[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019039005A1 - 切削工具およびその製造方法 - Google Patents

切削工具およびその製造方法 Download PDF

Info

Publication number
WO2019039005A1
WO2019039005A1 PCT/JP2018/018739 JP2018018739W WO2019039005A1 WO 2019039005 A1 WO2019039005 A1 WO 2019039005A1 JP 2018018739 W JP2018018739 W JP 2018018739W WO 2019039005 A1 WO2019039005 A1 WO 2019039005A1
Authority
WO
WIPO (PCT)
Prior art keywords
top surface
cutting tool
cutting edge
diamond layer
protrusions
Prior art date
Application number
PCT/JP2018/018739
Other languages
English (en)
French (fr)
Inventor
望 月原
克夫 風早
小林 豊
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to JP2019537921A priority Critical patent/JP7006881B2/ja
Priority to US16/639,866 priority patent/US11554421B2/en
Priority to EP18847531.3A priority patent/EP3674022A4/en
Priority to CN201880054422.3A priority patent/CN110997203B/zh
Publication of WO2019039005A1 publication Critical patent/WO2019039005A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/005Geometry of the chip-forming or the clearance planes, e.g. tool angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • B23P15/34Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools milling cutters
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • B23B2226/315Diamond polycrystalline [PCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/04Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/31Diamond
    • B23C2226/315Diamond polycrystalline [PCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/04Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating

