WO2019141917A1 - Method for conformity control on installation of a pressure sensor of a combustion engine particle filter - Google Patents
Method for conformity control on installation of a pressure sensor of a combustion engine particle filter Download PDFInfo
- Publication number
- WO2019141917A1 WO2019141917A1 PCT/FR2019/050022 FR2019050022W WO2019141917A1 WO 2019141917 A1 WO2019141917 A1 WO 2019141917A1 FR 2019050022 W FR2019050022 W FR 2019050022W WO 2019141917 A1 WO2019141917 A1 WO 2019141917A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement
- pressure sensor
- differential pressure
- during
- engine
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L27/00—Testing or calibrating of apparatus for measuring fluid pressure
- G01L27/007—Malfunction diagnosis, i.e. diagnosing a sensor defect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/002—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/101—Three-way catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/103—Oxidation catalysts for HC and CO only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
- G01M15/10—Testing internal-combustion engines by monitoring exhaust gases or combustion flame
- G01M15/102—Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
- G01M15/106—Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases using pressure sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/24—Determining the presence or absence of an exhaust treating device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/08—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to a method for controlling conformity to the mounting of a thermal engine particle filter pressure sensor.
- the invention lies in the field of the depollution of the exhaust gases of a heat engine, especially a motor vehicle.
- the invention finds application with gasoline type heat engines as well as with diesel type heat engines.
- pollutants can be emitted in the exhaust line of the engine.
- pollutants are mainly unburnt hydrocarbons (HC), nitrogen oxides (nitrogen monoxide NO and NO2) and carbon oxides (including carbon monoxide CO).
- the exhaust line of an engine is therefore generally at least provided with a catalyst, for example a three-way catalyst, allowing the reduction of nitrogen oxides to nitrogen and carbon dioxide, the oxidation of the monoxides of carbon dioxide, and the oxidation of unburned hydrocarbons to carbon dioxide and water.
- a catalyst for example a three-way catalyst, allowing the reduction of nitrogen oxides to nitrogen and carbon dioxide, the oxidation of the monoxides of carbon dioxide, and the oxidation of unburned hydrocarbons to carbon dioxide and water.
- Solid or liquid particles consisting essentially of carbon-based soot can also be emitted.
- a particulate filter consisting of a mineral matrix, of ceramic type, of cellular structure, defining channels arranged substantially parallel to the general direction of flow of the exhaust gases in the filter, and alternatively closed at the inlet side of the filter gases and at the outlet side of the filter gases, as described in EP2426326.
- the particulate filter requires regular regeneration to not be overloaded. These regenerations take place in the presence of thermal and oxygen.
- thermal and oxygen For a gasoline engine for example, a large area of engine operation can provide the necessary thermal and oxygen can be provided by cuts injection when releasing the accelerator pedal or during gear changes.
- a differential pressure measuring sensor comprises an upstream pressure tap and a pressure tap downstream of the particulate filter.
- the sensor thus makes it possible to measure a pressure difference between the inlet and the outlet of the particulate filter, referred to as the pressure difference across the particle filter, from which it is possible, under certain operating conditions of the heat engine, to deduce a quantity of accumulated particles. When this quantity exceeds a threshold, a regeneration of the filter is started.
- the invention aims to effectively overcome this disadvantage by proposing a compliance control method for mounting a differential pressure sensor comprising an upstream pressure tap and a pressure tap downstream of a particulate filter thermal engine, characterized in that said method comprises:
- the invention thus makes it possible to verify the mounting and operation of a differential pressure sensor during tests performed on the vehicle in the terminal plant when the assembly of the complete vehicle is finished or almost finished.
- the invention thus makes it possible to save time in troubleshooting and to remedy the failure in the factory. This improves the manufacturing quality in order to avoid return after-sales service of new vehicles.
- said method comprises: a step of performing a first measurement by the differential pressure sensor during a phase of operation of the engine at idle,
- the minimum threshold is strictly between 0 and 5 mbar.
- the rotational speed of the engine is between 700 and 950 revolutions per minute during the operating phase at idle.
- the speed of rotation of the engine is between 3000 and 5000 revolutions per minute during the operating phase at full load.
- the steps of performing the measurements are performed during a test cycle on a roller motor bench.
- the measurements are performed by means of a diagnostic tool connected to a heat engine calculator during the test cycle.
- the measurements are performed by reading parameters dedicated to a pressure in the particulate filter.
- Figure 1 is a schematic representation of a heat engine with which is implemented the method according to the invention for controlling conformity to the mounting of a differential pressure sensor of a thermal engine particle filter;
- Figure 2 is a graphical representation illustrating a dynamic test cycle during which the pressure measurements according to the invention are performed to validate or not the mounting of the differential pressure sensor.
- Figure 1 shows a heat engine 10, for example a gasoline engine, in particular for fitting a motor vehicle.
- the heat engine 10 is connected to an exhaust line 12 for the evacuation of the burnt gases produced by the operation of the heat engine 10.
- the heat engine 10 may be a diesel type engine.
- the exhaust line 12 comprises a member 14 for cleaning gaseous pollutant, for example an oxidation catalyst, or a three-way catalyst.
- the three-way catalyst makes it possible in particular to reduce nitrogen oxides to nitrogen and carbon dioxide, to oxidize carbon monoxides to carbon dioxide, and unburnt hydrocarbons to carbon dioxide and water.
