentration information acquisition unit 151, an ozone concentration information acquisition unit 452, and a control unit 453.
  • the ozone concentration information acquisition unit 452 acquires ozone concentration information output from the ozone concentration sensor 431.
  • the ozone concentration information acquisition unit 452 is realized by a communication interface connected to the ozone concentration sensor 431 by wire or wirelessly.
  • the control unit 453 controls at least one of the ozone generator 441 and the ventilator 342 based on the pathogen concentration information and the ozone concentration information.
  • the control unit 453 is realized by a non-volatile memory storing a program, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor executing the program, or the like.
  • Control unit 453 may be realized by a dedicated electronic circuit.
  • control unit 453 sets the allowable range of the ozone concentration based on the pathogen concentration indicated by the pathogen concentration information, and the ozone generator 441 and the ventilator 342 are set so that the ozone concentration falls within the set allowable range. Control.
  • control unit 453 sets the allowable range of ozone concentration to the first concentration range when the pathogen concentration is lower than the predetermined threshold, and allows the ozone concentration to be allowable when the pathogen concentration is higher than the threshold.
  • the range is set to a second concentration range wider than the first concentration range.
  • the first concentration range and the second concentration range are ranges defined by the upper limit value and the lower limit value of the ozone concentration, respectively.
  • the first concentration range is included, for example, in a second concentration range.
  • the lower limit value of the first concentration range is a value greater than or equal to the lower limit value of the second concentration range
  • the upper limit value of the first concentration range is a value less than the upper limit value of the second concentration range It is.
  • the first concentration range is a range of ozone concentration defined as a comfortable environment for people.
  • the first concentration range is, for example, a range of ozone concentration determined based on work environment evaluation criteria.
  • the first concentration range is a range of 0 ppm or more and 0.01 ppm or less, but is not limited thereto.
  • the first concentration range may be, for example, a range of 0 ppm or more and 0.1 ppm or less, or a range included in the range.
  • the ozone concentration is 0.01 ppm or less, it is possible for the person sensitive to odor to hardly sense the odor of ozone.
  • the second concentration range is a range of ozone concentration that can attenuate the infectivity of pathogen 11.
  • the second concentration range also includes a range which is perceived as unpleasant by the odor of ozone for a person.
  • the second concentration range includes a range in which the concentration is higher than the comfortable concentration range.
  • the second concentration range is a range of 0 ppm or more and 0.05 ppm or less, but is not limited thereto.
  • the second concentration range may be, for example, a range of 0 ppm or more and 0.1 ppm or less, or a range included in the range.
  • 0.05 ppm is an average value of the indoor gas concentration standard of Japan Air Cleaning Association, and if ozone concentration is 0.05 ppm or less, the infectivity of a pathogen can be reduced within a general indoor environment.
  • 0.1 ppm is the highest value of indoor air concentration standard of the Japan Air Cleaning Association, and if the ozone concentration is 0.1 ppm or less, the infectivity of pathogens can be reduced while suppressing the adverse effect on humans. it can.
  • the control unit 453 operates in one mode selected from a plurality of operation modes including the purification mode and the comfort mode.
  • the control unit 453 controls the ozone generator 441 and the ventilation device 342 so that the ozone concentration of the space 10 falls within the set allowable range in any mode.
  • the control unit 453 outputs a control signal to each of the ozone generator 441 and the ventilator 342.
  • the control signal output to the ozone generator 441 includes instructions such as start and stop of the operation of the ozone generator 441, the amount of ozone released, and the set allowable range.
  • the purification mode is an operation mode for weakening the infectivity of the pathogen 11 present in the space 10.
  • the control unit 453 controls the ozone generator 441 so that the ozone concentration of the space 10 matches the upper limit value within the allowable range.
  • the allowable range of ozone concentration in the purification mode is, for example, the second concentration range.
  • the comfort mode is an operation mode for making the space 10 a comfortable odor environment for people, such as a substantially odorless state.
  • the control unit 453 controls the ozone generator 441 and the ventilation device 342 so that the ozone concentration of the space 10 matches the predetermined value within the allowable range.
  • the tolerance range of the ozone concentration in the comfort mode is, for example, the first concentration range.
  • the operation of the space environment control system 400 according to the present modification is the same as the operation of the space environment control system 300 according to the present embodiment.
  • the space environment control system 400 operates, for example, in accordance with the flowchart shown in FIG.
  • the allowable range of the chlorine concentration or the ozone concentration is set based on the pathogen concentration. Therefore, for example, when the pathogen concentration is higher than the threshold and the risk of infection is high, hypochlorous acid or ozone can be released to the space 10 to remove the pathogen 11. Thereby, when the risk of infection by the pathogen 11 is increased, the infectivity of the pathogen 11 can be weakened although there may be some loss of comfort. Also, if the pathogen concentration is below the threshold and the risk of infection is low, the space 10 can be kept in a comfortable environment for humans.
  • permissible_range of chlorine concentration or ozone concentration is set based on a pathogen density
  • the chlorine concentration in the space 10 may not be an actual measurement value, but may be a value estimated based on the generation amount from the hypochlorous acid generator 341 and the size of the space 10. The same applies to the ozone concentration.
  • the space environment control system controls a plurality of environments of space by controlling a plurality of adjustment devices.
  • space 10 shown in Drawing 1 is space of the controlled object of the environment by the air environment control system concerning this embodiment is explained to an example.
  • differences from Embodiments 1 to 3 will be mainly described, and the description of the common points will be omitted or simplified.
  • FIG. 12 is a block diagram showing a configuration of space environment control system 500 according to the present embodiment.
  • the space environment control system 500 includes a pathogen sensor 120, a group of environment sensors 530, a group of adjustment devices 540, and a space environment control device 550.
  • the space environment control system 500 controls the temperature, humidity, chlorine concentration, ozone concentration, and UV irradiation amount of the space 10.
  • the environmental sensor group 530 includes a temperature sensor 130, a humidity sensor 230, a chlorine concentration sensor 331, an ozone concentration sensor 431, a CO 2 concentration sensor 532, a UV illuminance sensor 533, and a dust amount sensor 534.
  • the CO 2 concentration sensor 532 is an example of an environmental sensor that detects the carbon dioxide concentration in the space 10 as an example of an environmental value.
  • the CO 2 concentration sensor 532 outputs, to the space environment control device 550, CO 2 information indicating the detected carbon dioxide concentration.
  • the CO 2 concentration sensor 532 corresponds to, for example, the air quality sensor 31 shown in FIG.
  • the UV illuminance sensor 533 is an example of an environment sensor that detects the irradiation amount of the ultraviolet light irradiated into the space 10 as an example of the environmental value.
  • the UV illuminance sensor 533 outputs UV information indicating the detected irradiation amount of ultraviolet light to the space environment control device 550.
  • the dust amount sensor 534 is an example of an environmental sensor that detects the amount of dust floating in the space 10 as an example of an environmental value.
  • the dust amount sensor 534 outputs dust amount information indicating the detected dust amount to the space environment control device 550.
  • the adjustment device group 540 is a group consisting of a plurality of adjustment devices that adjust the environment of the space 10 based on control by the space environment control device 550. As shown in FIG. 12, the adjusting device group 540 includes a temperature adjusting device 140, a humidity adjusting device 240, a hypochlorous acid generator 341, a ventilator 342, an ozone generator 441, and a UV light source 543.
  • the UV light source 543 is a light source for irradiating the space 10 with ultraviolet light.
  • the UV light source 543 is a discharge lamp or an LED (Light Emitting Diode) that emits ultraviolet light.
  • the UV light source 543 is controlled to be turned on and off by the control unit 553, for example.
  • the control unit 553 may adjust the light collection amount of sunlight by opening and closing the blind 45 illustrated in FIG. 1.
  • the space environment control device 550 controls at least one of the plurality of adjustment devices included in the adjustment device group 540 based on the detection results of the pathogen sensor 120 and the environment sensor group 530.
  • the space environment control device 550 corresponds to, for example, the control device 50 shown in FIG. As shown in FIG. 12, the space environment control device 550 includes a pathogen concentration information acquisition unit 151, an environment information acquisition unit 552, and a control unit 553.
  • the environmental information acquisition unit 552 acquires environmental information output from each of the plurality of environmental sensors included in the environmental sensor group 530.
  • the environmental information includes at least one of temperature information, humidity information, chlorine concentration information, ozone concentration information, CO 2 concentration information, UV information and dust amount information.
  • the environment information acquisition unit 552 is realized by a communication interface connected to each of a plurality of environment sensors in a wired or wireless manner.
  • the control unit 553 controls at least one of the plurality of adjustment devices included in the adjustment device group 540 based on the pathogen concentration information and the environment information.
  • the control unit 553 is realized by a non-volatile memory storing a program, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor executing the program, or the like.
  • Control unit 553 may be realized by a dedicated electronic circuit.
  • control unit 553 sets the allowable range of the environmental value based on the pathogen concentration indicated by the pathogen concentration information, and controls the adjustment device group 540 so that the environmental value falls within the set allowable range.
  • control unit 553 sets an allowable range of each of the plurality of environment values.
  • the plurality of environmental values include temperature, humidity, chlorine concentration, ozone concentration, CO 2 concentration, UV illuminance, and dust amount.
  • control unit 553 sets the allowable range of environmental value to the first range when the pathogen concentration is lower than a predetermined threshold value, and when the pathogen concentration is higher than the threshold value, The allowable range of the environmental value is set to a second range wider than the first range.
  • the allowable range of each environmental value is, for example, the same as the range described in the first to third embodiments and the modification for the temperature, humidity, chlorine concentration and ozone concentration.
  • the first range of the CO 2 concentration is, for example, 300 ppm or more and 2000 ppm or less.
  • the first range of the UV amount is, for example, 50 mW / cm 2 or less for UV light having a wavelength of 380 nm or less.
  • the first range of the dust amount is, for example, 0.1 mg / m 3 or less. These are determined based on hygiene management standards and the like.
  • the second range of the CO 2 concentration is, for example, 300 ppm or more and 4000 ppm or less.
  • the first range of the UV amount is, for example, 100 mW / cm 2 or less for UV light having a wavelength of 380 nm or less.
  • the first range of the dust amount is, for example, 0.2 mg / m 3 or less.
  • the operation of the space environment control system 500 according to the present embodiment is the same as the operation described in the first to third embodiments and the modification.
  • the control unit 553 sets the allowable range of temperature, humidity and chlorine concentration or ozone concentration to the second temperature range, second humidity range and second concentration range, respectively. Do.
  • the control unit 553 can increase the purification power of the pathogen 11 by making the space 10 hot and humid and releasing hypochlorous acid or ozone into the space 10.
  • the control unit 553 may introduce sunlight into the space 10 by opening the blind 45. The ultraviolet light contained in sunlight can remove pathogens present in the space 10.
  • control unit 553 controls the ventilation device 342 so that the CO 2 concentration and the dust amount fall within the allowable range. Specifically, when at least one of the CO 2 concentration and the dust amount exceeds the upper limit of the allowable range, the air in the space 10 is replaced by controlling the ventilation device 342. This can reduce the concentration of CO 2 and the amount of dust.
  • the amount of dust may increase also at the time of ventilation, or when air volume is strengthened in purification operation.
  • the dust amount can be suppressed within the allowable range by controlling the adjustment device group 540 so that the air flow generated in the space 10 can be suppressed.
  • the purification power for the pathogen 11 can be enhanced by changing a plurality of environments, and the infectivity of the pathogen 11 can be weakened in a short period of time. Can be Therefore, since the period in which the comfortable environment for humans is lost is shortened, the infectivity of the pathogen 11 can be weakened as necessary while maintaining the comfortable environment for a long time. Further, by keeping various environmental values such as temperature, humidity, CO 2 concentration and dust amount in a comfortable range, a more comfortable environment for people can be formed.
  • the present invention is not limited thereto.
  • the space environment control system according to the present modification has, for example, the same configuration as the space environment control system 500 according to the fourth embodiment shown in FIG.
  • a space environment control system according to the present modification will be described with reference to FIG.
  • control unit 553 determines which of the plurality of concentration sections divided by one or more threshold values includes the pathogen concentration.
  • the control unit 553 sets an allowable range in a range corresponding to the concentration category in which the pathogen concentration is included among a plurality of different ranges corresponding to the plurality of concentration categories.
  • FIG. 13 is a diagram showing the correspondence between the concentration classification of pathogen concentration and the candidate range of the allowable range in the space environment control system according to the present modification.
  • this modification four density divisions A to D divided by three threshold values th1 to th3 are provided.
  • the candidate ranges A to D of the allowable range are associated with each of the four density categories A to D on a one-to-one basis.
  • the candidate ranges A to D are different from one another.
  • the candidate ranges A to D are wider in this order.
  • at least two of the candidate ranges A to D may partially overlap.
  • the candidate range A may be included in the candidate range D.
  • the candidate ranges A to D correspond to the comfort mode, the weak purification mode, the middle purification mode, and the strong purification mode, respectively.
  • the candidate ranges A to D are determined for each type of environmental value. For example, candidate ranges A to D are defined for each temperature, each humidity, each chlorine concentration, and each ozone concentration.
  • the space environment control device 550 stores the correspondence table shown in FIG. 13 in a memory (not shown) or the like.
  • the control unit 553 reads the correspondence table stored in the memory, and determines the pathogen concentration and sets the allowable range based on the read correspondence table.
  • FIG. 14 is a flowchart showing the operation of the space environment control system according to the present modification.
  • the space environment control device 550 acquires pathogen concentration (S110).
  • the processing for acquiring the pathogen concentration is the same as in the first to fourth embodiments.
  • control unit 553 determines which of the plurality of concentration categories the pathogen concentration indicated by the pathogen concentration information is included (S412).
  • the control unit 553 sets the range corresponding to the concentration category in which the pathogen concentration is included as the allowable range (S414).
  • the control unit 553 may set the tolerance range to any of the candidate range B and the candidate range C.
  • the control unit 553 determines whether to operate in the purification mode based on the pathogen concentration (S416). For example, when the pathogen concentration is higher than the threshold th1 shown in FIG. 13, the control unit 553 determines to operate in the purification mode. When the pathogen concentration is lower than the threshold th1, the control unit 553 determines to operate in the comfort mode. When the pathogen concentration is equal to the threshold th1, the control unit 553 may operate in either the purification mode or the comfort mode.
  • control unit 553 When operating in the purification mode (Yes in S416), the control unit 553 performs the operation of purification within the set allowable range (S418). For example, the control unit 553 controls at least one of the plurality of adjustment devices included in the adjustment device group 540 such that the environmental value matches the upper limit value of the allowable range.
  • control unit 553 When operating in the comfort mode (No in S416), the control unit 553 performs an operation for maintaining the comfort environment within the set allowable range (S420). For example, the control unit 553 controls at least one of the plurality of adjustment devices included in the adjustment device group 540 such that the environmental value matches the predetermined value in the candidate range A.
  • the environment of the space 10 can be finely controlled according to the pathogen concentration. it can.
  • the candidate range of the allowable range is a fixed range.
  • the candidate range can be changed.
  • FIG. 15 is a block diagram showing the configuration of the space environment control device 650 according to the present modification.
  • the space environment control device 650 includes a pathogen concentration information acquisition unit 151, an environment information acquisition unit 552, a control unit 653, and a date and time information acquisition unit 654.
  • the date and time information acquisition unit 654 acquires date and time information.
  • Date and time information is information regarding at least one of time and date.
  • the date and time information is information indicating the date and time of the control day.
  • the date and time information may be information indicating a time zone to which the current time belongs, such as morning, noon, evening, and night.
  • the date and time information may be information indicating a season or a month to which the day of control belongs, such as spring, summer, autumn, or winter.
  • the date and time information acquisition unit 654 is realized by, for example, a timer function of a computer device that realizes the space environment control device 650.
  • the date and time information acquisition unit 654 may be realized by a communication interface that communicates with an external server device or the like.
  • FIG. 16 is a diagram showing an example of the correspondence between the concentration classification of pathogen concentration and the candidate range of the allowable range in the space environment control system according to the present modification.
  • a threshold th1 used to determine the pathogen concentration and two concentration sections A and B divided by the threshold th1 are provided.
  • Candidate ranges A1 and A2 which differ according to the season, and candidate ranges B1 and B2 are matched with two concentration divisions A and B, respectively.
  • the candidate ranges A1 and A2 shown in FIG. 16 are candidate ranges of an allowable range that can be set in the comfort mode. For example, in winter, the environment in which people feel comfortable is different compared to summer.
  • the candidate ranges A1 and A2 are each set to a range that is considered comfortable according to the season.
  • the candidate ranges B1 and B2 shown in FIG. 16 are candidate ranges of an allowable range that can be set in the purification mode. For example, in winter, infection with pathogen 11 is more likely to occur than in summer. Therefore, for example, the candidate range B1 in winter is a range wider than the candidate range B2 in summer. Thereby, the purification
  • control unit 653 changes at least one of the plurality of allowable ranges based on the date and time information. Specifically, the control unit 653 sets the allowable range of the environmental value by referring to the correspondence shown in FIG. 16 based on the determination result of the concentration classification and the date and time information.
  • the control unit 653 sets the allowable range to the candidate range A1.
  • the control unit 653 sets the allowable range to the candidate range A2. The same is true when the pathogen concentration is higher than the threshold th2.
  • FIG. 17 is a diagram showing an example of the correspondence between the concentration classification of pathogen concentration and the candidate range of the allowable range in the space environment control system according to the present modification.
  • candidate ranges A1 and A2 and candidate ranges B1 and B2 different according to the time zone are associated with the two density sections A and B, respectively.
  • the candidate ranges A1 and A2 shown in FIG. 17 are candidate ranges of an allowable range that can be set in the comfort mode. For example, in the daytime where there is a lot of activity, the environment in which people feel comfortable is different compared to the night in which there is a small amount of activity.
  • the candidate ranges A1 and A2 are respectively defined as ranges that are considered comfortable according to the time zone.
  • the candidate ranges B1 and B2 are the candidate ranges of the allowable range which can be set in the purification mode. For example, during the day when there are many people coming and going, infection with the pathogen 11 is more likely to occur than at night when there are few people coming and going. For example, a person infected with the pathogen 11 may enter the space 10 and be a source of infection (a source of the pathogen 11). Alternatively, the pathogen 11 present in the space 10 is likely to be diffused by human activity during the daytime. Therefore, for example, the daytime candidate range B1 is a wider range than the nighttime candidate range B2. Thereby, the purification power with respect to the pathogen 11 in the daytime can be enhanced.
  • the candidate range can be changed based on the date and time information, it is possible to form an appropriate comfortable environment according to the season or time zone. And, the pathogen 11 can be cleaned.
  • control unit 653 may change the threshold or concentration classification used to determine the pathogen concentration based on the date and time information. For example, in winter, because infection with pathogen 11 is more likely to occur than in summer, the control unit 653 may set the winter threshold smaller than the summer threshold. Further, for example, since infection with pathogen 11 is more likely to occur during the daytime than during the nighttime, the control unit 653 may set the daytime threshold to be smaller than the summer threshold.
  • one or more threshold values, concentration classifications, and candidate ranges of the allowable range may be changeable based on information other than date and time information.
  • the control unit 653 may change one or more of the threshold value, the concentration classification, and the candidate range of the allowable range based on the amount of clothes of a person present in the space 10.
  • a space environment control system may be equipped with the camera which has an image sensor, or a thermal image sensor. For example, the inside of the space 10 may be photographed by a camera, and a person detection process may be performed on the obtained image to detect a person and determine the amount of clothing.
  • FIG. 18 is a diagram showing another example of the correspondence relationship between the concentration classification of pathogen concentration and the candidate range of the allowable range in the space environment control system according to the present modification.
  • the candidate range of the allowable range is associated with the amount of clothes of a person. For example, in the case of focusing on the temperature of the space 10, the temperature that feels comfortable tends to decrease as the amount of clothing increases. Therefore, for example, at least one of the upper limit value and the lower limit value of the temperature allowable range is lower in the candidate range A1 when the dressing amount is large than the candidate range A2 when the dressing amount is small. The same may be applied to the candidate ranges B1 and B2.
  • control unit 653 changes one or more threshold values, concentration categories, and tolerance candidate ranges based on the nature (for example, cold or hot) of the person present in the space 10 and the like. May be Specifically, the control unit 653 may specify a person present in the space 10, and set one or more threshold values, concentration classification, and a candidate range of the allowable range according to the specified person.
  • FIG. 19 is a diagram showing another example of the correspondence relationship between the concentration classification of pathogen concentration and the candidate range of the allowable range in the space environment control system according to the present modification.
  • an identification number may be assigned to a person, and at least one of a threshold, a concentration classification, and a candidate range of an allowable range may be associated with each person.
  • control unit 653 may perform face recognition processing or the like on an image obtained by photographing the inside of the space 10 with a camera or the like.
  • the space environment control device 650 includes, for example, a memory that stores correspondence information in which a person's identification number is associated with face recognition data, correspondence information shown in FIG.
  • the control unit 653 may specify a person present in the space 10 by referring to the memory, and may obtain a corresponding identification number.
  • the control unit 653 may set a threshold, a concentration classification, a candidate range of the allowable range, and the like according to the acquired identification number.
  • control unit 653 may determine which one of a plurality of categories set in advance corresponds to a person existing in the space 10 without specifying an individual.
  • the plurality of categories are, for example, categories such as age and gender.
  • the control unit 653 may set the threshold value, the concentration classification, the candidate range of the allowable range, and the like according to the category.
  • the allowable range may be updated by machine learning or the like.
  • an acceptable range of comfortable environmental values may be set by machine learning for each person. For example, when the set temperature of the air conditioner 40 is changed when a person returns to the space 10, the temperature of the space 10 at this time and the changed set value are accumulated. The temperature which people feel comfortable may be determined by machine learning, using the accumulated data as input data.
  • the space environment control system according to the present modification notifies a person of the control content or the state of the space 10 or the like.
  • the space environment control system according to the present modification is the same as the space environment control system 500 shown in FIG. 12, and instead of the space environment control device 550, a space environment control device 750 shown in FIG. And the point of providing.
  • FIG. 20 is a block diagram showing the configuration of the space environment control device 750 according to the present modification.
  • the space environment control device 750 includes a pathogen concentration information acquisition unit 151, an environment information acquisition unit 552, a control unit 553 and a display control unit 754.
  • the display control unit 754 controls the display of the display device 760. Specifically, the display control unit 754 generates an image or video representing the state of the space 10, such as control content or an environmental value, and causes the display device 760 to display the image or video.
  • the display device 760 is, for example, a display included in the control device 50.
  • the display device 760 is a liquid crystal display device, an organic EL (Electroluminescence) display device, or the like.
  • the display device 760 displays control contents of the space environment control device 750 and the like. For example, as shown in FIG. 21, the display device 760 displays an image 761 indicating an operation mode in which the control unit 553 is in operation and an estimated remaining time of the operation mode.
  • FIG. 21 is a view showing a display example on the display device 760 of the space environment control system according to the present modification. For example, the estimated remaining time is calculated based on the current time, pathogen concentration, purification intensity, and the like.
  • the space environment control system may be provided with a sound output device such as a speaker instead of displaying the control content and the like.
  • the space environment control device 750 may generate voice guidance indicating the control content, and output the voice guidance from the speaker.
  • the display device 760 may not be a dedicated display device, and may be a display of a portable terminal such as a smartphone owned by a manager of the space environment control system or a person present in the space 10.
  • the display control unit 754 may communicate with the portable terminal by wireless communication or the like and transmit the image 761 so that the image 761 may be displayed on the display of the portable terminal.
  • the pathogen 11 floating in the space 10 is detected in the above embodiment, the present invention is not limited to this.
  • the pathogen 11 attached to the surface of an apparatus such as a wall forming the space 10, a door 43 and a window 44, furniture such as a table disposed in the space 10, an air conditioner 40 and a purification substance generator 41 is detected May be
  • the space 10 may not be a space closed by a wall or the like.
  • the space 10 may be divided into a plurality of regions, and detection of environmental values, detection of pathogens, and the like may be performed for each region. Also, control of the environment by the adjustment device may be performed for each area.
  • the communication method between the devices described in the above embodiment is not particularly limited.
  • the wireless communication method is, for example, near field wireless communication such as Zigbee (registered trademark), Bluetooth (registered trademark), or wireless LAN (Local Area Network).
  • the wireless communication scheme may be communication via a wide area communication network such as the Internet.
  • wired communication may be performed between devices instead of wireless communication.
  • wired communication is communication using power line communication (PLC) or wired LAN.
  • another processing unit may execute the processing executed by a specific processing unit.
  • the order of multiple processes may be changed, or multiple processes may be performed in parallel.
  • the allocation of the components included in the space environment control system to a plurality of devices is an example.
  • the other device may include the components included in one device.
  • the space environment control system may be implemented as a single device.
  • the processing described in the above embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good.
  • the processor that executes the program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
  • control unit may be configured by dedicated hardware, or realized by executing a software program suitable for each component. It is also good.
  • Each component may be realized by a program execution unit such as a central processing unit (CPU) or processor reading and executing a software program recorded on a recording medium such as a hard disk drive (HDD) or a semiconductor memory. Good.
  • components such as the control unit may be configured by one or more electronic circuits.
  • Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit.
  • the one or more electronic circuits may include, for example, a semiconductor device, an integrated circuit (IC), or a large scale integration (LSI).
  • the IC or LSI may be integrated on one chip or may be integrated on a plurality of chips.
  • IC integrated circuit
  • LSI large scale integration
  • the term “IC” or “LSI” is used here, the term changes depending on the degree of integration, and may be called system LSI, very large scale integration (VLSI), or ultra large scale integration (ULSI).
  • an FPGA Field Programmable Gate Array programmed after LSI fabrication can be used for the same purpose.
  • the general or specific aspects of the present disclosure may be embodied as a system, an apparatus, a method, an integrated circuit or a computer program.
  • it may be realized by a computer readable non-transitory recording medium such as an optical disk, HDD or semiconductor memory in which the computer program is stored.
  • the present invention may be realized as any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • the present disclosure can be used as a space environment control system capable of achieving both the comfort for people and the weakening of the infectivity of pathogens, and can be used, for example, in an air conditioning system of a hospital or a nursing home.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

