WO2019035329A1 - 油井用高強度ステンレス継目無鋼管およびその製造方法 - Google Patents
油井用高強度ステンレス継目無鋼管およびその製造方法 Download PDFInfo
- Publication number
- WO2019035329A1 WO2019035329A1 PCT/JP2018/027997 JP2018027997W WO2019035329A1 WO 2019035329 A1 WO2019035329 A1 WO 2019035329A1 JP 2018027997 W JP2018027997 W JP 2018027997W WO 2019035329 A1 WO2019035329 A1 WO 2019035329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel pipe
- high strength
- seamless steel
- content
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/085—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Definitions
- the present invention relates to a 17Cr-based high-strength stainless steel seamless steel pipe suitable for use in oil wells and gas wells (hereinafter simply referred to as oil wells).
- the present invention particularly improves the corrosion resistance in a severe high-temperature corrosive environment containing carbon dioxide gas (CO 2 ) and chlorine ions (Cl ⁇ ), an environment containing hydrogen sulfide (H 2 S), and the like, and further low temperature toughness. On improvement.
- Patent Document 1 For such a demand, for example, in Patent Document 1, C: 0.005 to 0.05%, Si: 0.05 to 0.5%, Mn: 0.2 to 1.8%, P: 0.03% or less, S: 0.005% in mass%
- Cr 15.5 to 18%
- Ni 1.5 to 5%
- Mo 1 to 3.5%
- V 0.02 to 0.2%
- N 0.01 to 0.15%
- O 0.006% or less
- C satisfy a specific relational expression
- Cr, Mo, Si, C, Mn, Ni, Cu, N have a composition contained so as to satisfy a specific relational expression
- martensite A high corrosion resistant high strength stainless steel pipe for oil wells having a structure containing a phase as a base phase and containing a ferrite phase at 10 to 60% by volume, or further containing an austenite phase at 30% or less by volume is described.
- CO 2 and Cl - also exhibits sufficient corrosion resistance in high temperature harsh corrosive environments to 230 ° C. containing, yield strength: 654MPa for oil wells stainless steel tube further has a high toughness and high strength of greater than (95 ksi) It can be manufactured stably.
- Patent Document 2 C: 0.04% or less, Si: 0.50% or less, Mn: 0.20 to 1.80%, P: 0.03% or less, S: 0.005% or less, Cr: 15.5 to 17.5%, by mass%. Ni: 2.5 to 5.5%, V: 0.20% or less, Mo: 1.5 to 3.5%, W: 0.50 to 3.0%, Al: 0.05% or less, N: 0.15% or less, O: 0.006% or less and containing Cr, Mo, W, and C satisfy specific relationships, Cr, Mo, W, Si, C, Mn, Cu, Ni, and N satisfy specific relationships, and Mo and W satisfy specific relationships.
- a high-tensile high-strength stainless steel pipe for oil wells having high toughness and excellent corrosion resistance having a composition contained in the above and a structure containing a martensite phase as a base phase and a ferrite phase at a volume ratio of 10 to 50% There is.
- high strength stainless steel tubes for oil wells that have high strength exceeding 654 MPa (95 ksi) and show sufficient corrosion resistance even in high temperature severe corrosive environments including CO 2 , Cl ⁇ and H 2 S It can be manufactured stably.
- Patent Document 3 C: 0.05% or less, Si: 1.0% or less, P: 0.05% or less, S: less than 0.002%, Cr: more than 16% and 18% or less, Mo: more than 2% by mass%. 3% or less, Cu: 1 to 3.5%, Ni: 3% to 5%, Al: 0.001 to 0.1%, O: 0.01% or less, and Mn: 1% or less, N: 0.05% or less
- the composition contains 10 to 40% by volume of ferrite phase and 10% or less by volume fraction of retained austenite (mainly the martensite phase) by making the composition containing Mn and N to satisfy the specific relationship.
- a high strength stainless steel pipe excellent in sulfide stress cracking resistance and high temperature carbon dioxide corrosion resistance, having a structure including a ⁇ ) phase is described.
- the yield strength is as high as 758 MPa (110 ksi) or more, and further has sufficient corrosion resistance even in a carbon dioxide gas environment at a high temperature of 200 ° C., and sufficient sulfide stress resistance even when the environmental gas temperature is lowered.
- Patent Document 4 C: 0.05% or less, Si: 0.5% or less, Mn: 0.01 to 0.5%, P: 0.04% or less, S: 0.01% or less, Cr: over 16.0% to 18.0% in mass%.
- a plurality of virtual line segments having a length of 50 ⁇ m in the longitudinal direction and arranged in a line in a range of 200 ⁇ m at a pitch of 10 ⁇ m, and a structure in which the percentage of ferrite phases intersect is more than 85%, 0.2%
- Strength A stainless steel pipe for oil wells having
- Patent Document 5 C: 0.04% or less, Si: 0.50% or less, Mn: 0.20 to 1.80%, P: 0.03% or less, S: 0.005% or less, Cr: 15.5 to 17.5%, in mass%.
- a high-tensile, high-corrosion-resistant high-strength stainless steel pipe having high toughness and excellent corrosion resistance is described, which has a composition and a structure in which the distance between any two points in the grain is 200 ⁇ m or less in the largest crystal grain.
- the steel pipe has high strength exceeding 654 MPa (95 ksi) and excellent toughness, and has sufficient corrosion resistance in a high temperature corrosive environment of 170 ° C. or higher including CO 2 , Cl ⁇ and H 2 S. Is supposed to indicate.
- Patent Document 6 C: 0.01% or less, Si: 0.5% or less, Mn: 0.1 to 2.0%, P: 0.03% or less, S: 0.005% or less, Cr: 15.5% to 17.5% or less in mass% , Ni: 2.5 to 5.5%, Mo: 1.8 to 3.5%, Cu: 0.3 to 3.5%, V: 0.20% or less, Al: 0.05% or less, N: 0.06% or less, preferably the volume ratio
- a high strength martensitic stainless steel seamless steel pipe for oil wells is described, which contains a ferrite phase of 15% or more or a retained austenite phase of 25% or less and the balance is a structure consisting of a tempered martensite phase.
- Patent Document 6 in addition to the above-mentioned composition, a composition containing W: 0.25 to 2.0% and / or Nb: 0.20% or less may be used.
- severe corrosion with high yield strength high strength of 655 MPa or more and 862 MPa or less and tensile properties of yield ratio: 0.90 or more, severe corrosion at high temperatures of 170 ° C. or more including CO 2 , Cl - etc, and further H 2 S
- a high strength martensitic stainless steel seamless steel pipe for oil wells that has sufficient corrosion resistance (carbon dioxide gas corrosion resistance, sulfide stress corrosion cracking resistance) even in the environment can be stably manufactured.
- Patent Document 7 C: 0.05% or less, Si: 1.0% or less, Mn: 0.01 to 1.0%, P: 0.05% or less, S: less than 0.002%, Cr: 16 to 18% by mass%. Mo: 1.8 to 3%, Cu: 1.0 to 3.5%, Ni: 3.0 to 5.5%, Co: 0.01 to 1.0%, Al: 0.001 to 0.1%, O: 0.05% or less, N: 0.05% or less, Cr, Ni, Mo, and Cu have a composition that satisfies a specific relationship, and preferably, a volume ratio of 10% or more and less than 60% of a ferrite phase, 10% or less of a retained austenite phase, and 40% or more of a martensite phase
- An oil well stainless steel pipe having a structure containing H As a result, it is said that a stainless steel pipe for oil wells can be obtained which can stably obtain high strength of yield strength: 758 MPa or more and excellent high temperature corrosion resistance.
- the present invention solves the problems of the prior art and has high strength such as yield strength: 862 MPa (125 ksi) or more and test temperature in Charpy impact test: absorbed energy vE -40 at -40 ° C is 40 J or more It is an object of the present invention to provide a high strength stainless steel seamless steel pipe for oil well having excellent low temperature toughness and excellent corrosion resistance, and a method of manufacturing the same.
- excellent corrosion resistance refers to the case where “excellent carbon dioxide gas corrosion resistance”, “excellent sulfide stress corrosion cracking resistance” and “excellent sulfide stress cracking resistance” are excellent. It shall be.
- excellent carbon dioxide corrosion resistance refers to a test solution held in an autoclave: 20 mass% NaCl aqueous solution (liquid temperature: 200 ° C., 30 atmospheres CO 2 gas atmosphere) In the case of immersion, and the immersion time is set to 336 hours, the corrosion rate is 0.127 mm / y or less.
- excellent sulfide stress corrosion cracking resistance refers to a test solution held in an autoclave: 20% by mass aqueous NaCl solution (liquid temperature: 100 ° C., 30 atm CO 2 gas, 0.1 atm The test piece is immersed in an aqueous solution adjusted to pH: 3.3 by adding acetic acid and sodium acetate to an H 2 S atmosphere), the immersion time is 720 hours, 100% of the yield stress is applied as a load stress, and the test is performed. The case where no crack occurs in the later test piece shall be said.