- a particulate filter 16 is used to filter soot particles in the exhaust gas of the engine 10.
- the particulate filter 16 is suitable for filtering soot particles from the combustion of the fuel.
- the exhaust gas passes through the material constituting the particulate filter 16.
- each of these channels comprises a plugged end, so that the exhaust gas flowing in the particulate filter 16 pass channels in channels, passing through the walls of the different channels to exit the particulate filter 16.
- the particulate filter 16 may be based on a porous ceramic matrix, for example cordierite, mullite aluminum titanate or silicon carbide. If necessary, the pollution control member 14 and the particulate filter 16 may be integrated within the same envelope.
- the exhaust line 12 is also provided with a differential pressure sensor 17 comprising a pressure tap 18 upstream of the particulate filter 16 and a pressure tap 19 downstream of the particulate filter 16.
- the taps 18 , 19 are each constituted by a small diameter pipe connected firstly to the sensor 17 and secondly to a corresponding zone located upstream or downstream of the particulate filter.
- the sensor 17 thus makes it possible to measure a pressure difference dP between the inlet and the outlet of the particulate filter 16, referred to as the pressure difference across the particle filter, from which it is possible, under certain conditions. operating the thermal engine, to deduce a quantity of accumulated particles, that is to say a soot loading particulate filter 16. A regeneration of the particulate filter may be engaged when this amount exceeds a threshold.
- the method of controlling compliance with the mounting of the differential pressure sensor 17 is described hereinafter with reference to FIG. 2. This method is implemented in a terminal plant during a bench dynamic test cycle. roller motor.
- the graph in Figure 2 shows the evolution of the vehicle speed Vveh as a function of time t during the test cycle.
- the reverse and the parking brake are tested on the period T 1 which lasts for example about twenty seconds.
- T2 period that lasts between 20 and 30 seconds, the vehicle's trajectory control system and the wheel anti-lock system ("ABS") are tested at low speed.
- a first measurement M1 performed by the differential pressure sensor 17 is also performed.
- the rotation speed of the motor is between 700 and 950 revolutions per minute.
- the engine rises.
- the speedometer and the speed controller are tested.
- a second measurement M2 by the differential pressure sensor 17 is also performed.
- the speed of rotation of the motor is between 3000 and 5000 revolutions per minute.
- the P4 phase corresponds to a braking phase
- the P5 phase corresponds to a dynamic test phase of the vehicle trajectory control system and the anti-lock system of the wheels.
- a phase P6 it is possible to exploit the results and the measurements M1, M2 acquired during the cycle.
- the total duration Ttot of the test cycle is of the order of 3.5 minutes.
- the measurements M1, M2 are performed by means of a diagnostic tool connected to an engine computer during the test cycle.
- the measurements M1, M2 are performed by reading parameters dedicated to the pressure in the particulate filter, such as DID (acronym for "Data IDentifier” in English).
- the first measurement M1 is compared with a minimum threshold.
- the minimum threshold is strictly between 0 and 5 mbar, that is to say that the extreme limits of 0 and 5mbar are excluded. In the case where this first measurement M1 is greater than the minimum threshold, this confirms the presence of the sensor 17 which then returns a pressure value.
- the second measurement M2 is compared with the first measurement M1. In the case where the second measurement M2 is strictly greater than the first measurement M1, this confirms that the sensor 17 is correctly connected, so that the pressure evolves coherently. This removes the risk of reversing connections to the assembly.
- the mounting of the differential pressure sensor 17 is thus validated if the two previous conditions are satisfied (first measurement M1 greater than the minimum threshold and second measurement M2 strictly greater than the first measurement M1). Otherwise, the mounting of the sensor 17 is not validated.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Toxicology (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Measuring Fluid Pressure (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
The invention relates principally to a method for conformity control on installation of a differential pressure sensor (17) comprising a pressure tapping (18) and a pressure tapping (19) respectively upstream and downstream of a particle filter (16) of a combustion engine (10), characterized in that said method comprises: a step of the differential pressure sensor (17) carrying out at least one first measurement during a first phase of operation of the combustion engine (10), a step of the differential pressure sensor (17) carrying out at least one second measurement during a second phase of operation of the combustion engine, and a step of validation or non-validation of the installation of the differential pressure sensor (17) depending on the resulting measurements.
Description
PROCÉDÉ DE CONTROLE DE CONFORMITÉ AU MONTAGE D'UN CAPTEUR DE PRESSION D'UN FILTRE À PARTICULES DE METHOD FOR MONITORING THE CONFORMITY OF ASSEMBLING A PRESSURE SENSOR OF A PARTICLE FILTER
MOTEUR THERMIQUE THERMAL MOTOR
[0001 ] La présente invention porte sur un procédé de contrôle de conformité au montage d'un capteur de pression de filtre à particules de moteur thermique. L'invention se situe dans le domaine de la dépollution des gaz d'échappement d'un moteur thermique, notamment de véhicule automobile. L'invention trouve une application avec les moteurs thermiques de type essence ainsi qu'avec les moteurs thermiques de type diesel. The present invention relates to a method for controlling conformity to the mounting of a thermal engine particle filter pressure sensor. The invention lies in the field of the depollution of the exhaust gases of a heat engine, especially a motor vehicle. The invention finds application with gasoline type heat engines as well as with diesel type heat engines.