Definitions

  • the present invention relates to a cutting tool.
  • This application claims priority based on Japanese Patent Application No. 2017-159279 filed on Aug. 22, 2017. The entire contents of the description of the Japanese patent application are incorporated herein by reference.
  • JP-A-2011-101910 describes a diamond-coated cutting tool comprising a substrate and a diamond layer coated on the surface of the substrate.
  • the arithmetic mean roughness of the surface of the diamond layer at the cutting edge of the diamond-coated cutting tool is 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the average layer thickness of the diamond layer on the flank is greater than the average layer thickness of the diamond layer on the rake face.
  • a cutting tool is a cutting tool provided with a substrate and a diamond layer covering the substrate.
  • the diamond layer includes a rake face and a flank adjacent to the rake face. The ridge line between the rake face and the flank forms a cutting edge.
  • the substrate includes a top surface opposite the rake surface. Viewed from a direction perpendicular to the top surface, the rake surface includes a plurality of protrusions. In the cross section perpendicular to the extending direction of the cutting edge, each of the plurality of protrusions has an inclined portion and a curved portion connected to the inclined portion. In the cross section, the slopes increase in height in the direction perpendicular to the top surface as they move away from the cutting edge.
  • FIG. 1 is a schematic perspective view showing the configuration of the cutting tool according to the first embodiment.
  • FIG. 2 is a schematic front view showing the configuration of the cutting tool according to the first embodiment.
  • FIG. 3 is an enlarged schematic view of a III region of FIG.
  • FIG. 4 is a schematic cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 5 is a schematic perspective view showing the configuration of the first projection 1 of the cutting tool according to the first embodiment.
  • FIG. 6 is a flowchart schematically showing a method of manufacturing a cutting tool according to the first embodiment.
  • FIG. 7 is a schematic cross-sectional view showing a first step of the method of manufacturing a cutting tool according to the first embodiment.
  • FIG. 1 is a schematic perspective view showing the configuration of the cutting tool according to the first embodiment.
  • FIG. 2 is a schematic front view showing the configuration of the cutting tool according to the first embodiment.
  • FIG. 3 is an enlarged schematic view of a III region of FIG.
  • FIG. 4 is
  • FIG. 8 is a schematic cross-sectional view showing a second step of the method of manufacturing a cutting tool according to the first embodiment.
  • FIG. 9 is a schematic plan view showing a second step of the method of manufacturing a cutting tool according to the first embodiment.
  • FIG. 10 is a cross-sectional schematic diagram which shows the 3rd process of the manufacturing method of the cutting tool which concerns on 1st Embodiment.
  • FIG. 11 is a schematic plan view showing the configuration of the rake face 12 of the cutting tool according to the second embodiment.
  • FIG. 12 is a schematic cross-sectional view showing the configuration of the cutting tool according to the third embodiment.
  • FIG. 13 is a schematic cross-sectional view showing the configuration of the cutting tool of Sample 1B.
  • FIG. 14 is a schematic cross-sectional view showing the configuration of the cutting tool of Sample 1C.
  • the diamond-coated cutting tool in the prior art has a problem that the tool life is short.
  • One aspect of the present invention is made in order to solve the problems as described above, and it is an object of the present invention to provide a cutting tool capable of improving the tool life.
  • the cutting tool 100 which concerns on 1 aspect of this invention is a cutting tool provided with the base material 20 and the diamond layer 7 which has coated the base material 20.
  • the diamond layer 7 includes a rake face 12 and a flank 11 continuous with the rake face 12.
  • a ridge line between the rake face 12 and the flank 11 constitutes a cutting edge 10.
  • the substrate 20 includes a top surface 22 opposite the rake surface 12.
  • the rake surface 12 comprises a plurality of protrusions 1.
  • each of the plurality of protrusions 1 has an inclined portion 2 and a curvature portion 3 connected to the inclined portion 2.
  • the slope 2 increases in height in the direction perpendicular to the top surface 22 as it is separated from the cutting edge 10.
  • each of the plurality of protrusions 1 has the inclined portion 2 in which the height in the direction perpendicular to the top surface 22 increases with distance from the cutting edge 10. Therefore, chips can pass smoothly over the slope 2 of the rake face 12. As a result, the chip dischargeability is improved. Thus, damage to the cutting tool can be reduced, and tool life can be improved.
  • the plurality of protrusions 1 are provided over a region within 2 mm from the cutting edge 10 May be This facilitates the removal of the chips in most of the area through which the chips pass.
  • the radius of curvature of the cutting edge 10 may be 0.01 ⁇ m or more and 50 ⁇ m or less in the cross section. This can improve sharpness.
  • the method of manufacturing the cutting tool 100 includes the following steps.
  • the substrate 20 is coated with a diamond layer 7.
  • a part of the diamond layer 7 is removed by the ion beam.
  • the cutting tool 100 has a rake face 12 and a flank 11 continuous with the rake face 12.
  • the base 20 has a top surface 22 opposite to the rake surface 12 and a side surface 21 opposite to the flank surface 11.
  • the surface of the diamond layer 7 is formed by the plurality of protrusions 8.
  • the top surface 22 is directed upward and the ridgeline 23 of the top surface 22 and the side surface 21 is directed to the left, the top surface 22 is inclined relative to the top surface 22 By irradiating the ion beam in the direction as shown, a part of each of the plurality of protrusions 8 is removed.
  • each of the plurality of protrusions 8 is removed by irradiating the ion beam in the direction inclined with respect to the surface. Thereby, the several projection part 1 can be formed.
  • Each of the plurality of protrusions 1 has an inclined portion 2 whose height in the direction perpendicular to the top surface 22 increases with distance from the cutting edge 10. Therefore, chips can pass smoothly over the slope 2 of the rake face 12. As a result, the chip dischargeability is improved. Thus, damage to the cutting tool is reduced and the life of the cutting tool is extended.
  • the step of removing a part of the diamond layer 7 may be performed without rotating the base material 20.
  • the plurality of protrusions 1 can be formed by a simple method.
  • FIG. 1 is a schematic perspective view showing the configuration of the cutting tool according to the first embodiment.
  • FIG. 2 is a schematic front view showing the configuration of the cutting tool according to the first embodiment.
  • the cutting tool 100 is a radius end mill used for processing, for example, CFRP (Carbon Fiber Reinforced Plastic).
  • Cutting tool 100 is rotatable, for example, about central axis A.
  • the cutting tool 100 mainly has a rake face 12, a flank face 11, a heel face 14, a first groove face 15 and a second groove face 17.
  • the flank 11 is connected to the rake face 12.
  • the heel surface 14 is continuous with the flank surface 11.
  • the heel surface 14 is located rearward with respect to the flank 11 in the rotational direction.
  • the ridge line between the rake face 12 and the flank 11 constitutes the cutting edge 10.
  • the cutting edge 10 may have a bottom edge 10 a and an outer circumferential edge 10 b.
  • the outer peripheral blade 10 b is on the outer peripheral side than the bottom blade 10 a.
  • the flank 11 may have a first flank 11a and a second flank 11b.
  • the rake face 12 may have a first rake face 12 a and a second rake face 12 b.
  • the ridgeline of the 1st flank face part 11a and the 1st scoop face part 12a may constitute bottom blade 10a.
  • the ridge line of the 2nd flank face part 11b and the 2nd rake face part 12b may constitute perimeter blade 10b.
  • the first groove surface 15 may be continuous with the second groove surface 17.
  • the first groove surface 15 may be located on the outer peripheral side of the second groove surface 17.
  • the second groove surface 17 may be connected to the first rake surface 12a.
  • the heel surface 14 may be located closer to the shank 19 than the flank 11.
  • FIG. 3 is an enlarged schematic view of a III region of FIG.
  • FIG. 4 is a schematic cross-sectional view taken along the line IV-IV of FIG.
  • the cutting tool 100 mainly includes a base 20 and a diamond layer 7.
  • the diamond layer 7 covers the substrate 20.
  • Diamond layer 7 includes a rake face 12 and a flank face 11. In other words, each of the rake face 12 and the flank face 11 is constituted by the diamond layer 7.
  • the base 20 mainly has a top surface 22 and side surfaces 21.
  • the top surface 22 faces the rake surface 12.
  • the side surface 21 faces the flank 11.
  • the material of the base 20 is, for example, a cemented carbide containing a powder such as WC (tungsten carbide) and a binder such as Co (cobalt).
  • the base 20 is not limited to cemented carbide but may be, for example, cermet or ceramics.
  • Diamond layer 7 is a layer containing, for example, diamond crystals. Diamond layer 7 is, for example, polycrystalline diamond.
  • the rake surface 12 includes a plurality of first protrusions 1 when viewed in the direction perpendicular to the top surface 22.
  • the plurality of first protrusions 1 may be aligned along a direction perpendicular to the extending direction B of the cutting edge 10.
  • the plurality of first protrusions 1 may be arranged along the extending direction B of the cutting edge 10.
  • the plurality of first protrusions 1 may be in contact with each other.
  • the number of first protrusions 1 may be large. The number is, for example, 10 or more in the range of 20 ⁇ m square.
  • each of the plurality of first protrusions 1 has a first inclined portion 2 and a first curved portion 3. .
  • the first curvature portion 3 is continuous with the first inclined portion 2.
  • Each of the plurality of first protrusions 1 is formed of a first inclined portion 2 and a first curvature portion 3.
  • the first curvature portion 3 is located on the opposite side to the cutting edge 10 with respect to the first inclined portion 2.
  • Each of the plurality of first protrusions 1 protrudes in a direction away from the substrate 20. In the cross section, as the first inclined portion 2 gets away from the cutting edge 10, the height in the direction perpendicular to the top surface 22 increases.
  • the height of the first inclined portion 2 may increase monotonously as it goes away from the cutting edge 10.