- excellent sulfide stress cracking resistance refers to a test solution held in an autoclave: 20% mass NaCl aqueous solution (liquid temperature: 25 ° C., 0.9 atm CO 2 gas, 0.1 atm H)
- the test piece is immersed in an aqueous solution adjusted to pH: 3.5 by adding acetic acid and sodium acetate to a 2 S atmosphere), the immersion time is 720 hours, 90% of the yield stress is applied as a load stress, and after the test The case where no crack occurs in the test piece of
- the present inventors diligently studied various properties of a seamless steel pipe of 17Cr stainless steel composition in order to achieve the above-mentioned purpose.
- this steel pipe is added with alloy elements such as Cr and Mo.
- the high alloying results in the final product exhibiting a structure including retained austenite. While retained austenite contributes to the improvement of toughness, it causes a lack of strength. Therefore, as a result of conducting further studies to maintain a high strength of yield strength of 862 MPa or more, it has been conceived to utilize precipitation strengthening by the precipitates of Cu and Nb, or further the precipitates of Ta.
- the C, N, Nb, Ta and Cu contents can be expressed by the following formula (1) 5.1 ⁇ ⁇ (Nb + 0.5Ta) -10 ⁇ 2.2 /(C+1.2N) ⁇ + Cu 1.0 1.0 .... (1) (Here, Nb, Ta, C, N and Cu: Content (% by mass) of each element, and zero if not contained) It was found that it was necessary to adjust it to be satisfied. More specifically, the present inventors have found that the desired strength and toughness can be obtained by using a specific component composition, a specific tissue, and satisfying the above-mentioned equation (1). .
- the present invention has been completed based on such findings, with further studies. That is, the gist of the present invention is as follows. [1] mass%, C: 0.05% or less, Si: 1.0% or less, Mn: 0.1 to 0.5%, P: 0.05% or less, S: less than 0.005% Cr: more than 15.0% and 19.0% or less Mo: more than 2.0% and less than 2.8%, Cu: 0.3 to 3.5%, Ni: 3.0% or more and less than 5.0%, W: 0.1 to 3.0%, Nb: 0.07 to 0.5%, V: 0.01 to 0.5%, Al: 0.001 to 0.1%, N: 0.010 to 0.100%, O: 0.01% or less, B: 0.0005 to 0.0100% And Nb, Ta, C, N, and Cu satisfy the following formula (1), and have a composition comprising the balance Fe and unavoidable impurities, Crystals with a crystal orientation difference of less than 15 °, having a structure consisting of a tempered martensite phase of 45% or more,
- a seamless steel pipe of a predetermined shape is formed, and after the hot working, the seamless steel pipe is reheated to a temperature in the range of 850 to 1150 ° C., and cooling is stopped with a surface temperature of 50 ° C. or less and 0 ° C.
- a method for producing a high strength stainless steel seamless steel pipe for oil well which is subjected to a quenching treatment for cooling to a temperature and a tempering treatment for heating to a tempering temperature in the range of 500 to 650 ° C.
- the present invention has high strength such as yield strength: 862 MPa (125 ksi) or more and excellent low temperature toughness such that test energy in Charpy impact test: absorbed energy vE- 40 at -40 ° C. is 40 J or more. at a high temperature of 200 ° C. or higher, and CO 2, Cl - even in severe corrosive environments containing, has excellent ⁇ acid gas corrosion resistance, more excellent resistance to sulfide stress corrosion cracking resistance, and excellent sulfidation It is possible to manufacture high strength stainless steel seamless steel pipe which has material stress cracking resistance and excellent corrosion resistance.
- the seamless steel pipe of the present invention is, by mass%, C: 0.05% or less, Si: 1.0% or less, Mn: 0.1 to 0.5%, P: 0.05% or less, S: less than 0.005%, Cr: 15.0% or more and 19.0% Below, Mo: more than 2.0% and less than 2.8%, Cu: 0.3 to 3.5%, Ni: 3.0% to 5.0%, W: 0.1 to 3.0%, Nb: 0.07 to 0.5%, V: 0.01 to 0.5%, Al: 0.001 to 0.1%, N: 0.010 to 0.100%, O: 0.01% or less, B: 0.0005 to 0.0100%, Nb, Ta, C, N and Cu satisfy the following formula (1), the balance It has a composition of Fe and unavoidable impurities, and consists of 45% or more of a tempered martensite phase, 20 to 40% of a ferrite phase, and 10% or more and 25% or less of retained austenite phase. It is a stainless steel seamless steel pipe for oil well having a structure.
- Nb, Ta, C, N and Cu Content (% by mass) of each element, and when not contained, it is zero.
- C 0.05% or less C is an important element that increases the strength of martensitic stainless steel.
- the C content is 0.05% or less.
- the C content is 0.015% or more.
- the C content is 0.04% or less.
- Si 1.0% or less Si is an element acting as a deoxidizing agent, and in order to obtain such an effect, it is desirable to contain 0.005% or more of Si. On the other hand, if the Si content exceeds 1.0%, the hot workability is reduced. Therefore, the Si content is 1.0% or less. Preferably, the Si content is 0.1% or more. Preferably, the Si content is 0.6% or less.
- Mn 0.1 to 0.5%
- Mn is an element that increases the strength of martensitic stainless steel, and requires at least 0.1% of Mn to ensure the desired strength.
- the Mn content is 0.1 to 0.5%.
- the Mn content is 0.4% or less.
- P 0.05% or less
- P is an element that reduces corrosion resistance such as carbon dioxide gas corrosion resistance, sulfide stress cracking resistance, and the like. In the present invention, it is preferable to reduce as much as possible, but 0.05% or less is acceptable. For this reason, P content is made into 0.05% or less. Preferably, the P content is 0.02% or less.
- S less than 0.005%
- S is an element which remarkably reduces the hot workability and inhibits the stable operation of the hot pipe making process, and it is preferable to reduce as much as possible, but it is acceptable if it is less than 0.005%. From these reasons, the S content is less than 0.005%. Preferably, the S content is 0.002% or less.
- Cr 15.0% or more and 19.0% or less Cr is an element that contributes to the improvement of the corrosion resistance by forming a protective film on the surface of the steel pipe, and when the Cr content is 15.0% or less, desired corrosion resistance can not be secured. For this reason, it is necessary to contain 15.0% or more of Cr. On the other hand, when the content of Cr exceeds 19.0%, the ferrite fraction becomes too high, and it becomes impossible to secure a desired strength. For this reason, Cr content is made more than 15.0% and 19.0% or less. Preferably, the Cr content is 16.0% or more. Preferably, the Cr content is 18.0% or less.
- Mo more than 2.0% and less than 2.8% Mo stabilizes the protective film on the surface of the steel pipe and increases resistance to pitting corrosion due to Cl ⁇ and low pH, resistance to sulfide stress cracking and resistance to sulfide stress corrosion cracking It is an element that enhances the character. In order to acquire such an effect, it is necessary to contain Mo more than 2.0%. On the other hand, Mo is an expensive element, and the inclusion of Mo of 2.8% or more causes a rise in material cost, and also causes a decrease in toughness and resistance to sulfide stress cracking. For this reason, Mo content is made more than 2.0% and less than 2.8%. Preferably, the Mo content is 2.2% or more. Preferably, the Mo content is 2.7% or less.
- Cu 0.3 to 3.5%
- the protective film on the surface of the steel pipe is strengthened to suppress hydrogen penetration into the steel, and also has an effect of improving sulfide stress cracking resistance and sulfide stress corrosion cracking resistance. In order to obtain such an effect, it is necessary to contain 0.3% or more of Cu.
- the content of Cu exceeding 3.5% causes intergranular precipitation of CuS and reduces the hot workability. Therefore, the Cu content is 0.3 to 3.5%.
- the Cu content is 0.5% or more.
- the Cu content is 1.0% or more.
- the Cu content is 3.0% or less.
- Ni 3.0% or more and less than 5.0%
- Ni is an element contributing to the improvement of the corrosion resistance by strengthening the protective film on the surface of the steel pipe. Also, Ni increases the strength of the steel by solid solution strengthening. Such an effect becomes significant when the Ni content is 3.0% or more.
- the content of Ni is 5.0% or more, the stability of the martensitic phase decreases and the strength decreases. Therefore, the Ni content is 3.0% or more and less than 5.0%.
- the Ni content is 3.5% or more.
- the Ni content is 4.5% or less.
- W 0.1 to 3.0% W is an important element that contributes to the improvement of the strength of the steel and stabilizes the protective film on the surface of the steel pipe to enhance the sulfide stress cracking resistance and the sulfide stress corrosion cracking resistance.
- W 0.1 to 3.0% W
- W is an important element that contributes to the improvement of the strength of the steel and stabilizes the protective film on the surface of the steel pipe to enhance the sulfide stress cracking resistance and the sulfide stress corrosion cracking resistance.