[0002] Lors de la combustion d'un mélange d'air et de carburant dans un moteur thermique, des polluants peuvent être émis dans la ligne d'échappement du moteur. Ces polluants sont principalement des hydrocarbures imbrûlés (HC), des oxydes d'azote (monoxyde d'azote NO et dioxyde d'azote NO2) et des oxydes de carbone (dont le monoxyde de carbone CO). During the combustion of a mixture of air and fuel in a heat engine, pollutants can be emitted in the exhaust line of the engine. These pollutants are mainly unburnt hydrocarbons (HC), nitrogen oxides (nitrogen monoxide NO and NO2) and carbon oxides (including carbon monoxide CO).
[0003] Les normes environnementales en matière de dépollution des gaz d'échappement imposent l'installation de systèmes de post-traitement des gaz d'échappement dans la ligne d'échappement des moteurs. La ligne d'échappement d'un moteur est donc généralement au moins munie d'un catalyseur, par exemple un catalyseur à trois voies, permettant la réduction des oxydes d'azote en azote et en dioxyde de carbone, l'oxydation des monoxydes de carbone en dioxyde de carbone, et l'oxydation des hydrocarbures imbrûlés en dioxyde de carbone et en eau. [0003] Environmental standards for exhaust gas pollution require the installation of exhaust aftertreatment systems in the exhaust line of the engines. The exhaust line of an engine is therefore generally at least provided with a catalyst, for example a three-way catalyst, allowing the reduction of nitrogen oxides to nitrogen and carbon dioxide, the oxidation of the monoxides of carbon dioxide, and the oxidation of unburned hydrocarbons to carbon dioxide and water.
[0004] Des particules solides ou liquides constituées essentiellement de suies à base de carbone peuvent également être émises. Pour les piéger, on prévoit généralement un filtre à particules constitué d'une matrice minérale, de type céramique, de structure alvéolaire, définissant des canaux disposés sensiblement parallèlement à la direction générale d'écoulement des gaz d'échappement dans le filtre, et alternativement obturés du côté de la face d'entrée des gaz du filtre et du côté de la face de sortie des gaz du filtre, comme cela est décrit dans le document EP2426326. [0004] Solid or liquid particles consisting essentially of carbon-based soot can also be emitted. In order to trap them, a particulate filter consisting of a mineral matrix, of ceramic type, of cellular structure, defining channels arranged substantially parallel to the general direction of flow of the exhaust gases in the filter, and alternatively closed at the inlet side of the filter gases and at the outlet side of the filter gases, as described in EP2426326.
[0005] Le filtre à particules nécessite des régénérations régulières pour ne pas être surchargé. Ces régénérations ont lieu en présence de thermique et d’oxygène. Pour un moteur à essence par exemple, une zone importante de fonctionnement moteur permet d’apporter la thermique nécessaire et l’oxygène peut être apporté par des coupures
d’injection lors de relâchements de la pédale d'accélération ou lors de changements de rapport de vitesse. The particulate filter requires regular regeneration to not be overloaded. These regenerations take place in the presence of thermal and oxygen. For a gasoline engine for example, a large area of engine operation can provide the necessary thermal and oxygen can be provided by cuts injection when releasing the accelerator pedal or during gear changes.
[0006] Afin de mesurer le chargement en suies du filtre à particules, un capteur de mesure de pression différentielle comprend un piquage de pression en amont et un piquage de pression en aval du filtre à particules. Le capteur permet ainsi de mesurer une différence de pression entre l'entrée et la sortie du filtre à particules, dite différence de pression aux bornes du filtre à particules, à partir de laquelle il est possible, dans certaines conditions de fonctionnement du moteur thermique, de déduire une quantité de particules accumulées. Lorsque cette quantité dépasse un seuil, une régénération du filtre est lancée. In order to measure the soot loading of the particulate filter, a differential pressure measuring sensor comprises an upstream pressure tap and a pressure tap downstream of the particulate filter. The sensor thus makes it possible to measure a pressure difference between the inlet and the outlet of the particulate filter, referred to as the pressure difference across the particle filter, from which it is possible, under certain operating conditions of the heat engine, to deduce a quantity of accumulated particles. When this quantity exceeds a threshold, a regeneration of the filter is started.
[0007] Certains diagnostics électriques sont présents sur le véhicule pour détecter des défaillances sur des faisceaux ou sur des connecteurs, ainsi que sur le capteur de pression différentielle. Toutefois, les conditions d'activation de ces diagnostics ne sont pas réunies en usine. En conséquence, en cas de mauvais montage du capteur de pression différentielle lié par exemple à une mauvaise mise en place d'un piquage de pression, le dysfonctionnement sera révélé en service après-vente, ce qui implique des coûts de garantie non négligeable. Some electrical diagnostics are present on the vehicle to detect failures on beams or connectors, as well as on the differential pressure sensor. However, the activation conditions of these diagnoses are not met in the factory. Consequently, if the differential pressure sensor is not fitted properly, for example due to improper installation of a pressure tap, the malfunction will be revealed in after-sales service, which implies a considerable guarantee cost.
