[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019039812A1 - 무선 통신 시스템에서 참조 신호 송수신 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 참조 신호 송수신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2019039812A1
WO2019039812A1 PCT/KR2018/009522 KR2018009522W WO2019039812A1 WO 2019039812 A1 WO2019039812 A1 WO 2019039812A1 KR 2018009522 W KR2018009522 W KR 2018009522W WO 2019039812 A1 WO2019039812 A1 WO 2019039812A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
base station
terminal
phase difference
symbol
Prior art date
Application number
PCT/KR2018/009522
Other languages
English (en)
French (fr)
Inventor
김명진
이상림
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/640,980 priority Critical patent/US11265123B2/en
Priority to EP18847987.7A priority patent/EP3678426B1/en
Publication of WO2019039812A1 publication Critical patent/WO2019039812A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26136Pilot sequence conveying additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to a reference signal transmission and reception in a wireless communication system, and more particularly, to a method and apparatus for transmitting or receiving a positioning reference signal (PRS) for estimating a position.
  • PRS positioning reference signal
  • the UE performs an initial cell search (S101).
  • the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from a base station, downlink synchronization with the BS, and acquires information such as a cell ID.
  • the UE acquires system information (e.g., MIB) through a PBCH (Physical Broadcast Channel).
  • MIB System information
  • PBCH Physical Broadcast Channel
  • the UE can receive the DL RS (Downlink Reference Signal) and check the downlink channel status.
  • DL RS Downlink Reference Signal
  • the UE can acquire more specific system information (e.g., SIBs) by receiving a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) scheduled by the PDCCH (S102).
  • SIBs system information
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • the UE may perform a random access procedure for uplink synchronization.
  • the UE transmits a preamble (eg, Msg1) through a Physical Random Access Channel (PRACH) (S103), and receives a response message (eg, Msg2) for the preamble on the PDSCH corresponding to the PDCCH and the PDCCH ).
  • a contention resolution procedure such as additional PRACH transmission (S105) and PDCCH / PDSCH reception (S106) may be performed.
  • the UE can perform PDCCH / PDSCH reception (S107) and Physical Uplink Shared Channel (PUSCH) / Physical Uplink Control Channel (PUCCH) transmission (S108) as a normal uplink / downlink signal transmission procedure.
  • the UE can transmit UCI (Uplink Control Information) to the BS.
  • the UCI may include HARQ ACK / NACK (Hybrid Automatic Repeat reQuest Acknowledgment / Negative ACK), SR (Scheduling Request), CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator) and / or RI have.
  • the technical problem of the present invention is not limited to the technical problems described above, and other technical problems can be inferred from the embodiments of the present invention.
  • a method of transmitting and receiving signals for location estimation in a wireless communication system comprising: receiving a DL (downlink) PRS from a serving BS and a reference BS, signal; Measuring phase differences between sinusoidal components included in the DL PRS for each of the serving base station and the reference base station; Generating an uplink (UL) PRS based on the measured phase difference; And transmitting the UL PRS to the serving base station, wherein the terminal measures the measured phase difference with respect to the serving base station and the measured phase differences with respect to the reference base stations through transmission of the UL PRS, It can report to the base station.
  • a terminal for transmitting and receiving signals for location estimation comprising: a transceiver; Receiving a DL (downlink) positioning reference signal (PRS) from each of the serving base station and the reference base station by controlling the transceiver, and transmitting a phase difference between the sine wave components included in the DL PRS, A processor for measuring for each of the reference base stations, generating an uplink (UL) PRS based on the measured phase difference, and transmitting the UL PRS to the serving base station, The UE can report the measured phase difference to the serving base station and the measured phase difference to the reference base stations together with the serving base station.
  • PRS downlink positioning reference signal
  • the UL PRS generated by the UE includes a first sine wave component indicating a measured phase difference with respect to the serving base station, a second sine wave component indicating a phase difference measured with respect to a first reference base station among the reference base stations, And a third sinusoidal component indicative of the measured phase difference relative to the reference base station.
  • the first sinusoidal component corresponds to A * exp (j * (w * (tt UE, s, Rx -n * t symbol ) + arg1)) and the second sinusoidal component corresponds to A * exp w * (tt UE, s, Rx -n * t symbol) + arg2))) corresponding to said third sinusoidal components in the a * exp (j * (w * (tt UE, s, Rx -n * t corresponding to the symbol) + arg3))), and, 'a'is' w 'wherein the size of the UL PRS (amplitude), the' t 'each frequency (angular frequency), is' t UE transmission timing of the UL PRS,, s, Rx 'is a time point at which the DL PRS signal processing starts,' n 'is the number of symbols between the DL PRS received symbol and the UL PRS transmitted symbol,' t symbol ''arg1' may be a measured phase
  • the measured phase difference for the serving base station corresponds to (w 2 -w 1 ) (t UE, s, RX -t ServingBs, s, Tx ) - (w 2 / cw 1 / c) * x, 'And' w2 'are angular frequencies of each of the sinusoidal components included in the DL PRS of the serving base station,' t UE, s, and Rx 'are time points at which the signal processing of the DL PRS starts, 'ServingBs, s, Tx ' is a time point at which the serving base station transmitted the DL PRS, 'c' is a speed of light, and 'x' is a distance between the serving base station and the terminal.
  • the UE may select reference BSs transmitting DL PRSs whose signal strength exceeds a threshold among the reference BSs and report phase differences for the selected reference BSs through the UL PRS.
  • a method of transmitting and receiving signals for a location estimation of a mobile station in a wireless communication system comprising the steps of: receiving a downlink (PRS) To the terminal; Receiving a UL PRS from the terminal, a first PRS from a first reference base station and a second PRS from a second reference base station, respectively; And estimating a distance between the terminal and the serving base station, a distance between the terminal and the first reference base station, and a distance between the terminal and the second reference base station using the UL PRS, the first PRS, and the second PRS Step < / RTI >
  • a serving base station for transmitting / receiving a signal for location estimation of a terminal
  • the base station comprising: a transceiver; And transmitting a DL (downlink) positioning reference signal (PRS) including sine wave components by controlling the transceiver to the terminal, and transmitting the UL PRS from the terminal, the first PRS from the first reference base station, A first PRS, a second PRS, a distance between the terminal and the serving base station, a distance between the terminal and the first reference base station, and a distance between the terminal and the second reference station using the UL PRS, the first PRS, And a processor for estimating the distance between the reference base stations.
  • PRS downlink positioning reference signal
  • the serving BS measures the first phase difference measured by the UE with respect to the sine wave components of the DL PRS of the serving base station through the UL PRS and the sine wave components of the DL PRS of the first reference BS, The second phase difference, and the sine wave components of the DL PRS of the second reference BS.
  • the serving base station estimates a distance between the terminal and the serving base station based on the first phase difference and estimates a distance between the terminal and the first reference base station based on the second phase difference and the first PRS And estimate a distance between the terminal and the second reference base station based on the third phase difference and the second PRS.
  • the UL PRS comprises: a first sinusoidal component corresponding to A * exp (j * (w * (tt UE, s, Rx -n * t symbol ) + arg1))); A second exponent component corresponding to A * exp (j * (w * (tt UE, s, Rx -n * t symbol ) + arg2))); And A * exp (j * (w * (tt UE, s, Rx -n * t symbol ) + arg3)), where A is the amplitude of the UL PRS ), 'w' is an angular frequency, 't' is a UL PRS transmission time, 't UE, s, Rx ' is a time at which the UE starts signal processing of the DL PRS, 'n''T symbol ' is the length of one symbol, 'arg1' is the first phase difference, 'arg2' is the first phase difference, 'arg2' is the second phase difference, 2 phase difference
  • the terminal and the first reference distance between a base station ⁇ arg2-arg4- (w 4 -w 3) * (t UE, s, Rx -t ServingBS, s, Rx) ⁇ / (w 4 / cw 3 / c) 'Arg2' is the second phase difference
  • 'arg4' is the phase difference measured by the serving base station through the first PRS
  • 'w3' and 'w4' are the DL PRS of the first reference base station
  • 'T Serving BS s, Rx ' of each of the sinusoidal components
  • 't UE, s, Rx ' is a time at which the UE starts signal processing of the DL PRS of the first reference BS
  • a time point at which the serving BS starts signal processing of the first PRS, and 'c' may be a speed of light.
  • the serving BS may estimate the location of the MS based on the distance between the MS and the serving BS, the distance between the MS and the first BS, and the distance between the MS and the second BS.
  • information on the phase differences measured by the UE through the DL PRSs of the plurality of base stations may be reported only to the serving BS through one UL PRS transmission. Therefore, Overhead and scheduling complexity of the network can be minimized and the problem of distance / position measurement being inaccurate when the terminal transmits UL PRS to another neighboring base station can be solved.
  • FIG. 1 illustrates the physical channels used in the 3GPP LTE / LTE-A system and a general signal transmission method using them.
  • FIG. 2 illustrates a sequence of measurements for distance measurement between a transmitting apparatus and a receiving apparatus according to an embodiment of the present invention.
  • Figure 3 shows an example of position estimation through triangulation.
  • FIG. 4 shows an example of a position estimation method using a phase difference.
  • FIG. 5 shows an example in which BSs transmit DL PRS to a UE.
  • FIG. 6 shows an example of DL PRS transmission time points of BSs.
  • Figure 7 shows an example of a periodic DL PRS transmission.
  • FIG. 10 shows an example in which the reference BSs and the MS transmit the PRS to the serving BS.
  • FIG. 11 shows an example of a time point at which reference stations and a terminal k send a PRS to a serving base station.
  • FIG. 12 shows a flow of a reference signal transmission / reception method for position estimation according to an embodiment of the present invention.
  • FIG. 13 shows a transmitting apparatus and a receiving apparatus according to an embodiment of the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • CDMA may be implemented in radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • UTRA Universal Terrestrial Radio Access
  • TDMA may be implemented in a wireless technology such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution) is part of E-UMTS (Evolved UMTS) using E-UTRA, adopts OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced is an evolved version of 3GPP LTE.
  • next generation communication system discussed recently needs to have enhanced mobile broadband (eMBB) communication compared to the existing radio access technology (RAT) Is emerging.
  • eMBB enhanced mobile broadband
  • RAT radio access technology
  • massive MTC massive machine type communication, mMTC
  • URLLC Ultra-Reliable and Low Latency Communication
  • New RAT new wireless access technology
  • a location location protocol In the LTE system, a location location protocol (LPP) is introduced.
  • the location server can send assistance data for positioning to the terminal. That is, the location server can transmit assistance data to the terminal so that the OTDOA / A-GNSS scheme can be used.
  • a terminal UE uses a reference signal (e.g., positioning RS) for positioning and transmits measurement information or location information from a reference signal to a location server (e.g., E-SMLC / SLP), and the final positioning is done at the location server.
  • the positioning information and the transmission / reception method between the terminal and the location server are standardized to the LPP standard, and the LPP standard may include the IE for the positioning information and the signaling procedure.
  • the LPP technology includes three functions: Assisted Global Navigation Satellite System (A-GNSS); Observed Time Differential Of Arrival (OTDOA); and Enhanced Cell ID (E-CID) to be.
  • A-GNSS Assisted Global Navigation Satellite System
  • OTDOA Observed Time Differential Of Arrival
  • E-CID Enhanced Cell ID
  • the A-GNSS scheme is a satellite-based positioning scheme and has the advantage of reducing initial positioning time by receiving basic satellite information for positioning via a wireless network (e.g., LTE).
  • a wireless network e.g., LTE
  • accurate position information is obtained through communication with GPS and position server of network.
  • RSTD Reference Signal Time Difference
  • the E-CID scheme is a scheme for narrowing the location of a UE by combining a conventional CID (Cell ID) scheme and a received signal strength indication (RSSI) scheme in a hybrid scheme. (RSRP) and Reference Signal Received Power (RSRQ) as related measurement values.
  • the E-CID method is a method in which a terminal performs a round trip measurement, a path loss related measurement, and an angular arrival measurement through a method of analyzing an OFDMA signal of LTE called RSRP And estimates the position.
  • a radio apparatus that has first transmitted a signal is referred to as a transmitting apparatus, and a apparatus that has received a signal first is referred to as a receiving apparatus.
  • the transmitting apparatus may also receive the signal thereafter, and the receiving apparatus may also transmit the signal. That is, the transmitting apparatus may also include a transmitter and a receiver, and the receiving apparatus may also include a transmitter and a receiver.
  • a base station and a terminal of the transmitting apparatus and the receiving apparatus may be a plurality of base stations or a plurality of terminals.
  • a signal is transmitted and received using two angular frequencies.
  • the present invention is not limited thereto and the present invention can be applied to more angular frequencies. It is also assumed in the examples that a plurality of angular frequency components are transmitted at the same time, but this is for convenience of explanation, and each frequency is transmitted at another predetermined time, and the present invention is carried out in consideration of such a transmission time difference It is also possible.
  • the time at which the transmitter / receiver performs a signal transmission / reception operation is quantized.
  • a boundary point of each OFDM symbol is a quantized point in which a transmitting / receiving operation is performed.
  • the starting points of the transmission and reception operations of the transmitting device and the receiving device are t s, TX , t s, and R x , respectively, repeatedly appearing every t symb .
  • t symb can be the length of the OFDM symbol.
  • FIG. 2 illustrates a sequence of measurements for distance measurement between a transmitting apparatus and a receiving apparatus according to an embodiment of the present invention. It is assumed that the receiving apparatus is synchronized with the synchronization signal sent from the transmitting apparatus, but this is for convenience of explanation, and the distance measurement using the phase difference can be applied even when the sending apparatus and the receiving apparatus are asynchronous.
  • a signal repeatedly transmitted during two symbols is considered, but a signal transmission having a cyclic prefix (CP) and data for one symbol length may be considered.
  • CP cyclic prefix
  • the transmitting device transmits a sinusoidal wave having angular frequencies w 1 and w 2 at the time t s and Tx to a reference signal (eg, ranging RS) for distance measurement.
  • a reference signal eg, ranging RS
  • the signal transmitted by the transmitting apparatus will be referred to as a first signal.
  • the transmitted first signal is delayed by d / c based on the distance d between the transmitting / receiving devices and the speed c of the light , and reaches the receiving device at time t a, Rx .
  • the receiving device Due to the sampling (or quantization), the receiving device actually acquires baseband signals (eg, sampling values) from the time t s, Rx . Assuming that the size of the fast Fourier transform (FFT) performed by the receiving apparatus is N, the receiving apparatus can obtain values corresponding to w 1 and w 2 by inputting a total of N sampling values to the FFT.
  • FFT fast Fourier transform
  • phase difference between the w 1 component X RX (w 1 ) and the w 2 component X RX (w 2 ) of the FFT-processed sampling value can be obtained by Equation (1).
  • the receiving apparatus transmits a sinusoidal wave (hereinafter, referred to as a second signal) having angular frequencies w 1 and w 2 , as in the transmitting apparatus.
  • a sinusoidal wave hereinafter, referred to as a second signal
  • Delta_2 ts and Tx + (n + 1) by performing an FFT on N sampled values obtained from the time ts , Tx + (n + 1) * t_symb ' * t_symb - t a, Tx can be obtained.
  • Equation (2) the round trip time (RTT), which is the round trip time of the signal, is defined as Equation (2).
  • c is a fixed constant (i.e., the speed of light).
  • the transmitter knows the values of Delta_2 and t_symb, but does not know the value of Delta_1. Therefore, in order for the transmitting apparatus to measure the distance d between the transmitting apparatus and the receiving apparatus, the transmitting apparatus should be able to know information on the Delta_1 measured by the receiving apparatus.
  • the receiving device may provide the value of Delta_1 to the transmitting device via the second signal. For example, assuming that the value of Delta_1 corresponds to the phase difference B, the receiving apparatus can set the phase difference between the w1 sinusoidal component and the w2 sinusoidal component to B in the second signal transmitted after the n symbols (eg, a positioning reference signal) .
  • the transmitting apparatus can measure the distance between the transmitting apparatus and the receiving apparatus based on the received second signal.
  • x 2 (t) ⁇ 2 * e j * (w 2 * t + ⁇ 2) .
  • ⁇ 1 represents the amplitude of the first sinusoidal component
  • ⁇ 2 represents the amplitude of the second sinusoidal component.
  • Equation (1) can be modified as shown in Equation (3) below.
  • Phase differences in Equation 3 is the difference between ⁇ (w 2 -w 1) (t s, RX -t a, RX) + ( ⁇ 2 - ⁇ 1) , and the initial phase values that existed at the time from transmission of the first signal ( ⁇ 2 - ⁇ 1 ) must be removed from the phase difference ⁇ .
  • the receiving apparatus can correct the phase difference [psi] by [theta] using the initial phase values.
  • the phase difference ⁇ due to the difference between the arrival time excluding ( ⁇ 2 - ⁇ 1 ) and the FFT start time is (w 2 -w 1 ) (t s, RX- t a, RX ).
  • the receiving apparatus transmits the second signal after n symbols.
  • FIG. 3 shows a method of estimating a position through triangulation.
  • the location server In order for the location server to determine the position of the terminal using triangulation as shown in FIG. 3, it is necessary to know the distances of x, y and z.
  • FIG. 4 shows an example of a position estimation method using a phase difference.
  • each base station can transmit a DL PRS (Positioning Reference Signal) (e.g., a first signal) using a different frequency (e.g., FIG. 4 (a)).
  • the UE may measure the phase difference with respect to the DL PRS received from each base station and transmit the measured phase difference information to each base station through UL PRS (eg, a second signal) (eg, FIG. 4B) . Therefore, each base station can obtain the distances x, y, z between each base station and the terminal.
  • Each base station transmits distance x, y, and z information to the location server, and the location server can determine the location of the terminal through a method such as triangulation.
  • each base station For such a position estimation method, a time point at which each base station transmits a DL PRS (e.g., a first signal) must be scheduled, and each base station receives UL PRS carrying phase difference information (e.g., a second signal) The timing should also be scheduled.
  • each base station needs to schedule DL / UL PRS considering not only its serving terminals but also the terminals served by other base stations.
  • the base station when the base station receives the phase difference information through the UL PRS from the terminal of another base station in FIG. 4B, the base station can not correctly receive the phase difference information due to the constraint of the UL PRS strength (eg, Tx Power) It is possible.
