WO2019035702A1 - 열전 모듈 및 열전 발전장치 - Google Patents
열전 모듈 및 열전 발전장치 Download PDFInfo
- Publication number
- WO2019035702A1 WO2019035702A1 PCT/KR2018/009541 KR2018009541W WO2019035702A1 WO 2019035702 A1 WO2019035702 A1 WO 2019035702A1 KR 2018009541 W KR2018009541 W KR 2018009541W WO 2019035702 A1 WO2019035702 A1 WO 2019035702A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermoelectric
- thermoelectric element
- electrode
- substrate
- electrically connected
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 67
- 238000009792 diffusion process Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 13
- 239000004065 semiconductor Substances 0.000 claims description 6
- 230000004888 barrier function Effects 0.000 claims description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 3
- 230000002265 prevention Effects 0.000 claims description 3
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims 1
- 229910052709 silver Inorganic materials 0.000 abstract description 8
- 239000004332 silver Substances 0.000 abstract description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 7
- 239000000463 material Substances 0.000 description 10
- 230000006872 improvement Effects 0.000 description 5
- 238000005245 sintering Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 101100457021 Caenorhabditis elegans mag-1 gene Proteins 0.000 description 1
- 101100067996 Mus musculus Gbp1 gene Proteins 0.000 description 1
- 101100400378 Mus musculus Marveld2 gene Proteins 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/81—Structural details of the junction
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/81—Structural details of the junction
- H10N10/817—Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/852—Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/853—Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
Definitions
- thermoelectric generators Thermocouples and thermoelectric generators
- the present invention relates to a thermoelectric module and a thermoelectric generator in which quality improvement and thermal stability of thermoelectric modules are improved.
- thermo-electromotive force thermoelectric phenomenon
- thermoelectric conversion means direct energy conversion between the temperature difference and the electric voltage.
- thermoelectric phenomenon can be classified into a thermoelectric power generating electric energy and a thermoelectric power generating / heating which causes a temperature difference at both ends by electric power supply.
- thermoelectric materials that exhibit thermoelectric properties that is, thermoelectric semiconductors, have many advantages because they have environmental and sustainable advantages in power generation and cooling processes.
- thermoelectric materials are increasing as a technology useful for fuel efficiency improvement and C02 reduction.
- thermoelectrons are thermoelec- tric elements (TE), in which current flows through a hole carrier (hol e carr i er), and n-type thermoelectric elements, in which current flows by electrons
- TE thermoelec- tric elements
- hol e carr i er hole carrier
- n-type thermoelectric elements in which current flows by electrons
- a pair of pn thermoelectric elements formed can be a basic unit.
- the thermoelectric module may include an electrode for connecting the p-type thermoelectric element and the n-type thermoelectric element.
- thermoelectric element is generally formed into a rod-like or columnar structure,
- the power proportional to the square of the temperature difference can be obtained while maintaining the temperature at the high temperature and the other end at the low temperature.
- thermoelectric material used for such a thermoelectric element has a use temperature range in which the performance is optimized, and a plurality of thermoelectric materials are bonded so as to follow the temperature difference in order to maximize the power generation output or generation efficiency at the use temperature.
- a segment thermoelectric element an element formed by joining a thermoelectric material both mechanically and electrically in series.
- thermoelectric devices since the sintering temperature of the Skutterudi te thermoelectric material and the BiTe thermoelectric material are different from each other, the quality degradation and the thermal stability of the thermoelectric devices may be deteriorated in the process of being bonded to each other There is a problem.
- An embodiment of the present invention is to provide a thermoelectric module and a thermoelectric generator having improved thermoelectric module efficiency and improved efficiency and improved thermal stability.
- One embodiment of the present invention is a display device comprising a first substrate provided with a gate electrode, a second substrate opposed to the first substrate and provided with a second electrode, a first substrate disposed between the first substrate and the second substrate, And a plurality of thermoelectric elements electrically connected to the electrode and the second electrode.
- thermoelectric element is connected to the first substrate and the second substrate by sintering and bonding to a bonding layer including silver (Ag), and is electrically connected to the first electrode. And a BiTe-based thermoelectric element electrically connected to the second electrode and connected to the scuttered thermoelectric element by the bonding layer.
- thermoelectric element includes a first thermoelectric element electrically connected between the first thermoelectric element and the second thermoelectric element, and a second thermoelectric element electrically connected between the first thermoelectric element and the second thermoelectric element, Device.
- thermoelectric element includes a first scooter diode thermoelectric element electrically connected to the first electrode, a first scooter diode thermoelectric element electrically connected to the second electrode, And a first BiTe-based thermoelectric element connected to the bonding layer.
- Both sides of the first thermoelectric element can be electrically connected to the first electrode and the second electrode as a bonding layer, respectively.
- At least two of the second thermoelectric elements can be connected to each other with the bonding layer.
- the second thermoelectric element is connected to the second scutertide thermoelectric element electrically connected to the first electrode and the second scutermit thermoelectric element to the second thermoelectric element,
- the electrode electrically connected to the electrode may include a Bi Bi-based thermoelectric element.
- thermoelectric element can be electrically connected to the first electrode and the second electrode respectively as a bonding layer.
- the first thermoelectric element may be a p-type thermoelectric semiconductor and the crab thermoelectric element may be an n-type thermoelectric semiconductor.
- thermoelectric element disposed between the first substrate and the first thermoelectric element.
- thermoelectric element positioned between the second substrate and the second thermoelectric element.
- a diffusion preventing layer may be disposed between the first scuttered thermoelectric element and the first BiTe thermoelectric element.
- a diffusion barrier may be located between the Schottertite thermoelectric element and the second BiTe thermoelectric element.
- the diffusion barrier layer may be formed of hafnium (Hf), titanium nitride (TiN), zirconium (Zr), and
- thermoelectric generator of an embodiment of the present invention may include thermoelectrons.
- a thermoelectric generator according to an embodiment of the present invention includes at least one high-silver block connected to thermoelectric modules, a low-temperature block connected to the thermoelectric modules at the side opposite to the high-temperature block, and a heat- Include .
- thermoelectrons can be improved by sinter bonding the first thermoelectric element and the second thermoelectric element using a paste containing silver (Ag) .