[0008] L'invention vise à remédier efficacement à cet inconvénient en proposant un procédé de contrôle de conformité au montage d'un capteur de pression différentielle comportant un piquage de pression en amont et un piquage de pression en aval d'un filtre à particules de moteur thermique, caractérisé en ce que ledit procédé comporte: The invention aims to effectively overcome this disadvantage by proposing a compliance control method for mounting a differential pressure sensor comprising an upstream pressure tap and a pressure tap downstream of a particulate filter thermal engine, characterized in that said method comprises:
- une étape de réalisation d'au moins une première mesure par le capteur de pression différentielle lors d'une première phase de fonctionnement du moteur thermique, a step of producing at least a first measurement by the differential pressure sensor during a first phase of operation of the heat engine,
- une étape de réalisation d'au moins une deuxième mesure par le capteur de pression différentielle lors d'une deuxième phase de fonctionnement du moteur thermique, et a step of producing at least a second measurement by the differential pressure sensor during a second operating phase of the heat engine, and
- une étape de validation ou non du montage du capteur de pression différentielle en fonction des mesures réalisées. - A step of enabling or not the mounting of the differential pressure sensor according to the measurements made.
[0009] L’invention permet ainsi de réaliser la vérification du montage et du fonctionnement d’un capteur de pression différentielle lors d’essais réalisés sur le véhicule en usine terminale lorsque le montage du véhicule complet est fini ou quasi fini. L'invention permet ainsi de gagner en temps de recherche de pannes et de remédier à la défaillance en usine. On améliore ainsi la qualité de fabrication afin d'éviter des retours en service après-vente de véhicules neufs. The invention thus makes it possible to verify the mounting and operation of a differential pressure sensor during tests performed on the vehicle in the terminal plant when the assembly of the complete vehicle is finished or almost finished. The invention thus makes it possible to save time in troubleshooting and to remedy the failure in the factory. This improves the manufacturing quality in order to avoid return after-sales service of new vehicles.
[0010] Selon une mise en oeuvre, ledit procédé comporte:
- une étape de réalisation d'une première mesure par le capteur de pression différentielle lors d'une phase de fonctionnement du moteur thermique au ralenti, According to one embodiment, said method comprises: a step of performing a first measurement by the differential pressure sensor during a phase of operation of the engine at idle,
- une étape de réalisation d'une seconde mesure par le capteur de pression différentielle lors d'une phase de fonctionnement du moteur thermique à pleine charge, a step of producing a second measurement by the differential pressure sensor during a phase of operation of the heat engine at full load,
- une étape de comparaison de la première mesure avec un seuil minimal et de comparaison de la seconde mesure par rapport à la première mesure, et a step of comparing the first measurement with a minimum threshold and comparing the second measurement with respect to the first measurement, and
- une étape de validation du montage du capteur si la première mesure est supérieure au seuil minimal et si la seconde mesure est strictement supérieure à la première mesure. a step of validating the assembly of the sensor if the first measurement is greater than the minimum threshold and if the second measurement is strictly greater than the first measurement.
[001 1 ] Selon une mise en oeuvre, le seuil minimal est compris strictement entre 0 et 5 mbar. [001 1] According to one embodiment, the minimum threshold is strictly between 0 and 5 mbar.
[0012] Selon une mise en oeuvre, la vitesse de rotation du moteur thermique est comprise entre 700 et 950 tours par minute lors de la phase de fonctionnement au ralenti. According to one embodiment, the rotational speed of the engine is between 700 and 950 revolutions per minute during the operating phase at idle.
[0013] Selon une mise en oeuvre, la vitesse de rotation du moteur thermique est comprise entre 3000 et 5000 tours par minute lors de la phase de fonctionnement à pleine charge. According to one embodiment, the speed of rotation of the engine is between 3000 and 5000 revolutions per minute during the operating phase at full load.
[0014] Selon une mise en oeuvre, les étapes de réalisation des mesures sont effectuées lors d'un cycle de test sur un banc moteur à rouleaux. According to one embodiment, the steps of performing the measurements are performed during a test cycle on a roller motor bench.
[0015] Selon une mise en oeuvre, les mesures sont réalisées au moyen d'un outil de diagnostic connecté à un calculateur du moteur thermique pendant le cycle de test. According to one embodiment, the measurements are performed by means of a diagnostic tool connected to a heat engine calculator during the test cycle.
[0016] Selon une mise en oeuvre, les mesures sont effectuées par lecture de paramètres dédiés à une pression dans le filtre à particules. According to one embodiment, the measurements are performed by reading parameters dedicated to a pressure in the particulate filter.
[0017] L'invention sera mieux comprise à la lecture de la description qui suit et à l’examen des figures qui l’accompagnent. Ces figures ne sont données qu’à titre illustratif mais nullement limitatif de l’invention. The invention will be better understood from reading the following description and examining the figures that accompany it. These figures are given for illustrative but not limiting of the invention.
[0018] La figure 1 est une représentation schématique d'un moteur thermique avec lequel est mis en oeuvre le procédé selon l'invention de contrôle de conformité au montage d'un capteur de pression différentielle d'un filtre à particules de moteur thermique; Figure 1 is a schematic representation of a heat engine with which is implemented the method according to the invention for controlling conformity to the mounting of a differential pressure sensor of a thermal engine particle filter;
[0019] La figure 2 est une représentation graphique illustrant un cycle de test dynamique au cours duquel sont réalisées les mesures de pression selon l'invention pour valider ou non le montage du capteur de pression différentielle.