空間環境制御システム(500)は、空間中に存在する病原体を検出する病原体センサ(120)と、空間の温度、湿度、塩素濃度及びオゾン濃度の少なくとも1つを示す環境値を検出する環境センサ群(530)と、空間の環境の調整を行う調整機器群(540)と、調整機器群(540)を制御する制御部(553)とを備え、制御部(553)は、病原体センサ(120)によって検出された病原体の空間中の濃度である病原体濃度に基づいて環境値の許容範囲を設定し、設定した許容範囲内で環境値が収まるように調整機器群(540)を制御する。

Description

空間環境制御システム、空間環境制御装置及び空間環境制御方法
 本開示は、空間環境制御システム、空間環境制御装置及び空間環境制御方法に関する。
 従来、空間内の空気に殺菌剤などの添加物を添加することで、空間の殺菌などを行う空調制御システムが知られている(例えば、特許文献1を参照)。
特開2016-114260号公報
 しかしながら、殺菌剤などの添加量が多すぎる場合には、人にとっての快適な環境が損なわれる。
 そこで、本開示は、人にとっての快適性と病原体の感染力の弱体化とを両立させることができる空間環境制御システム、空間環境制御装置及び空間環境制御方法を提供する。
 上記課題を解決するため、本開示の一態様に係る空間環境制御システムは、空間中に存在する病原体を検出する病原体センサと、前記空間の温度、湿度、塩素濃度及びオゾン濃度の少なくとも1つを示す環境値を検出する環境センサと、前記空間の環境の調整を行う調整機器と、前記調整機器を制御する制御部とを備え、前記制御部は、前記病原体センサによって検出された病原体の前記空間中の濃度である病原体濃度に基づいて前記環境値の許容範囲を設定し、設定した許容範囲内で前記環境値が収まるように前記調整機器を制御する。
 また、本開示の一態様に係る空間環境制御装置は、空間の環境の調整を行う調整機器を制御する制御部を備え、前記制御部は、前記空間中に存在する病原体を検出する病原体センサによって検出された病原体の前記空間中の濃度である病原体濃度に基づいて、前記空間の温度、湿度、塩素濃度及びオゾン濃度の少なくとも1つを示す環境値の許容範囲を設定し、設定した許容範囲内で前記環境値が収まるように前記調整機器を制御する。
 また、本開示の一態様に係る空間環境制御方法は、空間中に存在する病原体を検出する病原体センサによって検出された病原体の前記空間中の濃度である病原体濃度に基づいて、前記空間の温度、湿度、塩素濃度及びオゾン濃度の少なくとも1つを示す環境値の許容範囲を設定し、設定した許容範囲内で前記環境値が収まるように、前記空間の環境の調整を行う調整機器を制御する。
 また、本開示の一態様は、上記空間環境制御方法をコンピュータに実行させるためのプログラムとして実現することができる。あるいは、当該プログラムを格納したコンピュータ読み取り可能な記録媒体として実現することもできる。
 本開示によれば、人にとっての快適性と病原体の感染力の弱体化とを両立させることができる。
図1は、各実施の形態に係る空間環境制御システムによる環境の制御対象になる空間を示す図である。 図2は、実施の形態1に係る空間環境制御システムの構成を示すブロック図である。 図3は、実施の形態1に係る空間環境制御システムの動作を示すフローチャートである。 図4は、実施の形態1に係る空間環境制御システムの動作中の空間の温度の時間変化を示す図である。 図5は、実施の形態2に係る空間環境制御システムの構成を示すブロック図である。 図6は、実施の形態2に係る空間環境制御システムの動作を示すフローチャートである。 図7は、実施の形態2に係る空間環境制御システムの動作中の空間の湿度の時間変化を示す図である。 図8は、実施の形態3に係る空間環境制御システムの構成を示すブロック図である。 図9は、実施の形態3に係る空間環境制御システムの動作を示すフローチャートである。 図10は、実施の形態3に係る空間環境制御システムの動作中の空間の塩素濃度の時間変化を示す図である。 図11は、実施の形態3の変形例に係る空間環境制御システムの構成を示すブロック図である。 図12は、実施の形態4に係る空間環境制御システムの構成を示すブロック図である。 図13は、実施の形態の変形例1に係る空間環境制御システムにおける病原体濃度の濃度区分と許容範囲の候補範囲との対応関係を示す図である。 図14は、実施の形態の変形例1に係る空間環境制御システムの動作を示すフローチャートである。 図15は、実施の形態の変形例2に係る空間環境制御装置の構成を示すブロック図である。 図16は、実施の形態の変形例2に係る空間環境制御システムにおける病原体濃度の濃度区分と許容範囲の候補範囲との対応関係の一例を示す図である。 図17は、実施の形態の変形例2に係る空間環境制御システムにおける病原体濃度の濃度区分と許容範囲の候補範囲との対応関係の別の一例を示す図である。 図18は、実施の形態の変形例2に係る空間環境制御システムにおける病原体濃度の濃度区分と許容範囲の候補範囲との対応関係の別の一例を示す図である。 図19は、実施の形態の変形例2に係る空間環境制御システムにおける病原体濃度の濃度区分と許容範囲の候補範囲との対応関係の別の一例を示す図である。 図20は、実施の形態の変形例3に係る空間環境制御装置の構成を示すブロック図である。 図21は、実施の形態の変形例3に係る空間環境制御システムの表示装置への表示例を示す図である。
 (本開示の概要)
 病原体には、空間の環境に応じて感染力の強弱がある。このため、調整機器が空間の環境の調整を行うことで、病原体の感染力を弱めることができる。例えば、空間の温度又は湿度を高くすることで、病原体の拡散を抑えることができ、感染力を弱めることができる。また、例えば、塩素濃度又はオゾン濃度を高くすることで、病原体を除去することができ、感染力を弱めることができる。
 一方で、温度又は湿度を高くすることにより、人にとって快適な環境が損なわれる恐れがある。同様に、塩素濃度又はオゾン濃度を高くすることにより、塩素臭又はオゾン臭が強まるので、快適な環境が損なわれる恐れがある。
 そこで、本開示の一態様に係る空間環境制御システムは、空間中に存在する病原体を検出する病原体センサと、前記空間の温度、湿度、塩素濃度及びオゾン濃度の少なくとも1つを示す環境値を検出する環境センサと、前記空間の環境の調整を行う調整機器と、前記調整機器を制御する制御部とを備え、前記制御部は、前記病原体センサによって検出された病原体の前記空間中の濃度である病原体濃度に基づいて前記環境値の許容範囲を設定し、設定した許容範囲内で前記環境値が収まるように前記調整機器を制御する。
 これにより、病原体濃度に基づいて環境値の許容範囲が設定されるので、例えば、病原体濃度が低い場合には許容範囲を狭くして、人にとって快適な環境を確保することができる。逆に、例えば、病原体濃度が高い場合には許容範囲を広くして、病原体の感染力の弱体化を優先させることができる。このように、本態様に係る空間環境制御システムによれば、人にとっての快適性と病原体の感染力の弱体化とを両立させることができる。
 また、例えば、前記制御部は、前記病原体濃度が所定の閾値より低い場合に、前記許容範囲を第1の範囲に設定し、前記病原体濃度が前記閾値より高い場合に、前記許容範囲を、前記第1の範囲より広い第2の範囲に設定してもよい。
 これにより、病原体濃度が閾値より高い場合には、病原体濃度が閾値より低い場合よりも許容範囲が広くなるので、快適性が多少損なわれる恐れがあるものの、病原体の感染力の弱体化を優先させることができる。逆に、病原体濃度が閾値より低い場合には、病原体の感染力がそもそも弱いので、病原体濃度が閾値より高い場合よりも許容範囲が狭くすることで、人にとって快適な環境を確保することができる。このように、本態様に係る空間環境制御システムによれば、人にとっての快適性と病原体の感染力の弱体化とを両立させることができる。
 また、例えば、前記制御部は、1つ以上の閾値で区分される複数の濃度区分のいずれに前記病原体濃度が含まれるかを判定し、前記複数の濃度区分に対応付けられた互いに異なる複数の範囲のうち、前記病原体濃度が含まれる濃度区分に対応する範囲に、前記許容範囲を設定してもよい。
 これにより、濃度区分と許容範囲とが対応付けられているので、例えば、閾値の個数を増やした場合、濃度区分の区分数が増えるので、変更可能な許容範囲の候補数も増える。このため、病原体濃度に基づいて適切な許容範囲が設定されやすくなるので、人にとっての快適性と病原体の感染力の弱体化との両立を効果的に行うことができる。
 また、例えば、前記制御部は、時刻及び日付の少なくとも一方に関する日時情報に基づいて、前記1つ以上の閾値及び前記複数の範囲の少なくとも1つを変更してもよい。
 例えばインフルエンザが冬季に流行しやすいように、病原体には、空間の環境だけでなく、季節などの日時に応じて感染力の強弱がある。本態様に係る空間環境制御システムによれば、病原体濃度だけでなく、日時情報に基づいて適切な許容範囲が設定されやすくなるので、人にとっての快適性と病原体の感染力の弱体化との両立を更に効果的に行うことができる。
 また、例えば、前記制御部は、所定の期間が経過する度に、前記許容範囲の設定を行ってもよい。
 これにより、所定の期間が経過する度に許容範囲が設定されるので、例えば、病原体濃度が高まった場合には、速やかに病原体の感染力の弱体化を行うことができる。また、逆に、病原体濃度が低くなった場合には、速やかに人にとって快適な空間に戻すことができる。このように、本態様に係る空間環境制御システムによれば、人にとっての快適性と病原体の感染力の弱体化との両立を更に効果的に行うことができる。
 また、例えば、前記制御部は、設定した許容範囲内の上限値に前記環境値が一致するように前記調整機器を制御してもよい。
 これにより、病原体の感染力の弱体化を短期間で行うことができる。このため、感染力の弱体化を優先し、快適性が多少損なわれる恐れがある期間を短くすることができるので、人にとっての快適性と病原体の感染力の弱体化との両立を更に効果的に行うことができる。
 また、例えば、前記空間環境制御システムは、前記調整機器を少なくとも1つ備え、少なくとも1つの前記調整機器は、前記空間の温度を調整する温度調整機器、前記空間の湿度を調整する湿度調整機器、前記空間に次亜塩素酸を放出する次亜塩素酸発生器、及び、前記空間にオゾンを放出するオゾン発生器の少なくとも1つを含んでもよい。
 これにより、例えば、空間の温度又は湿度を高くすることで、病原体の拡散を抑えることができ、感染力を弱めることができる。また、空間の温度又は湿度を所定の範囲内で保つことで、人にとって快適な環境を維持することができる。また、例えば、次亜塩素酸又はオゾンを空間に放出して空間の塩素濃度又はオゾン濃度を高くすることで、病原体を除去することができ、感染力を弱めることができる。また、次亜塩素酸又はオゾンの放出を停止することで、不快な臭いを抑制し、人にとって快適な環境を維持することができる。このように、本態様に係る空間環境制御システムは、温度、湿度、塩素濃度又はオゾン濃度を調整する調整機器を少なくとも1つ備えることで、人にとっての快適性と病原体の感染力の弱体化との両立を効果的に行うことができる。
 また、例えば、本開示の一態様に係る空間環境制御装置は、空間の環境の調整を行う調整機器を制御する制御部を備え、前記制御部は、前記空間中に存在する病原体を検出する病原体センサによって検出された病原体の前記空間中の濃度である病原体濃度に基づいて、前記空間の温度、湿度、塩素濃度及びオゾン濃度の少なくとも1つを示す環境値の許容範囲を設定し、設定した許容範囲内で前記環境値が収まるように前記調整機器を制御する。
 これにより、上述した空間環境制御システムと同様に、人にとっての快適性と病原体の感染力の弱体化とを両立させることができる。
 また、例えば、本開示の一態様に係る空間環境制御方法は、空間中に存在する病原体を検出する病原体センサによって検出された病原体の前記空間中の濃度である病原体濃度に基づいて、前記空間の温度、湿度、塩素濃度及びオゾン濃度の少なくとも1つを示す環境値の許容範囲を設定し、設定した許容範囲内で前記環境値が収まるように、前記空間の環境の調整を行う調整機器を制御する。また、本開示の一態様に係るプログラムは、上記空間環境制御方法をコンピュータに実行させるためのプログラムである。
 これにより、上述した空間環境制御システムと同様に、人にとっての快適性と病原体の感染力の弱体化とを両立させることができる。
 以下では、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。
 [制御対象になる空間]
 まず、各実施の形態に係る空間環境制御システムによる環境の制御対象となる空間の一例について、図1を用いて説明する。図1は、各実施の形態に係る空間環境制御システムによる環境の制御対象になる空間10を示す図である。
 図1に示されるように、空間10は、屋内の空間であり、例えば一軒家、マンション、オフィス、病院、介護施設などの建物の一部屋の内部空間である。空間10は、ドア43及び窓44などを開けることで、他の空間又は屋外と繋がり、人の出入り及び空気の入れ換えなどが可能である。
 図1に示されるように、空間10には、病原体11が存在している。具体的には、病原体11は、空間10中を浮遊している。病原体11は、人に病気を引き起こす細菌などの微生物又はウイルスである。具体的には、病原体11には、結核菌若しくはMRSA(メチシリン耐性黄色ブドウ球菌)、肺炎球菌などの細菌、又は、インフルエンザウイルス、ノロウイルス、RSウイルス若しくは麻しんウイルスなどのウイルスが含まれる。
 空間10には、病原体11を検出する病原体センサ20が配置されている。また、空間10には、温湿度センサ30及び空気質センサ31が配置されている。温湿度センサ30は、空間10の温度と湿度とを検出する環境センサの一例である。空気質センサ31は、空間10の塩素濃度又はオゾン濃度を検出する環境センサの一例である。
 図1に示されるように、空間10には、空間10の環境の調整を行う調整機器の一例であるエアコン40及び浄化物質発生器41が配置されている。また、ドア43、窓44及びブラインド45がそれぞれ、調整機器の一例として設けられている。さらに、空間10には、これらの調整機器を制御する制御装置50が配置されている。
 エアコン40は、例えば、空間10の温度を調整する温度調整機器の一例である。エアコン40は、空間10の湿度を調整する湿度調整機器の一例でもある。エアコン40は、制御装置50による制御に基づいて、空間10の温度及び湿度の少なくとも一方を調整する。
 浄化物質発生器41は、浄化物質42を空間10に放出する。浄化物質42は、具体的には、霧状の液体又は気体であり、病原体11を分解するなどして除去することができる物質である。例えば、浄化物質42は、ミスト化された次亜塩素酸水又はオゾン水である。つまり、浄化物質発生器41は、空間10に次亜塩素酸を放出する次亜塩素酸発生器の一例、又は、空間10にオゾンを放出するオゾン発生器の一例である。浄化物質発生器41は、制御装置50による制御に基づいて次亜塩素酸又はオゾンの放出量を調整する。放出量に応じて、空間10の塩素濃度又はオゾン濃度が上昇し、又は、その上昇が抑制される。
 ドア43、窓44及びブラインド45はそれぞれ、制御装置50によって開閉が制御される。ドア43及び窓44を開けることで、空間10の空気の入れ換えを行うことができる。空気の入れ換えによって、空間10中を浮遊する病原体11を屋外又は他の空間に放出させ、空間10中の病原体11の濃度を低くすることができる。また、空気の入れ換えによって、空間10中に放出した浄化物質42を屋外又は他の空間に放出させ、空間10中の浄化物質42の濃度を低くすることができる。
 また、ブラインド45の開閉によって、太陽光の採光量を調整することができる。太陽光には紫外光が含まれているので、空間10内に採り込む紫外光の光量を調整することができる。採り込まれた紫外光が病原体11に照射されることで病原体11が分解され、空間10中の病原体11の濃度を低くすることができる。
 制御装置50は、空間10の環境を調整する1つ以上の調整機器を制御する。制御装置50は、例えば、空間10の壁などに設置された端末機器である。制御装置50は、エアコン40、浄化物質発生器41、ドア43、窓44及びブラインド45の各々と有線又は無線で接続されており、それぞれの動作を制御する。
 以下で説明する各実施の形態に係る空間環境制御システムは、空間10の環境を制御する。空間10の環境には、例えば、空間10の温度及び湿度、空間10を満たす空気に含まれる塩素濃度及びオゾン濃度、並びに、空間10内を照らす照明光又は太陽光の光量などが含まれる。
 空間環境制御システムは、病原体センサ20及び環境センサの検出結果に基づいて、複数の調整機器の少なくとも1つを制御する。これにより、空間環境制御システムは、空間10の環境を調整し、病原体11の感染力を弱体化させる。また、空間環境制御システムは、複数の調整機器の少なくとも1つを制御することで、空間10に存在する人にとっての快適な環境を形成する。詳細な動作については、各実施の形態で説明する。
 なお、図1に示される空間10内の各センサ及び各機器の配置は一例にすぎない。例えば、エアコン40及び浄化物質発生器41の少なくとも一方は配置されていなくてもよい。あるいは、浄化物質発生器41として、次亜塩素酸発生器とオゾン発生器との両方が配置されていてもよい。
 また、空間10には、ドア43及び窓44の少なくとも一方は設けられていなくてもよい。窓44には、ブラインド45が設けられていなくてもよい。病原体センサ20、温湿度センサ30及び空気質センサ31の少なくとも1つは、エアコン40及び浄化物質発生器41の少なくとも一方に設けられていてもよい。
 空間10には、温湿度センサ30の代わりに、温度のみを検出する温度センサが配置されていてもよい。あるいは、空間10には、湿度のみを検出する湿度センサが配置されていてもよい。空間10には、塩素濃度センサのみが配置されていてもよく、オゾン濃度センサのみが配置されていてもよい。また、空間10には、空間10中を浮遊する粉塵の量を検出する粉塵量センサが配置されていてもよい。
 また、図示しないが、空間10には、紫外光を発するUV光源が配置されていてもよい。空間10には、空間10内の空気と屋外又は他の空間の空気とを入れ換える換気装置が配置されていてもよい。