- the content of W 0.1% or more is required.
- the content of W exceeding 3.0% lowers the toughness. Therefore, the W content is set to 0.1 to 3.0%.
- the W content is 0.5% or more.
- the W content is 0.8% or more.
- the W content is 2.0% or less.
- Nb 0.07 to 0.5%
- Nb combines with C and N and precipitates as Nb carbonitride (Nb precipitate), and contributes to the improvement of the yield strength, and is an important element in the present invention.
- Nb precipitate Nb carbonitride
- the content of Nb exceeding 0.5% causes a decrease in toughness and resistance to sulfide stress cracking. Therefore, the Nb content is set to 0.07 to 0.5%.
- the Nb content is 0.07 to 0.2%.
- V 0.01 to 0.5%
- V is an element which contributes to the improvement of strength by solid solution and is combined with C and N to precipitate as V carbonitride (V precipitate) and to contribute to the improvement of yield strength.
- V precipitate V carbonitride
- the V content is set to 0.01 to 0.5%.
- the V content is 0.02% or more.
- the V content is 0.1% or less.
- Al 0.001 to 0.1%
- Al is an element that acts as a deoxidizer. In order to acquire such an effect, it is necessary to contain 0.001% or more of Al. On the other hand, if the Al content is more than 0.1%, the amount of oxides increases, the cleanliness decreases, and the toughness decreases. Therefore, the Al content is set to 0.001 to 0.1%.
- Al is 0.01% or more.
- the Al content is 0.02% or more.
- the Al content is 0.07% or less.
- N 0.010 to 0.100%
- N is an element that improves the pitting resistance. In order to acquire such an effect, N is contained 0.010% or more. On the other hand, if N is contained in excess of 0.100%, nitrides are formed to lower the toughness. Therefore, the N content is made 0.010 to 0.100%. Preferably, the N content is 0.020% or more. Preferably, the N content is 0.06% or less.
- O 0.01% or less
- O oxygen
- O oxygen
- the hot workability the corrosion resistance and the toughness decrease. Therefore, the O content is 0.01% or less.
- B 0.0005 to 0.0100% B contributes not only to the increase in strength but also to the improvement in hot workability.
- B is contained 0.0005% or more.
- the B content is made 0.0005 to 0.0100%.
- the B content is 0.001% or more.
- the B content is 0.008% or less. More preferably, the B content is 0.0015% or more. More preferably, the B content is 0.007% or less.
- Nb, Ta, C, N and Cu are within the above-mentioned content ranges, and the following (1) formula 5.1 ⁇ ⁇ (Nb + 0.5Ta) -10 ⁇ 2.2 /(C+1.2N) ⁇ +Cu ⁇ 1.0 ...
- Nb, Ta, C, N and Cu Content (% by mass) of each element, and elements not contained are assumed to be zero.) Adjust to contain to be satisfied. If the left side value of the equation (1) is less than 1.0, the precipitation amount of Cu precipitates, Nb precipitates and Ta precipitates is small, precipitation strengthening is insufficient, and desired strength can not be secured.
- the contents of Nb, Ta, C, N and Cu are adjusted such that the left side value of the equation (1) is 1.0 or more.
- the left side value of Formula (1) shall calculate the said element as zero (zero).
- the left side value of equation (1) is 2.0 or more.
- the balance other than the above-described components consists of Fe and unavoidable impurities.
- a selection element Ti: 0.3% or less, Zr: 0.2% or less, Co: 1.0% or less and Ta: 0.1% or less 1 It can contain species or two or more species. Furthermore, as a selection element, one or two selected from Ca: not more than 0.0050% and REM: not more than 0.01% can be contained. Furthermore, one or more selected from the group consisting of Mg: 0.01% or less, Sn: 0.2% or less, and Sb: 1.0% or less can be contained as a selection element.
- Ti, Zr, Co and Ta increases the strength It is an element, can be selected according to need, and can contain one or more kinds.
- Ti, Zr, Co and Ta also have an effect of improving resistance to sulfide stress cracking.
- Ta is an element that brings about the same effect as Nb, and part of Nb can be replaced with Ta. In order to acquire such an effect, it is desirable to contain Ti: 0.01% or more, Zr: 0.01% or more, Co: 0.01% or more, and Ta: 0.01% or more, respectively.
- Ti 0.3%, Zr: 0.2%, Co: 1.0% and Ta: 0.1% are contained in excess of each, the toughness is lowered. Therefore, in the case of containing Ti, it is preferable to limit Ti: 0.3% or less, Zr: 0.2% or less, Co: 1.0% or less and Ta: 0.1% or less.
- Ca: 0.0050% or less and REM: 0.01% or less One or two selected from Ca and REM Any element that contributes to the improvement of sulfide stress corrosion cracking resistance through shape control of sulfide And may contain one or two as needed. In order to acquire such an effect, it is desirable to contain Ca: 0.0001% or more and REM: 0.001% or more. On the other hand, even if each of Ca: 0.0050% and REM: 0.01% is contained in excess, the effect is saturated and an effect commensurate with the content can not be expected. For this reason, when it contains, it is preferable to limit to Ca: 0.0050% or less and REM: 0.01% or less, respectively.
- Mg 0.01% or less, Sn: 0.2% or less, and Sb: 1.0% or less
- Mg 0.01% or less, Sn: 0.2% or less, and Sb: 1.0% or less
- Mg 0.01% or less, Sn: 0.2% or less, and Sb: 1.0% or less.
- the seamless steel pipe of the present invention has the composition described above, and contains, by volume ratio, 45% or more of tempered martensite phase as a main phase, 20 to 40% ferrite phase, and 10% to 25% or less residual It has a structure consisting of an austenite phase.
- the tempered martensite phase is used as the main phase, and the tempered martensite phase is 45% or more in volume ratio.
- 20% or more of a ferrite phase is deposited as a volume ratio as a second phase at least.
- the ferrite phase is made 20 to 40% by volume.
- the austenite phase (residual austenite phase) is precipitated.
- the presence of the retained austenite phase improves ductility and toughness.
- the retained austenite phase is precipitated by more than 10% by volume ratio.
- precipitation of a large amount of austenite phase exceeding 25% by volume ratio can not ensure desired strength. Therefore, the retained austenite phase is 25% or less in volume ratio.
- the retained austenite phase is greater than 10% and not more than 20% by volume.
- a test piece for tissue observation is treated with a virella reagent (a reagent in which picric acid, hydrochloric acid and ethanol are mixed in a ratio of 2 g,
- a virella reagent a reagent in which picric acid, hydrochloric acid and ethanol are mixed in a ratio of 2 g
- the tissue is corroded and imaged with a scanning electron microscope (magnification: 1000 ⁇ ), and an image analysis device is used to calculate the tissue fraction (volume%) of the ferrite phase.
- the X-ray diffraction test piece is ground and polished so that the cross section (C cross section) orthogonal to the tube axis direction is the measurement surface, and the amount of retained austenite ( ⁇ ) is measured using X-ray diffraction method .
- the maximum crystal grain size of ferrite crystal grains is 500 ⁇ m or less. If the maximum crystal grain size of the ferrite crystal grains is more than 500 ⁇ m, the number of crystal grain boundaries, which is an obstacle to crack growth, decreases, so that desired low temperature toughness can not be obtained. Therefore, in the present invention, when crystal grains within a crystal orientation difference of 15 ° are defined as identical crystal grains, the maximum crystal grain size of ferrite crystal grains is set to 500 ⁇ m or less.
- the maximum crystal grain size of ferrite crystal grains is preferably 400 ⁇ m or less, more preferably 350 ⁇ m or less.
- the above maximum crystal grain size is measured by measuring crystal orientation in a continuous area of 100 mm 2 using backscattered electron diffraction (EBSD) and defining grains within a crystal misorientation of 15 ° as the same crystal grains.
- EBSD backscattered electron diffraction
- Let the maximum diameter of ferrite crystal grains determined to be the same crystal grain be the crystal grain size of the ferrite crystal grains, and adopt the largest value among the crystal grain sizes of all crystals in the range of 100 mm 2 It can be determined by Further, in the present invention, as described later, by heating the steel pipe material before hot working to a heating temperature of 1200 ° C. or less, the maximum crystal grain size of ferrite crystal grains measured by the EBSD is made 500 ⁇ m or less. Can.
- the steel pipe material is heated at a heating temperature of 1200 ° C. or less and subjected to hot working to form a seamless steel pipe of a predetermined shape.
- a seamless steel pipe is reheated to a temperature in the range of 850 to 1150 ° C., and quenched to a cooling stop temperature with a surface temperature of 50 ° C. or less and 0 ° C. or more at a cooling rate of air cooling or higher. It is characterized in that a tempering treatment of heating to the tempering temperature of
- a high strength stainless seamless steel pipe for oil wells is generally manufactured by drilling a steel pipe material (such as billet) by a Mannesmann-plug mill method or a Mannesman-mandrel mill method which is a generally known pipe forming method.