- thermoelectric generator it is possible to improve the power generation output and the power generation efficiency of the thermoelectric generator according to the improvement of the output of the thermoelectric modules and the efficiency characteristics.
- FIG. 1 is a cross-sectional view schematically showing a uni-couple of thermocouples according to an embodiment of the present invention
- FIG. 2 is a schematic view illustrating output characteristics of thermoelectrons according to an exemplary embodiment of the present invention. Referring to FIG.
- FIG. 3 is a view schematically showing characteristics of the thermoelectric module according to an embodiment of the present invention.
- any part is “connected” with another part, this includes also the “if it is 1, connected directly to as well as, interposed between the other member” indirectly connected ".
- a component is referred to as “ comprising ", it is understood that it may include other components, not the exclusion of any other component, unless the context clearly dictates otherwise.
- Section, etc. is to be understood as being “on” or “on” another part, it includes not only “above” another part but also the other part in between, 1 " or " on " Means to be located above or below the object part and does not necessarily mean that it is located above the gravity direction.
- FIG. 1 is a cross-sectional view schematically showing a uni-couple of thermocouples according to an embodiment of the present invention
- thermocouple uni-couple 100 includes a first substrate 10, a first substrate 10 provided with a first electrode 11, A second substrate 20 disposed opposite to the first substrate 10 and provided with a second electrode 21 and a second electrode 20 disposed between the first substrate 10 and the second substrate 20, And a plurality of thermoelectric elements (30) electrically connected to the plurality of electrodes (11) and the plurality of electrodes (21).
- the thermoelectric element 30 can be bonded to the bonding layer 40 containing silver (Ag).
- thermoelectric element 30 has a Schutterti te type thermoelectric element 31a and 33a electrically connected to the first electrode 11 and a second thermoelectric element 31b electrically connected to the second electrode, Based thermoelectric elements 31b and 33b connected to the bonding layer 40 to the Skutterudi te based thermoelectric elements 31a and 33a.
- the Skutterudi te based thermoelectric elements 31a and 33a are made of a thermoelectric element 31a and a thermoelectric element 33a of Skutterudi te type, And the BiTe thermoelectric elements 31b and 33b may include a first BiTe thermoelectric element 31b and a Ge 2 BiTe thermoelectric element 33b.
- the first substrate 10 and the second substrate 20 may be disposed on both sides of the thermoelectric element 30 to support the thermoelectric elements.
- the first substrate 10 may be applied as a high-temperature portion in this embodiment.
- Such a U substrate 10 is formed to be flat in a direction facing the thermoelectric elements 30, so that the thermoelectric elements 30 can be stably supported.
- the first substrate 10 may be formed of a ceramic material such as alumina or AIN.
- the bottom 12 substrate 20 can be applied to the low temperature portion in this embodiment.
- the second substrate 20 is provided at a position opposite to the first substrate 10 with the thermoelectric element 30 interposed therebetween.
- the second substrate 20 stably supports the thermoelectric element 30 together with the first substrate 10 .
- the second substrate 20 may be formed of a ceramic material such as alumina or AIN.
- a heat dissipating member (not shown) may be formed on the second substrate 20 to improve heat dissipation efficiency.
- the thermoelectric element 30 may be disposed in a state of being electrically connected between the first substrate 10 and the second substrate 20 by the first electrode 11 and the second electrode 21.
- the thermoelectric element 30 includes a thermoelectric element 31 electrically connected between the first substrate 10 and the second substrate 20 and a first thermoelectric element 31 electrically connected to the first substrate 10 and the second substrate 20,
- the second thermoelectric element 33 may be electrically connected to the first thermoelectric element 31 while being spaced apart from the first thermoelectric element 31.
- the first thermoelectric elements 31 may be provided between the first substrate 10 and the second substrate 20 in a state where at least two thermoelectric elements 31 are bonded to each other with the bonding layer 40.
- thermoelectric element 31 is electrically connected to the first electrode 11 and the second electrode 21 on both sides of the first thermoelectric element 31 by the bonding layer 40.
- the first thermoelectric element 31 is formed of a p-type thermally conductive element and includes a first scooter diode thermoelectric element 31a electrically connected to the first electrode 11, And a first BiTe thermoelectric element 31b electrically connected to the electrode 21.
- the first thermoelectric element 31 has a first scutter diode (Skutterudi te) thermoelectric element 31a whose performance efficiency is maximized in a relatively high temperature region in a portion electrically connected to the first substrate 10, Can be located.
- Skutterudi te first scutter diode
- the first thermoelectric element 31 may have a first BiTe thermoelectric element 31b whose performance efficiency is maximized at a relatively low temperature region in a portion electrically connected to the second substrate 20.
- the first thermoelectric element 31 may be bonded to the first scutcher tip thermoelectric element 31a and the first BiTe thermoelectric element 31b by the bonding layer 40.
- the bonding layer 40 can be sinter bonded to the first scutertite thermoelectric element 31a and the first BiTe thermoelectric element 31b in the state of being formed of a paste containing silver (Ag) have.
- the first and second BiTe thermoelectric elements 31a and 31b are electrically connected to the first substrate 10 and the second substrate 20, Can be sinter bonded by the bonding layer 40 previously.
- the diffusion preventing layer 50 may be disposed between the first scuttering thermoelectric element 31a and the first BiTe thermoelectric element 31b.
- the diffusion barrier 50 may be formed to prevent the thermoelectric material from diffusing to each other.
- the diffusion preventive layer 60 may be formed of at least one selected from the group consisting of hafnium (Hf), titanium nitride (TiN), zirconium (Zr), and Mo-Ti.
- the diffusion preventing layer 50 is not limited to being formed at a position between the Keckerstead thermoelectric element 31a and the Ga 1 BiTe thermoelectric element 31b, It may be formed at a position between the first thermoelectric elements 31 and a position between the second substrate 20 and the thermoelectric elements 31.
- the second thermoelectric elements 33 are formed in the same or similar shape as the first thermoelectric elements 31 and are spaced apart from the first thermoelectric elements 31 so that the first and second thermoelectric elements 31, As shown in FIG. As a matter of course, it is also possible that the crab two thermoelectric element 33 is changed to an appropriate size or shape in order to improve power generation efficiency.