 また、制御装置50は、空間10に配置されていなくてもよく、空間10の外側に設けられていてもよい。制御装置50と各センサ及び各調整機器とは、有線又は無線で通信可能であってもよい。
 (実施の形態1)
 続いて、実施の形態1について説明する。
 [構成]
 まず、本実施の形態に係る空間環境制御システムの構成について、図2を用いて説明する。
 図2は、本実施の形態に係る空間環境制御システム100の構成を示すブロック図である。図2に示されるように、空間環境制御システム100は、病原体センサ120と、温度センサ130と、温度調整機器140と、空間環境制御装置150とを備える。本実施の形態に係る空間環境制御システム100は、空間10の温度を制御する。
 病原体センサ120は、空間10中に存在する病原体11を検出する。具体的には、病原体センサ120は、空間10中の空気を一定量捕集し、捕集した空気に含まれる病原体11の個体数をカウントする。病原体センサ120は、検出結果として、病原体濃度を示す病原体濃度情報を空間環境制御装置150に出力する。病原体濃度は、例えば、単位体積当たりの病原体11の個体数で表される。病原体センサ120は、例えば、図1に示される病原体センサ20に相当する。
 温度センサ130は、空間10の温度を環境値の一例として検出する環境センサの一例である。温度センサ130は、検出した温度を示す温度情報を空間環境制御装置150に出力する。温度センサ130は、例えば、図1に示される温湿度センサ30に相当する。
 温度調整機器140は、空間10の温度を調整する機器である。具体的には、温度調整機器140は、空間10の暖房又は冷房を行うことで、空間10の温度を上昇させ、かつ/又は、低下させる。温度調整機器140は、例えば、図1に示されるエアコン40に相当する。なお、温度調整機器140は、ファンヒーター、ストーブ、ハロゲンヒーター、カーボンヒーターなどの暖房機器、及び、クーラー、冷風扇、冷風機などの冷房機器の少なくとも1つでもよい。
 空間環境制御装置150は、病原体センサ120及び温度センサ130の検出結果に基づいて温度調整機器140を制御する。空間環境制御装置150は、例えば、図1に示さえる制御装置50に相当する。図2に示されるように、空間環境制御装置150は、病原体濃度情報取得部151と、温度情報取得部152と、制御部153とを備える。
 病原体濃度情報取得部151は、病原体センサ120から出力される病原体濃度情報を取得する。例えば、病原体濃度情報取得部151は、病原体センサ120と有線又は無線で接続された通信インタフェースで実現される。
 温度情報取得部152は、温度センサ130から出力される温度情報を取得する。例えば、温度情報取得部152は、温度センサ130と有線又は無線で接続された通信インタフェースで実現される。
 制御部153は、病原体濃度情報及び温度情報に基づいて、温度調整機器140を制御する。制御部153は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどで実現される。制御部153は、専用の電子回路で実現されてもよい。
 具体的には、制御部153は、病原体濃度情報が示す病原体濃度に基づいて温度の許容範囲を設定し、設定した許容範囲内で温度が収まるように、温度調整機器140を制御する。本実施の形態では、制御部153は、病原体濃度が所定の閾値より低い場合に、温度の許容範囲を第1の温度範囲に設定し、病原体濃度が閾値より高い場合に、温度の許容範囲を、第1の温度範囲より広い第2の温度範囲に設定する。
 本実施の形態では、第1の温度範囲及び第2の温度範囲はそれぞれ、温度の上限値及び下限値によって定められる範囲である。第1の温度範囲は、例えば、第2の温度範囲に含まれている。具体的には、第1の温度範囲の下限値は、第2の温度範囲の下限値以上の値であり、第1の温度範囲の上限値は、第2の温度範囲の上限値以下の値である。
 第1の温度範囲は、人にとって快適な環境として定められた温度の範囲である。第1の温度範囲は、例えばISO(国際標準化機構)規格、又は、PMV(予想平均温冷感申告)法に基づいて快適と定められる温度の範囲である。例えば、第1の温度範囲は、22℃以上27℃以下の範囲であるが、これに限定されない。例えば、第1の温度範囲は、20℃以上32℃以下の範囲でもよく、当該範囲に含まれる範囲でもよい。
 第2の温度範囲は、病原体11の感染力を弱体化させることができる温度の範囲である。第2の温度範囲には、人にとって不快と感じられる範囲も含まれる。具体的には、第2の温度範囲には、快適な温度範囲よりも高温又は低温の範囲が含まれる。例えば、第2の温度範囲は、22℃以上31℃以下の範囲であるが、これに限定されない。第2の温度範囲の下限値と第1の温度範囲の下限値とは等しくなくてもよい。例えば、第2の温度範囲は、15℃以上35℃以下の範囲でもよく、当該範囲に含まれる範囲でもよい。
 病原体濃度の閾値は、例えば、病原体11の種別及びその感染力などに基づいて定められる値である。閾値は、例えば、病原体11による感染の危険性が発生するか否かの判定基準となる値である。病原体濃度が閾値を上回った場合に、病原体11による感染の危険性が発生する。病原体濃度が閾値より低い場合には、病原体11による感染はほぼ発生しない。
 制御部153は、例えば、所定の期間が経過する度に、温度の許容範囲の設定を行う。本実施の形態では、所定の期間が経過する度に、病原体センサ120によって病原体11が検出され、病原体濃度情報が出力される。制御部153は、病原体濃度情報取得部151が濃度情報を取得する度に、取得した濃度情報に基づいて温度の許容範囲の設定を行う。
 制御部153は、例えば、浄化モード及び快適モードを含む複数の動作モードから選択された1つのモードで動作する。制御部153は、いずれのモードにおいても、設定された許容範囲内で空間10の温度が収まるように、温度調整機器140を制御する。例えば、制御部153は、温度調整機器140に制御信号を出力する。制御信号には、温度調整機器140の動作の開始及び停止、動作の内容、並びに、設定した許容範囲などの指示が含まれる。動作の内容は、例えば、暖房及び冷房、並びに、設定温度などである。
 浄化モードは、空間10中に存在する病原体11の感染力を弱体化させるための動作モードである。例えば、制御部153は、浄化モードで動作する場合に、許容範囲内の上限値に空間10の温度が一致するように、温度調整機器140を制御する。浄化モードにおける温度の許容範囲は、例えば第2の温度範囲である。
 快適モードは、空間10を人にとって快適な温度環境にするための動作モードである。例えば、制御部153は、快適モードで動作する場合に、許容範囲内の所定値に空間10の温度が一致するように、温度調整機器140を制御する。快適モードにおける温度の許容範囲は、例えば第1の温度範囲である。
 [動作]
 続いて、本実施の形態に係る空間環境制御システム100の動作について、図3を用いて説明する。図3は、本実施の形態に係る空間環境制御システム100の動作を示すフローチャートである。
 図3に示されるように、まず、空間環境制御装置150は、病原体濃度を取得する(S110)。具体的には、病原体センサ120が空間10中に存在する病原体11を検出し、検出結果に基づいて生成した病原体濃度情報を空間環境制御装置150に出力する。病原体濃度情報取得部151は、出力された病原体濃度情報を取得し、制御部153に出力する。
 次に、制御部153は、病原体濃度情報が示す病原体濃度が閾値より高いか否かを判定する(S112)。病原体濃度が閾値より高い場合(S112でYes)、制御部153は、温度の許容範囲を第2の温度範囲に設定する(S114)。制御部153は、温度が第2の温度範囲に収まるように、温度調整機器140を制御することで、空間10を暖房する(S116)。
 インフルエンザウイルスなどのウイルスは、高温環境下では生存率が低下する。このため、空間10の温度を上昇させることで、病原体11の個体数を減らし、感染力を低下させることができる。このように、病原体濃度が閾値より高い場合には、制御部153は、浄化モードで動作する。つまり、制御部153は、病原体濃度が閾値より高い場合に、許容範囲を広くすることで、病原体11の浄化を優先させる。
 病原体濃度が閾値より低い場合(S112でNo)、制御部153は、温度の許容範囲を第1の温度範囲に設定する(S118)。制御部153は、温度が第1の温度範囲に収まるように、温度調整機器140を制御することで、空間10を快適な環境で維持する(S120)。このように、病原体濃度が閾値より低い場合には、制御部153は、快適モードで動作する。
 なお、病原体濃度が閾値に等しい場合は、温度の許容範囲を第1の温度範囲に設定してもよく、第2の温度範囲に設定してもよい。
 所定の期間が経過するまで(S122でNo)、状態が維持される。所定の期間が経過した後(S122でYes)、ステップS110に戻り、病原体濃度の取得からの処理が繰り返される。所定の期間は、例えば10分以上1時間以内の範囲であるが、これに限らない。
 ここで、図3に示されるフローチャートに沿って空間環境制御システム100が動作したときの空間10の温度変化の具体例について、図4を用いて説明する。図4は、本実施の形態に係る空間環境制御システム100の動作中の空間10の温度の時間変化を示す図である。図4では、横軸に時間を示しており、縦軸に空間10の温度を示している。
 図4に示されるように、時刻t~tの各々で、病原体センサ120が病原体11の検出を行っている。例えば、時刻tから時刻tまでの期間が、図3に示されるステップS122の所定の期間に相当する。所定の期間は、常に一定の期間でなくてもよく、異なる期間を含んでもよい。例えば、時刻tから時刻tまでの期間と時刻tから時刻tまでの期間とは異なっていてもよい。
 図4で示される例では、時刻tに至るまでの期間は、許容範囲が第1の温度範囲であり、空間10には快適な環境が形成されている。例えば、制御部153が温度調整機器140を制御することで、空間10の温度が23℃で保たれている。ここでは、第1の温度範囲は、下限値T1minが22℃、上限値T1maxが27℃となる範囲であり、人にとっての快適性が優先された範囲である。
 時刻tでは、病原体濃度が閾値より低いと判定されているので、制御部153は、温度調整機器140を制御することで、快適な環境を維持する。時刻tでは、病原体濃度が閾値より高いと判定されたため、制御部153は、許容範囲を第2の温度範囲に設定し、温度調整機器140を暖房で動作させる。第2の温度範囲は、下限値T2minが22℃、上限値T2maxが31℃となる範囲であり、病原体11の浄化を優先させた範囲である。
 温度調整機器140が暖房動作を行うことで、時刻t以降、空間10の温度が上昇する。許容範囲が第1の温度範囲から第2の温度範囲に変更されているので、第1の温度範囲の上限値T1maxである27℃を超えて、空間10の温度は上昇する。このとき、制御部153は、第2の温度範囲の上限値T2maxである31℃を超えないように、温度調整機器140を制御する。
 時刻tでは、病原体濃度が閾値より高いと判定されているので、制御部153は、許容範囲を第2の温度範囲のままで維持する。制御部153は、空間10の温度が31℃で保たれるように、温度調整機器140を制御する。時刻t~時刻tにかけて、空間10の温度が高温になるので、病原体11の生存率が低下し、病原体濃度が低下する。
 時刻tでは、病原体濃度が閾値より低いと判定されているので、制御部153は、許容範囲を第1の温度範囲に戻し、温度調整機器140を冷房で動作させる。温度調整機器140が冷房動作を行うことで、時刻t以降、空間10の温度が低下する。空間10の温度が第1の温度範囲の上限値T1maxを下回り、第1の温度範囲に収まる範囲内で維持されるように、制御部153は、温度調整機器140を制御する。
 なお、図4に示される例では、快適性を優先する場合に、制御部153は、空間10の温度が第1の温度範囲の中央寄りの温度になるように温度調整機器140を制御したが、これに限らない。例えば、制御部153は、空間10の温度が第1の温度範囲の下限値T1minで保たれるように温度調整機器140を制御してもよく、空間10の温度が第1の温度範囲の上限値T1maxで保たれるように温度調整機器140を制御してもよい。
 また、浄化を優先する場合に、制御部153は、空間10の温度が第2の温度範囲の上限値T2maxで保たれるように温度調整機器140を制御したが、これに限らない。例えば、制御部153は、第2の温度範囲に含まれ、かつ、第1の温度範囲に含まれない範囲、すなわち、第1の温度範囲の上限値T1max以上、第2の温度範囲の上限値T2max以下の範囲に空間10の温度が収まるように、温度調整機器140を制御してもよい。例えば、制御部153は、上限値T1maxと上限値T2maxとの間の中央値に空間10の温度が一致するように、温度調整機器140を制御してもよい。
 以上のように、本実施の形態に係る空間環境制御システム100によれば、病原体濃度に基づいて温度の許容範囲が設定される。このため、例えば、病原体濃度が閾値より高くて感染の危険性が高い場合に、空間10を高温にして病原体11の生存率を下げることができる。これにより、病原体11による感染の危険性が高まった場合には、快適性が多少損なわれる恐れがあるものの、病原体11の感染力を弱体化させることができる。また、病原体濃度が閾値より低くて感染の危険性が低い場合には、空間10を人にとって快適な環境で保つことができる。
 このように、病原体濃度に基づいて温度の許容範囲が設定されるので、人にとっての快適な環境と、病原体11の感染力の弱体化とを両立させることができる。
 (実施の形態2)
 続いて、実施の形態2について説明する。
 実施の形態1では空間の温度を制御したのに対して、本実施の形態では空間の湿度を制御する。以下では、図1に示される空間10が、本実施の形態に係る空間環境制御システムによる環境の制御対象の空間である場合を例に説明する。なお、以下の説明において、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 [構成]
 まず、本実施の形態に係る空間環境制御システムの構成について、図5を用いて説明する。
 図5は、本実施の形態に係る空間環境制御システム200の構成を示すブロック図である。図5に示されるように、空間環境制御システム200は、病原体センサ120と、湿度センサ230と、湿度調整機器240と、空間環境制御装置250とを備える。本実施の形態に係る空間環境制御システム200は、空間10の湿度を制御する。
 湿度センサ230は、空間10の湿度を環境値の一例として検出する環境センサの一例である。湿度センサ230は、検出した湿度を示す湿度情報を空間環境制御装置250に出力する。湿度センサ230は、例えば、図1に示される温湿度センサ30に相当する。
 湿度調整機器240は、空間10の湿度を調整する機器である。具体的には、湿度調整機器240は、空間10の加湿又は除湿を行うことで、空間10の湿度を上昇させ、かつ/又は、低下させる。湿度調整機器240は、例えば、図1に示されるエアコン40に相当する。なお、湿度調整機器240は、加湿器及び除湿器の少なくとも1つでもよい。
 空間環境制御装置250は、病原体センサ120及び湿度センサ230の検出結果に基づいて湿度調整機器240を制御する。空間環境制御装置250は、例えば、図1に示される制御装置50に相当する。図5に示されるように、空間環境制御装置250は、病原体濃度情報取得部151と、湿度情報取得部252と、制御部253とを備える。
 湿度情報取得部252は、湿度センサ230から出力される湿度情報を取得する。例えば、湿度情報取得部252は、湿度センサ230と有線又は無線で接続された通信インタフェースで実現される。
 制御部253は、病原体濃度情報及び湿度情報に基づいて、湿度調整機器240を制御する。制御部253は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどで実現される。制御部253は、専用の電子回路で実現されてもよい。
 具体的には、制御部253は、病原体濃度情報が示す病原体濃度に基づいて湿度の許容範囲を設定し、設定した許容範囲内で湿度が収まるように、湿度調整機器240を制御する。本実施の形態では、制御部253は、病原体濃度が所定の閾値より低い場合に、湿度の許容範囲を第1の湿度範囲に設定し、病原体濃度が閾値より高い場合に、湿度の許容範囲を、第1の湿度範囲より広い第2の湿度範囲に設定する。
 本実施の形態では、第1の湿度範囲及び第2の湿度範囲はそれぞれ、湿度の上限値及び下限値によって定められる範囲である。第1の湿度範囲は、例えば、第2の湿度範囲に含まれている。具体的には、第1の湿度範囲の下限値は、第2の湿度範囲の下限値以上の値であり、第1の湿度範囲の上限値は、第2の湿度範囲の上限値以下の値である。
 第1の湿度範囲は、人にとって快適な環境として定められた湿度の範囲である。第1の湿度範囲は、例えば建築物衛生法に基づいて快適と定められる湿度の範囲である。例えば、第1の湿度範囲は、50%以上70%以下の範囲であるが、これに限定されない。第1の湿度範囲は、例えば40%以上75%以下の範囲でもよく、当該範囲に含まれる範囲でもよい。
 第2の湿度範囲は、病原体11の感染力を弱体化させることができる湿度の範囲である。第2の湿度範囲には、人にとって不快と感じられる範囲も含まれる。具体的には、第2の湿度範囲には、快適な湿度範囲よりも高湿又は低湿の範囲が含まれる。例えば、第2の湿度範囲は、50%以上90%以下の範囲であるが、これに限定されない。第2の湿度範囲は、例えば20%以上90%以下の範囲でもよく、当該範囲に含まれる範囲でもよい。
 制御部253は、例えば、浄化モード及び快適モードを含む複数の動作モードから選択された1つのモードで動作する。制御部253は、いずれのモードにおいても、設定された許容範囲内で空間10の湿度が収まるように、湿度調整機器240を制御する。例えば、制御部253は、湿度調整機器240に制御信号を出力する。制御信号には、湿度調整機器240の動作の開始及び停止、動作の内容、並びに、設定した許容範囲などの指示が含まれる。動作の内容は、例えば、加湿及び除湿、並びに、設定湿度などである。
