WO2019039397A1 - Electric brake device - Google Patents
Electric brake device Download PDFInfo
- Publication number
- WO2019039397A1 WO2019039397A1 PCT/JP2018/030505 JP2018030505W WO2019039397A1 WO 2019039397 A1 WO2019039397 A1 WO 2019039397A1 JP 2018030505 W JP2018030505 W JP 2018030505W WO 2019039397 A1 WO2019039397 A1 WO 2019039397A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching
- control
- function unit
- function
- operation amount
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/74—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/174—Using electrical or electronic regulation means to control braking characterised by using special control logic, e.g. fuzzy logic, neural computing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/176—Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
- B60T8/1761—Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P15/00—Arrangements for controlling dynamo-electric brakes or clutches
Definitions
- the present invention relates to an electric brake device, and relates to a technology for achieving both control accuracy and NVH (Noise, Vibration, Harshness), which is a generic term for noise, vibration and ride comfort.
- NVH Noise, Vibration, Harshness
- An actuator for an electric brake that uses an electric motor, a linear motion mechanism, and a reduction gear (Patent Document 1).
- An electric actuator using a planetary roller mechanism and an electric motor Patent Document 2.
- the motor torque and the motor torque are respectively increased when increasing the actuator load and reducing the actuator load due to the influence of mechanical friction and the like.
- the characteristics with the actuator load have different hysteresis characteristics.
- high accuracy actuator control may be difficult due to the influence of the hysteresis characteristic.
- variable structure control system which switches and controls a plurality of controllers in accordance with a predetermined state of the actuator may be used.
- control accuracy is improved as the switching of the controller is performed more rapidly, the deterioration of the NVH or the increase of the power consumption is more likely to occur due to chattering or the like, and the chattering is reduced as the switching of the controller is performed more slowly.
- the trade-off is a problem in that the effect of the variable structure is reduced and the control accuracy is deteriorated.
- An object of the present invention is to provide an electric brake device that achieves both control accuracy and NVH, which is a generic term for noise, vibration and ride comfort.
- the electric brake device 1 comprises a brake rotor 8, a friction member 9 which generates a braking force in contact with the brake rotor 8, an electric motor 4, and an output of the electric motor 4
- an electric brake apparatus comprising: friction material operating means 6 for converting into pressure; and a control device 2 for controlling the output of the electric motor 4 based on the braking force command value given from the command means 18
- the control device 2 is Wheel motion estimating means 22 for estimating an angle in rotational motion of the wheel WL synchronized with the brake rotor 8 and a predetermined order differential value of the angle;
- a control operation function unit that switches the operation amount among a plurality of operation amounts different from each other according to a state amount that is a physical amount including at least one of an angle of rotation of the electric motor 4 and a value corresponding to a predetermined differential value of this angle.
- the switching strength determination function unit 21 performs smooth switching, which is control for continuously switching from a current operation amount to a post-switching operation amount with respect to a predetermined switching parameter when switching the operation amount in the control calculation function unit 20. And a function of changing the slope indicating the steepness of the smooth switching with respect to a predetermined switching parameter.
- the control calculation function unit 20 switches the operation amount among the plurality of operation amounts in accordance with the state amount.
- the switching strength determination function unit 21 determines the steepness of switching necessary for switching the operation amount in the control calculation function unit 20 based on either or both of the brake force command value and the estimated value of the wheel motion estimation means 22. .
- the switching strength determination function unit 21 determines whether or not to perform the smooth switching on the determined switching parameter, or changes the gradient indicating the steepness of the smooth switching.
- the smooth switching is performed, the operation amount is continuously changed from one operation amount to another operation amount along with the transition of the value of the switching parameter.
- a discontinuous switching operation is performed such that one operation amount is replaced with another operation amount with respect to a predetermined threshold value in the switching parameter.
- variable structure control system for switching a plurality of controllers is applied and only a smooth switching is applied, either of the above must be compromised due to the trade-off relationship between NVH and control accuracy That is, the deterioration of the NVH or the reduction of the control accuracy may be a problem.
- the case where NVH becomes a problem may differ from the case where a decrease in responsiveness becomes a problem.
- NVH is a generic term for noise, vibration, and ride comfort.
- the smaller the braking force command value or the like the smaller the pressure applied to the mechanical joint by the reaction force that presses the friction material against the brake rotor, so the chattering has a greater effect on the operation noise, and the hysteresis amount must be compensated It is small, and the influence of the braking force on the braking distance is small. In such a case, smooth switching is performed to slow the switching of the variable structure control system.
- Acceleration estimation means 28 for estimating longitudinal acceleration of a vehicle equipped with the electric brake device 1;
- a vehicle speed estimation means 27 for estimating the vehicle body speed of the vehicle based on one or both of the longitudinal acceleration estimated by the acceleration estimation means 28 and the estimated value estimated by the wheel motion estimation means 22; Equipped The control device 2 further estimates the degree of slippage of the wheel WL with respect to the road surface based on the estimated value estimated by the wheel motion estimation means 22 and the vehicle speed estimated by the vehicle speed estimation means 27.
- the anti-skid control function unit 19b calculates a braking force command value regardless of the command unit 18 so as to suppress the slip amount of the wheel WL when the calculated slippage degree exceeds a threshold value
- the switching strength judgment function unit 21 makes the gradient in the smooth switching when the control by the antiskid control function unit 19b is executed sharper than that when the control by the antiskid control function unit 19b is not executed. It may have a function to The threshold is determined by, for example, one or both of a test and a simulation.
- the gradient in the smooth switching when the control by the anti-skid control function unit 19 b is performed is made steep as compared with the case where the control by the anti-skid control function unit 19 b is not performed. That is, at the time of anti-skid control, more precise control of the braking force is required as compared to that at the time of normal braking operation, so switching of the variable structure control system can be positively performed to improve control accuracy.
- the switching strength determination function unit 21 may have a function to make the gradient in the smoothing switching steeper as the change degree of the braking force command value based on the command unit 18 becomes smaller.
- the brake control accuracy can be increased by making the gradient in the smooth switching steep. As a result, control can be performed so that the change in the braking force accurately follows the brake operation, and the brake feeling can be improved.
- the switching strength judgment function unit 21 has a function to make the gradient in the smooth switching slower as the braking force command value becomes smaller under the condition that the braking force command value based on the command means 18 is smaller than the defined value. You may have.
- the predetermined value is a value arbitrarily determined by design or the like, and is determined by obtaining an appropriate value by, for example, one or both of a test and a simulation.
- the NVH can be improved by making the gradient in the smooth switching slower.
- the switching strength judgment function unit 21 has a function to make the gradient in the smooth switching slower as the braking force command value becomes larger under the condition that the braking force command value based on the command means 18 is larger than the predetermined value. You may have.
- the predetermined value is a value arbitrarily determined by design or the like, and is determined by obtaining an appropriate value by, for example, one or both of a test and a simulation.
- the slope in the smooth switching can be made slow to improve the NVH and reduce the power consumption.
- a vehicle speed estimation means 27 for estimating the vehicle speed of the vehicle equipped with the electric brake device 1 is provided.
- the switching strength determination function unit 21 may have a function to make the gradient in the smooth switching steeper as the vehicle speed estimated by the vehicle speed estimation means 27 becomes larger.
- the safety can be enhanced by improving the brake control accuracy by making the gradient in the smooth switching steeper as the vehicle speed becomes larger.
- the control device 2 has a braking force follow-up control function of controlling the operation amount of the friction material 9 by the friction material operating means 6 so as to follow a braking force command value, and the braking force follow-up control function Sliding mode control that calculates a switching function determined from state quantities, derives a binary manipulated variable according to the positive or negative of the switching function, and sets approximately zero of the switching function as a control target,
- the switching strength determination function unit 21 is a function of determining the gradient of the smooth switching accompanying the change of the value of the switching function when switching the operation amount of the binary based on the value of the switching function. May be
- the control device 2 controls an angular velocity estimating means 25 for estimating the angular velocity of the electric motor 4 and a braking force following control so that the operation amount of the friction material 9 by the friction material operating means 6 follows a braking force command value.
- a positive efficiency operation control calculator 33 having a control function, which determines the amount of operation of the electric motor 4 when the contact force between the friction material 9 and the brake rotor 8 increases.
- the switching strength determination function unit 21 is a function of determining the gradient of the smooth switching according to the change of the angular velocity when switching the operation amount of the binary or more according to the angular velocity estimated by the angular velocity estimating means 25. May be
- FIG. 7 is a flow chart showing an example of changing the gradient of the smooth switching depending on whether or not anti-skid control is performed in the electric brake device of FIG. 1. It is a block diagram which shows the example of the control structure which switches the operation amount in the electrically-driven brake device of FIG. It is a block diagram of a control system of an electric brake device concerning a 2nd embodiment of this invention.
- FIG. 7 is a diagram showing an example of adjusting the linear gradient ⁇ SW in the electric brake device of FIG. 6 according to the degree of change of the braking force or the braking force command value.
- FIG. 7 is a diagram showing another example of adjusting the linear gradient ⁇ SW in the electric brake device of FIG. 6 according to the degree of change of the braking force or the braking force command value.
- FIG. 9 is a diagram showing an example in which the linear gradient ⁇ SW is adjusted according to the estimated vehicle speed in the electric brake device of FIG. 8.
- the electric brake device is mounted on, for example, a vehicle.
- the electric brake device 1 includes an electric linear actuator DA and a friction brake BR.
- the structures of the electric linear actuator DA and the friction brake BR will be described.
- the electric linear actuator DA includes an actuator body AH and a control device 2 described later.
- the actuator body AH has an electric motor 4, a reduction mechanism 5, a direct acting mechanism 6 as friction material operating means, a parking brake mechanism 7, an angle sensor Sa, and a load sensor Sb.
- the electric motor 4 is preferably a permanent magnet type synchronous motor and space saving and high torque is preferable.
- a DC motor using a brush, or a reluctance motor not using a permanent magnet, or an induction motor should be applied. You can also.
- the friction brake BR includes a brake rotor 8 that rotates in conjunction with a wheel WL of the vehicle, and a friction member 9 that contacts the brake rotor 8 to generate a braking force.
- the friction material 9 is disposed near the brake rotor.
- the mechanism that generates the braking force by the frictional force may press the friction material 9 against the brake rotor 8 by operating the actuator body AH.
- the brake rotor 8 and the friction member 9 may be, for example, a disk brake device using a brake disk and a caliper, or may be a drum brake device using a drum and a lining.
- the reduction mechanism 5 is a mechanism that reduces the rotation of the electric motor 4 and includes a primary gear 12, an intermediate gear 13, and a tertiary gear 11.
- the reduction mechanism 5 reduces the rotation of the primary gear 12 attached to the rotor shaft 4 a of the electric motor 4 by the intermediate gear 13 and transmits it to the tertiary gear 11 fixed to the end of the rotating shaft 10 It is possible.
- the gears 11, 12 and 13 are rotatable in both directions.
- the linear motion mechanism 6 is a mechanism that converts the rotational motion output from the speed reduction mechanism 5 into linear motion of the linear motion portion 14 by the feed screw mechanism and causes the friction material 9 to abut or separate from the brake rotor 8. .
- the linear movement portion 14 is detentated and supported movably in the axial direction A1.
- a friction material 9 is provided at the outboard side end of the linear movement portion 14.
- the rotational motion is converted into a linear motion, which is converted into the pressing force of the friction material 9 to generate a braking force.
- the electric brake device 1 When the electric brake device 1 is mounted on a vehicle, the outer side in the vehicle width direction of the vehicle is referred to as the outboard side, and the central side in the vehicle width direction of the vehicle is referred to as the inboard side.
- the parking brake actuator 16 of the parking brake mechanism 7 for example, a linear solenoid is applied.
- the locking member 15 is advanced by the parking brake actuator 16 and fitted into a locking hole (not shown) formed in the intermediate gear 13 for locking, thereby inhibiting the rotation of the intermediate gear 13, Set the parking lock.
- the rotation of the intermediate gear 13 is allowed to be in the unlocked state.
- the angle sensor Sa estimates the angle of rotation of the electric motor 4.
- the angle sensor Sa for example, using a resolver or a magnetic encoder is preferable because of high performance and reliability, but various sensors such as an optical encoder can also be applied.
- angle sensor Sa instead of using the angle sensor Sa, for example, it is possible to use angle sensorless estimation in which the motor angle is estimated from the relationship between the voltage and the current of the electric motor 4 or the like in the control device 2 described later.
- the load sensor Sb is a braking force estimation means for estimating the braking force, and is used when controlling the braking force.
- the load sensor Sb for example, a magnetic sensor, a strain sensor, a pressure sensor or the like that detects a displacement or a deformation of a predetermined portion to which the load of the linear motion mechanism 6 acts can be used.
- the control device 2 may perform load sensorless estimation from the motor angle and the electric brake device stiffness, or the motor current and the efficiency of the electric linear actuator DA.
- various sensors such as a thermistor may be separately provided according to the requirements.
- the vehicle is provided with a wheel speed sensor Sc that detects the rotational speed (wheel speed) of each wheel WL.
- the wheel speed sensor Sc is preferable because, for example, an inexpensive system can be configured by using a wheel speed sensor that outputs a predetermined number of pulses during one rotation of the wheel WL.
- a sensor that detects an angle such as an angle sensor Sa that detects the rotation angle of the electric motor 4 can be used.
- FIG. 2 is a block diagram of a control system of the electric brake device 1.
- the control device 2 and the actuator body AH corresponding to each wheel WL are provided.
- Each control device 2 controls the corresponding electric motor 4.
- the power supply device 3 and the upper control means (not shown) of each control device 2 are connected to each control device 2.
- the power supply device 3 supplies power to the respective electric motors 4 and the motor drivers 17 of the respective control devices 2.
- As the upper control means for example, an electric control unit that controls the whole vehicle is applied.
- the upper control means has an integrated control function of each control device 2.
- the upper control means outputs a braking force command value to each control device 2 from the command means 18 such as a brake pedal, for example.
- Each control device 2 includes various control function units that perform control calculations, and a motor driver 17.
- the various control function units have a brake command value generation function unit 19, a control calculation function unit 20, a switching strength determination function unit 21, a wheel motion estimation means 22, and a wheel speed estimation function unit 23.
- the wheel motion estimation means 22 has a load estimation function unit 24 and a motor motion estimation function unit 25.
- the load estimation function unit 24 has a function of estimating the axial load (estimated braking force) of the linear motion mechanism 6 from the output of the load sensor Sb and the like. When the load sensorless estimation is performed, the load estimation function unit 24 may estimate the axial load of the linear motion mechanism 6 using information such as a motor angle or a motor current.
- the motor motion estimation function unit 25 has a function of estimating the rotational motion state of the electric motor 4 from the output of the angle sensor Sa or the like. For example, when using a sensor that detects a predetermined angle area as one cycle, such as a resolver or a magnetic encoder, as the angle sensor Sa, the motor motion estimation function unit 25 determines the output of the angle sensor Sa from the rotor of the electric motor 4
- the phase may be estimated, and the integrated value of the variation in the rotor phase may be estimated as the total rotation angle (position). Further, a differential equivalent value of the phase or position may be estimated as an angular velocity.
- the motor motion estimation function unit 25 may estimate the phase or angular velocity or the like of the rotor from the motor voltage and the motor current.
- the wheel speed estimation function unit 23 is output, for example, within a time period in which one pulse is output, or within a predetermined time, from an output of the wheel speed sensor Sc which outputs a predetermined number of pulses during one rotation of the wheel WL.