  • the UL PRS strength eg, Tx Power
  • a terminal transmits UL PRS (eg, a second signal) only to the serving base station by using the phase difference information for DL PRS (eg, first signals) received from each base station And the serving base station estimates the position of the mobile station through the transmission.
  • the terminal may transmit phase difference information for all base stations to the serving base station.
  • the UE measures the phase difference for each DL PRS received from a plurality of base stations including a serving base station. Then, the terminal transmits the phase difference only to the serving base station through the UL PRS (e.g., the second signal).
  • the serving base station also receives the PRS from other base stations participating in the position measurement and measures the phase difference for the received PRS. The serving base station can determine the position of the UE using the phase difference measured through the PRS received from the other base station and the phase difference information received through the UL PRS of the UE.
  • Each base station can transmit DL PRS to the terminal for distance measurement.
  • a terminal can receive DL PRSs transmitted by a plurality of base stations.
  • the DL PRS may be periodically transmitted.
  • Information on the period, resource location, and / or offset of the DL PRS may be defined in advance for each base station or may be provided to the terminal through physical layer / upper layer signaling.
  • the UE may calculate and report only the phase difference information for the DL PRS of the designated base stations without calculating the phase difference information for all the received DL PRSs.
  • Information on designated base stations e.g., cell ID, PRS resource location, etc.
  • a UE can measure / report a phase difference only for DL PRSs of a serving BS, a reference BS 1 and a reference BS 2 among DL PRSs of a plurality of BSs.
  • FIG. 5 shows an example in which BSs transmit DL PRS to a UE.
  • BSs participating in position estimation transmit DL PRS to a UE. All base stations may simultaneously perform DL PRS transmissions using different angular frequencies or may perform DL PRS transmissions sequentially. If the base stations transmit the DL PRS sequentially, it needs to be scheduled so that interference between DL PRS transmissions does not occur.
  • x, y, and z represent the distance between the terminal k and each base station.
  • FIG. 6 is a view for explaining DL PRS transmission time points of BSs according to an embodiment of the present invention.
  • each BS transmits DL PRS to terminal k at the same or similar time point.
  • DL PRS may have a CP (cyclic prefix) and data as one symbol length.
  • CP cyclic prefix
  • the serving base station transmits a DL PRS including a sinusoidal component having an angular frequency w1 and a sinusoidal component having an angular frequency w2 at t Serving BS , s, and Tx .
  • the sinusoidal component of the angular frequency w1 and the sinusoidal component of the angular frequency w2 transmitted by the serving base station can be expressed by Equation (4).
  • a (0) denotes a signal amplitude at the serving base station position.
  • Each sinusoidal component of the DL PRS received at terminal k may be expressed as Equation (5).
  • the result of multiplying the sine wave signals of the frequency different from the frequency of the received signal by the received signal is zero.
  • Equation (6) the ratio between X UE, Rx (w1) and X UE, Rx (w2) is expressed by Equation (7).
  • Equation (8) the phase difference between the two angular frequency components is expressed by Equation (8).
  • Reference station 1 transmits a DL PRS including a sinusoidal component having an angular frequency w3 and a sinusoidal component having an angular frequency w3 at time t BS1, s, Tx .
  • the sinusoidal component of the angular frequency w3 and the sinusoidal component of the angular frequency w4 transmitted by the reference base station 1 can be expressed by Equation (9).
  • a (0) means the amplitude of the signal at the reference base station 1 position.
  • the result of multiplying the sine wave signals of the frequency different from the frequency of the received signal by the received signal is zero.
  • Equation (12) the ratio between X UE, Rx (w3) and X UE, Rx (w4) is expressed as Equation (12).
  • Equation (13) The phase difference between the two angular frequency components is expressed by Equation (13).
  • Reference BS 2 transmits a DL PRS including a sinusoidal component having an angular frequency w5 and a sinusoidal component having an angular frequency w6 at time t BS2, s, Tx .
  • the sinusoidal component of the angular frequency w5 and the sinusoidal component of the angular frequency w6 transmitted by the reference base station 2 can be expressed by Equation (14).
  • a (0) in Equation (14) means the amplitude of the signal at the reference base station 2 position.
  • each sinusoidal component of the DL PRS received at terminal k may be expressed as Equation (15).
  • the result of multiplying the sine wave signals of the frequency different from the frequency of the received signal by the received signal is zero.
  • Equation (16) the values obtained by multiplying the sine wave signal having the same frequency as the frequency of the received signal by the received signal are left. Therefore, the values obtained for the angular frequencies w5 and w6 as a result of the terminal performing the FFT-based signal processing are expressed as shown in Equation (16).
  • Equation 16 the ratio between X UE, Rx (w5) and X UE, Rx (w6) is expressed by Equation (17).
  • Figure 7 shows an example of a periodic DL PRS transmission.
  • DL PRS is transmitted within a positioning occasion occurring every predetermined period (e.g., TPRS).
  • TPRS predetermined period
  • the angular frequency of each base station is fixed within a positioning occasion, and each base station transmits one DL PRS sub-frame to the UE.
  • Transmitting a DL PRS subframe may mean transmitting DL PRS in a DL PRS subframe.
  • the base station may transmit a plurality of DL PRS subframes while changing the angular frequency, instead of transmitting the DL PRS subframe once or many times at a fixed angular frequency as shown in FIG.
  • the base station transmits information on the angular frequency (eg, an identifier capable of distinguishing angular frequency) used for each DL PRS subframe through higher layer / physical layer signaling And can provide it to the terminal.
  • the UE may calculate phase differences for all DL PRS subframes using the angular frequency changed for each DL PRS subframe and may report to the base station or report only the phase difference for the good DL PRS.
  • the BS transmits a plurality of DL PRS subframes having the same angular frequency.
  • the DL PRS of different angular frequency can be transmitted for each positioning occasion.
  • the UE can calculate and report the phase difference only for the DL PRS received during a predetermined time.
  • FIG. 10 shows an example in which the reference BSs and the MS transmit the PRS to the serving BS.
  • m, and n represent the distance between each reference BS and the serving BS.
  • the UE calculates the phase difference for each received DL PRS and reports it to the serving BS through the UL PRS.
  • the reference base stations also transmit the PRS to the serving base station.
  • the serving base station can estimate the position of the terminal as well as the distance to the terminal through the PRSs received from the terminal and the reference base stations.
  • FIG. 11 is a view for explaining a point in time when reference stations and a terminal k send a PRS to a serving BS according to an embodiment of the present invention.
  • the reference BSs and the UE transmit the PRS at a similar point in time.
  • PRS is transmitted repeatedly in two symbols, but PRS may have a CP (cyclic prefix) and data as one symbol length.
  • the components obtained for the angular frequencies w 6 and w 7 are as shown in Equation (20).
  • Equation (21) The phase difference between the two angular frequency components of Equation (20) is expressed as Equation (21).
  • Equation (21) the phase difference between the angular frequency components of the PRS received from the reference base station 2 by the serving base station is expressed by Equation (22).
  • the components obtained for angular frequencies w 1 , w 2 , w 3 , w 4, and w 5 are as shown in Equation 24.
  • the serving base station can obtain the distance x, y, z between each base station and the terminal through the components of the angular frequency of Equation (24).
  • the distance x between the serving base station and the terminal k can be calculated.
  • the Serving BS, s, Tx - t UE, s and Rx values can be obtained through the phase difference of the components for w 1 and w 2 .
  • Equation (28) y-m, which is the distance y between the serving BS and the reference BS 1 minus the distance m between the serving BS and the serving BS, can be calculated by Equation (28).
  • Z-n which is a value obtained by subtracting the distance n between the serving base station and the reference base station 2 from the distance k between the terminal k and the reference base station 2, can be calculated as shown in Equation (29).
  • the serving base station can calculate the distances y and z between the reference base station and the terminal. Also, if the serving base station transmits the distance information x, y, z to the location server, the location server can estimate the location of the terminal.
  • the reference base station can also transmit the PRS to the serving base station as shown in FIG.
  • Each of the reference BSs and the MSs may simultaneously perform PRS transmission to the serving BS using different angular frequencies, but may also perform PRS transmission sequentially.
  • the PRS is transmitted sequentially, it needs to be scheduled so that interference between PRS transmissions does not occur in order to improve the accuracy of the position estimation.
  • each of the reference BSs and the MSs can receive information on a rule for transmitting the PRS to the serving BS (e.g., transmission time, PRS resource, etc.) from the location server through physical layer / higher layer signaling.
  • the serving BS when the serving BS only wants to know the distance between itself and the MS, the MS does not need to transmit the phase difference information for the DL PRS of the reference BS to the serving BS, and the serving BS does not need to receive the PRS from the reference BSs .
  • Information related to this can be set by the location server.
  • the terminal may selectively transmit not all of the phase differences for the DL PRSs of the reference base stations to the serving base station. If the position of the UE is estimated based on the DL PRS having a low signal strength among the DL PRSs received from the reference base stations, the accuracy can be reduced. Also, since resources of the UL PRS available to the UE are limited, the UE may selectively transmit only the phase difference information for the DL PRS having a large signal strength to the serving BS.
  • the UE may simultaneously transmit all phase difference information to the serving BS in one UL PRS subframe, but may use a plurality of UL PRS subframes to transmit phase difference information to the serving base station with higher accuracy. For example, the UE can transmit each phase difference information to the serving BS using another UL PRS subframe. Therefore, the network can inform the UE of the phase difference to be transmitted for each UL PRS subframe through the upper layer / physical layer.
  • the UE transmits phase difference information for the DL PRS of the serving BS to the first UL PRS subframe, It is possible to transmit the phase difference information for the DL PRS of the reference BS 1 and transmit the phase difference information for the DL PRS of the reference BS 2 to the third UL PRS subframe.
  • FIG. 12 shows a flow of a reference signal transmission / reception method for position estimation according to an embodiment of the present invention.
  • the UE receives a DL (downlink) positioning reference signal (PRS) from each of the serving BS and the reference BSs (1205).
  • PRS positioning reference signal
  • the UE measures the phase difference between the sine wave components included in the DL PRS for each of the serving BS and the reference BS (1210).
  • the terminal generates an uplink (UL) PRS based on the measured phase difference (1215).
  • the UE transmits the UL PRS to the serving BS (1220).
  • the UE may report the measured phase difference to the serving base station and the measured phase difference to the reference base stations together with the serving base station through UL PRS transmission.
  • the UL PRS generated by the UE may include a first sinusoidal component representing the measured phase difference for the serving base station, a second sinusoidal component representing the measured phase difference for the first reference base station among the reference base stations, And a third sinusoidal component indicative of the measured phase difference with respect to the base station.
  • the first sine wave component corresponds to A * exp (j * (w * (tt UE, s, Rx -n * t symbol ) + arg1)), (tt UE, s, Rx -n * t symbol) + arg2))) corresponding to the third sinusoidal components in the a * exp (j * (w * (tt UE, s, Rx -n * t symbol) + 't' is the transmission time of the UL PRS, 't UE, s, Rx ' is the transmission time of the UL PRS, 'w' is the angular frequency, 'N' is the number of symbols between the DL PRS received symbol and the UL PRS transmitted symbol, 't symbol ' is the length of one symbol, 'arg1'
  • the measured phase difference, 'arg2' may be the measured phase difference for the first reference base station, and 'arg3' may refer to the measured phase difference for the second reference base station.
  • the measured phase difference for the serving base station corresponds to (w 2 -w 1 ) (t UE, s, RX -t ServingBs, s, Tx ) - (w 2 / cw 1 / And 'w2' are angular frequencies of each of the sinusoidal components included in the DL PRS of the serving base station, 't UE, s, and Rx ' are time points at which the signal processing of the DL PRS starts, 't ServingBs, s , Tx 'is the time point at which the serving base station transmitted the DL PRS,' c 'is the speed of the light, and' x 'is the distance between the serving base station and the terminal.
  • the terminal may select reference base stations that have transmitted DL PRSs whose signal strengths exceed the threshold among the reference base stations and may report the phase differences for the selected reference base stations through the UL PRS.
  • the serving base station receives the UL PRS 1220 from the terminal, the first PRS 1221 from the first reference base station and the second PRS 1222 from the second reference base station, respectively.
  • the serving base station transmits the first phase difference measured by the UE to the sine wave components of the DL PRS of the serving base station through the UL PRS, the second phase difference measured by the UE with respect to the sine wave components of the DL PRS of the first reference base station, 2 1225 the third phase difference measured by the UE for the sinusoidal components of the DL PRS of the reference base station.
  • the serving BS can estimate the distance between the UE and the serving BS, the distance between the UE and the first reference BS, and the distance between the UE and the second reference BS using the UL PRS, the first PRS, and the second PRS 1230.
  • the serving base station estimates the distance between the terminal and the serving base station based on the first phase difference, estimates the distance between the terminal and the first reference base station based on the second phase difference and the first PRS, And estimate the distance between the terminal and the second reference base station based on the second PRS.
  • the serving base station may estimate the location of the terminal based on the distance between the terminal and the serving base station, the distance between the terminal and the first reference base station, and the distance between the terminal and the second reference base station (1235).
  • FIG. 13 is a block diagram showing a configuration of a transmitting apparatus 105 and a receiving apparatus 110 in a wireless communication system 100 according to an embodiment of the present invention.
  • a transmitting apparatus is a base station and a receiving apparatus is a terminal, but the present invention is not limited thereto, and each of the transmitting apparatus and the receiving apparatus may be interpreted as any wireless node.
  • the base station may be referred to as an eNB or a gNB.
  • a terminal may be referred to as a UE.
  • the wireless communication system 100 may include one or more transmitting devices and / or one or more receiving devices .
  • Base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit and receive antenna 130, a processor 180, a memory 185, a receiver 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 includes a transmission (Tx) data processor 165, a symbol modulator 170, a transmitter 175, a transmission / reception antenna 135, a processor 155, a memory 160, a receiver 140, A demodulator 155, and a receive data processor 150.
  • the base station 105 and the terminal 110 have a plurality of transmission / reception antennas. Therefore, the base station 105 and the terminal 110 according to the present invention support a Multiple Input Multiple Output (MIMO) system.
  • MIMO Multiple Input Multiple Output
  • the base station 105 according to the present invention can support both a Single User-MIMO (SU-MIMO) and a Multi User-MIMO (MIMO) scheme.
  • SU-MIMO Single User-MIMO
  • MIMO Multi User-MIMO
  • the transmit data processor 115 receives traffic data, formats, codes, and interleaves and modulates (or symbol maps) the coded traffic data to generate modulation symbols Symbols ").
  • a symbol modulator 120 receives and processes the data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and transmits it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • the pilot symbols may be transmitted continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it to one or more analog signals and further modulates (e.g., amplifies, filters, and frequency upconverts)
  • the transmission antenna 130 transmits the generated downlink signal to the mobile station.
  • the reception antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • the receiver 140 adjusts (e.g., filters, amplifies, and downconverts) the received signal and digitizes the conditioned signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides it to the processor 155 for channel estimation.
  • Symbol demodulator 145 also receives a frequency response estimate for the downlink from processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is estimates of the transmitted data symbols) And provides data symbol estimates to a receive (Rx) data processor 150.
  • the receive data processor 150 demodulates (i.e., symbol demaps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • symbol demodulator 145 and received data processor 150 are complementary to processing by symbol modulator 120 and transmit data processor 115 at base station 105, respectively.
  • the terminal 110 processes the traffic data and provides data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • a transmitter 175 receives and processes the stream of symbols to generate an uplink signal.
  • the transmission antenna 135 transmits the generated uplink signal to the base station 105.
  • the transmitter and the receiver in the terminal and the base station may be configured as one RF (Radio Frequency) unit.
  • an uplink signal is received from a terminal 110 via a receive antenna 130, and a receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the receive data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • the processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (for example, control, adjust, manage, etc.) the operation in the terminal 110 and the base station 105.
  • Each of the processors 155 and 180 may be coupled with memory units 160 and 185 that store program codes and data.
  • the memories 160 and 185 are connected to the processor 180 to store operating systems, applications, and general files.
  • the processors 155 and 180 may also be referred to as a controller, a microcontroller, a microprocessor, a microcomputer, or the like. Meanwhile, the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof. (DSP), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and the like may be used to implement embodiments of the present invention using hardware, , FPGAs (field programmable gate arrays), and the like may be provided in the processors 155 and 180.
  • DSP digital signal processing devices
  • PLDs programmable logic devices
  • firmware or software may be configured to include modules, procedures, or functions that perform the functions or operations of the present invention.
  • Firmware or software configured to be stored in the memory 155 may be contained within the processor 155 or 180 or may be stored in the memory 160 or 185 and be driven by the processor 155 or 180.
  • Layers of a wireless interface protocol between a terminal and a base station and a wireless communication system (network) are divided into a first layer (L1), a second layer (L2) based on the lower three layers of an open system interconnection ), And a third layer (L3).
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • An RRC (Radio Resource Control) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the UE and the base station can exchange RRC messages through the RRC layer with the wireless communication network.
  • the present invention can be applied to various wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

