[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019035255A1 - On-board sensor cleaning device - Google Patents

On-board sensor cleaning device Download PDF

Info

Publication number
WO2019035255A1
WO2019035255A1 PCT/JP2018/019808 JP2018019808W WO2019035255A1 WO 2019035255 A1 WO2019035255 A1 WO 2019035255A1 JP 2018019808 W JP2018019808 W JP 2018019808W WO 2019035255 A1 WO2019035255 A1 WO 2019035255A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning device
vehicle sensor
sensor cleaning
nozzle
movable nozzle
Prior art date
Application number
PCT/JP2018/019808
Other languages
French (fr)
Japanese (ja)
Inventor
渓太 齋藤
松下 幸弘
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017166721A external-priority patent/JP7020001B2/en
Priority claimed from JP2018020077A external-priority patent/JP7130975B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/628,242 priority Critical patent/US11679422B2/en
Priority to DE112018004171.9T priority patent/DE112018004171T5/en
Priority to CN201880051437.4A priority patent/CN111225838B/en
Publication of WO2019035255A1 publication Critical patent/WO2019035255A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/56Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/46Cleaning windscreens, windows or optical devices using liquid; Windscreen washers
    • B60S1/48Liquid supply therefor
    • B60S1/52Arrangement of nozzles; Liquid spreading means
    • B60S1/522Arrangement of nozzles; Liquid spreading means moving liquid spreading means, e.g. arranged in wiper arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/56Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
    • B60S1/60Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens for signalling devices, e.g. reflectors

Definitions

  • the present disclosure relates to an on-vehicle sensor cleaning device.
  • an on-vehicle sensor cleaning device which ejects a liquid to the front of an optical surface (sensing surface) of an on-vehicle optical sensor and removes foreign matter attached to the optical surface (see, for example, Patent Document 1).
  • an on-vehicle sensor cleaning apparatus good cleaning performance can be obtained by ejecting the liquid onto the optical surface while the nozzle disposed facing the optical surface moves along the optical surface.
  • An object of the present disclosure is to provide an on-vehicle sensor cleaning device that suppresses the influence of on-vehicle sensors on sensing.
  • an on-vehicle sensor cleaning device in an on-vehicle sensor including a sensing surface.
  • the in-vehicle sensor cleaning device includes an injection port for injecting a fluid to the sensing surface in a state of being disposed outside the sensing range of the in-vehicle sensor.
  • the in-vehicle sensor cleaning device further includes a movable nozzle that moves the injection port so that the injection axis position of the injection port is changed.
  • FIG. 7 is a top view of the in-vehicle sensor cleaning device of FIG.
  • FIG. 10 is a front view of the sensor system of FIG. 9;
  • FIG. 10 is a plan view of the sensor system of FIG. 9;
  • FIG. 12 is a cross-sectional view taken along line 12-12 in FIG. 13 is a cross-sectional view taken along line 13-13 in FIG. Explanatory drawing for demonstrating the rotational speed of the nozzle in a modification.
  • the schematic block diagram of the nozzle in a modification. 17 is a cross-sectional view taken along line 17-17 in FIG. (A)-(d) is sectional drawing in alignment with the 18-18 line in FIG.
  • FIG. 21 is a plan view of the in-vehicle sensor cleaning device of FIG. 20; The front view of the sensor system of FIG. Explanatory drawing for demonstrating the rotational speed of the nozzle of FIG.
  • FIG. 26 is a cross-sectional view of the in-vehicle sensor cleaning device of FIG. 25.
  • the sensor system 1 cleans the optical surface (sensing surface) 11 of the on-vehicle optical sensor 10 by being stacked on the on-vehicle optical sensor 10 as the on-vehicle sensor and the on-vehicle optical sensor 10. And an on-vehicle sensor cleaning device 20.
  • the on-vehicle optical sensor 10 is, for example, a sensor (for example, Lidar) that emits (emits) an infrared laser and measures the distance to the object by receiving scattered light reflected from the object (for example, Lidar).
  • a sensor for example, Lidar
  • the side facing the optical surface 11 is referred to as the front, and the opposite side is described as the rear.
  • the stacking direction of the on-vehicle sensor cleaning device 20 with respect to the on-vehicle optical sensor 10 is referred to as the vertical direction or the vertical direction, and the vertical direction and the direction orthogonal to the front and rear direction are referred to as the horizontal direction.
  • the optical surface 11 is a surface which is convex forward and has a curved shape as viewed in the vertical direction.
  • the on-vehicle sensor cleaning device 20 includes a nozzle unit 21 stacked and disposed above (on the upper side in the vertical direction) the on-vehicle optical sensor 10 and a pump (fluid pump) that supplies fluid to the nozzle unit 21. And 22.
  • the nozzle unit 21 includes a housing 23, a nozzle 24 as a movable nozzle provided so as to expose at least a part from the housing 23 forward, a nozzle 24 and a pump 22. And a drive unit 26 housed in the housing 23.
  • connection portion 25 is fixed by a screw in a state in which a part of the connection portion 25 itself is inserted into an insertion hole 23 a provided in the rear of the housing 23.
  • the connection portion 25 is connected to the pump 22 via, for example, a hose (not shown), and can introduce air supplied from the pump 22 into a flow path P1 formed in the connection portion 25.
  • the flow path P1 of the connecting portion 25 is configured to be bent in the connecting portion 25 to form a substantially L shape.
  • the nozzle 24 has a cylindrical portion 31 extending in the front-rear direction, and a disk (cylindrical) main body portion 32 provided in front of the cylindrical portion 31 and larger in diameter than the cylindrical portion 31. And.
  • the cylindrical portion 31 of the nozzle 24 is rotatably supported in a state of being inserted in two insertion holes 23 a and 23 b provided in front of the connection portion 25 and provided in front and rear of the housing 23.
  • the main body portion 32 is integral with the cylindrical portion 31.
  • the main body 32 has an injection port 32 a capable of injecting the air (gas) supplied from the pump 22.
  • the entire nozzle 24 is positioned above the on-vehicle optical sensor 10 (optical surface 11), and the nozzle 24 is prevented from facing the optical surface 11. Further, in the nozzle 24, a flow path P 2 provided across the cylindrical portion 31 and the main body portion 32 is formed.
  • the flow path P1 of the connection portion 25 and the flow path P2 of the nozzle 24 are communicated with each other by arranging the rear portion of the cylindrical portion 31 opposite to the front of the connection portion 25. Therefore, the gas (air) supplied from the pump 22 is injected from the injection port 32a of the main body 32 of the nozzle 24 through the flow path P1 in the connection portion 25 and the flow path P2 in the nozzle 24. It has become.
  • the flow path P2 of the nozzle 24 is bent in the main body 32 so as to form a substantially L shape, and the injection port 32a is directed downward in the vertical direction.
  • An annular seal member S2 is provided at the rear end of the cylindrical portion 31 to seal the space between the cylindrical portion 31 and the insertion hole 23a.
  • a seal member S3 is provided on the front side of the cylindrical portion 31 to seal between the cylindrical portion 31 and the insertion hole 23b. In this way, it is possible to suppress the entry of water or the like into the interior from between the insertion holes 23a and 23b and the cylindrical portion 31.
  • the drive unit 26 as a pivoting mechanism has a motor 41 and a reduction mechanism 42 in a housing 23, and the nozzle 24 exposed from the housing 23 is driven by the rotational driving force of the motor 41. Rotate (rock).
  • the reduction gear mechanism 42 includes a worm 41 b, a first gear 43, a second gear 44, and a worm wheel 31 a.
  • the worm 41 b is formed on the output shaft 41 a of the motor 41 and is engaged with the worm wheel 43 a of the first gear 43.
  • the worm 41 b (the output shaft 41 a of the motor 41) extends in the left-right direction which is the width direction of the on-vehicle optical sensor 10. Therefore, an increase in the size of the in-vehicle sensor cleaning device 20 in the front-rear direction, which is the sensing axial direction (detection direction) of the in-vehicle optical sensor 10, is suppressed.
  • the first gear 43 meshing with the worm 41 b is integrally formed with the worm wheel 43 a, and a spur gear (not shown) coaxially rotating with the worm wheel 43 a meshes with the spur gear 44 a of the second gear 44.
  • the second gear 44 is provided with a worm 44b which is integrally formed with the spur gear 44a and rotates coaxially with the spur gear 44a.
  • the worm 44 b meshes with a worm wheel 31 a formed on the outer peripheral surface of the cylindrical portion 31 of the nozzle 24.
  • the rotational driving force of the motor 41 is transmitted to the cylindrical portion 31 of the nozzle 24 by the reduction mechanism 42 so as to have a low rotational high torque, and the cylindrical portion 31 is rotated, and is integral with the cylindrical portion 31.
  • the main body 32 is rotated to change the direction of the injection port 32a.
  • the nozzle 24 is oscillated back and forth at a substantially constant speed over a predetermined range H (see FIG. 2) on the optical surface 11. That is, forward and reverse rotation of the motor 41 is switched.
  • the nozzle 24 is rotated about a central axis (rotational axis) CL of the cylindrical portion 31.
  • the central axis CL of the cylindrical portion 31 coincides with the central axis of the flow path P2 of the cylindrical portion 31. That is, the flow path P2 is set on the central axis line CL which is the rotation center of the cylindrical portion 31.
  • guide wall portions 51 which are flush with the optical surface 11 are provided on the periphery of the nozzle 24 in the rotational direction and on both sides in the lateral direction of the nozzle 24.
  • Each of the guide wall portions 51 is a surface on the front side of which a curved shape having substantially the same curvature as that of the optical surface 11 is formed.
  • Each guide wall 51 is configured to be tapered as it is separated from the nozzle 24, and the shape of the front surface of the guide wall 51 is substantially triangular.
  • the lower end portion of the guide wall portion 51 is parallel to the upper edge portion of the optical surface 11, and the lower end portion is substantially at the same position as the nozzle 24 in the vertical direction.
  • the vertical height of the guide wall 51 in the vicinity of the nozzle 24 is substantially equal to the radius of the main body 32 of the nozzle 24.
  • a nozzle cover 52 is provided in front of the nozzle 24 so as to cover the nozzle 24 and suppress the exposure of the nozzle 24 to the outside.
  • the nozzle cover 52 is attached to the housing 23 by screws.
  • the attachment method of the nozzle cover 52 may be other methods, such as a snap fit.
  • the nozzle cover 52 is configured such that, for example, the front cover portion 52 a covering the nozzle 24 has a curved shape substantially similar to the curvature of the optical surface 11. Therefore, in the front cover portion 52a and the optical surface 11, the distances in the direction orthogonal to the optical surface 11 are substantially equal throughout the circumferential direction (the bending direction).
  • the pump 22 can use, for example, a centrifugal pump.
  • the configuration of the pump 22 will be described below with reference to FIG.
  • the pump 22 of the present embodiment is an air pump, and includes a motor 61, a pump case 62, and an impeller 63.
  • the motor 61 is, for example, a brushless motor, and includes a stator 65a fixed to the inner peripheral surface of a substantially bottomed cylindrical motor case 64, and a rotor 65b rotatably supported inside the stator 65a.
  • the number of magnetic poles of the rotor 65b is four, and the number of slots between the teeth of the stator 65a is six.
  • a central hole 64b is formed at the center of the bottom portion 64a (upper portion in FIG. 5) of the motor case 64, and the base end side (upper end in FIG. 5) of the rotary shaft 67 of the rotor 65b The side (the part closer to the bottom 64a) is supported.
  • an annular sensor magnet 69 is provided via a fixing ring 68 made of resin at the base end (the upper end (the end near the bottom 64a) in FIG. 5) of the rotary shaft 67 projecting to the outside of the motor case 64. Is fixed.
  • the circuit board 71 is fixed to the bottom portion 64 a of the motor case 64 via the fixing member 70. On the circuit board 71, various elements such as a rotation sensor 72 that detects the rotation (rotation angle, rotation speed, etc.) of the rotation shaft 67 facing the sensor magnet 69 are mounted.