 浄化モードは、空間10中に存在する病原体11の感染力を弱体化させるための動作モードである。例えば、制御部253は、浄化モードで動作する場合に、許容範囲内の上限値に空間10の湿度が一致するように、湿度調整機器240を制御する。浄化モードにおける湿度の許容範囲は、例えば第2の湿度範囲である。
 快適モードは、空間10を人にとって快適な湿度環境にするための動作モードである。例えば、制御部253は、快適モードで動作する場合に、許容範囲内の所定値に空間10の湿度が一致するように、湿度調整機器240を制御する。快適モードにおける湿度の許容範囲は、例えば第1の湿度範囲である。
 [動作]
 続いて、本実施の形態に係る空間環境制御システム200の動作について、図6を用いて説明する。図6は、本実施の形態に係る空間環境制御システム200の動作を示すフローチャートである。
 図6に示されるように、病原体濃度と閾値との判定処理(S112)までの処理は、実施の形態1と同様である。
 病原体濃度が閾値より高い場合(S112でYes)、制御部253は、湿度の許容範囲を第2の湿度範囲に設定する(S214)。制御部253は、湿度が第2の湿度範囲に収まるように、湿度調整機器240を制御することで、空間10を加湿する(S216)。
 インフルエンザウイルスなどのウイルスは、高湿環境下では生存率が低下する。このため、空間10の湿度を上昇させることで、病原体11の個体数を減らし、感染力を低下させることができる。このように、病原体濃度が閾値より高い場合には、制御部253は、浄化モードで動作する。つまり、制御部253は、病原体濃度が閾値より高い場合に、湿度の許容範囲を広くすることで、病原体11の浄化を優先させる。
 なお、湿度が高い状態にある場合、空間10内の壁及び窓44などには水分が付着しやすい。空間10内の水分量が多い場合、病原体11は、水分に捕えられて空気中に浮遊しにくくなる。したがって、病原体11が空間10内に存在している状態であっても、浮遊する病原体11の個体数を減らすことにより、感染力を低下させることができる。
 病原体濃度が閾値より低い場合(S112でNo)、制御部253は、湿度の許容範囲を第1の湿度範囲に設定する(S218)。制御部253は、湿度が第1の湿度範囲に収まるように、湿度調整機器240を制御することで、空間10を快適な環境で維持する(S220)。このように、病原体濃度が閾値より低い場合には、制御部253は、快適モードで動作する。
 なお、病原体濃度が閾値に等しい場合には、湿度の許容範囲を第1の湿度範囲に設定してもよく、第2の湿度範囲に設定してもよい。
 所定の期間が経過するまで(S122でNo)、状態が維持される。所定の期間が経過した後(S122でYes)、ステップS110に戻り、病原体濃度の取得からの処理が繰り返される。
 ここで、図6に示されるフローチャートに沿って空間環境制御システム200が動作したときの空間10の湿度変化の具体例について、図7を用いて説明する。図7は、本実施の形態に係る空間環境制御システム200の動作中の空間10の湿度の時間変化を示す図である。図7では、横軸に時間を示しており、縦軸に空間10の湿度を示している。
 図7で示される例では、時刻tに至るまでの期間は、許容範囲が第1の湿度範囲であり、空間10には快適な環境が形成されている。例えば、制御部253が湿度調整機器240を制御することで、空間10の湿度が55%で保たれている。ここでは、第1の湿度範囲は、下限値H1minが50%、上限値H1maxが70%となる範囲であり、人にとっての快適性が優先された範囲である。
 時刻tでは、病原体濃度が閾値より低いと判定されているので、制御部253は、湿度調整機器240を制御することで、快適な環境を維持する。時刻tでは、病原体濃度が閾値より高いと判定されたため、制御部253は、許容範囲を第2の湿度範囲に設定し、湿度調整機器240を加湿で動作させる。第2の湿度範囲は、下限値H2minが50%、上限値H2maxが90%となる範囲であり、病原体11の浄化を優先させた範囲である。
 湿度調整機器240が加湿動作を行うことで、時刻t以降、空間10の湿度が上昇する。許容範囲が第1の湿度範囲から第2の湿度範囲に変更されているので、第1の湿度範囲の上限値H1maxである70%を超えて、空間10の湿度は上昇する。このとき、制御部253は、第2の湿度範囲の上限値H2maxである90%を超えないように、湿度調整機器240を制御する。
 時刻tでは、病原体濃度が閾値より高いと判定されているので、制御部253は、許容範囲を第2の湿度範囲のままで維持する。制御部253は、空間10の湿度が90%で保たれるように、湿度調整機器240を制御する。時刻t~時刻tにかけて、空間10の湿度が高湿になるので、病原体11の生存率が低下し、病原体濃度が低下する。
 時刻tでは、病原体濃度が閾値より低いと判定されているので、制御部253は、許容範囲を第1の湿度範囲に戻し、湿度調整機器240を除湿で動作させる。湿度調整機器240が除湿動作を行うことで、時刻t以降、空間10の湿度が低下する。空間10の湿度が第1の湿度範囲の上限値H1maxを下回り、第1の湿度範囲に収まる範囲内で維持されるように、制御部253は、湿度調整機器240を制御する。
 なお、図7に示される例では、快適性を優先する場合に、制御部253は、空間10の湿度が第1の湿度範囲の中央寄りの湿度になるように湿度調整機器240を制御したが、これに限らない。例えば、制御部253は、空間10の湿度が第1の湿度範囲の下限値H1minで保たれるように湿度調整機器240を制御してもよく、空間10の湿度が第1の湿度範囲の上限値H1maxで保たれるように湿度調整機器240を制御してもよい。
 また、浄化を優先する場合に、制御部253は、空間10の湿度が第2の湿度範囲の上限値H2maxで保たれるように湿度調整機器240を制御したが、これに限らない。例えば、制御部253は、第2の湿度範囲に含まれ、かつ、第1の湿度範囲に含まれない範囲、すなわち、第1の湿度範囲の上限値H1max以上、第2の湿度範囲の上限値H2max以下の範囲に空間10の湿度が収まるように、湿度調整機器240を制御してもよい。例えば、制御部253は、上限値H1maxと上限値H2maxとの間の中央値に空間10の湿度が一致するように、湿度調整機器240を制御してもよい。
 以上のように、本実施の形態に係る空間環境制御システム200によれば、病原体濃度に基づいて湿度の許容範囲が設定される。このため、例えば、病原体濃度が閾値より高くて感染の危険性が高い場合に、空間10を高湿にして病原体11の生存率を下げることができる。これにより、病原体11による感染の危険性が高まった場合には、快適性が多少損なわれる恐れがあるものの、病原体11の感染力を弱体化させることができる。また、病原体濃度が閾値より低くて感染の危険性が低い場合には、空間10を人にとって快適な環境で保つことができる。
 このように、病原体濃度に基づいて湿度の許容範囲が設定されるので、人にとっての快適な環境と、病原体11の感染力の弱体化とを両立させることができる。
 (実施の形態3)
 続いて、実施の形態3について説明する。
 本実施の形態では、空間に浄化物質を放出することで、空間中の浄化物質の濃度を制御する。以下では、図1に示される空間10が、本実施の形態に係る空間環境制御システムによる環境の制御対象の空間である場合を例に説明する。なお、以下の説明において、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 [構成]
 まず、本実施の形態に係る空間環境制御システムの構成について、図8を用いて説明する。
 図8は、本実施の形態に係る空間環境制御システム300の構成を示すブロック図である。図8に示されるように、空間環境制御システム300は、病原体センサ120と、塩素濃度センサ331と、次亜塩素酸発生器341と、換気装置342と、空間環境制御装置350とを備える。本実施の形態に係る空間環境制御システム300は、空間10に霧状の次亜塩素酸水を浄化物質42として放出する。
 塩素濃度センサ331は、空間10の塩素濃度を環境値の一例として検出する環境センサの一例である。塩素濃度センサ331は、検出した塩素濃度を示す塩素濃度情報を空間環境制御装置350に出力する。塩素濃度センサ331は、例えば、図1に示される空気質センサ31に相当する。
 次亜塩素酸発生器341は、空間10に次亜塩素酸を放出する機器である。例えば、次亜塩素酸発生器341は、次亜塩素酸水を生成し、生成した次亜塩素酸水をミスト化して放出する。次亜塩素酸発生器341は、次亜塩素酸水の放出量を調整することにより、空間10の塩素濃度を上昇させる。次亜塩素酸発生器341は、例えば図1に示される浄化物質発生器41に相当する。
 換気装置342は、空間10内の空気を屋外又はその他の空間と入れ換える装置である。例えば、換気装置342は、次亜塩素酸の濃度が高まった空気を外気と入れ換えることで、空間10中の塩素濃度を低下させる。
 換気装置342は、図1に示されるドア43及び窓44などに相当する。あるいは、換気装置342は、換気扇又は専用の換気設備などであってもよい。また、空間環境制御システム300は、換気装置342の代わりに、空気清浄機を備えてもよい。
 空間環境制御装置350は、病原体センサ120及び塩素濃度センサ331の検出結果に基づいて、次亜塩素酸発生器341及び換気装置342の少なくとも一方を制御する。空間環境制御装置350は、例えば、図1に示される制御装置50に相当する。図8に示されるように、空間環境制御装置350は、病原体濃度情報取得部151と、塩素濃度情報取得部352と、制御部353とを備える。
 塩素濃度情報取得部352は、塩素濃度センサ331から出力される塩素濃度情報を取得する。例えば、塩素濃度情報取得部352は、塩素濃度センサ331と有線又は無線で接続された通信インタフェースで実現される。
 制御部353は、病原体濃度情報及び塩素濃度情報に基づいて、次亜塩素酸発生器341及び換気装置342の少なくとも一方を制御する。制御部353は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどで実現される。制御部353は、専用の電子回路で実現されてもよい。
 具体的には、制御部353は、病原体濃度情報が示す病原体濃度に基づいて塩素濃度の許容範囲を設定し、設定した許容範囲内で塩素濃度が収まるように、次亜塩素酸発生器341及び換気装置342を制御する。本実施の形態では、制御部353は、病原体濃度が所定の閾値より低い場合に、塩素濃度の許容範囲を第1の濃度範囲に設定し、病原体濃度が閾値より高い場合に、塩素濃度の許容範囲を、第1の濃度範囲より広い第2の濃度範囲に設定する。
 本実施の形態では、第1の濃度範囲及び第2の濃度範囲はそれぞれ、塩素濃度の上限値及び下限値によって定められる範囲である。第1の濃度範囲は、例えば、第2の濃度範囲に含まれている。具体的には、第1の濃度範囲の下限値は、第2の濃度範囲の下限値以上の値であり、第1の濃度範囲の上限値は、第2の濃度範囲の上限値以下の値である。
 第1の濃度範囲は、人にとって快適な環境として定められた塩素濃度の範囲である。第1の濃度範囲は、例えば作業環境評価基準に基づいて定められる塩素濃度の範囲である。例えば、第1の濃度範囲は、0ppm以上0.01ppm以下の範囲であるが、これに限定されない。第1の濃度範囲は、例えば0ppm以上0.03ppm以下の範囲でもよく、当該範囲に含まれる範囲でもよい。
 第2の濃度範囲は、病原体11の感染力を弱体化させることができる塩素濃度の範囲である。第2の濃度範囲には、人にとって塩素臭により不快と感じられる範囲も含まれる。具体的には、第2の濃度範囲には、快適な濃度範囲よりも濃度が高い範囲が含まれる。例えば、第2の濃度範囲は、0ppm以上0.1ppm以下の範囲であるが、これに限定されない。第2の濃度範囲は、例えば0ppm以上0.5ppm以下の範囲でもよく、当該範囲に含まれる範囲でもよい。
 制御部353は、浄化モード及び快適モードを含む複数の動作モードから選択された1つのモードで動作する。制御部353は、いずれのモードにおいても、設定された許容範囲内で空間10の塩素濃度が収まるように、次亜塩素酸発生器341及び換気装置342を制御する。例えば、制御部353は、次亜塩素酸発生器341及び換気装置342の各々に制御信号を出力する。次亜塩素酸発生器341に出力される制御信号には、次亜塩素酸発生器341の動作の開始及び停止、次亜塩素酸の放出量、並びに、設定した許容範囲などの指示が含まれる。換気装置342に出力される制御信号には、換気装置342の動作の開始及び停止、換気量、並びに、設定した許容範囲などの指示が含まれる。制御信号には、換気量の代わりに、例えば、ドア43又は窓44の開閉量の指示が含まれてもよい。
 浄化モードは、空間10中に存在する病原体11の感染力を弱体化させるための動作モードである。例えば、制御部353は、浄化モードで動作する場合に、許容範囲内の上限値に空間10の塩素濃度が一致するように、次亜塩素酸発生器341を制御する。浄化モードにおける塩素濃度の許容範囲は、例えば第2の濃度範囲である。
 快適モードは、空間10を、例えばほぼ無臭状態などの、人にとって快適な臭気環境にするための動作モードである。例えば、制御部353は、快適モードで動作する場合に、許容範囲内の所定値に空間10の塩素濃度が一致するように、次亜塩素酸発生器341及び換気装置342を制御する。快適モードにおける塩素濃度の許容範囲は、例えば第1の濃度範囲である。
 [動作]
 続いて、本実施の形態に係る空間環境制御システム300の動作について、図9を用いて説明する。図9は、本実施の形態に係る空間環境制御システム300の動作を示すフローチャートである。
 図9に示されるように、病原体濃度と閾値との判定処理(S112)までの処理は、実施の形態1と同様である。
 病原体濃度が閾値より高い場合(S112でYes)、制御部353は、塩素濃度の許容範囲を第2の濃度範囲に設定する(S314)。制御部353は、塩素濃度が第2の濃度範囲に収まるように次亜塩素酸発生器341を制御することで、空間10に次亜塩素酸を放出する(S316)。このとき、換気装置342が動作中の場合、制御部353は、換気装置342の動作を停止し、又は、換気装置342による換気量を減少させてもよい。
 次亜塩素酸などの酸化力を有する物質は、インフルエンザウイルスなどの病原体11を分解し、除去することができる。このため、空間10に次亜塩素酸を放出することで、病原体11の個体数を減らし、感染力を低下させることができる。このように、病原体濃度が閾値より高い場合には、制御部353は、浄化モードで動作する。つまり、制御部353は、病原体濃度が閾値より高い場合に、塩素濃度の許容範囲を広くすることで、病原体11の浄化を優先させる。
 病原体濃度が閾値より低い場合(S112でNo)、制御部353は、塩素濃度の許容範囲を第1の濃度範囲に設定する(S318)。制御部353は、塩素濃度が第1の濃度範囲に収まるように換気装置342を制御することで、空間10を快適な環境で維持する(S320)。このとき、次亜塩素酸発生器341が動作中の場合、制御部353は、次亜塩素酸発生器341の動作を停止し、又は、次亜塩素酸発生器341からの次亜塩素酸の発生量を減少させてもよい。このように、病原体濃度が閾値より低い場合には、制御部353は、快適モードで動作する。
 なお、病原体濃度が閾値に等しい場合には、塩素濃度の許容範囲を第1の濃度範囲に設定してもよく、第2の濃度範囲に設定してもよい。
 所定の期間が経過するまで(S122でNo)、状態が維持される。所定の期間が経過した後(S122でYes)、ステップS110に戻り、病原体濃度の取得からの処理が繰り返される。
 ここで、図9に示されるフローチャートに沿って空間環境制御システム300が動作したときの空間10の塩素濃度の変化の具体例について、図10を用いて説明する。図10は、本実施の形態に係る空間環境制御システム300の動作中の空間10の塩素濃度の時間変化を示す図である。図10では、横軸に時間を示しており、縦軸に空間10の塩素濃度を示している。
 図10で示される例では、時刻tに至るまでの期間は、許容範囲が第1の濃度範囲であり、空間10には快適な環境が形成されている。例えば、制御部353が次亜塩素酸発生器341の動作を停止することで、空間10の塩素濃度が0ppmで保たれている。ここでは、第1の濃度範囲は、下限値C1minが0ppm、上限値C1maxが0.01ppmとなる範囲であり、人にとっての快適性が優先された範囲である。上限値C1maxが0.01ppmであることで、臭いに敏感な人にとっても塩素臭をほとんど感じなくすることができる。
 なお、0ppmとは、塩素が全く存在しないことを意味するだけでなく、ppmレベルでは検出されない、つまり、検出限界以下であることも意味する。つまり、空間10には、pptレベルで塩素が存在していてもよい。後述するオゾン濃度についても同様である。
 時刻tでは、病原体濃度が閾値より低いと判定されているので、制御部353は、換気装置342を制御することで、快適な環境を維持する。時刻tでは、病原体濃度が閾値より高いと判定されたため、制御部353は、許容範囲を第2の濃度範囲に設定し、次亜塩素酸発生器341の動作を開始し、次亜塩素酸を発生させる。第2の濃度範囲は、下限値C2minが0ppm、上限値C2maxが0.5ppmとなる範囲であり、病原体11の浄化を優先させた範囲である。0.5ppmは、塩素の管理許容濃度(TWA:Time-Weighted Average)であり、許容範囲が第2の濃度範囲に設定された場合においても、人体に与える悪影響を抑えることができる。
 次亜塩素酸発生器341が次亜塩素酸を発生させることで、時刻t以降、空間10の塩素濃度が上昇する。許容範囲が第1の濃度範囲から第2の濃度範囲に変更されているので、第1の濃度範囲の上限値C1maxである0.01ppmを超えて、空間10の塩素濃度は上昇する。このとき、制御部353は、第2の濃度範囲の上限値C2maxである90%を超えないように、次亜塩素酸発生器341及び換気装置342を制御する。