- a steel pipe material such as billet
- a Mannesmann-plug mill method or a Mannesman-mandrel mill method which is a generally known pipe forming method.
- the steel pipe material is heated to a temperature at which sufficient ductility can be ensured.
- crystal grains grow coarsely, and as a result, the final product also becomes a structure having coarse crystal grains, and an excellent low temperature toughness value can not be obtained.
- the hot workability is improved by the composition containing B in a certain amount or more, and even when the heating temperature of the steel pipe material is set to 1200 ° C. or less, the ductility is not impaired as a factor of defects.
- the grain growth can be suppressed, so a fine structure can be obtained, and excellent low temperature toughness value can be obtained.
- the molten steel of the above composition is melted by a conventional melting method such as a converter and made into a steel pipe material such as a billet by a usual method such as a continuous casting method or a block-rolling method. Then, these steel tube materials are heated to a temperature of 1200 ° C. or less, and hot working is carried out using a tube forming process of Mannesman-plug mill method or Mannesman-mandrel mill method which is a generally known tube forming method. And a seamless steel pipe having the above-described composition of desired dimensions.
- the heating temperature of the steel pipe material needs to be 1200 ° C. or less, preferably 1180 ° C. or less, more preferably 1150 ° C. or less. Further, when the heating temperature is less than 1050 ° C., the processability of the steel material becomes considerably low, and even with the steel of the present invention, it becomes difficult to form a pipe without causing any external surface damage. Therefore, it is preferable that the heating temperature of a steel pipe raw material is 1050 degreeC or more, More preferably, it is 1100 degreeC or more.
- the structure of the steel pipe can be made a structure having a tempered martensitic phase as a main phase by cooling to room temperature at a cooling rate of about air cooling after hot working.
- a heat treatment consisting of hardening and tempering is further applied.
- the quenching process is a process of reheating to a temperature in the range of heating temperature: 850 to 1150 ° C., and then cooling to a cooling stop temperature with a surface temperature of 50 ° C. or less and 0 ° C. or more at a cooling rate higher than air cooling.
- the heating temperature is less than 850 ° C., reverse transformation from martensite to austenite does not occur, and transformation from austenite to martensite does not occur during cooling, and a desired strength can not be secured.
- the heating temperature of the quenching treatment is set to a temperature in the range of 850 to 1150 ° C.
- the heating temperature of the quenching treatment is 900 ° C. or more.
- the heating temperature of the quenching treatment is 1000 ° C. or less.
- the cooling stop temperature for cooling in the quenching treatment is 50 ° C. or less and 0 ° C. or more.
- the cooling rate above air cooling is 0.01 ° C./s or more.
- the soaking time is preferably set to 5 to 30 minutes in order to make the temperature in the thickness direction uniform and to prevent the variation of the material.
- the tempering treatment is a treatment of heating the quenched seamless steel pipe to a tempering temperature of 500 to 650.degree. After this heating, it can be allowed to cool. If the tempering temperature is less than 500 ° C., the temperature is too low to expect the desired tempering effect. On the other hand, if the tempering temperature is higher than 650 ° C., an as-quenched martensite phase is generated, and it is not possible to combine desired high strength, high toughness and excellent corrosion resistance. Therefore, the tempering temperature is set to a temperature in the range of 500 to 650.degree. Preferably, the tempering temperature is 520 ° C. or higher. Preferably, the tempering temperature is 630 ° C. or less.
- the holding time is preferably 5 to 90 minutes in order to make the temperature in the thickness direction uniform and to prevent the fluctuation of the material.
- the structure of the seamless steel pipe has a tempered martensite phase as a main phase, and has a structure composed of a ferrite phase and a retained austenite phase.
- a high strength stainless steel seamless steel pipe for oil well having desired strength and toughness and excellent corrosion resistance can be obtained.
- the yield strength of the high strength stainless steel seamless steel pipe for oil wells obtained by this invention is 862 Mpa or more, and has the outstanding low temperature toughness and the outstanding corrosion resistance.
- the yield strength is 1034 MPa or less.
- Molten steel with the composition shown in Table 1 is melted in a converter, cast into billet (steel pipe material) by continuous casting method, heated steel pipe material, piped by hot working using model seamless rolling mill, outer diameter
- the seamless steel pipe of 83.8 mm ⁇ thickness 12.7 mm was air-cooled.
- the heating temperature of the steel pipe material before hot working is as shown in Table 2.
- Test pieces were collected from the obtained heat-treated test material (seamless steel pipe) and subjected to structure observation, tensile test, impact test and corrosion resistance test.
- the test method was as follows. (1) Tissue observation From the heat-treated test material obtained, a specimen for tissue observation was collected such that the cross section in the tube axial direction was the observation surface. The obtained test piece for tissue observation is corroded with virella reagent (reagent mixed with picric acid, hydrochloric acid and ethanol in proportions of 2 g, 10 ml and 100 ml, respectively), and the tissue is imaged with a scanning electron microscope (magnification: 1000 times) The tissue fraction (volume%) of the ferrite phase was calculated using an image analyzer.
- virella reagent reagent mixed with picric acid, hydrochloric acid and ethanol in proportions of 2 g, 10 ml and 100 ml, respectively
- the tissue fraction (volume%) of the ferrite phase was calculated using an image analyzer.
- X-ray diffraction test pieces are collected from the heat-treated test material obtained, ground and polished so that the cross section (C cross section) orthogonal to the tube axis direction becomes the measurement surface, and X-ray diffraction method The amount of retained austenite ( ⁇ ) was measured using this.
- the fraction of the tempered martensite phase is the ferrite phase and the balance other than the residual ⁇ phase.
- the tensile properties (yield strength YS, tensile strength TS) were determined.
- a product having a yield strength YS of 862 MPa or more was regarded as high strength, and a product having a strength of less than 862 MPa was regarded as a failure.
- the corrosion test is performed by immersing the corrosion test piece in a test solution held in an autoclave: 20% by mass aqueous NaCl solution (liquid temperature: 200 ° C., 30 atmospheres CO 2 gas atmosphere), and the immersion period is 14 days ( 336 hours).
- the weight of the test pieces after the test was measured, and the corrosion rate calculated from the weight loss before and after the corrosion test was determined. Those having a corrosion rate of 0.127 mm / y or less were accepted, and those exceeding 0.127 mm / y were rejected.
- production of the surface of a test piece was observed using 10 times the magnification of a loupe.
- the presence of pitting means a diameter of 0.2 mm or more. Those with no occurrence of pitting corrosion were regarded as pass, and those with occurrence of pitting corrosion were regarded as rejection.
- test pieces in the shape of C were produced by machining from the obtained test strip materials, and a sulfide stress cracking test (SSC test) was performed. Grinding and polishing are not performed on the curved surface corresponding to the inner and outer surfaces of the steel pipe.
- SSC resistance test is a test solution held in an autoclave: 20% by mass aqueous NaCl solution (liquid temperature: 25 ° C., H 2 S: 0.1 atm, CO 2 : atmosphere of 0.9 atm) to which pH is added by adding acetic acid + sodium acetate
- the test piece was immersed in an aqueous solution adjusted to 3.5: 3.5, and the immersion period was 720 hours, and 90% of the yield stress was applied as the applied stress.
- the presence or absence of a crack was observed about the test piece after a test. Those with no cracks were regarded as pass ( ⁇ ), and those with cracks were regarded as fail (x).
- test pieces of 3 mm in thickness x 15 mm in width x 115 mm in length are obtained from the test specimen material obtained by machining, and are sulfide resistant in accordance with EFC (European Federation of Corrosion) 17.
- EFC European Federation of Corrosion
- a stress corrosion cracking test (Sulfide Stress Corrosion Cracking) test was performed.
- the SCC test is performed by adding acetic acid + sodium acetate to a test solution held in an autoclave: 20% by mass aqueous NaCl solution (liquid temperature: 100 ° C., H 2 S: 0.1 atm, CO 2 : 30 atm).
- the test piece was immersed in an aqueous solution adjusted to pH: 3.3, and carried out with an immersion period of 720 hours, with 100% of the yield stress as the applied stress.
- the presence or absence of a crack was observed about the test piece after a test. Those with no cracks were regarded as pass ( ⁇ ), and those with cracks were regarded as fail (x).
- All of the inventive examples have high strength YS at 862 MPa or more, absorbed energy at -40 ° C .: high toughness at 40 J or more, and corrosion resistance in a corrosive environment at a high temperature of 200 ° C. including CO 2 and Cl ⁇ .
- YS absorbed energy at -40 ° C .