  • the first inclined portion 2 extends from the lower left to the upper right.
  • the first inclined portion 2 is inclined with respect to the top surface 22.
  • the angle ⁇ 1 of the first inclined portion 2 with respect to the top surface 22 is, for example, 10 ° or more and 40 ° or less.
  • the upper limit of the angle ⁇ 1 is not particularly limited, and may be, for example, 80 ° or 30 °.
  • the lower limit of the angle ⁇ 1 is not particularly limited, and may be, for example, 5 ° or 1 °.
  • a straight line D2 projected on the top surface 22 from the normal D3 (see FIG. 4) of the first inclined portion 2 may be substantially parallel.
  • each of straight lines D2 obtained by projecting the normal D3 of the inclined portion 2 to the top surface 22 may be parallel to or intersect with each other.
  • the thickness T2 of the portion of the diamond layer 7 in contact with the top surface 22 in the direction perpendicular to the top surface 22 is, for example, 10 ⁇ m.
  • the thickness T2 of the portion of the diamond layer 7 in contact with the top surface 22 is, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the thickness T1 of each of the plurality of first protrusions 1 is, for example, 3 ⁇ m.
  • Each thickness T1 of the plurality of first protrusions 1 is, for example, not less than 1 ⁇ m and not more than 5 ⁇ m.
  • the first curved portion 3 when viewed in the direction perpendicular to the top surface 22, the first curved portion 3 has, for example, a crescent shape.
  • the first curvature portion 3 has a boundary portion 3a with the first inclined portion 2 and a first outer peripheral portion 3b opposite to the boundary portion 3a.
  • each of the boundary portion 3 a and the first outer peripheral portion 3 b is curved so as to protrude to the opposite side to the cutting edge 10.
  • Each of the boundary portion 3a and the first outer peripheral portion 3b may have an arc shape.
  • the radius of curvature of the boundary portion 3a may be larger than the radius of curvature of the first outer peripheral portion 3b.
  • the first inclined portion 2 has a second outer peripheral portion 2a opposite to the boundary portion 3a. When viewed in the direction perpendicular to the top surface 22, the second outer peripheral portion 2 a is curved so as to protrude toward the cutting edge 10.
  • the width W4 of the first inclined portion 2 in the extending direction B of the cutting edge 10 is the width of the first inclined portion 2 in a direction perpendicular to the extending direction B of the cutting edge 10 and parallel to the top surface 22. It may be larger than W2.
  • the width W 2 of the first inclined portion 2 may be larger than the width W 3 of the first curved portion 3 in a direction perpendicular to the extending direction B of the cutting edge 10 and parallel to the top surface 22.
  • the width W4 of the first inclined portion 2 may be substantially the same as the width of the first curved portion 3.
  • the width W4 of the first inclined portion 2 in the extending direction B of the cutting edge 10 is the width of the first projection 1 in a direction perpendicular to the extending direction B of the cutting edge 10 and parallel to the top surface 22. It may be substantially the same as W1.
  • each of the plurality of first protrusions 1 may have a scale shape.
  • the curvature portion in a SEM (Scanning Electron Microscope) image in plan view is formed by a large number of projections having the slope portion and the curvature portion being approximately aligned and closely spaced to some extent in the direction of the slope portion.
  • the plurality of first protrusions 1 when viewed in a direction perpendicular to the top surface 22, may be provided over an area within a distance L from the cutting edge 10.
  • the distance L is, for example, 2 mm.
  • the distance L is not particularly limited, but may be 10 ⁇ m or 500 ⁇ m.
  • a plurality of first The protrusion 1 is formed in the region of the rake face 12 sandwiched between the cutting edge 10 and the position separated from the cutting edge 10 by the distance L in the direction perpendicular to the extending direction B of the cutting edge 10.
  • the distance L may be, for example, about the same as the cutting depth.
  • the direction perpendicular to the extending direction B of the cutting edge 10 means a direction perpendicular to the tangent of the cutting edge 10.
  • the cutting edge 10 may be configured by the boundary between the first inclined portion 2 of the rake face 12 and the curvature portion 9 of the flank 11.
  • the cutting edge 10 is formed to be sharp and sharp.
  • the radius of curvature of the cutting edge 10 is, for example, 0.01 ⁇ m or more and 50 ⁇ m or less.
  • the upper limit of the curvature radius of the cutting edge 10 is not particularly limited, and may be, for example, 30 ⁇ m or 10 ⁇ m.
  • the lower limit of the radius of curvature of the cutting edge 10 is not particularly limited, and may be, for example, 1 ⁇ m or 0.1 ⁇ m.
  • the flank 11 may be constituted by a plurality of second protrusions 4.
  • each of the plurality of second protrusions 4 may have an arc-shaped portion.
  • Each of the plurality of second protrusions 4 may be in the form of a cluster.
  • the thickness T4 of the portion of the diamond layer 7 in contact with the side surface 21 in the direction perpendicular to the side surface 21 is the thickness T2 of the portion of the diamond layer 7 in contact with the top surface 22 in the direction perpendicular to the top surface 22. It may be larger.
  • the thickness T3 of the second protrusion 4 in the direction perpendicular to the side surface 21 may be larger than the thickness T1 of each of the plurality of first protrusions 1 in the direction perpendicular to the top surface 22.
  • FIG. 5 is a schematic perspective view showing the configuration of the first projection 1 of the cutting tool according to the first embodiment.
  • each of the plurality of first protrusions 1 may have a shape in which a part of the hemisphere is cut and removed, for example, by a plane intersecting with the hemisphere.
  • each of the plurality of first protrusions 1 is formed of a generally planar first inclined portion 2 and a generally spherical first curved portion 3.
  • the first inclined portion 2 may be convexly curved.
  • FIG. 6 is a flowchart schematically showing a method of manufacturing a cutting tool according to the first embodiment.
  • the method for manufacturing a cutting tool according to the first embodiment includes the steps of coating a diamond layer on a substrate (S10: FIG. 6) and removing a portion of the diamond layer by an ion beam (S20: FIG. 6). Mainly includes.
  • FIG. 7 is a schematic cross-sectional view showing a first step of the method of manufacturing a cutting tool according to the first embodiment.
  • the substrate 20 is first prepared.
  • the material of the base 20 is, for example, a cemented carbide containing a powder such as WC (tungsten carbide) and a binder such as Co (cobalt).
  • the base 20 is not limited to cemented carbide but may be, for example, cermet or ceramics.
  • the substrate 20 mainly has a top surface 22 and side surfaces 21.
  • the top surface 22 is a surface opposite to the surface to be the rake surface 12 of the cutting tool 100.
  • the side surface 21 is a surface facing the surface to be the flank 11 of the cutting tool 100.
  • FIG. 8 is a schematic cross-sectional view showing a second step of the method of manufacturing a cutting tool according to the first embodiment.
  • FIG. 9 is a schematic plan view showing a second step of the method of manufacturing a cutting tool according to the first embodiment.
  • the substrate 20 is coated with a diamond layer 7.
  • the film formation of the diamond layer 7 is performed using, for example, HFCVD (Hot Filament Chemical Vapor Deposition).
  • the thickness of diamond layer 7 is, for example, about 10 ⁇ m.
  • the diamond layer 7 is formed to cover the top surface 22 and the side surface 21.
  • the surface of the diamond layer 7 is formed by the plurality of protrusions 8.
  • Each of the plurality of protrusions 8 has, for example, a hemispherical shape. Specifically, the surface of the portion of the diamond layer 7 opposed to the top surface 22 and the surface of the portion of the diamond layer 7 opposed to the side surface 21 are constituted by a plurality of projections 8.
  • a step (S20: FIG. 6) of removing a part of the diamond layer by an ion beam is performed. Specifically, a portion of the diamond layer 7 is removed by irradiating the surface to be the rake surface 12 with the ion beam using an ion etching apparatus. For example, oxygen ions are used as the ion beam. The diamond layer 7 is converted to carbon monoxide or carbon dioxide by irradiating the diamond layer 7 with oxygen ions. Thereby, the diamond turns into gas and is removed.
  • FIG. 10 is a cross-sectional schematic diagram which shows the 3rd process of the manufacturing method of the cutting tool which concerns on 1st Embodiment.
  • the ion beam has directivity.
  • FIG. 10 when the top surface 22 is directed upward and the ridgeline 23 of the top surface 22 and the side surface 21 is directed to the left, the ion beam is inclined from the upper left side to the top surface 22. Is irradiated. Thereby, a part of each of the plurality of first protrusions 1 is removed.
  • the irradiation direction I of the ion beam is inclined with respect to the normal to the top surface 22 when viewed in a cross section perpendicular to the extending direction B of the ridge line 23.
  • the irradiation direction I of the ion beam may be substantially perpendicular to the extending direction B of the ridge line 23.
  • EIS 200-ER manufactured by Elionix can be used as an ion etching apparatus.
  • the conditions for ion etching are an ion beam irradiation time of 1 hour and an applied voltage of 2500 V.
  • the step of removing a part of the diamond layer is performed without rotating the base material 20.
  • a part of the diamond layer 7 is removed while maintaining the irradiation direction of the ion beam on the top surface 22 of the substrate 20 without changing it.
  • a rake surface 12 including the plurality of first protrusions 1 is formed (see FIG. 4).
  • each of the plurality of first protrusions 1 has the first inclined portion 2 in which the height in the direction perpendicular to the top surface 22 increases with distance from the cutting edge 10 doing. Therefore, chips can pass smoothly over the first inclined portion 2 of the rake face 12. As a result, the chip dischargeability is improved. Thus, damage to the cutting tool can be reduced, and tool life can be improved.
  • a straight line D2 obtained by projecting the normal line D3 of the first inclined portion 2 onto the top surface 22 and the top surface 22 when viewed from the direction perpendicular to the top surface 22
  • the angle ⁇ between the normal to the cutting edge 10 and the normal D1 in the direction parallel to is 80 ° or less.