- the second thermoelectric element 33 is formed of an n-type thermoelectric semiconductor and includes a second thermoelectric element 33a electrically connected to the first electrode 11, And a system 2 BiTe-based thermoelectric element 33b electrically connected to the electrode 21.
- the second thermoelectric element 33 includes a second scooter diode thermoelectric element 33a that maximizes performance efficiency in a relatively high temperature region on a portion electrically connected to the first substrate 10, Can be located.
- the second thermoelectric element 31 may be located at a portion of the second thermoelectric element 33 that is electrically connected to the second substrate 20, and the second thermoelectric element 31b may maximize the performance in a relatively low region.
- the second thermoelectric element 33 may be bonded to the second thermoelectric element 33a and the second thermoelectric element 33b by a bonding layer 40. That is, the bonding layer 40 is formed of a paste containing a silver (Ag) and a second scutertide (Skutterudi te) thermoelectric element 33a and a second BiTe- The element 33b can be sintered and bonded.
- the bonding layer 40 is formed of a paste containing a silver (Ag) and a second scutertide (Skutterudi te) thermoelectric element 33a and a second BiTe-
- the element 33b can be sintered and bonded.
- the diffusion preventing layer 50 is located between the BiTe thermoelectric elements 33b.
- the diffusion preventing layer 50 may be formed to prevent the thermoelectric material from diffusing to each other.
- the diffusion preventive layer 50 is not limited to be formed at a position between the Keum 2 sccutterite thermoelectric element 33 a and the Ge 2 BiTe thermoelectric element 33 b, It may be formed at a position between the first thermoelectric elements 31 and between the second thermoelements 31 and the second substrate 20.
- the uni-couple (lOO) of the thermoelectrons of the present embodiment includes a paste containing silver (Ag) .
- FIG. 2 is a graph schematically illustrating output characteristics of thermoelectrons according to an embodiment of the present invention
- FIG. 3 is a graph schematically illustrating efficiency characteristics of thermoelectrons according to an embodiment of the present invention.
- FIGS. 2 and 3 are graphs showing the output and efficiency characteristics of the segment models according to the temperature difference after manufacturing the thermocouples composed of uni-couple (lOO) 31pair of thermocouples.
- the power output of 7.49 W, 11.52 W, and 15.54 W at 281 ° C, 356 ° C and 447 ° was 3.06V, 3.94V, and 4.73V.
- thermoelectric device considering that the power generation efficiency of a Skutterudi te based thermoelectric device is about 6.5%, the segment thermoelectric device has a considerably high power generation It can be confirmed that it has efficiency.
- thermoelectric generator includes at least one high temperature block connected to thermoelectric modules, a low melting block connected to the thermoelectric modules at a side opposite to the high temperature mold, . ≪ / RTI >
- thermoelectric modules improve the power generation efficiency of the thermoelectric generator.
- thermoelectric element 20 gate 2 substrate 30 thermoelectric element
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
열전 모들 및 열전 발전장치가 개시되며, 열전 모듈은 제 1 전극이 설치된 제 1 기판과, 제 1 기판에 대향하게 배치되며 제 2 전극이 설치된 제 2 기판과, 제 1 기판과 제 2 기판의 사이에 배치되어 제 1 전극과 제 2 전극에 전기적으로 연결되는 복수개의 열전 소자를 포함하고, 열전 소자는 은 (Ag)을 포함하는 접합층으로 접합되어 제 1 기판과 제 2 기판의 사이에 전기적으로 연결되며, 상기 제 1 전극에 전기적으로 연결되는 스쿠테르다이트 (Skutterudite)계 열전 소자와, 상기 제 2 전극에 전기적으로 연결되며 상기 스쿠테르다이트 (Skutterudite)계 열전 소자에 상기 접합층으로 연결되는 BiTe계 열전 소자를 포함한다.
Description
【발명의 명칭】
열전 모들 및 열전 발전장치
【기술분야】
관련출원 (들)과의 상호인용
본 출원은 2017년 8월 18일자 한국 특허 출원 제
10-2017-0105104호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 열전 모들의 품질 향상과 열적 안정성이 향상되는 열전 모듈 및 열전 발전장치에 관한 것이다.
【배경기술】
고체 상태인 재료의 양단에 온도차가 있으면 열 의존성을 갖는 캐리어 (전자 혹은 홀)의 농도 차이가 발생하고, 이것은 열기전력 (Thermo-electromot ive force)이라는 전기적인 현상, 즉 열전 현상으로 나타난다.
이와 같이 열전 현상은 온도의 차이와 전기 전압 사이의 직접적인 에너지 변환을 의미한다.
이러한 열전 현상은 전기적 에너지를 생산하는 열전 발전과, 전기 공급에 의해 양단의 온도차를 유발하는 열전 넁각 /가열로 구분할 수 있다. 열전 현상을 보이는 열전 재료, 즉 열전 반도체는 발전과 냉각 과정에서 친환경적이고 지속가능한 장점이 있어서 많은 연구가 이루어지고 있다.
더욱이, 산업 폐열, 자동차 폐열 등에서 직접 전력을 생산해낼 수 있어 연비 향상이나 C02 감축 등에 유용한 기술로서, 열전 재료에 대한 관심은 더욱 높아지고 있다.
열전 모들은, 홀 캐리어 (hol e carr i er )에 의해 전류가흐르는, p형 열전 소자 (thermoel ectr i c el ement : TE)와, 전자 (el ectron)에 의해서 전류가흐르는, n형 열전 소자로 이루어진 p-n 열전 소자 1쌍이 기본 단위를 이를 수 있다. 또한, 열전 모듈은 p형 열전 소자와 n형 열전 소자 사이를 연결하는 전극을 구비할수 있다.
열전 소자는 일반적으로 봉형 또는 기둥형 구조로 형성되고, 일단을
고온으로 유지하고 타단을 저온으로 유지한 상태로, 온도차의 제곱에 비례한 전력을 얻을 수 있다.
이러한 열전 소자에 이용하는 열전 재료는 성능을 최적으로 하는 사용 온도 범위가 있고, 사용 온도에서 발전 출력 또는 발전 효율을 최대로 하기 위해 복수의 열전 재료를 온도차를 따르도록 접합해 이용한다. 여기서, 열전 재료를 기계 구조적으로도 전기적으로도 직렬로 접합해서 이루어지는 소자를 세그먼트 열전 소자라고 부른다.