- the number of pulses may be counted, and the wheel speed may be estimated based on a predetermined conversion formula.
- the wheel speed estimation function unit 23 may be, for example, an estimation method in which the method is switched using a predetermined estimated angular velocity as a threshold.
- the wheel speed estimation function unit 23 can also estimate the angular velocity by differentiation of the angle or the like.
- the brake command value generation function unit 19 includes a service brake command calculation unit 19a and an antiskid command calculation unit 19b.
- the service brake command computation unit 19a estimates the braking force required for the normal service brake based on the command means 18 such as a brake pedal, for example, and uses it as a braking force command value.
- the brake force command value is given to the brake control function unit 26 of the control calculation function unit 20.
- the anti-skid command calculation unit 19b calculates the degree of slip of the wheel WL relative to the road surface based on the vehicle speed estimated by the vehicle speed estimation means 27 and the wheel speed (estimated value) estimated Anti-skid by calculating the braking force command value without using the command means 18 so as to estimate the slip ratio etc. and to suppress the amount of slippage of the wheel WL when the estimated slippage degree exceeds the threshold value Execute control. Information on whether the service brake command calculation unit 19a performs the calculation or the antiskid command calculation unit 19b performs the calculation is given to the switching strength determination function unit 21.
- the vehicle speed estimation means 27 may estimate the vehicle speed from, for example, the longitudinal acceleration of the vehicle estimated by the acceleration estimation means 28, and the estimated wheel speeds of each of the generally provided wheels.
- the vehicle speed estimation means 27 may use GPS or the like as an element not shown in the drawings or may be used in combination.
- brake control means based on vehicle motion such as anti-slip control may be separately provided in the control device 2.
- the control calculation function unit 20 has a function of switching a plurality of mutually different operation amounts based on a state amount which is a physical amount including any of a motor angle and a value corresponding to a predetermined differential value of the motor angle.
- the control calculation function unit 20 includes a brake control function unit 26 and an operation amount switching function unit 29.
- the brake control function unit 26 controls the electric motor 4 so that the estimated braking force follows the braking force command value requested from the command means 18.
- the control calculation by the brake control function unit 26 may use, for example, feedback control that directly uses the brake force command value and the estimated brake force, converts the brake force into another physical quantity such as an angle, and performs the control calculation. It is also good.
- the feedback control may be, for example, a calculation structure in which a plurality of minor feedback loops are provided so as to provide a motor current control loop in a braking force control loop, and a structure for calculating motor operation amount in a single feedback loop. It is also good.
- feed forward control may be used, or feed forward control may be used in combination.
- the brake control function unit 26 calculates operation amounts for the plurality of operation amounts according to the predetermined state amount, and operation amount calculation portions 26 1 , 26 2 ,... And a switching control unit 30 for calculating a value of a switching parameter which is a parameter for switching in
- the operation amount switching function unit 29 has a function of switching and outputting any one of the plurality of operation amounts as an electric brake operation amount based on the plurality of operation amounts and the switching control signal calculated by the brake control function unit 26. .
- the operation amount switching function unit 29 is discontinuous such that, for example, the operation amount “1” is replaced with the operation amount “2” with the predetermined threshold in the switching parameter as a boundary in switching the plurality of operation amounts.
- the function to perform switching operation and the continuous change of the operation amount “1” to the operation amount “2” continuously with the transition of the value of the switching parameter in the predetermined range of the switching parameter And a function to perform smooth switching operation.
- the switching strength judgment function unit 21 judges the steepness of switching necessary for switching the operation amount in the operation amount switching function unit 29 based on the presence or absence of execution of the antiskid control, and the operation amount switching function The switching process in the unit 29 is adjusted.
- the switching process in the unit 29 is adjusted.
- the brake control accuracy is extremely important, the importance of the NVH is often extremely poor.
- the switching strength determination function unit 21 can perform switching processing having a steepness with emphasis placed on control accuracy at the time of anti-skid control.
- the judgment of the abruptness of the switching in the switching strength judgment function unit 21 is mainly based on the necessity of the braking force control accuracy and the viewpoint of the NVH, and the switching processing is made steeper as the control accuracy is emphasized and the NVH is emphasized.
- the switching process can be made slower.
- the motor driver 17 constitutes a half bridge circuit using switching elements such as field effect transistors (abbreviated as FET), and performs PWM control to determine a motor applied voltage with a predetermined duty ratio. It is preferable because it is inexpensive and has high performance.
- the motor driver 17 can be configured to perform PAM control, for example, by providing a transformer circuit or the like.
- each functional block in FIG. 2 is provided for convenience in describing the function, and may be integrated and divided as necessary, or a predetermined function may be omitted as appropriate.
- FIGS. 3A and 3B are diagrams showing an example of switching the operation amount by this electric brake device.
- the control arithmetic function unit 20 switches the binary operation amount (operation amount 1, operation amount 2) via the linear smoothing function Fc in the vicinity of the switching threshold in the predetermined switching parameter.
- the switching parameters for the horizontal axes in FIGS. 3A and 3B are, for example, state quantities such as the angular velocity of the electric motor 4, dynamics obtained by converting the state quantities into a predetermined characteristic value, and the like.
- the linear gradient ⁇ SW in FIG. 3A can be used as a parameter representing the steepness of switching.
- the switching strength determination function unit 21 (FIG. 2) can change the linear gradient ⁇ SW with respect to a predetermined switching parameter.
- FIG. 3B shows an example of switching the binary operation amount (operation amount 1, operation amount 2) via the curved smoothing function Fc with respect to the example of FIG. 3A.
- the curved smoothing function Fc may be defined using, for example, a trigonometric function or the like.
- the width xsw from the switching start to the end can be used as a parameter indicating the steepness of switching.
- a value corresponding to the gradient ⁇ SW near the switching threshold may be used as a parameter indicating the steepness of switching.
- a value corresponding to the width xsw from the switching start to the end may be used as a parameter indicating the steepness of switching.
- the switching strength determination function unit 21 (FIG. 2) can change the width xsw with respect to a predetermined switching parameter.
- FIG. 4 is a flow chart showing an example of changing the gradient ⁇ SW of the smoothing function depending on whether or not anti-skid control is in progress in this electric brake system.
- the switching strength determination function unit 21 determines whether anti-skid control is being performed based on the information of the brake control mode from the brake command value generation function unit 19 (step S1). In the judgment that anti-skid control is being performed (step S1: yes), the switching strength judgment function unit 21 (FIG. 2) makes the gradient ⁇ SW of the smoothing function larger than when anti-skid control is not being performed (step S2). ). Thereafter, the process ends. If it is determined that anti-skid control is not being performed (step S1: no), the switching strength determination function unit 21 (FIG. 2) makes the gradient ⁇ SW smaller than during anti-skid control (step S3). Thereafter, the process ends.
- FIG. 5 is a block diagram showing an example of the configuration of a control system that switches the operation amount.
- a switching function having a predetermined dynamics is calculated from a state quantity including motor angle etc.
- a nonlinear input is calculated according to the switching function
- an actual response is converted to the dynamics of the switching function.
- the example which applies sliding mode control which constrains is shown.
- the state estimator corresponding to the wheel motion estimation means 22 can be configured by, for example, a linear state observer or a VSS observer.
- the state quantity x determined by the state estimator is, for example, a state quantity forming an equation of motion such as motor angle, angular velocity (one-time derivative value of motor angle), angular acceleration (two-time derivative value of motor angle) be able to.
- a deviation between a predetermined command value and a state quantity, or an integration (integration) value of the deviation can be included.
- S is a coefficient for causing the switching function ⁇ to have a desired dynamics with respect to the state quantity x, and can be obtained by, for example, pole arrangement or an optimal regulator.
- the non-linear input computing unit 32 in the control operation function unit 20 is a function mainly intended to compensate for disturbance or model error, and a predetermined operation amount + u according to the sign of the switching function ⁇ . , -U, and generates a control input that constrains the state quantity to ⁇ 00.
- the switching strength determination function unit 21 determines the steepness of switching of the non-linear control input based on the determined switching parameter.
- the switching strength determination function unit 21 determines the abruptness of switching necessary for switching the operation amount in the operation amount switching function unit 29 based on the presence or absence of execution of the antiskid control. Then, the switching process in the operation amount switching function unit 29 is adjusted.
- the brake control accuracy at the time of anti-skid control is extremely important, while the importance of the NVH at the time of anti-skid control is often extremely poor.
- the switching strength determination function unit 21 can perform switching processing having a steepness with emphasis placed on control accuracy at the time of anti-skid control. Therefore, both NVH and control accuracy can be achieved.
- the switching strength determination function unit 21 shows a second embodiment in which the switching strength is determined based on one or both of the braking force command value and the estimated braking force.
- the switching strength determination function unit 21 makes switching slower as one or both of the braking force command value and the estimated braking force become smaller, and one or both of the braking force command value and the estimated braking force become larger. The switching can be made steeper (left part of FIG. 7A).
- the switching strength determination function unit 21 may perform processing to make switching slower as the braking force command value becomes larger under the condition that the braking force command value is larger than the predetermined value (right part in FIG. 7A).
- FIG. 7A shows an example shown in FIG. 6 in which the steepness of the smoothing function is adjusted according to the braking force.
- the braking force on the horizontal axis in FIG. 7A may use a braking force command value or may use an actual estimated braking force.
- FIG. 7B shows an example in which the steepness of the smoothing function is adjusted in accordance with the degree of change of the braking force command value shown in FIG. It is considered that the driver of the vehicle is more sensitive to the degree of change in the braking force as the degree of change (differentiated value or the like) of the braking force command value is slower. Conversely, the steeper the degree of change in the braking force command value, the less likely the driver is to the degree of change in the braking force.
- the switching strength judgment function unit 21 makes the gradient ⁇ SW of the smoothing function steeper as the degree of change in the braking force command value decreases, and the degree of change in the braking force command value increases.
- the gradient ⁇ SW may be made as slow as possible.
- the brake control accuracy can be increased by making the gradient in the smoothing function steep.
- control can be performed so that the change in the braking force accurately follows the brake operation, and the brake feeling can be improved.
- the switching strength determination function unit 21 may make the gradient in the smoothing function steeper as the vehicle speed estimated by the vehicle speed estimation means 27 increases. .
- the brake operation noise hardly affects the NVH due to road noise or the like.
- the switching strength determination function unit 21 executes processing to make switching steeper as the vehicle speed estimated by the vehicle speed estimation means 27 becomes larger and to make switching slower as the vehicle speed becomes smaller. This is preferable because safety and NVH can be compatible.
- any of the control systems shown in FIGS. 2, 6 and 8 may be used, or may be used in combination as appropriate.
- 7A, 7B and 9 although the example using linear gradient (theta) SW of FIG. 3A is shown, you may use width xsw of FIG. 3B.
- a variable that defines the steepness at which the operation amount switches with respect to the transition of the predetermined switching function can be used as appropriate.
- the positive efficiency operation control calculator 33 in the pressure increase state In the control configuration for switching the amount of operation shown in FIG. 10, the positive efficiency operation control calculator 33 in the pressure increase state, the reverse efficiency operation control calculator 34 in the pressure decrease state, and the hysteresis intermediate control calculator in the hysteresis middle state in the actuator body AH.
- the 4th embodiment which switches 35 is shown.
- the pressure-increasing state is synonymous with the state in which the contact force between the friction material 9 (FIG. 1) and the brake rotor 8 (FIG. 1) increases
- the pressure-reducing state is synonymous with the state in which the contact force decreases. It is.
- the control calculation function unit 20 which is a brake force follow-up control function unit uses the forward efficiency operation control computing unit 33 using the parameters in the forward efficiency operation and the parameters in the reverse efficiency operation.
- the reverse efficiency operation control computing unit 34 and the hysteresis intermediate control computing unit 35 applied in the case of hysteresis are provided. It is preferable to use, for example, a linear controller such as a deviation compensator or a state feedback device as each of the control computing devices, because the number of design steps and the computational load can be reduced.
- the hysteresis intermediate control computing unit 35 may be implemented as a controller that controls the motor current to be a predetermined torque when the actuator main body AH is set as the inoperable control state in which it does not operate.
- the operation amount switching function unit 29 in the control calculation function unit 20 switches the controller based on whether the actuator body AH is in the pressure increase, pressure decrease or hysteresis intermediate state.
- the manipulated variable switching function unit 29 applies the manipulated variable of the positive efficiency operation control calculator 33 when the polarity of the angular velocity given from the state estimator 22 is in the pressure increasing direction (positive) as the switching parameter,
- the operation amount of the reverse efficiency operation control computing unit 34 is applied.
- the operation amount switching function unit 29 applies the hysteresis intermediate control computing unit 35 as the switching parameter when the polarity of the angular velocity is substantially zero.
- the switching strength determination function unit 21 can use the motor angular velocity as the switching function, and can appropriately set the gradient of the smooth switching in the vicinity of the threshold angular velocity zero.
- Hysteresis intermediate control operation unit 35 may be omitted in a transient response state in the middle of following a predetermined braking force, and may be applied only in the case of following a braking force command value which is substantially constant.
- the switching strength determination function unit 21 changes the steepness of the smooth switching with respect to a predetermined switching parameter.
- a configuration in which ⁇ SW is 90 degrees may be included. When the gradient ⁇ SW is 90 degrees, smooth switching is not performed.
- the switching strength determination function unit 21 is a smoothing function in the case of changing the steepness of smooth switching with respect to a predetermined switching parameter in switching of a plurality of operation amounts in the control calculation function unit 20 shown in FIG. 3B.
- a configuration in which the width xsw from the switching start to the end in Fc is zero may be included. When the width xsw is zero, smooth switching is not performed.
- various screw mechanisms such as a planetary roller and a ball screw, a mechanism utilizing an inclination of a ball lamp or the like, and the like can be used.
- the load sensor Sb may be, for example, a wheel torque of a wheel on which a brake is mounted, a sensor for detecting a longitudinal force of a vehicle on which the electric brake device is mounted, or the like instead of the above-described sensor or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Fluid Mechanics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Regulating Braking Force (AREA)
- Braking Systems And Boosters (AREA)
Abstract
Provided is an electric brake device which achieves both NVH, a collective term referring to noise, vibration, and harshness, and control accuracy. A control device (2) of the electric brake device 1 is provided with: a wheel motion estimation means (22); a control calculation function unit (20) which switches an operation amount between a plurality of mutually different operation amounts, in accordance with a state amount of an electric motor (4), and an switching intensity determination function unit (21) which, on the basis of a brake force command value and the like, determines the sharpness of switching required for switching the operation amount in the control calculation function unit (20). The switching intensity determination function unit (21) includes the function for determining whether, during switching of the operation amount, to perform smooth switching with respect to a determined switching parameter, and/or the function for modifying the gradient indicating the sharpness of smooth switching with respect to the determined switching parameter.
Description
本出願は、2017年8月21日出願の特願2017-158448の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
This application claims the priority of Japanese Patent Application No. 2017-158448 filed on Aug. 21, 2017, which is incorporated by reference in its entirety.
この発明は、電動ブレーキ装置に関し、騒音、振動および乗り心地に関する総称であるNVH(Noise, Vibration, Harshness)と、制御精度の両立を図る技術に関する。
The present invention relates to an electric brake device, and relates to a technology for achieving both control accuracy and NVH (Noise, Vibration, Harshness), which is a generic term for noise, vibration and ride comfort.