[0020] La figure 1 représente un moteur thermique 10, par exemple un moteur à essence, notamment destiné à équiper un véhicule automobile. Le moteur thermique 10 est relié à une ligne d’échappement 12 pour l’évacuation des gaz brûlés produits par le fonctionnement du moteur thermique 10. En variante, le moteur thermique 10 pourra être un moteur de type diesel. Figure 2 is a graphical representation illustrating a dynamic test cycle during which the pressure measurements according to the invention are performed to validate or not the mounting of the differential pressure sensor. [0020] Figure 1 shows a heat engine 10, for example a gasoline engine, in particular for fitting a motor vehicle. The heat engine 10 is connected to an exhaust line 12 for the evacuation of the burnt gases produced by the operation of the heat engine 10. In a variant, the heat engine 10 may be a diesel type engine.
[0021 ] La ligne d’échappement 12 comprend un organe 14 de dépollution de polluant gazeux, par exemple un catalyseur d’oxydation, ou un catalyseur trois-voies. Le catalyseur trois voies 14 permet notamment de réduire les oxydes d'azote en azote et en dioxyde de carbone, d'oxyder les monoxydes de carbone en dioxyde de carbone, et les hydrocarbures imbrûlés en dioxyde de carbone et en eau. The exhaust line 12 comprises a member 14 for cleaning gaseous pollutant, for example an oxidation catalyst, or a three-way catalyst. The three-way catalyst makes it possible in particular to reduce nitrogen oxides to nitrogen and carbon dioxide, to oxidize carbon monoxides to carbon dioxide, and unburnt hydrocarbons to carbon dioxide and water.
[0022] En outre, un filtre à particules 16 permet de filtrer des particules de suies dans les gaz d'échappement du moteur thermique 10. Le filtre à particules 16 est adapté à la filtration de particules de suies provenant de la combustion du carburant. In addition, a particulate filter 16 is used to filter soot particles in the exhaust gas of the engine 10. The particulate filter 16 is suitable for filtering soot particles from the combustion of the fuel.
[0023] Les gaz d'échappement traversent la matière composant le filtre à particules 16. Ainsi, lorsque le filtre à particules 16 est formé de canaux, chacun de ces canaux comprend une extrémité bouchée, de sorte que les gaz d'échappement s'écoulant dans le filtre à particules 16 passent de canaux en canaux, en traversant les parois des différents canaux pour sortir du filtre à particules 16. Le filtre à particules 16 pourra être à base d'une matrice céramique poreuse, par exemple en cordiérite, mullite, titanate d'aluminium ou carbure de silicium. S'il y a lieu, l'organe de dépollution 14 et le filtre à particules 16 pourront être intégrés à l'intérieur d'une même enveloppe. The exhaust gas passes through the material constituting the particulate filter 16. Thus, when the particulate filter 16 is formed of channels, each of these channels comprises a plugged end, so that the exhaust gas flowing in the particulate filter 16 pass channels in channels, passing through the walls of the different channels to exit the particulate filter 16. The particulate filter 16 may be based on a porous ceramic matrix, for example cordierite, mullite aluminum titanate or silicon carbide. If necessary, the pollution control member 14 and the particulate filter 16 may be integrated within the same envelope.
[0024] La ligne d'échappement 12 est également munie d'un capteur de pression différentielle 17 comprenant un piquage de pression 18 en amont du filtre à particules 16 et un piquage de pression 19 en aval du filtre à particules 16. Les piquages 18, 19 sont constitués chacun par un tuyau de faible diamètre relié d'une part au capteur 17 et d'autre part à une zone correspondante située en amont ou en aval du filtre à particules. The exhaust line 12 is also provided with a differential pressure sensor 17 comprising a pressure tap 18 upstream of the particulate filter 16 and a pressure tap 19 downstream of the particulate filter 16. The taps 18 , 19 are each constituted by a small diameter pipe connected firstly to the sensor 17 and secondly to a corresponding zone located upstream or downstream of the particulate filter.
[0025] Le capteur 17 permet ainsi de mesurer une différence de pression dP entre l'entrée et la sortie du filtre à particules 16, dite différence de pression aux bornes du filtre à particules, à partir de laquelle il est possible, dans certaines conditions de fonctionnement du moteur thermique, de déduire une quantité de particules accumulées, c’est-à-dire un chargement en suies du filtre à particules 16. Une régénération du filtre à particules pourra être enclenchée lorsque cette quantité dépasse un seuil.
[0026] On décrit ci-après, en référence avec la figure 2, le procédé de contrôle de conformité au montage du capteur de pression différentielle 17. Ce procédé est mis en oeuvre en usine terminale lors d'un cycle de test dynamique sur banc moteur à rouleaux. Le graphique de la figure 2 montre l'évolution de la vitesse du véhicule Vveh en fonction du temps t lors du cycle de test. The sensor 17 thus makes it possible to measure a pressure difference dP between the inlet and the outlet of the particulate filter 16, referred to as the pressure difference across the particle filter, from which it is possible, under certain conditions. operating the thermal engine, to deduce a quantity of accumulated particles, that is to say a soot loading particulate filter 16. A regeneration of the particulate filter may be engaged when this amount exceeds a threshold. [0026] The method of controlling compliance with the mounting of the differential pressure sensor 17 is described hereinafter with reference to FIG. 2. This method is implemented in a terminal plant during a bench dynamic test cycle. roller motor. The graph in Figure 2 shows the evolution of the vehicle speed Vveh as a function of time t during the test cycle.