  • the pump case 62 is a first case 73 fixed so as to substantially close the open end of the motor case 64, and a second case fixed to the opposite side of the motor 61 (motor case 64) of the first case 73. And 74.
  • a center hole 73a is formed at the center of the first case 73, and the tip end side (portion near the pump case 62) of the rotary shaft 67 is supported on the inner peripheral surface of the center hole 73a via a bearing 75.
  • a circular recess 73 b is formed on the end face of the first case 73 near the second case 74 as viewed from the axial direction of the rotating shaft 67.
  • a spiral chamber forming groove 73c is formed on the outer peripheral side of the recess 73b at the end face of the first case 73 near the second case 74.
  • An air introducing hole 74 a is formed at the center of the second case 74.
  • the air introduction hole 74a penetrates the second case 74 along the axial direction of the rotary shaft 67, and the diameter thereof is formed to be smaller as it goes to the motor 61 (first case 73).
  • a circular recess 74b is formed when viewed from the axial direction of the rotating shaft 67, and the recess 74b together with the recess 73b of the first case 73 is an impeller accommodating portion W is configured.
  • a spiral chamber forming groove 74c is formed on the outer peripheral side of the concave portion 74b at the end face of the second case 74 closer to the first case 73, and the spiral chamber forming groove 74c is together with the spiral chamber forming groove 73c of the first case 73.
  • the swirl chamber U is configured.
  • an air discharge cylindrical portion 74d in communication with the spiral chamber U located radially outside of the impeller housing portion W is formed in a part of the second case 74 in the circumferential direction.
  • An annular seal groove 73d is formed in the mating surface of the first case 73 with the second case 74 at a position radially outward of the spiral chamber U, and the seal groove 73d is formed with the second case 74 in alignment.
  • An annular seal member S4 which is clamped while being crushed by the surface is accommodated. This prevents the fluid (air) passing through the swirl chamber U from leaking from the mating surface.
  • a substantially bottomed cylindrical sealing case 76 covering the entire motor 61 is fixed to the first case 73.
  • the sealing case 76 has flange portions 76a extending outward in the radial direction at its opening end, and a plurality of locations (only one location is shown in FIG. 5) of the flanges 76a passes through the flanges 76a to form the first case It is fixed by a screw 77 screwed on 73.
  • an annular seal groove 73e is formed in the mating surface of the first case 73 with the flange portion 76a, and an annular seal member S5 which is pinched and pinched by the mating surface of the flange portion 76a is formed in the seal groove 73e. It is housed.
  • a wiring hole 76 c is formed in the bottom portion 76 b of the sealed case 76.
  • a seal rubber member 79 for preventing the air from leaking from the wiring hole 76c is fitted in the wiring hole 76c while passing through the wiring 78.
  • the wiring 78 electrically connects an external control device or power supply device to the circuit board 71 and the winding of the stator 65 a.
  • the impeller 63 is fixed to be integrally rotatable with a tip end (a side end close to the pump case 62) of the rotary shaft 67 protruding into the impeller housing W, and is disposed in the impeller housing W.
  • the impeller 63 has a plurality of flow passages 80 communicating the internal space of the axial center thereof with the external space (spiral chamber U) radially outward, and is rotated so as to introduce the fluid introduced from the air introduction hole 74a.
  • the fluid As air from the inside space to the outside space (the swirl chamber U) through the flow passage 80, the fluid (air) is continuously jetted from the air discharge cylindrical portion 74d.
  • the air discharge cylindrical portion 74d is connected to the connection portion 25 of the nozzle unit 21 through a hose (not shown) so that the fluid continuously supplied from the nozzle 24 (injection port 32a) is jetted. It becomes.
  • the nozzle unit 21 of the in-vehicle sensor cleaning device 20 of the present embodiment is provided above the in-vehicle optical sensor 10 in the vertical direction. Then, by driving the pump 22, air supplied from the pump 22 is continuously jetted from the injection port 32a of the nozzle 24 through the flow paths P1 and P2.
  • the motor 41 when the motor 41 is driven to rotate, the rotational driving force is transmitted to the nozzle 24 through the reduction mechanism 42, and the nozzle 24 is rotated. .
  • the motor 41 is rotated in the forward and reverse directions so that the injection axis SL of the nozzle 24 swings back and forth on the optical surface 11.
  • the nozzle 24 is provided at a position (upper side in the vertical direction) deviating from the position facing the optical surface 11, so the position of the ejection axis SL of the nozzle 24 is changed. As described above, even when the nozzle 24 is rotated, the nozzle 24 is not positioned on the optical surface 11. Thereby, the influence on the sensing of the in-vehicle sensor cleaning device 20 is suppressed.
  • a nozzle 24 which rotates around a central axis line CL as a rotation axis extending in a direction perpendicular to the surface of the optical surface 11 in a state of being disposed at a position not facing the optical surface 11 (a position outside the sensing range). Since the air is jetted to the optical surface 11 by this, the nozzle 24 itself does not enter the sensing range. Therefore, the influence on sensing can be suppressed. Further, the fluid can be jetted to a wide range of the optical surface 11.
  • the fluid By continuously supplying the fluid to the nozzle 24 by the pump 22, the fluid can be jetted to a wide range of the optical surface, and the cleaning effect can be enhanced.
  • the fluid When the fluid is injected while changing the position of the injection axis, assuming that the piston pump (pump for intermittently discharging the fluid) is the pump 22, there is a time when the fluid is not injected, and the fluid is injected to a part of the optical surface
  • fluid can be ejected from the nozzle 24 without interruption.
  • the nozzle 24 can be configured by the single injection port 32a, complication of the structure of the nozzle 24 can be suppressed (simplified). Also, high pressure or large flow of fluid can be injected from the injection port 32a.
  • the nozzle 24 By rotating the nozzle 24 in the forward and reverse directions, the nozzle 24 can be oscillated back and forth on the optical surface 11, and the fluid can be jetted to a necessary place (predetermined range H). (5) By rotating the nozzle 24 by the driving force of the drive unit 26, the nozzle 24 can be reliably rotated. In addition, the rotation axis of the nozzle 24 by the drive unit 26 changes the position of the injection axis of the injection port 32 a, so that the fluid can be injected to a wide range of the optical surface 11.
  • the drive unit 26 includes the motor 41 as a drive source for driving to rotate and the reduction mechanism 42 for transmitting the driving force of the motor 41 to the nozzle 24 so that the nozzle 24 can be driven at low speed and high torque with respect to the motor 41. It becomes possible to turn. Further, since the rated output of the motor 41 can be reduced, a small motor can be employed.
  • the nozzle cover 52 which covers the nozzle 24 in the range except injection axis SL of the air (fluid) injected from the nozzle 24 is provided. That is, the nozzle cover 52 does not extend to a position intersecting the injection axis SL. Therefore, it is possible to suppress the ejection of the fluid from the nozzle 24 while hiding the nozzle 24 by the nozzle cover 52. That is, it can be suppressed that the ejection of the fluid is inhibited due to the foreign matter adhering to the nozzle 24.
  • the on-vehicle sensor cleaning device 90 uses a slide mechanism 92 capable of sliding the nozzle 91 (movable nozzle).
  • the nozzle 91 has a connecting portion 91a connectable to the pump 22 at its rear portion, and the pump 22 is connected to the connecting portion 91a via a hole (not shown). Further, the nozzle 91 has a flow passage formed therein, and fluid (air) supplied from the pump 22 is injected from the injection port 91 b through the flow passage.
  • the slide mechanism 92 includes two guide rails 94 a and 94 b supported by a housing 93, a plurality of pulleys 95 a to 95 e, and a wire 96 installed on the pulleys 95 a to 95 e. And a drive unit 97 for moving the wire 96 for rotationally driving the pulleys 95a to 95e.
  • Each guide rail 94 a, 94 b is disposed along the optical surface 11 of the on-vehicle optical sensor 10.
  • the guide rails 94 a and 94 b are juxtaposed in a state of being separated in the vertical direction, and both end portions in the left-right direction are supported by the housing 93.
  • the drive unit 97 includes a motor 98 and a speed reduction mechanism 99.
  • the speed reduction mechanism 99 includes a worm 100 provided on an output shaft 98 a of the motor 98 and a first gear 101 having a worm wheel 101 a engaged with the worm 100.
  • the first gear 101 has a small diameter gear 101b that rotates integrally with the worm wheel 101a.
  • the small diameter gear 101b meshes with a gear (not shown) that rotates integrally with the drum pulley 95a.
  • the plurality of pulleys 95a to 95e have the drum pulley 95a, guide pulleys 95b and 95c, and two tension pulleys 95d and 95e.
  • the drum pulley 95a is capable of winding the wire 96 and delivering the wire 96 by the rotation of the drum pulley 95a.
  • the guide pulleys 95b and 95c are provided on both sides in the left-right direction so as to sandwich the drum pulley 95a.
  • the respective tension pulleys 95d and 95e are provided between the drum pulley 95a and the guide pulleys 95b and 95c, and apply a suitable tension to the wire 96 so that the wire 96 is not slackened.
  • the wire 96 is to be connected to the nozzle 91. Therefore, for example, by rotating the drum pulley 95a, the wire 96 is wound around the drum pulley 95a from one side in the left-right direction, and the wire 96 is fed from the drum pulley 95a to the other side in the left-right direction.
  • the nozzle 91 is moved to slide along the guide rails 94a and 94b. Further, the wire 96 is provided between the guide rails 94a and 94b in the vertical direction. As a result, the wire 96 can be moved to stably move the nozzle 91 along the guide rails 94a and 94b.
  • a nozzle cover 102 is provided in front of the nozzle 91 so as to cover the nozzle 91 to suppress external exposure.
  • the nozzle cover 102 does not interfere in the movement range of the nozzle 91.
  • direct impact of flying objects etc. in the movement range of the nozzle 91 is suppressed.
  • the on-vehicle sensor cleaning device 90 configured as described above drives the pump 22 while sliding the nozzle 91 along the guide rails 94 a and 94 b of the slide mechanism 92 to drive the fluid from the ejection port 91 b of the nozzle 91.
  • Spray (air) By this, the fluid can be jetted to a wide range of the optical surface 11.
  • the on-vehicle sensor cleaning device 90 configured as described above exerts the following effects in addition to the effects (1) to (3) of the first embodiment. (13) A fluid can be jetted to a wide range of the optical surface 11 by changing the position of the jet axis SL of the jet port 91b by the slide movement along the optical surface 11.
  • composition provided with a control part which changes movement speed (rotational speed) of injection axis SL of nozzle 24,91 may be adopted.
  • a control example may be adopted in which the rotational speed of the nozzle 24 is reduced as the distance in the injection axis SL direction on the optical surface 11 increases. That is, as the region to be cleaned on the optical surface 11 is farther from the movable nozzle in the ejection axial direction, the rotational speed of the nozzle 24 may be reduced.
  • An example in which such a control example is applied to the first embodiment is shown in FIG.
  • the point D1 between the center and the left end of the swing range H of the nozzle 24 and the point D2 between the center and the left end of the swing range H are the most from the nozzle 24 in the optical surface 11 Positions at a long distance (positions passing both left and right end portions of the lower end circle of the optical surface 11).
  • the drive unit 26 motor 41
  • the rotational speed of the nozzle 24 decreases as the distance in the direction of the ejection axis SL on the optical surface 11 increases. It is possible to increase the injection time of the fluid to a site far from the difficult-to-reach nozzle 24.
  • the rotational speed of the drive unit 26 controls the rotational speed of the injection axis SL on the optical surface 11, the rotational speed is changed from the difference in the portion where the fluid hardly reaches or the portion where the fluid easily reaches can do.
  • the ejection priority on the optical surface 11 is set in advance, and the moving speed (rotational speed) of the nozzles 24 and 91 is reduced as the injection priority is higher, and the rotational speed of the nozzles 24 and 91 is adjusted as the priority is lower.
  • An example of control to increase may be adopted.