한편, 스쿠테르다이트 (Skutterudi te)계 열전 재료와 BiTe계 열전 재료는 소결 온도가서로 상이한 바, 서로간에 접합되어 열전 소자로 제조되는 과정에서 열전 모들의 품질 저하와 열적 안정성이 저하될 수 있는 문제점이 있다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 일 실시예는, 열전 모듈의 출락과 효율 특성 향상과 열적 안정성이 향상되는 열전 모들 및 열전 발전장치를 제공하고자 한다.
【기술적 해결방법】
본 발명의 일 실시예는, 게 1 전극이 설치된 제 1 기판과, 제 1 기판에 대향하게 배치되며 제 2 전극이 설치된 게 2 기판과, 제 1 기판과 제 2 기판의 사이에 배치되어 게 1 전극과 제 2 전극에 전기적으로 연결되는 복수개의 열전 소자를 포함한다.
열전 소자는, 은 (Ag)을 포함하는 접합층으로 소결 접합되어 제 1 기판과 거 12 기판의 사이에 전기적으로 연결되며, 상기 제 1 전극에 전기적으로 연결되는 스쿠테르다이트 (Skutterudi te)계 열전 소자와, 상기 제 2 전극에 전기적으로 연결되며 상기 스쿠테르다이트 (Skutterudi te)계 열전 소자에 상기 접합층으로 연결되는 BiTe계 열전 소자를 포함한다.
열전 소자는, 계 1 기판과 제 2 기판의 사이에 전기적으로 연결되는 제 1 열전 소자와, 제 1 기판과 게 2 기판의 사이에서 제 1 열전 소자에 이격된 상태로 전기적으로 연결되는 게 2 열전 소자를 포함할 수 있다.
거 U 열전 소자는 적어도 2개 이상이 상기 접합층으로 서로간에 연결될 수 있다.
제 1 열전 소자는, 제 1 전극에 전기적으로 연결되는 제 1 스쿠테르다이트 (Skutterudi te)계 열전 소자와, 제 2 전극에 전기적으로 연결되며 제 1 스쿠테르다이트 (Skutterudi te)계 열전 소자에 접합층으로 연결되는 제 1 BiTe계 열전 소자를 포함할 수 있다.
제 1 열전 소자의 양측은 제 1 전극과 제 2 전극에 각각 접합층으로 전기적으로 연결될 수 있다.
제 2 열전 소자는 적어도 2개 이상이 접합층으로 서로간에 연결될 수 있다.
거 12 열전 소자는, 게 1 전극에 전기적으로 연결되는 제 2 스쿠테르다이트 (Skutterudi te)계 열전 소자와, 제 2 스쿠테르다이트 (Skutterudi te)계 열전 소자에 접합층으로 연결되어 제 2 전극에 전기적으로 연결되는 게 2 BiTe계 열전 소자를 포함할 수 있다.
거 12 열전 소자의 양측은 제 1 전극과 제 2 전극에 각각 접합층으로 전기적으로 연결될 수 있다.
제 1 열전 소자는 p형 열전반도체이고, 게 2 열전 소자는 n형 열전 반도체일 수 있다.
제 1 기판과 제 1 열전 소자의 사이에는 위치되는 확산 방지층을 더 포함할 수 있다.
제 2 기판과 제 2 열전 소자의 사이에 위치되는 확산 방지층을 더 포함할 수 있다.
제 1 스쿠테르다이트 (Skutterudi te)계 열전 소자와 제 1 BiTe계 열전 소자의 사이에는 확산 방지층이 위치될 수 있다.
거 12 스쿠테르다이트 (Skutterudi te)계 열전 소자와 제 2 BiTe계 열전 소자의 사이에는 확산 방지층이 위치될 수 있다.
. 확산 방지층은, 하프늄 (Hf ) , 티타늄니트라이드 (TiN) , 지르코늄 (Zr ) 및
Mo-Ti로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
본 발명의 일 실시예의 열전 발전장치는 열전 모들을 포함할 수 있다. 본 발명의 일 실시예의 열전 발전 장치는, 열전 모들에 연결되는 적어도 하나 이상의 고은 블록과, 고온 블록에 대향하는 측면에서 열전 모들에 연결되는 저온 블록과, 고온 블록과 저온 블록에 설치되는 방열부재를 포함할
수 있다.
【발명의 효과】
본 발명의 일 실시예에 따르면, 은 (Ag)을 포함하는 페이스트를 사용하여, 게 1 열전소자와 제 2 열전 소자를 소결 접합함으로써, 열전 모들의 출력 및 효율 특성과 열적 안정성이 향상될 수 있다.
또한, 본 발명의 일 실시예에 따르면 열전 모들의 출력 및 효율 특성의 향상에 따라 열전 발전 장치의 발전 출력과 발전 효율의 향상이 가능하다. 【도면의 간단한 설명】
도 1은 본 발명의 일 실시예에 따른 열전 모들의 uni-couple을 개략적으로 도시한 요부 단면도이다.
도 2는 본 발명의 일 실시예에 따른 열전 모들의 출력 특성을 개략적으로 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 열전 모듈의 효을 특성을 개략적으로 도시한 도면이다.
【발명의 실시를 위한 최선의 형태】
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결 "되어 있다고 할 때, 이는 "직접적으로 연결1 '되어 있는 경우뿐 만 아니라, 다른 부재를 사이에 두고 "간접적으로 연결"된 것도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함 "한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 명세서 전체에서 층, 막, 영역, 판 등의 부분이 다른 부분 "~위에" 또는 "~상에" 있다고 할 때 이는 다른 부분의 "바로 위에 " 있는 경우뿐 아니라 그 중간에 다른 부분이 있는 경우도 포함한다. 그리고 "-위에1' 또는 "~상에"
라 함은 대상 부분의 위 또는 아래에 위치하는 것을 의미하며, 반드시 중력 방향을 기준으로 상측에 위치하는 것을 의미하지 않는다.