  • the plurality of first protrusions are provided over the area within 1 mm from the cutting edge 10 within 2 mm. This facilitates the removal of the chips in most of the area through which the chips pass.
  • the radius of curvature of the cutting edge 10 in the cross section is 0.01 ⁇ m or more and 50 ⁇ m or less. This can improve sharpness.
  • the top surface 22 when the top surface 22 faces upward and the ridge line between the top surface 22 and the side surface 21 faces left, the top surface 22 is directed from the upper left side.
  • a part of each of the plurality of protrusions 8 is removed.
  • the plurality of first protrusions 1 can be formed.
  • Each of the plurality of first protrusions 1 has a first inclined portion 2 whose height in the direction perpendicular to the top surface 22 increases with distance from the cutting edge 10. Therefore, chips can pass smoothly over the first inclined portion 2 of the rake face 12. As a result, the chip dischargeability is improved. Thus, damage to the cutting tool is reduced and the life of the cutting tool is extended.
  • the manufacturing method of the cutting tool 100 which concerns on 1st Embodiment, in the process of removing a part of diamond layer 7, it is performed, without rotating the base material 20.
  • FIG. Thereby, the plurality of first protrusions 1 can be formed by a simple method.
  • FIG. 11 is a schematic plan view showing the configuration of the rake face 12 of the cutting tool according to the second embodiment.
  • the straight line D 2 which projects the normal to the slope 2 onto the top surface 22, corresponds to the cutting edge 10 in the direction parallel to the top surface 22. It may be inclined with respect to the normal D1.
  • An angle ⁇ between a straight line D2 obtained by projecting the normal of the inclined portion 2 onto the top surface 22 and a normal D1 of the cutting edge 10 in a direction parallel to the top surface 22 when viewed from a direction perpendicular to the top surface 22 Is, for example, 80 ° or less.
  • the angle ⁇ may be, for example, 60 ° or less or 30 ° or less.
  • a straight line D 2 obtained by projecting the normal of the inclined portion 2 onto the top surface 22 is on the shank side with respect to the normal D 1 of the cutting edge 10 in a direction parallel to the top surface 22 Or the side opposite to the shank (the tip side of the cutting tool).
  • the irradiation of the ion beam is viewed from the direction perpendicular to the top surface 22. It can form by irradiating an ion beam in the state which made direction I incline with respect to the normal line D1 of extension direction B of ridgeline 23. As shown in FIG. Also in the cutting tool according to the second embodiment, the same effect as that of the cutting tool according to the first embodiment can be obtained.
  • FIG. 12 is a schematic cross-sectional view showing the configuration of the cutting tool according to the third embodiment.
  • the flank 11 may include a plurality of second protrusions 4.
  • the plurality of second protrusions 4 may be aligned along a direction perpendicular to the extending direction B of the cutting edge 10.
  • the plurality of second protrusions 4 may be arranged along the extending direction B of the cutting edge 10.
  • the plurality of second protrusions 4 may be in contact with each other.
  • Each of the plurality of second protrusions 4 may have a scaly shape. The number of second protrusions 4 may be large.
  • each of the plurality of second protrusions 4 has a second inclined portion 5 and a second curved portion 6. .
  • the second curvature portion 6 is continuous with the second inclined portion 5.
  • Each of the plurality of second protrusions 4 is configured by the second inclined portion 5 and the second curvature portion 6.
  • the second curved portion 6 is located on the opposite side to the cutting edge 10 with respect to the second inclined portion 5.
  • Each of the plurality of second protrusions 4 protrudes in a direction away from the substrate 20.
  • the second inclined portion 5 may increase in height in the direction perpendicular to the side surface 21 as it is separated from the cutting edge 10.
  • the height of the second inclined portion 5 may increase monotonously as it is separated from the cutting edge 10.
  • the second inclined portion 5 may extend from the lower left to the upper right.
  • the second inclined portion 5 is inclined with respect to the side surface 21.
  • the angle ⁇ 2 of the second inclined portion 5 with respect to the side surface 21 may be the same as or different from the angle ⁇ 1 of the first inclined portion 2 with respect to the top surface 22.
  • the thickness T4 of the portion of the diamond layer 7 in contact with the side surface 21 in the direction perpendicular to the side surface 21 is the thickness T2 of the portion of the diamond layer 7 in contact with the top surface 22 in the direction perpendicular to the top surface 22.
  • the thickness T3 of the second protrusion in the direction perpendicular to the side surface 21 may be substantially the same as the thickness T1 of each of the plurality of first protrusions 1 in the direction perpendicular to the top surface 22. It may be different.
  • the cutting edge 10 may be configured by the boundary between the first inclined portion 2 of the rake face 12 and the second inclined portion 5 of the flank 11. Thereby, the cutting edge 10 can be further sharpened.
  • the cutting tool according to the third embodiment is formed by changing the irradiation direction of the ion beam to the base material 20 in the step of removing a part of the diamond layer 7 by the ion beam (S20: FIG. 6) be able to. Specifically, when the top surface 22 is directed upward and the ridgeline 23 of the top surface 22 and the side surface 21 is directed to the left, the ion beam is irradiated in a direction inclined with respect to the top surface 22 from the upper left side. Ru. Thereby, a part of each of the plurality of first protrusions 1 is removed.
  • the cutting tool 100 is not limited to the radius end mill.
  • the cutting tool 100 may be, for example, a rotating cutting tool such as a ball end mill or drill.
  • the results of the cutting test using the cutting tools of Samples 1A to 1C will be described below.
  • cutting tools according to samples 1A to 1C are prepared.
  • the sample 1A is a cutting tool according to the first embodiment having a diameter of 12 mm (see FIG. 4).
  • FIG. 13 is a schematic cross-sectional view showing the configuration of the cutting tool according to Sample 1B.
  • the rake face 12 of the diamond layer 7 of the cutting tool of the sample 1B includes a plurality of third protrusions 31.
  • each of the plurality of third protrusions 31 has a third inclined portion 32 and a third curved portion 33.
  • the third curvature portion 33 is continuous with the third inclined portion 32.
  • Each of the plurality of third protrusions 31 is configured by the third inclined portion 32 and the third curvature portion 33.
  • the third curved portion 33 is located on the opposite side of the third inclined portion 32 from the cutting edge 10.
  • Each of the plurality of third protrusions 31 protrudes in a direction away from the base material 20.
  • the third inclined portion 32 gets away from the cutting edge 10, the height in the direction perpendicular to the top surface 22 decreases.
  • the height of the third inclined portion 32 monotonously decreases with distance from the cutting edge 10.
  • the third inclined portion 32 extends from the upper left to the lower right.
  • the other configuration of the cutting tool of sample 1B is the same as the cutting tool of sample 1A.
  • FIG. 14 is a schematic cross-sectional view showing the configuration of the cutting tool according to Sample 1C.
  • the rake face 12 of the diamond layer 7 of the cutting tool of the sample 1C includes a plurality of fourth protrusions 41.
  • each of the plurality of fourth protrusions 41 has a flat portion 42, a fourth curved portion 43, and a fifth curved portion 44.
  • the fourth curvature portion 43 is continuous with one end of the flat portion 42.
  • the fifth curvature portion 44 is continuous with the other end of the flat portion 42.
  • Each of the plurality of fourth protrusions 41 is configured by the flat portion 42, the fourth curvature portion 43, and the fifth curvature portion 44.
  • the fourth curved portion 43 is located on the opposite side of the flat portion 42 to the cutting edge 10.
  • the fifth curvature portion 44 is located on the same side as the cutting edge 10 with respect to the flat portion 42.
  • the flat portion 42 is located between the fourth curvature portion 43 and the fifth curvature portion 44.
  • Each of the plurality of fourth protrusions 41 protrudes in a direction away from the base material 20.
  • flat 42 is substantially parallel to top surface 22.
  • the height of the fourth curved portion 43 decreases with distance from the cutting edge 10.
  • the height of the fifth curvature portion 44 increases with distance from the cutting edge 10.
  • the other configuration of the cutting tool of sample 1C is similar to that of sample 1A.
  • the amount of rake face wear of the cutting tools of Samples 1A to 1C was 30 ⁇ m, 200 ⁇ m and 60 ⁇ m, respectively.
  • the diamond layer peeled off.
  • the amount of rake face wear of the cutting tool of sample 1A was the smallest. From the above results, it has been confirmed that the amount of rake face wear can be reduced by providing the sloped portion such that the height in the direction perpendicular to the top surface increases with distance from the cutting edge in the cross section.
  • Samples 2A to 2C are cutting tools according to the second embodiment (see FIG. 11), and were manufactured such that the angles ⁇ thereof become the angles shown in Table 2.
  • the amount of rake face wear of the cutting tools of Samples 2A to 2C was 24 ⁇ m, 32 ⁇ m and 40 ⁇ m, respectively.
  • the amount of rake face wear decreased as the angle ⁇ decreased. If the angle ⁇ is 80 ° or less, the amount of rake face wear is confirmed to be within an acceptable range.
  • Samples 3A to 3C are cutting tools according to the first embodiment (see FIG. 4), and the distances L from their cutting edges were manufactured as shown in Table 3.
  • the amount of rake face wear of the cutting tools of Samples 3A to 3C was 29 ⁇ m, 32 ⁇ m and 35 ⁇ m, respectively.
  • the amount of rake wear decreased as the distance L from the cutting edge increased. It was found that the rake face wear was within an acceptable range if the projections were provided over an area within 10 ⁇ m from the cutting edge.
  • the amount of rake face wear of the cutting tools of Samples 4A to 4E was 40 ⁇ m, 24 ⁇ m, 22 ⁇ m, 35 ⁇ m and 45 ⁇ m, respectively.
  • the flank wear amounts of the cutting tools of Samples 4A to 4E were 40 ⁇ m, 27 ⁇ m, 26 ⁇ m, 35 ⁇ m and 45 ⁇ m, respectively. From the above results, it was confirmed that the amount of rake face wear and the amount of flank wear were reduced when the radius of curvature of the cutting edge was in the range of 0.01 ⁇ m to 50 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