 時刻tでは、病原体濃度が閾値より高いと判定されているので、制御部353は、許容範囲を第2の濃度範囲のままで維持する。制御部353は、空間10の塩素濃度も0.5ppmで保たれるように、次亜塩素酸発生器341及び換気装置342を制御する。時刻t~時刻tにかけて、空間10には次亜塩素酸が存在しているので、病原体11の生存率が低下し、病原体濃度が低下する。
 時刻tでは、病原体濃度が閾値より低いと判定されているので、制御部353は、許容範囲を第1の濃度範囲に戻し、次亜塩素酸発生器341の動作を停止し、換気装置342に空間10の換気を行わせる。換気装置342が換気を行うことで、時刻t以降、空間10の塩素濃度が低下する。空間10の塩素濃度が第1の濃度範囲の上限値C1maxを下回り、第1の濃度範囲に収まる範囲内で維持されるように、制御部353は、換気装置342を制御する。
 なお、図10に示される例では、快適性を優先する場合に、制御部353は、空間10の塩素濃度が第1の濃度範囲の下限値C1minに一致するように次亜塩素酸発生器341の動作を停止したが、これに限らない。例えば、制御部353は、空間10の塩素濃度が第1の濃度範囲の中央値又は上限値C1maxで保たれるように次亜塩素酸発生器341及び換気装置342を制御してもよい。
 また、浄化を優先する場合に、制御部353は、空間10の塩素濃度が第2の濃度範囲の上限値C2maxで保たれるように次亜塩素酸発生器341及び換気装置342を制御したが、これに限らない。例えば、制御部353は、第2の濃度範囲に含まれ、かつ、第1の濃度範囲に含まれない範囲、すなわち、第1の濃度範囲の上限値C1max以上、第2の濃度範囲の上限値C2max以下の範囲に空間10の塩素濃度が収まるように、次亜塩素酸発生器341及び換気装置342を制御してもよい。例えば、制御部353は、上限値C1maxと上限値C2maxとの間の中央値に空間10の塩素濃度が一致するように、次亜塩素酸発生器341及び換気装置342を制御してもよい。
 [変形例]
 ここで、本実施の形態の変形例について、図11を用いて説明する。
 図11は、本変形例に係る空間環境制御システム400の構成を示すブロック図である。図11に示されるように、空間環境制御システム400は、病原体センサ120と、オゾン濃度センサ431と、オゾン発生器441と、換気装置342と、空間環境制御装置450とを備える。本変形例に係る空間環境制御システム400では、次亜塩素酸の代わりに、オゾンを浄化物質42として放出する。
 オゾン濃度センサ431は、空間10のオゾン濃度を環境値の一例として検出する環境センサの一例である。オゾン濃度センサ431は、検出したオゾン濃度を示すオゾン濃度情報を空間環境制御装置450に出力する。オゾン濃度センサ431は、例えば、図1に示される空気質センサ31に相当する。
 オゾン発生器441は、空間10にオゾンを放出する機器である。例えば、オゾン発生器441は、オゾン水を生成し、生成したオゾン水をミスト化して放出する。オゾン発生器441は、オゾン水の放出量を調整することにより、空間10のオゾン濃度を上昇させる。オゾン発生器441は、例えば図1に示される浄化物質発生器41に相当する。
 空間環境制御装置450は、病原体センサ120及びオゾン濃度センサ431の検出結果に基づいて、オゾン発生器441及び換気装置342の少なくとも一方を制御する。空間環境制御装置450は、例えば、図1に示される制御装置50に相当する。図11に示されるように、空間環境制御装置450は、病原体濃度情報取得部151と、オゾン濃度情報取得部452と、制御部453とを備える。
 オゾン濃度情報取得部452は、オゾン濃度センサ431から出力されるオゾン濃度情報を取得する。例えば、オゾン濃度情報取得部452は、オゾン濃度センサ431と有線又は無線で接続された通信インタフェースで実現される。
 制御部453は、病原体濃度情報及びオゾン濃度情報に基づいて、オゾン発生器441及び換気装置342の少なくとも一方を制御する。制御部453は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどで実現される。制御部453は、専用の電子回路で実現されてもよい。
 具体的には、制御部453は、病原体濃度情報が示す病原体濃度に基づいてオゾン濃度の許容範囲を設定し、設定した許容範囲内でオゾン濃度が収まるように、オゾン発生器441及び換気装置342を制御する。本実施の形態では、制御部453は、病原体濃度が所定の閾値より低い場合に、オゾン濃度の許容範囲を第1の濃度範囲に設定し、病原体濃度が閾値より高い場合に、オゾン濃度の許容範囲を、第1の濃度範囲より広い第2の濃度範囲に設定する。
 本実施の形態では、第1の濃度範囲及び第2の濃度範囲はそれぞれ、オゾン濃度の上限値及び下限値によって定められる範囲である。第1の濃度範囲は、例えば、第2の濃度範囲に含まれている。具体的には、第1の濃度範囲の下限値は、第2の濃度範囲の下限値以上の値であり、第1の濃度範囲の上限値は、第2の濃度範囲の上限値以下の値である。
 第1の濃度範囲は、人にとって快適な環境として定められたオゾン濃度の範囲である。第1の濃度範囲は、例えば作業環境評価基準に基づいて定められるオゾン濃度の範囲である。例えば、第1の濃度範囲は、0ppm以上0.01ppm以下の範囲であるが、これに限定されない。第1の濃度範囲は、例えば0ppm以上0.1ppm以下の範囲でもよく、当該範囲に含まれる範囲でもよい。オゾン濃度が0.01ppm以下である場合には、臭いに敏感な人にとってもオゾン臭をほとんど感じなくすることができる。
 第2の濃度範囲は、病原体11の感染力を弱体化させることができるオゾン濃度の範囲である。第2の濃度範囲には、人にとってオゾン臭により不快と感じられる範囲も含まれる。具体的には、第2の濃度範囲には、快適な濃度範囲よりも濃度が高い範囲が含まれる。例えば、第2の濃度範囲は、0ppm以上0.05ppm以下の範囲であるが、これに限定されない。第2の濃度範囲は、例えば0ppm以上0.1ppm以下の範囲でもよく、当該範囲に含まれる範囲でもよい。
 なお、0.05ppmは、日本空気清浄協会の室内ガス濃度基準の平均値であり、オゾン濃度が0.05ppm以下であれば、一般的な室内環境内で病原体の感染力を低下させることができる。また、0.1ppmは、日本空気清浄協会の室内ガス濃度基準の最高値であり、オゾン濃度が0.1ppm以下であれば、人に与える悪影響を抑えつつ、病原体の感染力を低下させることができる。
 制御部453は、浄化モード及び快適モードを含む複数の動作モードから選択された1つのモードで動作する。制御部453は、いずれのモードにおいても、設定された許容範囲内で空間10のオゾン濃度が収まるように、オゾン発生器441及び換気装置342を制御する。例えば、制御部453は、オゾン発生器441及び換気装置342の各々に制御信号を出力する。オゾン発生器441に出力される制御信号には、オゾン発生器441の動作の開始及び停止、オゾンの放出量、並びに、設定した許容範囲などの指示が含まれる。
 浄化モードは、空間10中に存在する病原体11の感染力を弱体化させるための動作モードである。例えば、制御部453は、浄化モードで動作する場合に、許容範囲内の上限値に空間10のオゾン濃度が一致するように、オゾン発生器441を制御する。浄化モードにおけるオゾン濃度の許容範囲は、例えば第2の濃度範囲である。
 快適モードは、空間10を、例えばほぼ無臭状態などの、人にとって快適な臭気環境にするための動作モードである。例えば、制御部453は、快適モードで動作する場合に、許容範囲内の所定値に空間10のオゾン濃度が一致するように、オゾン発生器441及び換気装置342を制御する。快適モードにおけるオゾン濃度の許容範囲は、例えば第1の濃度範囲である。
 本変形例に係る空間環境制御システム400の動作は、本実施の形態に係る空間環境制御システム300の動作と同じである。空間環境制御システム400は、例えば、図8に示されるフローチャートに沿って動作する。
 以上のように、本実施の形態及び変形例に係る空間環境制御システム300及び400によれば、病原体濃度に基づいて塩素濃度又はオゾン濃度の許容範囲が設定される。このため、例えば、病原体濃度が閾値より高くて感染の危険性が高い場合に、空間10に次亜塩素酸又はオゾンを放出して病原体11を除去することができる。これにより、病原体11による感染の危険性が高まった場合には、快適性が多少損なわれる恐れがあるものの、病原体11の感染力を弱体化させることができる。また、病原体濃度が閾値より低くて感染の危険性が低い場合には、空間10を人にとって快適な環境で保つことができる。
 このように、病原体濃度に基づいて塩素濃度又はオゾン濃度の許容範囲が設定されるので、人にとっての快適な環境と、病原体11の感染力の弱体化とを両立させることができる。
 なお、空間10の塩素濃度は、実測値ではなく、次亜塩素酸発生器341からの発生量と、空間10の広さとに基づいて推測された値であってもよい。オゾン濃度についても同様である。
 (実施の形態4)
 続いて、実施の形態4について説明する。
 本実施の形態に係る空間環境制御システムは、複数の調整機器を制御することで、空間の複数の環境を制御する。以下では、図1に示される空間10が、本実施の形態に係る空気環境制御システムによる環境の制御対象の空間である場合を例に説明する。なお、以下の説明において、実施の形態1~3との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 まず、本実施の形態に係る空間環境制御システムの構成について、図12を用いて説明する。
 図12は、本実施の形態に係る空間環境制御システム500の構成を示すブロック図である。図12に示されるように、空間環境制御システム500は、病原体センサ120と、環境センサ群530と、調整機器群540と、空間環境制御装置550とを備える。本実施の形態に係る空間環境制御システム500は、空間10の温度、湿度、塩素濃度、オゾン濃度、及び、UV照射量を制御する。
 環境センサ群530には、温度センサ130、湿度センサ230、塩素濃度センサ331、オゾン濃度センサ431、CO濃度センサ532、UV照度センサ533及び粉塵量センサ534が含まれる。
 CO濃度センサ532は、空間10の二酸化炭素濃度を環境値の一例として検出する環境センサの一例である。CO濃度センサ532は、検出した二酸化炭素濃度を示すCO情報を空間環境制御装置550に出力する。CO濃度センサ532は、例えば、図1に示される空気質センサ31に相当する。
 UV照度センサ533は、空間10内に照射される紫外光の照射量を環境値の一例として検出する環境センサの一例である。UV照度センサ533は、検出した紫外光の照射量を示すUV情報を空間環境制御装置550に出力する。
 粉塵量センサ534は、空間10内に浮遊する粉塵の量を環境値の一例として検出する環境センサの一例である。粉塵量センサ534は、検出した粉塵量を示す粉塵量情報を空間環境制御装置550に出力する。
 調整機器群540は、空間環境制御装置550による制御に基づいて空間10の環境を調整する複数の調整機器からなる群である。図12に示されるように、調整機器群540には、温度調整機器140、湿度調整機器240、次亜塩素酸発生器341、換気装置342、オゾン発生器441及びUV光源543が含まれる。
 UV光源543は、空間10内に紫外光を照射するための光源である。UV光源543は、紫外光を発する放電ランプ又はLED(Light Emitting Diode)などである。UV光源543は、例えば、制御部553によって点灯及び消灯が制御される。
 なお、UV光源543から発せられる紫外光の代わりに、太陽光を利用してもよい。例えば、制御部553は、図1に示されるブラインド45の開閉によって太陽光の採光量を調整してもよい。
 空間環境制御装置550は、病原体センサ120及び環境センサ群530の検出結果に基づいて、調整機器群540に含まれる複数の調整機器の少なくとも1つを制御する。空間環境制御装置550は、例えば、図1に示される制御装置50に相当する。図12に示されるように、空間環境制御装置550は、病原体濃度情報取得部151と、環境情報取得部552と、制御部553とを備える。
 環境情報取得部552は、環境センサ群530に含まれる複数の環境センサの各々から出力される環境情報を取得する。環境情報は、温度情報、湿度情報、塩素濃度情報、オゾン濃度情報、CO濃度情報、UV情報及び粉塵量情報の少なくとも1つを含んでいる。例えば、環境情報取得部552は、複数の環境センサの各々と有線又は無線で接続された通信インタフェースで実現される。
 制御部553は、病原体濃度情報及び環境情報に基づいて、調整機器群540に含まれる複数の調整機器の少なくとも1つを制御する。制御部553は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどで実現される。制御部553は、専用の電子回路で実現されてもよい。
 具体的には、制御部553は、病原体濃度情報が示す病原体濃度に基づいて環境値の許容範囲を設定し、設定した許容範囲内で環境値が収まるように、調整機器群540を制御する。本実施の形態では、制御部553は、複数の環境値の各々の許容範囲を設定する。複数の環境値には、温度、湿度、塩素濃度、オゾン濃度、CO濃度、UV照度、及び、粉塵量などが含まれる。
 本実施の形態では、制御部553は、環境値毎に、病原体濃度が所定の閾値より低い場合に、環境値の許容範囲を第1の範囲に設定し、病原体濃度が閾値より高い場合に、環境値の許容範囲を、第1の範囲より広い第2の範囲に設定する。各環境値の許容範囲は、温度、湿度、塩素濃度及びオゾン濃度については、例えば、実施の形態1~3及び変形例で説明した範囲と同じである。
 CO濃度の第1の範囲は、例えば300ppm以上2000ppm以下である。UV量の第1の範囲は、例えば、波長380nm以下のUV光に対して、50mW/cm以下である。粉塵量の第1の範囲は、例えば0.1mg/m以下である。これらは、衛生管理基準などに基づき定められる。
 CO濃度の第2の範囲は、例えば300ppm以上4000ppm以下である。UV量の第1の範囲は、例えば、波長380nm以下のUV光に対して、100mW/cm以下である。粉塵量の第1の範囲は、例えば0.2mg/m以下である。
 本実施の形態に係る空間環境制御システム500の動作は、実施の形態1~3及び変形例で説明した動作と同様である。例えば、病原体濃度が閾値より高い場合に、制御部553は、温度、湿度及び塩素濃度又はオゾン濃度の許容範囲をそれぞれ、第2の温度範囲、第2の湿度範囲及び第2の濃度範囲に設定する。制御部553は、空間10を高温かつ高湿にし、空間10に次亜塩素酸又はオゾンを放出させることで、病原体11に対する浄化力を高めることができる。さらに、制御部553は、ブラインド45を開けることにより、太陽光を空間10に採り込んでもよい。太陽光に含まれる紫外光によって、空間10に存在する病原体を除去することができる。
 また、例えば、快適な環境を維持する場合において、制御部553は、CO濃度及び粉塵量が許容範囲内で収まるように、換気装置342を制御する。具体的には、CO濃度及び粉塵量の少なくとも一方が許容範囲の上限値を上回っている場合には、換気装置342を制御することで、空間10の空気の入れ換えを行う。これにより、CO濃度及び粉塵量を低下させることができる。
 なお、粉塵量は、換気の際、又は、浄化動作において風量を強めた場合などにも増加する恐れがある。これらに対して、空間10内に生成される気流が抑えられるように調整機器群540を制御することで、粉塵量を許容範囲内に抑えることができる。
 以上のように、本実施の形態に係る空間環境制御システム500によれば、複数の環境を変更することで、病原体11に対する浄化力を高めることができ、短期間で病原体11の感染力を弱体化させることができる。したがって、人にとって快適な環境が損なわれている期間が短くなるので、快適な環境を長期間維持しつつ、必要に応じて病原体11の感染力を弱体化させることができる。また、温度、湿度、CO濃度及び粉塵量などの様々な環境値を快適な範囲内に収めることで、人にとってより快適な環境を形成することができる。
 (変形例1)
 続いて、実施の形態の変形例1について説明する。
 上述した実施の形態1~4では、病原体濃度の判定に用いられる閾値が1つのみである場合を説明したが、これに限らない。本変形例に係る空間環境制御システムでは、病原体濃度の判定に用いられる閾値が複数存在する。
 本変形例に係る空間環境制御システムは、例えば、図12に示される実施の形態4に係る空間環境制御システム500と構成は同じである。以下では、図12を参照しながら、本変形例に係る空間環境制御システムについて説明する。
 本変形例では、制御部553は、1つ以上の閾値で区分される複数の濃度区分のいずれに病原体濃度が含まれるかを判定する。制御部553は、複数の濃度区分に対応付けられた互いに異なる複数の範囲のうち、病原体濃度が含まれる濃度区分に対応する範囲に、許容範囲を設定する。
 図13は、本変形例に係る空間環境制御システムにおける病原体濃度の濃度区分と許容範囲の候補範囲との対応関係を示す図である。図13に示されるように、本変形例では、3つの閾値th1~th3によって区分された4つの濃度区分A~Dが設けられている。4つの濃度区分A~Dの各々に一対一で許容範囲の候補範囲A~Dが対応付けられている。
 候補範囲A~Dは、互いに異なる範囲である。候補範囲A~Dは、この順で範囲が広くなっている。このとき、候補範囲A~Dの少なくとも2つの範囲は部分的に重複していてもよい。例えば、候補範囲Dには、候補範囲Aが含まれていてもよい。候補範囲A~Dは、快適モード、弱浄化モード、中浄化モード、強浄化モードの各々に対応している。候補範囲A~Dは、環境値の種類毎に定められている。例えば、温度毎、湿度毎、塩素濃度毎、及び、オゾン濃度毎に、候補範囲A~Dが定められている。
 本変形例では、空間環境制御装置550は、図13に示される対応表をメモリ(図示せず)などに記憶している。制御部553は、メモリに記憶された対応表を読み出し、読み出した対応表に基づいて病原体濃度の判定及び許容範囲の設定を行う。
 続いて、本変形例に係る空間環境制御システムの動作について、図14を用いて説明する。図14は、本変形例に係る空間環境制御システムの動作を示すフローチャートである。