  • the priority setting method may be arbitrarily changed by the user, or may be appropriately set according to, for example, the positions of the light emitting unit and the light receiving unit in the in-vehicle sensor cleaning device. As described above, by controlling the motors 41 and 98 so as to make the moving speed (rotational speed) of the nozzles 24 and 91 slower as the area where the injection priority is higher, the fluid is suitably applied to the part where the priority is high. It can be injected.
  • the nozzles 24 and 91 capable of ejecting air as a fluid are provided.
  • the present invention is not limited thereto. For example, even if a configuration including a liquid nozzle capable of ejecting a liquid as a fluid is adopted. Good. An example in which such a configuration is applied to the first embodiment is shown in FIG. 9 to FIG.
  • one liquid nozzle 110 is provided on each side of the nozzle 24 in the left-right direction. Unlike the nozzle 24, the liquid nozzle 110 has a non-rotatable structure.
  • the liquid nozzle 110 has an injection port 110a, and is connected to a liquid pump 111 different from the pump 22 so that liquid can be ejected from the injection port 110a.
  • a washer liquid for cleaning a front window of a vehicle and the like can be mentioned.
  • Each liquid nozzle 110 is configured to protrude forward than the nozzle cover 52 and be exposed to the outside. As shown in FIGS. 12 and 13, in each liquid nozzle 110, the amount L2 of protrusion projecting in the direction orthogonal to the surface from the optical surface 11 is larger than the amount L1 of protrusion projecting in the direction orthogonal to the surface from the optical surface 11 of the nozzle 24. ing. In other words, the projection amount L1 of the nozzle 24 which protrudes in the surface orthogonal direction from the optical surface 11 is smaller than the projection amount L2 which protrudes in the surface orthogonal direction from the optical surface of the liquid nozzle.
  • the ejection axis SL of the nozzle 24 can be made relatively parallel to the optical surface 11, and the ejection axis SL of the liquid nozzle 110 is relatively predetermined relative to the optical surface 11. It can be inclined to have an angle of
  • the fluid (air) can be jetted to the area corresponding to the liquid nozzle 110 by the rotating nozzles 24. And since the amount L1 of protrusion which protrudes in the surface orthogonal direction from the optical surface 11 is smaller than the amount L2 of protrusion which protrudes in the surface orthogonal direction from the optical surface 11, the nozzle 24 Thus, foreign matter such as water droplets adhering to the optical surface 11 can be blown away.
  • the liquid (washer liquid) ejected from the liquid nozzle 110 may collide with the optical surface 11 and be diffused. As a result, the liquid can be supplied to the wide area of the optical surface 11 and the wide area of the optical surface 11 can be cleaned.
  • liquid nozzles 110 may be changed to one or three or more.
  • the arrangement of the nozzles 110 is not limited to the arrangement in which the nozzles 24 are sandwiched, and can be appropriately changed.
  • a configuration in which a plurality of nozzles 24 are provided only on one side in the left-right direction may be employed.
  • the number may differ between the liquid nozzles 110 provided on one side of the nozzles 24 and the liquid nozzles 110 provided on the other side of the nozzles 24.
  • the liquid nozzle 110 was provided in addition to the nozzle 24 in the said example, the air nozzle which injects gas (air) irrespective of the liquid nozzle 110 may be sufficient.
  • the liquid nozzle at a position not interfering with the movement range of the nozzle 91.
  • one nozzle 24 or 91 as the movable nozzle is provided.
  • a plurality of the nozzles may be provided. An example in which such a configuration is applied to the first embodiment is shown in FIG.
  • the on-vehicle sensor cleaning device 20 has three nozzles 24.
  • the nozzle 24 is supplied with fluid (air) from the pump 22 via the flow path switching unit 120.
  • the flow path switching unit 120 switches the flow path between the pump 22 and each nozzle 24 so that fluid is sequentially ejected from the three nozzles 24.
  • fluid is sequentially ejected from the nozzles 24.
  • the three nozzles 24 are connected to the drive unit 26 so as to be rotated.
  • the drive unit 26 that rotates the three nozzles 24 a configuration may be adopted in which the driving force of one drive source (motor 41) is transmitted to each nozzle 24 to rotate the nozzles 24. .
  • the nozzle 24 as the movable nozzle is provided with the single injection port 32a.
  • the present invention is not limited to this, and a plurality of injection ports may be provided. A configuration having a plurality of injection ports will be described as an example applied to the first embodiment with reference to FIGS. 16 to 18.
  • the nozzle 24 (main body 32) has two injection ports 32a and 32b.
  • the injection ports 32 a and 32 b are formed on the opposite side of the nozzle 24 in the circumferential direction 180 degrees.
  • a regulation wall 130 covering a range of 180 degrees in the circumferential direction of the nozzle 24 is provided around the main body 32 of the nozzle 24.
  • the restricting wall portion 130 always faces one of the two injection ports 32a and 32b during rotation of the nozzle 24, and restricts the injection of fluid from the opposed injection ports 32a and 32b.
  • the portion which is not covered by regulation wall part 130 has become the range which can actually jet fluid to optical surface 11.
  • the control range of the injection of the fluid by the control wall portion 130 is outside the area that allows the injection of the fluid to the optical surface 11.
  • one of the two injection ports 32a and 32b is exposed to the outside by rotating the nozzle 24 in one direction. It becomes a state and can jet fluid.
  • the injection of the fluid from the injection ports 32 a and 32 b is restricted at the portion covered by the restriction wall portion 130.
  • the restriction wall portion 130 is not limited to the configuration in which the plurality of injection ports 32a and 32b are provided, but may be applied to a nozzle in which a single injection port is provided. In addition, it is possible to adopt a configuration in which the control wall portion 130 is provided for the nozzle that is reciprocated by being rotated forward and reverse not only in one direction but also in one direction. Moreover, although it was set as the structure which covers the range of the circumferential direction 180 degree
  • the nozzle unit 21 (nozzles 24, 91) constituting the in-vehicle sensor cleaning device 20 is provided above the in-vehicle optical sensor 10 in the vertical direction, but the nozzle unit 21 (nozzles 24, 91) is You may employ
  • the nozzle covers 52 and 102 covering the nozzles 24 and 91 are provided.
  • the configurations in which the covers 52 and 102 are omitted may be employed.
  • the optical surface 11 has a curved shape (curved surface).
  • the present invention is not limited to this.
  • the optical surface 11 may have a planar shape.
  • the drive units 26 and 97 are configured by the single motors 41 and 98 and the reduction mechanisms 42 and 99, but the invention is not limited thereto.
  • a configuration may be employed in which the reduction mechanisms 42 and 99 are omitted.
  • the configuration of the reduction mechanisms 42 and 99 that is, the number of gears and the reduction ratio can be changed as appropriate.
  • the guide wall 51 having a curved shape flush with the optical surface 11 is provided.
  • the present invention is not limited to this. A configuration in which the optical surface 11 and the guide wall 51 are not flush may be employed.
  • the guide wall 51 may have a planar shape with respect to the curved optical surface 11. Moreover, you may employ
  • the nozzle 24 is rotated by the rotational driving force of the motor 41 of the drive unit 26.
  • the nozzle 24 is rotated (oscillated) by the supply of fluid. May be adopted.
  • the flow path P2 capable of introducing the fluid (air) to the rotation center (central axis line CL) of the nozzle 24 is provided.
  • the present invention is not limited thereto. You may employ
  • a centrifugal pump is employed as the pump 22.
  • the pump is not limited to this, and a pump capable of continuously supplying fluid such as an axial flow or diagonal flow pump, a diaphragm pump or a screw pump may be employed. Good.
  • the slide mechanism 92 is configured to include the plurality of pulleys 95a to 95e and the wire 96 installed around the pulleys 95a to 95e, but the present invention is not limited thereto.
  • the slide mechanism 140 shown in FIG. 19 is configured to use a slider crank.
  • the slide mechanism 140 includes two guide rails 142 a and 142 b provided in the housing 141, a slider crank 143, and a drive unit 144 that drives the slider crank 143.
  • the guide rails 142a and 142b are juxtaposed along the optical surface 11, and have a curved shape that is substantially equal to the curvature of the optical surface 11.
  • a nozzle 145 is slidably provided on each of the guide rails 142a and 142b.
  • the drive unit 144 includes a motor 146 and a speed reduction mechanism 147.
  • the reduction mechanism 147 includes a worm 148 provided on an output shaft 146 a of the motor 146 and a worm wheel 149 meshing with the worm 148.
  • the slider crank 143 includes a link 150 connected at a position shifted radially outward from the rotation center of the worm wheel 149 and a slider 151 connected to the link 150.
  • the link 150 is connected at its proximal end to the worm wheel 149 and at its distal end to the proximal end of the slider 151.
  • the slider 151 has a proximal end connected to the link 150 and a distal end slidably connected to a long hole 145 a provided in the nozzle 145.
  • the slider 151 is supported so as to be capable of rotating (pivoting) by a support shaft 151a set between the end portions.
  • the motor 146 when the motor 146 is rotationally driven, the rotational driving force is transmitted, and the slider 151 is rotated about the support shaft 151a.
  • the center of curvature of the support shaft 151a which is the swing center (rotation center) of the slider 151, and the guide rails 142a and 142b are offset. Therefore, normally, even if the slider 151 is swung, it is difficult to swing the nozzle 145 along the guide rails 142a and 142b.
  • the movement of the tip of the slider 151 is allowed in the longitudinal direction of the long hole 145a, and the nozzle 145 is swung along the guide rails 142a and 142b. It has become possible.
  • the on-vehicle optical sensor 10 (for example, LIDAR or camera) which is an optical sensor is adopted as the on-vehicle sensor, but the invention is not limited thereto.
  • Other on-vehicle sensors a radar using radio waves (for example, a millimeter wave radar) or an ultrasonic sensor used as a corner sensor
  • the on-vehicle optical sensor 10 may be adopted as the on-vehicle sensor.
  • the gas is jetted from the nozzle 24 and the liquid (washer liquid) is jetted from the liquid nozzle 110, but the combination of these may be changed as appropriate. That is, a configuration may be employed in which the liquid is ejected from the rotating nozzle 24 and the gas is ejected from the nozzle 110. In addition, a configuration in which only the liquid is ejected from each of the nozzles 24 and 110 or a configuration in which only the gas is ejected from each of the nozzles 24 and 110 may be adopted.
  • the nozzle 24 has a configuration in which the projection amount L1 projecting in the surface orthogonal direction from the optical surface 11 is smaller than the projection amount L2 projecting in the surface orthogonal direction from the optical surface 11 of the liquid nozzle 110. And, but it is not limited to this.
  • the protrusion amounts L1 and L2 of the nozzle 24 and the liquid nozzle 110 may be the same.
  • a configuration in which the protrusion amount L1 of the nozzle 24 is smaller than the protrusion amount L2 of the liquid nozzle 110 may be employed.
  • the on-vehicle sensor cleaning device 20 includes a nozzle unit 21 stacked and disposed above (on the upper side in the vertical direction) the on-vehicle optical sensor 10 and a pump 22 that supplies fluid to the nozzle unit 21. (See FIG. 1).
  • the nozzle unit 21 includes a housing 23, a nozzle 24 as a movable nozzle provided so as to expose at least a part of the housing forward, a connection portion 25 provided between the nozzle 24 and the pump 22, and a housing And a drive 26 housed within the body 23.
  • the drive unit 26 includes a motor 181 and a driving force transmission mechanism 182 for transmitting the driving force of the motor 181 in the housing 23.
  • the driving force transmission mechanism 182 includes a speed reduction unit 183, a first motion converter 186, and a second motion converter 191.
  • the speed reduction unit 183 has a worm 184 and a first gear 185.
  • the worm 184 is formed on the output shaft 181 a of the motor 181 and is engaged with the worm wheel 185 a of the first gear 185.
  • the first gear 185 is integrally formed with the worm wheel 185 a and integrally rotates coaxially with the worm wheel 185 a and has a spur gear 185 b smaller in diameter than the worm wheel 185 a, and the spur gear 185 b meshes with the second gear 187. .