電動式直動アクチュエータまたは電動ブレーキ装置として、以下の技術が提案されている。
1.電動モータ、直動機構および減速機を使用した電動ブレーキ用アクチュエータ(特許文献1)。
2.遊星ローラ機構および電動モータを使用した電動アクチュエータ(特許文献2)。 The following techniques have been proposed as an electric linear actuator or an electric brake device.
1. An actuator for an electric brake that uses an electric motor, a linear motion mechanism, and a reduction gear (Patent Document 1).
2. An electric actuator using a planetary roller mechanism and an electric motor (Patent Document 2).
1.電動モータ、直動機構および減速機を使用した電動ブレーキ用アクチュエータ(特許文献1)。
2.遊星ローラ機構および電動モータを使用した電動アクチュエータ(特許文献2)。 The following techniques have been proposed as an electric linear actuator or an electric brake device.
1. An actuator for an electric brake that uses an electric motor, a linear motion mechanism, and a reduction gear (Patent Document 1).
2. An electric actuator using a planetary roller mechanism and an electric motor (Patent Document 2).
特許文献1,2の電動アクチュエータを用いた電動ブレーキ装置において、主に機械摩擦等の影響により、アクチュエータ荷重を増圧する場合と、反力を受けてアクチュエータ荷重を減圧する場合において、それぞれモータトルクとアクチュエータ荷重との特性が異なるヒステリシス特性を有する場合が多い。このとき、例えば、電動ブレーキ装置のような高精度な応答が求められる用途に用いる場合、前記ヒステリシス特性の影響により高精度なアクチュエータ制御が困難となる場合がある。
In the electric brake device using the electric actuator of Patent Documents 1 and 2, the motor torque and the motor torque are respectively increased when increasing the actuator load and reducing the actuator load due to the influence of mechanical friction and the like. In many cases, the characteristics with the actuator load have different hysteresis characteristics. At this time, for example, when used for an application requiring a high accuracy response such as an electric brake device, high accuracy actuator control may be difficult due to the influence of the hysteresis characteristic.
この問題に対して制御精度を向上するための対策として、アクチュエータの所定状態に応じて複数のコントローラを切替えて制御する可変構造制御系が用いられる場合がある。しかしながら、前記コントローラの切替を急峻に行う程、制御精度が向上する反面、チャタリング等によるNVHの悪化または消費電力の増加が発生し易く、前記コントローラの切替を緩慢に行う程、チャタリングが低減する反面、可変構造とする効果が減少し制御精度が悪化する、トレードオフが問題となる。
As a measure for improving the control accuracy with respect to this problem, a variable structure control system which switches and controls a plurality of controllers in accordance with a predetermined state of the actuator may be used. However, although the control accuracy is improved as the switching of the controller is performed more rapidly, the deterioration of the NVH or the increase of the power consumption is more likely to occur due to chattering or the like, and the chattering is reduced as the switching of the controller is performed more slowly. The trade-off is a problem in that the effect of the variable structure is reduced and the control accuracy is deteriorated.
この発明の目的は、騒音、振動および乗り心地に関する総称であるNVHと、制御精度の両立を図る電動ブレーキ装置を提供することである。
An object of the present invention is to provide an electric brake device that achieves both control accuracy and NVH, which is a generic term for noise, vibration and ride comfort.
以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。
Hereinafter, in order to facilitate understanding, for convenience, reference will be made to the reference numerals of the embodiments.
この発明の電動ブレーキ装置1は、ブレーキロータ8と、このブレーキロータ8と接触して制動力を発生する摩擦材9と、電動モータ4と、この電動モータ4の出力を前記摩擦材9の押圧力に変換する摩擦材操作手段6と、指令手段18から与えられたブレーキ力指令値に基づいて前記電動モータ4の出力を制御する制御装置2と、を備えた電動ブレーキ装置において、
前記制御装置2は、
前記ブレーキロータ8と同期した車輪WLの回転運動における角度およびこの角度の所定階微分値を推定する車輪運動推定手段22と、
前記電動モータ4の回転の角度およびこの角度の所定階微分値に対応する値の少なくともいずれかを含む物理量である状態量に従って、操作量を互いに異なる複数の操作量の間で切替える制御演算機能部20と、
前記指令手段18からのブレーキ力指令値および前記車輪運動推定手段22で推定される推定値のいずれか一方または両方に基づき、前記制御演算機能部20における操作量の切替えに必要な切替の急峻さを判断する切替強度判断機能部21と、を備え、
前記切替強度判断機能部21は、前記制御演算機能部20における操作量の切替において、定められた切替用パラメータに対して現操作量から切替後の操作量に連続的に切替える制御である平滑切替を行うか否かを判断する機能と、定められた切替用パラメータに対する前記平滑切替の急峻さを示す勾配を変更する機能のいずれか一方または両方の機能を有する。 Theelectric brake device 1 according to the present invention comprises a brake rotor 8, a friction member 9 which generates a braking force in contact with the brake rotor 8, an electric motor 4, and an output of the electric motor 4 In an electric brake apparatus comprising: friction material operating means 6 for converting into pressure; and a control device 2 for controlling the output of the electric motor 4 based on the braking force command value given from the command means 18
Thecontrol device 2 is
Wheel motion estimating means 22 for estimating an angle in rotational motion of the wheel WL synchronized with the brake rotor 8 and a predetermined order differential value of the angle;
A control operation function unit that switches the operation amount among a plurality of operation amounts different from each other according to a state amount that is a physical amount including at least one of an angle of rotation of theelectric motor 4 and a value corresponding to a predetermined differential value of this angle. 20 and
Steepness of switching necessary for switching of the operation amount in the controlcalculation function unit 20 based on one or both of the braking force command value from the command means 18 and the estimated value estimated by the wheel motion estimation means 22 And a switching strength determination function unit 21 for determining
The switching strengthdetermination function unit 21 performs smooth switching, which is control for continuously switching from a current operation amount to a post-switching operation amount with respect to a predetermined switching parameter when switching the operation amount in the control calculation function unit 20. And a function of changing the slope indicating the steepness of the smooth switching with respect to a predetermined switching parameter.
前記制御装置2は、
前記ブレーキロータ8と同期した車輪WLの回転運動における角度およびこの角度の所定階微分値を推定する車輪運動推定手段22と、
前記電動モータ4の回転の角度およびこの角度の所定階微分値に対応する値の少なくともいずれかを含む物理量である状態量に従って、操作量を互いに異なる複数の操作量の間で切替える制御演算機能部20と、
前記指令手段18からのブレーキ力指令値および前記車輪運動推定手段22で推定される推定値のいずれか一方または両方に基づき、前記制御演算機能部20における操作量の切替えに必要な切替の急峻さを判断する切替強度判断機能部21と、を備え、
前記切替強度判断機能部21は、前記制御演算機能部20における操作量の切替において、定められた切替用パラメータに対して現操作量から切替後の操作量に連続的に切替える制御である平滑切替を行うか否かを判断する機能と、定められた切替用パラメータに対する前記平滑切替の急峻さを示す勾配を変更する機能のいずれか一方または両方の機能を有する。 The
The
Wheel motion estimating means 22 for estimating an angle in rotational motion of the wheel WL synchronized with the brake rotor 8 and a predetermined order differential value of the angle;
A control operation function unit that switches the operation amount among a plurality of operation amounts different from each other according to a state amount that is a physical amount including at least one of an angle of rotation of the
Steepness of switching necessary for switching of the operation amount in the control
The switching strength
この構成によると、制御演算機能部20は、前記状態量に従って操作量を複数の操作量の間で切替える。切替強度判断機能部21は、ブレーキ力指令値および車輪運動推定手段22の推定値のいずれか一方または両方に基づき、制御演算機能部20における操作量の切替えに必要な切替の急峻さを判断する。切替強度判断機能部21は、定められた切替用パラメータに対して平滑切替を行うか否かを判断するか、または、前記平滑切替の急峻さを示す勾配を変更する。前記平滑切替を行う場合、切替用パラメータの値の推移に伴って連続的に一の操作量から他の操作量へと操作量が変更される。前記平滑切替を行わない場合、切替用パラメータにおける所定の閾値に対して、一の操作量から他の操作量に置き換わるような不連続な切替動作を行う。
According to this configuration, the control calculation function unit 20 switches the operation amount among the plurality of operation amounts in accordance with the state amount. The switching strength determination function unit 21 determines the steepness of switching necessary for switching the operation amount in the control calculation function unit 20 based on either or both of the brake force command value and the estimated value of the wheel motion estimation means 22. . The switching strength determination function unit 21 determines whether or not to perform the smooth switching on the determined switching parameter, or changes the gradient indicating the steepness of the smooth switching. When the smooth switching is performed, the operation amount is continuously changed from one operation amount to another operation amount along with the transition of the value of the switching parameter. When the smooth switching is not performed, a discontinuous switching operation is performed such that one operation amount is replaced with another operation amount with respect to a predetermined threshold value in the switching parameter.
複数のコントローラを切替える可変構造制御系を適用し、単に平滑切替のみを適用した場合、NVHと制御精度とのトレードオフ関係により前記何れかを妥協しなければならず、妥協をした前記何れか、即ちNVHの悪化もしくは制御精度の低下が問題となる場合がある。このとき、制動を行うときの条件によって、NVHが問題になる場合と、応答性の低下が問題になる場合とが異なる場合がある。
If a variable structure control system for switching a plurality of controllers is applied and only a smooth switching is applied, either of the above must be compromised due to the trade-off relationship between NVH and control accuracy That is, the deterioration of the NVH or the reduction of the control accuracy may be a problem. At this time, depending on the conditions under which braking is performed, the case where NVH becomes a problem may differ from the case where a decrease in responsiveness becomes a problem.
そこで、この構成では、モータ回転角度等の前記状態量に基づいて、互いに異なる複数の操作量を切替える可変構造制御系を適用したうえで、以下の判断a,bのいずれか一方または両方を実行する。
(判断a):ブレーキ力指令値およびブレーキ動作状態等に応じて平滑切替を行うか否かを判断する。
(判断b):ブレーキ力指令値およびブレーキ動作状態等に応じて、平滑切替の勾配を可変とする(この判断bでは、常に平滑切替を行う前提である)。 So, in this composition, after applying the variable structure control system which changes a plurality of mutually different operation quantity based on the above-mentioned state quantities, such as a motor rotation angle, either one or both of the following judgments a and b are performed Do.
(Determination a): It is determined whether or not smooth switching is to be performed according to the braking force command value, the braking operation state, and the like.
(Decision b): The slope of the smooth switching is variable according to the braking force command value, the brake operation state, etc. (In this judgment b, smooth switching is always performed).
(判断a):ブレーキ力指令値およびブレーキ動作状態等に応じて平滑切替を行うか否かを判断する。
(判断b):ブレーキ力指令値およびブレーキ動作状態等に応じて、平滑切替の勾配を可変とする(この判断bでは、常に平滑切替を行う前提である)。 So, in this composition, after applying the variable structure control system which changes a plurality of mutually different operation quantity based on the above-mentioned state quantities, such as a motor rotation angle, either one or both of the following judgments a and b are performed Do.
(Determination a): It is determined whether or not smooth switching is to be performed according to the braking force command value, the braking operation state, and the like.
(Decision b): The slope of the smooth switching is variable according to the braking force command value, the brake operation state, etc. (In this judgment b, smooth switching is always performed).
少なくともいずれかの判断を行うことで、騒音、振動および乗り心地に関する総称であるNVHと、制御精度の両立を図ることができる。例えば、ブレーキ力指令値等が小さい程、摩擦材をブレーキロータに押圧する反力による機械結合部への与圧が小さいためチャタリングによる作動音への影響が大きく、補償しなければならないヒステリシス量が小さく、またブレーキ力が制動距離に及ぼす影響が小さい。このような場合、可変構造制御系の切替を緩慢にする平滑切替を行う。逆に、ブレーキ力指令値等がある程度大きくなると、機械結合部への予圧が比較的大きいことでチャタリングによる作動音への影響が相対的に小さい反面、補償しなければならないヒステリシス量が大きくなり、またブレーキ力が制動距離に及ぼす影響が大きくなるためブレーキ制御精度を高める必要がある。このような場合、可変構造制御系の切替を急峻にするか、切替用パラメータにおける所定の閾値に対して、一の操作量から他の操作量に置き換わるような不連続な切替動作を行う。このように状況に応じた切替を行うことで、NVHと制御精度の両立を図れる。
By performing at least one of the determinations, it is possible to balance control accuracy with NVH, which is a generic term for noise, vibration, and ride comfort. For example, the smaller the braking force command value or the like, the smaller the pressure applied to the mechanical joint by the reaction force that presses the friction material against the brake rotor, so the chattering has a greater effect on the operation noise, and the hysteresis amount must be compensated It is small, and the influence of the braking force on the braking distance is small. In such a case, smooth switching is performed to slow the switching of the variable structure control system. Conversely, if the braking force command value or the like is increased to a certain extent, the preload on the mechanical joint is relatively large, while the influence of chattering on the operation noise is relatively small, but the hysteresis amount to be compensated is increased. In addition, since the influence of the braking force on the braking distance becomes large, it is necessary to improve the brake control accuracy. In such a case, switching of the variable structure control system is made steep, or discontinuous switching operation is performed such that one operation amount is replaced with another operation amount with respect to a predetermined threshold value in the switching parameter. By performing switching according to the situation as described above, it is possible to achieve both NVH and control accuracy.
前記電動ブレーキ装置1を搭載する車両の前後加速度を推定する加速度推定手段28と、
この加速度推定手段28で推定される前後加速度および前記車輪運動推定手段22で推定される推定値のいずれか一方または両方に基づいて、前記車両の車体速を推定する車体速推定手段27と、を備え、
前記制御装置2は、さらに、前記車輪運動推定手段22で推定される推定値および前記車体速推定手段27で推定される車体速に基づいて、前記車輪WLの路面に対する滑り度合を推定し、推定された前記滑り度合が閾値を超過したときに前記車輪WLの滑り量を抑制するように、前記指令手段18によらずブレーキ力指令値を演算するアンチスキッド制御機能部19bを備え、
前記切替強度判断機能部21は、前記アンチスキッド制御機能部19bによる制御が実行されたときの前記平滑切替における前記勾配を、アンチスキッド制御機能部19bによる制御が実行されない場合と比較して、急峻にする機能を有してもよい。前記閾値は、例えば、試験およびシミュレーションのいずれか一方または両方等により定められる。 Acceleration estimation means 28 for estimating longitudinal acceleration of a vehicle equipped with theelectric brake device 1;
A vehicle speed estimation means 27 for estimating the vehicle body speed of the vehicle based on one or both of the longitudinal acceleration estimated by the acceleration estimation means 28 and the estimated value estimated by the wheel motion estimation means 22; Equipped
Thecontrol device 2 further estimates the degree of slippage of the wheel WL with respect to the road surface based on the estimated value estimated by the wheel motion estimation means 22 and the vehicle speed estimated by the vehicle speed estimation means 27. The anti-skid control function unit 19b calculates a braking force command value regardless of the command unit 18 so as to suppress the slip amount of the wheel WL when the calculated slippage degree exceeds a threshold value,
The switching strengthjudgment function unit 21 makes the gradient in the smooth switching when the control by the antiskid control function unit 19b is executed sharper than that when the control by the antiskid control function unit 19b is not executed. It may have a function to The threshold is determined by, for example, one or both of a test and a simulation.