 図14に示されるように、まず、空間環境制御装置550は、病原体濃度を取得する(S110)。病原体濃度の取得処理については、実施の形態1~4と同様である。
 次に、制御部553は、病原体濃度情報が示す病原体濃度が複数の濃度区分のいずれに含まれるかを判定する(S412)。制御部553は、病原体濃度が含まれる濃度区分に対応する範囲を、許容範囲として設定する(S414)。
 なお、病原体濃度が閾値th1~th3のいずれかに等しい場合は、閾値で区分される2つの濃度区分のいずれに対応する候補範囲に設定してもよい。例えば、病原体濃度が閾値th2に等しい場合、制御部553は、許容範囲を候補範囲B及び候補範囲Cのいずれに設定してもよい。
 制御部553は、病原体濃度に基づいて浄化モードで動作するか否かを判定する(S416)。例えば、病原体濃度が、図13に示される閾値th1より高い場合に、制御部553は、浄化モードで動作すると判定する。病原体濃度が閾値th1より低い場合に、制御部553は、快適モードで動作すると判定する。なお、病原体濃度が閾値th1に等しい場合、制御部553は、浄化モード及び快適モードのいずれで動作してもよい。
 浄化モードで動作する場合(S416でYes)、制御部553は、設定された許容範囲内で浄化の動作を行う(S418)。例えば、制御部553は、許容範囲の上限値に環境値が一致するように、調整機器群540に含まれる複数の調整機器の少なくとも1つを制御する。
 快適モードで動作する場合(S416でNo)、制御部553は、設定された許容範囲内で快適環境を維持するための動作を行う(S420)。例えば、制御部553は、候補範囲A内の所定値に環境値が一致するように、調整機器群540に含まれる複数の調整機器の少なくとも1つを制御する。
 所定の期間が経過するまで(S122でNo)、状態が維持される。所定の期間が経過した後(S122でYes)、ステップS110に戻り、病原体濃度の取得からの処理が繰り返される。
 本変形例によれば、病原体濃度の判定に用いられる閾値、及び、環境値の許容範囲の候補範囲がそれぞれ複数設けられているので、病原体濃度に応じて空間10の環境を細かく制御することができる。
 (変形例2)
 続いて、実施の形態の変形例2について説明する。
 上述した実施の形態1~4及び変形例では、許容範囲の候補範囲が設定された固定の範囲である例について示したが、本変形例では、候補範囲が変更可能である。
 本変形例に係る空間環境制御システムは、図12に示される実施の形態4に係る空間環境制御システム500と同様であり、空間環境制御装置550の代わりに、図15に示される空間環境制御装置650を備える点が相違する。なお、図15は、本変形例に係る空間環境制御装置650の構成を示すブロック図である。
 空間環境制御装置650は、図15に示されるように、病原体濃度情報取得部151と、環境情報取得部552と、制御部653と、日時情報取得部654とを備える。
 日時情報取得部654は、日時情報を取得する。日時情報は、時刻及び日付の少なくとも一方に関する情報である。例えば、日時情報は、制御当日の年月日及び現在時刻を示す情報である。なお、日時情報は、朝、昼、夕方、夜などの、現在時刻が属する時間帯を示す情報でもよい。あるいは、日時情報は、春、夏、秋、冬などの、制御当日が属する季節又は月を示す情報でもよい。
 日時情報取得部654は、例えば、空間環境制御装置650を実現するコンピュータ機器のタイマ機能などで実現される。あるいは、日時情報取得部654は、外部のサーバ装置などと通信する通信インタフェースで実現されてもよい。
 本変形例では、図16に示されるように、例えば、季節と許容範囲の候補範囲とが対応付けられている。図16は、本変形例に係る空間環境制御システムにおける病原体濃度の濃度区分と許容範囲の候補範囲との対応関係の一例を示す図である。
 図16に示されるように、病原体濃度の判定に用いられる閾値th1と、閾値th1によって区分された2つの濃度区分A及びBが設けられている。2つの濃度区分A及びBにはそれぞれ、季節に応じて異なる候補範囲A1及びA2、並びに、候補範囲B1及びB2が対応付けられている。
 図16に示される候補範囲A1及びA2は、快適モードで設定されうる許容範囲の候補範囲である。例えば、冬季は、夏季に比べて、人が快適と感じる環境が異なる。候補範囲A1及びA2はそれぞれ、季節に応じて快適とされる範囲に定められる。
 図16に示される候補範囲B1及びB2は、浄化モードで設定されうる許容範囲の候補範囲である。例えば、冬季は、夏季に比べて、病原体11による感染が起こりやすい。このため、例えば、冬季の候補範囲B1は、夏季の候補範囲B2より広い範囲である。これにより、冬季における病原体11に対する浄化力を高めることができる。
 本変形例では、制御部653は、日時情報に基づいて許容範囲の複数の範囲の少なくとも1つを変更する。具体的には、制御部653は、濃度区分の判定結果、及び、日時情報に基づいて、図16に示される対応関係を参照することで、環境値の許容範囲を設定する。
 例えば、日時情報に基づいて制御当日の季節が冬季である場合において、病原体濃度が閾値th1より低いとき、制御部653は、許容範囲を候補範囲A1に設定する。同様に、制御当日の季節が夏季である場合において、病原体濃度が閾値th1より低いとき、制御部653は、許容範囲を候補範囲A2に設定する。病原体濃度が閾値th2より高い場合も同様である。
 なお、図17に示されるように、時間帯と許容範囲の候補範囲とが対応付けられていてもよい。図17は、本変形例に係る空間環境制御システムにおける病原体濃度の濃度区分と許容範囲の候補範囲との対応関係の一例を示す図である。
 図17に示されるように、2つの濃度区分A及びBにはそれぞれ、時間帯に応じて異なる候補範囲A1及びA2、並びに、候補範囲B1及びB2が対応付けられている。
 図17に示される候補範囲A1及びA2は、快適モードで設定されうる許容範囲の候補範囲である。例えば、活動量の多い日中は、活動量の少ない夜間に比べて、人が快適と感じる環境が異なる。候補範囲A1及びA2はそれぞれ、時間帯に応じて快適とされる範囲に定められる。
 候補範囲B1及びB2は、浄化モードで設定されうる許容範囲の候補範囲である。例えば、人の出入りの多い日中は、人の出入りの少ない夜間に比べて、病原体11による感染が起こりやすい。例えば、病原体11の感染者が空間10に入り、感染源(病原体11の発生源)となる恐れもある。あるいは、空間10に存在する病原体11が、日中の人の活動によって拡散されやすくなる。このため、例えば、日中の候補範囲B1は、夜間の候補範囲B2より広い範囲である。これにより、日中における病原体11に対する浄化力を高めることができる。
 以上のように、本変形例に係る空間環境制御システムによれば、日時情報に基づいて候補範囲が変更可能であるので、季節又は時間帯などに応じて適切な快適環境を形成することができ、かつ、病原体11の浄化を行うことができる。
 なお、本変形例において、制御部653は、日時情報に基づいて、病原体濃度の判定に用いる閾値又は濃度区分を変更してもよい。例えば、冬季は、夏季に比べて病原体11による感染が起こりやすいので、制御部653は、冬季の閾値を夏季の閾値より小さくしてもよい。また、例えば、日中は、夜間に比べて病原体11による感染が起こりやすいので、制御部653は、日中の閾値を夏季の閾値より小さくしてもよい。
 また、例えば、1つ以上の閾値、濃度区分、及び、許容範囲の候補範囲は、日時情報以外の情報に基づいて変更可能であってもよい。例えば、制御部653は、空間10に存在する人の着衣量に基づいて、1つ以上の閾値、濃度区分、及び、許容範囲の候補範囲を変更してもよい。なお、人の着衣量を検出するため、空間環境制御システムは、イメージセンサを有するカメラ、又は、熱画像センサなどを備えていてもよい。例えば、カメラによって空間10内を撮影し、得られた画像に対して人の検出処理を行うことで、人を検出し、その着衣量を判定してもよい。
 図18は、本変形例に係る空間環境制御システムにおける病原体濃度の濃度区分と許容範囲の候補範囲との対応関係の別の一例を示す図である。図18には、人の着衣量に対して、許容範囲の候補範囲が対応付けられている。例えば、空間10の温度に着目した場合、着衣量が多い程、快適と感じる温度は低くなる傾向にある。したがって、例えば、着衣量が多い場合の候補範囲A1は、着衣量が少ない場合の候補範囲A2に比べて、温度の許容範囲の上限値及び下限値の少なくとも一方が低くなっている。候補範囲B1及びB2についても同様であってもよい。
 あるいは、制御部653は、空間10に存在する人の性質(例えば、寒がりなのか暑がりなのか)などに基づいて、1つ以上の閾値、濃度区分、及び、許容範囲の候補範囲を変更してもよい。具体的には、制御部653は、空間10に存在する人を特定し、特定した人に応じた1つ以上の閾値、濃度区分、及び、許容範囲の候補範囲を設定してもよい。
 図19は、本変形例に係る空間環境制御システムにおける病原体濃度の濃度区分と許容範囲の候補範囲との対応関係の別の一例を示す図である。例えば、図19に示されるように、人に識別番号(ID)を割り当て、人毎に、閾値、濃度区分及び許容範囲の候補範囲の少なくとも1つが対応付けられていてもよい。
 制御部653は、例えば、カメラなどによって空間10内を撮影することで得られた画像に対して顔認識処理などを行ってもよい。なお、空間環境制御装置650は、例えば、人の識別番号と顔認識データとが対応付けられた対応情報、及び、図19に示される対応情報などを記憶するメモリを備えている。制御部653は、当該メモリを参照することで、制御部653は、空間10に存在する人を特定し、対応する識別番号を取得してもよい。制御部653は、取得した識別番号に応じて、閾値、濃度区分及び許容範囲の候補範囲などを設定してもよい。
 また、制御部653は、個人を特定せずに、空間10に存在する人が、予め設定された複数のカテゴリのいずれに該当するかを判別してもよい。複数のカテゴリは、例えば、年齢、性別などのカテゴリである。制御部653は、カテゴリに応じて、閾値、濃度区分及び許容範囲の候補範囲などを設定してもよい。
 なお、許容範囲は、機械学習などによって更新されてもよい。例えば、人毎に、機械学習による快適な環境値の許容範囲を設定してもよい。例えば、人が空間10に戻ってきた時にエアコン40の設定温度などを変更した場合、このときの空間10の温度と、変更後の設定値とを蓄積する。蓄積したデータを入力データとして、人が快適と思う温度を機械学習により判定してもよい。
 (変形例3)
 続いて、実施の形態の変形例3について説明する。
 本変形例に係る空間環境制御システムは、制御内容又は空間10の状態などを人に通知する。本変形例に係る空間環境制御システムは、図12に示される空間環境制御システム500と同様であり、空間環境制御装置550の代わりに、図20に示される空間環境制御装置750と、表示装置760とを備える点が相違する。なお、図20は、本変形例に係る空間環境制御装置750の構成を示すブロック図である。
 空間環境制御装置750は、図20に示されるように、病原体濃度情報取得部151と、環境情報取得部552と、制御部553と、表示制御部754とを備える。
 表示制御部754は、表示装置760の表示を制御する。具体的には、表示制御部754は、制御内容、又は、環境値などの空間10の状態を表す画像又は映像を生成し、表示装置760に表示させる。
 表示装置760は、例えば、制御装置50が備えるディスプレイである。表示装置760は、液晶表示装置又は有機EL(Electroluminescence)表示装置などである。
 表示装置760は、空間環境制御装置750の制御内容などを表示する。例えば、図21に示されるように、表示装置760には、制御部553が実行中の動作モードと、当該動作モードの推定残り時間とを表す画像761が表示される。なお、図21は、本変形例に係る空間環境制御システムの表示装置760への表示例を示す図である。例えば、推定残り時間は、現在時刻と、病原体濃度と、浄化の強さとなどに基づいて算出される。
 なお、空間環境制御システムは、制御内容などを表示する代わりに、スピーカーなどの出音装置を備えてもよい。空間環境制御装置750は、制御内容を示す音声案内を生成し、スピーカーから音声として出力させてもよい。
 表示装置760は、専用の表示装置でなくてもよく、空間環境制御システムの管理人、又は、空間10に存在する人などの所有するスマートフォンなどの携帯端末のディスプレイであってもよい。表示制御部754は、無線通信などによって携帯端末と通信し、画像761を送信することで、携帯端末のディスプレイには、画像761が表示されてもよい。
 (他の実施の形態)
 以上、1つ又は複数の態様に係る空間環境制御システム、空間環境制御装置及び空間環境制御方法について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、及び、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
 例えば、上記の実施の形態では、空間10中を浮遊する病原体11を検出したが、これに限らない。例えば、空間10を形成する壁、ドア43及び窓44、並びに、空間10内に配置されたテーブルなどの家具、エアコン40及び浄化物質発生器41などの機器の表面に付着した病原体11を検出してもよい。
 また、例えば、空間10は、壁などで閉じられた空間でなくてもよい。また、空間10は、複数の領域に分割され、領域毎に環境値の検出及び病原体の検出などが行われてもよい。また、領域毎に、調整機器による環境の制御が行われてもよい。
 また、上記実施の形態で説明した装置間の通信方法については特に限定されるものではない。装置間で無線通信が行われる場合、無線通信の方式(通信規格)は、例えば、Zigbee(登録商標)、Bluetooth(登録商標)、又は、無線LAN(Local Area Network)などの近距離無線通信である。あるいは、無線通信の方式(通信規格)は、インターネットなどの広域通信ネットワークを介した通信でもよい。また、装置間においては、無線通信に代えて、有線通信が行われてもよい。有線通信は、具体的には、電力線搬送通信(PLC:Power Line Communication)又は有線LANを用いた通信などである。
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよく、あるいは、複数の処理が並行して実行されてもよい。また、空間環境制御システムが備える構成要素の複数の装置への振り分けは、一例である。例えば、一の装置が備える構成要素を他の装置が備えてもよい。また、空間環境制御システムは、単一の装置として実現されてもよい。
 例えば、上記実施の形態において説明した処理は、単一の装置(システム)を用いて集中処理することによって実現してもよく、又は、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、又は分散処理を行ってもよい。
 また、上記実施の形態において、制御部などの構成要素の全部又は一部は、専用のハードウェアで構成されてもよく、あるいは、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)又はプロセッサなどのプログラム実行部が、HDD(Hard Disk Drive)又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、制御部などの構成要素は、1つ又は複数の電子回路で構成されてもよい。1つ又は複数の電子回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。
 1つ又は複数の電子回路には、例えば、半導体装置、IC(Integrated Circuit)又はLSI(Large Scale Integration)などが含まれてもよい。IC又はLSIは、1つのチップに集積されてもよく、複数のチップに集積されてもよい。ここでは、IC又はLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、又は、ULSI(Ultra Large Scale Integration)と呼ばれるかもしれない。また、LSIの製造後にプログラムされるFPGA(Field Programmable Gate Array)も同じ目的で使うことができる。
 また、本開示の全般的又は具体的な態様は、システム、装置、方法、集積回路又はコンピュータプログラムで実現されてもよい。あるいは、当該コンピュータプログラムが記憶された光学ディスク、HDD若しくは半導体メモリなどのコンピュータ読み取り可能な非一時的記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 また、上記の各実施の形態は、請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、人にとっての快適性と病原体の感染力の弱体化とを両立させることができる空間環境制御システムとして利用でき、例えば、病院又は介護施設などの空調システムなどに利用することができる。
10 空間
11 病原体
20、120 病原体センサ
30 温湿度センサ
31 空気質センサ
40 エアコン
41 浄化物質発生器
42 浄化物質
43 ドア
44 窓
45 ブラインド
50 制御装置
100、200、300、400、500 空間環境制御システム
130 温度センサ
140 温度調整機器
150、250、350、450、550、650、750 空間環境制御装置
151 病原体濃度情報取得部
152 温度情報取得部
153、253、353、453、553、653 制御部
230 湿度センサ
240 湿度調整機器
252 湿度情報取得部
331 塩素濃度センサ
341 次亜塩素酸発生器
342 換気装置
352 塩素濃度情報取得部
431 オゾン濃度センサ
441 オゾン発生器
452 オゾン濃度情報取得部
530 環境センサ群
532 CO濃度センサ
533 UV照度センサ
534 粉塵量センサ
540 調整機器群
543 UV光源
552 環境情報取得部
654 日時情報取得部
754 表示制御部
760 表示装置
761 画像