본 발명의 일 실시예에 따른 무선 통신 시스템에서 단말이 위치 추정을 위하여 신호를 송수신하는 방법은, 서빙 기지국 및 참조(reference) 기지국들 각각으로부터 DL(downlink) PRS(positioning reference signal)을 수신하는 단계; 상기 DL PRS에 포함된 정현파 성분들 간의 위상 차이를 상기 서빙 기지국 및 상기 참조 기지국들 각각에 대하여 측정하는 단계; 상기 측정된 위상 차이에 기초하여 UL(uplink) PRS를 생성하는 단계; 및 상기 UL PRS를 상기 서빙 기지국으로 송신하는 단계를 포함하고, 상기 단말은 상기 UL PRS의 송신을 통해서 상기 서빙 기지국에 대하여 측정된 위상 차이 및 상기 참조 기지국들에 대하여 측정된 위상 차이들을 함께 상기 서빙 기지국에 보고할 수 있다.

Description

무선 통신 시스템에서 참조 신호 송수신 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에서 참조 신호 송수신에 관한 것으로서, 보다 구체적으로 위치를 추정하기 위한 PRS(positioning reference signal)을 송신 또는 수신하기 위한 방법 및 이를 위한 장치에 관한 것이다.
먼저 기존의 3GPP LTE/LTE-A 시스템에 대하여 간략히 살펴본다. 도 1을 참조하면 단말은 초기 셀 탐색을 수행한다(S101). 초기 셀 탐색 과정에서 단말은 기지국으로부터 P-SCH(Primary Synchronization Channel) 및 S-SCH(Secondary Synchronization Channel)을 수신하여 기지국과 하향링크 동기를 맞추고, 셀 ID 등의 정보를 획득한다. 그 후, 단말은 PBCH(Physical Broadcast Channel)를 통해 시스템 정보(e.g., MIB)를 획득한다. 단말은 DL RS(Downlink Reference Signal)을 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색 이후 단말은 PDCCH(Physical Downlink Control Channel) 및 PDCCH에 의해 스케줄된 PDSCH(Physical Downlink Control Channel)를 수신하여 좀더 구체적인 시스템 정보(e.g., SIBs)를 획득할 수 있다(S102).
단말은 상향링크 동기화를 위해 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 단말은 PRACH(Physical Random Access Channel)를 통해 프리앰블(e.g., Msg1)을 전송하고(S103), PDCCH 및 PDCCH에 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지(e.g., Msg2)를 수신할 수 있다(S104). 경쟁 기반 임의 접속의 경우 추가적인 PRACH 전송(S105) 및 PDCCH/PDSCH 수신(S106)과 같은 충돌해결절차(Contention Resolution Procedure)가 수행될 수 있다.
이후, 단말은 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S107) 및 PUSCH(Physical Uplink Shared Channel)/PUCCH(Physical Uplink Control Channel) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 UCI(Uplink Control Information)를 송신할 수 있다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator) 및/또는 RI(Rank Indication) 등을 포함할 수 있다.
본 발명이 이루고자 하는 기술적 과제는, 복수의 무선 장치들이 송수신 하는 참조 신호의 위상 차이를 통해 복수의 무선 장치들 간의 거리 및 위치를 정확하고 효율적으로 측정할 수 있는 방법 및 장치를 제공하는데 있다.
본 발명의 기술적 과제는 상술된 기술적 과제에 제한되지 않으며, 다른 기술적 과제들이 본 발명의 실시예로부터 유추될 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 일 측면에 따른 무선 통신 시스템에서 단말이 위치 추정을 위하여 신호를 송수신하는 방법은, 서빙 기지국 및 참조(reference) 기지국들 각각으로부터 DL(downlink) PRS(positioning reference signal)을 수신하는 단계; 상기 DL PRS에 포함된 정현파 성분들 간의 위상 차이를 상기 서빙 기지국 및 상기 참조 기지국들 각각에 대하여 측정하는 단계; 상기 측정된 위상 차이에 기초하여 UL(uplink) PRS를 생성하는 단계; 및 상기 UL PRS를 상기 서빙 기지국으로 송신하는 단계를 포함하고, 상기 단말은 상기 UL PRS의 송신을 통해서 상기 서빙 기지국에 대하여 측정된 위상 차이 및 상기 참조 기지국들에 대하여 측정된 위상 차이들을 함께 상기 서빙 기지국에 보고할 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 다른 일 측면에 따른 위치 추정을 위하여 신호를 송수신하는 단말은, 송수신기; 및 상기 송수신기를 제어함으로써, 서빙 기지국 및 참조(reference) 기지국들 각각으로부터 DL(downlink) PRS(positioning reference signal)을 수신하고, 상기 DL PRS에 포함된 정현파 성분들 간의 위상 차이를 상기 서빙 기지국 및 상기 참조 기지국들 각각에 대하여 측정하고, 상기 측정된 위상 차이에 기초하여 UL(uplink) PRS를 생성하고, 상기 UL PRS를 상기 서빙 기지국으로 송신하는 프로세서를 포함하고, 상기 프로세서는 상기 UL PRS의 송신을 통해서 상기 서빙 기지국에 대하여 측정된 위상 차이 및 상기 참조 기지국들에 대하여 측정된 위상 차이들을 함께 상기 서빙 기지국에 보고할 수 있다.
상기 단말에 의해 생성된 상기 UL PRS는, 상기 서빙 기지국에 대하여 측정된 위상 차이를 나타내는 제1 정현파 성분, 상기 참조 기지국들 중 제1 참조 기지국에 대하여 측정된 위상 차이를 나타내는 제2 정현파 성분 및 제2 참조 기지국에 대하여 측정된 위상 차이를 나타내는 제3 정현파 성분을 포함할 수 있다.
상기 제1 정현파 성분은 A*exp(j*(w*(t-t UE,s,Rx-n*t symbol)+arg1)))에 대응하고, 상기 제2 정현파 성분은 A*exp(j*(w*(t-t UE,s,Rx-n*t symbol)+arg2)))에 대응하고, 상기 제3 정현파 성분은 A*exp(j*(w*(t-t UE,s,Rx-n*t symbol)+arg3)))에 대응하고, 'A'는 상기 UL PRS의 크기(amplitude), 'w'는 각주파수(angular frequency), 't'는 상기 UL PRS의 송신 시점, 't UE,s,Rx'는 상기 DL PRS의 신호 처리가 시작되는 시점, 'n'은 상기 DL PRS가 수신된 심볼과 상기 UL PRS가 송신되는 심볼 사이의 심볼 개수, 't symbol'는 1 심볼의 길이, 'arg1'은 상기 서빙 기지국에 대하여 측정된 위상차이, 'arg2'은 상기 제1 참조 기지국에 대하여 측정된 위상차이, 'arg3'은 상기 제2 참조 기지국에 대하여 측정된 위상차이를 의미할 수 있다.
상기 서빙 기지국에 대하여 측정된 위상 차이는 (w 2-w 1)(t UE,s,RX-t ServingBs,s,Tx)-(w 2/c-w 1/c)*x에 대응하고, 'w1' 및 'w2'는 각각 상기 서빙 기지국의 DL PRS에 포함된 정현파 성분들 각각의 각주파수(angular frequency), 't UE,s,Rx'는 상기 DL PRS의 신호 처리가 시작되는 시점, 't ServingBs,s,Tx'는 상기 서빙 기지국이 DL PRS를 송신한 시점, 'c'는 빛의 속도, 'x'는 상기 서빙 기지국과 상기 단말 간의 거리를 의미할 수 있다.
상기 단말은 상기 참조 기지국들 중에서 신호 세기가 임계치를 초과하는 DL PRS를 송신한 참조 기지국들을 선택하고, 상기 선택된 참조 기지국들에 대한 위상 차이들을 상기 UL PRS를 통해 보고할 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 또 다른 일 측면에 따른 무선 통신 시스템에서 서빙 기지국이 단말의 위치 추정을 위하여 신호를 송수신하는 방법은, 정현파 성분들을 포함하는 DL(downlink) PRS(positioning reference signal)를 상기 단말에 송신하는 단계; 상기 단말로부터 UL PRS, 제1 참조 기지국으로부터의 제1 PRS 및 제2 참조 기지국으로부터의 제2 PRS를 각각 수신하는 단계; 및 상기 UL PRS, 상기 제1 PRS 및 상기 제2 PRS를 이용하여 상기 단말과 상기 서빙 기지국 간의 거리, 상기 단말과 상기 제1 참조 기지국 간의 거리 및 상기 단말과 상기 제2 참조 기지국 간의 거리를 추정하는 단계를 포함할 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 또 다른 일 측면에 따른 단말의 위치 추정을 위하여 신호를 송수신하는 서빙 기지국은, 송수신기; 및 상기 송수신기를 제어함으로써 정현파 성분들을 포함하는 DL(downlink) PRS(positioning reference signal)를 상기 단말에 송신하고, 상기 단말로부터 UL PRS, 제1 참조 기지국으로부터의 제1 PRS 및 제2 참조 기지국으로부터의 제2 PRS를 각각 수신하고, 상기 UL PRS, 상기 제1 PRS 및 상기 제2 PRS를 이용하여 상기 단말과 상기 서빙 기지국 간의 거리, 상기 단말과 상기 제1 참조 기지국 간의 거리 및 상기 단말과 상기 제2 참조 기지국 간의 거리를 추정하는 프로세서를 포함할 수 있다.
상기 서빙 기지국은 상기 UL PRS를 통해서 상기 서빙 기지국의 DL PRS의 정현파 성분들에 대해서 상기 단말이 측정한 제1 위상 차이, 상기 제1 참조 기지국의 DL PRS의 정현파 성분들에 대해서 상기 단말이 측정한 제2 위상 차이 및 상기 제2 참조 기지국의 DL PRS의 정현파 성분들에 대해서 상기 단말이 측정한 제3 위상 차이를 획득할 수 있다.
상기 서빙 기지국은, 상기 제1 위상 차이에 기초하여 상기 단말과 상기 서빙 기지국 간의 거리를 추정하고, 상기 제2 위상 차이 및 상기 제1 PRS에 기초하여 상기 단말과 상기 제1 참조 기지국 간의 거리를 추정하고, 상기 제3 위상 차이 및 상기 제2 PRS에 기초하여 상기 단말과 상기 제2 참조 기지국 간의 거리를 추정할 수 있다.
상기 UL PRS는, A*exp(j*(w*(t-t UE,s,Rx-n*t symbol)+arg1)))에 대응하는 제1 정현파 성분; A*exp(j*(w*(t-t UE,s,Rx-n*t symbol)+arg2)))에 대응하는 제2 정현파 성분; 및 A*exp(j*(w*(t-t UE,s,Rx-n*t symbol)+arg3)))에 대응하는 제3 정현파 성분을 포함하고, 'A'는 상기 UL PRS의 크기(amplitude), 'w'는 각주파수(angular frequency), 't'는 상기 UL PRS의 송신 시점, 't UE,s,Rx'는 상기 단말이 상기 DL PRS의 신호 처리를 시작하는 시점, 'n'은 상기 DL PRS가 상기 단말에 수신된 심볼과 상기 UL PRS가 송신되는 심볼 사이의 심볼 개수, 't symbol'는 1 심볼의 길이, 'arg1'은 상기 제1 위상차이, 'arg2'은 상기 제2 위상차이, 'arg3'은 상기 제3 위상차이를 의미할 수 있다.
상기 단말과 상기 제1 참조 기지국 간의 거리는 {arg2-arg4-(w 4-w 3)*(t UE,s,Rx-t ServingBS,s,Rx)}/(w 4/c-w 3/c)에 대응하며, 'arg2'는 상기 제2 위상 차이, 'arg4'는 상기 서빙 기지국이 상기 제1 PRS를 통해 측정한 위상 차이, 'w3' 및 'w4'는 각각 상기 제1 참조 기지국의 DL PRS의 정현파 성분들 각각의 각주파수(angular frequency), 't UE,s,Rx'는 상기 단말이 상기 제1 참조 기지국의 DL PRS의 신호 처리를 시작하는 시점, 't ServingBS,s,Rx'는 상기 서빙 기지국이 상기 제1 PRS의 신호 처리를 시작하는 시점, 'c'는 빛의 속도를 의미할 수 있다.
상기 서빙 기지국은 상기 단말과 상기 서빙 기지국 간의 거리, 상기 단말과 상기 제1 참조 기지국 간의 거리 및 상기 단말과 상기 제2 참조 기지국 간의 거리에 기초하여 상기 단말의 위치를 추정할 수 있다.
본 발명의 일 실시예에 따르면, 복수 기지국들의 DL PRS들을 통해 단말이 측정한 위상 차이들에 대한 정보가 한번의 UL PRS 송신을 통해 서빙 기지국으로만 보고되면 충분하므로, 단말의 UL PRS 송신에 따른 오버헤드와 네트워크의 스케줄링 복잡도가 최소화될 수 있을 뿐 아니라 단말이 다른 이웃 기지국으로 UL PRS를 송신할 경우 거리/위치 측정이 부정확해지는 문제점을 해결할 수 있다.
본 발명의 기술적 효과는 상술된 기술적 효과에 제한되지 않으며, 다른 기술적 효과들이 본 발명의 실시예로부터 유추될 수 있다.
도 1은 3GPP LTE/LTE-A 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 본 발명의 일 실시예에 따른 송신 장치와 수신 장치 간의 거리 측정을 위한 일련을 과정을 도시한다.
도 3은 삼각 측량을 통한 위치 추정의 일례를 나타낸다.
도 4는 위상 차를 이용한 위치 추정 방법의 일례를 나타낸다.
도 5는 기지국들이 단말로 DL PRS를 전송하는 일례를 나타낸다.
도 6은 기지국들의 DL PRS 전송 시점의 일 예를 나타낸다.
도 7은 주기적인 DL PRS 전송의 일 예를 나타낸다.
도 8은 DL PRS 전송의 다른 일 예를 나타낸다.
도 9는 DL PRS 전송의 또 다른 일 예를 나타낸다.
도 10은 참조 기지국들과 단말이 서빙 기지국으로 PRS를 전송하는 일례를 나타낸다.