この加速度推定手段28で推定される前後加速度および前記車輪運動推定手段22で推定される推定値のいずれか一方または両方に基づいて、前記車両の車体速を推定する車体速推定手段27と、を備え、
前記制御装置2は、さらに、前記車輪運動推定手段22で推定される推定値および前記車体速推定手段27で推定される車体速に基づいて、前記車輪WLの路面に対する滑り度合を推定し、推定された前記滑り度合が閾値を超過したときに前記車輪WLの滑り量を抑制するように、前記指令手段18によらずブレーキ力指令値を演算するアンチスキッド制御機能部19bを備え、
前記切替強度判断機能部21は、前記アンチスキッド制御機能部19bによる制御が実行されたときの前記平滑切替における前記勾配を、アンチスキッド制御機能部19bによる制御が実行されない場合と比較して、急峻にする機能を有してもよい。前記閾値は、例えば、試験およびシミュレーションのいずれか一方または両方等により定められる。 Acceleration estimation means 28 for estimating longitudinal acceleration of a vehicle equipped with the
A vehicle speed estimation means 27 for estimating the vehicle body speed of the vehicle based on one or both of the longitudinal acceleration estimated by the acceleration estimation means 28 and the estimated value estimated by the wheel motion estimation means 22; Equipped
The
The switching strength
この構成によると、アンチスキッド制御機能部19bによる制御が実行されたときの前記平滑切替における前記勾配を、アンチスキッド制御機能部19bによる制御が実行されない場合と比較して、急峻にする。つまりアンチスキッド制御時は、通常のブレーキ動作時と比較してより精密なブレーキ力制御が必要とされるため、可変構造制御系の切替を積極的に行って制御精度を向上することができる。
According to this configuration, the gradient in the smooth switching when the control by the anti-skid control function unit 19 b is performed is made steep as compared with the case where the control by the anti-skid control function unit 19 b is not performed. That is, at the time of anti-skid control, more precise control of the braking force is required as compared to that at the time of normal braking operation, so switching of the variable structure control system can be positively performed to improve control accuracy.
前記切替強度判断機能部21は、前記指令手段18に基づくブレーキ力指令値の変化度合が小さくなる程、前記平滑切替における勾配を急峻にする機能を有するものであってもよい。ブレーキペダルが緩やかに操作されている場合において、前記平滑切替における勾配を急峻にすることでブレーキ制御精度を高くすることができる。これにより、ブレーキ操作に対して制動力の変化が正確に追従するよう制御し、ブレーキフィーリングを改善することができる。
The switching strength determination function unit 21 may have a function to make the gradient in the smoothing switching steeper as the change degree of the braking force command value based on the command unit 18 becomes smaller. When the brake pedal is operated gently, the brake control accuracy can be increased by making the gradient in the smooth switching steep. As a result, control can be performed so that the change in the braking force accurately follows the brake operation, and the brake feeling can be improved.
前記切替強度判断機能部21は、前記指令手段18に基づくブレーキ力指令値が定められた値より小さい条件において、前記ブレーキ力指令値が小さくなる程、前記平滑切替における勾配を緩慢にする機能を有するものであってもよい。前記定められた値は、設計等によって任意に定める値であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な値を求めて定められる。
The switching strength judgment function unit 21 has a function to make the gradient in the smooth switching slower as the braking force command value becomes smaller under the condition that the braking force command value based on the command means 18 is smaller than the defined value. You may have. The predetermined value is a value arbitrarily determined by design or the like, and is determined by obtaining an appropriate value by, for example, one or both of a test and a simulation.
軽いブレーキ操作の場合において比較的大きな電動ブレーキ装置の作動音が発生し易く、チャタリングが発生するとNVHの悪化に繋がる。このため、ブレーキ力指令値が定められた値より小さいときは前記平滑切替における勾配を緩慢にすることで、NVHを改善することができる。
In the case of light brake operation, relatively large operation noise of the electric brake device is easily generated, and chattering leads to deterioration of the NVH. For this reason, when the braking force command value is smaller than the predetermined value, the NVH can be improved by making the gradient in the smooth switching slower.
前記切替強度判断機能部21は、前記指令手段18に基づくブレーキ力指令値が定められた値より大きい条件において、前記ブレーキ力指令値が大きくなる程、前記平滑切替における勾配を緩慢にする機能を有するものであってもよい。前記定められた値は、設計等によって任意に定める値であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な値を求めて定められる。
The switching strength judgment function unit 21 has a function to make the gradient in the smooth switching slower as the braking force command value becomes larger under the condition that the braking force command value based on the command means 18 is larger than the predetermined value. You may have. The predetermined value is a value arbitrarily determined by design or the like, and is determined by obtaining an appropriate value by, for example, one or both of a test and a simulation.
ある程度ブレーキ力が大きくなると比較的高Gでの減速となり制御精度がフィーリングに影響し難くなる。このような場合に、前記平滑切替における勾配を緩慢にしてNVHの向上および消費電力の低減を図ることができる。
When the braking force is increased to a certain extent, deceleration is performed at a relatively high G, and the control accuracy hardly affects the feeling. In such a case, the slope in the smooth switching can be made slow to improve the NVH and reduce the power consumption.
さらに、前記電動ブレーキ装置1を搭載する車両の車体速を推定する車体速推定手段27を備え、
前記切替強度判断機能部21は、前記車体速推定手段27で推定される車体速が大きくなる程、前記平滑切替における勾配を急峻にする機能を有するものであってもよい。 Furthermore, a vehicle speed estimation means 27 for estimating the vehicle speed of the vehicle equipped with theelectric brake device 1 is provided.
The switching strengthdetermination function unit 21 may have a function to make the gradient in the smooth switching steeper as the vehicle speed estimated by the vehicle speed estimation means 27 becomes larger.
前記切替強度判断機能部21は、前記車体速推定手段27で推定される車体速が大きくなる程、前記平滑切替における勾配を急峻にする機能を有するものであってもよい。 Furthermore, a vehicle speed estimation means 27 for estimating the vehicle speed of the vehicle equipped with the
The switching strength
車体速が大きいときはロードノイズが大きいことで、電動ブレーキ装置1の作動音によるNVHへの影響が相対的に小さく、ブレーキ力が制動距離に及ぼす影響が大きい。このため、車体速が大きくなる程、前記平滑切替における勾配を急峻にすることで、ブレーキ制御精度を向上することで、安全性を高めることができる。
When the vehicle speed is large, the road noise is large, so the influence of the operation noise of the electric brake device 1 on the NVH is relatively small, and the influence of the braking force on the braking distance is large. For this reason, the safety can be enhanced by improving the brake control accuracy by making the gradient in the smooth switching steeper as the vehicle speed becomes larger.
前記制御装置2は、前記摩擦材操作手段6による前記摩擦材9の操作量をブレーキ力指令値に追従するように制御するブレーキ力追従制御機能を有し、このブレーキ力追従制御機能は、前記状態量から定められた切替関数を演算し、前記切替関数の正負に応じて二値の操作量を導出し、前記切替関数の略零を制御目標とするスライディングモード制御であり、
前記切替強度判断機能部21は、前記切替関数の値に応じて基づいて前記二値の操作量を切替える際の、前記切替関数の値の変化に伴う前記平滑切替の勾配を決定する機能であってもよい。 Thecontrol device 2 has a braking force follow-up control function of controlling the operation amount of the friction material 9 by the friction material operating means 6 so as to follow a braking force command value, and the braking force follow-up control function Sliding mode control that calculates a switching function determined from state quantities, derives a binary manipulated variable according to the positive or negative of the switching function, and sets approximately zero of the switching function as a control target,
The switching strengthdetermination function unit 21 is a function of determining the gradient of the smooth switching accompanying the change of the value of the switching function when switching the operation amount of the binary based on the value of the switching function. May be
前記切替強度判断機能部21は、前記切替関数の値に応じて基づいて前記二値の操作量を切替える際の、前記切替関数の値の変化に伴う前記平滑切替の勾配を決定する機能であってもよい。 The
The switching strength
前記制御装置2は、前記電動モータ4の角速度を推定する角速度推定手段25と、前記摩擦材操作手段6による前記摩擦材9の操作量をブレーキ力指令値に追従するように制御するブレーキ力追従制御機能とを有し、このブレーキ力追従制御機能は、前記摩擦材9と前記ブレーキロータ8との接触力が増加する際の前記電動モータ4の操作量を決定する正効率作動制御演算器33と、前記接触力が減少する際の前記電動モータ4の操作量を決定する逆効率作動制御演算器34と、を含む二種以上の制御演算器による二値以上の操作量を、前記角速度推定手段25で推定された角速度に応じて切替える機能を有し、
前記切替強度判断機能部21は、前記角速度推定手段25で推定された角速度に応じて前記二値以上の操作量を切替える際の、前記角速度の変化に伴う平滑切替の勾配を決定する機能であってもよい。 Thecontrol device 2 controls an angular velocity estimating means 25 for estimating the angular velocity of the electric motor 4 and a braking force following control so that the operation amount of the friction material 9 by the friction material operating means 6 follows a braking force command value. A positive efficiency operation control calculator 33 having a control function, which determines the amount of operation of the electric motor 4 when the contact force between the friction material 9 and the brake rotor 8 increases. And the angular velocity estimation of the binary or more operation amount by two or more types of control operation units including the reverse efficiency operation control operation unit 34 that determines the operation amount of the electric motor 4 when the contact force decreases Has a switching function according to the angular velocity estimated by the means 25;
The switching strengthdetermination function unit 21 is a function of determining the gradient of the smooth switching according to the change of the angular velocity when switching the operation amount of the binary or more according to the angular velocity estimated by the angular velocity estimating means 25. May be
前記切替強度判断機能部21は、前記角速度推定手段25で推定された角速度に応じて前記二値以上の操作量を切替える際の、前記角速度の変化に伴う平滑切替の勾配を決定する機能であってもよい。 The
The switching strength
請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
Any combination of the at least two configurations disclosed in the claims and / or the description and / or the drawings is included in the present invention. In particular, any combination of two or more of the claims is included in the present invention.
この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係る電動ブレーキ装置を概略示す図である。
図1の電動ブレーキ装置の制御系のブロック図である。
図1の電動ブレーキ装置にて操作量を切替える一例を示す図である。
図1の電動ブレーキ装置にて操作量を切替える別の例を示す図である。
図1の電動ブレーキ装置において、アンチスキッド制御時か否かで平滑切替の勾配を変更する例を示すフローチャートである。
図1の電動ブレーキ装置において操作量を切替える制御構成の例を示すブロック図である。
この発明の第2の実施形態に係る電動ブレーキ装置の制御系のブロック図である。
図6の電動ブレーキ装置において、ブレーキ力またはブレーキ力指令値の変化度合に応じて、直線勾配θSWを調整する一例を示す図である。
図6の電動ブレーキ装置において、ブレーキ力またはブレーキ力指令値の変化度合に応じて、直線勾配θSWを調整する別の例を示す図である。
この発明の第3の実施形態に係る電動ブレーキ装置の制御系のブロック図である。
図8の電動ブレーキ装置において、推定車体速に応じて直線勾配θSWを調整する例を示す図である。
この発明の第4の実施形態に係る電動ブレーキ装置において、操作量を切替える制御構成の他の例を示すブロック図である。
The invention will be more clearly understood from the following description of the preferred embodiments with reference to the accompanying drawings. However, the embodiments and the drawings are for the purpose of illustration and description only and are not to be taken as limiting the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
It is a figure showing roughly the electric brake equipment concerning a 1st embodiment of this invention. It is a block diagram of the control system of the electric brake device of FIG. It is a figure which shows an example which switches the operation amount by the electrically-driven brake device of FIG. It is a figure which shows another example which switches the amount of operations by the electrically-driven brake device of FIG. FIG. 7 is a flow chart showing an example of changing the gradient of the smooth switching depending on whether or not anti-skid control is performed in the electric brake device of FIG. 1. It is a block diagram which shows the example of the control structure which switches the operation amount in the electrically-driven brake device of FIG. It is a block diagram of a control system of an electric brake device concerning a 2nd embodiment of this invention. FIG. 7 is a diagram showing an example of adjusting the linear gradient θ SW in the electric brake device of FIG. 6 according to the degree of change of the braking force or the braking force command value. FIG. 7 is a diagram showing another example of adjusting the linear gradient θ SW in the electric brake device of FIG. 6 according to the degree of change of the braking force or the braking force command value. It is a block diagram of a control system of an electric brake device concerning a 3rd embodiment of this invention. FIG. 9 is a diagram showing an example in which the linear gradient θ SW is adjusted according to the estimated vehicle speed in the electric brake device of FIG. 8. The electrically-driven brake device which concerns on the 4th Embodiment of this invention WHEREIN: It is a block diagram which shows the other example of the control structure which switches operation amount.
この発明の第1の実施形態に係る電動ブレーキ装置を図1ないし図5と共に説明する。この電動ブレーキ装置は例えば車両に搭載される。図1に示すように、この電動ブレーキ装置1は、電動式直動アクチュエータDAと、摩擦ブレーキBRとを備える。先ず、電動式直動アクチュエータDAおよび摩擦ブレーキBRの構造について説明する。
An electric brake system according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 5. The electric brake device is mounted on, for example, a vehicle. As shown in FIG. 1, the electric brake device 1 includes an electric linear actuator DA and a friction brake BR. First, the structures of the electric linear actuator DA and the friction brake BR will be described.
<電動式直動アクチュエータDAおよび摩擦ブレーキBRの構造>
図1および図2に示すように、電動式直動アクチュエータDAは、アクチュエータ本体AHと、後述する制御装置2とを備える。アクチュエータ本体AHは、電動モータ4と、減速機構5と、摩擦材操作手段である直動機構6と、パーキングブレーキ機構7と、角度センサSaと、荷重センサSbとを有する。 <Structure of electric linear actuator DA and friction brake BR>
As shown in FIGS. 1 and 2, the electric linear actuator DA includes an actuator body AH and acontrol device 2 described later. The actuator body AH has an electric motor 4, a reduction mechanism 5, a direct acting mechanism 6 as friction material operating means, a parking brake mechanism 7, an angle sensor Sa, and a load sensor Sb.
図1および図2に示すように、電動式直動アクチュエータDAは、アクチュエータ本体AHと、後述する制御装置2とを備える。アクチュエータ本体AHは、電動モータ4と、減速機構5と、摩擦材操作手段である直動機構6と、パーキングブレーキ機構7と、角度センサSaと、荷重センサSbとを有する。 <Structure of electric linear actuator DA and friction brake BR>
As shown in FIGS. 1 and 2, the electric linear actuator DA includes an actuator body AH and a
電動モータ4は、永久磁石式の同期電動機により構成すると省スペースで高トルクとなり好適であるが、例えば、ブラシを用いたDCモータ、または永久磁石を用いないリラクタンスモータ、あるいは誘導モータを適用することもできる。
The electric motor 4 is preferably a permanent magnet type synchronous motor and space saving and high torque is preferable. For example, a DC motor using a brush, or a reluctance motor not using a permanent magnet, or an induction motor should be applied. You can also.