Claims (10)

  1.  空間中に存在する病原体を検出する病原体センサと、
     前記空間の温度、湿度、塩素濃度及びオゾン濃度の少なくとも1つを示す環境値を検出する環境センサと、
     前記空間の環境の調整を行う調整機器と、
     前記調整機器を制御する制御部とを備え、
     前記制御部は、
     前記病原体センサによって検出された病原体の前記空間中の濃度である病原体濃度に基づいて前記環境値の許容範囲を設定し、設定した許容範囲内で前記環境値が収まるように前記調整機器を制御する
     空間環境制御システム。
  2.  前記制御部は、
     前記病原体濃度が所定の閾値より低い場合に、前記許容範囲を第1の範囲に設定し、
     前記病原体濃度が前記閾値より高い場合に、前記許容範囲を、前記第1の範囲より広い第2の範囲に設定する
     請求項1に記載の空間環境制御システム。
  3.  前記制御部は、
     1つ以上の閾値で区分される複数の濃度区分のいずれに前記病原体濃度が含まれるかを判定し、
     前記複数の濃度区分に対応付けられた互いに異なる複数の範囲のうち、前記病原体濃度が含まれる濃度区分に対応する範囲に、前記許容範囲を設定する
     請求項1に記載の空間環境制御システム。
  4.  前記制御部は、時刻及び日付の少なくとも一方に関する日時情報に基づいて、前記1つ以上の閾値及び前記複数の範囲の少なくとも1つを変更する
     請求項3に記載の空間環境制御システム。
  5.  前記制御部は、所定の期間が経過する度に、前記許容範囲の設定を行う
     請求項1~4のいずれか1項に記載の空間環境制御システム。
  6.  前記制御部は、設定した許容範囲内の上限値に前記環境値が一致するように前記調整機器を制御する
     請求項1~5のいずれか1項に記載の空間環境制御システム。
  7.  前記空間環境制御システムは、前記調整機器を少なくとも1つ備え、
     少なくとも1つの前記調整機器は、前記空間の温度を調整する温度調整機器、前記空間の湿度を調整する湿度調整機器、前記空間に次亜塩素酸を放出する次亜塩素酸発生器、及び、前記空間にオゾンを放出するオゾン発生器の少なくとも1つを含む
     請求項1~6のいずれか1項に記載の空間環境制御システム。
  8.  空間の環境の調整を行う調整機器を制御する制御部を備え、
     前記制御部は、
     前記空間中に存在する病原体を検出する病原体センサによって検出された病原体の前記空間中の濃度である病原体濃度に基づいて、前記空間の温度、湿度、塩素濃度及びオゾン濃度の少なくとも1つを示す環境値の許容範囲を設定し、設定した許容範囲内で前記環境値が収まるように前記調整機器を制御する
     空間環境制御装置。
  9.  空間中に存在する病原体を検出する病原体センサによって検出された病原体の前記空間中の濃度である病原体濃度に基づいて、前記空間の温度、湿度、塩素濃度及びオゾン濃度の少なくとも1つを示す環境値の許容範囲を設定し、
     設定した許容範囲内で前記環境値が収まるように、前記空間の環境の調整を行う調整機器を制御する
     空間環境制御方法。
  10.  請求項9に記載の空間環境制御方法をコンピュータに実行させるためのプログラム。
PCT/JP2018/048326 2018-01-22 2018-12-27 空間環境制御システム、空間環境制御装置及び空間環境制御方法 WO2019142647A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019566399A JPWO2019142647A1 (ja) 2018-01-22 2018-12-27 空間環境制御システム、空間環境制御装置及び空間環境制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018007764 2018-01-22
JP2018-007764 2018-04-09