도 11은 참조 기지국들과 단말 k가 PRS를 서빙 기지국에게 보내는 시점의 일 예를 나타낸다.
도 12는 본 발명의 일 실시예에 따른 위치 추정을 위한 참조 신호 송수신 방법의 흐름을 도시한다.
도 13은 본 발명의 일 실시예에 따른 송신 장치 및 수신 장치를 도시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 기반의 이동 통신 시스템을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 최근 논의되는 차세대 통신 시스템에서는 기존의 무선 접속 기술(radio access technology, RAT)에 비해 향상된 모바일 브로드 밴드(Enhanced Mobile Broadband, eMBB) 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 대규모 MTC (massive Machine Type Communications, mMTC) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰성(reliability) 및 지연(latency)에 민감한 서비스/UE를 고려하여 URLLC(Ultra-Reliable and Low Latency Communication)가 차세대 통신 시스템을 위해 논의되고 있다.
이와 같이 eMBB, mMTC 및 URLCC 등을 고려한 새로운 무선 접속 기술(New RAT)이 차세대 무선 통신을 위하여 논의되고 있다.
먼저 기존 LTE 시스템에서의 위치 측정에 대해서 간략히 살펴본다.
LTE 시스템에서의 위치 측정
LTE 시스템에서 위치 포지션 프로토콜(Location Position Protocol, LPP)라는 것이 소개되고 있다. LPP 모델에서 위치 서버는 측위를 위한 보조 데이터(assistance data)를 단말로 전송해 줄 수 있다. 즉, 위치 서버는 OTDOA/A-GNSS 방식을 이용할 수 있도록 단말에게 보조 데이터를 전송할 수 있다. LPP 모델에서는, 단말(UE)이 측위를 위해 참조 신호(e.g., positioning RS)를 이용하고, 참조 신호로부터의 측정정보(measurement) 또는 측위 정보(location information)를 위치 서버(e.g., E-SMLC/SLP)로 전송하고, 최종적인 위치 결정은 위치 서버에서 이루어진다. 단말 및 위치 서버 간의 측위 정보 및 송수신 방식을 규격화한 것이 LPP 규격이고, LPP 규격은 측위 정보에 대한 IE 및 시그널링 절차를 포함할 수 있다.
LPP 기술은 크게 3가지의 기능을 포함하는데, 첫째가 A-GNSS(Assisted Global Navigation Satellite System)이고, 두 번째가 OTDOA(Observed Time Differential Of Arrival), 그리고 나머지가 E-CID(Enhanced Cell ID) 방식이다.
A-GNSS 방식은 위성기반 측위 방식이며 측위를 위한 기본 위성 정보를 무선 네트워크(e.g., LTE)를 통해 수신함으로써 초기 위치 결정 시간을 감소시키는 장점이 있다. A-GNSS 방식의 경우 GPS와 네트워크(Network)의 위치 서버와의 통신을 통해서 정확한 위치정보를 얻는다.
OTDOA 방식에서는 기준 기지국과 인접 기지국 간의 전파 시간차를 구하기 위해 RSTD(Reference Signal Time Difference)라는 측정값을 이용한다. 즉, 인접 기지국으로부터의 특정 프레임의 신호를 수신하고, 해당 프레임에 대한 기준 기지국에서 수신된 지연 탭들 중 인접 기지국으로부터 수신한 탭과 시간상 가장 가까운 탭을 선택하여 그 시간 차이를 RSTD 값으로 계산한다. 따라서 유효 탭 추정 방식에 따라 성능이 좌우될 수 있다. 이와 같이, OTDOA 방식은 단말이 여러 개의 기지국(또는 셀) 신호의 도착시간 차이를 이용해서 거리와 위치를 구하는 방식이다.
E-CID 방식은 기존의 CID(Cell ID) 방식에 RSSI(Recevied Signal Strength Indication) 방식을 혼합(hybrid) 방식으로 결합하여 단말의 위치를 좁혀가는 방식이다. 관련 측정값으로 수신신호 수신전력(Reference Signal Received Power, RSRP) 및 수신신호 수신품질(Reference Signal Received Power, RSRQ)를 제공한다. E-CID 방식은 RSRP라는 LTE의 OFDMA 신호의 분석 방법을 통해서 라운드 트립 측정(Round Trip Measurement), 경로손실 관련 측정(Pathloss Related Measurement), 도착각 측정(Angel of Arrival Measurement)의 방식을 통해서 단말이 위치를 추정하는 방식이다.
PDOA(Phase Difference of Arrival) based Positioning
본 명세서에서는 다수의 무선 통신 장치들 사이의 거리를 측정하고, 측정된 거리를 기반으로 특정 장치의 위치를 추정하는 방법이 제안된다.
[거리 측정]
먼저, 위치 측정의 대상이 되는 장치가 다수의 송신기들로부터 수신한 참조 신호의 위상 정보를 이용하여 거리를 측정하는 방법을 살펴본다. 후술하는 설명에서 신호를 먼저 송신한 무선 장치를 송신 장치라고 지칭하고, 신호를 먼저 수신한 장치를 수신 장치라고 지칭한다. 다만, 송신 장치도 이후에 신호를 수신할 수도 있고, 수신 장치도 신호를 송신할 수 있다. 즉, 송신 장치도 송신기 및 수신기를 포함할 수 있고, 수신 장치도 송신기 및 수신기를 포함할 수 있다. 일 예로 송신 장치와 수신 장치의 기지국과 단말일 수 있다. 다른 일 예로 송신 장치와 수신 장치는 복수의 기지국들 또는 복수의 단말들 일 수도 있다.
후술하는 예시들에서 두 개의 각주파수(angular frequency)들 이용하여 신호를 송수신하는 상황을 가정하고 있으나 본 발명은 이에 한정되지 않으며 더 많은 각주파수들에도 본 발명이 적용될 수 있다. 또한 예시들에서 복수의 각주파수 성분들이 동시에 송신되는 것을 가정하고 있으나, 이는 설명의 편의를 위함이며 각주파수들이 사전에 정해진 다른 시점에 전송되고 이와 같은 전송 시간 차를 고려하여 본 발명을 실시하는 것 또한 가능하다.
또한, 편의상 송신 장치/수신 장치가 신호를 송신/수신 동작을 수행하는 시점이 양자화되어 있다고 가정한다. 일 예로 송신 장치/수신 장치가 OFDM을 기반으로 신호를 송수신하는 경우, 각 OFDM symbol의 경계점이 바로 송신/수신 동작을 수행하는 양자화된 시점이 된다. 송신 장치와 수신 장치의 송수신 동작의 시작 시점은 각각 t s,TX와 t s,RX이며, t symb마다 반복적으로 나타난다고 가정한다. t symb는 OFDM symbol의 길이가 될 수 있다.
도 2는 본 발명의 일 실시예에 따른 송신 장치와 수신 장치 간의 거리 측정을 위한 일련을 과정을 도시한다. 수신 장치는 송신 장치가 보낸 동기화 신호에 동기를 맞추었다고 가정하지만 이는 설명의 편의를 위한 것이며, 위상 차를 이용한 거리 측정은 송신 자치와 수신 장치가 비동기화된 경우에도 적용될 수 있다.
또한, 설명의 편의를 위해서 두 심볼 동안 반복 전송되는 신호를 고려하지만, 1 심볼 길이 동안 CP(cyclic prefix)와 데이터를 가지는 신호 전송을 고려할 수도 있다.
먼저, 송신 장치는 t s,Tx 시점에서 각각의 angular 주파수 w 1과 w 2를 가지는 정현(sinusoidal)파를 거리 측정을 위한 참조 신호(e.g., Ranging RS)로 전송한다. 일 예로, 특정 시간 t에서 거리 측정을 위한 참조 신호는 RS(t) = e j*w1*t + e j*w2*t와 같이 정의될 수 있다. 편의상 송신 장치가 송신한 신호를 제1 신호라고 지칭하기로 한다.
송신된 제1 신호는, 송/수신 장치 간의 거리 d와 빛의 속도 c를 기반으로 d/c만큼 지연된 후 t a,Rx 시점에 수신 장치에 도달한다.
샘플링 (또는 양자화)로 인하여 수신 장치는 기저대역의 신호(e.g., sampling 값들)를 실제로는 t s,Rx 시점부터 획득한다. 수신 장치가 수행하는 FFT(fast Fourier transform)의 크기를 N이라고 가정하면, 수신 장치는 총 N개의 sampling 값들을 FFT에 입력함으로써 w 1과 w 2에 상응하는 값들을 구할 수 있다.
이 때, FFT 된 샘플링 값의 w 1 성분 X RX(w 1)과 w 2 성분 X RX(w 2) 간의 위상 차(phase difference)는 수학식 1을 통해서 획득될 수 있다.
[수학식 1]
Figure PCTKR2018009522-appb-img-000001
수학식 1에서 위상 차는 (w 2-w 1)(t s,RX-t a,RX)이다. X RX(w 1)/ X RX(w 2)는 수신 장치가 수신한 제1 신호로부터 계산할 수 있는 값이고, (w 2-w 1)은 사전 정의되어 수신 장치에 이미 알려진 값이므로, 수신 장치는 수학식 1을 통해서 Delta_1 = t s,RX-t a,RX 를 얻을 수 있다. Delta_1는 수신 장치가 OFDM 프로세싱을 시작한 시점과 제1 신호가 수신 장치에 실제로 도달한 시점 사이의 차이를 나타낸다.
수신 장치는 n 심볼 후에 송신 장치와 마찬가지로 각각의 angular 주파수 w 1과 w 2를 가지는 정현파(이하, 제2 신호)를 전송한다. 도 2에서는 n=4를 가정하였다.
제2 신호를 수신한 송신 장치는 't s,Tx + (n+1)*t_symb' 시점부터 획득한 N개의 샘플링 값들에 대해 FFT를 수행함으로써, Delta_2 = t s,Tx + (n+1)*t_symb - t a,Tx 를 얻을 수 있다.
따라서, 신호의 왕복 시간인 RTT(round trip time)는 수학식 2와 같이 정의된다.
[수학식 2]
2*d/c = t_symb -Delta_2 - Delta_1
언급된 바와 같이 c는 고정된 상수(i.e., 빛의 속도)이다. 송신 장치는 Delta_2와 t_symb값을 알 수 있으나, Delta_1의 값은 알 수 없다. 따라서, 송신 장치가 송신 장치와 수신 장치 간의 거리 d를 측정하기 위해서는, 송신 장치가 수신 장치가 측정한 Delta_1에 대한 정보를 알 수 있어야 한다. 이를 위해 수신 장치는 제2 신호를 통해 Delta_1의 값을 송신 장치에 제공할 수 있다. 예컨대, Delta_1의 값이 위상차 B에 해당한다고 가정할 때, 수신 장치는 n 심볼 후에 송신되는 제2 신호에서(e.g., positioning reference signal) w1 정현파 성분과 w2 정현파 성분 간의 위상 차를 B로 설정할 수 있다. 송신 장치는 수신된 제2 신호에 기초하여 송신 장치와 수신 장치 간의 거리를 측정할 수 있다.
한편, 특정 시간 t에서 거리 측정을 위한 참조 신호 RS(t)를 보다 일반적으로 표현하면, RS(t) = α 1*e j*(w1*t+β1) + α 2*e j*(w2*t+β2)와 같이 정의될 수 있다. 이 경우, 제1 신호는 제1 정현파 성분 x 1(t)= α 1*e j* (w1*t+β1) 제2 정현파 성분 x 2(t)= α 2*e j*(w2*t+β2)의 합으로 이해될 수 있다. α 1는 제1 정현파 성분의 크기(amplitude)를 나타내고, α 2는 제2 정현파 성분의 크기를 의미한다. β 1은 t=0에서 제1 정현파 성분의 위상(e.g., initial phase value 또는 initial phase offset)을 의미하고, β 2는 t=0에서 제2 정현파 성분의 위상을 의미한다. β 1 β 2는 송/수신 장치 간에 사전에 약속된 값일 수 있다. 이 경우 수학식 1은 아래 수학식 3과 같이 수정될 수 있다.
[수학식 3]
Figure PCTKR2018009522-appb-img-000002
수학식 3에서 위상 차이 Ψ는 (w 2-w 1)(t s,RX-t a,RX)+(β 21)이며, 제1 신호의 송신 당시부터 존재하던 초기 위상 값들 간의 차이 (β 21)는 위상 차이 Ψ로부터 제거되어야 한다. 예컨대, 수신 장치는 초기 위상 값들을 이용하여 위상 차이 Ψ를 θ로 보정할 수 있다.
β 1 β 2는 송/수신 장치 간에 사전에 약속된 값이이므로, (β 21)가 제외된 도달 시간과 FFT 시작시간의 차로 인한 위상 차 θ는 (w 2-w 1)(t s,RX-t a,RX)이다. 또한, 앞서 설명된 바와 같이 수신 장치는 n 심볼 후에 제2 신호를 전송한다. 제2 신호를 수신한 송신 장치는 't s,Tx + (n+1)*t_symb' 시점부터 획득한 N개의 샘플링 값들에 대해 FFT를 수행함으로써, 보정된 위상 차이 θ를 통해서 Delta_2 = t s,Tx + (n+1)*t_symb - t a,Tx 를 얻을 수 있다.
[위치 추정]
다음으로 위치 추정 방법에 대하여 살펴본다.
도 3은 삼각 측량을 통한 위치 추정 방법을 나타낸다. 위치 서버가 도 3과 같이 삼각 측량을 이용하여 단말의 위치를 결정하기 위해서는 x, y, z의 거리를 알아야 한다.
도 4는 위상 차를 이용한 위치 추정 방법의 일례를 나타낸다.
앞에서 설명된 바와 같이 각각의 기지국들은 다른 주파수를 이용하여 DL PRS (Positioning Reference Signal)(e.g., 제1 신호)를 송신할 수 있다(e.g., 도 4의(a)). 단말은 각 기지국으로부터 수신한 DL PRS에 대한 위상 차를 측정하고, 측정된 위상차 정보를 UL PRS(e.g., 제2 신호)를 통해 각 기지국에 송신할 수 있다(e.g., 도 4의(b)). 따라서, 각 기지국은 각 기지국과 단말 사이의 거리인 x, y, z를 얻을 수 있다. 각 기지국은 거리 x, y, z 정보를 위치 서버로 송신하고, 위치 서버는 삼각 측량 등의 방식을 통해서 단말의 위치를 결정할 수 있다.
이와 같은 위치 추정 방식을 위해서는 각 기지국이 DL PRS(e.g., 제1 신호)를 송신하는 시점이 스케줄 되어야 하며, 또한 각 기지국이 단말로부터 위상차 정보(e.g., 제2 신호)를 나르는 UL PRS를 수신하는 시점도 스케줄 되어야 한다. 또한, 네트워크 있는 복수 단말들의 위치 추정을 위해서는 각 기지국은 자신이 서빙하는 단말들 뿐만 아니라 다른 기지국이 서빙하는 단말들까지 고려하여 DL/UL PRS를 스케줄할 필요가 있다.