切削工具は、基材と、基材を被覆しているダイヤモンド層とを有している。ダイヤモンド層は、すくい面と、すくい面に連なる逃げ面とを含んでいる。すくい面と逃げ面との稜線は、切れ刃を構成している。基材は、すくい面と対向する頂面を含んでいる。頂面に対して垂直な方向から見て、すくい面は、複数の突起部を含んでいる。切れ刃の延在方向に対して垂直な断面において、複数の突起部の各々は、傾斜部と、傾斜部に連なる曲率部とを有している。断面において、傾斜部は、切れ刃から離れるにつれて頂面に垂直な方向の高さが大きくなる。

Description

切削工具およびその製造方法
 本発明は、切削工具に関する。本出願は、2017年8月22日に出願した日本特許出願である特願2017-159279号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 特開2011-101910号公報には、基材と、当該基材の表面を被覆したダイヤモンド層とを含むダイヤモンド被覆切削工具が記載されている。当該ダイヤモンド被覆切削工具の切れ刃部におけるダイヤモンド層の表面の算術平均粗さは0.1μm以上5μm以下である。切れ刃部において、逃げ面のダイヤモンド層の平均層厚は、すくい面のダイヤモンド層の平均層厚よりも厚い。
特開2011-101910号公報
 本発明の一態様に係る切削工具は、基材と、基材を被覆しているダイヤモンド層とを備えた切削工具である。ダイヤモンド層は、すくい面と、すくい面に連なる逃げ面とを含んでいる。すくい面と逃げ面との稜線は、切れ刃を構成している。基材は、すくい面と対向する頂面を含んでいる。頂面に対して垂直な方向から見て、すくい面は、複数の突起部を含んでいる。切れ刃の延在方向に対して垂直な断面において、複数の突起部の各々は、傾斜部と、傾斜部に連なる曲率部とを有している。断面において、傾斜部は、切れ刃から離れるにつれて頂面に垂直な方向の高さが大きくなる。
図1は、第1実施形態に係る切削工具の構成を示す斜視模式図である。 図2は、第1実施形態に係る切削工具の構成を示す正面模式図である。 図3は、図2のIII領域の拡大模式図である。 図4は、図3のIV-IV線に沿った断面模式図である。 図5は、第1実施形態に係る切削工具の第1突起部1の構成を示す斜視模式図である。 図6は、第1実施形態に係る切削工具の製造方法を概略的に示すフロー図である。 図7は、第1実施形態に係る切削工具の製造方法の第1工程を示す断面模式図である。 図8は、第1実施形態に係る切削工具の製造方法の第2工程を示す断面模式図である。 図9は、第1実施形態に係る切削工具の製造方法の第2工程を示す平面模式図である。 図10は、第1実施形態に係る切削工具の製造方法の第3工程を示す断面模式図である。 図11は、第2実施形態に係る切削工具のすくい面12の構成を示す平面模式図である。 図12は、第3実施形態に係る切削工具の構成を示す断面模式図である。 図13は、サンプル1Bの切削工具の構成を示す断面模式図である。 図14は、サンプル1Cの切削工具の構成を示す断面模式図である。
 [本開示が解決しようとする課題]
 前記先行技術におけるダイヤモンド被覆切削工具においては、工具寿命が短いという課題があった。
 本発明の一態様は、上記のような課題を解決するためになされたものであり、その目的は、工具寿命を向上可能な切削工具を提供することである。
 [本開示の効果]
 本発明の一態様によれば、工具寿命を向上可能な切削工具を提供することができる。
 [本発明の実施形態の概要]
 まず、本発明の実施形態の概要について説明する。
 (1)本発明の一態様に係る切削工具100は、基材20と、基材20を被覆しているダイヤモンド層7とを備えた切削工具である。ダイヤモンド層7は、すくい面12と、すくい面12に連なる逃げ面11とを含んでいる。すくい面12と逃げ面11との稜線は、切れ刃10を構成している。基材20は、すくい面12と対向する頂面22を含んでいる。頂面22に対して垂直な方向から見て、すくい面12は、複数の突起部1を含んでいる。切れ刃10の延在方向Bに対して垂直な断面において、複数の突起部1の各々は、傾斜部2と、傾斜部2に連なる曲率部3とを有している。断面において、傾斜部2は、切れ刃10から離れるにつれて頂面22に垂直な方向の高さが大きくなる。
 上記(1)に係る切削工具100によれば、複数の突起部1の各々は、切れ刃10から離れるにつれて頂面22に垂直な方向の高さが大きくなる傾斜部2を有している。そのため、切屑がすくい面12の傾斜部2上を滑らかに通過することができる。結果として、切屑の排出性が向上する。よって、切削工具の損傷が低減され、工具寿命を向上することができる。
 (2)上記(1)に係る切削工具100において、頂面22に対して垂直な方向から見て、傾斜部2の法線D3を頂面22に投影した直線D2と、頂面22に平行な方向における切れ刃10の法線D1とがなす角度θは、80°以下であってもよい。これにより、切屑の排出方向を、傾斜部の法線を頂面に投影した直線の方向とほぼ平行にすることができる。結果として、切屑の排出性がさらに向上する。
 (3)上記(1)または(2)に係る切削工具100において、頂面22に対して垂直な方向から見て、複数の突起部1は、切れ刃10から2mm以内の領域にわたって設けられていてもよい。これにより、切屑が通過する領域の大部分において切屑が排出されやすくなる。
 (4)上記(1)~(3)のいずれかに係る切削工具100において、断面において、切れ刃10の曲率半径は、0.01μm以上50μm以下であってもよい。これにより、切れ味を改善することができる。
 (5)本発明の一実施形態に係る切削工具100の製造方法は以下の工程を備えている。基材20にダイヤモンド層7が被覆される。イオンビームによりダイヤモンド層7の一部が除去される。切削工具100は、すくい面12と、すくい面12に連なる逃げ面11とを有している。基材20は、すくい面12と対向する頂面22と、逃げ面11と対向する側面21とを有している。ダイヤモンド層7を被覆する工程においては、ダイヤモンド層7の表面が複数の突起部8によって形成される。ダイヤモンド層7の一部を除去する工程においては、頂面22を上側に向け、かつ頂面22と側面21との稜線23を左側に向けた場合に、左上側から頂面22に対して傾斜する方向にイオンビームが照射されることで複数の突起部8の各々の一部が除去される。
 上記(5)に係る切削工具100の製造方法によれば、頂面22を上側に向け、かつ頂面22と側面21との稜線23を左側に向けた場合に、左上側から頂面22に対して傾斜する方向にイオンビームが照射されることで複数の突起部8の各々の一部が除去される。これにより、複数の突起部1を形成することができる。複数の突起部1の各々は、切れ刃10から離れるにつれて頂面22に垂直な方向の高さが大きくなる傾斜部2を有している。そのため、切屑がすくい面12の傾斜部2上を滑らかに通過することができる。結果として、切屑の排出性が向上する。よって、切削工具の損傷が低減され、切削工具の寿命が延びる。
 (6)上記(5)に係る切削工具100の製造方法において、ダイヤモンド層7の一部を除去する工程においては、基材20を回転させることなく行われてもよい。これにより、簡易な方法で、複数の突起部1を形成することができる。
 [本発明の実施形態の詳細]
 以下、図面に基づいて本発明の実施形態の詳細について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。また、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
 (第1実施形態)
 まず、第1実施形態に係る切削工具100の構成について説明する。図1は、第1実施形態に係る切削工具の構成を示す斜視模式図である。図2は、第1実施形態に係る切削工具の構成を示す正面模式図である。
 図1および図2に示されるように、第1実施形態に係る切削工具100は、たとえばCFRP(Carbon Fiber Reinforced Plastic)の加工に用いられるラジアスエンドミルである。切削工具100は、たとえば中心軸Aを中心として回転可能である。切削工具100は、すくい面12と、逃げ面11と、ヒール面14と、第1溝面15と、第2溝面17とを主に有している。逃げ面11は、すくい面12に連なる。ヒール面14は、逃げ面11に連なる。ヒール面14は、逃げ面11に対して回転方向の後方側に位置する。すくい面12と逃げ面11との稜線は、切れ刃10を構成する。
 図1および図2に示されるように、切れ刃10は、底刃10aと、外周刃10bとを有していてもよい。外周刃10bは、底刃10aよりも外周側にある。逃げ面11は、第1逃げ面部11aと、第2逃げ面部11bとを有していてもよい。すくい面12は、第1すくい面部12aと、第2すくい面部12bとを有していてもよい。第1逃げ面部11aと、第1すくい面部12aとの稜線が、底刃10aを構成していてもよい。第2逃げ面部11bと、第2すくい面部12bとの稜線が、外周刃10bを構成していてもよい。第1溝面15は、第2溝面17と連なっていてもよい。第1溝面15は、第2溝面17よりも外周側に位置していてもよい。第2溝面17は、第1すくい面部12aに連なっていてもよい。ヒール面14は、逃げ面11よりもシャンク19側に位置していてもよい。
 図3は、図2のIII領域の拡大模式図である。図4は、図3のIV-IV線に沿った断面模式図である。図4に示されるように、切削工具100は、基材20と、ダイヤモンド層7とを主に有している。ダイヤモンド層7は、基材20を被覆している。ダイヤモンド層7は、すくい面12と、逃げ面11とを含んでいる。言い換えれば、すくい面12および逃げ面11の各々は、ダイヤモンド層7により構成されている。
 基材20は、頂面22と、側面21とを主に有している。頂面22は、すくい面12と対向している。側面21は、逃げ面11と対向している。基材20の材料は、たとえばWC(炭化タングステン)などの粉末と、Co(コバルト)などの結合剤とを含む超硬合金である。なお、基材20は、超硬合金に限られるものではなく、たとえばサーメットまたはセラミックスなどであってもよい。ダイヤモンド層7は、たとえばダイヤモンド結晶を含有する層である。ダイヤモンド層7は、たとえば多結晶ダイヤモンドである。
 図3に示されるように、頂面22に対して垂直な方向から見て、すくい面12は、複数の第1突起部1を含んでいる。複数の第1突起部1は、切れ刃10の延在方向Bに対して垂直な方向に沿って並んでいてもよい。同様に、複数の第1突起部1は、切れ刃10の延在方向Bに沿って並んでいてもよい。複数の第1突起部1は、互いに接していてもよい。第1突起部1の数は、多数であってもよい。多数とは、たとえば20μm四方の範囲内に10個以上である。
 図4に示されるように、切れ刃10の延在方向Bに対して垂直な断面において、複数の第1突起部1の各々は、第1傾斜部2と、第1曲率部3とを有する。第1曲率部3は、第1傾斜部2と連なっている。複数の第1突起部1の各々は、第1傾斜部2と、第1曲率部3とによって構成される。第1曲率部3は、第1傾斜部2に対して切れ刃10とは反対側に位置している。複数の第1突起部1の各々は、基材20から離れる方向に突出する。断面において、第1傾斜部2は、切れ刃10から離れるにつれて頂面22に垂直な方向の高さが大きくなる。第1傾斜部2の高さは、切れ刃10から離れるにつれて単調に増加していてもよい。頂面22を上側に向け、かつ頂面22と側面21との稜線23を左側に向けて配置した場合に、第1傾斜部2は左下から右上に向かって延在している。