도 1은 본 발명의 일 실시예에 따른 열전 모들의 uni-couple을 개략적으로 도시한 요부 단면도이다.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 열전 모들의 uni-couple(lOO)은, 제 1 기판 ( 10)과, 제 1 전극 ( 11)이 설치된 제 1 기판 ( 10)과, 계 1 기판 ( 10)에 대향하게 배치되며 제 2 전극 (21)이 설치된 제 2 기판 (20)과, 제 1 기판 (10)과 게 2 기판 (20)의 사이에 배치되어 제 1 전극 (11)과 거 12 전극 (21)에 전기적으로 연결되는 복수개의 열전 소자 (30)를 포함한다. 여기서, 열전 소자 (30)는, 은 (Ag)을 포함하는 접합층 (40)으로 접합될 수 있다.
또한, 열전 소자 (30)은 상기 계 1 전극 ( 11)에 전기적으로 연결되는 스쿠테르다이트 (Skutterudi te)계 열전 소자 (31a, 33a)와, 상기 제 2 전극에 전기적으로 연결되며 상기 스쿠테르다이트 (Skutterudi te)계 열전 소자 (31a , 33a)에 상기 접합층 (40)으로 연결되는 BiTe계 열전 소자 (31b , 33b)를 포함할 수 있다.
스쿠테르다이트 (Skutterudi te)계 열전 소자 (31a , 33a)는 게 1 스쿠테르다이트 (Skutterudi te)계 열전 소자 (31a) 및 거 12 스쿠테르다이트 (Skutterudi te)계 열전 소자 (33a)를 포함할 수 있고, BiTe계 열전 소자 (31b , 33b)는 제 1 BiTe계 열전 소자 (31b) 및 게 2 BiTe계 열전 소자 (33b)를 포함할 수 있다.
한편, 제 1 기판 (10)과 제 2 기판 (20)은 열전 소자 (30)를 사이에 두고 양측에 각각 배치되어 열전 소자를 지지하도록 설치될 수 있다.
제 1 기판 (10)은 본 실시예에서 고온부로 적용될 수 있다. 이러한 거 U 기판 ( 10)은 열전 소자 (30)와 대면하는 방향이 편평하게 형성되어 열전 소자 (30)를 안정적으로 지지할수 있다.
제 1 기판 ( 10)은 alumina , AIN등의 세라믹 재질로 형성될 수 있다. 겨 12 기판 (20)은 본 실시예에서 저온부로 적용될 수 있다. 이러한 계 2 기판 (20)은 열전 소자 (30)를 사이에 두고 제 1 기판 ( 10)에 대향하는 위치에 설치되는 것으로, 제 1 기판 ( 10)과 함께 열전 소자 (30)를 안정적으로 지지할 수 있다.
제 2 기판 (20)은, alumina , AIN등의 세라믹 재질로 형성될 수 있다. 이러한 제 2 기판 (20)에는 방열 효율의 향상을 위해 방열부재 (미도시)가 형성되는 것도 가능하다.
한편, 열전 소자 (30)는 제 1 전극 (11)과 제 2 전극 (21)에 의해 계 1 기판 (10)과 게 2 기판 (20)의 사이에 전기적으로 연결된 상태로 배치될 수 있다. 이러한 열전 소자 (30)는, 게 1 기판 ( 10)과 계 2 기판 (20)의 사이에 전기적으로 연결되는 게 1 열전 소자 (31)와, 제 1 기판 ( 10)과 게 2 기판 (20)의 사이에서 제 1 열전 소자 (31)에 이격된 상태로 전기적으로 연결되는 게 2 열전 소자 (33)를 포함할 수 있다.
제 1 열전 소자 (31)는, 적어도 2개 이상이 접합층 (40)으로 서로간에 접합된 상태로 제 1 기판 (10)과 제 2 기판 (20)의 사이에 설치될 수 있다.
제 1 열전 소자 (31)는 양측의 제 1 전극 ( 11)과 제 2 전극 (21)에 연결되는 부분이 접합층 (40)으로 전기적으로 연결되는 것도 가능하다.
이러한 계 1 열전 소자 (31)는 p형 열전 받도체로 형성되는 것으로, 계 1 전극 (11)에 전기적으로 연결되는 제 1 스쿠테르다이트 (Skutterudi te)계 열전 소자 (31a)와, 제 2 전극 (21)에 전기적으로 연결되는 제 1 BiTe계 열전 소자 (31b)를 포함할 수 있다.
즉, 게 1 열전 소자 (31)는, 게 1 기판 ( 10)에 전기적으로 연결되는 부분에 상대적으로 고온 영역에서 성능 효율이 극대화되는 제 1 스쿠테르다이트 (Skutterudi te)계 열전 소자 (31a)가 위치 할 수 있다.
그리고, 제 1 열전 소자 (31)는 게 2 기판 (20)에 전기적으로 연결되는 부분에 상대적으로 저온 영역에서 성능 효율이 극대화되는 제 1 BiTe계 열전 소자 (31b)가 위치할 수 있다.
이러한 제 1 열전 소자 (31)는 제 1 스쿠테르다이트 (Skutterudi te)계 열전 소자 (31a)와 제 1 BiTe계 열전 소자 (31b)가 접합층 (40)에 의해 접합될 수 있다. 즉, 접합층 (40)은 은 (Ag)이 포함된 페이스트로 형성된 상태로 제 1 스쿠테르다이트 (Skutterudi te)계 열전 소자 (31a)와 제 1 BiTe계 열전 소자 (31b)를 소결 접합할수 있다.
여기서, 게 1 스쿠테르다이트 (Skutterudi te)계 열전 소자 (31a)와 제 1 BiTe계 열전 소자 (31b)는 게 1 기판 ( 10)과 게 2 기판 (20)에 전기적으로 연결되기
이전에 접합층 (40)에 의해 소결 접합될 수 있다.
한편, 제 1 스쿠테르다이트 (Skutterudi te)계 열전 소자 (31a)와 제 1 BiTe계 열전 소자 (31b)의 사이에는 확산 방지층 (50)이 위치되는 것도 가능하다. 확산 방지충 (50)은 열전 재료가서로간에 확산되는 것을 방지하도록 형성될 수 있다.
이러한 확산 방지층 (60)은, 하프늄 (Hf ) , 티타늄니트라이드 (TiN) , 지르코늄 (Zr) 및 Mo-Ti로 이루어진 군으로부터 선택된 1종 이상을 포함하여 형성될 수 있다.