[0027] Au cours d'une phase P1 de fonctionnement au ralenti du moteur thermique, la marche arrière et le frein de parking sont testés sur la période T 1 qui dure par exemple une vingtaine de secondes. Au cours d'une période T2 qui dure entre 20 et 30 secondes, le système de contrôle de la trajectoire du véhicule ainsi le système d'anti-blocage des roues ("ABS") sont testés à basse vitesse. Une première mesure M1 effectuée par le capteur de pression différentielle 17 est également réalisée. Au cours de la phase P1 , la vitesse de rotation du moteur est comprise entre 700 et 950 tours par minute. During a phase P1 of idling operation of the engine, the reverse and the parking brake are tested on the period T 1 which lasts for example about twenty seconds. During a T2 period that lasts between 20 and 30 seconds, the vehicle's trajectory control system and the wheel anti-lock system ("ABS") are tested at low speed. A first measurement M1 performed by the differential pressure sensor 17 is also performed. During phase P1, the rotation speed of the motor is between 700 and 950 revolutions per minute.
[0028] Au cours d'une phase P2, le moteur monte en régime. Au cours de la phase P3 de fonctionnement du moteur thermique à pleine charge, on teste le compteur de vitesse ainsi que le régulateur de vitesse. Une seconde mesure M2 par le capteur de pression différentielle 17 est également réalisée. Dans cette phase P3, la vitesse de rotation du moteur est comprise entre 3000 et 5000 tours par minute. During a phase P2, the engine rises. During the phase P3 of operation of the engine at full load, the speedometer and the speed controller are tested. A second measurement M2 by the differential pressure sensor 17 is also performed. In this phase P3, the speed of rotation of the motor is between 3000 and 5000 revolutions per minute.
[0029] La phase P4 correspond à une phase de freinage, tandis que la phase P5 correspond à une phase de test dynamique du système de contrôle de la trajectoire du véhicule ainsi que du système d'anti-blocage des roues. Lors d'une phase P6, il est possible d'exploiter les résultats et les mesures M1 , M2 acquises lors du cycle. La durée totale Ttot du cycle de test est de l'ordre de 3.5 minutes. The P4 phase corresponds to a braking phase, while the P5 phase corresponds to a dynamic test phase of the vehicle trajectory control system and the anti-lock system of the wheels. During a phase P6, it is possible to exploit the results and the measurements M1, M2 acquired during the cycle. The total duration Ttot of the test cycle is of the order of 3.5 minutes.
[0030] Les mesures M1 , M2 sont réalisées au moyen d'un outil de diagnostic connecté à un calculateur du moteur pendant le cycle de test. Les mesures M1 , M2 sont effectuées par lecture de paramètres dédiés à la pression dans le filtre à particules, tels que des paramètres DID (acronyme pour "Data IDentifier" en anglais). The measurements M1, M2 are performed by means of a diagnostic tool connected to an engine computer during the test cycle. The measurements M1, M2 are performed by reading parameters dedicated to the pressure in the particulate filter, such as DID (acronym for "Data IDentifier" in English).
[0031 ] La première mesure M1 est comparée avec un seuil minimal. Le seuil minimal est compris strictement entre 0 et 5 mbar, c’est-à-dire que les bornes extrêmes de 0 et 5mbar sont exclues. Dans le cas où cette première mesure M1 est supérieure au seuil minimal, cela confirme la présence du capteur 17 qui renvoie alors une valeur de pression. The first measurement M1 is compared with a minimum threshold. The minimum threshold is strictly between 0 and 5 mbar, that is to say that the extreme limits of 0 and 5mbar are excluded. In the case where this first measurement M1 is greater than the minimum threshold, this confirms the presence of the sensor 17 which then returns a pressure value.
[0032] En outre, la seconde mesure M2 est comparée à la première mesure M1 . Dans le cas où la seconde mesure M2 est strictement supérieure à la première mesure M1 , cela
confirme que le capteur 17 est correctement connecté, de sorte que la pression évolue de façon cohérente. On écart ainsi le risque d’inversion des connexions au montage. In addition, the second measurement M2 is compared with the first measurement M1. In the case where the second measurement M2 is strictly greater than the first measurement M1, this confirms that the sensor 17 is correctly connected, so that the pressure evolves coherently. This removes the risk of reversing connections to the assembly.
[0033] Le montage du capteur de pression différentielle 17 est ainsi validé si les deux conditions précédentes sont vérifiées (première mesure M1 supérieure au seuil minimal et seconde mesure M2 strictement supérieure à la première mesure M1 ). Dans le cas contraire, le montage du capteur 17 n'est pas validé.
The mounting of the differential pressure sensor 17 is thus validated if the two previous conditions are satisfied (first measurement M1 greater than the minimum threshold and second measurement M2 strictly greater than the first measurement M1). Otherwise, the mounting of the sensor 17 is not validated.