摩擦ブレーキBRは、車両の車輪WLと連動して回転するブレーキロータ8と、このブレーキロータ8と接触して制動力を発生させる摩擦材9とを有する。この摩擦材9はブレーキロータ近傍に配置される。摩擦力によって制動力を発生させる機構は、摩擦材9を、アクチュエータ本体AHにより操作してブレーキロータ8に押圧してもよい。前記ブレーキロータ8および摩擦材9は、例えば、ブレーキディスクおよびキャリパを用いたディスクブレーキ装置であってもよく、あるいはドラムおよびライニングを用いたドラムブレーキ装置であってもよい。
The friction brake BR includes a brake rotor 8 that rotates in conjunction with a wheel WL of the vehicle, and a friction member 9 that contacts the brake rotor 8 to generate a braking force. The friction material 9 is disposed near the brake rotor. The mechanism that generates the braking force by the frictional force may press the friction material 9 against the brake rotor 8 by operating the actuator body AH. The brake rotor 8 and the friction member 9 may be, for example, a disk brake device using a brake disk and a caliper, or may be a drum brake device using a drum and a lining.
減速機構5は、電動モータ4の回転を減速する機構であり、一次歯車12、中間歯車13、および三次歯車11を含む。この例では、減速機構5は、電動モータ4のロータ軸4aに取り付けられた一次歯車12の回転を、中間歯車13により減速して、回転軸10の端部に固定された三次歯車11に伝達可能としている。これら歯車11,12および13は、両方向に回転可能である。
The reduction mechanism 5 is a mechanism that reduces the rotation of the electric motor 4 and includes a primary gear 12, an intermediate gear 13, and a tertiary gear 11. In this example, the reduction mechanism 5 reduces the rotation of the primary gear 12 attached to the rotor shaft 4 a of the electric motor 4 by the intermediate gear 13 and transmits it to the tertiary gear 11 fixed to the end of the rotating shaft 10 It is possible. The gears 11, 12 and 13 are rotatable in both directions.
直動機構6は、減速機構5で出力される回転運動を送りねじ機構により直動部14の直線運動に変換して、ブレーキロータ8に対して摩擦材9を当接または離隔させる機構である。直動部14は、回り止めされ且つ軸方向A1に移動自在に支持されている。直動部14のアウトボード側端に摩擦材9が設けられる。電動モータ4の回転を減速機構5を介して直動機構6に伝達することで、回転運動が直線運動に変換され、それが摩擦材9の押圧力に変換されることによりブレーキ力を発生させる。なお、電動ブレーキ装置1を車両に搭載した状態で、車両の車幅方向外側をアウトボード側といい、車両の車幅方向中央側をインボード側という。
The linear motion mechanism 6 is a mechanism that converts the rotational motion output from the speed reduction mechanism 5 into linear motion of the linear motion portion 14 by the feed screw mechanism and causes the friction material 9 to abut or separate from the brake rotor 8. . The linear movement portion 14 is detentated and supported movably in the axial direction A1. A friction material 9 is provided at the outboard side end of the linear movement portion 14. By transmitting the rotation of the electric motor 4 to the linear motion mechanism 6 through the reduction mechanism 5, the rotational motion is converted into a linear motion, which is converted into the pressing force of the friction material 9 to generate a braking force. . When the electric brake device 1 is mounted on a vehicle, the outer side in the vehicle width direction of the vehicle is referred to as the outboard side, and the central side in the vehicle width direction of the vehicle is referred to as the inboard side.
パーキングブレーキ機構7のパーキングブレーキ用アクチュエータ16として、例えば、リニアソレノイドが適用される。パーキングブレーキ用アクチュエータ16によりロック部材15を進出させて中間歯車13に形成された係止孔(図示せず)に嵌まり込ませることで係止し、中間歯車13の回転を禁止することで、パーキングロック状態にする。ロック部材15を前記係止孔から離脱させることで中間歯車13の回転を許容し、アンロック状態にする。
As the parking brake actuator 16 of the parking brake mechanism 7, for example, a linear solenoid is applied. The locking member 15 is advanced by the parking brake actuator 16 and fitted into a locking hole (not shown) formed in the intermediate gear 13 for locking, thereby inhibiting the rotation of the intermediate gear 13, Set the parking lock. By disengaging the lock member 15 from the locking hole, the rotation of the intermediate gear 13 is allowed to be in the unlocked state.
図2に示すように、角度センサSaは、電動モータ4の回転の角度を推定する。角度センサSaは、例えば、レゾルバまたは磁気エンコーダ等を用いると高性能かつ信頼性が高く好適であるが、光学式のエンコーダ等の各種センサを適用することもできる。前記角度センサSaを用いずに、例えば、後述する制御装置2において、電動モータ4の電圧と電流との関係等からモータ角度を推定するような角度センサレス推定を用いることもできる。
As shown in FIG. 2, the angle sensor Sa estimates the angle of rotation of the electric motor 4. As the angle sensor Sa, for example, using a resolver or a magnetic encoder is preferable because of high performance and reliability, but various sensors such as an optical encoder can also be applied. Instead of using the angle sensor Sa, for example, it is possible to use angle sensorless estimation in which the motor angle is estimated from the relationship between the voltage and the current of the electric motor 4 or the like in the control device 2 described later.
荷重センサSbは、ブレーキ力を推定するブレーキ力推定手段であり、ブレーキ力を制御する際に用いられる。荷重センサSbは、例えば、直動機構6の荷重が作用する所定部位の変位または変形を検出する磁気センサ、歪センサ、圧力センサ等を用いることができる。前記荷重センサSbを用いずに、制御装置2において、モータ角度および電動ブレーキ装置剛性、あるいはモータ電流および電動式直動アクチュエータDAの効率等から、荷重センサレス推定を行ってもよい。また、サーミスタ等の各種センサ類を要件に応じて別途設けてもよい。
The load sensor Sb is a braking force estimation means for estimating the braking force, and is used when controlling the braking force. As the load sensor Sb, for example, a magnetic sensor, a strain sensor, a pressure sensor or the like that detects a displacement or a deformation of a predetermined portion to which the load of the linear motion mechanism 6 acts can be used. Instead of using the load sensor Sb, the control device 2 may perform load sensorless estimation from the motor angle and the electric brake device stiffness, or the motor current and the efficiency of the electric linear actuator DA. Also, various sensors such as a thermistor may be separately provided according to the requirements.
この車両には、各車輪WLの回転速度(車輪速)を検出する車輪速センサScが設けられている。車輪速センサScは、例えば、車輪WLの一回転中に所定回数のパルスが出力する車輪速センサを用いると、安価なシステムを構成できて好ましい。あるいは、電動モータ4の回転角度を検出する角度センサSaのような、角度を検出するセンサを用いることもできる。
The vehicle is provided with a wheel speed sensor Sc that detects the rotational speed (wheel speed) of each wheel WL. The wheel speed sensor Sc is preferable because, for example, an inexpensive system can be configured by using a wheel speed sensor that outputs a predetermined number of pulses during one rotation of the wheel WL. Alternatively, a sensor that detects an angle, such as an angle sensor Sa that detects the rotation angle of the electric motor 4 can be used.
<制御装置2について>
図2は、この電動ブレーキ装置1の制御系のブロック図である。
例えば、各車輪WLに対応する制御装置2およびアクチュエータ本体AHが設けられている。各制御装置2は、対応する電動モータ4を制御する。各制御装置2に、電源装置3と、各制御装置2の上位制御手段(図示せず)とが接続されている。電源装置3は、各電動モータ4および各制御装置2のモータドライバ17に電力を供給する。前記上位制御手段として、例えば、車両全般を制御する電気制御ユニットが適用される。また前記上位制御手段は、各制御装置2の統合制御機能を有する。前記上位制御手段は、例えば、ブレーキペダル等の指令手段18から、各制御装置2にブレーキ力指令値をそれぞれ出力する。 <About controldevice 2>
FIG. 2 is a block diagram of a control system of theelectric brake device 1.
For example, thecontrol device 2 and the actuator body AH corresponding to each wheel WL are provided. Each control device 2 controls the corresponding electric motor 4. The power supply device 3 and the upper control means (not shown) of each control device 2 are connected to each control device 2. The power supply device 3 supplies power to the respective electric motors 4 and the motor drivers 17 of the respective control devices 2. As the upper control means, for example, an electric control unit that controls the whole vehicle is applied. The upper control means has an integrated control function of each control device 2. The upper control means outputs a braking force command value to each control device 2 from the command means 18 such as a brake pedal, for example.
図2は、この電動ブレーキ装置1の制御系のブロック図である。
例えば、各車輪WLに対応する制御装置2およびアクチュエータ本体AHが設けられている。各制御装置2は、対応する電動モータ4を制御する。各制御装置2に、電源装置3と、各制御装置2の上位制御手段(図示せず)とが接続されている。電源装置3は、各電動モータ4および各制御装置2のモータドライバ17に電力を供給する。前記上位制御手段として、例えば、車両全般を制御する電気制御ユニットが適用される。また前記上位制御手段は、各制御装置2の統合制御機能を有する。前記上位制御手段は、例えば、ブレーキペダル等の指令手段18から、各制御装置2にブレーキ力指令値をそれぞれ出力する。 <About control
FIG. 2 is a block diagram of a control system of the
For example, the
各制御装置2は、制御演算を行う各種制御機能部と、モータドライバ17とを備える。前記各種制御機能部は、ブレーキ指令値生成機能部19と、制御演算機能部20と、切替強度判断機能部21と、車輪運動推定手段22と、車輪速推定機能部23とを有する。車輪運動推定手段22は、荷重推定機能部24と、モータ運動推定機能部25とを有する。荷重推定機能部24は、荷重センサSbの出力等から、直動機構6の軸方向荷重(推定ブレーキ力)を推定する機能を有する。前記荷重センサレス推定を行う場合、荷重推定機能部24は、モータ角度またはモータ電流等の情報を用いて直動機構6の軸方向荷重を推定してもよい。
Each control device 2 includes various control function units that perform control calculations, and a motor driver 17. The various control function units have a brake command value generation function unit 19, a control calculation function unit 20, a switching strength determination function unit 21, a wheel motion estimation means 22, and a wheel speed estimation function unit 23. The wheel motion estimation means 22 has a load estimation function unit 24 and a motor motion estimation function unit 25. The load estimation function unit 24 has a function of estimating the axial load (estimated braking force) of the linear motion mechanism 6 from the output of the load sensor Sb and the like. When the load sensorless estimation is performed, the load estimation function unit 24 may estimate the axial load of the linear motion mechanism 6 using information such as a motor angle or a motor current.
モータ運動推定機能部25は、角度センサSaの出力等から、電動モータ4の回転運動状態を推定する機能を有する。例えば、角度センサSaとしてレゾルバまたは磁気エンコーダのような所定の角度領域を一周期として検出するセンサを用いる場合、モータ運動推定機能部25は、前記角度センサSaの出力から電動モータ4の回転子の位相を推定し、この回転子の位相における変動量の積算値を総回転角度(位置)として推定してもよい。また、前記位相ないし位置の微分相当値を角速度として推定してもよい。あるいは、例えば、前述の角度センサレス推定を行う場合、モータ運動推定機能部25は、モータ電圧およびモータ電流から、前記回転子の位相または角速度等を推定してもよい。
The motor motion estimation function unit 25 has a function of estimating the rotational motion state of the electric motor 4 from the output of the angle sensor Sa or the like. For example, when using a sensor that detects a predetermined angle area as one cycle, such as a resolver or a magnetic encoder, as the angle sensor Sa, the motor motion estimation function unit 25 determines the output of the angle sensor Sa from the rotor of the electric motor 4 The phase may be estimated, and the integrated value of the variation in the rotor phase may be estimated as the total rotation angle (position). Further, a differential equivalent value of the phase or position may be estimated as an angular velocity. Alternatively, for example, in the case of performing the above-described angle sensorless estimation, the motor motion estimation function unit 25 may estimate the phase or angular velocity or the like of the rotor from the motor voltage and the motor current.
車輪速推定機能部23は、例えば、車輪WLの一回転中に所定回数のパルスが出力される車輪速センサScの出力から、一パルスが出力される時間周期、または所定時間内に出力されるパルス数をカウントし、所定の変換式に基づいて車輪速を推定する機能であってもよい。前記いずれかの方法であってもよく、車輪速推定機能部23は、例えば、所定の推定角速度を閾値として前記の手法を切替える推定方法であってもよい。その他、車輪速推定機能部23は、例えば、モータ角度センサのような角度を検出するセンサを用いる場合、前記角度の微分等により角速度を推定することもできる。
The wheel speed estimation function unit 23 is output, for example, within a time period in which one pulse is output, or within a predetermined time, from an output of the wheel speed sensor Sc which outputs a predetermined number of pulses during one rotation of the wheel WL. The number of pulses may be counted, and the wheel speed may be estimated based on a predetermined conversion formula. The wheel speed estimation function unit 23 may be, for example, an estimation method in which the method is switched using a predetermined estimated angular velocity as a threshold. In addition, when using a sensor that detects an angle, such as a motor angle sensor, for example, the wheel speed estimation function unit 23 can also estimate the angular velocity by differentiation of the angle or the like.
ブレーキ指令値生成機能部19は、サービスブレーキ指令演算部19aと、アンチスキッド指令演算部19bとを備える。サービスブレーキ指令演算部19aは、例えば、ブレーキペダル等の指令手段18に基づいて、通常のサービスブレーキに要求されているブレーキ力を推定し、ブレーキ力指令値とする。ブレーキ力指令値は、制御演算機能部20のブレーキ制御機能部26に与えられる。
The brake command value generation function unit 19 includes a service brake command calculation unit 19a and an antiskid command calculation unit 19b. The service brake command computation unit 19a estimates the braking force required for the normal service brake based on the command means 18 such as a brake pedal, for example, and uses it as a braking force command value. The brake force command value is given to the brake control function unit 26 of the control calculation function unit 20.
アンチスキッド指令演算部19bは、例えば、車体速推定手段27で推定される車体速および車輪速推定機能部23で推定される車輪速(推定値)に基づいて、車輪WLの路面に対する滑り度合(スリップ率等)を推定し、推定された滑り度合が閾値を超過したときに前記車輪WLの滑る量を抑制するように、指令手段18によらずブレーキ力指令値を演算することで、アンチスキッド制御を実行する。サービスブレーキ指令演算部19aによる演算を行っているか、アンチスキッド指令演算部19bによる演算を行っているかの情報は、切替強度判断機能部21に与えられる。
The anti-skid command calculation unit 19b, for example, calculates the degree of slip of the wheel WL relative to the road surface based on the vehicle speed estimated by the vehicle speed estimation means 27 and the wheel speed (estimated value) estimated Anti-skid by calculating the braking force command value without using the command means 18 so as to estimate the slip ratio etc. and to suppress the amount of slippage of the wheel WL when the estimated slippage degree exceeds the threshold value Execute control. Information on whether the service brake command calculation unit 19a performs the calculation or the antiskid command calculation unit 19b performs the calculation is given to the switching strength determination function unit 21.
前記車体速推定手段27は、例えば、加速度推定手段28で推定される車両の前後加速度、および、一般に複数備えられる各車輪の推定車輪速等から、車体速を推定してもよい。車体速推定手段27は、その他の図示外の要素としてGPS等を用いるかまたは併用する手段としてもよい。また、さらに図示外の要素として、例えば、横滑り防止制御等の車両運動に基づくブレーキ制御手段を別途この制御装置2に設けることもできる。
The vehicle speed estimation means 27 may estimate the vehicle speed from, for example, the longitudinal acceleration of the vehicle estimated by the acceleration estimation means 28, and the estimated wheel speeds of each of the generally provided wheels. The vehicle speed estimation means 27 may use GPS or the like as an element not shown in the drawings or may be used in combination. Furthermore, as an element not shown, for example, brake control means based on vehicle motion such as anti-slip control may be separately provided in the control device 2.