확산 방지층 (50)은 게 1 스쿠테르다이트 (Skutterudi te)계 열전 소자 (31a)와 게 1 BiTe계 열전 소자 (31b)의 사이 위치에 형성되는 것으로 한정되지 않고, 제 1 기판 ( 10)과 제 1 열전 소자 (31)의 사이와 제 2 기판 (20)과 거 U 열전 소자 (31)의 사이 위치에 형성되는 것도 가능하다.
제 2 열전 소자 (33)는 계 1 열전 소자 (31)의 형상과 동일 또는 유사한 형상으로 형성되어 제 1 열전 소자 (31)로부터 이격된 상태로 제 1 기판 (10)과 제 2 기판 (20)의 사이에 위치될 수 있다. 물론 게 2 열전 소자 (33)는 발전 효율의 향상을 위해 적절한크기 또는 형상으로 변경 적용되는 것도 가능하다. 이러한 제 2 열전 소자 (33)는, n형 열전반도체로 형성되는 것으로, 제 1 전극 (11)에 전기적으로 연결되는 게 2 스쿠테르다이트 (Skutterudi te)계 열전 소자 (33a)와, 제 2 전극 (21)에 전기적으로 연결되는 계 2 BiTe계 열전 소자 (33b)를 포함할 수 있다.
즉, 제 2 열전 소자 (33)는, 제 1 기판 ( 10)에 전기적으로 연결되는 부분에 상대적으로 고온 영역에서 성능 효율이 극대화되는 제 2 스쿠테르다이트 (Skutterudi te)계 열전 소자 (33a)가 위치할 수 있다.
그리고 제 2 열전 소자 (33)는 게 2 기판 (20)에 전기적으로 연결되는 부분에 상대적으로 저은 영역에서 성능 효율이 극대화되는 제 2 BiTe계 열전 소자 (31b)가 위치할 수 있다.
이러한 제 2 열전 소자 (33)는 제 2 스쿠테르다이트 (Skutterudi te)계 열전 소자 (33a)와 게 2 BiTe계 열전 소자 (33b)가 접합층 (40)에 의해 접합될 수 있다. 즉, 접합층 (40)은 은 (Ag)이 포함된 페이스트로 형성된 상태로 제 2 스쿠테르다이트 (Skutterudi te)계 열전 소자 (33a)와 제 2 BiTe계 열전
소자 (33b)를 소결 접합할 수 있다.
여기서, 제 2 스쿠테르다이트 (Skutterudi te)계 열전 소자 (33a)와 게 2 BiTe계 열전 소자 (33b)는 게 1 기판 ( 10)과 제 2 기판 (20)에 전기적으로 연결되기 이전에 접합층 (40)에 의해 소결 접합될 수 있다.
한편, 제 2 스쿠테르다이트 (Skutterudi te)계 열전 소자 (33a)와 제 2
BiTe계 열전 소자 (33b)의 사이에는 확산 방지층 (50)이 위치되는 것도 가능하다. 확산 방지층 (50)은 열전 재료가서로간에 확산되는 것을 방지하도록 형성될 수 있다.
확산 방지층 (50)은 게 2 스쿠테르다이트 (Skutterudi te)계 열전 소자 (33a)와 게 2 BiTe계 열전 소자 (33b)의 사이 위치에 형성되는 것으로 한정되지 않고, 게 1 기판 ( 10)과 게 1 열전 소자 (31)의 사이와 계 2 기판 (20)과 제 1 열전 소자 (31)의 사이 위치에 형성되는 것도 가능하다.
전술한 바와 같이, 본 실시예의 열전 모들의 uni-couple( lOO)은, 은 (Ag)을 포함하는 페이스트를. 사용하여, 제 1 열전소자와 제 2 열전 소자를 소결 접합함으로써, 열전 모듈의 출력 및 효율 특성과 열적 안정성이 향상될 수 있다.
도 2는 본 발명의 일 실시예에 따른 열전 모들의 출력 특성을 개략적으로 도시한 그래프이고, 도 3은 본 발명의 일 실시예에 따른 열전 모들의 효율 특성을 개략적으로 도시한 그래프이다.
즉, 도 2와 도 3은 열전 모들의 uni-couple(lOO) 31pair로 구성된 열전 모들을 제조한 후 온도차에 따라 segment 모들의 출력 및 효율특성을 도시한 그래프이다.
구체적으로 도 2에서 보는 바와 같이 고온부와 저은부 온도 차이 281 ° C, 356 ° C, 447 ° (:에서 각각 7.49W, 11.52W, 15.54W의 발전 출력을 얻었다. 이때 각온도 차에서 Voc (open ci rcui t Voltage)는 3.06V, 3.94V, 4.73V 이었다.
또한 도 3에서 보는 것처럼 발전효율을 측정한 결과 상기 각각의 온도 차에서 8.99%, 10.32%, 10.72%의 고효율을 얻는 것을 알 수 있다.
일반적으로 스쿠테르다이트 (Skutterudi te)계 열전 소자의 발전 효율이 6.5% 수준인 것을 감안하면, 상기 segment 열전소자는 상당히 높은 발전
효율을 갖는 것을 확인할 수 있다.
한편, 본 발명의 일 실시예에 따른 열전 발전 장치는, 열전 모들에 연결되는 적어도 하나 이상의 고온 블록과, 고온 블특에 대향하는 측면에서 열전 모들에 연결되는 저은 블록과, 저온 블록에 설치되는 방열부재를 포함할 수 있다.
따라서, 열전 모들의 출력 향상과 효율 특성이 향상되는 바, 열전 발전 장치의 발전 효율의 향상이 가능하다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
-부호의 설명 -
10: 게 1 기판 11 제 1 전극
20: 게 2 기판 30 열전 소자
31 : 게 1 열전 소자 33 제 2 열전 소자
40: 접합층 50 확산 방지층
Claims
【청구항 1】
제 1 전극이 설치된 게 1 기판;
상기 계 1 기판에 대향하게 배치되며 게 2 전극이 설치된 제 2 기판; 및 상기 제 1 기판과 상기 제 2 기판의 사이에 배치되어 상기 제 1 전극과 상기 제 2 전극에 전기적으로 연결되는 복수개의 열전 소자;
를 포함하고,
상기 열전 소자는,
은 (Ag)을 포함하는 접합층으로 소결 접합되어 상기 제 1 기판과 상기 제 2 기판의 사이에 전기적으로 연결되며, 상기 제 1 전극에 전기적으로 연결되는 스쿠테르다이트 (Skutterudi te)계 열전 소자와, 상기 제 2 전극에 전기적으로 연결되며 상기 스쿠테르다이트 (SkuUenidi te)계 열전 소자에 상기 접합층으로 연결되는 BiTe계 열전 소자를 포함하는, 열전 모들.