또한 도 4의 (b)에서 기지국이 다른 기지국의 단말로부터의 UL PRS를 통해서 위상차 정보를 수신할 때, UL PRS의 세기(e.g., Tx Power)의 제약으로 인해 기지국이 위상차 정보를 정확하게 수신하지 못할 수도 있다.
이와 같은 원인들로 인해서 각 기지국에서 기지국-단말 간의 거리를 측정한 결과가 부정확해 질 수 있으며, 부정확한 거리 측정에 기반하여 계산된 단말의 위치도 정확도가 떨어질 수 있다.
이와 같은 문제점을 해결하기 위하여 본 발명의 일 실시예에서는 단말은 각 기지국으로부터 수신한 DL PRS (e.g., 제1 신호들)에 대한 위상차 정보를 서빙 기지국으로만 UL PRS(e.g., 제2 신호)를 이용하여 전송하고, 이를 통해 서빙 기지국이 단말의 위치를 추정하는 방법이 제안된다. 예컨대, 단말은 모든 기지국들에 대한 위상차 정보를 서빙 기지국에 전송할 수 있다.
일 예로, 단말은 서빙 기지국을 포함한 다수의 기지국들로부터 수신한 DL PRS들 각각에 대하여 위상 차이를 측정한다. 이후 단말은 UL PRS(e.g., 제2 신호)를 통해 서빙 기지국으로만 위상 차이를 전송한다. 추가적으로 서빙 기지국도 위치 측정에 참여하는 다른 기지국으로부터 PRS를 수신하고, 수신된 PRS에 대한 위상차를 측정한다. 서빙 기지국은 다른 기지국으로부터 수신한 PRS를 통해 측정된 위상 차와 단말의 UL PRS를 통해 수신한 위상차 정보를 이용하여 단말의 위치를 알아낼 수 있다.
이하에서는 단말이 서빙 기지국으로만 UL PRS를 송신할 때, 단말의 위치를 추정하는 방법에 대해서 상세히 살펴본다.
1. 다수의 기지국들이 단말로 DL PRS 전송하는 절차
각 기지국은 단말에게 거리 측정을 위해 DL PRS를 전송할 수 있다. 단말은 다수의 기지국들이 송신하는 DL PRS들을 수신할 수 있다. DL PRS는 주기적으로 전송될 수 있다. DL PRS의 주기, 자원 위치 및/또는 오프셋 등에 대한 정보는 기지국 별로 사전에 정의되거나 또는 물리 계층/상위 계층 시그널링을 통해서 단말에 제공될 수 있다.
일 예로, 단말은 수신된 모든 DL PRS에 대하여 위상차 정보를 계산할 필요 없이, 지정된 기지국들의 DL PRS에 대한 위상차 정보만 계산하여 보고할 수 있다. 지정된 기지국들에 대한 정보(e.g. cell ID, PRS resource 위치 등)는 상위 계층/물리 계층 시그널링을 통해 단말에 제공될 수 있다.
예를 들어 도 4에서 단말은 다수의 기지국들의 DL PRS들 중에서 서빙 기지국, 참조(reference) 기지국 1 및 참조 기지국 2의 DL PRS들에 대해서만 위상 차를 측정/보고할 수 있다.
도 5는 기지국들이 단말로 DL PRS를 전송하는 일례를 나타낸다. 도 5를 참조하면, 위치 추정에 참여하는 기지국들은 단말에게 DL PRS를 전송한다. 모든 기지국들이 다른 angular 주파수들을 이용하여 동시에 DL PRS 전송을 수행할 수도 있고 혹은 순차적으로 DL PRS 전송을 수행할 수도 있다. 기지국들이 순차적으로 DL PRS를 전송할 경우는 DL PRS 전송들 간의 간섭이 발생하지 않도록 스케줄될 필요가 있다. 도 5에서 x, y, z는 단말 k와 각 기지국 간의 거리를 나타낸다.
도 6은 본 발명의 일 실시에에 따른 기지국들의 DL PRS 전송 시점을 설명하기 위한 도면이다.
도 6을 참조하면 각 기지국이 동일 또는 유사한 시점에 DL PRS를 단말 k에 전송한다. 설명의 편의를 위해서 두 심볼들에서 DL PRS가 반복 전송되는 것을 가정하였으나 본 발명은 이에 한정되지 않는다. 다른 일 예로, DL PRS는 한 심볼 길이로써 CP(cyclic prefix)와 데이터를 가질 수도 있다. 또한 도 6에서는 하나의 단말 k만 도시되었으나, 도시되지 않은 다른 단말들도 단말 k와 유사하게 동작할 수 있다.
- 서빙 기지국으로부터 단말 k로의 DL PRS 송신
먼저 서빙 기지국은 t ServingBS,s,Tx 시점에서 angular 주파수 w1을 가지는 정현파 성분 및 angular 주파수 w2를 가지는 정현파 성분을 포함하는 DL PRS를 전송한다. 서빙 기지국이 송신하는 angular 주파수 w1의 정현파 성분 및 angular 주파수 w2의 정현파 성분은 수학식 4와 같이 표현될 수 있다.
[수학식 4]
Figure PCTKR2018009522-appb-img-000003
수학식 4에서 A(0)는 서빙 기지국 위치에서 신호의 크기(amplitude)를 의미한다.
서빙 기지국과 단말 k은 거리 x 만큼 떨어져 있으므로 서빙 기지국이 송신한 DL PRS는 t = t ServingBS,s,Tx + x/c 시점에 단말 k에 도착한다. 단말 k에서 수신된 DL PRS의 각 정현파 성분은 수학식 5와 같이 표현될 수 있다.
[수학식 5]
Figure PCTKR2018009522-appb-img-000004
수학식 5에서 k i=w i/c 로 정의되며, c는 빛의 속도를 의미한다.
수신 신호(e.g., DL PRS)의 처리가 시작되는 시점이 양자화되어 있으며, 단말 k는 t=t UE,s,Rx 에서 DL PRS에 대한 신호 처리를 시작한다고 가정한다. FFT 기반의 OFDM 신호 처리 방식이 사용된다고 가정한다. FFT 기반의 신호 처리 결과는, t=t UE,s,Rx 에서 초기 위상(initial phase) = 0이고 기본 주파수의 배수인 다양한 주파수들의 정현파 신호들을 각각 수신 신호(e.g., DL PRS)와 곱한 뒤, 곱한 결과들을 합산하는 형태로 나타난다. FFT의 특성에 따르면 수신 신호의 주파수와 다른 주파수의 정현파 신호들을 수신 신호와 곱한 결과들을 합산하면 0이 된다. 따라서 수신 신호의 주파수와 동일한 주파수의 정현파 신호를 수신신호와 곱한 값만 남게 된다. 따라서 단말이 FFT에 기반한 신호 처리를 수행한 결과로써 angular 주파수 w1와 w2 성분들에 대해 획득된 값들은 수학식 6과 같이 표현된다.
[수학식 6]
Figure PCTKR2018009522-appb-img-000005
수학식 6에서 X UE,Rx(w1)과 X UE,Rx(w2) 간의 비율은 수학식 7 같이 표현된다.
[수학식 7]
Figure PCTKR2018009522-appb-img-000006
이때 두 개의 angular 주파수 성분들 간의 위상 차이는 수학식 8과 같이 표현된다.
[수학식 8]
Figure PCTKR2018009522-appb-img-000007
- 참조 기지국 1로부터 단말 k로의 DL PRS 송신
참조(Reference) 기지국 1은 t BS1,s,Tx 시점에서 angular 주파수 w3을 가지는 정현파 성분 및 angular 주파수 w3를 가지는 정현파 성분을 포함하는 DL PRS를 전송한다. 참조 기지국1이 송신하는 angular 주파수 w3의 정현파 성분 및 angular 주파수 w4의 정현파 성분은 수학식 9와 같이 표현될 수 있다.
[수학식 9]
Figure PCTKR2018009522-appb-img-000008
수학식 9에서 A(0)는 참조 기지국 1 위치에서 신호의 크기(amplitude)를 의미한다.
참조 기지국1과 단말 k은 거리 y 만큼 떨어져 있으므로 참조 기지국1이 송신한 DL PRS는 t = t BS1,s,Tx + y/c 시점에 단말 k에 도착한다. 단말 k에서 수신된 DL PRS의 각 정현파 성분은 수학식 10과 같이 표현될 수 있다.
[수학식 10]
Figure PCTKR2018009522-appb-img-000009
수학식 10에서 k i=w i/c 로 정의되며, c는 빛의 속도를 의미한다.
수신 신호(e.g., DL PRS)의 처리가 시작되는 시점이 양자화되어 있으며, 단말 k는 t=t UE,s,Rx 에서 DL PRS에 대한 신호 처리를 시작한다고 가정한다. FFT 기반의 OFDM 신호 처리 방식이 사용된다고 가정한다. FFT 기반의 신호 처리 결과는, t=t UE,s,Rx 에서 초기 위상(initial phase) = 0이고 기본 주파수의 배수인 다양한 주파수들의 정현파 신호들을 각각 수신 신호(e.g., DL PRS)와 곱한 뒤, 곱한 결과들을 합산하는 형태로 나타난다. FFT의 특성에 따르면 수신 신호의 주파수와 다른 주파수의 정현파 신호들을 수신 신호와 곱한 결과들을 합산하면 0이 된다. 따라서 수신 신호의 주파수와 동일한 주파수의 정현파 신호를 수신신호와 곱한 값만 남게 된다. 따라서 단말이 FFT에 기반한 신호 처리를 수행한 결과로써 angular 주파수 w3와 w4 성분들에 대해 획득된 값들은 수학식 11과 같이 표현된다.
[수학식 11]
Figure PCTKR2018009522-appb-img-000010
수학식 11에서 X UE,Rx(w3)과 X UE,Rx(w4) 간의 비율은 수학식 12와 같이 표현된다.
[수학식 12]
Figure PCTKR2018009522-appb-img-000011
이때 두 개의 angular 주파수 성분들 간의 위상 차이는 수학식 13과 같이 표현된다.
[수학식 13]
Figure PCTKR2018009522-appb-img-000012
- 참조 기지국 2로부터 단말 k로의 DL PRS 송신
참조 기지국 2는 t BS2,s,Tx 시점에서 angular 주파수 w5을 가지는 정현파 성분 및 angular 주파수 w6을 가지는 정현파 성분을 포함하는 DL PRS를 전송한다. 참조 기지국2이 송신하는 angular 주파수 w5의 정현파 성분 및 angular 주파수 w6의 정현파 성분은 수학식 14와 같이 표현될 수 있다.
[수학식 14]
Figure PCTKR2018009522-appb-img-000013
수학식 14에서 A(0)는 참조 기지국 2 위치에서 신호의 크기(amplitude)를 의미한다.
참조 기지국2과 단말 k은 거리 z 만큼 떨어져 있으므로 참조 기지국2이 송신한 신호는 t = t BS2,s,Tx + z/c 시점에 단말 k에 도착한다. 단말 k에서 수신된 DL PRS의 각 정현파 성분은 수학식 15와 같이 표현될 수 있다.
[수학식 15]
Figure PCTKR2018009522-appb-img-000014
수학식 15에서 k i=w i/c 로 정의되며, c는 빛의 속도를 의미한다.
수신 신호(e.g., DL PRS)의 처리가 시작되는 시점이 양자화되어 있으며, 단말 k는 t=t UE,s,Rx 에서 DL PRS에 대한 신호 처리를 시작한다고 가정한다. FFT 기반의 OFDM 신호 처리 방식이 사용된다고 가정한다. FFT 기반의 신호 처리 결과는, t=t UE,s,Rx 에서 초기 위상(initial phase) = 0이고 기본 주파수의 배수인 다양한 주파수들의 정현파 신호들을 각각 수신 신호(e.g., DL PRS)와 곱한 뒤, 곱한 결과들을 합산하는 형태로 나타난다. FFT의 특성에 따르면 수신 신호의 주파수와 다른 주파수의 정현파 신호들을 수신 신호와 곱한 결과들을 합산하면 0이 된다. 따라서 수신 신호의 주파수와 동일한 주파수의 정현파 신호를 수신신호와 곱한 값만 남게 된다. 따라서 단말이 FFT에 기반한 신호 처리를 수행한 결과로써 angular 주파수 w5와 w6 성분들에 대해 획득된 값들은 수학식 16과 같이 표현된다.
[수학식 16]
Figure PCTKR2018009522-appb-img-000015
수학식 16에서 X UE,Rx(w5)과 X UE,Rx(w6) 간의 비율은 수학식 17과 같이 표현된다.
[수학식 17]
Figure PCTKR2018009522-appb-img-000016
이때 두 개의 angular 주파수 성분들 간의 위상 차이는 수학식 18과 같이 표현된다.
[수학식 18]
Figure PCTKR2018009522-appb-img-000017
- PRS subframe
도 7은 주기적인 DL PRS 전송의 일 예를 나타낸다.
도 7에서는 특정 주기(e.g., TPRS)마다 발생하는 Positioning Occasion 내에서 DL PRS가 전송된다고 가정하였다. 도 7을 참조하면 Positioning occasion 내에서 각 기지국의 angular 주파수가 고정되고, 각 기지국은 한번의 DL PRS 서브프레임을 단말에게 전송한다. DL PRS 서브프레임을 전송한다는 것은 DL PRS 서브프레임에서 DL PRS를 송신하는 것을 의미할 수 있다.
도 8은 DL PRS 전송의 다른 일 예를 나타낸다.
도 8을 참조하면 기지국이 도 7과 같이 고정된 angular 주파수로 DL PRS 서브프레임을 한번 혹은 다수 번 전송하는 것이 아니고, angular 주파수를 변경하면서 다수의 DL PRS 서브프레임들을 전송할 수도 있다.
단말이 DL PRS 서브프레임 별로 위상 차이를 계산하여 보고할 수 있도록 기지국은 DL PRS 서브프레임 별로 사용되는 angular 주파수에 대한 정보(e.g., angular 주파수를 구분할 수 있는 식별자)를 상위 계층/물리 계층 시그널링을 통해서 단말에 제공할 수 있다. 단말은 DL PRS 서브프레임 마다 변경되는 angular 주파수를 이용하여 모든 DL PRS 서브프레임들에 대한 위상 차이들을 계산하여 기지국에 보고하거나 혹은 성능이 좋은 DL PRS에 대한 위상 차이만 보고할 수도 있다.
도 9는 DL PRS 전송의 또 다른 일 예를 나타낸다.
도 9를 참조하면 하나의 Positioning occasion 동안에 기지국은 같은 angular 주파수를 가지는 다수의 DL PRS 서브프레임들을 전송한다. 단 Positioning occasion 마다 다른 angular 주파수의 DL PRS가 전송될 수 있다.
단말은 정해진 시간 동안에 수신된 DL PRS에 대해서만 위상 차이를 계산하여 보고할 수 있다.
2. 참조 기지국들과 단말로부터 서빙 기지국으로의 PRS 전송
도 10은 참조 기지국들과 단말이 서빙 기지국으로 PRS를 전송하는 일례를 도시한다. m, n는 각 참조 기지국과 서빙 기지국 간의 거리를 나타낸다.