制御演算機能部20は、モータ角度およびこのモータ角度の所定階微分値に対応する値のいずれかを含む物理量である状態量に基づいて、互いに異なる複数の操作量を切替える機能を有する。この制御演算機能部20は、ブレーキ制御機能部26と、操作量切替機能部29とを備える。ブレーキ制御機能部26は、指令手段18からの要求されるブレーキ力指令値に対して、推定ブレーキ力が追従するよう電動モータ4を制御する。
The control calculation function unit 20 has a function of switching a plurality of mutually different operation amounts based on a state amount which is a physical amount including any of a motor angle and a value corresponding to a predetermined differential value of the motor angle. The control calculation function unit 20 includes a brake control function unit 26 and an operation amount switching function unit 29. The brake control function unit 26 controls the electric motor 4 so that the estimated braking force follows the braking force command value requested from the command means 18.
このブレーキ制御機能部26による制御演算は、例えば、ブレーキ力指令値および推定ブレーキ力を直接用いるフィードバック制御を用いてもよく、ブレーキ力を角度等の他の物理量に変換して制御演算を行ってもよい。前記フィードバック制御は、例えば、ブレーキ力制御ループ内にモータ電流制御ループを設けるように、複数のマイナーフィードバックループを設ける演算構造としてもよく、単一のフィードバックループにてモータ操作量を演算する構造としてもよい。その他、あるいはフィードフォワード制御等を用いるか、またはフィードフォワード制御等を適宜併用することもできる。
The control calculation by the brake control function unit 26 may use, for example, feedback control that directly uses the brake force command value and the estimated brake force, converts the brake force into another physical quantity such as an angle, and performs the control calculation. It is also good. The feedback control may be, for example, a calculation structure in which a plurality of minor feedback loops are provided so as to provide a motor current control loop in a braking force control loop, and a structure for calculating motor operation amount in a single feedback loop. It is also good. Alternatively, feed forward control may be used, or feed forward control may be used in combination.
ブレーキ制御機能部26は、所定の状態量に対して複数の操作量を演算する操作量演算部261,262,…と、前記所定の状態量に従って操作量を前記複数の操作量の間で切替えるためのパラメータとなる切替用パラメータの値を演算する切替制御部30とを備える。
The brake control function unit 26 calculates operation amounts for the plurality of operation amounts according to the predetermined state amount, and operation amount calculation portions 26 1 , 26 2 ,... And a switching control unit 30 for calculating a value of a switching parameter which is a parameter for switching in
操作量切替機能部29は、ブレーキ制御機能部26により演算された複数の操作量および切替制御信号に基づいて、電動ブレーキ操作量として前記複数の操作量のいずれかに切替えて出力する機能を有する。このとき操作量切替機能部29は、前記複数の操作量の切替において、前記切替用パラメータにおける所定の閾値を境界として、例えば操作量「1」から操作量「2」に置き換わるような不連続な切替動作を行う機能と、前記切替用パラメータの所定範囲において、切替用パラメータの値の推移に伴って連続的に操作量「1」から操作量「2」へと変更されるような、連続的な平滑切替の動作を行う機能とを備える。
The operation amount switching function unit 29 has a function of switching and outputting any one of the plurality of operation amounts as an electric brake operation amount based on the plurality of operation amounts and the switching control signal calculated by the brake control function unit 26. . At this time, the operation amount switching function unit 29 is discontinuous such that, for example, the operation amount “1” is replaced with the operation amount “2” with the predetermined threshold in the switching parameter as a boundary in switching the plurality of operation amounts. The function to perform switching operation and the continuous change of the operation amount “1” to the operation amount “2” continuously with the transition of the value of the switching parameter in the predetermined range of the switching parameter And a function to perform smooth switching operation.
切替強度判断機能部21は、この例では、アンチスキッド制御の実行の有無に基づいて、操作量切替機能部29における操作量の切替えに必要な切替の急峻さを判断し、前記操作量切替機能部29における切替処理を調整する。一般に、アンチスキッド制御時において、ブレーキ制御精度は極めて重要であるのに対し、NVHの重要性は極めて乏しい場合が多い。
In this example, the switching strength judgment function unit 21 judges the steepness of switching necessary for switching the operation amount in the operation amount switching function unit 29 based on the presence or absence of execution of the antiskid control, and the operation amount switching function The switching process in the unit 29 is adjusted. In general, in anti-skid control, while the brake control accuracy is extremely important, the importance of the NVH is often extremely poor.
このため、切替強度判断機能部21は、アンチスキッド制御時において制御精度を最大限に重視した急峻さを持つ切替処理とすることができる。切替強度判断機能部21における切替の急峻さの判断は、主に、ブレーキ力制御精度の必要性およびNVHの観点によるものであり、制御精度を重視する程切替処理を急峻にし、NVHを重視する程切替処理を緩慢にすることができる。
For this reason, the switching strength determination function unit 21 can perform switching processing having a steepness with emphasis placed on control accuracy at the time of anti-skid control. The judgment of the abruptness of the switching in the switching strength judgment function unit 21 is mainly based on the necessity of the braking force control accuracy and the viewpoint of the NVH, and the switching processing is made steeper as the control accuracy is emphasized and the NVH is emphasized. The switching process can be made slower.
モータドライバ17は、例えば、電界効果トランジスタ(Field effect transistor;略称FET)等のスイッチ素子を用いたハーフブリッジ回路を構成し、所定のデューティ比によりモータ印加電圧を決定するPWM制御を行う構成とすると安価で高性能となり好適である。あるいは、モータドライバ17は、例えば、変圧回路等を設け、PAM制御を行う構成とすることもできる。
For example, the motor driver 17 constitutes a half bridge circuit using switching elements such as field effect transistors (abbreviated as FET), and performs PWM control to determine a motor applied voltage with a predetermined duty ratio. It is preferable because it is inexpensive and has high performance. Alternatively, the motor driver 17 can be configured to perform PAM control, for example, by providing a transformer circuit or the like.
その他、図示外の電流センサ等を必要に応じて適宜設けることができる。また、本図2の各機能ブロックは、機能を説明する上で便宜上設けているものであり、必要に応じて統合・分割してもよく、あるいは所定機能を適宜省略する等してもよい。
In addition, a current sensor or the like (not shown) can be appropriately provided as needed. Further, each functional block in FIG. 2 is provided for convenience in describing the function, and may be integrated and divided as necessary, or a predetermined function may be omitted as appropriate.
<操作量の切替動作の例>
図3Aおよび3Bは、この電動ブレーキ装置にて操作量を切替える例を示す図である。以下、図2も参照しつつ説明する。図3Aでは、制御演算機能部20(図2)が、所定の切替用パラメータにおける切替閾値近傍において、二値の操作量(操作量1,操作量2)を線形な平滑関数Fcを介して切替える例を示す。同図3Aおよび3Bの横軸の切替用パラメータは、例えば、電動モータ4の角速度等の状態量、この状態量を所定の固有値に変換したダイナミクス等である。図3A中の直線勾配θSWを切替の急峻さを表すパラメータとすることができる。切替強度判断機能部21(図2)は、所定の切替用パラメータに対して前記直線勾配θSWを変更し得る。 <Example of switching operation of operation amount>
FIGS. 3A and 3B are diagrams showing an example of switching the operation amount by this electric brake device. Hereinafter, it demonstrates, also referring FIG. In FIG. 3A, the control arithmetic function unit 20 (FIG. 2) switches the binary operation amount (operation amount 1, operation amount 2) via the linear smoothing function Fc in the vicinity of the switching threshold in the predetermined switching parameter. An example is shown. The switching parameters for the horizontal axes in FIGS. 3A and 3B are, for example, state quantities such as the angular velocity of the electric motor 4, dynamics obtained by converting the state quantities into a predetermined characteristic value, and the like. The linear gradient θ SW in FIG. 3A can be used as a parameter representing the steepness of switching. The switching strength determination function unit 21 (FIG. 2) can change the linear gradient θ SW with respect to a predetermined switching parameter.
図3Aおよび3Bは、この電動ブレーキ装置にて操作量を切替える例を示す図である。以下、図2も参照しつつ説明する。図3Aでは、制御演算機能部20(図2)が、所定の切替用パラメータにおける切替閾値近傍において、二値の操作量(操作量1,操作量2)を線形な平滑関数Fcを介して切替える例を示す。同図3Aおよび3Bの横軸の切替用パラメータは、例えば、電動モータ4の角速度等の状態量、この状態量を所定の固有値に変換したダイナミクス等である。図3A中の直線勾配θSWを切替の急峻さを表すパラメータとすることができる。切替強度判断機能部21(図2)は、所定の切替用パラメータに対して前記直線勾配θSWを変更し得る。 <Example of switching operation of operation amount>
FIGS. 3A and 3B are diagrams showing an example of switching the operation amount by this electric brake device. Hereinafter, it demonstrates, also referring FIG. In FIG. 3A, the control arithmetic function unit 20 (FIG. 2) switches the binary operation amount (
図3Bは、図3Aの例に対して、二値の操作量(操作量1,操作量2)を曲線状の平滑関数Fcを介して切替える例を示す。前記曲線状の平滑関数Fcは、例えば、三角関数等を用いて規定されていてもよく、例えば、切替開始から終了までの幅xswを切替の急峻さを表すパラメータとすることができる。あるいは、図3Aのように、切替閾値近傍の勾配θSWに相当する値を切替の急峻さを表すパラメータとしてもよい。逆に、図3Aの平滑関数Fcにおいて、切替開始から終了までの幅xswに相当する値を切替の急峻さを表すパラメータとしてもよい。切替強度判断機能部21(図2)は、所定の切替用パラメータに対して幅xswを変更し得る。
FIG. 3B shows an example of switching the binary operation amount (operation amount 1, operation amount 2) via the curved smoothing function Fc with respect to the example of FIG. 3A. The curved smoothing function Fc may be defined using, for example, a trigonometric function or the like. For example, the width xsw from the switching start to the end can be used as a parameter indicating the steepness of switching. Alternatively, as shown in FIG. 3A, a value corresponding to the gradient θ SW near the switching threshold may be used as a parameter indicating the steepness of switching. Conversely, in the smoothing function Fc of FIG. 3A, a value corresponding to the width xsw from the switching start to the end may be used as a parameter indicating the steepness of switching. The switching strength determination function unit 21 (FIG. 2) can change the width xsw with respect to a predetermined switching parameter.
図4は、この電動ブレーキ装置において、アンチスキッド制御中か否かで平滑関数の勾配θSWを変更する例を示すフローチャートである。本処理開始後、切替強度判断機能部21(図2)は、ブレーキ指令値生成機能部19からのブレーキ制御モードの情報により、アンチスキッド制御を実行中か否かを判断する(ステップS1)。アンチスキッド制御中であるとの判断で(ステップS1:yes)、切替強度判断機能部21(図2)は、アンチスキッド制御中ではないときよりも平滑関数の勾配θSWを大きくする(ステップS2)。その後本処理を終了する。アンチスキッド制御中ではないとの判断で(ステップS1:no)、切替強度判断機能部21(図2)は、アンチスキッド制御中のときよりも勾配θSWを小さくする(ステップS3)。その後本処理を終了する。
FIG. 4 is a flow chart showing an example of changing the gradient θ SW of the smoothing function depending on whether or not anti-skid control is in progress in this electric brake system. After the start of this process, the switching strength determination function unit 21 (FIG. 2) determines whether anti-skid control is being performed based on the information of the brake control mode from the brake command value generation function unit 19 (step S1). In the judgment that anti-skid control is being performed (step S1: yes), the switching strength judgment function unit 21 (FIG. 2) makes the gradient θ SW of the smoothing function larger than when anti-skid control is not being performed (step S2). ). Thereafter, the process ends. If it is determined that anti-skid control is not being performed (step S1: no), the switching strength determination function unit 21 (FIG. 2) makes the gradient θ SW smaller than during anti-skid control (step S3). Thereafter, the process ends.
<操作量を切替える制御構成の例>
図5は、操作量を切替える制御系の構成例を示すブロック図である。この構成例では、可変切替構造系として、モータ角度等から成る状態量から所定のダイナミクスを有する切替関数を演算し、切替関数に応じて非線形入力を演算し、実際の応答を切替関数のダイナミクスに拘束する、スライディングモード制御を適用する例を示す。 <Example of control configuration for switching the operation amount>
FIG. 5 is a block diagram showing an example of the configuration of a control system that switches the operation amount. In this configuration example, as a variable switching structure system, a switching function having a predetermined dynamics is calculated from a state quantity including motor angle etc., a nonlinear input is calculated according to the switching function, and an actual response is converted to the dynamics of the switching function. The example which applies sliding mode control which constrains is shown.
図5は、操作量を切替える制御系の構成例を示すブロック図である。この構成例では、可変切替構造系として、モータ角度等から成る状態量から所定のダイナミクスを有する切替関数を演算し、切替関数に応じて非線形入力を演算し、実際の応答を切替関数のダイナミクスに拘束する、スライディングモード制御を適用する例を示す。 <Example of control configuration for switching the operation amount>
FIG. 5 is a block diagram showing an example of the configuration of a control system that switches the operation amount. In this configuration example, as a variable switching structure system, a switching function having a predetermined dynamics is calculated from a state quantity including motor angle etc., a nonlinear input is calculated according to the switching function, and an actual response is converted to the dynamics of the switching function. The example which applies sliding mode control which constrains is shown.
車輪運動推定手段22に相当する状態推定器は、例えば、線形状態オブザーバまたはVSSオブザーバ等により構成することができる。この状態推定器によって求められる状態量xは、例えば、モータ角度、角速度(モータ角度の一回微分値)、角加速度(モータ角度の二回微分値)等の運動方程式を形成する状態量とすることができる。また、ブレーキ力の追従制御を達成するために、所定の指令値と状態量との偏差、または偏差の積分(積算)値を含むこともできる。
The state estimator corresponding to the wheel motion estimation means 22 can be configured by, for example, a linear state observer or a VSS observer. The state quantity x determined by the state estimator is, for example, a state quantity forming an equation of motion such as motor angle, angular velocity (one-time derivative value of motor angle), angular acceleration (two-time derivative value of motor angle) be able to. In addition, in order to achieve follow-up control of the braking force, a deviation between a predetermined command value and a state quantity, or an integration (integration) value of the deviation can be included.
制御演算機能部20における切替関数演算器31では、状態推定器22から与えられる前記状態量xに対して、切替関数σが所望の応答ダイナクミクスを有するσ=Sxとして演算される。前記Sは、切替関数σが状態量xに対して所望のダイナミクスとなるための係数であり、例えば、極配置または最適レギュレータ等により求めることができる。
The switching function calculator 31 in the control calculation function unit 20 calculates the switching function σ as σ = Sx having desired response dynamics with respect to the state quantity x supplied from the state estimator 22. The above S is a coefficient for causing the switching function σ to have a desired dynamics with respect to the state quantity x, and can be obtained by, for example, pole arrangement or an optimal regulator.