  • the first motion converter 186 is a so-called reciprocating slider-crank mechanism that converts circular motion (rotational motion) into reciprocating linear motion
  • the second gear 187 and the second gear A rod member 188 is connected to one end of the rod member 187, and a slider member 189 is connected to the other end of the rod member 188.
  • the second gear 187 is configured by a spur gear.
  • One end of a rod member 188 constituting the first motion converter 186 is connected to the axial end surface 187 a of the second gear 187 at a position away from the rotation center of the second gear 187. That is, the second gear 187 acts as a crank of the reciprocating slider-crank mechanism.
  • the other end of the rod member 188 is connected to one end of the slider member 189.
  • the slider member 189 is supported by a linear guide member 190 extending in the left-right direction, and is capable of reciprocating linear movement along the guide member 190.
  • the driving force is transmitted to the slider member 189 via the rod member 188.
  • the slider member 189 reciprocates linearly along the guide member 190 by the transmitted driving force.
  • the second motion converter 191 converts reciprocating linear motion into circular motion, and in this example, a rack and pinion is used. More specifically, the second motion converter 191 includes the slider member 189 and a pinion gear 192.
  • the slider member 189 corresponds to a rack
  • the pinion gear portion 192 corresponds to a pinion. That is, the slider member 189 constitutes both the first motion converter 186 and the second motion converter 191 (parts of both).
  • the slider member 189 has a tooth portion 189a formed on the surface thereof.
  • the tooth portion 189 a of the slider member 189 meshes with a pinion gear portion 192 formed on the outer peripheral surface of the cylindrical portion 31 of the nozzle 24. That is, when the slider member 189 reciprocates linearly, the pinion gear portion 192 meshing with the tooth portion 189a of the slider member 189 rotates, and the nozzle 24 rotates. At this time, since the slider member 189 reciprocates linearly, when the slider member 189 moves forward, the pinion gear portion 192 and the nozzle 24 rotate in one direction, and the slider member 189 returns. The pinion gear portion 192 and the nozzle 24 rotate in the other direction. Thus, the nozzle 24 rotates so as to change the direction of the injection port 32a in the predetermined range H (see FIG. 22).
  • the operation of the in-vehicle sensor cleaning device 20 will be described.
  • the motor 181 is driven to rotate
  • the nozzle unit 21 of the in-vehicle sensor cleaning device 20 of the present embodiment is converted into low-speed high-torque rotation by the speed reduction unit 183.
  • the rotational motion is converted into the reciprocating linear motion by the first motion converter 186.
  • the reciprocating linear motion is converted to rotational motion (reciprocal rotational motion) by the second motion converter 191, and the rotational driving force is transmitted to the nozzle 24.
  • the nozzle 24 is rotated within the predetermined range H.
  • the rotational speed of the nozzle 24 changes in the same manner as a sine wave. More specifically, as shown in FIG. 23, the rotational speed of the nozzle 24 is the slowest at the position where forward and reverse rotation of the nozzle 24 switches (the position where reciprocation switches), and the injection axis SL of the nozzle 24 is positioned at the center At the same time, the rotational speed of the nozzle 24 is the highest.
  • the optical surface 11 is a surface which is convex forward and has a curved shape as viewed in the vertical direction. For this reason, the change rate of the curved surface of the optical surface 11 with respect to the injection axis SL on a straight line is larger in the portion where the normal and reverse rotations of the nozzle 24 are switched than in other portions. For this reason, as described above, the target portion of the optical surface 11 can be efficiently cleaned by reducing the speed of the nozzle 24 at the portion where the forward and reverse rotation of the nozzle 24 switches.
  • the forward and reverse rotation of the motor 181 is switched by providing the first motion converting unit 186 and the second motion converting unit 191 as conversion mechanisms for converting the rotational movement of the motor 181 in one direction into reciprocating rotational movement.
  • the nozzle 24 can be reciprocated and rotated (reciprocally rotated) within a predetermined range. Once the rotational movement is converted to reciprocating linear movement by the first movement converting unit 186, when converting the reciprocating linear movement to rotational movement by the second movement converting unit 191, it naturally becomes reciprocating rotational movement.
  • the nozzle 24 can be reciprocated and rotated (reciprocally rotated) within a predetermined range without switching the rotation.
  • the third embodiment may be modified as follows.
  • the rotational speed of the nozzle 24 is controlled by controlling the rotational speed of the drive unit 26 (motor 41) to control the injection axis SL on the optical surface 11 You may employ
  • a so-called reciprocating slider / crank mechanism is used as the first motion converter 186.
  • the present invention is not limited to this.
  • the configuration shown in FIG. 24 or the configurations shown in FIGS. 25 and 26 may be adopted.
  • the first motion converter is integrally formed with the worm wheel 185a of the reduction gear 183 and integrally rotates coaxially with the worm wheel 185a, and has a small diameter gear 201 smaller in diameter than the worm wheel 185a, A slider member 202 engaged with the gear 201 is provided.
  • the small diameter gear 201 is configured by providing a total of three tooth portions 201a having two gear teeth 201b at equal intervals in the circumferential direction.
  • the slider member 202 is supported so as to reciprocate in a cylinder 203 a integrally formed with the motor housing portion 203.
  • the motor housing portion 203 constitutes, for example, a part of the housing 23 and houses the motor 181.
  • the slider member 202 has a tooth portion 202a formed on one end side thereof for meshing with the gear teeth 201b of the tooth portion 201a, and a tooth portion 202b formed on the other end side for meshing with the pinion gear portion 192. Further, a flange portion 202c is formed at an intermediate position in the longitudinal direction of the slider member 202 and at a portion accommodated (inserted) in the cylinder 203a. A spring 204 is provided between the flange portion 202c and the bottom portion 203b of the cylinder 203a. The spring 204 biases the flange portion 202c toward the opening 203c opposite to the bottom portion 203b of the cylinder 203a.
  • the small diameter gear 201 is rotated in one direction.
  • the slider 202 moves in the direction opposite to the biasing direction of the spring 204 against the biasing force of the spring 204.
  • the axial end surface 205 of the worm wheel 185a is provided with a spring support portion 205a for supporting one end of the spring 207.
  • a spring support portion 206a for supporting the other end of the spring 207 is provided between the spring support portion 205a and the motor accommodation portion 206 which constitutes a part of the housing 23 and accommodates the motor 181 and the like. As a result, a biasing force is generated by the spring 207 in the direction opposite to the driving direction of the motor 181.
  • the small diameter gear 208 which is integrally formed with the worm wheel 185a and integrally rotates coaxially with the worm wheel 185a and which has a diameter smaller than that of the worm wheel 185a is formed by helical teeth (worm wheel).
  • the worm wheel 185 a meshes with a worm 209 formed on the cylindrical portion 31 of the nozzle 24.
  • the nozzle 24 is rotated in one direction by rotationally driving the output shaft 181a of the motor 181 in one direction against the biasing force of the spring 207, and the operation of the motor 181 is stopped by the biasing force of the spring 207. It turns in the other direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Nozzles (AREA)

Abstract

This on-board sensor cleaning device is provided to an on-board sensor that includes a sensing surface. The on-board sensor cleaning device includes a jetting port that, when disposed outside the sensing range of the on-board sensor, jets a liquid towards the sensing surface. The on-board sensor cleaning device also includes a moving nozzle that can cause the jetting port to move so that the jetting axial position of the jetting port is changed.

Description

車載センサ洗浄装置In-vehicle sensor cleaning device
 本開示は、車載センサ洗浄装置に関する。 The present disclosure relates to an on-vehicle sensor cleaning device.
 従来、車載光学センサの光学面(センシング面)前面に液体を噴射し、光学面に付着した異物を除去する車載センサ洗浄装置が知られている(例えば特許文献1参照)。
 このような車載センサ洗浄装置では、光学面と対向配置されるノズルが光学面に沿って移動しながら前記光学面に液体を噴射することで良好な洗浄性能が得られるようになっている。
Conventionally, an on-vehicle sensor cleaning device is known which ejects a liquid to the front of an optical surface (sensing surface) of an on-vehicle optical sensor and removes foreign matter attached to the optical surface (see, for example, Patent Document 1).
In such an on-vehicle sensor cleaning apparatus, good cleaning performance can be obtained by ejecting the liquid onto the optical surface while the nozzle disposed facing the optical surface moves along the optical surface.
欧州特許出願公開第3141441号明細書European Patent Application Publication No. 3141441
 ところで、上記のような車載センサ洗浄装置では、センシング面である光学面とノズルが対向する状態でノズルが光学面に沿って移動されることとなるため、車載光学センサによるセンシングを阻害する虞がある。 By the way, in the above-mentioned in-vehicle sensor cleaning device, since the nozzle is moved along the optical surface in a state where the optical surface which is the sensing surface faces the nozzle, there is a possibility that the sensing by the in-vehicle optical sensor may be inhibited. is there.
 本開示の目的は、車載センサによるセンシングへの影響を抑える車載センサ洗浄装置を提供することにある。 An object of the present disclosure is to provide an on-vehicle sensor cleaning device that suppresses the influence of on-vehicle sensors on sensing.
 上記目的を達成するため、本開示の一態様にかかる車載センサ洗浄装置は、センシング面を含む車載センサに設けられる。前記車載センサ洗浄装置は、前記車載センサのセンシング範囲外に配置された状態で、前記センシング面に対して流体を噴射する噴射口を含む。前記車載センサ洗浄装置は、更に、前記噴射口の噴射軸線位置が変更されるように前記噴射口を可動する可動ノズルを含む。 In order to achieve the above object, an on-vehicle sensor cleaning device according to an aspect of the present disclosure is provided in an on-vehicle sensor including a sensing surface. The in-vehicle sensor cleaning device includes an injection port for injecting a fluid to the sensing surface in a state of being disposed outside the sensing range of the in-vehicle sensor. The in-vehicle sensor cleaning device further includes a movable nozzle that moves the injection port so that the injection axis position of the injection port is changed.
第1実施形態に係る車載センサ洗浄装置を備えるセンサシステムの斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The perspective view of a sensor system provided with the vehicle-mounted sensor washing | cleaning apparatus which concerns on 1st Embodiment. 図1のカバーを取り外した状態を示すセンサシステムの斜視図。The perspective view of the sensor system which shows the state which removed the cover of FIG. 図1の駆動部について説明するための平面図。FIG. 2 is a plan view for explaining the drive unit of FIG. 1; 図3における4-4線に沿った断面図。FIG. 5 is a cross-sectional view taken along line 4-4 in FIG. 3; 図1のポンプの断面図。FIG. 2 is a cross-sectional view of the pump of FIG. 第2実施形態に係る車載センサ洗浄装置の斜視図。The perspective view of the vehicle-mounted sensor washing | cleaning apparatus which concerns on 2nd Embodiment. 図6の車載センサ洗浄装置を備えるセンサシステムの正面図。The front view of a sensor system provided with the vehicle-mounted sensor washing | cleaning apparatus of FIG. 図6の車載センサ洗浄装置の上面図。FIG. 7 is a top view of the in-vehicle sensor cleaning device of FIG. 6; 変形例における車載センサ洗浄装置を備えたセンサシステムの斜視図。The perspective view of the sensor system provided with the vehicle-mounted sensor washing | cleaning apparatus in a modification. 図9のセンサシステムの正面図。FIG. 10 is a front view of the sensor system of FIG. 9; 図9のセンサシステムの平面図。FIG. 10 is a plan view of the sensor system of FIG. 9; 図11における12-12線に沿った断面図。FIG. 12 is a cross-sectional view taken along line 12-12 in FIG. 図11における13-13線に沿った断面図。13 is a cross-sectional view taken along line 13-13 in FIG. 変形例におけるノズルの回動速度について説明するための説明図。Explanatory drawing for demonstrating the rotational speed of the nozzle in a modification. 変形例における車載センサ洗浄装置の概略構成図。The schematic block diagram of the vehicle-mounted sensor washing | cleaning apparatus in a modification. 変形例におけるノズルの概略構成図。The schematic block diagram of the nozzle in a modification. 図16における17-17線に沿った断面図。17 is a cross-sectional view taken along line 17-17 in FIG. (a)~(d)は図16における18-18線に沿った断面図。(A)-(d) is sectional drawing in alignment with the 18-18 line in FIG. 変形例におけるノズルのスライド機構の斜視図。The perspective view of the slide mechanism of the nozzle in a modification. 第3実施形態に係るセンサシステムの平面図。The top view of the sensor system concerning a 3rd embodiment. 図20の車載センサ洗浄装置の平面図。FIG. 21 is a plan view of the in-vehicle sensor cleaning device of FIG. 20; 図20のセンサシステムの正面図。The front view of the sensor system of FIG. 図20のノズルの回動速度について説明するための説明図。Explanatory drawing for demonstrating the rotational speed of the nozzle of FIG. 変形例における車載センサ洗浄装置の平面図。The top view of the vehicle-mounted sensor washing | cleaning apparatus in a modification. 変形例における車載センサ洗浄装置の平面図。The top view of the vehicle-mounted sensor washing | cleaning apparatus in a modification. 図25の車載センサ洗浄装置の断面図。FIG. 26 is a cross-sectional view of the in-vehicle sensor cleaning device of FIG. 25.