단말은 수신된 각 DL PRS에 대한 위상차를 계산하여 서빙 기지국에 UL PRS를 통해 보고 할 수 있다. 또한 참조 기지국들도 PRS를 서빙 기지국에 전송한다. 서빙 기지국은 단말과 참조 기지국들로부터 수신한 PRS들을 통해서 단말과의 거리 뿐 아니라 단말의 위치도 추정할 수 있다.
도 11은 본 발명의 일 실시예에 따라서 참조 기지국들과 단말 k가 PRS를 서빙 기지국에게 보내는 시점을 설명하기 위한 도면이다. 참조 기지국들과 단말은 비슷한 시점에 PRS를 전송한다. 설명의 편의를 위해서 두 심볼들에서 PRS가 반복되는 전송된다고 가정하였으나, PRS는 한 심볼 길이로써 CP(cyclic prefix)와 데이터를 가질 수도 있다.
- 참조 기지국으로부터 서빙 기지국으로의 PRS 송신
참조 기지국 1는 angular 주파수 w6, w7를 이용하여 수학식 19와 같은 PRS를 생성하여 t=t BS1,s,Tx+n*t symb 시점에 서빙 기지국으로 전송한다.
[수학식 19]
Figure PCTKR2018009522-appb-img-000018
서빙 기지국은 양자화된 처리 시점인 t=t ServingBS,s,Tx+(n+1)*t symb 에서 초기 위상 0인 정현파 신호를 참조 기지국 1로부터 수신한 PRS와 곱하는 방식으로 FFT 동작을 수행한다. 그 결과 angular 주파수 w 6, w 7 에 대하여 얻어지는 성분들은 수학식 20과 같다.
[수학식 20]
Figure PCTKR2018009522-appb-img-000019
수학식 20의 두 angular 주파수 성분들 간의 위상 차이는 수학식 21과 같이 표현된다.
[수학식 21]
Figure PCTKR2018009522-appb-img-000020
수학식 21가 마찬가지로 서빙 기지국이 참조 기지국 2로부터 수신한 PRS의 angular 주파수 성분들 간의 위상 차이는 수학식 22와 같다.
[수학식 22]
Figure PCTKR2018009522-appb-img-000021
- 단말k로부터 서빙 기지국으로의 PRS 송신
단말 k는 angular 주파수들 w 1, w 2, w 3, w 4 및 w 5 를 이용하여 수학식 23과 같은 PRS를 생성하여 t=t UE,s,Rx+n*t symb 시점에 서빙 기지국으로 전송한다.
[수학식 23]
Figure PCTKR2018009522-appb-img-000022
서빙 기지국은 양자화된 처리 시점인 t=t ServingBS,s,Tx+(n+1)*t symb 에서 초기 위상 0인 정현파 신호를 참조 기지국 1로부터 받은 PRS와 곱하는 형태로 FFT 동작을 수행한다. 그 결과 angular 주파수 w 1, w 2, w 3, w 4 및 w 5 에 대하여 얻어지는 성분들은 수학식 24와 같다.
[수학식 24]
Figure PCTKR2018009522-appb-img-000023
서빙 기지국은 수학식 24의 angular 주파수의 성분들을 통해 각 기지국과 단말 사이의 거리인 x, y, z를 획득할 수 있다.
w 2, w 3 에 대해 획득된 두 성분들 간의 비는 수학식 25와 같다.
[수학식 25]
Figure PCTKR2018009522-appb-img-000024
w 3-w 2= w 2-w 1 일 경우 w 2 및 w 3 에 대한 두 성분들 간의 비는 수학식 26과 다시 표현된다.
[수학식 26]
Figure PCTKR2018009522-appb-img-000025
OFDM symbol의 길이인 t symb 는 정해져 있으므로 서빙 기지국과 단말 k 사이의 거리 x가 계산될 수 있다.
OFDM symbol의 길이인 t symb와 앞서 거리 x가 정해지면 w 1, w 2 에 대한 성분들의 위상 차이를 통해서 t ServingBS,s,Tx - t UE,s,Rx 값이 획득될 수 있다. 획득된 t BS,s,Tx - t UE,s,Rx 값과 w 3, w 4 및 w 5 에 대해 획득된 성분들의 위상차이를 이용하면 arg(X), arg(Y) 및 arg(Z)가 계산될 수 있다.
연속하는 angular 주파수들 간의 차이가 일정하다고 가정하면, arg(Y)와 arg(M) 간의 차이는 수학식 27과 같이 표현될 수 있다.
[수학식 27]
Figure PCTKR2018009522-appb-img-000026
따라서 단말 k와 참조 기지국 1 간의 거리 y에서 서빙 기지국과 참조 기지국 1 간의 거리 m을 뺀 값인 y-m는 수학식 28과 같이 계산될 수 있다.
[수학식 28]
Figure PCTKR2018009522-appb-img-000027
단말 k와 참조 기지국 2 간의 거리 z에서 서빙 기지국과 참조 기지국 2 간의 거리 n 을 뺀 값인 z-n은 수학식 29와 같이 계산될 수 있다.
[수학식 29]
Figure PCTKR2018009522-appb-img-000028
모든 기지국들의 위치는 고정되어 있으므로 서빙 기지국과 각 기지국간의 거리인 m, n에 대한 정보가 사전에 서빙 기지국에 알려져 있을 수 있다(e.g., 위치 서버로부터 획득). 따라서 서빙 기지국은, 각 참조 기지국과 단말간의 거리인 y, z를 계산할 수 있다. 또한 서빙 기지국이 위치 서버에 거리 정보 x, y, z를 송신하면 위치 서버가 단말의 위치를 추정할 수 있다.
이와 같이 기지국과 단말 간의 거리 뿐 아니라 단말의 위치도 추정될 수 있다.
도 11과 같이 참조 기지국도 서빙 기지국으로 PRS를 전송할 수 있다. 각 참조 기지국과 단말은 서로 다른 angular 주파수들을 이용하여 동시에 서빙 기지국에 PRS 전송을 수행할 수도 있지만, 순차적으로 PRS 전송을 수행할 수도 있다. 순차적으로 PRS가 전송될 경우는 위치 추정의 정확도 향상을 위해 PRS 송신들 간의 간섭이 발생하지 않도록 스케줄될 필요가 있다. 따라서 각 참조 기지국과 단말은 서빙 기지국으로 PRS를 송신하기 위한 규칙에 대한 정보(e.g. 전송시점, PRS resource 등)를 위치 서버로부터 물리 계층/상위 계층 시그널링을 통해서 수신할 수 있다.
한편, 서빙 기지국이 자신과 단말 간의 거리만 알고자 할 경우에는 단말은 참조 기지국의 DL PRS에 대한 위상차 정보를 서빙 기지국으로 송신할 필요가 없고, 서빙 기지국은 참조 기지국들로부터 PRS를 수신하지 않아도 된다. 이와 관련한 정보는 위치 서버에 의해 설정될 수 있다.
단말은 참조 기지국들의 DL PRS들에 대한 위상 차이들 모두를 서빙 기지국에 송신하는 것이 아니라 선택적으로 송신할 수도 있다. 참조 기지국들로부터 수신된 DL PRS들 중 신호의 세기가 낮은 DL PRS에 기반하여 단말의 위치가 추정되면 정확도가 감소할 수 있다. 또한 단말이 사용 가능한 UL PRS의 자원도 한정되어 있으므로 단말은 신호 세기가 큰 DL PRS에 대한 위상차 정보만 선택적으로 서빙 기지국에 송신 할 수도 있다.
단말은 하나의 UL PRS 서브프레임으로 모든 위상차 정보를 동시에 서빙 기지국에 송신할 수도 있지만, 보다 높은 정확도로 서빙 기지국에 위상차 정보를 송신하기 위해서 다수의 UL PRS 서브프레임들을 이용할 수도 있다. 예컨대, 단말은 각 위상차 정보를 다른 UL PRS 서브프레임을 이용하여 서빙 기지국에 송신할 수 있다. 따라서 네트워크는 UL PRS 서브프레임 별로 송신되어야 하는 위상차에 대한 정보를 단말에게 상위계층/물리 계층을 통해서 알려줄 수 있다. 예를 들어 단말이 서빙 기지국에 송신할 수 있는 3개의 UL PRS 서브프레임들이 존재할 경우 단말은 첫 번째 UL PRS 서브프레임에는 서빙 기지국의 DL PRS에 대한 위상차 정보를 송신하고, 두 번째 UL PRS 서브프레임에는 참조 기지국 1의 DL PRS에 대한 위상차 정보를 송신하고, 세 번째 UL PRS 서브프레임에는 참조 기지국 2의 DL PRS에 대한 위상차 정보를 송신할 수 있다.
도 12는 본 발명의 일 실시예에 따른 위치 추정을 위한 참조 신호 송수신 방법의 흐름을 도시한다.
단말은 서빙 기지국 및 참조(reference) 기지국들 각각으로부터 DL(downlink) PRS(positioning reference signal)을 수신한다(1205).
단말은 DL PRS에 포함된 정현파 성분들 간의 위상 차이를 서빙 기지국 및 참조 기지국들 각각에 대하여 측정한다(1210).
단말은 측정된 위상 차이에 기초하여 UL(uplink) PRS를 생성한다(1215).
단말은 UL PRS를 서빙 기지국으로 송신한다(1220).
단말은 UL PRS의 송신을 통해서 서빙 기지국에 대하여 측정된 위상 차이 및 참조 기지국들에 대하여 측정된 위상 차이들을 함께 서빙 기지국에 보고할 수 있다. 예컨대, 단말에 의해 생성된 UL PRS는, 서빙 기지국에 대하여 측정된 위상 차이를 나타내는 제1 정현파 성분, 참조 기지국들 중 제1 참조 기지국에 대하여 측정된 위상 차이를 나타내는 제2 정현파 성분 및 제2 참조 기지국에 대하여 측정된 위상 차이를 나타내는 제3 정현파 성분을 포함할 수 있다. 제1 정현파 성분은 A*exp(j*(w*(t-t UE,s,Rx-n*t symbol)+arg1)))에 대응하고, 제2 정현파 성분은 A*exp(j*(w*(t-t UE,s,Rx-n*t symbol)+arg2)))에 대응하고, 제3 정현파 성분은 A*exp(j*(w*(t-t UE,s,Rx-n*t symbol)+arg3)))에 대응하고, 'A'는 UL PRS의 크기(amplitude), 'w'는 각주파수(angular frequency), 't'는 UL PRS의 송신 시점, 't UE,s,Rx'는 DL PRS의 신호 처리가 시작되는 시점, 'n'은 DL PRS가 수신된 심볼과 UL PRS가 송신되는 심볼 사이의 심볼 개수, 't symbol'는 1 심볼의 길이, 'arg1'은 서빙 기지국에 대하여 측정된 위상차이, 'arg2'은 제1 참조 기지국에 대하여 측정된 위상차이, 'arg3'은 제2 참조 기지국에 대하여 측정된 위상차이를 의미할 수 있다.
서빙 기지국에 대하여 측정된 위상 차이는 (w 2-w 1)(t UE,s,RX-t ServingBs,s,Tx)-(w 2/c-w 1/c)*x에 대응하고, 'w1' 및 'w2'는 각각 서빙 기지국의 DL PRS에 포함된 정현파 성분들 각각의 각주파수(angular frequency), 't UE,s,Rx'는 DL PRS의 신호 처리가 시작되는 시점, 't ServingBs,s,Tx'는 서빙 기지국이 DL PRS를 송신한 시점, 'c'는 빛의 속도, 'x'는 서빙 기지국과 단말 간의 거리를 의미할 수 있다.
단말은 참조 기지국들 중에서 신호 세기가 임계치를 초과하는 DL PRS를 송신한 참조 기지국들을 선택하고, 선택된 참조 기지국들에 대한 위상 차이들을 UL PRS를 통해 보고할 수 있다.
서빙 기지국은 단말로부터 UL PRS(1220), 제1 참조 기지국으로부터의 제1 PRS(1221) 및 제2 참조 기지국으로부터의 제2 PRS(1222)를 각각 수신한다.
서빙 기지국은 UL PRS를 통해서 서빙 기지국의 DL PRS의 정현파 성분들에 대해서 단말이 측정한 제1 위상 차이, 제1 참조 기지국의 DL PRS의 정현파 성분들에 대해서 단말이 측정한 제2 위상 차이 및 제2 참조 기지국의 DL PRS의 정현파 성분들에 대해서 단말이 측정한 제3 위상 차이를 획득할 수 있다(1225).
서빙 기지국은 UL PRS, 제1 PRS 및 제2 PRS를 이용하여 단말과 서빙 기지국 간의 거리, 단말과 제1 참조 기지국 간의 거리 및 단말과 제2 참조 기지국 간의 거리를 추정할 수 있다(1230). 예컨대, 서빙 기지국은, 제1 위상 차이에 기초하여 단말과 서빙 기지국 간의 거리를 추정하고, 제2 위상 차이 및 제1 PRS에 기초하여 단말과 제1 참조 기지국 간의 거리를 추정하고, 제3 위상 차이 및 제2 PRS에 기초하여 단말과 제2 참조 기지국 간의 거리를 추정할 수 있다.
단말과 제1 참조 기지국 간의 거리는 {arg2-arg4-(w 4-w 3)*(t UE,s,Rx-t ServingBS,s,Rx)}/(w 4/c-w 3/c)에 대응하며, 'arg2'는 제2 위상 차이, 'arg4'는 서빙 기지국이 제1 PRS를 통해 측정한 위상 차이, 'w3' 및 'w4'는 각각 제1 참조 기지국의 DL PRS의 정현파 성분들 각각의 각주파수(angular frequency), 't UE,s,Rx'는 단말이 제1 참조 기지국의 DL PRS의 신호 처리를 시작하는 시점, 't ServingBS,s,Rx'는 서빙 기지국이 제1 PRS의 신호 처리를 시작하는 시점, 'c'는 빛의 속도를 의미할 수 있다.
서빙 기지국은 단말과 서빙 기지국 간의 거리, 단말과 제1 참조 기지국 간의 거리 및 단말과 제2 참조 기지국 간의 거리에 기초하여 단말의 위치를 추정할 수 있다(1235).
도 13은 본 발명의 일 실시예에 따른 무선통신 시스템(100)에서의 송신 장치(105) 및 수신 장치(110)의 구성을 도시한 블록도이다. 편의상 송신 장치를 기지국으로, 수신 장치를 단말이라고 가정하나 본 발명은 이에 한정되지 않으며 송신 장치와 수신 장치 각각은 임의의 무선 노드로 해석될 수도 있다.
기지국은 eNB 또는 gNB로 지칭될 수 있다. 단말은 UE로 지칭될 수 있다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 송신 장치(105)와 하나의 수신 장치(110)를 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 송신 장치 및/또는 하나 이상의 수신 장치를 포함할 수 있다.
기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서(150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다. 단말 및 기지국에서의 송신기 및 수신기는 하나의 RF(Radio Frequency) 유닛으로 구성될 수도 있다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술된 바와 같이 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다.