 第1傾斜部2は、頂面22に対して傾斜している。頂面22に対する第1傾斜部2の角度φ1は、たとえば10°以上40°以下である。角度φ1の上限は、特に限定されないが、たとえば80°であってもよいし、30°であってもよい。角度φ1の下限は、特に限定されないが、たとえば5°であってもよいし、1°であってもよい。図3に示されるように、頂面22に対して垂直な方向から見て、第1傾斜部2の法線D3(図4参照)を頂面22に投影した直線D2と、頂面22に平行な方向における切れ刃10の法線D1とは、ほぼ平行であってもよい。複数の第1突起部1において、傾斜部2の法線D3を頂面22に投影した直線D2の各々は、互いに平行であってもよいし、交差していてもよい。
 図4に示されるように、頂面22に対して垂直な方向において、頂面22に接しているダイヤモンド層7の部分の厚みT2は、たとえば10μmである。頂面22に接しているダイヤモンド層7の部分の厚みT2は、たとえば5μm以上20μm以下である。頂面22に対して垂直な方向において、複数の第1突起部1の各々の厚みT1は、たとえば3μmである。複数の第1突起部1の各々の厚みT1は、たとえば1μm以上5μm以下である。
 図3に示されるように、頂面22に対して垂直な方向から見て、第1曲率部3は、たとえば三日月の形状を有している。第1曲率部3は、第1傾斜部2との境界部3aと、境界部3aと反対側の第1外周部3bとを有している。頂面22に対して垂直な方向から見て、境界部3aおよび第1外周部3bの各々は、切れ刃10と反対側に突出するように湾曲している。境界部3aおよび第1外周部3bの各々は、円弧状であってもよい。境界部3aの曲率半径は、第1外周部3bの曲率半径よりも大きくてもよい。
 第1傾斜部2は、境界部3aと反対側の第2外周部2aを有している。頂面22に対して垂直な方向から見て、第2外周部2aは、切れ刃10に向かって突出するように湾曲している。切れ刃10の延在方向Bにおける第1傾斜部2の幅W4は、切れ刃10の延在方向Bに対して垂直であってかつ頂面22に平行な方向における第1傾斜部2の幅W2よりも大きくてもよい。切れ刃10の延在方向Bに対して垂直であってかつ頂面22に平行な方向において、第1傾斜部2の幅W2は、第1曲率部3の幅W3よりも大きくてもよい。切れ刃10の延在方向Bにおいて、第1傾斜部2の幅W4は、第1曲率部3の幅とほぼ同じであってもよい。切れ刃10の延在方向Bにおける第1傾斜部2の幅W4は、切れ刃10の延在方向Bに対して垂直であってかつ頂面22に平行な方向における第1突起部1の幅W1とほぼ同じであってもよい。
 図3に示されるように、頂面22に対して垂直な方向から見て、複数の第1突起部1の各々は、うろこ状を有していてもよい。本明細書においては、傾斜部と曲率部とを有する多数の突起部が傾斜部の向きを概ね揃えてある程度密集して存在することにより、平面視のSEM(Scanning Electron Microscope)画像において、曲率部に対応する部分に三日月状の陰影が生じ、あたかも魚のうろこのように見える様子のことを、うろこ状という。図3に示されるように、頂面22に対して垂直な方向から見て、複数の第1突起部1は、切れ刃10から距離L以内の領域にわたって設けられていてもよい。距離Lは、たとえば2mmである。距離Lは、特に限定されないが、10μmであってもよいし、500μmであってもよい。言い換えれば、切れ刃10と、切れ刃10から切れ刃10の延在方向Bに対して垂直な方向に距離Lだけ離れた位置とに挟まれたすくい面12の領域には、複数の第1突起部1が形成されている。距離Lは、たとえば切込深さと同程度であってもよい。なお、切れ刃10が直線ではなく曲線の場合、切れ刃10の延在方向Bに対して垂直な方向とは、切れ刃10の接線に対して垂直な方向を意味する。
 図4に示されるように、切れ刃10は、すくい面12の第1傾斜部2と、逃げ面11の曲率部9との境界により構成されていてもよい。切れ刃10は、鋭利に尖って形成されている。具体的には、切れ刃10の延在方向Bに対して垂直な断面において、切れ刃10の曲率半径は、たとえば0.01μm以上50μm以下である。切れ刃10の曲率半径の上限は、特に限定されないが、たとえば30μmであってもよいし、10μmであってもよい。切れ刃10の曲率半径の下限は、特に限定されないが、たとえば1μmであってもよいし、0.1μmであってもよい。
 図4に示されるように、逃げ面11は、複数の第2突起部4により構成されていてもよい。切れ刃10の延在方向Bに対して垂直な断面において、複数の第2突起部4の各々は、円弧状の部分を有していてもよい。複数の第2突起部4の各々は、クラスター状であってもよい。側面21に対して垂直な方向における側面21に接しているダイヤモンド層7の部分の厚みT4は、頂面22に対して垂直な方向における頂面22に接しているダイヤモンド層7の部分の厚みT2よりも大きくてもよい。側面21に対して垂直な方向における第2突起部4の厚みT3は、頂面22に対して垂直な方向における複数の第1突起部1の各々の厚みT1よりも大きくてもよい。
 図5は、第1実施形態に係る切削工具の第1突起部1の構成を示す斜視模式図である。図5に示されるように、複数の第1突起部1の各々は、たとえば半球に対して交差する平面によって半球の一部がカットされて取り除かれた形状を有していてもよい。具体的には、複数の第1突起部1の各々は、概ね平面状の第1傾斜部2と、概ね球面状の第1曲率部3とにより構成されている。第1傾斜部2は、凸状に湾曲していてもよい。
 次に、第1実施形態に係る切削工具の製造方法について説明する。
 図6は、第1実施形態に係る切削工具の製造方法を概略的に示すフロー図である。第1実施形態に係る切削工具の製造方法は、基材にダイヤモンド層を被覆する工程(S10:図6)と、イオンビームによりダイヤモンド層の一部を除去する工程(S20:図6)とを主に含んでいる。
 図7は、第1実施形態に係る切削工具の製造方法の第1工程を示す断面模式図である。図7に示されるように、基材にダイヤモンド層を被覆する工程(S10:図6)においては、まず基材20が準備される。基材20の材料は、たとえばWC(炭化タングステン)などの粉末と、Co(コバルト)などの結合剤とを含む超硬合金である。なお、基材20は、超硬合金に限られるものではなく、たとえばサーメットまたはセラミックスなどであってもよい。図7に示されるように、基材20は、頂面22と、側面21とを主に有している。頂面22は、切削工具100のすくい面12となる面と対向する面である。側面21は、切削工具100の逃げ面11となる面と対向する面である。
 図8は、第1実施形態に係る切削工具の製造方法の第2工程を示す断面模式図である。図9は、第1実施形態に係る切削工具の製造方法の第2工程を示す平面模式図である。図8および図9に示されるように、基材20にダイヤモンド層7が被覆される。具体的には、このダイヤモンド層7の成膜は、たとえばHFCVD(Hot Filament Chemical Vapor Deposition)を用いて行われる。ダイヤモンド層7の厚みは、たとえば10μm程度である。図8に示されるように、ダイヤモンド層7は、頂面22と、側面21とを被覆するように形成される。ダイヤモンド層7を被覆する工程においては、ダイヤモンド層7の表面が複数の突起部8によって形成される。複数の突起部8の各々は、たとえば半球状の形状を有している。具体的には、頂面22に対向するダイヤモンド層7の部分の表面と、側面21に対向するダイヤモンド層7の部分の表面とは、複数の突起部8により構成される。
 次に、イオンビームによりダイヤモンド層の一部を除去する工程(S20:図6)が実施される。具体的には、イオンエッチング装置を使用してイオンビームがすくい面12となる面に対して照射されることにより、ダイヤモンド層7の一部が除去される。イオンビームとしては、たとえば酸素イオンが用いられる。酸素イオンをダイヤモンド層7に照射することで、ダイヤモンド層7が、一酸化炭素または二酸化炭素に変換される。これにより、ダイヤモンドが気体となり除去される。
 図10は、第1実施形態に係る切削工具の製造方法の第3工程を示す断面模式図である。イオンビームは指向性を有する。図10に示されるように、頂面22を上側に向け、かつ頂面22と側面21との稜線23を左側に向けた場合に、左上側から頂面22に対して傾斜する方向にイオンビームが照射される。これにより、複数の第1突起部1の各々の一部が除去される。図10に示されるように、稜線23の延在方向Bに対して垂直な断面で見た場合、イオンビームの照射方向Iは、頂面22の法線に対して傾斜している。頂面22に垂直な方向に見た場合、イオンビームの照射方向Iは、稜線23の延在方向Bに対してほぼ垂直であってもよい。
 イオンエッチング装置としては、たとえばエリオニクス社製のEIS200-ERを使用することができる。イオンエッチングの条件は、イオンビームの照射時間1時間、印加電圧2500Vである。一般的にイオンビームでダイヤモンド被膜を除去する場合、基材20を回転軸の周りに回転させながら、ダイヤモンド被膜が基材20から除去される。しかしながら、本実施形態に係る切削工具の製造方法においては、ダイヤモンド層の一部を除去する工程は、基材20を回転させることなく行われる。言い換えれば、基材20の頂面22に対するイオンビームの照射方向を変化させることなく保持しながら、ダイヤモンド層7の一部が除去される。これにより、複数の第1突起部1を含むすくい面12が形成される(図4参照)。
 次に、第1実施形態に係る切削工具の作用効果について説明する。
 第1実施形態に係る切削工具100によれば、複数の第1突起部1の各々は、切れ刃10から離れるにつれて頂面22に垂直な方向の高さが大きくなる第1傾斜部2を有している。そのため、切屑がすくい面12の第1傾斜部2上を滑らかに通過することができる。結果として、切屑の排出性が向上する。よって、切削工具の損傷が低減され、工具寿命を向上することができる。
 また第1実施形態に係る切削工具100によれば、頂面22に対して垂直な方向から見て、第1傾斜部2の法線D3を頂面22に投影した直線D2と、頂面22に平行な方向における切れ刃10の法線D1とがなす角度θは、80°以下である。これにより、切屑の排出方向を、第1傾斜部2の法線D3を頂面22に投影した直線D2の方向とほぼ平行にすることができる。結果として、切屑の排出性がさらに向上する。
 さらに第1実施形態に係る切削工具100によれば、頂面22に対して垂直な方向から見て、複数の第1突起部は1、切れ刃10から2mm以内の領域にわたって設けられている。これにより、切屑が通過する領域の大部分において切屑が排出されやすくなる。
 さらに第1実施形態に係る切削工具100によれば、断面において、切れ刃10の曲率半径は、0.01μm以上50μm以下である。これにより、切れ味を改善することができる。
 第1実施形態に係る切削工具100の製造方法によれば、頂面22を上側に向け、かつ頂面22と側面21との稜線を左側に向けた場合に、左上側から頂面22に対して傾斜する方向にイオンビームが照射されることで複数の突起部8の各々の一部が除去される。これにより、複数の第1突起部1を形成することができる。複数の第1突起部1の各々は、切れ刃10から離れるにつれて頂面22に垂直な方向の高さが大きくなる第1傾斜部2を有している。そのため、切屑がすくい面12の第1傾斜部2上を滑らかに通過することができる。結果として、切屑の排出性が向上する。よって、切削工具の損傷が低減され、切削工具の寿命が延びる。
 また第1実施形態に係る切削工具100の製造方法によれば、ダイヤモンド層7の一部を除去する工程においては、基材20を回転させることなく行われる。これにより、簡易な方法で、複数の第1突起部1を形成することができる。
 (第2実施形態)
 次に、第2実施形態に係る切削工具100の構成について説明する。以下においては、第1実施形態に係る切削工具100と異なる構成について主に説明し、同様の説明については繰り返さない。