制御演算機能部20(ブレーキ力追従制御機能部)における非線形入力演算器32は、主に外乱またはモデル誤差の補償を目的とした機能であり、切替関数σの符号に応じて所定の操作量+u,-uを切替え、状態量をσ≒0に拘束せしめる制御入力を生成する。このとき、非線形入力演算器32は、切替強度判断機能部21により切替を急峻にする程状態量のσ=0への拘束力が強まり、反面、チャタリングが発生する。換言すれば、非線形入力の切替が急峻である程制御精度に有利となり、NVHおよび消費電力に不利となる。切替強度判断機能部21は、定められた切替用パラメータに基づいて、非線形制御入力の切替の急峻さを決定する。
The non-linear input computing unit 32 in the control operation function unit 20 (brake force follow-up control function unit) is a function mainly intended to compensate for disturbance or model error, and a predetermined operation amount + u according to the sign of the switching function σ. , -U, and generates a control input that constrains the state quantity to σ00. At this time, as the switching strength determination function unit 21 makes the switching steeper in the non-linear input computing unit 32, the constraining force to the state quantity σ = 0 becomes stronger, and chattering occurs. In other words, the steeper the switching of the non-linear input, the more advantageous for control accuracy, and the more disadvantageous for NVH and power consumption. The switching strength determination function unit 21 determines the steepness of switching of the non-linear control input based on the determined switching parameter.
<作用効果>
以上説明した電動ブレーキ装置1によれば、切替強度判断機能部21は、アンチスキッド制御の実行の有無に基づいて、操作量切替機能部29における操作量の切替えに必要な切替の急峻さを判断し、操作量切替機能部29における切替処理を調整する。一般に、アンチスキッド制御時におけるブレーキ制御精度は極めて重要であるのに対し、アンチスキッド制御時におけるNVHの重要性は極めて乏しい場合が多い。このため、切替強度判断機能部21は、アンチスキッド制御時において制御精度を最大限に重視した急峻さを持つ切替処理とすることができる。したがって、NVHと制御精度の両立を図れる。 <Function effect>
According to theelectric brake device 1 described above, the switching strength determination function unit 21 determines the abruptness of switching necessary for switching the operation amount in the operation amount switching function unit 29 based on the presence or absence of execution of the antiskid control. Then, the switching process in the operation amount switching function unit 29 is adjusted. In general, the brake control accuracy at the time of anti-skid control is extremely important, while the importance of the NVH at the time of anti-skid control is often extremely poor. For this reason, the switching strength determination function unit 21 can perform switching processing having a steepness with emphasis placed on control accuracy at the time of anti-skid control. Therefore, both NVH and control accuracy can be achieved.
以上説明した電動ブレーキ装置1によれば、切替強度判断機能部21は、アンチスキッド制御の実行の有無に基づいて、操作量切替機能部29における操作量の切替えに必要な切替の急峻さを判断し、操作量切替機能部29における切替処理を調整する。一般に、アンチスキッド制御時におけるブレーキ制御精度は極めて重要であるのに対し、アンチスキッド制御時におけるNVHの重要性は極めて乏しい場合が多い。このため、切替強度判断機能部21は、アンチスキッド制御時において制御精度を最大限に重視した急峻さを持つ切替処理とすることができる。したがって、NVHと制御精度の両立を図れる。 <Function effect>
According to the
<他の実施形態について>
以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。 <Other Embodiments>
In the following description, the portions corresponding to the items described in advance in each embodiment are denoted by the same reference numerals, and the redundant description will be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding embodiment unless otherwise stated. The same function and effect are exhibited from the same configuration. Not only the combination of the portions specifically described in the embodiments but also the embodiments may be partially combined if any problem does not occur in the combination.
以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。 <Other Embodiments>
In the following description, the portions corresponding to the items described in advance in each embodiment are denoted by the same reference numerals, and the redundant description will be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding embodiment unless otherwise stated. The same function and effect are exhibited from the same configuration. Not only the combination of the portions specifically described in the embodiments but also the embodiments may be partially combined if any problem does not occur in the combination.
図6に示すように、切替強度判断機能部21は、ブレーキ力指令値および推定ブレーキ力のいずれか一方または両方に基づいて、切替強度を判断する、第2の実施形態を示す。一般に軽いブレーキ操作の場合において比較的大きな電動ブレーキ装置1の作動音が発生し易く、チャタリングが発生するとNVHの悪化に繋がる。逆にブレーキ力が大きくなる程、アクチュエータ本体AHにおける機械結合部への与圧によりNVHが悪化し難い。このため、切替強度判断機能部21は、ブレーキ力指令値および推定ブレーキ力のいずれか一方または両方が小さくなる程切替を緩慢にし、ブレーキ力指令値および推定ブレーキ力のいずれか一方または両方が大きくなる程切替を急峻にすることができる(図7Aの左部分)。
As shown in FIG. 6, the switching strength determination function unit 21 shows a second embodiment in which the switching strength is determined based on one or both of the braking force command value and the estimated braking force. Generally, in the case of light brake operation, relatively large operation noise of the electric brake device 1 is easily generated, and chattering leads to deterioration of the NVH. On the other hand, as the braking force increases, NVH is less likely to deteriorate due to the pressure applied to the mechanical connection in the actuator body AH. For this reason, the switching strength determination function unit 21 makes switching slower as one or both of the braking force command value and the estimated braking force become smaller, and one or both of the braking force command value and the estimated braking force become larger. The switching can be made steeper (left part of FIG. 7A).
さらにブレーキ力が大きくなると比較的高Gでの減速となり制御精度がフィーリングに影響し難くなる。このため、切替強度判断機能部21は、ブレーキ力指令値が定められた値より大きい条件において、ブレーキ力指令値が大きくなる程切替を緩慢にする処理としてもよい(図7Aの右部分)。
Further, when the braking force is increased, the vehicle is decelerated at a relatively high G, and the control accuracy hardly affects the feeling. Therefore, the switching strength determination function unit 21 may perform processing to make switching slower as the braking force command value becomes larger under the condition that the braking force command value is larger than the predetermined value (right part in FIG. 7A).
図7Aは、図6に示す、ブレーキ力に応じて平滑関数の急峻さを調整する例を示す。図7A横軸のブレーキ力は、ブレーキ力指令値を用いてもよく、実際の推定ブレーキ力を用いてもよい。
FIG. 7A shows an example shown in FIG. 6 in which the steepness of the smoothing function is adjusted according to the braking force. The braking force on the horizontal axis in FIG. 7A may use a braking force command value or may use an actual estimated braking force.
図7Bは、図6に示す、ブレーキ力指令値の変化度合に応じて平滑関数の急峻さを調整する例を示す。ブレーキ力指令値の変化度合(微分値等)が緩やかである程、車両の操縦者がブレーキ力の変化度合に対して敏感であると考えられる。逆に、ブレーキ力指令値の変化度合が急峻である程、操縦者がブレーキ力の変化度合に対して鈍感となり得る。
FIG. 7B shows an example in which the steepness of the smoothing function is adjusted in accordance with the degree of change of the braking force command value shown in FIG. It is considered that the driver of the vehicle is more sensitive to the degree of change in the braking force as the degree of change (differentiated value or the like) of the braking force command value is slower. Conversely, the steeper the degree of change in the braking force command value, the less likely the driver is to the degree of change in the braking force.
そのため、図6および図7Bに示すように、切替強度判断機能部21は、ブレーキ力指令値の変化度合が小さくなる程平滑関数の勾配θSWを急峻にし、ブレーキ力指令値の変化度合が大きくなる程勾配θSWを緩慢にしてもよい。
Therefore, as shown in FIGS. 6 and 7B, the switching strength judgment function unit 21 makes the gradient θ SW of the smoothing function steeper as the degree of change in the braking force command value decreases, and the degree of change in the braking force command value increases. The gradient θ SW may be made as slow as possible.
ブレーキペダルが緩やかに操作されている場合において、平滑関数における勾配を急峻にすることでブレーキ制御精度を高くすることができる。これにより、ブレーキ操作に対して制動力の変化が正確に追従するよう制御し、ブレーキフィーリングを改善することができる。
When the brake pedal is operated gently, the brake control accuracy can be increased by making the gradient in the smoothing function steep. As a result, control can be performed so that the change in the braking force accurately follows the brake operation, and the brake feeling can be improved.
図8および図9に示す第3の実施形態のように、切替強度判断機能部21は、車体速推定手段27で推定される車体速が大きくなる程、平滑関数における勾配を急峻にしてもよい。一般に、車体速が大きい状態ではロードノイズ等によりブレーキ作動音がNVHに影響し難い。逆に車体速が小さい状態(特に停車状態)においては、ブレーキ作動音の影響が比較的大きくなる。また、ブレーキ力が制動距離に及ぼす影響は、車体速が速い状態程比較的大きく、車体速が遅い状態程比較的小さくなる。よって、切替強度判断機能部21は、車体速推定手段27で推定される車体速が大きくなる程、切替を急峻にし、車体速が小さくなる程、切替を緩慢にする処理を実行する。これにより安全性とNVHを両立できて好ましい。
As in the third embodiment shown in FIGS. 8 and 9, the switching strength determination function unit 21 may make the gradient in the smoothing function steeper as the vehicle speed estimated by the vehicle speed estimation means 27 increases. . In general, when the vehicle speed is high, the brake operation noise hardly affects the NVH due to road noise or the like. Conversely, when the vehicle speed is low (in particular, the vehicle is stopped), the influence of the brake operation noise becomes relatively large. The influence of the braking force on the braking distance is relatively large as the vehicle speed is high, and relatively small as the vehicle speed is low. Therefore, the switching strength determination function unit 21 executes processing to make switching steeper as the vehicle speed estimated by the vehicle speed estimation means 27 becomes larger and to make switching slower as the vehicle speed becomes smaller. This is preferable because safety and NVH can be compatible.
図2、図6、図8の制御系のいずれかを用いてもよく、あるいは適宜併用してもよい。また、図7A,7Bおよび図9について、図3Aの直線勾配θSWを用いた例を示すが、図3Bの幅xswを用いてもよい。その他、所定の切替関数の推移に対して操作量が切替わる急峻さを定義する変数を適宜用いることができる。
Any of the control systems shown in FIGS. 2, 6 and 8 may be used, or may be used in combination as appropriate. 7A, 7B and 9, although the example using linear gradient (theta) SW of FIG. 3A is shown, you may use width xsw of FIG. 3B. In addition, a variable that defines the steepness at which the operation amount switches with respect to the transition of the predetermined switching function can be used as appropriate.
図10に示す操作量を切替える制御構成では、アクチュエータ本体AHにおいて増圧状態における正効率作動制御演算器33と、減圧状態における逆効率作動制御演算器34と、ヒステリシス中間状態におけるヒステリシス中間制御演算器35とを切替える第4の実施形態を示す。前記増圧状態とは、摩擦材9(図1)とブレーキロータ8(図1)との接触力が増加する状態と同義であり、前記減圧状態とは、前記接触力が減少する状態と同義である。
In the control configuration for switching the amount of operation shown in FIG. 10, the positive efficiency operation control calculator 33 in the pressure increase state, the reverse efficiency operation control calculator 34 in the pressure decrease state, and the hysteresis intermediate control calculator in the hysteresis middle state in the actuator body AH. The 4th embodiment which switches 35 is shown. The pressure-increasing state is synonymous with the state in which the contact force between the friction material 9 (FIG. 1) and the brake rotor 8 (FIG. 1) increases, and the pressure-reducing state is synonymous with the state in which the contact force decreases. It is.
一般に、電動ブレーキ装置に用いるような電動式直動アクチュエータにおいて、同じ推力であっても、電動モータからの回転運動で増圧させる際の負荷(正効率)と減圧させる際の負荷(逆効率)が異なる。換言すれば、正効率動作と逆効率動作において、等価バネレートが異なるシステムであると考えることができる。また、特にヒステリシス中間における動作においては、モータトルク(モータ電流)の変化に対してアクチュエータ本体が動作しないため、不可制御状態となる。
Generally, in an electric linear actuator such as that used for an electric brake device, even when the thrust is the same, the load (positive efficiency) at the time of pressure increase by rotational motion from the electric motor and the load (reverse efficiency) at the pressure decrease Is different. In other words, in the forward efficiency operation and the reverse efficiency operation, it can be considered that the systems have different equivalent spring rates. Further, in the operation in the middle of the hysteresis, in particular, the actuator main body does not operate with respect to the change of the motor torque (motor current), and therefore, the control becomes an uncontrollable state.
そこで、図10に示すように、ブレーキ力追従制御機能部である制御演算機能部20は、前記正効率動作におけるパラメータを用いた正効率作動制御演算器33と、前記逆効率動作におけるパラメータを用いた逆効率作動制御演算器34と、ヒステリシス中にある場合において適用されるヒステリシス中間制御演算器35とを備える。前記各制御演算器として、例えば、偏差補償器または状態フィードバック器等の線形制御器を用いると、設計工数および演算負荷が軽減できて好適である。また、特にヒステリシス中間制御演算器35は、アクチュエータ本体AHが動作しない不可制御状態として設定される場合、所定のトルクとなるモータ電流に制御する制御器として実装してもよい。
Therefore, as shown in FIG. 10, the control calculation function unit 20 which is a brake force follow-up control function unit uses the forward efficiency operation control computing unit 33 using the parameters in the forward efficiency operation and the parameters in the reverse efficiency operation. The reverse efficiency operation control computing unit 34 and the hysteresis intermediate control computing unit 35 applied in the case of hysteresis are provided. It is preferable to use, for example, a linear controller such as a deviation compensator or a state feedback device as each of the control computing devices, because the number of design steps and the computational load can be reduced. Further, in particular, the hysteresis intermediate control computing unit 35 may be implemented as a controller that controls the motor current to be a predetermined torque when the actuator main body AH is set as the inoperable control state in which it does not operate.
制御演算機能部20における操作量切替機能部29は、アクチュエータ本体AHが増圧、減圧、ヒステリシス中間状態のいずれであるかに基づいて、コントローラを切替える。換言すれば、操作量切替機能部29は、切替用パラメータとして状態推定器22から与えられる角速度の極性が増圧方向(正)にあるとき正効率作動制御演算器33の操作量を適用し、切替用パラメータとして角速度の極性が減圧方向(負)にあるとき逆効率作動制御演算器34の操作量を適用する。また操作量切替機能部29は、切替用パラメータとして角速度の極性が概ね零であるときヒステリシス中間制御演算器35を適用する。
The operation amount switching function unit 29 in the control calculation function unit 20 switches the controller based on whether the actuator body AH is in the pressure increase, pressure decrease or hysteresis intermediate state. In other words, the manipulated variable switching function unit 29 applies the manipulated variable of the positive efficiency operation control calculator 33 when the polarity of the angular velocity given from the state estimator 22 is in the pressure increasing direction (positive) as the switching parameter, When the polarity of the angular velocity is in the pressure reduction direction (negative) as the switching parameter, the operation amount of the reverse efficiency operation control computing unit 34 is applied. The operation amount switching function unit 29 applies the hysteresis intermediate control computing unit 35 as the switching parameter when the polarity of the angular velocity is substantially zero.
このとき、切替強度判断機能部21は、モータ角速度を切替関数とし、閾値である角速度零近傍において平滑切替の勾配を適宜設定することができる。なお、ヒステリシス中間制御演算部35は、所定のブレーキ力に追従途中の過渡応答状態においては省略し、概ね一定であるブレーキ力指令値に対して追従状態となる場合のみにおいて適用してもよい。
At this time, the switching strength determination function unit 21 can use the motor angular velocity as the switching function, and can appropriately set the gradient of the smooth switching in the vicinity of the threshold angular velocity zero. Hysteresis intermediate control operation unit 35 may be omitted in a transient response state in the middle of following a predetermined braking force, and may be applied only in the case of following a braking force command value which is substantially constant.