- high toughness at 40 J or more high toughness in 40 J or more
- corrosion resistance in a corrosive environment at a high temperature of 200 ° C. including CO 2 and Cl ⁇ For oil wells that are excellent in carbon dioxide gas corrosion resistance, have no cracking (SSC, SCC) in environments containing H 2 S, and have excellent sulfide stress cracking resistance and sulfide stress corrosion cracking resistance It is a high strength stainless steel seamless steel pipe.
- steel pipe No. 22 (Steel No. V) does not have sufficient corrosion resistance because the content of Ni is less than 3.0%, and corrosion test Pitting occurred in the In addition, the resistance to sulfide stress cracking (SSC resistance) and the resistance to sulfide corrosion cracking (SCC resistance) were unacceptable.
- steel pipe No. 23 (steel No. W) has pitting corrosion in the corrosion test.
- SSC resistance sulfide stress cracking resistance
- SCC resistance sulfide corrosion cracking resistance
- Steel pipe No. 25 (Steel No. Y) had a Ni content of 5.0% or more, so the stability of martensite decreased and the strength was insufficient.
- Steel pipe No. 27 (Steel No. AA) has a Cu content of more than 3.5%, so the hot workability is insufficient despite the addition of B, and a defect occurs during rolling, which causes sulfide stress corrosion cracking. (SSC resistance) was a failure.
- Steel pipe No. 28 (Steel No. AB) had a Cr content of 15.0% or less, so the corrosion resistance was insufficient, and in the corrosion test, the corrosion rate was large and pitting occurred, which resulted in a rejection. In addition, the resistance to sulfide stress cracking (SSC resistance) and the resistance to sulfide corrosion cracking (SCC resistance) were unacceptable.
- SSC resistance sulfide stress cracking
- SCC resistance resistance to sulfide corrosion cracking
- Steel pipe No. 32 (Steel No. AF) had a content of W of less than 0.1%, so the corrosion resistance was insufficient, and in the corrosion test, the corrosion rate was large and pitting occurred, which resulted in rejection. In addition, the resistance to sulfide stress cracking (SSC resistance) and the resistance to sulfide corrosion cracking (SCC resistance) were unacceptable.
- Steel pipe No. 34 (Steel No. AH) has a B content of less than 0.0005%, so hot workability is insufficient and defects occur during rolling, so sulfide stress cracking resistance (SSC resistance) fails Met.
- Steel pipe No. 40 (steel No. AJ) had insufficient strength because the tempering temperature of the steel pipe material exceeded 650 ° C.
- Steel pipe No. 41 (steel No. AJ) lacked the low temperature toughness because the tempering temperature of the steel pipe material was lower than 500 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
5.1×{(Nb+0.5Ta)-10-2.2/(C+1.2N)}+Cu≧1.0 ‥‥(1)
(ここで、Nb、Ta、C、NおよびCu:各元素の含有量(質量%)であり、含有しない場合はゼロとする。)
を満足するように、調整する必要があることを知見した。より具体的には、本発明者らは、特定の成分組成とし、特定の組織とし、さらに上記の式(1)を満たすようにすることで、所望の強度と靭性が得られることを知見した。
[1]質量%で、
C :0.05%以下、 Si:1.0%以下、
Mn:0.1~0.5%、 P :0.05%以下、
S :0.005%未満、 Cr:15.0%超え19.0%以下、
Mo:2.0%超え2.8%未満、 Cu:0.3~3.5%、
Ni:3.0%以上5.0%未満、 W :0.1~3.0%、
Nb:0.07~0.5%、 V :0.01~0.5%、
Al:0.001~0.1%、 N :0.010~0.100%、
O :0.01%以下、 B :0.0005~0.0100%
を含有し、かつ、Nb、Ta、C、NおよびCuが下記(1)式を満足し、残部Feおよび不可避的不純物からなる組成を有し、
体積率で、45%以上の焼戻マルテンサイト相と、20~40%のフェライト相と、10%超え25%以下の残留オーステナイト相と、からなる組織を有する、結晶方位差15°以内の結晶粒を同一の結晶粒と定義したときに、フェライト結晶粒の最大結晶粒径が500μm以下である降伏強さ862MPa以上を有する油井用高強度ステンレス継目無鋼管。
5.1×{(Nb+0.5Ta)-10-2.2/(C+1.2N)}+Cu≧1.0 ‥‥(1)
ここで、Nb、Ta、C、NおよびCu:各元素の含有量(質量%)であり、含有しない元素はゼロとする。
[2]前記組成に加えてさらに、質量%で、Ti:0.3%以下、Zr:0.2%以下、Co:1.0%以下、Ta:0.1%以下のうちから選ばれた1種または2種以上を含有する[1]に記載の油井用高強度ステンレス継目無鋼管。
[3]前記組成に加えてさらに、質量%で、Ca:0.0050%以下、REM:0.01%以下のうちから選ばれた1種または2種を含有する[1]または[2]に記載の油井用高強度ステンレス継目無鋼管。
[4]前記組成に加えてさらに、質量%で、Mg:0.01%以下、Sn:0.2%以下、Sb:1.0%以下のうちから選ばれた1種または2種以上を含有する[1]~[3]のいずれかに記載の油井用高強度ステンレス継目無鋼管。
[5][1]~[4]のいずれかに記載の油井用高強度ステンレス継目無鋼管の製造方法であり、鋼管素材を、1200℃以下の加熱温度で加熱し、熱間加工を施して所定形状の継目無鋼管とし、前記熱間加工後に、前記継目無鋼管を850~1150℃の範囲の温度に再加熱し、空冷以上の冷却速度で表面温度が50℃以下0℃超えの冷却停止温度まで冷却する焼入れ処理を施し、500~650℃の範囲の焼戻温度に加熱する焼戻処理を施す油井用高強度ステンレス継目無鋼管の製造方法。
5.1×{(Nb+0.5Ta)-10-2.2/(C+1.2N)}+Cu≧1.0 ‥‥(1)
ここで、Nb、Ta、C、NおよびCu:各元素の含有量(質量%)であり、含有しない場合はゼロとする。
Cは、マルテンサイト系ステンレス鋼の強度を増加させる重要な元素である。本発明では、所望の高強度を確保するために、0.010%以上のCを含有することが望ましい。一方、0.05%を超えてCを含有すると、耐食性が低下する。このため、C含有量は0.05%以下とする。好ましくは、C含有量は0.015%以上である。好ましくは、C含有量は0.04%以下である。
Siは、脱酸剤として作用する元素であり、このような効果を得るためには、0.005%以上のSiを含有することが望ましい。一方、1.0%を超えてSiを含有すると、熱間加工性が低下する。このため、Si含有量は1.0%以下とする。好ましくは、Si含有量は0.1%以上である。好ましくは、Si含有量は0.6%以下である。
Mnは、マルテンサイト系ステンレス鋼の強度を増加させる元素であり、所望の強度を確保するために、0.1%以上のMnの含有を必要とする。一方、0.5%を超えてMnを含有すると、靭性が低下する。このため、Mn含有量は0.1~0.5%とする。好ましくは、Mn含有量は0.4%以下である。
Pは、耐炭酸ガス腐食性、耐硫化物応力割れ性等の耐食性を低下させる元素であり、本発明ではできるだけ低減することが好ましいが、0.05%以下であれば許容できる。このため、P含有量は0.05%以下とする。好ましくは、P含有量は0.02%以下である。
Sは、熱間加工性を著しく低下させ、熱間造管工程の安定操業を阻害する元素であり、できるだけ低減することが好ましいが、0.005%未満であれば許容できる。このようなことから、S含有量は0.005%未満とする。好ましくは、S含有量は0.002%以下である。
Crは、鋼管表面の保護皮膜を形成して耐食性向上に寄与する元素であり、Cr含有量が15.0%以下では、所望の耐食性を確保することができない。このため、15.0%超のCrの含有を必要とする。一方、19.0%を超えるCrの含有は、フェライト分率が高くなりすぎて、所望の強度を確保できなくなる。このため、Cr含有量は15.0%超え19.0%以下とする。好ましくは、Cr含有量は16.0%以上である。好ましくは、Cr含有量は18.0%以下である。
Moは、鋼管表面の保護皮膜を安定化させて、Cl-や低pHによる孔食に対する抵抗性を増加させ、耐硫化物応力割れ性および耐硫化物応力腐食割れ性を高める元素である。このような効果を得るためには、2.0%超えのMoを含有する必要がある。一方、Moは高価な元素であり、2.8%以上のMoの含有は、材料コストの高騰を招くとともに、靭性、耐硫化物応力割れ性の低下を招く。このため、Mo含有量は2.0%超え2.8%未満とする。好ましくは、Mo含有量は2.2%以上である。好ましくは、Mo含有量は2.7%以下である。
Cuは、残留オーステナイトを増加させ、かつ析出物を形成して降伏強さの向上に寄与するため、低温靭性を低下させることなく高強度を得ることができる非常に重要な元素である。また、鋼管表面の保護皮膜を強固にして鋼中への水素侵入を抑制し、耐硫化物応力割れ性および耐硫化物応力腐食割れ性を高める効果も有する。このような効果を得るためには、0.3%以上のCuの含有を必要とする。一方、3.5%を超えるCuの含有は、CuSの粒界析出を招き、熱間加工性を低下させる。このため、Cu含有量は0.3~3.5%とする。好ましくは、Cu含有量は0.5%以上である。好ましくは、Cu含有量は1.0%以上である。好ましくは、Cu含有量は3.0%以下である。