[청구항 2】
게 1항에 있어서,
상기 열전 소자는,
상기 게 1 기판과 상기 제 2 기판의 사이에 전기적으로 연결되는 거 U 열전 소자; 및
상기 제 1 기판과 상기 제 2 기판의 사이에서 상기 제 1 열전 소자에 이격된 상태로 전기적으로 연결되는 제 2 열전 소자;
를 포함하는, 열전 모들.
【청구항 3]
거 12항에 있어서,
상기 제 1 열전 소자는 적어도 2개 이상이 상기 접합층으로 서로간에 연결되는, 열전 모들.
【청구항 4】
제 3항에 있어서,
상기 제 1 열전 소자는,
상기 제 1 전극에 전기적으로 연결되는 제 1 스쿠테르다이트 (Skutterudi te)계 열전 소자와, 상기 제 2 전극에 전기적으로
연결되며 상기 제 1 스쿠테르다이트 (Skutterudi te)계 열전 소자에 상기 접합층으로 연결되는 제 1 BiTe계 열전 소자를 포함하는, 열전 모들.
【청구항 5】
제 3항에 있어서,
상기 게 1 열전 소자의 양측은 상기 계 1 전극과 상기 게 2 전극에 각각 상기 접합층으로 전기적으로 연결되는, 열전 모들.
【청구항 6】
제 2항에 있어서,
상기 게 2 열전 소자는 적어도 2개 이상이 상기 접합층으로 서로간에 연결되는, 열전 모들.
【청구항 7】
제 6항에 있어서,
상기 게 2 열전 소자는,
상기 제 1 전극에 전기적으로 연결되는 제 2 스쿠테르다이트 (Skutterudi te)계 열전 소자와, 상기 제 2 스쿠테르다이트 (Skutterudi te)계 열전 소자에 상기 접합층으로 연결되어 상기 제 2 전극에 전기적으로 연결되는 제 2 BiTe계 열전 소자를 포함하는, 열전 모들.
【청구항 8]
계 6항에 있어서,
상기 제 2 열전 소자의 양측은 상기 게 1 전극과 상기 게 2 전극에 각각 상기 접합층으로 전기적으로 연결되는, 열전 모들.
【청구항 9】
제 2항에 있어서,
상기 게 1 열전 소자는 p형 열전반도체이고, 상기 제 2 열전 소자는 n형 열전 반도체인, 열전 모들.
【청구항 10】
제 2항에 있어서,
상기 게 1 기판과 상기 제 1 열전 소자의 사이에는 위치되는 확산 방지층을 더 포함하는, 열전 모듈.
【청구항 11】
제 10항에 있어서,
상기 제 2 기판과 상기 제 2 열전 소자의 사이에 위치되는 확산 방지층을 더 포함하는, 열전 모듈.
【청구항 12】
거 항에 있어서,
상기 계 1 스쿠테르다이트 (Skutterudi te)계 열전 소자와상기 게 I BiTe계 열전 소자의 사이에는 확산 방지층이 위치되는 열전 모듈.
【청구항 13】
제 7항에 있어서,
상기 제 2 스쿠테르다이트 (Skutterudi te)계 열전 소자와상기 제 2 BiTe계 열전 소자의 사이에는 확산 방지층이 위치되는, 열전 모들.
【청구항 14]
제 10항 내지 제 13항 중의 어느 한 항에 있어서,
상기 확산 방지층은,
하프늄 (Hf ) , 티타늄니트라이드 (TiN) , 지르코늄 (Zr) 및 Mo-Ti로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 열전 모듈.
【청구항 15]
제 1항의 상기 열전 모들을 포함한, 열전 발전장치 .
【청구항 16】
제 15항에 있어서,
상기 열전 모들에 연결되는 적어도 하나 이상의 고온 블록과, 상기 고온 블록에 대향하는 측면에서 상기 열전 모들에 연결되는 저온 블록과, 상기 고온 블록과 상기 저온 블록에 설치되는 방열부재를 포함하는, 열전 발전 장치.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880004693.8A CN110024145B (zh) | 2017-08-18 | 2018-08-20 | 热电模块和热电发电机 |
JP2019524185A JP6976631B2 (ja) | 2017-08-18 | 2018-08-20 | 熱電モジュールおよび熱電発電装置 |
US16/341,351 US20200044133A1 (en) | 2017-08-18 | 2018-08-20 | Thermoelectric module and thermoelectric generator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0105104 | 2017-08-18 | ||
KR1020170105104A KR102120273B1 (ko) | 2017-08-18 | 2017-08-18 | 열전 모듈 및 열전 발전장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019035702A1 true WO2019035702A1 (ko) | 2019-02-21 |
Family
ID=65362344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/009541 WO2019035702A1 (ko) | 2017-08-18 | 2018-08-20 | 열전 모듈 및 열전 발전장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200044133A1 (ko) |
JP (1) | JP6976631B2 (ko) |
KR (1) | KR102120273B1 (ko) |
CN (1) | CN110024145B (ko) |
WO (1) | WO2019035702A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102607281B1 (ko) * | 2019-07-26 | 2023-11-27 | 주식회사 엘지화학 | 열전 모듈 |
KR102614366B1 (ko) * | 2019-07-26 | 2023-12-14 | 주식회사 엘지화학 | 열전 모듈 |
KR102623077B1 (ko) * | 2019-09-18 | 2024-01-08 | 주식회사 엘지화학 | 열전 소자 및 그 제조 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011114291A (ja) * | 2009-11-30 | 2011-06-09 | Furukawa Co Ltd | 熱電変換モジュール、その接合部材 |
KR101439461B1 (ko) * | 2013-11-08 | 2014-09-17 | 한국기계연구원 | 열전 반도체 모듈 및 이의 제조방법 |
KR20140140905A (ko) * | 2013-05-30 | 2014-12-10 | 주식회사 엘지화학 | 열전필름 제조방법 |
KR20160024199A (ko) * | 2014-08-25 | 2016-03-04 | 삼성전기주식회사 | 열전 모듈 및 그 제조 방법 |
KR20170076358A (ko) * | 2015-12-24 | 2017-07-04 | 주식회사 엘지화학 | 열전 모듈 및 그 제조 방법 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4520305A (en) * | 1983-08-17 | 1985-05-28 | Cauchy Charles J | Thermoelectric generating system |
US6563039B2 (en) * | 2000-01-19 | 2003-05-13 | California Institute Of Technology | Thermoelectric unicouple used for power generation |
JP2003092435A (ja) * | 2001-09-17 | 2003-03-28 | Komatsu Ltd | 熱電モジュール及びその製造方法 |
CN1632959A (zh) * | 2003-12-22 | 2005-06-29 | 中国电子科技集团公司第十八研究所 | 分段温差电元件 |
JP4686171B2 (ja) * | 2004-10-29 | 2011-05-18 | 株式会社東芝 | 熱−電気直接変換装置 |
JP4850083B2 (ja) * | 2007-02-01 | 2012-01-11 | 京セラ株式会社 | 熱電変換モジュール及びそれを用いた発電装置及び冷却装置 |