切替強度判断機能部21は、図3Aに示す制御演算機能部20における複数の操作量の切替において、定められた切替用パラメータに対して平滑切替の急峻さを変更する場合に切替閾値近傍の勾配θSWが90度の場合を含める構成にしてもよい。勾配θSWが90度の場合は、平滑切替を行わないことになる。また、切替強度判断機能部21は、図3Bに示す制御演算機能部20における複数の操作量の切替において、定められた切替用パラメータに対して平滑切替の急峻さを変更する場合に、平滑関数Fcにおける切替開始から終了までの幅xswを零とする場合を含める構成にしてもよい。幅xswが零の場合は、平滑切替を行わないことになる。
When switching the plurality of operation amounts in the control operation function unit 20 shown in FIG. 3A, the switching strength determination function unit 21 changes the steepness of the smooth switching with respect to a predetermined switching parameter. A configuration in which θ SW is 90 degrees may be included. When the gradient θ SW is 90 degrees, smooth switching is not performed. Further, the switching strength determination function unit 21 is a smoothing function in the case of changing the steepness of smooth switching with respect to a predetermined switching parameter in switching of a plurality of operation amounts in the control calculation function unit 20 shown in FIG. 3B. A configuration in which the width xsw from the switching start to the end in Fc is zero may be included. When the width xsw is zero, smooth switching is not performed.
直動機構6の変換機構部として、遊星ローラ、ボールねじ等の各種ねじ機構、ボールランプ等の傾斜を利用した機構等を用いることができる。
As a conversion mechanism portion of the linear motion mechanism 6, various screw mechanisms such as a planetary roller and a ball screw, a mechanism utilizing an inclination of a ball lamp or the like, and the like can be used.
荷重センサSbは、前述のセンサ等に代えて、例えば、ブレーキを実装する車輪のホイールトルク、または電動ブレーキ装置を搭載した車両の前後力を検出するセンサ等、その他外部センサであってもよい。
The load sensor Sb may be, for example, a wheel torque of a wheel on which a brake is mounted, a sensor for detecting a longitudinal force of a vehicle on which the electric brake device is mounted, or the like instead of the above-described sensor or the like.
以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
As described above, although the preferred embodiments have been described with reference to the drawings, various additions, modifications or deletions can be made without departing from the spirit of the present invention. Therefore, such is also included in the scope of the present invention.
1…電動ブレーキ装置
2…制御装置
4…電動モータ
6…直動機構(摩擦材操作手段)
8…ブレーキロータ
9…摩擦材
18…指令手段
20…制御演算機能部
21…切替強度判断機能部
22…車輪運動推定手段 1 ...electric brake device 2 ... control device 4 ... electric motor 6 ... linear motion mechanism (friction material operation means)
DESCRIPTION OF SYMBOLS 8 ...Brake rotor 9 ... Friction material 18 ... Command means 20 ... Control calculation function part 21 ... Switching strength judgment function part 22 ... Wheel movement estimation means
2…制御装置
4…電動モータ
6…直動機構(摩擦材操作手段)
8…ブレーキロータ
9…摩擦材
18…指令手段
20…制御演算機能部
21…切替強度判断機能部
22…車輪運動推定手段 1 ...
DESCRIPTION OF SYMBOLS 8 ...
Claims (8)
- ブレーキロータと、
このブレーキロータと接触して制動力を発生する摩擦材と、
電動モータと、
この電動モータの出力を前記摩擦材の押圧力に変換する摩擦材操作手段と、
指令手段から与えられたブレーキ力指令値に基づいて前記電動モータの出力を制御する制御装置と、を備えた電動ブレーキ装置において、
前記制御装置は、
前記ブレーキロータと同期した車輪の回転運動における角度およびこの角度の所定階微分値を推定する車輪運動推定手段と、
前記電動モータの回転の角度およびこの角度の所定階微分値に対応する値の少なくともいずれかを含む物理量である状態量に従って、操作量を互いに異なる複数の操作量の間で切替える制御演算機能部と、
前記指令手段からのブレーキ力指令値および前記車輪運動推定手段で推定される推定値のいずれか一方または両方に基づき、前記制御演算機能部における操作量の切替えに必要な切替の急峻さを判断する切替強度判断機能部と、を備え、
前記切替強度判断機能部は、前記制御演算機能部における操作量の切替において、定められた切替用パラメータに対して現操作量から切替後の操作量に連続的に切替える制御である平滑切替を行うか否かを判断する機能と、定められた切替用パラメータに対する前記平滑切替の急峻さを示す勾配を変更する機能のいずれか一方または両方の機能を有する電動ブレーキ装置。 Brake rotor,
A friction material that generates a braking force in contact with the brake rotor,
Electric motor,
Friction material operation means for converting the output of the electric motor into pressing force of the friction material;
A control device for controlling an output of the electric motor based on a braking force command value given from a command means;
The controller is
A wheel motion estimating means for estimating an angle in rotational motion of a wheel synchronized with the brake rotor and a predetermined order differential value of the angle;
A control calculation function unit that switches an operation amount among a plurality of operation amounts different from each other according to a state amount that is a physical amount including at least one of an angle of rotation of the electric motor and a value corresponding to a predetermined differential value of this angle; ,
Based on one or both of the braking force command value from the command means and the estimated value estimated by the wheel motion estimation means, the steepness of switching necessary for switching the operation amount in the control calculation function unit is determined. A switching strength determination function unit;
The switching strength determination function unit performs smoothing switching, which is control for continuously switching from the current operation amount to the operation amount after switching, with respect to a predetermined switching parameter in switching of the operation amount in the control calculation function unit. An electric brake device having one or both of a function of determining whether or not it is, and a function of changing a slope indicating the steepness of the smooth switching with respect to a predetermined switching parameter. - 請求項1に記載の電動ブレーキ装置において、前記電動ブレーキ装置を搭載する車両の前後加速度を推定する加速度推定手段と、
この加速度推定手段で推定される前後加速度および前記車輪運動推定手段で推定される推定値のいずれか一方または両方に基づいて、前記車両の車体速を推定する車体速推定手段と、を備え、
前記制御装置は、さらに、前記車輪運動推定手段で推定される推定値および前記車体速推定手段で推定される車体速に基づいて、前記車輪の路面に対する滑り度合を推定し、推定された前記滑り度合が閾値を超過したときに前記車輪の滑り量を抑制するように、前記指令手段によらずブレーキ力指令値を演算するアンチスキッド制御機能部を備え、
前記切替強度判断機能部は、前記アンチスキッド制御機能部による制御が実行されたときの前記平滑切替における勾配を、アンチスキッド制御機能部による制御が実行されない場合と比較して、急峻にする機能を有する電動ブレーキ装置。 The electric brake device according to claim 1, wherein the acceleration estimation means estimates a longitudinal acceleration of a vehicle on which the electric brake device is mounted;
Vehicle speed estimation means for estimating the vehicle body speed of the vehicle based on either or both of the longitudinal acceleration estimated by the acceleration estimation means and the estimated value estimated by the wheel motion estimation means;
The control device further estimates the degree of slippage of the wheel relative to the road surface based on the estimated value estimated by the wheel motion estimation means and the vehicle speed estimated by the vehicle speed estimation means, and the slippage estimated It has an anti-skid control function unit that calculates a braking force command value regardless of the command means so as to suppress the slippage of the wheel when the degree exceeds a threshold.
The switching strength judgment function unit makes the gradient in the smooth switching when the control by the anti-skid control function unit is sharpened compared to the case where the control by the anti-skid control function unit is not performed. Electric brake device. - 請求項1または請求項2に記載の電動ブレーキ装置において、前記切替強度判断機能部は、前記指令手段に基づくブレーキ力指令値の変化度合が小さくなる程、前記平滑切替における勾配を急峻にする機能を有する電動ブレーキ装置。 The electric brake device according to claim 1 or 2, wherein the switching strength judgment function unit makes the gradient in the smooth switching steeper as the degree of change of the braking force command value based on the command means becomes smaller. And an electric brake device.
- 請求項1ないし請求項3のいずれか1項に記載の電動ブレーキ装置において、前記切替強度判断機能部は、前記指令手段に基づくブレーキ力指令値が定められた値より小さい条件において、前記ブレーキ力指令値が小さくなる程、前記平滑切替における勾配を緩慢にする機能を有する電動ブレーキ装置。 The electric brake device according to any one of claims 1 to 3, wherein the switching strength judging function unit is configured to set the braking force under a condition that a braking force command value based on the command means is smaller than a predetermined value. The electric brake device which has a function which makes the gradient in the said smooth switching slow, so that a command value becomes small.
- 請求項1ないし請求項4のいずれか1項に記載の電動ブレーキ装置において、前記切替強度判断機能部は、前記指令手段に基づくブレーキ力指令値が定められた値より大きい条件において、前記ブレーキ力指令値が大きくなる程、前記平滑切替における勾配を緩慢にする機能を有する電動ブレーキ装置。 The electric brake device according to any one of claims 1 to 4, wherein the switching strength determination function unit is configured to set the braking force under a condition that a braking force command value based on the command unit is larger than a predetermined value. The electric brake device which has a function which makes the gradient in the said smooth switching slow, so that a command value becomes large.
- 請求項1ないし請求項5のいずれか1項に記載の電動ブレーキ装置において、さらに、前記電動ブレーキ装置を搭載する車両の車体速を推定する車体速推定手段を備え、
前記切替強度判断機能部は、前記車体速推定手段で推定される車体速が大きくなる程、前記平滑切替における前記勾配をより急峻にする機能を有する電動ブレーキ装置。 The electric brake system according to any one of claims 1 to 5, further comprising a vehicle speed estimation means for estimating a vehicle speed of a vehicle equipped with the electric brake system,
The electric braking device has a function of making the gradient in the smooth switching steeper as the vehicle speed estimated by the vehicle speed estimation means becomes larger. - 請求項1ないし請求項6のいずれか1項に記載の電動ブレーキ装置において、前記制御装置は、前記摩擦材操作手段による前記摩擦材の操作量をブレーキ力指令値に追従するように制御するブレーキ力追従制御機能を有し、このブレーキ力追従制御機能は、前記状態量から定められた切替関数を演算し、前記切替関数の正負に応じて二値の操作量を導出し、前記切替関数の略零を制御目標とするスライディングモード制御であり、
前記切替強度判断機能部は、前記切替関数の値に応じて前記二値の操作量を切替える際の、前記切替関数の値の変化に伴う前記平滑切替の勾配を決定する機能である電動ブレーキ装置。 The electric brake system according to any one of claims 1 to 6, wherein the control device controls the operation amount of the friction material by the friction material operation means to follow a braking force command value. It has a force tracking control function, and this brake force tracking control function calculates a switching function determined from the state quantity, derives a binary operation amount according to the positive or negative of the switching function, and Sliding mode control whose control target is approximately zero,
The switching strength determination function unit is an electric brake device having a function of determining a slope of the smooth switching accompanying a change in the value of the switching function when switching the operation amount of the binary according to the value of the switching function. . - 請求項1ないし請求項7のいずれか1項に記載の電動ブレーキ装置において、前記制御装置は、前記電動モータの角速度を推定する角速度推定手段と、前記摩擦材操作手段による前記摩擦材の操作量をブレーキ力指令値に追従するように制御するブレーキ力追従制御機能とを有し、このブレーキ力追従制御機能は、前記摩擦材と前記ブレーキロータとの接触力が増加する際の前記電動モータの操作量を決定する正効率作動制御演算器と、前記接触力が減少する際の前記電動モータの操作量を決定する逆効率作動制御演算器と、を含む二種以上の制御演算器による二値以上の操作量を、前記角速度推定手段で推定された角速度に応じて切替える機能を有し、
前記切替強度判断機能部は、前記角速度推定手段で推定された角速度に応じて前記二値以上の操作量を切替える際の、前記角速度の変化に伴う平滑切替の勾配を決定する機能である電動ブレーキ装置。 The electric brake system according to any one of claims 1 to 7, wherein the control device is an angular velocity estimation means for estimating an angular velocity of the electric motor, and an operation amount of the friction material by the friction material operation means. And a brake force follow-up control function of controlling the brake force follow-up value, and the brake force follow-up control function is for the electric motor when the contact force between the friction material and the brake rotor increases. Two values by two or more types of control operation devices, including a forward efficiency operation control operation device that determines an operation amount, and a reverse efficiency operation control operation device that determines the operation amount of the electric motor when the contact force decreases. It has a function of switching the above-mentioned operation amount in accordance with the angular velocity estimated by the angular velocity estimating means,
The switching strength determination function unit is an electric brake having a function of determining a slope of smooth switching accompanying a change in the angular velocity when switching the operation amount of two or more values according to the angular velocity estimated by the angular velocity estimating means. apparatus.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-158448 | 2017-08-21 | ||
JP2017158448A JP6906398B2 (en) | 2017-08-21 | 2017-08-21 | Electric brake device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019039397A1 true WO2019039397A1 (en) | 2019-02-28 |
Family
ID=65438710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/030505 WO2019039397A1 (en) | 2017-08-21 | 2018-08-17 | Electric brake device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6906398B2 (en) |
WO (1) | WO2019039397A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016182884A (en) * | 2015-03-26 | 2016-10-20 | Ntn株式会社 | Anti-lock brake control device |
JP2017035976A (en) * | 2015-08-10 | 2017-02-16 | Ntn株式会社 | Electric brake system |
-
2017
- 2017-08-21 JP JP2017158448A patent/JP6906398B2/en active Active
-
2018
- 2018-08-17 WO PCT/JP2018/030505 patent/WO2019039397A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016182884A (en) * | 2015-03-26 | 2016-10-20 | Ntn株式会社 | Anti-lock brake control device |
JP2017035976A (en) * | 2015-08-10 | 2017-02-16 | Ntn株式会社 | Electric brake system |
Also Published As
Publication number | Publication date |
---|---|
JP6906398B2 (en) | 2021-07-21 |
JP2019034679A (en) | 2019-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015072384A1 (en) | Antilock brake control device | |
JP6584877B2 (en) | Electric brake system | |
US10384659B2 (en) | Electric brake device | |
WO2018062086A1 (en) | Electric brake device | |
US20210016769A1 (en) | Vehicle disturbance handling system | |
JP2017039454A (en) | Electric brake device | |
US11358638B2 (en) | Vehicle disturbance handling system | |
WO2019151146A1 (en) | Electric actuator and electric brake device | |
JP4845839B2 (en) | Electric drive vehicle | |
WO2017026329A1 (en) | Electric brake system | |
JP7126907B2 (en) | brake device | |
CN109789869B (en) | Electric brake device | |
JP7089871B2 (en) | Electric brake device | |
WO2019039397A1 (en) | Electric brake device | |
WO2019159813A1 (en) | Electric brake device and electric brake system | |
WO2023090095A1 (en) | Electric brake device | |
JP4542832B2 (en) | Electric brake device | |
JP6765265B2 (en) | Electric brake device | |
WO2019049971A1 (en) | Electric actuator and electric motor device | |
JP5910424B2 (en) | Brake control device for vehicle | |
JP5910425B2 (en) | Brake control device for vehicle | |
WO2016047481A1 (en) | Electric brake system | |
WO2014038700A1 (en) | Braking control device for vehicle | |
JP6986903B2 (en) | Electric linear actuator and electric brake device | |
JP6823977B2 (en) | Vehicle anti-skid control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18847449 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18847449 Country of ref document: EP Kind code of ref document: A1 |