Niは、鋼管表面の保護皮膜を強固にして耐食性向上に寄与する元素である。また、Niは、固溶強化により鋼の強度を増加させる。このような効果は3.0%以上のNiの含有で顕著になる。一方、5.0%以上のNiの含有は、マルテンサイト相の安定性が低下し、強度が低下する。このため、Ni含有量は3.0%以上5.0%未満とする。好ましくは、Ni含有量は3.5%以上である。好ましくは、Ni含有量は4.5%以下である。
Wは、鋼の強度向上に寄与するとともに、鋼管表面の保護皮膜を安定化させて、耐硫化物応力割れ性および耐硫化物応力腐食割れ性を高めることができる重要な元素である。Wは、Moと複合して含有することにより、とくに耐硫化物応力割れ性を顕著に向上させる。このような効果を得るためには、0.1%以上のWの含有を必要とする。一方、3.0%を超えるWの含有は、靭性を低下させる。このため、W含有量は0.1~3.0%とする。好ましくは、W含有量は0.5%以上である。好ましくは、W含有量は0.8%以上である。好ましくは、W含有量は2.0%以下である。
Nbは、CおよびNと結合しNb炭窒化物(Nb析出物)として析出し、降伏強さの向上に寄与し、本発明では重要な元素である。このような効果を得るためには0.07%以上のNbの含有を必要とする。一方、0.5%を超えるNbの含有は、靭性および耐硫化物応力割れ性の低下を招く。このため、Nb含有量は0.07~0.5%とする。好ましくは、Nb含有量は0.07~0.2%である。
Vは、固溶により強度の向上に寄与するほか、C、Nと結合しV炭窒化物(V析出物)として析出し、降伏強さの向上に寄与する元素である。このような効果を得るためには、0.01%以上のVの含有を必要とする。一方、0.5%を超えるVの含有は、靭性および耐硫化物応力割れ性の低下を招く。このため、V含有量は0.01~0.5%とする。好ましくは、V含有量は0.02%以上である。好ましくは、V含有量は0.1%以下である。
Alは、脱酸剤として作用する元素である。このような効果を得るためには、0.001%以上のAlの含有を必要とする。一方、0.1%を超えてAlを含有すると、酸化物量が増加し清浄度が低下し、靭性が低下する。このため、Al含有量は0.001~0.1%とする。好ましくは、Alは0.01%以上である。好ましくは、Al有量は0.02%以上である。好ましくは、Al含有量は0.07%以下である。
Nは、耐孔食性を向上させる元素である。このような効果を得るためには、Nを0.010%以上含有する。一方、0.100%を超えてNを含有すると、窒化物を形成して靭性を低下させる。このため、N含有量は0.010~0.100%とする。好ましくは、N含有量は0.020%以上である。好ましくは、N含有量は0.06%以下である。
O(酸素)は、鋼中では酸化物として存在するため、各種特性に悪影響を及ぼす。このため、本発明では、できるだけ低減することが望ましい。とくに、Oが0.01%を超えると、熱間加工性、耐食性、靭性が低下する。このため、O含有量は0.01%以下とする。
Bは、強度増加に寄与するとともに、さらに熱間加工性の改善にも寄与する。その結果、造管過程において亀裂や割れの発生が抑制されるため、NACE TM0177 Method Cに代表される鋼管製造ままの内外表面を有する試験片を用いたSSC試験において耐SSC性が向上する。このような効果を得るためには、Bを0.0005%以上含有する。一方、0.0100%を超えてBを含有させても、熱間加工性を改善効果がほぼ現出しなくなるだけではなく、低温靭性が低下する。このため、B含有量は0.0005~0.0100%とする。好ましくは、B含有量は0.001%以上である。好ましくは、B含有量は0.008%以下である。より好ましくは、B含有量は0.0015%以上である。より好ましくは、B含有量は0.007%以下である。
5.1×{(Nb+0.5Ta)-10-2.2/(C+1.2N)}+Cu≧1.0 ‥‥(1)
(ここで、Nb、Ta、C、NおよびCu:各元素の含有量(質量%)であり、含有しない元素はゼロとする。)
を満足するように調整して含有する。(1)式の左辺値が1.0未満では、Cu析出物、Nb析出物およびTa析出物の析出量が少なく、析出強化が不十分で、所望の強度を確保できない。このため、本発明では、(1)式の左辺値が1.0以上となるように、Nb、Ta、C、NおよびCuの含有量を調整する。なお、上述したように(1)式に記載の元素を含有しない場合には、(1)式の左辺値は当該元素を零(ゼロ)として算出するものとする。好ましくは、(1)式の左辺値は2.0以上である。
Ti、Zr、CoおよびTaはいずれも、強度を増加させる元素であり、必要に応じて選択して1種または2種以上を含有することができる。Ti、Zr、CoおよびTaは、上記した効果に加えて、耐硫化物応力割れ性を改善する効果も有する。特に、TaはNbと同様の効果をもたらす元素であり、Nbの一部をTaに置き換えることができる。このような効果を得るためには、Ti:0.01%以上、Zr:0.01%以上、Co:0.01%以上およびTa:0.01%以上を、それぞれ含有することが望ましい。一方、Ti:0.3%、Zr:0.2%、Co:1.0%およびTa:0.1%を、それぞれ超えて含有すると、靭性が低下する。このため、含有する場合には、Ti:0.3%以下、Zr:0.2%以下、Co:1.0%以下およびTa:0.1%以下に限定することが好ましい。
CaおよびREMはいずれも、硫化物の形態制御を介して耐硫化物応力腐食割れ性の改善に寄与する元素であり、必要に応じて1種または2種含有できる。このような効果を得るためには、Ca:0.0001%以上およびREM:0.001%以上含有することが望ましい。一方、Ca:0.0050%およびREM:0.01%を、それぞれ超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、含有する場合には、Ca:0.0050%以下およびREM:0.01%以下にそれぞれ、限定することが好ましい。
Mg、SnおよびSbはいずれも、耐食性を向上させる元素であり、必要に応じて1種または2種以上を選択して含有できる。このような効果を得るためには、Mg:0.002%以上、Sn:0.01%以上およびSb:0.01%以上を、それぞれ含有することが望ましい。一方、Mg:0.01%、Sn:0.2%およびSb:1.0%を、それぞれ超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、含有する場合には、Mg:0.01%以下、Sn:0.2%以下およびSb:1.0%以下に、それぞれ限定することが好ましい。
γ(体積率)=100/(1+(IαRγ/IγRα))
(ここで、Iα:αの積分強度、Rα:αの結晶学的理論計算値、Iγ:γの積分強度、Rγ:γの結晶学的理論計算値)
を用いて換算する。
(1)組織観察
得られた熱処理済み試験材から、管軸方向断面が観察面となるように組織観察用試験片を採取した。得られた組織観察用試験片をビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食して走査型電子顕微鏡(倍率:1000倍)で組織を撮像し、画像解析装置を用いて、フェライト相の組織分率(体積%)を算出した。
γ(体積率)=100/(1+(IαRγ/IγRα))
(ここで、Iα:αの積分強度、Rα:αの結晶学的理論計算値、Iγ:γの積分強度、Rγ:γの結晶学的理論計算値)
を用いて換算した。なお、焼戻マルテンサイト相の分率は、フェライト相および、残留γ相以外の残部である。
(2)引張試験
得られた熱処理済み試験材から、管軸方向が引張方向となるように、API(American Petroleum Institute)弧状引張試験片を採取し、APIの規定に準拠して、引張試験を実施し引張特性(降伏強さYS、引張強さTS)を求めた。降伏強さYSが862MPa以上のものを高強度であるとして合格とし、862MPa未満のものは不合格とした。
(3)衝撃試験
得られた熱処理済み試験材から、JIS Z 2242の規定に準拠して、試験片長手方向が管軸方向となるように、Vノッチ試験片(10mm厚)を採取し、シャルピー衝撃試験を実施した。試験温度は、-40℃とし、-40℃における吸収エネルギーvE-40を求め、靭性を評価した。なお、試験片は各3本とし、得られた値の算術平均を当該鋼管の吸収エネルギー(J)とした。-40℃における吸収エネルギーvE-40が40J以上のものを高靭性であるとして合格とし、40J未満のものは不合格とした。
(4)耐食性試験
得られた熱処理済み試験材から、厚さ3mm×幅30mm×長さ40mmの腐食試験片を機械加工によって作製し、腐食試験を実施し耐炭酸ガス腐食性を評価した。
Claims (5)
- 質量%で、
C :0.05%以下、 Si:1.0%以下、
Mn:0.1~0.5%、 P :0.05%以下、
S :0.005%未満、 Cr:15.0%超え19.0%以下、
Mo:2.0%超え2.8%未満、 Cu:0.3~3.5%、
Ni:3.0%以上5.0%未満、 W :0.1~3.0%、
Nb:0.07~0.5%、 V :0.01~0.5%、
Al:0.001~0.1%、 N :0.010~0.100%、
O :0.01%以下、 B :0.0005~0.0100%
を含有し、かつ、Nb、Ta、C、NおよびCuが下記(1)式を満足し、残部Feおよび不可避的不純物からなる組成を有し、
体積率で、45%以上の焼戻マルテンサイト相と、20~40%のフェライト相と、10%超え25%以下の残留オーステナイト相と、からなる組織を有し、結晶方位差15°以内の結晶粒を同一の結晶粒と定義したときに、フェライト結晶粒の最大結晶粒径が500μm以下である降伏強さ862MPa以上を有する油井用高強度ステンレス継目無鋼管。
記
5.1×{(Nb+0.5Ta)-10-2.2/(C+1.2N)}+Cu≧1.0 ‥‥(1)
ここで、Nb、Ta、C、NおよびCu:各元素の含有量(質量%)であり、含有しない元素はゼロとする。 - 前記組成に加えてさらに、質量%で、
Ti:0.3%以下、
Zr:0.2%以下、
Co:1.0%以下、
Ta:0.1%以下のうちから選ばれた1種または2種以上を含有する請求項1に記載の油井用高強度ステンレス継目無鋼管。 - 前記組成に加えてさらに、質量%で、
Ca:0.0050%以下、
REM:0.01%以下のうちから選ばれた1種または2種を含有する請求項1または2に記載の油井用高強度ステンレス継目無鋼管。 - 前記組成に加えてさらに、質量%で、
Mg:0.01%以下、
Sn:0.2%以下、
Sb:1.0%以下のうちから選ばれた1種または2種以上を含有する請求項1~3のいずれかに記載の油井用高強度ステンレス継目無鋼管。 - 請求項1~4のいずれかに記載の油井用高強度ステンレス継目無鋼管の製造方法であり、鋼管素材を、1200℃以下の加熱温度で加熱し、熱間加工を施して所定形状の継目無鋼管とし、前記熱間加工後に、前記継目無鋼管を850~1150℃の範囲の温度に再加熱し、空冷以上の冷却速度で表面温度が50℃以下0℃超えの冷却停止温度まで冷却する焼入れ処理を施し、500~650℃の範囲の焼戻温度に加熱する焼戻処理を施す油井用高強度ステンレス継目無鋼管の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18846146.1A EP3670693B1 (en) | 2017-08-15 | 2018-07-25 | High-strength stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same |
JP2018557950A JP6766887B2 (ja) | 2017-08-15 | 2018-07-25 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
US16/638,561 US11286548B2 (en) | 2017-08-15 | 2018-07-25 | High-strength stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same |
BR112020003067-8A BR112020003067B1 (pt) | 2017-08-15 | 2018-07-25 | Tubo sem costura de aço inoxidável de alta resistência para produtos tubulares de campos petrolíferos, e processo para a fabricação do mesmo |