Publications (1)

Publication Number Publication Date
WO2019142647A1 true WO2019142647A1 (ja) 2019-07-25

Family

ID=67301738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048326 WO2019142647A1 (ja) 2018-01-22 2018-12-27 空間環境制御システム、空間環境制御装置及び空間環境制御方法

Country Status (2)

Country Link
JP (1) JPWO2019142647A1 (ja)
WO (1) WO2019142647A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111840598A (zh) * 2020-06-23 2020-10-30 珠海格力电器股份有限公司 一种杀菌控制方法及存储介质、处理器、杀菌设备
WO2021140794A1 (ja) * 2020-01-09 2021-07-15 日立グローバルライフソリューションズ株式会社 空間環境制御システム
CN113730633A (zh) * 2020-05-27 2021-12-03 江门市邑星科技研发有限公司 一种杀菌系统、控制方法及存储介质
WO2022044801A1 (ja) * 2020-08-31 2022-03-03 パナソニックIpマネジメント株式会社 制御システム、制御方法、及び、プログラム
IT202000022378A1 (it) * 2020-09-22 2022-03-22 Calzoni Srl Sistema e metodo per la rilevazione di uno o più parametri ambientali
JP7075688B1 (ja) 2021-06-25 2022-05-26 株式会社ダイヤニウム 空間維持管理システム
JP7126736B1 (ja) 2021-06-25 2022-08-29 株式会社ダイヤニウム 空間維持管理システム
JP2022183712A (ja) * 2021-05-31 2022-12-13 独立行政法人国立病院機構 評価システム、オゾン発生器、加湿器、電子看板システム、及び情報提供システム
WO2023007624A1 (ja) * 2021-07-28 2023-02-02 三菱電機株式会社 空気調和機、空気調和システム、および、空気換気システム
JP7270853B1 (ja) * 2022-05-26 2023-05-10 三菱電機株式会社 オゾン発生装置およびオゾン供給方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001218825A (ja) * 2000-02-08 2001-08-14 Ishikawajima Harima Heavy Ind Co Ltd 室内殺菌方法とその装置
JP2004028433A (ja) * 2002-06-25 2004-01-29 Daikin Ind Ltd 空気清浄機
JP2009219636A (ja) * 2008-03-14 2009-10-01 Hitachi Plant Technologies Ltd 空気殺菌システム
JP2012046318A (ja) * 2010-08-26 2012-03-08 Toshiba Elevator Co Ltd エレベータ設備の除湿・加湿システム及びその除湿・加湿方法
JP2016114260A (ja) * 2014-12-11 2016-06-23 株式会社東芝 空調制御システム、空調制御方法、およびコンピュータプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106659811B (zh) * 2015-05-22 2019-11-19 株式会社东芝 空间杀菌装置及空间除臭装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001218825A (ja) * 2000-02-08 2001-08-14 Ishikawajima Harima Heavy Ind Co Ltd 室内殺菌方法とその装置
JP2004028433A (ja) * 2002-06-25 2004-01-29 Daikin Ind Ltd 空気清浄機
JP2009219636A (ja) * 2008-03-14 2009-10-01 Hitachi Plant Technologies Ltd 空気殺菌システム
JP2012046318A (ja) * 2010-08-26 2012-03-08 Toshiba Elevator Co Ltd エレベータ設備の除湿・加湿システム及びその除湿・加湿方法
JP2016114260A (ja) * 2014-12-11 2016-06-23 株式会社東芝 空調制御システム、空調制御方法、およびコンピュータプログラム

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140794A1 (ja) * 2020-01-09 2021-07-15 日立グローバルライフソリューションズ株式会社 空間環境制御システム
JP2021110494A (ja) * 2020-01-09 2021-08-02 日立グローバルライフソリューションズ株式会社 空間環境制御システム
JP7383494B2 (ja) 2020-01-09 2023-11-20 日立グローバルライフソリューションズ株式会社 空間環境制御システム
CN113730633A (zh) * 2020-05-27 2021-12-03 江门市邑星科技研发有限公司 一种杀菌系统、控制方法及存储介质
CN111840598A (zh) * 2020-06-23 2020-10-30 珠海格力电器股份有限公司 一种杀菌控制方法及存储介质、处理器、杀菌设备
WO2022044801A1 (ja) * 2020-08-31 2022-03-03 パナソニックIpマネジメント株式会社 制御システム、制御方法、及び、プログラム
JPWO2022044801A1 (ja) * 2020-08-31 2022-03-03
JP7418049B2 (ja) 2020-08-31 2024-01-19 パナソニックIpマネジメント株式会社 制御システム、制御方法、及び、プログラム
IT202000022378A1 (it) * 2020-09-22 2022-03-22 Calzoni Srl Sistema e metodo per la rilevazione di uno o più parametri ambientali
JP7324468B2 (ja) 2021-05-31 2023-08-10 独立行政法人国立病院機構 評価システム、オゾン発生器、加湿器、電子看板システム、及び情報提供システム
JP2022183712A (ja) * 2021-05-31 2022-12-13 独立行政法人国立病院機構 評価システム、オゾン発生器、加湿器、電子看板システム、及び情報提供システム
JP7126736B1 (ja) 2021-06-25 2022-08-29 株式会社ダイヤニウム 空間維持管理システム
JP2023004879A (ja) * 2021-06-25 2023-01-17 株式会社ダイヤニウム 空間維持管理システム
JP2023004348A (ja) * 2021-06-25 2023-01-17 株式会社ダイヤニウム 空間維持管理システム
JP7075688B1 (ja) 2021-06-25 2022-05-26 株式会社ダイヤニウム 空間維持管理システム
WO2023007624A1 (ja) * 2021-07-28 2023-02-02 三菱電機株式会社 空気調和機、空気調和システム、および、空気換気システム
JP7270853B1 (ja) * 2022-05-26 2023-05-10 三菱電機株式会社 オゾン発生装置およびオゾン供給方法
WO2023228344A1 (ja) * 2022-05-26 2023-11-30 三菱電機株式会社 オゾンシステムおよびオゾン供給方法

Also Published As

Publication number Publication date
JPWO2019142647A1 (ja) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2019142647A1 (ja) 空間環境制御システム、空間環境制御装置及び空間環境制御方法
WO2019142599A1 (ja) 空間環境制御システム、空間環境制御装置及び空間環境制御方法
US20210011443A1 (en) Heat mapping system
US9593861B1 (en) Controlling and monitoring indoor air quality (IAQ) devices
EP1990080A1 (en) Air purifier
US20190085852A1 (en) Modular fan assembly
WO2020255875A1 (ja) 空気質制御システム、空気質制御方法、及び、プログラム
US11933514B2 (en) Air conditioner using gas sensing data and control method therefor
Linnes et al. Eggcrate UV: A whole ceiling upper‐room ultraviolet germicidal irradiation system for air disinfection in occupied rooms
RU2678881C2 (ru) Система и способ регулирования темпертауры и очистки окружающего воздуха в здании
KR102369547B1 (ko) 벽걸이형 엘리베이터 내 공기살균 시스템
JP2009014259A (ja) 空気調和機
JP2018085045A (ja) 判定装置、判定装置の制御方法、部屋管理システム、および制御プログラム
US20220341609A1 (en) Heat mapping system
US20220357066A1 (en) Ultraviolet Germicidal Irradiation Light and Bipolar Ionization Control by HVAC Thermostats
KR102323229B1 (ko) 바이러스 검출 기반의 자동 공조 시스템
JP2023077700A (ja) 空調システム
KR20220036375A (ko) 천정 매립형 실내 공기 살균 시스템
US20240207468A1 (en) Systems and methods to mitigate infection risk using far uv-c
US20240318845A1 (en) Systems and methods for feedback control of disinfection
TWI555953B (zh) 室內空氣汙染源之追蹤與調控的方法
KR102619286B1 (ko) 스마트 환풍시스템 및 이를 이용한 방법
KR102388975B1 (ko) 사물인터넷(iot)을 이용한 스마트 공기청정기 제어 시스템
KR20230077314A (ko) 실내공기 온도조절 및 탈취 기능을 갖춘 스마트폰 연동방식의 지능형 조명제어시스템
KR20210027806A (ko) 공조시스템의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566399

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901703

Country of ref document: EP

Kind code of ref document: A1