Claims (13)

  1. 무선 통신 시스템에서 단말이 위치 추정을 위하여 신호를 송수신하는 방법에 있어서,
    서빙 기지국 및 참조(reference) 기지국들 각각으로부터 DL(downlink) PRS(positioning reference signal)을 수신하는 단계;
    상기 DL PRS에 포함된 정현파 성분들 간의 위상 차이를 상기 서빙 기지국 및 상기 참조 기지국들 각각에 대하여 측정하는 단계;
    상기 측정된 위상 차이에 기초하여 UL(uplink) PRS를 생성하는 단계; 및
    상기 UL PRS를 상기 서빙 기지국으로 송신하는 단계를 포함하고,
    상기 단말은 상기 UL PRS의 송신을 통해서 상기 서빙 기지국에 대하여 측정된 위상 차이 및 상기 참조 기지국들에 대하여 측정된 위상 차이들을 함께 상기 서빙 기지국에 보고하는, 방법.
  2. 제 1 항에 있어서,
    상기 단말에 의해 생성된 상기 UL PRS는, 상기 서빙 기지국에 대하여 측정된 위상 차이를 나타내는 제1 정현파 성분, 상기 참조 기지국들 중 제1 참조 기지국에 대하여 측정된 위상 차이를 나타내는 제2 정현파 성분 및 제2 참조 기지국에 대하여 측정된 위상 차이를 나타내는 제3 정현파 성분을 포함하는, 방법.
  3. 제 2 항에 있어서,
    상기 제1 정현파 성분은 A*exp(j*(w*(t-t UE,s,Rx-n*t symbol)+arg1)))에 대응하고,
    상기 제2 정현파 성분은 A*exp(j*(w*(t-t UE,s,Rx-n*t symbol)+arg2)))에 대응하고,
    상기 제3 정현파 성분은 A*exp(j*(w*(t-t UE,s,Rx-n*t symbol)+arg3)))에 대응하고,
    'A'는 상기 UL PRS의 크기(amplitude), 'w'는 각주파수(angular frequency), 't'는 상기 UL PRS의 송신 시점, 't UE,s,Rx'는 상기 DL PRS의 신호 처리가 시작되는 시점, 'n'은 상기 DL PRS가 수신된 심볼과 상기 UL PRS가 송신되는 심볼 사이의 심볼 개수, 't symbol'는 1 심볼의 길이, 'arg1'은 상기 서빙 기지국에 대하여 측정된 위상차이, 'arg2'은 상기 제1 참조 기지국에 대하여 측정된 위상차이, 'arg3'은 상기 제2 참조 기지국에 대하여 측정된 위상차이를 의미하는, 방법.
  4. 제 1 항에 있어서,
    상기 서빙 기지국에 대하여 측정된 위상 차이는 (w 2-w 1)(t UE,s,RX-t ServingBs,s,Tx)-(w 2/c-w 1/c)*x에 대응하고,
    'w1' 및 'w2'는 각각 상기 서빙 기지국의 DL PRS에 포함된 정현파 성분들 각각의 각주파수(angular frequency), 't UE,s,Rx'는 상기 DL PRS의 신호 처리가 시작되는 시점, 't ServingBs,s,Tx'는 상기 서빙 기지국이 DL PRS를 송신한 시점, 'c'는 빛의 속도, 'x'는 상기 서빙 기지국과 상기 단말 간의 거리를 의미하는, 방법.
  5. 제 1 항에 있어서,
    상기 단말은 상기 참조 기지국들 중에서 신호 세기가 임계치를 초과하는 DL PRS를 송신한 참조 기지국들을 선택하고, 상기 선택된 참조 기지국들에 대한 위상 차이들을 상기 UL PRS를 통해 보고하는, 방법.
  6. 무선 통신 시스템에서 서빙 기지국이 단말의 위치 추정을 위하여 신호를 송수신하는 방법에 있어서,
    정현파 성분들을 포함하는 DL(downlink) PRS(positioning reference signal)를 상기 단말에 송신하는 단계;
    상기 단말로부터 UL PRS, 제1 참조 기지국으로부터의 제1 PRS 및 제2 참조 기지국으로부터의 제2 PRS를 각각 수신하는 단계; 및
    상기 UL PRS, 상기 제1 PRS 및 상기 제2 PRS를 이용하여 상기 단말과 상기 서빙 기지국 간의 거리, 상기 단말과 상기 제1 참조 기지국 간의 거리 및 상기 단말과 상기 제2 참조 기지국 간의 거리를 추정하는 단계를 포함하는, 방법.
  7. 제 6 항에 있어서,
    상기 서빙 기지국은 상기 UL PRS를 통해서 상기 서빙 기지국의 DL PRS의 정현파 성분들에 대해서 상기 단말이 측정한 제1 위상 차이, 상기 제1 참조 기지국의 DL PRS의 정현파 성분들에 대해서 상기 단말이 측정한 제2 위상 차이 및 상기 제2 참조 기지국의 DL PRS의 정현파 성분들에 대해서 상기 단말이 측정한 제3 위상 차이를 획득하는, 방법.
  8. 제 7 항에 있어서, 상기 서빙 기지국은,
    상기 제1 위상 차이에 기초하여 상기 단말과 상기 서빙 기지국 간의 거리를 추정하고, 상기 제2 위상 차이 및 상기 제1 PRS에 기초하여 상기 단말과 상기 제1 참조 기지국 간의 거리를 추정하고, 상기 제3 위상 차이 및 상기 제2 PRS에 기초하여 상기 단말과 상기 제2 참조 기지국 간의 거리를 추정하는, 방법.
  9. 제 7 항에 있어서, 상기 UL PRS는,
    A*exp(j*(w*(t-t UE,s,Rx-n*t symbol)+arg1)))에 대응하는 제1 정현파 성분;
    A*exp(j*(w*(t-t UE,s,Rx-n*t symbol)+arg2)))에 대응하는 제2 정현파 성분; 및
    A*exp(j*(w*(t-t UE,s,Rx-n*t symbol)+arg3)))에 대응하는 제3 정현파 성분을 포함하고,
    'A'는 상기 UL PRS의 크기(amplitude), 'w'는 각주파수(angular frequency), 't'는 상기 UL PRS의 송신 시점, 't UE,s,Rx'는 상기 단말이 상기 DL PRS의 신호 처리를 시작하는 시점, 'n'은 상기 DL PRS가 상기 단말에 수신된 심볼과 상기 UL PRS가 송신되는 심볼 사이의 심볼 개수, 't symbol'는 1 심볼의 길이, 'arg1'은 상기 제1 위상차이, 'arg2'은 상기 제2 위상차이, 'arg3'은 상기 제3 위상차이를 의미하는, 방법.
  10. 제 7 항에 있어서,
    상기 단말과 상기 제1 참조 기지국 간의 거리는 {arg2-arg4-(w 4-w 3)*(t UE,s,Rx-t ServingBS,s,Rx)}/(w 4/c-w 3/c)에 대응하며,
    'arg2'는 상기 제2 위상 차이, 'arg4'는 상기 서빙 기지국이 상기 제1 PRS를 통해 측정한 위상 차이, 'w3' 및 'w4'는 각각 상기 제1 참조 기지국의 DL PRS의 정현파 성분들 각각의 각주파수(angular frequency), 't UE,s,Rx'는 상기 단말이 상기 제1 참조 기지국의 DL PRS의 신호 처리를 시작하는 시점, 't ServingBS,s,Rx'는 상기 서빙 기지국이 상기 제1 PRS의 신호 처리를 시작하는 시점, 'c'는 빛의 속도를 의미하는, 방법.
  11. 제 6 항에 있어서,
    상기 단말과 상기 서빙 기지국 간의 거리, 상기 단말과 상기 제1 참조 기지국 간의 거리 및 상기 단말과 상기 제2 참조 기지국 간의 거리에 기초하여 상기 단말의 위치를 추정하는 단계를 더 포함하는, 방법.
  12. 위치 추정을 위하여 신호를 송수신하는 단말에 있어서,
    송수신기; 및
    상기 송수신기를 제어함으로써, 서빙 기지국 및 참조(reference) 기지국들 각각으로부터 DL(downlink) PRS(positioning reference signal)을 수신하고, 상기 DL PRS에 포함된 정현파 성분들 간의 위상 차이를 상기 서빙 기지국 및 상기 참조 기지국들 각각에 대하여 측정하고, 상기 측정된 위상 차이에 기초하여 UL(uplink) PRS를 생성하고, 상기 UL PRS를 상기 서빙 기지국으로 송신하는 프로세서를 포함하고,
    상기 프로세서는 상기 UL PRS의 송신을 통해서 상기 서빙 기지국에 대하여 측정된 위상 차이 및 상기 참조 기지국들에 대하여 측정된 위상 차이들을 함께 상기 서빙 기지국에 보고하는, 단말.
  13. 단말의 위치 추정을 위하여 신호를 송수신하는 기지국에 있어서,
    송수신기; 및
    상기 송수신기를 제어함으로써 정현파 성분들을 포함하는 DL(downlink) PRS(positioning reference signal)를 상기 단말에 송신하고, 상기 단말로부터 UL PRS, 제1 참조 기지국으로부터의 제1 PRS 및 제2 참조 기지국으로부터의 제2 PRS를 각각 수신하고, 상기 UL PRS, 상기 제1 PRS 및 상기 제2 PRS를 이용하여 상기 단말과 상기 기지국 간의 거리, 상기 단말과 상기 제1 참조 기지국 간의 거리 및 상기 단말과 상기 제2 참조 기지국 간의 거리를 추정하는 프로세서를 포함하는, 기지국.
PCT/KR2018/009522 2017-08-21 2018-08-20 무선 통신 시스템에서 참조 신호 송수신 방법 및 이를 위한 장치 WO2019039812A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/640,980 US11265123B2 (en) 2017-08-21 2018-08-20 Method for transmitting and receiving reference signal in wireless communication system and apparatus therefor
EP18847987.7A EP3678426B1 (en) 2017-08-21 2018-08-20 Method for transmitting and receiving reference signal in wireless communication system and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762548391P 2017-08-21 2017-08-21
US62/548,391 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019039812A1 true WO2019039812A1 (ko) 2019-02-28