 図11は、第2実施形態に係る切削工具のすくい面12の構成を示す平面模式図である。図11に示されるように、頂面22に対して垂直な方向から見て、傾斜部2の法線を頂面22に投影した直線D2は、頂面22に平行な方向における切れ刃10の法線D1に対して傾斜していてもよい。頂面22に対して垂直な方向から見て、傾斜部2の法線を頂面22に投影した直線D2と、頂面22に平行な方向における切れ刃10の法線D1とがなす角度θは、たとえば80°以下である。当該角度θは、たとえば60°以下であってもよいし、30°以下であってもよい。頂面22に対して垂直な方向から見て、傾斜部2の法線を頂面22に投影した直線D2は、頂面22に平行な方向における切れ刃10の法線D1に対してシャンク側に傾斜していてもよいし、シャンクとは反対側(切削工具の先端側)に傾斜していてもよい。
 なお、第2実施形態に係る切削工具は、イオンビームによりダイヤモンド層7の一部を除去する工程(S20:図6)において、頂面22に対して垂直な方向から見て、イオンビームの照射方向Iを稜線23の延在方向Bの法線D1に対して傾斜させた状態で、イオンビームを照射することにより形成することができる。第2実施形態に係る切削工具においても、第1実施形態に係る切削工具と同等の効果が得られる。
 (第3実施形態)
 次に、第3実施形態に係る切削工具100の構成について説明する。以下においては、第1実施形態に係る切削工具100と異なる構成について主に説明し、同様の説明については繰り返さない。
 図12は、第3実施形態に係る切削工具の構成を示す断面模式図である。側面21に対して垂直な方向から見て、逃げ面11は、複数の第2突起部4を含んでいてもよい。複数の第2突起部4は、切れ刃10の延在方向Bに対して垂直な方向に沿って並んでいてもよい。同様に、複数の第2突起部4は、切れ刃10の延在方向Bに沿って並んでいてもよい。複数の第2突起部4は、互いに接していてもよい。複数の第2突起部4の各々は、うろこ状を有していてもよい。第2突起部4の数は、多数であってもよい。
 図12に示されるように、切れ刃10の延在方向Bに対して垂直な断面において、複数の第2突起部4の各々は、第2傾斜部5と、第2曲率部6とを有する。第2曲率部6は、第2傾斜部5と連なっている。複数の第2突起部4の各々は、第2傾斜部5と、第2曲率部6とによって構成される。第2曲率部6は、第2傾斜部5に対して切れ刃10とは反対側に位置している。複数の第2突起部4の各々は、基材20から離れる方向に突出する。断面において、第2傾斜部5は、切れ刃10から離れるにつれて側面21に垂直な方向の高さが大きくなってもよい。第2傾斜部5の高さは、切れ刃10から離れるにつれて単調に増加していてもよい。側面21を上側に向け、かつ頂面22と側面21との稜線23を左側に向けて配置した場合に、第2傾斜部5は左下から右上に向かって延在していてもよい。
 第2傾斜部5は、側面21に対して傾斜している。側面21に対する第2傾斜部5の角度φ2は、頂面22に対する第1傾斜部2の角度φ1と同じであってもよいし、異なっていいてもよい。側面21に対して垂直な方向において側面21に接しているダイヤモンド層7の部分の厚みT4は、頂面22に対して垂直な方向において頂面22に接しているダイヤモンド層7の部分の厚みT2とほぼ同じであってもよいし、異なっていてもよい。側面21に対して垂直な方向における第2突出部の厚みT3は、頂面22に対して垂直な方向における複数の第1突起部1の各々の厚みT1とほぼ同じであってもよいし、異なっていてもよい。図12に示されるように、切れ刃10は、すくい面12の第1傾斜部2と、逃げ面11の第2傾斜部5との境界により構成されていてもよい。これにより、切れ刃10が鋭利にさらに形成され得る。
 なお、第3実施形態に係る切削工具は、イオンビームによりダイヤモンド層7の一部を除去する工程(S20:図6)において、基材20に対するイオンビームの照射方向を変化させることにより、形成することができる。具体的には、頂面22を上側に向け、かつ頂面22と側面21との稜線23を左側に向けた場合に、左上側から頂面22に対して傾斜する方向にイオンビームが照射される。これにより、複数の第1突起部1の各々の一部が除去される。同様に、側面21を上側に向け、かつ頂面22と側面21との稜線23を左側に向けた場合に、左上側から側面21に対して傾斜する方向にイオンビームが照射される。これにより、複数の第2突起部4の各々の一部が除去される。第3実施形態に係る切削工具よれば、逃げ面摩耗を抑制することができる。
 なお第1~第3実施形態においては、切削工具100がラジアスエンドミルの場合について説明したが、切削工具100はラジアスエンドミルに限定されない。切削工具100は、たとえばボールエンドミルまたはドリルなどの回転切削工具であってもよい。
 以下に、サンプル1A~1Cの切削工具を用いた切削試験の結果について説明する。まず、サンプル1A~1Cに係る切削工具が準備される。サンプル1Aは、径が12mmの第1実施形態に係る切削工具である(図4参照)。
 図13は、サンプル1Bに係る切削工具の構成を示す断面模式図である。図13に示されるように、サンプル1Bの切削工具が有するダイヤモンド層7のすくい面12は、複数の第3突起部31を含む。切れ刃10の延在方向Bに対して垂直な断面において、複数の第3突起部31の各々は、第3傾斜部32と、第3曲率部33とを有する。第3曲率部33は、第3傾斜部32と連なっている。複数の第3突起部31の各々は、第3傾斜部32と、第3曲率部33とによって構成される。第3曲率部33は、第3傾斜部32に対して切れ刃10とは反対側に位置している。複数の第3突起部31の各々は、基材20から離れる方向に突出している。
 断面において、第3傾斜部32は、切れ刃10から離れるにつれて頂面22に垂直な方向の高さが小さくなる。第3傾斜部32の高さは、切れ刃10から離れるにつれて単調に減少している。頂面22を上側に向け、かつ頂面22と側面21との稜線23を左側に向けて配置した場合に、第3傾斜部32は左上から右下に向かって延在している。サンプル1Bの切削工具のその他の構成は、サンプル1Aの切削工具と同様である。
 図14は、サンプル1Cに係る切削工具の構成を示す断面模式図である。図14に示されるように、サンプル1Cの切削工具が有するダイヤモンド層7のすくい面12は、複数の第4突起部41を含む。切れ刃10の延在方向Bに対して垂直な断面において、複数の第4突起部41の各々は、平坦部42と、第4曲率部43と、第5曲率部44とを有する。第4曲率部43は、平坦部42の一端と連なっている。第5曲率部44は、平坦部42の他端と連なっている。
 複数の第4突起部41の各々は、平坦部42と、第4曲率部43と、第5曲率部44とにより構成されている。第4曲率部43は、平坦部42に対して切れ刃10とは反対側に位置している。第5曲率部44は、平坦部42に対して切れ刃10とは同じ側に位置している。平坦部42は、第4曲率部43と第5曲率部44との間に位置している。複数の第4突起部41の各々は、基材20から離れる方向に突出している。
 断面において、平坦部42は、頂面22とほぼ平行である。第4曲率部43の高さは、切れ刃10から離れるにつれて減少している。第5曲率部44の高さは、切れ刃10から離れるにつれて増加している。サンプル1Cの切削工具のその他の構成は、サンプル1Aの切削工具と同様である。
 次に、切削試験条件について説明する。これらのサンプルを用いて、板厚10mmのCFRPの余縁の切断を行なった。切削条件は、切削速度V=150m/min、送り量f=0.48mm/rev、総切削長70mとした。評価方法として、70m切削後の工具の切れ刃10とすくい面12の摩耗の大きさを確認した。その結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、サンプル1A~1Cの切削工具のすくい面摩耗量は、それぞれ30μm、200μmおよび60μmであった。サンプル1Bの切削工具においては、ダイヤモンド層が剥離した。サンプル1Aの切削工具のすくい面摩耗量が最も少なかった。以上の結果より、断面において、切れ刃から離れるにつれて頂面に垂直な方向の高さが大きくなるように傾斜部を設けることにより、すくい面摩耗量を低減可能であることが確かめられた。
 以下に、サンプル2A~2Cの切削工具を用いた切削試験の結果について説明する。まず、サンプル2A~2Cに係る切削工具が準備される。サンプル2A~2Cは、第2実施形態に係る切削工具であり(図11参照)、それらの角度θを表2に示す角度となるよう製作した。
 次に、切削試験条件について説明する。これらのサンプルに対して、実施例1と同様の切削試験条件を用いて評価を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、サンプル2A~2Cの切削工具のすくい面摩耗量は、それぞれ24μm、32μmおよび40μmであった。すくい面摩耗量は、角度θが小さくなる従って少なくなった。角度θが80°以下であれば、すくい面摩耗量は、許容可能な範囲であることが確かめられた。
 以下に、サンプル3A~3Cの切削工具を用いた切削試験の結果について説明する。まず、サンプル3A~3Cに係る切削工具が準備される。サンプル3A~3Cは、第1実施形態に係る切削工具であり(図4参照)、それらの切れ刃からの距離Lを表3に示す通りに製作した。
 次に、切削試験条件について説明する。これらのサンプルに対して、実施例1と同様の切削試験条件を用いて評価を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、サンプル3A~3Cの切削工具のすくい面摩耗量は、それぞれ29μm、32μmおよび35μmであった。すくい面摩耗量は、切れ刃からの距離Lが大きくなる従って少なくなった。突起部が切れ刃から10μm以内の領域にわたって設けられていれば、すくい面摩耗量は、許容可能な範囲であることが確かめられた。
 以下に、サンプル4A~4Eの切削工具を用いた切削試験の結果について説明する。まず、サンプル4A~4Eに係る切削工具が準備される。サンプル4A~4Eは、第1実施形態に係る切削工具であり(図4参照)、それらの切れ刃の曲率半径を表4に示す通りに製作した。
 次に、切削試験条件について説明する。これらのサンプルに対して、実施例1と同様の切削試験条件を用いて評価を行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、サンプル4A~4Eの切削工具のすくい面摩耗量は、それぞれ40μm、24μm、22μm、35μmおよび45μmであった。サンプル4A~4Eの切削工具の逃げ面摩耗量は、それぞれ40μm、27μm、26μm、35μmおよび45μmであった。以上の結果より、切れ刃の曲率半径が0.01μm以上50μm以下の範囲において、すくい面摩耗量および逃げ面摩耗量は少なくなることが確かめられた。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 突起部(第1突起部)、2 傾斜部(第1傾斜部)、2a 第2外周部、3 曲率部(第1曲率部)、3a 境界部、3b 第1外周部、4 第2突起部、5 第2傾斜部、6 第2曲率部、7 ダイヤモンド層、10 切れ刃、10a 底刃、10b 外周刃、11 逃げ面、11a 第1逃げ面部、11b 第2逃げ面部、12 すくい面、12a 第1すくい面部、12b 第2すくい面部、14 ヒール面、15 第1溝面、17 第2溝面、19 シャンク、20 基材、21 側面、22 頂面、23 稜線、31 第3突起部、32 第3傾斜部、33 第3曲率部、41 第4突起部、42 平坦部、43 第4曲率部、44 第5曲率部、100 切削工具、A 中心軸、B 延在方向、D1 切れ刃の法線、D2 直線、D3 傾斜部の法線、I 照射方向、L 距離、T1,T2,T3,T4 厚み、W1,W2,W3,W4 幅。