MX2020001801A MX2020001801A (es) | 2017-08-15 | 2018-07-25 | Tubo sin costura de acero inoxidable de alta resistencia para productos tubulares de region petrolifera, y metodo para la fabricacion del mismo. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017156836 | 2017-08-15 | ||
JP2017-156836 | 2017-08-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019035329A1 true WO2019035329A1 (ja) | 2019-02-21 |
Family
ID=65362285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/027997 WO2019035329A1 (ja) | 2017-08-15 | 2018-07-25 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11286548B2 (ja) |
EP (1) | EP3670693B1 (ja) |
JP (1) | JP6766887B2 (ja) |
AR (1) | AR112941A1 (ja) |
MX (1) | MX2020001801A (ja) |
WO (1) | WO2019035329A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021187331A1 (ja) * | 2020-03-19 | 2021-09-23 | ||
WO2021187330A1 (ja) * | 2020-03-19 | 2021-09-23 | Jfeスチール株式会社 | ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法 |
JP2021161503A (ja) * | 2020-04-01 | 2021-10-11 | 日本製鉄株式会社 | 継目無鋼管 |
EP3916120A4 (en) * | 2019-03-29 | 2022-02-16 | JFE Steel Corporation | SEAMLESS STAINLESS STEEL PIPE |
CN114450430A (zh) * | 2019-10-01 | 2022-05-06 | 杰富意钢铁株式会社 | 不锈钢无缝钢管及其制造方法 |
CN114450428A (zh) * | 2019-10-01 | 2022-05-06 | 杰富意钢铁株式会社 | 不锈钢无缝钢管及其制造方法 |
CN115807190A (zh) * | 2022-11-28 | 2023-03-17 | 攀钢集团攀枝花钢铁研究院有限公司 | 一种输油用高强度耐腐蚀不锈钢无缝管及其制造方法 |
WO2024024236A1 (ja) * | 2022-07-29 | 2024-02-01 | Jfeスチール株式会社 | 耐微生物応力腐食割れ低合金鋼材 |
EP4123037A4 (en) * | 2020-07-06 | 2024-10-02 | Jfe Steel Corp | SEAMLESS STAINLESS STEEL PIPE AND ITS PRODUCTION METHOD |
WO2024209843A1 (ja) * | 2023-04-06 | 2024-10-10 | Jfeスチール株式会社 | ステンレス継目無鋼管およびその製造方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2018000331A (es) | 2015-07-10 | 2018-03-14 | Jfe Steel Corp | Tuberia de acero inoxidable sin costura de alta resistencia y metodo de fabricacion de tuberia de acero inoxidable sin costura de alta resistencia. |
US11085095B2 (en) * | 2016-02-08 | 2021-08-10 | Jfe Steel Corporation | High-strength seamless stainless steel pipe for oil country tubular goods and method of manufacturing high-strength seamless stainless steel pipe |
CA3026554C (en) | 2016-07-27 | 2021-03-23 | Jfe Steel Corporation | High-strength seamless stainless steel pipe for oil country tubular goods, and method for producing the same |
JP6418338B2 (ja) | 2016-09-02 | 2018-11-07 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
JP6699670B2 (ja) * | 2016-09-02 | 2020-05-27 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
WO2018131340A1 (ja) | 2017-01-13 | 2018-07-19 | Jfeスチール株式会社 | 高強度ステンレス継目無鋼管およびその製造方法 |
JP6399259B1 (ja) | 2017-02-24 | 2018-10-03 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
JP6274372B1 (ja) | 2017-03-30 | 2018-02-07 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
KR102337567B1 (ko) * | 2017-05-26 | 2021-12-08 | 제이에프이 스틸 가부시키가이샤 | 페라이트계 스테인리스강 |
WO2019035329A1 (ja) | 2017-08-15 | 2019-02-21 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
JP6540921B1 (ja) | 2017-09-29 | 2019-07-10 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
JP6540922B1 (ja) * | 2017-09-29 | 2019-07-10 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
US12111331B1 (en) * | 2020-07-31 | 2024-10-08 | KHOLLE Magnolia 2015, LLC | Densitometer assembly for high-pressure flow lines |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005336595A (ja) | 2003-08-19 | 2005-12-08 | Jfe Steel Kk | 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法 |
JP2008081793A (ja) | 2006-09-28 | 2008-04-10 | Jfe Steel Kk | 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管 |
WO2010050519A1 (ja) | 2008-10-30 | 2010-05-06 | 住友金属工業株式会社 | 耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管 |
JP2010209402A (ja) | 2009-03-10 | 2010-09-24 | Jfe Steel Corp | 高靱性でかつ耐食性に優れた油井用高強度ステンレス鋼管 |
WO2010134498A1 (ja) | 2009-05-18 | 2010-11-25 | 住友金属工業株式会社 | 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法 |
JP2012149317A (ja) | 2011-01-20 | 2012-08-09 | Jfe Steel Corp | 油井用高強度マルテンサイト系ステンレス継目無鋼管 |
WO2013146046A1 (ja) | 2012-03-26 | 2013-10-03 | 新日鐵住金株式会社 | 油井用ステンレス鋼及び油井用ステンレス鋼管 |
WO2016132403A1 (ja) * | 2015-02-20 | 2016-08-25 | Jfeスチール株式会社 | 高強度継目無厚肉鋼管およびその製造方法 |
WO2017010036A1 (ja) * | 2015-07-10 | 2017-01-19 | Jfeスチール株式会社 | 高強度ステンレス継目無鋼管およびその製造方法 |
JP6156609B1 (ja) * | 2016-02-08 | 2017-07-05 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5778714A (en) * | 1995-05-19 | 1998-07-14 | Nkk Corporation | Method for manufacturing seamless pipe |
JP5807630B2 (ja) | 2012-12-12 | 2015-11-10 | Jfeスチール株式会社 | 継目無鋼管の熱処理設備列および高強度ステンレス鋼管の製造方法 |
JP5967066B2 (ja) * | 2012-12-21 | 2016-08-10 | Jfeスチール株式会社 | 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法 |
JP6409827B2 (ja) | 2015-08-18 | 2018-10-24 | Jfeスチール株式会社 | 油井用継目無ステンレス鋼管の製造方法 |
US11085095B2 (en) * | 2016-02-08 | 2021-08-10 | Jfe Steel Corporation | High-strength seamless stainless steel pipe for oil country tubular goods and method of manufacturing high-strength seamless stainless steel pipe |
CN109154054B (zh) | 2016-05-20 | 2020-06-05 | 日本制铁株式会社 | 井下部件用棒钢和井下部件 |
WO2018079111A1 (ja) | 2016-10-25 | 2018-05-03 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
JP6399259B1 (ja) | 2017-02-24 | 2018-10-03 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
WO2019035329A1 (ja) | 2017-08-15 | 2019-02-21 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
JP6540921B1 (ja) | 2017-09-29 | 2019-07-10 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
-
2018
- 2018-07-25 WO PCT/JP2018/027997 patent/WO2019035329A1/ja unknown