Claims
1. Procédé de contrôle de conformité au montage d'un capteur de pression différentielle (17) comportant un piquage de pression (18) en amont et un piquage de pression (19) en aval d'un filtre à particules (16) de moteur thermique (10), ledit procédé comportant :A method of checking compliance with the mounting of a differential pressure sensor (17) having an upstream pressure tap (18) and a pressure tap (19) downstream of an engine particulate filter (16). thermal device (10), said method comprising:
- une étape de réalisation d'au moins une première mesure (M1 ) par le capteur de pression différentielle (17) lors d'une première phase de fonctionnement du moteur thermique (10), a step of producing at least a first measurement (M1) by the differential pressure sensor (17) during a first phase of operation of the heat engine (10),
- une étape de réalisation d'au moins une deuxième mesure (M2) par le capteur de pression différentielle (17) lors d'une deuxième phase de fonctionnement du moteur thermique (10), et a step of producing at least a second measurement (M2) by the differential pressure sensor (17) during a second operating phase of the heat engine (10), and
- une étape de validation ou non du montage du capteur de pression différentielle (17) en fonction des mesures (M1 , M2) réalisées, a step of enabling or not the mounting of the differential pressure sensor (17) as a function of the measurements (M1, M2) carried out,
caractérisé en ce que ledit procédé comporte aussi : characterized in that said method also comprises:
- une étape de réalisation d'une première mesure (M1 ) par le capteur de pression différentielle (17) lors d'une phase de fonctionnement du moteur thermique (10) au ralenti, a step of performing a first measurement (M1) by the differential pressure sensor (17) during a phase of operation of the heat engine (10) at idle,
- une étape de réalisation d'une seconde mesure (M2) par le capteur de pression différentielle (17) lors d'une phase de fonctionnement du moteur thermique (10) à pleine charge, a step of producing a second measurement (M2) by the differential pressure sensor (17) during an operating phase of the heat engine (10) at full load,
- une étape de comparaison de la première mesure (M1 ) avec un seuil minimal et de comparaison de la seconde mesure (M2) par rapport à la première mesure (M1 ), et a step of comparing the first measurement (M1) with a minimum threshold and comparing the second measurement (M2) with respect to the first measurement (M1), and
- une étape de validation du montage du capteur (17) si la première mesure (M1 ) est supérieure au seuil minimal et si la seconde mesure (M2) est strictement supérieure à la première mesure (M1 ). a step of enabling the mounting of the sensor (17) if the first measurement (M1) is greater than the minimum threshold and if the second measurement (M2) is strictly greater than the first measurement (M1).
2. Procédé selon la revendication 1 , caractérisé en ce que le seuil minimal est compris strictement entre 0 et 5 mbar. 2. Method according to claim 1, characterized in that the minimum threshold is strictly between 0 and 5 mbar.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la vitesse de rotation du moteur thermique (10) est comprise entre 700 et 950 tours par minute lors de la phase de fonctionnement au ralenti. 3. Method according to claim 1 or 2, characterized in that the rotational speed of the engine (10) is between 700 and 950 revolutions per minute during the idling phase of operation.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la vitesse de rotation du moteur thermique (10) est comprise entre 3000 et 5000 tours par minute lors de la phase de fonctionnement à pleine charge.
4. Method according to any one of claims 1 to 3, characterized in that the speed of rotation of the engine (10) is between 3000 and 5000 revolutions per minute during the operating phase at full load.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1850419A FR3077133B1 (en) | 2018-01-19 | 2018-01-19 | METHOD FOR CHECKING THE CONFORMITY OF MOUNTING A PRESSURE SENSOR OF A PARTICLE FILTER OF A THERMAL ENGINE |
FR1850419 | 2018-01-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019141917A1 true WO2019141917A1 (en) | 2019-07-25 |
Family
ID=61656010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2019/050022 WO2019141917A1 (en) | 2018-01-19 | 2019-01-07 | Method for conformity control on installation of a pressure sensor of a combustion engine particle filter |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3077133B1 (en) |
WO (1) | WO2019141917A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019207187A1 (en) * | 2019-05-16 | 2020-11-19 | Robert Bosch Gmbh | Method and device for diagnosing an exhaust system |
FR3100277A1 (en) * | 2019-08-29 | 2021-03-05 | Psa Automobiles Sa | Method of controlling a heat engine for the detection of a freezing plug of a differential pressure sensor with the engine running |
CN114165346A (en) * | 2020-09-11 | 2022-03-11 | 北京福田康明斯发动机有限公司 | Precision detection method and system of DPF (diesel particulate filter) differential pressure sensor and storage medium |
CN116105925A (en) * | 2023-03-22 | 2023-05-12 | 潍柴动力股份有限公司 | Correction method and device for DPF differential pressure sensor measured value and vehicle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2426326A1 (en) | 2010-09-02 | 2012-03-07 | Peugeot Citroën Automobiles SA | Particle filter with three catalytic coatings |
DE102011003748A1 (en) * | 2011-02-08 | 2012-08-09 | Robert Bosch Gmbh | Method for monitoring functioning of differential pressure sensor in exhaust gas after-treatment system of diesel engine, involves closing defective front terminal or rear terminal with change in stationary measured pressure difference |