 (第1実施形態)
 以下、車載センサ洗浄装置の第1実施形態について説明する。
 図1に示すように、本実施形態のセンサシステム1は、車載センサとしての車載光学センサ10と、車載光学センサ10に積層配置されて車載光学センサ10の光学面(センシング面)11を洗浄する車載センサ洗浄装置20とを有する。
First Embodiment
Hereinafter, a first embodiment of the in-vehicle sensor cleaning device will be described.
As shown in FIG. 1, the sensor system 1 according to this embodiment cleans the optical surface (sensing surface) 11 of the on-vehicle optical sensor 10 by being stacked on the on-vehicle optical sensor 10 as the on-vehicle sensor and the on-vehicle optical sensor 10. And an on-vehicle sensor cleaning device 20.
 車載光学センサ10は、例えば赤外線レーザを出射(発光)し、物体から反射された散乱光を受光することで物体との距離を計測するもの(例えばLidar)であり、レーザを透過可能なセンシング面としての光学面11を有する。以下の説明においては光学面11が面する側を前方とし、その逆側を後方として説明する。また、特に断わりのない場合、車載光学センサ10に対する車載センサ洗浄装置20の積層方向を上下方向又は鉛直方向とし、上下方向並びに前後方向に直交する方向を左右方向として説明する。 The on-vehicle optical sensor 10 is, for example, a sensor (for example, Lidar) that emits (emits) an infrared laser and measures the distance to the object by receiving scattered light reflected from the object (for example, Lidar). As an optical surface 11. In the following description, the side facing the optical surface 11 is referred to as the front, and the opposite side is described as the rear. In addition, unless otherwise specified, the stacking direction of the on-vehicle sensor cleaning device 20 with respect to the on-vehicle optical sensor 10 is referred to as the vertical direction or the vertical direction, and the vertical direction and the direction orthogonal to the front and rear direction are referred to as the horizontal direction.
 光学面11は、前方に凸状をなして上下方向から見て湾曲形状をなすような面である。
 図1に示すように、車載センサ洗浄装置20は、車載光学センサ10の上方(鉛直方向上側)に積層配置されるノズルユニット21と、ノズルユニット21に対して流体を供給するポンプ(流体ポンプ)22とを有する。
The optical surface 11 is a surface which is convex forward and has a curved shape as viewed in the vertical direction.
As shown in FIG. 1, the on-vehicle sensor cleaning device 20 includes a nozzle unit 21 stacked and disposed above (on the upper side in the vertical direction) the on-vehicle optical sensor 10 and a pump (fluid pump) that supplies fluid to the nozzle unit 21. And 22.
 図1~図4に示すように、ノズルユニット21は、筐体23と、筐体23から少なくとも一部が前方に露出するように設けられる可動ノズルとしてのノズル24と、ノズル24とポンプ22との間に設けられる接続部25と、筐体23内に収容される駆動部26とを有する。 As shown in FIGS. 1 to 4, the nozzle unit 21 includes a housing 23, a nozzle 24 as a movable nozzle provided so as to expose at least a part from the housing 23 forward, a nozzle 24 and a pump 22. And a drive unit 26 housed in the housing 23.
 図3及び図4に示すように接続部25は、筐体23の後部に設けられる挿通孔23aに接続部25自身の一部を挿入した状態でネジによって固定されている。接続部25は、ポンプ22と例えばホース(図示略)を介して接続されて接続部25内に形成される流路P1にポンプ22から供給される空気を導入可能となっている。なお、接続部25の流路P1は、接続部25内において屈曲されて略L字状をなすように構成される。 As shown in FIGS. 3 and 4, the connection portion 25 is fixed by a screw in a state in which a part of the connection portion 25 itself is inserted into an insertion hole 23 a provided in the rear of the housing 23. The connection portion 25 is connected to the pump 22 via, for example, a hose (not shown), and can introduce air supplied from the pump 22 into a flow path P1 formed in the connection portion 25. The flow path P1 of the connecting portion 25 is configured to be bent in the connecting portion 25 to form a substantially L shape.
 図4に示すように接続部25は、挿通孔23aとの間に環状のシール部材S1が設けられる。これにより、挿通孔23aからの水等の浸入が抑えられている。
 図3及び図4に示すように、ノズル24は、前後方向に延びる円筒部31と、円筒部31の前方に設けられて円筒部31よりも大径の円板(円柱)状の本体部32とを有する。ノズル24の円筒部31は、接続部25の前方に設けられて筐体23の前後に設けられる2つの挿通孔23a,23bに挿通された状態で回動可能に支持されている。本体部32は、円筒部31と一体物である。本体部32は、ポンプ22から供給される空気(気体)を噴射可能な噴射口32aを有する。
As shown in FIG. 4, in the connection portion 25, an annular seal member S <b> 1 is provided between the connection portion 25 and the insertion hole 23 a. Thereby, the infiltration of water etc. from the insertion hole 23a is suppressed.
As shown in FIGS. 3 and 4, the nozzle 24 has a cylindrical portion 31 extending in the front-rear direction, and a disk (cylindrical) main body portion 32 provided in front of the cylindrical portion 31 and larger in diameter than the cylindrical portion 31. And. The cylindrical portion 31 of the nozzle 24 is rotatably supported in a state of being inserted in two insertion holes 23 a and 23 b provided in front of the connection portion 25 and provided in front and rear of the housing 23. The main body portion 32 is integral with the cylindrical portion 31. The main body 32 has an injection port 32 a capable of injecting the air (gas) supplied from the pump 22.
 ノズル24は、その全体が車載光学センサ10(光学面11)よりも上方に位置してノズル24が光学面11と対向することが抑えられている。
 また、ノズル24内には、円筒部31及び本体部32に渡って設けられる流路P2が形成される。そして、接続部25の流路P1とノズル24の流路P2とは、接続部25の前方に円筒部31の後部が対向配置されることで連通されている。このため、ポンプ22から供給される気体(空気)は、接続部25内の流路P1並びにノズル24内の流路P2を通ってノズル24の本体部32の噴射口32aから噴射されるようになっている。ここで、ノズル24の流路P2は、本体部32内において屈曲されて略L字状をなすように構成されて噴射口32aが鉛直方向下側を向くようになっている。
The entire nozzle 24 is positioned above the on-vehicle optical sensor 10 (optical surface 11), and the nozzle 24 is prevented from facing the optical surface 11.
Further, in the nozzle 24, a flow path P 2 provided across the cylindrical portion 31 and the main body portion 32 is formed. The flow path P1 of the connection portion 25 and the flow path P2 of the nozzle 24 are communicated with each other by arranging the rear portion of the cylindrical portion 31 opposite to the front of the connection portion 25. Therefore, the gas (air) supplied from the pump 22 is injected from the injection port 32a of the main body 32 of the nozzle 24 through the flow path P1 in the connection portion 25 and the flow path P2 in the nozzle 24. It has become. Here, the flow path P2 of the nozzle 24 is bent in the main body 32 so as to form a substantially L shape, and the injection port 32a is directed downward in the vertical direction.
 円筒部31の後端部には、挿通孔23aとの間をシールする環状のシール部材S2が設けられる。円筒部31の前方側には、挿通孔23bとの間をシールするシール部材S3が設けられる。これによって、各挿通孔23a,23bと円筒部31との間から内部に水等が浸入することが抑えられている。 An annular seal member S2 is provided at the rear end of the cylindrical portion 31 to seal the space between the cylindrical portion 31 and the insertion hole 23a. A seal member S3 is provided on the front side of the cylindrical portion 31 to seal between the cylindrical portion 31 and the insertion hole 23b. In this way, it is possible to suppress the entry of water or the like into the interior from between the insertion holes 23a and 23b and the cylindrical portion 31.
 図3に示すように、回動機構としての駆動部26は、筐体23内にモータ41と減速機構42とを有し、筐体23から露出したノズル24をモータ41の回転駆動力にて回動(揺動)させる。 As shown in FIG. 3, the drive unit 26 as a pivoting mechanism has a motor 41 and a reduction mechanism 42 in a housing 23, and the nozzle 24 exposed from the housing 23 is driven by the rotational driving force of the motor 41. Rotate (rock).
 図3に示すように、減速機構42は、ウォーム41bと、第1ギア43と、第2ギア44と、ウォームホイール31aとを有する。ウォーム41bは、モータ41の出力軸41aに形成されており、第1ギア43のウォームホイール43aと噛合されている。ここで、ウォーム41b(モータ41の出力軸41a)は、車載光学センサ10の幅方向である左右方向に延びている。このため、車載光学センサ10のセンシング軸方向(検出方向)である前後方向に車載センサ洗浄装置20が大型化することを抑えられている。 As shown in FIG. 3, the reduction gear mechanism 42 includes a worm 41 b, a first gear 43, a second gear 44, and a worm wheel 31 a. The worm 41 b is formed on the output shaft 41 a of the motor 41 and is engaged with the worm wheel 43 a of the first gear 43. Here, the worm 41 b (the output shaft 41 a of the motor 41) extends in the left-right direction which is the width direction of the on-vehicle optical sensor 10. Therefore, an increase in the size of the in-vehicle sensor cleaning device 20 in the front-rear direction, which is the sensing axial direction (detection direction) of the in-vehicle optical sensor 10, is suppressed.
 ウォーム41bと噛合する第1ギア43は、ウォームホイール43aと一体構成で該ウォームホイール43aと同軸上で回転する平歯車(図示略)が第2ギア44の平歯車44aと噛合する。第2ギア44には平歯車44aと一体構成で該平歯車44aと同軸上で回転するウォーム44bが設けられている。ウォーム44bはノズル24の円筒部31の外周面に形成されたウォームホイール31aと噛合する。これにより、モータ41の回転駆動力は、減速機構42によって低回転高トルクとなるようにノズル24の円筒部31に伝達されて円筒部31が回動し、この円筒部31と一体物である本体部32が回動されて噴射口32aの向きが変更されるようになっている。このとき、ノズル24は、光学面11上の所定の範囲H(図2参照)を略一定の速度で往復揺動される。すなわち、モータ41の正逆回転が切り替えられることとなる。また、ノズル24は、円筒部31の中心軸線(回動軸線)CLを中心として回動されるようになっている。ここで、円筒部31の中心軸線CLは、円筒部31の流路P2の中心軸線と一致している。つまり、円筒部31の回動中心である中心軸線CL上に流路P2が設定されている。 The first gear 43 meshing with the worm 41 b is integrally formed with the worm wheel 43 a, and a spur gear (not shown) coaxially rotating with the worm wheel 43 a meshes with the spur gear 44 a of the second gear 44. The second gear 44 is provided with a worm 44b which is integrally formed with the spur gear 44a and rotates coaxially with the spur gear 44a. The worm 44 b meshes with a worm wheel 31 a formed on the outer peripheral surface of the cylindrical portion 31 of the nozzle 24. Thus, the rotational driving force of the motor 41 is transmitted to the cylindrical portion 31 of the nozzle 24 by the reduction mechanism 42 so as to have a low rotational high torque, and the cylindrical portion 31 is rotated, and is integral with the cylindrical portion 31. The main body 32 is rotated to change the direction of the injection port 32a. At this time, the nozzle 24 is oscillated back and forth at a substantially constant speed over a predetermined range H (see FIG. 2) on the optical surface 11. That is, forward and reverse rotation of the motor 41 is switched. Further, the nozzle 24 is rotated about a central axis (rotational axis) CL of the cylindrical portion 31. Here, the central axis CL of the cylindrical portion 31 coincides with the central axis of the flow path P2 of the cylindrical portion 31. That is, the flow path P2 is set on the central axis line CL which is the rotation center of the cylindrical portion 31.