Family

ID=65439164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009522 WO2019039812A1 (ko) 2017-08-21 2018-08-20 무선 통신 시스템에서 참조 신호 송수신 방법 및 이를 위한 장치

Country Status (3)

Country Link
US (1) US11265123B2 (ko)
EP (1) EP3678426B1 (ko)
WO (1) WO2019039812A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4152776A4 (en) * 2020-05-14 2023-09-27 Datang Mobile Communications Equipment Co., Ltd. INFORMATION REPORTING METHOD, APPARATUS AND DEVICE, AND READABLE STORAGE MEDIUM

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039812A1 (ko) * 2017-08-21 2019-02-28 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 송수신 방법 및 이를 위한 장치
CN109600814B (zh) * 2017-09-30 2021-06-22 华为技术有限公司 一种发送定位信号的方法及设备
KR102307426B1 (ko) * 2018-01-19 2021-09-29 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 포지셔닝 방법 및 관련 기기
US11445464B2 (en) 2019-01-11 2022-09-13 Qualcomm Incorporated Group reporting of user equipment measurements in multi-round trip time positioning
CN114641959B (zh) * 2019-11-07 2024-08-13 高通股份有限公司 用于定位参考信号(prs)的低层(dci或mac ce)dl穿孔指示器
US11635485B2 (en) * 2020-08-21 2023-04-25 Qualcomm Incorporated Positioning reference signal (PRS) measurement window adaptation
WO2022236654A1 (en) * 2021-05-11 2022-11-17 Zte Corporation Systems and methods for procedures of location information report

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260154A1 (en) * 2009-04-09 2010-10-14 Motorola, Inc. Method and Apparatus for Generating Reference Signals for Accurate Time-Difference of Arrival Estimation
US20160212738A1 (en) * 2013-08-27 2016-07-21 Telefonaktiebolaget L M Ericsson (Publ) Positioning of Wireless Devices
US20170059689A1 (en) * 2015-08-28 2017-03-02 Qualcomm Incorporated Support of downlink positioning using coherent and non-coherent signal acquisition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207557A (ja) 2002-01-10 2003-07-25 Mitsubishi Electric Corp 移動局および移動体通信システム
US20080007453A1 (en) * 2006-06-12 2008-01-10 Bill Vassilakis Smart antenna array over fiber
US8503368B2 (en) * 2011-02-08 2013-08-06 Walter Rausch Macro-network location determination, local-oscillator stabilization, and frame-start synchronization based on nearby FM radio signals
ES2871141T3 (es) * 2016-08-17 2021-10-28 Nokia Solutions & Networks Oy Mejoras de interfaz para la multilateración con base en el avance del tiempo para medidas de posicionamiento de dispositivos del usuario
US10834534B2 (en) * 2017-06-29 2020-11-10 Lg Electronics Inc. Method and device for performing location measurement on basis of PDOA
WO2019039812A1 (ko) * 2017-08-21 2019-02-28 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 송수신 방법 및 이를 위한 장치
WO2019045429A1 (ko) * 2017-08-31 2019-03-07 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 송수신 방법 및 이를 위한 장치
GB2582788B (en) * 2019-04-02 2021-10-13 Samsung Electronics Co Ltd Methods and apparatus for configuring 5G new radio uplink positioning reference signals
US11438196B2 (en) * 2019-08-26 2022-09-06 Qualcomm Incorporated Configuration constraints for sounding reference signals (SRS) for positioning
US11422223B2 (en) * 2019-10-10 2022-08-23 Qualcomm Incorporated Method and apparatus for 5G positioning accuracy improvement in presence of phase noise

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260154A1 (en) * 2009-04-09 2010-10-14 Motorola, Inc. Method and Apparatus for Generating Reference Signals for Accurate Time-Difference of Arrival Estimation
US20160212738A1 (en) * 2013-08-27 2016-07-21 Telefonaktiebolaget L M Ericsson (Publ) Positioning of Wireless Devices
US20170059689A1 (en) * 2015-08-28 2017-03-02 Qualcomm Incorporated Support of downlink positioning using coherent and non-coherent signal acquisition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Introduction of PRS Based Terrestrial Beacon System", R1-164450, 3GPP TSG-RAN WG1 MEETING #85, 14 May 2016 (2016-05-14), Nanjing, China, XP051096442 *
SACKENREUTER, BENJAMIN ET AL.: "Low-complexity PDoA-based Localization", 2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN, 4 October 2016 (2016-10-04), XP033005685, DOI: 10.1109/IPIN.2016.7743692 *
See also references of EP3678426A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4152776A4 (en) * 2020-05-14 2023-09-27 Datang Mobile Communications Equipment Co., Ltd. INFORMATION REPORTING METHOD, APPARATUS AND DEVICE, AND READABLE STORAGE MEDIUM

Also Published As

Publication number Publication date
EP3678426A1 (en) 2020-07-08
US11265123B2 (en) 2022-03-01
US20200204317A1 (en) 2020-06-25
EP3678426A4 (en) 2021-04-28
EP3678426B1 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
WO2019039812A1 (ko) 무선 통신 시스템에서 참조 신호 송수신 방법 및 이를 위한 장치
WO2020167055A1 (ko) 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치
WO2019083344A1 (ko) 사이드링크를 지원하는 무선통신시스템에서 단말이 포지셔닝 정보를 전송하는 방법 및 이를 위한 장치
WO2020159339A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022085894A1 (ko) 사이드링크를 지원하는 무선통신시스템에서 단말이 측위와 관련된 신호를 송수신하는 방법 및 이를 위한 장치
WO2018021865A1 (ko) 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 지원하는 장치
WO2018186663A1 (ko) 무선 통신 시스템에서 거리 측정을 위한 방법 및 이를 위한 장치
WO2021096322A1 (ko) 무선통신시스템에서 측위 방법 및 이를 위한 장치
WO2017007285A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 단말의 동기 신호 송수신 방법 및 장치
WO2017043867A1 (ko) 무선 통신 시스템에서 위치 추정 방법 및 장치
WO2018030841A1 (ko) 무선 통신 시스템에서 단말이 참조 신호 측정 정보를 보고하는 방법 및 이를 지원하는 장치
WO2014157904A1 (en) Location-specific wlan information provision method in cell of wireless communication system
WO2021194274A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2016024831A1 (ko) 무선접속시스템에서 이종망 신호를 이용한 위치 측정 방법 및 장치
WO2019045141A1 (ko) 위치 참조 신호를 전송하는 방법 및 장치
WO2018159913A1 (ko) 위치 측정을 위한 정보를 전송하는 방법 및 장치
WO2021029759A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2019031944A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 이를 위한 장치
WO2016159713A1 (ko) 무선 통신 시스템에서 rstd 측정 관련 동작 수행 방법
WO2021029683A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021215791A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2017014540A1 (ko) 무선 통신 시스템에서 송신 전력을 제어하기 위한 장치 및 방법
WO2021162514A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022139093A1 (ko) Nr-v2x 시스템에서 릴레이를 이용한 네트워크 기반 측위 방법 및 이를 위한 장치
WO2019083345A1 (ko) 무선통신시스템에서 단말이 otdoa와 관련된 동작을 수행하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018847987

Country of ref document: EP

Effective date: 20200323