FR3021355A1 (en) * | 2014-05-22 | 2015-11-27 | Bosch Gmbh Robert | METHOD AND DIAGNOSTIC UNIT OF A DIFFERENTIAL PRESSURE SENSOR |
US20160341142A1 (en) * | 2015-05-19 | 2016-11-24 | GM Global Technology Operations LLC | Control system for diagnosing a malfunctioning of a pressure sensor included in an aftertreatment system of an internal combustion engine |
-
2018
- 2018-01-19 FR FR1850419A patent/FR3077133B1/en active Active
-
2019
- 2019-01-07 WO PCT/FR2019/050022 patent/WO2019141917A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2426326A1 (en) | 2010-09-02 | 2012-03-07 | Peugeot Citroën Automobiles SA | Particle filter with three catalytic coatings |
DE102011003748A1 (en) * | 2011-02-08 | 2012-08-09 | Robert Bosch Gmbh | Method for monitoring functioning of differential pressure sensor in exhaust gas after-treatment system of diesel engine, involves closing defective front terminal or rear terminal with change in stationary measured pressure difference |
FR3021355A1 (en) * | 2014-05-22 | 2015-11-27 | Bosch Gmbh Robert | METHOD AND DIAGNOSTIC UNIT OF A DIFFERENTIAL PRESSURE SENSOR |
US20160341142A1 (en) * | 2015-05-19 | 2016-11-24 | GM Global Technology Operations LLC | Control system for diagnosing a malfunctioning of a pressure sensor included in an aftertreatment system of an internal combustion engine |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019207187A1 (en) * | 2019-05-16 | 2020-11-19 | Robert Bosch Gmbh | Method and device for diagnosing an exhaust system |
FR3100277A1 (en) * | 2019-08-29 | 2021-03-05 | Psa Automobiles Sa | Method of controlling a heat engine for the detection of a freezing plug of a differential pressure sensor with the engine running |
CN114165346A (en) * | 2020-09-11 | 2022-03-11 | 北京福田康明斯发动机有限公司 | Precision detection method and system of DPF (diesel particulate filter) differential pressure sensor and storage medium |
CN114165346B (en) * | 2020-09-11 | 2023-11-28 | 北京福田康明斯发动机有限公司 | Precision detection method, system and storage medium of DPF differential pressure sensor |
CN116105925A (en) * | 2023-03-22 | 2023-05-12 | 潍柴动力股份有限公司 | Correction method and device for DPF differential pressure sensor measured value and vehicle |
Also Published As
Publication number | Publication date |
---|---|
FR3077133B1 (en) | 2020-07-17 |
FR3077133A1 (en) | 2019-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019141917A1 (en) | Method for conformity control on installation of a pressure sensor of a combustion engine particle filter | |
FR2971811A1 (en) | METHOD FOR MANAGING AN EXHAUST GAS INSTALLATION OF AN INTERNAL COMBUSTION ENGINE | |
FR2833994A1 (en) | METHOD AND DEVICE FOR MONITORING THE OPERATING STATE OF A CATALYTIC CONVERTER OF AN EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE | |
EP3387230B1 (en) | Method for diagnosing a catalyst for selective reduction of nitrogen oxides of an engine and associated device | |
WO2020201648A1 (en) | Method for diagnosing the presence of frost in the tapping of a differential pressure sensor | |
FR2910535A1 (en) | INTERNAL COMBUSTION ENGINE FOR A MOTOR VEHICLE COMPRISING A FILTERING DEVICE AND CORRESPONDING CONTROL METHOD | |
EP2992193B1 (en) | Device and method for monitoring a treatment component for gaseous emissions of an exhaust system of an internal combustion engine | |
EP3685031B1 (en) | Method for regenerating a particulate filter for a heat engine | |
EP2016264B1 (en) | System and method to monitor the operating status of a catalytic device comprising two catalytic oxidation components arranged in series in the exhaust line of an internal combustion engine | |
EP3359787B1 (en) | Method for diagnosing a catalyst for selective reduction of nitrogen oxides | |
WO2019058043A1 (en) | Heat engine control method | |
FR3045103B1 (en) | METHOD FOR CONTROLLING A MOTORIZATION DEVICE AND ASSOCIATED MOTORIZATION DEVICE | |
FR3098250A1 (en) | PROCESS FOR DIAGNOSING THE PRESENCE OF FROST IN A PITCH OF A DIFFERENTIAL PRESSURE SENSOR | |
EP3060770B1 (en) | Method for diagnosing a nitrogen oxide trap and related device | |
EP3060769B1 (en) | Method for diagnosing a nitrogen oxide trap and related device | |
EP3701133B1 (en) | Method for estamating the soot loading of a particulate filter of an internal combustion engine | |
FR3098248A1 (en) | PROCESS FOR DIAGNOSING THE PRESENCE OF FROST IN A PITCH OF A DIFFERENTIAL PRESSURE SENSOR | |
FR3053729A1 (en) | METHOD FOR DETECTING THE PRESENCE OF A PARTICLE FILTER OF AN INTERNAL COMBUSTION ENGINE | |
FR3053730A1 (en) | METHOD FOR REGENERATING AN INTERNAL COMBUSTION ENGINE PARTICLE FILTER | |
FR3071543A1 (en) | METHOD FOR CONTROLLING A THERMAL ENGINE | |
FR3096736A1 (en) | PROCEDURE FOR DIAGNOSING A CONNECTION STATE OF A DIFFERENTIAL PRESSURE SENSOR | |
FR3142253A1 (en) | METHOD FOR ACCELERATED FOULING OF A VEHICLE PARTICLE FILTER | |
FR2939841A1 (en) | Method for detecting efficiency loss of catalytic converter or conversion function of nitrogen oxide trap for motor vehicle, involves emitting alarm signal based on difference of values of pollutant content measurement and threshold | |
FR2957819A1 (en) | Soot quantity determining method for diagnosing malfunction of particle filter in diesel engine of motor vehicle, involves determining difference between quantity of soot present upstream of filter and quantity of soot stored by filter | |
FR3114124A1 (en) | Diagnosis method for a nitrogen oxide trap. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19703150 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19703150 Country of ref document: EP Kind code of ref document: A1 |