 また、ノズル24の回動方向における周囲であってノズル24の左右方向両側には、光学面11と面一となる案内壁部51がそれぞれ設けられる。各案内壁部51は、その前方側の面が光学面11と曲率が略同等の湾曲形状をなすような面となっている。各案内壁部51は、ノズル24から離間するほど先細形状となるように構成され、案内壁部51の前面の形状が略三角形状をなしている。案内壁部51は、その下端部分が光学面11の上縁部と平行であって、同下端部分がノズル24と鉛直方向において略同位置となるように構成される。また、案内壁部51のノズル24近傍における鉛直方向の高さはノズル24の本体部32の半径と略同等となっている。 Further, guide wall portions 51 which are flush with the optical surface 11 are provided on the periphery of the nozzle 24 in the rotational direction and on both sides in the lateral direction of the nozzle 24. Each of the guide wall portions 51 is a surface on the front side of which a curved shape having substantially the same curvature as that of the optical surface 11 is formed. Each guide wall 51 is configured to be tapered as it is separated from the nozzle 24, and the shape of the front surface of the guide wall 51 is substantially triangular. The lower end portion of the guide wall portion 51 is parallel to the upper edge portion of the optical surface 11, and the lower end portion is substantially at the same position as the nozzle 24 in the vertical direction. The vertical height of the guide wall 51 in the vicinity of the nozzle 24 is substantially equal to the radius of the main body 32 of the nozzle 24.
 ノズル24の前方にはノズル24を覆ってノズル24の外部への露出を抑えるノズルカバー52が設けられる。ノズルカバー52は、ネジによって筐体23に対して取り付けられる。なお、ノズルカバー52の取り付け方法は、スナップフィット等の他の方法であってもよい。ノズルカバー52は、例えばノズル24を覆う前側カバー部52aが光学面11の曲率と略同様の湾曲形状をなすように構成される。このため、前側カバー部52aと光学面11とは周方向(湾曲方向)全体に亘って光学面11と直交する方向における距離が略等しくなっている。 A nozzle cover 52 is provided in front of the nozzle 24 so as to cover the nozzle 24 and suppress the exposure of the nozzle 24 to the outside. The nozzle cover 52 is attached to the housing 23 by screws. In addition, the attachment method of the nozzle cover 52 may be other methods, such as a snap fit. The nozzle cover 52 is configured such that, for example, the front cover portion 52 a covering the nozzle 24 has a curved shape substantially similar to the curvature of the optical surface 11. Therefore, in the front cover portion 52a and the optical surface 11, the distances in the direction orthogonal to the optical surface 11 are substantially equal throughout the circumferential direction (the bending direction).
 ポンプ22は、例えば遠心ポンプを用いることができる。以下に、ポンプ22の構成について図5を用いて説明する。
 図5に示すように、本実施形態のポンプ22は、エアポンプであって、モータ61と、ポンプケース62と、羽根車63とを備えている。
The pump 22 can use, for example, a centrifugal pump. The configuration of the pump 22 will be described below with reference to FIG.
As shown in FIG. 5, the pump 22 of the present embodiment is an air pump, and includes a motor 61, a pump case 62, and an impeller 63.
 モータ61は、例えばブラシレスモータであって、略有底筒状のモータケース64の内周面に固定されたステータ65aと、該ステータ65aの内側で回転可能に支持されたロータ65bとを有する。なお、本実施形態のモータ61は、ロータ65bの磁極数が4極で、ステータ65aのティース間のスロット数が6スロットのモータとされている。 The motor 61 is, for example, a brushless motor, and includes a stator 65a fixed to the inner peripheral surface of a substantially bottomed cylindrical motor case 64, and a rotor 65b rotatably supported inside the stator 65a. In the motor 61 of this embodiment, the number of magnetic poles of the rotor 65b is four, and the number of slots between the teeth of the stator 65a is six.
 モータケース64の底部64a(図5中、上部)の中心には中心孔64bが形成され、その中心孔64bに軸受66を介してロータ65bの回転シャフト67の基端側(図5中、上端側(底部64a寄りの部位))が支持されている。また、モータケース64の外部に突出した回転シャフト67の基端部(図5中、上端部(底部64a寄りの端部))には、樹脂製の固定リング68を介して環状のセンサマグネット69が固定されている。また、モータケース64の底部64aには、固定部材70を介して回路基板71が固定されている。回路基板71には、前記センサマグネット69と対向して回転シャフト67の回転(回転角度、回転速度等)を検出する回転センサ72等の種々の素子が実装されている。 A central hole 64b is formed at the center of the bottom portion 64a (upper portion in FIG. 5) of the motor case 64, and the base end side (upper end in FIG. 5) of the rotary shaft 67 of the rotor 65b The side (the part closer to the bottom 64a) is supported. In addition, an annular sensor magnet 69 is provided via a fixing ring 68 made of resin at the base end (the upper end (the end near the bottom 64a) in FIG. 5) of the rotary shaft 67 projecting to the outside of the motor case 64. Is fixed. Further, the circuit board 71 is fixed to the bottom portion 64 a of the motor case 64 via the fixing member 70. On the circuit board 71, various elements such as a rotation sensor 72 that detects the rotation (rotation angle, rotation speed, etc.) of the rotation shaft 67 facing the sensor magnet 69 are mounted.
 ポンプケース62は、モータケース64の開口端を略閉塞するように固定される第1ケース73と、該第1ケース73のモータ61(モータケース64)とは反対側に固定される第2ケース74とを有する。 The pump case 62 is a first case 73 fixed so as to substantially close the open end of the motor case 64, and a second case fixed to the opposite side of the motor 61 (motor case 64) of the first case 73. And 74.
 第1ケース73の中心には中心孔73aが形成され、その中心孔73aの内周面に軸受75を介して前記回転シャフト67の先端側(ポンプケース62寄りの部位)が支持されている。また、第1ケース73の第2ケース74寄りの端面には、回転シャフト67の軸方向から見て円形の凹部73bが形成されている。また、第1ケース73の第2ケース74寄りの端面における凹部73bの外周側には、渦巻き室構成溝73cが形成されている。 A center hole 73a is formed at the center of the first case 73, and the tip end side (portion near the pump case 62) of the rotary shaft 67 is supported on the inner peripheral surface of the center hole 73a via a bearing 75. A circular recess 73 b is formed on the end face of the first case 73 near the second case 74 as viewed from the axial direction of the rotating shaft 67. Further, a spiral chamber forming groove 73c is formed on the outer peripheral side of the recess 73b at the end face of the first case 73 near the second case 74.
 第2ケース74の中心には空気導入孔74aが形成されている。この空気導入孔74aは、前記回転シャフト67の軸方向に沿って第2ケース74を貫通し、その径がモータ61(第1ケース73)に向かうほど小さくなるように形成されている。また、第2ケース74の第1ケース73寄りの端面には、回転シャフト67の軸方向から見て円形の凹部74bが形成され、その凹部74bは第1ケース73の凹部73bとともに羽根車収容部Wを構成している。また、第2ケース74の第1ケース73寄りの端面における凹部74bの外周側には、渦巻き室構成溝74cが形成され、その渦巻き室構成溝74cは第1ケース73の渦巻き室構成溝73cとともに渦巻き室Uを構成している。また、第2ケース74の周方向の一部には、前記羽根車収容部Wの径方向外側にある前記渦巻き室Uと連通した空気排出筒部74dが形成されている。 An air introducing hole 74 a is formed at the center of the second case 74. The air introduction hole 74a penetrates the second case 74 along the axial direction of the rotary shaft 67, and the diameter thereof is formed to be smaller as it goes to the motor 61 (first case 73). Further, on the end face of the second case 74 near the first case 73, a circular recess 74b is formed when viewed from the axial direction of the rotating shaft 67, and the recess 74b together with the recess 73b of the first case 73 is an impeller accommodating portion W is configured. Further, a spiral chamber forming groove 74c is formed on the outer peripheral side of the concave portion 74b at the end face of the second case 74 closer to the first case 73, and the spiral chamber forming groove 74c is together with the spiral chamber forming groove 73c of the first case 73. The swirl chamber U is configured. In addition, an air discharge cylindrical portion 74d in communication with the spiral chamber U located radially outside of the impeller housing portion W is formed in a part of the second case 74 in the circumferential direction.
 なお、前記渦巻き室Uよりも径方向外側の位置において第1ケース73の第2ケース74との合わせ面には環状のシール溝73dが形成され、該シール溝73dには第2ケース74の合わせ面によって潰されつつ挟持される環状のシール部材S4が収容されている。これにより、渦巻き室Uを通る流体(空気)が前記合わせ面からの漏れることが抑えられている。 An annular seal groove 73d is formed in the mating surface of the first case 73 with the second case 74 at a position radially outward of the spiral chamber U, and the seal groove 73d is formed with the second case 74 in alignment. An annular seal member S4 which is clamped while being crushed by the surface is accommodated. This prevents the fluid (air) passing through the swirl chamber U from leaking from the mating surface.
 また、第1ケース73には、モータ61全体を覆う略有底筒状の密閉ケース76が固定されている。密閉ケース76は、その開口端部に径方向外側に延びるフランジ部76aを有し、該フランジ部76aの複数箇所(図5中、一箇所のみ図示)がフランジ部76aを貫通して第1ケース73に螺合されるねじ77によって固定されている。また、第1ケース73におけるフランジ部76aとの合わせ面には環状のシール溝73eが形成され、該シール溝73eにはフランジ部76aの合わせ面によって潰されつつ挟持される環状のシール部材S5が収容されている。これにより、第1ケース73とフランジ部76aとの合わせ面からの流体(空気)の漏れが抑えられている。また、密閉ケース76の底部76bには、配線用孔76cが形成されている。配線用孔76cには、配線78を通しつつ配線用孔76cからの空気の漏れを防止するシールゴム部材79が嵌着されている。なお、配線78は、外部の制御装置や電源装置と回路基板71やステータ65aの巻線とを電気的に接続するものである。 In addition, a substantially bottomed cylindrical sealing case 76 covering the entire motor 61 is fixed to the first case 73. The sealing case 76 has flange portions 76a extending outward in the radial direction at its opening end, and a plurality of locations (only one location is shown in FIG. 5) of the flanges 76a passes through the flanges 76a to form the first case It is fixed by a screw 77 screwed on 73. Further, an annular seal groove 73e is formed in the mating surface of the first case 73 with the flange portion 76a, and an annular seal member S5 which is pinched and pinched by the mating surface of the flange portion 76a is formed in the seal groove 73e. It is housed. Thus, the leakage of fluid (air) from the mating surface of the first case 73 and the flange portion 76a is suppressed. Further, a wiring hole 76 c is formed in the bottom portion 76 b of the sealed case 76. A seal rubber member 79 for preventing the air from leaking from the wiring hole 76c is fitted in the wiring hole 76c while passing through the wiring 78. The wiring 78 electrically connects an external control device or power supply device to the circuit board 71 and the winding of the stator 65 a.