Claims (6)

  1.  基材と、前記基材を被覆しているダイヤモンド層とを備えた切削工具であって、
     前記ダイヤモンド層は、すくい面と、前記すくい面に連なる逃げ面とを含み、
     前記すくい面と前記逃げ面との稜線は、切れ刃を構成し、
     前記基材は、前記すくい面と対向する頂面を含み、
     前記頂面に対して垂直な方向から見て、前記すくい面は、複数の突起部を含み、
     前記切れ刃の延在方向に対して垂直な断面において、前記複数の突起部の各々は、傾斜部と、前記傾斜部に連なる曲率部とを有しており、
     前記断面において、前記傾斜部は、前記切れ刃から離れるにつれて前記頂面に垂直な方向の高さが大きくなる、切削工具。
  2.  前記頂面に対して垂直な方向から見て、前記傾斜部の法線を前記頂面に投影した直線と、前記頂面に平行な方向における前記切れ刃の法線とがなす角度は、80°以下である、請求項1に記載の切削工具。
  3.  前記頂面に対して垂直な方向から見て、前記複数の突起部は、前記切れ刃から2mm以内の領域にわたって設けられている、請求項1または請求項2に記載の切削工具。
  4.  前記断面において、前記切れ刃の曲率半径は、0.01μm以上50μm以下である、請求項1~請求項3のいずれか1項に記載の切削工具。
  5.  基材にダイヤモンド層を被覆する工程と、
     イオンビームにより前記ダイヤモンド層の一部を除去する工程とを備えた切削工具の製造方法であって、
     前記切削工具は、すくい面と、前記すくい面に連なる逃げ面とを有し、
     前記基材は、前記すくい面と対向する頂面と、前記逃げ面と対向する側面とを有し、
     前記ダイヤモンド層を被覆する工程においては、前記ダイヤモンド層の表面が複数の突起部によって形成され、
     前記ダイヤモンド層の一部を除去する工程においては、前記頂面を上側に向け、かつ前記頂面と前記側面との稜線を左側に向けた場合に、左上側から前記頂面に対して傾斜する方向に前記イオンビームが照射されることで前記複数の突起部の各々の一部が除去される、切削工具の製造方法。
  6.  前記ダイヤモンド層の一部を除去する工程においては、前記基材を回転させることなく行われる、請求項5に記載の切削工具の製造方法。
PCT/JP2018/018739 2017-08-22 2018-05-15 切削工具およびその製造方法 WO2019039005A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019537921A JP7006881B2 (ja) 2017-08-22 2018-05-15 切削工具およびその製造方法
US16/639,866 US11554421B2 (en) 2017-08-22 2018-05-15 Cutting tool and method of manufacturing the same
EP18847531.3A EP3674022A4 (en) 2017-08-22 2018-05-15 CUTTING TOOL AND ITS MANUFACTURING PROCESS
CN201880054422.3A CN110997203B (zh) 2017-08-22 2018-05-15 切削工具及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-159279 2017-08-22
JP2017159279 2017-08-22

Publications (1)

Publication Number Publication Date
WO2019039005A1 true WO2019039005A1 (ja) 2019-02-28

Family

ID=65438541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018739 WO2019039005A1 (ja) 2017-08-22 2018-05-15 切削工具およびその製造方法

Country Status (6)

Country Link
US (1) US11554421B2 (ja)
EP (1) EP3674022A4 (ja)
JP (1) JP7006881B2 (ja)
CN (1) CN110997203B (ja)
TW (1) TW201912271A (ja)
WO (1) WO2019039005A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10882117B2 (en) * 2016-06-29 2021-01-05 Sumitomo Electric Hardmetal Corp. Cutting tool
WO2021261316A1 (ja) * 2020-06-22 2021-12-30 住友電工ハードメタル株式会社 工具及び工具の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7001245B2 (ja) * 2019-08-01 2022-01-19 住友電工ハードメタル株式会社 切削工具の製造方法
US20230249262A1 (en) * 2020-07-09 2023-08-10 Sumitomo Electric Hardmetal Corp. Diamond-coated tool and method for manufacturing the same
EP4279206A1 (de) * 2022-05-17 2023-11-22 Rollomatic S.A. Schneidwerkzeug und verfahren zur herstellung eines schneidwerkzeugs
GB202301305D0 (en) * 2023-01-30 2023-03-15 Element Six Uk Ltd Cutting tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011902A1 (ja) * 2003-07-31 2005-02-10 A.L.M.T.Corp. ダイヤモンド膜被覆工具およびその製造方法
JP2007307673A (ja) * 2006-05-19 2007-11-29 Osg Corp ダイヤモンド被覆切削部材、およびその製造方法
JP2011101910A (ja) 2009-11-10 2011-05-26 Sumitomo Electric Hardmetal Corp ダイヤモンド被覆切削工具
JP2014226733A (ja) * 2013-05-20 2014-12-08 日本航空電子工業株式会社 刃物工具
JP2017159279A (ja) 2016-03-11 2017-09-14 大阪瓦斯株式会社 洗浄システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255270A (ja) * 2008-03-27 2009-11-05 Aisin Aw Co Ltd 切削工具
JP5536143B2 (ja) * 2012-06-07 2014-07-02 ユニオンツール株式会社 切削工具用ダイヤモンド皮膜
JP5764181B2 (ja) 2013-10-31 2015-08-12 ユニオンツール株式会社 硬質皮膜被覆切削工具
WO2015083716A1 (ja) * 2013-12-03 2015-06-11 株式会社タンガロイ 切削工具
CN106238758A (zh) * 2016-08-30 2016-12-21 江苏大学 一种自保护控屑刀具及其加工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011902A1 (ja) * 2003-07-31 2005-02-10 A.L.M.T.Corp. ダイヤモンド膜被覆工具およびその製造方法
JP2007307673A (ja) * 2006-05-19 2007-11-29 Osg Corp ダイヤモンド被覆切削部材、およびその製造方法
JP2011101910A (ja) 2009-11-10 2011-05-26 Sumitomo Electric Hardmetal Corp ダイヤモンド被覆切削工具
JP2014226733A (ja) * 2013-05-20 2014-12-08 日本航空電子工業株式会社 刃物工具
JP2017159279A (ja) 2016-03-11 2017-09-14 大阪瓦斯株式会社 洗浄システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3674022A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10882117B2 (en) * 2016-06-29 2021-01-05 Sumitomo Electric Hardmetal Corp. Cutting tool
WO2021261316A1 (ja) * 2020-06-22 2021-12-30 住友電工ハードメタル株式会社 工具及び工具の製造方法
JPWO2021261316A1 (ja) * 2020-06-22 2021-12-30
CN114450123A (zh) * 2020-06-22 2022-05-06 住友电工硬质合金株式会社 工具以及工具的制造方法
JP7362925B2 (ja) 2020-06-22 2023-10-17 住友電工ハードメタル株式会社 工具及び工具の製造方法
CN114450123B (zh) * 2020-06-22 2024-09-17 住友电工硬质合金株式会社 工具以及工具的制造方法

Also Published As

Publication number Publication date
US20200361005A1 (en) 2020-11-19
US11554421B2 (en) 2023-01-17
CN110997203A (zh) 2020-04-10
TW201912271A (zh) 2019-04-01
CN110997203B (zh) 2022-07-08
EP3674022A1 (en) 2020-07-01
EP3674022A4 (en) 2021-05-19
JPWO2019039005A1 (ja) 2020-09-17
JP7006881B2 (ja) 2022-01-24

Similar Documents

Publication Publication Date Title
WO2019039005A1 (ja) 切削工具およびその製造方法
JP7067828B2 (ja) 切削工具
CN105555447A (zh) 切削工具以及切削加工物的制造方法
JP6652496B2 (ja) ドリルおよびそれを用いた切削加工物の製造方法
US11376668B2 (en) Cutting tool
WO2019065949A1 (ja) ダイヤモンド被覆回転切削工具
TWI750172B (zh) 切削工具
WO2015076216A1 (ja) 切削インサート、切削工具及び被削加工物の製造方法
US11440108B2 (en) Rotary cutting tool
JP7036437B2 (ja) 回転切削工具およびその製造方法
TW201813745A (zh) 切削工具
JPWO2014084252A1 (ja) 切削インサート、切削工具および切削加工物の製造方法
JP2005022102A (ja) 脆性材料用切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018847531

Country of ref document: EP

Effective date: 20200323