US20120006376A1 (en) * | 2010-06-15 | 2012-01-12 | California Institute Of Technology | Electrical contacts for skutterudite thermoelectric materials |
CN103187519B (zh) * | 2011-12-30 | 2016-02-03 | 财团法人工业技术研究院 | 热电模块及其制造方法 |
JP2014086623A (ja) * | 2012-10-25 | 2014-05-12 | Furukawa Co Ltd | 熱電変換モジュール |
US20140261607A1 (en) * | 2013-03-14 | 2014-09-18 | Gmz Energy, Inc. | Thermoelectric Module with Flexible Connector |
US20150162517A1 (en) * | 2013-12-06 | 2015-06-11 | Sridhar Kasichainula | Voltage generation across temperature differentials through a flexible thin film thermoelectric device |
US20160163950A1 (en) * | 2014-12-08 | 2016-06-09 | Industrial Technology Research Institute | Structure of thermoelectric module and fabricating method thereof |
CN104993740B (zh) * | 2015-07-07 | 2017-08-08 | 天津大学 | 一种分段式温差发电器结构设计方法 |
-
2017
- 2017-08-18 KR KR1020170105104A patent/KR102120273B1/ko active IP Right Grant
-
2018
- 2018-08-20 US US16/341,351 patent/US20200044133A1/en not_active Abandoned
- 2018-08-20 CN CN201880004693.8A patent/CN110024145B/zh active Active
- 2018-08-20 WO PCT/KR2018/009541 patent/WO2019035702A1/ko active Application Filing
- 2018-08-20 JP JP2019524185A patent/JP6976631B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011114291A (ja) * | 2009-11-30 | 2011-06-09 | Furukawa Co Ltd | 熱電変換モジュール、その接合部材 |
KR20140140905A (ko) * | 2013-05-30 | 2014-12-10 | 주식회사 엘지화학 | 열전필름 제조방법 |
KR101439461B1 (ko) * | 2013-11-08 | 2014-09-17 | 한국기계연구원 | 열전 반도체 모듈 및 이의 제조방법 |
KR20160024199A (ko) * | 2014-08-25 | 2016-03-04 | 삼성전기주식회사 | 열전 모듈 및 그 제조 방법 |
KR20170076358A (ko) * | 2015-12-24 | 2017-07-04 | 주식회사 엘지화학 | 열전 모듈 및 그 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20190019767A (ko) | 2019-02-27 |
KR102120273B1 (ko) | 2020-06-08 |
US20200044133A1 (en) | 2020-02-06 |
JP6976631B2 (ja) | 2021-12-08 |
CN110024145B (zh) | 2023-05-23 |
JP2020502781A (ja) | 2020-01-23 |
CN110024145A (zh) | 2019-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shakouri et al. | On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators | |
KR101175386B1 (ko) | 열전소자 | |
RU2008148931A (ru) | Низкоразмерные термоэлектрики, изготовленные травлением полупроводниковых пластин | |
JP2010536173A (ja) | ナノワイヤ電子装置及びその製造方法 | |
KR102050335B1 (ko) | 태양전지 열전 융합소자 효율 측정방법 및 측정장치 | |
WO2019035702A1 (ko) | 열전 모듈 및 열전 발전장치 | |
JP2004523094A (ja) | エネルギー変換のための熱ダイオード | |
KR101779497B1 (ko) | 나노입자가 도핑된 열전소자를 포함하는 열전모듈 및 그 제조 방법 | |
Nimmagadda et al. | Materials and devices for on-chip and off-chip peltier cooling: A review | |
Chavez et al. | Efficient pn junction-based thermoelectric generator that can operate at extreme temperature conditions | |
Norris et al. | Silicon nanowire networks for multi-stage thermoelectric modules | |
CN103560203A (zh) | 一种简单高效的薄膜温差电池结构及其制作方法 | |
AU2018220031A1 (en) | Thermoelectric device | |
CN207009456U (zh) | 一种新型光伏温差发电一体化芯片 | |
KR20160005588A (ko) | 온도센서 | |
KR102031961B1 (ko) | 금속-절연체 전이 금속을 이용하는 열전소자 | |
TWM431443U (en) | Solar module having thermal module | |
US20220029081A1 (en) | Semiconductor thermoelectric generator | |
US20180047887A1 (en) | Multi-stage thermoelectric generator monolithically integrated on a light absorber | |
Shang et al. | Experimental investigation on thermoelectric generator of micro hybrid power source | |
KR20190114889A (ko) | 열전 모듈 | |
Kähler et al. | Sinter-attach of Peltier dice for cooling of deep-drilling electronics | |
KR20210003555A (ko) | 체인형 열전 소자 | |
Rahman et al. | A Study on The Seebeck Effect of 3, 4, 9, 10-Perylenetetracarboxylic dianhydride (PTCDA) as a Novel N-type Material in a Thermoelectric Device | |
KR20180022249A (ko) | 열전 모듈 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18847052 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019524185 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18847052 Country of ref document: EP Kind code of ref document: A1 |