- 2018-07-25 MX MX2020001801A patent/MX2020001801A/es unknown
- 2018-07-25 US US16/638,561 patent/US11286548B2/en active Active
- 2018-07-25 JP JP2018557950A patent/JP6766887B2/ja active Active
- 2018-07-25 EP EP18846146.1A patent/EP3670693B1/en active Active
- 2018-08-14 AR ARP180102307A patent/AR112941A1/es active IP Right Grant
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005336595A (ja) | 2003-08-19 | 2005-12-08 | Jfe Steel Kk | 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法 |
JP2008081793A (ja) | 2006-09-28 | 2008-04-10 | Jfe Steel Kk | 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管 |
WO2010050519A1 (ja) | 2008-10-30 | 2010-05-06 | 住友金属工業株式会社 | 耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管 |
JP2010209402A (ja) | 2009-03-10 | 2010-09-24 | Jfe Steel Corp | 高靱性でかつ耐食性に優れた油井用高強度ステンレス鋼管 |
WO2010134498A1 (ja) | 2009-05-18 | 2010-11-25 | 住友金属工業株式会社 | 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法 |
JP2012149317A (ja) | 2011-01-20 | 2012-08-09 | Jfe Steel Corp | 油井用高強度マルテンサイト系ステンレス継目無鋼管 |
WO2013146046A1 (ja) | 2012-03-26 | 2013-10-03 | 新日鐵住金株式会社 | 油井用ステンレス鋼及び油井用ステンレス鋼管 |
WO2016132403A1 (ja) * | 2015-02-20 | 2016-08-25 | Jfeスチール株式会社 | 高強度継目無厚肉鋼管およびその製造方法 |
WO2017010036A1 (ja) * | 2015-07-10 | 2017-01-19 | Jfeスチール株式会社 | 高強度ステンレス継目無鋼管およびその製造方法 |
JP6156609B1 (ja) * | 2016-02-08 | 2017-07-05 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12098438B2 (en) | 2019-03-29 | 2024-09-24 | Jfe Steel Corporation | Stainless steel seamless pipe |
EP3916120A4 (en) * | 2019-03-29 | 2022-02-16 | JFE Steel Corporation | SEAMLESS STAINLESS STEEL PIPE |
CN114450430A (zh) * | 2019-10-01 | 2022-05-06 | 杰富意钢铁株式会社 | 不锈钢无缝钢管及其制造方法 |
EP4012054A4 (en) * | 2019-10-01 | 2022-10-12 | JFE Steel Corporation | SEAMLESS STAINLESS STEEL PIPE AND METHOD OF MAKING THE SAME |
EP4012053A4 (en) * | 2019-10-01 | 2022-10-12 | JFE Steel Corporation | SEAMLESS STAINLESS STEEL PIPE AND METHOD OF PRODUCTION THEREOF |
CN114450428A (zh) * | 2019-10-01 | 2022-05-06 | 杰富意钢铁株式会社 | 不锈钢无缝钢管及其制造方法 |
JP7156537B2 (ja) | 2020-03-19 | 2022-10-19 | Jfeスチール株式会社 | ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法 |
CN115349024A (zh) * | 2020-03-19 | 2022-11-15 | 杰富意钢铁株式会社 | 不锈钢无缝钢管和不锈钢无缝钢管的制造方法 |
JPWO2021187330A1 (ja) * | 2020-03-19 | 2021-09-23 | ||
WO2021187331A1 (ja) * | 2020-03-19 | 2021-09-23 | Jfeスチール株式会社 | ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法 |
JPWO2021187331A1 (ja) * | 2020-03-19 | 2021-09-23 | ||
JP7156536B2 (ja) | 2020-03-19 | 2022-10-19 | Jfeスチール株式会社 | ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法 |
CN115298343A (zh) * | 2020-03-19 | 2022-11-04 | 杰富意钢铁株式会社 | 不锈钢无缝钢管和不锈钢无缝钢管的制造方法 |
EP4123040A4 (en) * | 2020-03-19 | 2024-10-02 | Jfe Steel Corp | SEAMLESS STAINLESS STEEL TUBE AND METHOD FOR PRODUCING A SEAMLESS STAINLESS STEEL TUBE |
EP4123039A4 (en) * | 2020-03-19 | 2024-09-25 | Jfe Steel Corp | SEAMLESS STAINLESS STEEL TUBE AND METHOD FOR PRODUCING A SEAMLESS STAINLESS STEEL TUBE |
WO2021187330A1 (ja) * | 2020-03-19 | 2021-09-23 | Jfeスチール株式会社 | ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法 |
JP2021161503A (ja) * | 2020-04-01 | 2021-10-11 | 日本製鉄株式会社 | 継目無鋼管 |
EP4123037A4 (en) * | 2020-07-06 | 2024-10-02 | Jfe Steel Corp | SEAMLESS STAINLESS STEEL PIPE AND ITS PRODUCTION METHOD |
WO2024024236A1 (ja) * | 2022-07-29 | 2024-02-01 | Jfeスチール株式会社 | 耐微生物応力腐食割れ低合金鋼材 |
CN115807190A (zh) * | 2022-11-28 | 2023-03-17 | 攀钢集团攀枝花钢铁研究院有限公司 | 一种输油用高强度耐腐蚀不锈钢无缝管及其制造方法 |
WO2024209843A1 (ja) * | 2023-04-06 | 2024-10-10 | Jfeスチール株式会社 | ステンレス継目無鋼管およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3670693B1 (en) | 2023-10-04 |
MX2020001801A (es) | 2020-03-20 |
EP3670693A4 (en) | 2020-08-12 |
JP6766887B2 (ja) | 2020-10-14 |
EP3670693A1 (en) | 2020-06-24 |
US11286548B2 (en) | 2022-03-29 |
AR112941A1 (es) | 2020-01-08 |
BR112020003067A2 (pt) | 2020-08-25 |
JPWO2019035329A1 (ja) | 2019-11-07 |
US20200216936A1 (en) | 2020-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6766887B2 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP6399259B1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP6384636B1 (ja) | 高強度ステンレス継目無鋼管およびその製造方法 | |
WO2017138050A1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP6460229B2 (ja) | 油井用高強度ステンレス継目無鋼管 | |
JP5967066B2 (ja) | 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP6226081B2 (ja) | 高強度ステンレス継目無鋼管およびその製造方法 | |
JP6156609B1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP5924256B2 (ja) | 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法 | |
JP6369662B1 (ja) | 二相ステンレス鋼およびその製造方法 | |
WO2014112353A1 (ja) | 油井用ステンレス継目無鋼管およびその製造方法 | |
JP6237873B2 (ja) | 油井用高強度ステンレス継目無鋼管 | |
JP7315097B2 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP7226675B1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP7111253B2 (ja) | ステンレス継目無鋼管およびその製造方法 | |
US12098438B2 (en) | Stainless steel seamless pipe | |
JP7226571B2 (ja) | ステンレス継目無鋼管およびその製造方法 | |
WO2023053743A1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP6747628B1 (ja) | 二相ステンレス鋼、継目無鋼管、および二相ステンレス鋼の製造方法 | |
WO2022224640A1 (ja) | ステンレス鋼管およびその製造方法 | |
EP4414463A1 (en) | High-strength seamless stainless steel pipe for oil wells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018557950 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18846146 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020003067 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2018846146 Country of ref document: EP Effective date: 20200316 |
|
ENP | Entry into the national phase |
Ref document number: 112020003067 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200213 |