 羽根車63は、羽根車収容部W内に突出した前記回転シャフト67の先端部(ポンプケース62寄りの側端部)と一体回転可能に固定されて羽根車収容部W内に配置される。羽根車63は、その軸中心の内部空間と径方向外側の外部空間(渦巻き室U)とを連通する複数の流通路80を有し、回転されることで空気導入孔74aから導入された流体としての空気を内部空間から流通路80を介して外部空間(渦巻き室U)に導出させ、ひいては空気排出筒部74dから流体(空気)を連続的に噴射させる。そして、空気排出筒部74dは、ホース(図示略)を介してノズルユニット21の接続部25と接続されることでノズル24(噴射口32a)から連続して供給される流体が噴射されることとなる。 The impeller 63 is fixed to be integrally rotatable with a tip end (a side end close to the pump case 62) of the rotary shaft 67 protruding into the impeller housing W, and is disposed in the impeller housing W. The impeller 63 has a plurality of flow passages 80 communicating the internal space of the axial center thereof with the external space (spiral chamber U) radially outward, and is rotated so as to introduce the fluid introduced from the air introduction hole 74a. As air from the inside space to the outside space (the swirl chamber U) through the flow passage 80, the fluid (air) is continuously jetted from the air discharge cylindrical portion 74d. Then, the air discharge cylindrical portion 74d is connected to the connection portion 25 of the nozzle unit 21 through a hose (not shown) so that the fluid continuously supplied from the nozzle 24 (injection port 32a) is jetted. It becomes.
 次に、車載センサ洗浄装置20の作用を説明する。
 本実施形態の車載センサ洗浄装置20のノズルユニット21は、車載光学センサ10の鉛直方向上側に設けられている。そして、ポンプ22が駆動されることでポンプ22から供給される空気が流路P1,P2を通ってノズル24の噴射口32aから連続的に噴射されるようになっている。
Next, the operation of the in-vehicle sensor cleaning device 20 will be described.
The nozzle unit 21 of the in-vehicle sensor cleaning device 20 of the present embodiment is provided above the in-vehicle optical sensor 10 in the vertical direction. Then, by driving the pump 22, air supplied from the pump 22 is continuously jetted from the injection port 32a of the nozzle 24 through the flow paths P1 and P2.
 また、本実施形態の車載センサ洗浄装置20は、モータ41を回転駆動させることでその回転駆動力が減速機構42を介してノズル24に伝達され、ノズル24が回動されるようになっている。なお、ノズル24は、その噴射軸線SLが光学面11上を往復揺動するようにモータ41が正逆回転されるようになっている。 Further, in the on-vehicle sensor cleaning device 20 according to the present embodiment, when the motor 41 is driven to rotate, the rotational driving force is transmitted to the nozzle 24 through the reduction mechanism 42, and the nozzle 24 is rotated. . The motor 41 is rotated in the forward and reverse directions so that the injection axis SL of the nozzle 24 swings back and forth on the optical surface 11.
 ここで、本実施形態の車載センサ洗浄装置20では、光学面11と対向する位置から逸脱した位置(鉛直方向上側)にノズル24が設けられるため、ノズル24の噴射軸線SLの位置が変更されるようにノズル24が回動した場合であっても光学面11上にノズル24が位置しない。これにより、車載センサ洗浄装置20のセンシングへの影響が抑えられている。 Here, in the on-vehicle sensor cleaning device 20 according to the present embodiment, the nozzle 24 is provided at a position (upper side in the vertical direction) deviating from the position facing the optical surface 11, so the position of the ejection axis SL of the nozzle 24 is changed. As described above, even when the nozzle 24 is rotated, the nozzle 24 is not positioned on the optical surface 11. Thereby, the influence on the sensing of the in-vehicle sensor cleaning device 20 is suppressed.
 次に、本実施形態の有利な効果を記載する。
 (1)光学面11と対向しない位置(センシング範囲外の位置)に配置された状態で光学面11の面直交方向に沿って延びる回動軸線としての中心軸線CLを中心に回動するノズル24によって光学面11に対して空気を噴射するため、ノズル24自体がセンシング範囲に入ることがない。そのため、センシングへの影響を抑えることができる。また、光学面11の広い範囲に流体を噴射することができる。
Next, the advantageous effects of the present embodiment will be described.
(1) A nozzle 24 which rotates around a central axis line CL as a rotation axis extending in a direction perpendicular to the surface of the optical surface 11 in a state of being disposed at a position not facing the optical surface 11 (a position outside the sensing range). Since the air is jetted to the optical surface 11 by this, the nozzle 24 itself does not enter the sensing range. Therefore, the influence on sensing can be suppressed. Further, the fluid can be jetted to a wide range of the optical surface 11.
 (2)ポンプ22によりノズル24に連続的に流体を供給することで光学面の広い範囲に流体を噴射することができ、洗浄効果を高めることができる。また、噴射軸線位置を変更しつつ流体を噴射する場合、ピストンポンプ(断続的に流体を噴射するポンプ)をポンプ22とすると、流体が噴射されない時間が生じ、光学面の一部に流体が噴射されなくなるが、ポンプ22によりノズル24に連続的に流体を供給することで、ノズル24から途切れることなく流体を噴射することができる。 (2) By continuously supplying the fluid to the nozzle 24 by the pump 22, the fluid can be jetted to a wide range of the optical surface, and the cleaning effect can be enhanced. When the fluid is injected while changing the position of the injection axis, assuming that the piston pump (pump for intermittently discharging the fluid) is the pump 22, there is a time when the fluid is not injected, and the fluid is injected to a part of the optical surface However, by continuously supplying the fluid to the nozzle 24 by means of the pump 22, fluid can be ejected from the nozzle 24 without interruption.
 (3)単一の噴射口32aによってノズル24を構成することができるため、ノズル24の構造の複雑化を抑える(簡素化する)ことができる。また、噴射口32aから高圧または大流量の流体を噴射することができる。 (3) Since the nozzle 24 can be configured by the single injection port 32a, complication of the structure of the nozzle 24 can be suppressed (simplified). Also, high pressure or large flow of fluid can be injected from the injection port 32a.
 (4)ノズル24を正逆方向に回動させることでノズル24は光学面11上を往復揺動することが可能となり、必要な箇所(所定の範囲H)に流体を噴射させることができる。
 (5)ノズル24を駆動部26の駆動力により回動することで、ノズル24を確実に回動させることができる。また、駆動部26によるノズル24の回動によって噴射口32aの噴射軸線位置が変更されることで光学面11の広い範囲に流体を噴射することができる。
(4) By rotating the nozzle 24 in the forward and reverse directions, the nozzle 24 can be oscillated back and forth on the optical surface 11, and the fluid can be jetted to a necessary place (predetermined range H).
(5) By rotating the nozzle 24 by the driving force of the drive unit 26, the nozzle 24 can be reliably rotated. In addition, the rotation axis of the nozzle 24 by the drive unit 26 changes the position of the injection axis of the injection port 32 a, so that the fluid can be injected to a wide range of the optical surface 11.
 (6)駆動部26は、回転駆動する駆動源としてのモータ41とモータ41の駆動力をノズル24に伝達する減速機構42とを備えることで、モータ41に対して低速高トルクでノズル24を回動させることが可能となる。また、モータ41の定格出力を小さくすることができるため、小型のモータを採用することができる。 (6) The drive unit 26 includes the motor 41 as a drive source for driving to rotate and the reduction mechanism 42 for transmitting the driving force of the motor 41 to the nozzle 24 so that the nozzle 24 can be driven at low speed and high torque with respect to the motor 41. It becomes possible to turn. Further, since the rated output of the motor 41 can be reduced, a small motor can be employed.
 (7)駆動部26並びにノズル24を車載光学センサ10の鉛直方向上側に設けることで、流体としての空気を鉛直方向下側に位置する光学面11に対して噴射することができる。これにより、重力も利用して光学面11に付着した異物を鉛直方向下側に除去することができる。 (7) By providing the drive unit 26 and the nozzle 24 above the in-vehicle optical sensor 10 in the vertical direction, air as a fluid can be jetted to the optical surface 11 located below the vertical direction. Thereby, the foreign matter adhering to the optical surface 11 can be removed to the lower side in the vertical direction by using gravity as well.
 (8)ノズル24から噴射される空気(流体)を光学面11に案内する案内壁部51を有することで凸状をなす光学面11に対して流体を案内でき、流体による光学面11の洗浄を行うことができる。 (8) By having the guide wall 51 guiding the air (fluid) ejected from the nozzle 24 to the optical surface 11, the fluid can be guided to the convex optical surface 11, and the cleaning of the optical surface 11 by the fluid It can be performed.
 (9)案内壁部51は光学面11と面一であるため、ノズル24から噴射される空気をより確実に光学面11に案内することができる。
 (10)ノズル24から噴射される空気(流体)の噴射軸線SLを除いた範囲にノズル24を覆うノズルカバー52が設けられる。すなわち、ノズルカバー52は噴射軸線SLと交差する位置には延びていない。そのため、ノズルカバー52によってノズル24を隠しつつ、ノズル24からの流体の噴射を阻害することが抑えられる。すなわち、ノズル24に異物が付着することにより流体の噴射が阻害されることを抑えることができる。
(9) Since the guide wall 51 is flush with the optical surface 11, the air jetted from the nozzle 24 can be more reliably guided to the optical surface 11.
(10) The nozzle cover 52 which covers the nozzle 24 in the range except injection axis SL of the air (fluid) injected from the nozzle 24 is provided. That is, the nozzle cover 52 does not extend to a position intersecting the injection axis SL. Therefore, it is possible to suppress the ejection of the fluid from the nozzle 24 while hiding the nozzle 24 by the nozzle cover 52. That is, it can be suppressed that the ejection of the fluid is inhibited due to the foreign matter adhering to the nozzle 24.
 (11)ノズル24の回動中心である中心軸線CLには流体を導入可能な流路P2が設けられるため、回動中心と直交する方向に対する大型化を抑えることができる。
 (12)複数のモータでなく単一のモータ41で1つのノズル24を回動させるため、構造並びにモータ41の制御を簡素化することができる。
(11) Since the flow path P2 which can introduce a fluid is provided in the central axis line CL which is the rotation center of the nozzle 24, the enlargement in the direction orthogonal to the rotation center can be suppressed.
(12) Since one nozzle 24 is rotated by a single motor 41 instead of a plurality of motors, the structure and control of the motor 41 can be simplified.
 (第2実施形態)
 次に、第2実施形態の車載センサ洗浄装置について図6~図8を用いて説明する。
 図6~図8に示すように、本実施形態の車載センサ洗浄装置90は、ノズル91(可動ノズル)をスライド可能なスライド機構92を用いている。
Second Embodiment
Next, an on-vehicle sensor cleaning apparatus according to a second embodiment will be described with reference to FIGS.
As shown in FIGS. 6 to 8, the on-vehicle sensor cleaning device 90 according to the present embodiment uses a slide mechanism 92 capable of sliding the nozzle 91 (movable nozzle).
 図6及び図8に示すように、ノズル91は、その後部にポンプ22と接続可能な接続部91aを有し、接続部91aに図示しないホールを介してポンプ22が接続されている。また、ノズル91は、内部に流路が形成され、ポンプ22から供給される流体(空気)が前記流路を通って噴射口91bから噴射されるようになっている。 As shown in FIGS. 6 and 8, the nozzle 91 has a connecting portion 91a connectable to the pump 22 at its rear portion, and the pump 22 is connected to the connecting portion 91a via a hole (not shown). Further, the nozzle 91 has a flow passage formed therein, and fluid (air) supplied from the pump 22 is injected from the injection port 91 b through the flow passage.
 図6~図8に示すように、スライド機構92は、筐体93に支持される2つのガイドレール94a,94bと、複数のプーリ95a~95eと、各プーリ95a~95eに架設されるワイヤ96と、プーリ95a~95eを回転駆動させるワイヤ96を移動させる駆動部97とを有する。 As shown in FIGS. 6 to 8, the slide mechanism 92 includes two guide rails 94 a and 94 b supported by a housing 93, a plurality of pulleys 95 a to 95 e, and a wire 96 installed on the pulleys 95 a to 95 e. And a drive unit 97 for moving the wire 96 for rotationally driving the pulleys 95a to 95e.
 各ガイドレール94a,94bは、車載光学センサ10の光学面11に沿って配置される。各ガイドレール94a,94bは、上下方向に離間した状態で並設されており、その左右方向両端部が筐体93によって支持されている。 Each guide rail 94 a, 94 b is disposed along the optical surface 11 of the on-vehicle optical sensor 10. The guide rails 94 a and 94 b are juxtaposed in a state of being separated in the vertical direction, and both end portions in the left-right direction are supported by the housing 93.
 駆動部97は、モータ98と、減速機構99とを有する。減速機構99は、モータ98の出力軸98aに設けられるウォーム100と、該ウォーム100と噛合するウォームホイール101aを有する第1ギア101とを有する。第1ギア101は、ウォームホイール101aと同軸上で一体回転する小径ギア101bを有する。小径ギア101bは、ドラムプーリ95aと同軸上で一体回転するギア(図示略)と噛合するようになっている。これにより、モータ98の出力軸98aが回転駆動されることでその回転駆動力がドラムプーリ95aに伝達されてドラムプーリ95aが回動(回転)されることとなる。 The drive unit 97 includes a motor 98 and a speed reduction mechanism 99. The speed reduction mechanism 99 includes a worm 100 provided on an output shaft 98 a of the motor 98 and a first gear 101 having a worm wheel 101 a engaged with the worm 100. The first gear 101 has a small diameter gear 101b that rotates integrally with the worm wheel 101a. The small diameter gear 101b meshes with a gear (not shown) that rotates integrally with the drum pulley 95a. Thus, when the output shaft 98a of the motor 98 is rotationally driven, the rotational driving force is transmitted to the drum pulley 95a, and the drum pulley 95a is rotated (rotated).
 複数のプーリ95a~95eは、前記ドラムプーリ95aと、ガイドプーリ95b,95cと、2つのテンションプーリ95d,95eとを有する。ドラムプーリ95aは、ドラムプーリ95aが回動することによってワイヤ96の巻き取り並びにワイヤ96の送り出しが可能となっている。ガイドプーリ95b,95cはドラムプーリ95aを挟むようにして左右方向両側に1つずつ設けられる。各テンションプーリ95d,95eは、ドラムプーリ95aと、ガイドプーリ95b,95cとの間に設けられ、ワイヤ96が弛まないようにワイヤ96に対して好適なテンションを付与するようになっている。 The plurality of pulleys 95a to 95e have the drum pulley 95a, guide pulleys 95b and 95c, and two tension pulleys 95d and 95e. The drum pulley 95a is capable of winding the wire 96 and delivering the wire 96 by the rotation of the drum pulley 95a. The guide pulleys 95b and 95c are provided on both sides in the left-right direction so as to sandwich the drum pulley 95a. The respective tension pulleys 95d and 95e are provided between the drum pulley 95a and the guide pulleys 95b and 95c, and apply a suitable tension to the wire 96 so that the wire 96 is not slackened.
 ワイヤ96は、ノズル91と接続されるようになっている。このため、例えばドラムプーリ95aが回動することで、ワイヤ96が左右方向の一方からドラムプーリ95aに巻き取られるとともに、ワイヤ96が左右方向の他方にドラムプーリ95aから送り出されることでワイヤ96が左右方向に移動されてノズル91がガイドレール94a,94bに沿ってスライド移動することとなる。また、ワイヤ96は、鉛直方向においてガイドレール94a,94bとの間に設けられる。これによって、ワイヤ96を移動させてガイドレール94a,94bに沿ってノズル91を安定して移動させることができる。 The wire 96 is to be connected to the nozzle 91. Therefore, for example, by rotating the drum pulley 95a, the wire 96 is wound around the drum pulley 95a from one side in the left-right direction, and the wire 96 is fed from the drum pulley 95a to the other side in the left-right direction. The nozzle 91 is moved to slide along the guide rails 94a and 94b. Further, the wire 96 is provided between the guide rails 94a and 94b in the vertical direction. As a result, the wire 96 can be moved to stably move the nozzle 91 along the guide rails 94a and 94b.
 図6に示すように、ノズル91の前方にはノズル91を覆って外部への露出を抑えるノズルカバー102が設けられる。ノズルカバー102は、ノズル91の移動範囲において干渉しないようになっている。このように、ノズルカバー102を設けることで、ノズル91の移動範囲において飛来物等が直接当たることが抑えられている。 As shown in FIG. 6, a nozzle cover 102 is provided in front of the nozzle 91 so as to cover the nozzle 91 to suppress external exposure. The nozzle cover 102 does not interfere in the movement range of the nozzle 91. Thus, by providing the nozzle cover 102, direct impact of flying objects etc. in the movement range of the nozzle 91 is suppressed.
 そして、上記のように構成された車載センサ洗浄装置90は、ノズル91をスライド機構92のガイドレール94a,94bに沿ってスライド移動させつつ、ポンプ22を駆動させてノズル91の噴射口91bから流体(空気)を噴射させる。これによって、光学面11の広い範囲に流体を噴射させることができる。 The on-vehicle sensor cleaning device 90 configured as described above drives the pump 22 while sliding the nozzle 91 along the guide rails 94 a and 94 b of the slide mechanism 92 to drive the fluid from the ejection port 91 b of the nozzle 91. Spray (air). By this, the fluid can be jetted to a wide range of the optical surface 11.
 上記のように構成された車載センサ洗浄装置90は、第1実施形態の(1)~(3)の効果に加え、以下の効果を奏する。
 (13)光学面11に沿ったスライド移動によって噴射口91bの噴射軸線SL位置が変更されることで光学面11の広い範囲に流体を噴射することができる。
The on-vehicle sensor cleaning device 90 configured as described above exerts the following effects in addition to the effects (1) to (3) of the first embodiment.
(13) A fluid can be jetted to a wide range of the optical surface 11 by changing the position of the jet axis SL of the jet port 91b by the slide movement along the optical surface 11.
 なお、第1及び第2実施形態は、以下のように変更してもよい。
 ・上記各実施形態では特に言及していないが、ノズル24,91の噴射軸線SLの移動速度(回動速度)を変更する制御部を備える構成を採用してもよい。
The first and second embodiments may be modified as follows.
-Although not mentioned in particular in the above-mentioned each embodiment, composition provided with a control part which changes movement speed (rotational speed) of injection axis SL of nozzle 24,91 may be adopted.
 例えば、光学面11上における噴射軸線SL方向の距離が遠いほどノズル24の回動速度を遅くするような制御例を採用してもよい。すなわち、光学面11上の洗浄対象領域が噴射軸線方向において可動ノズルから遠いほどノズル24の回動速度を遅くしてもよい。このような制御例を上記第1実施形態に適用した例を図14に示す。 For example, a control example may be adopted in which the rotational speed of the nozzle 24 is reduced as the distance in the injection axis SL direction on the optical surface 11 increases. That is, as the region to be cleaned on the optical surface 11 is farther from the movable nozzle in the ejection axial direction, the rotational speed of the nozzle 24 may be reduced. An example in which such a control example is applied to the first embodiment is shown in FIG.
 図14に示すようにノズル24の揺動範囲Hの中央と左端との間の地点D1と、揺動範囲Hの中央と左端との間の地点D2とが光学面11内においてノズル24から最も遠い距離に位置(光学面11の下端円の左右両端部分を通る位置)する。このように、ノズル24の回動速度を光学面11上における噴射軸線SL方向の距離が遠いほどノズル24の回動速度を遅くするように駆動部26(モータ41)を制御することで、流体の届きにくいノズル24からの距離が遠い部位に対する流体の噴射時間を増やすことができる。すなわち、駆動部26の回転速度を制御して光学面11上における噴射軸線SLの回動速度を制御することで、流体の届きにくい部位や流体の届きやすい部位等の違いから回動速度を変更することができる。 As shown in FIG. 14, the point D1 between the center and the left end of the swing range H of the nozzle 24 and the point D2 between the center and the left end of the swing range H are the most from the nozzle 24 in the optical surface 11 Positions at a long distance (positions passing both left and right end portions of the lower end circle of the optical surface 11). Thus, by controlling the drive unit 26 (motor 41) so that the rotational speed of the nozzle 24 decreases as the distance in the direction of the ejection axis SL on the optical surface 11 increases, the rotational speed of the nozzle 24 decreases. It is possible to increase the injection time of the fluid to a site far from the difficult-to-reach nozzle 24. That is, by controlling the rotational speed of the drive unit 26 and controlling the rotational speed of the injection axis SL on the optical surface 11, the rotational speed is changed from the difference in the portion where the fluid hardly reaches or the portion where the fluid easily reaches can do.
 また、光学面11における噴射優先度を予め設定し、噴射優先度が高いほどノズル24,91の移動速度(回動速度)を低くし、優先度が低いほどノズル24,91の回動速度を高くする制御例を採用しても良い。優先度の設定方法はユーザが任意に変更したり、例えば車載センサ洗浄装置内の発光部や受光部の位置に応じて適宜設定する方法が考えられる。このように、噴射優先度が高い領域ほどノズル24,91の移動速度(回動速度)を遅くするようにモータ41,98を制御することで、優先度が高い部位に対して好適に流体を噴射することができる。 Further, the ejection priority on the optical surface 11 is set in advance, and the moving speed (rotational speed) of the nozzles 24 and 91 is reduced as the injection priority is higher, and the rotational speed of the nozzles 24 and 91 is adjusted as the priority is lower. An example of control to increase may be adopted. The priority setting method may be arbitrarily changed by the user, or may be appropriately set according to, for example, the positions of the light emitting unit and the light receiving unit in the in-vehicle sensor cleaning device. As described above, by controlling the motors 41 and 98 so as to make the moving speed (rotational speed) of the nozzles 24 and 91 slower as the area where the injection priority is higher, the fluid is suitably applied to the part where the priority is high. It can be injected.
 ・上記各実施形態では、流体としての空気を噴射可能なノズル24,91を備える構成としたが、これに限らず、例えば流体としての液体を噴射可能な液体ノズルを備える構成を採用してもよい。このような構成を上記第1実施形態に適用した例を図9~図13に示す。 In the above embodiments, the nozzles 24 and 91 capable of ejecting air as a fluid are provided. However, the present invention is not limited thereto. For example, even if a configuration including a liquid nozzle capable of ejecting a liquid as a fluid is adopted. Good. An example in which such a configuration is applied to the first embodiment is shown in FIG. 9 to FIG.
 図9~図11に示すように、液体ノズル110は、ノズル24の左右方向両側にそれぞれ1つずつ設けられる。液体ノズル110は、ノズル24と異なり回動不能な構成となっている。液体ノズル110は、噴射口110aを有し、前記ポンプ22とは異なる液体ポンプ111と接続されて液体が噴射口110aから噴射可能となっている。ここで、液体ポンプ111から供給される液体の一例としては、例えば車両のフロントウインドウ等を洗浄するためのウォッシャ液が挙げられる。 As shown in FIGS. 9 to 11, one liquid nozzle 110 is provided on each side of the nozzle 24 in the left-right direction. Unlike the nozzle 24, the liquid nozzle 110 has a non-rotatable structure. The liquid nozzle 110 has an injection port 110a, and is connected to a liquid pump 111 different from the pump 22 so that liquid can be ejected from the injection port 110a. Here, as an example of the liquid supplied from the liquid pump 111, for example, a washer liquid for cleaning a front window of a vehicle and the like can be mentioned.
 各液体ノズル110は、ノズルカバー52よりも前方に突出して外部に露出するように構成される。
 図12及び図13に示すように、各液体ノズル110は、光学面11から面直交方向に突出する突出量L2がノズル24の光学面11から面直交方向に突出する突出量L1よりも大きくなっている。換言すると、ノズル24は、光学面11から面直交方向に突出する突出量L1が前記液体ノズルの前記光学面から面直交方向に突出する突出量L2よりも小さくなっている。
Each liquid nozzle 110 is configured to protrude forward than the nozzle cover 52 and be exposed to the outside.
As shown in FIGS. 12 and 13, in each liquid nozzle 110, the amount L2 of protrusion projecting in the direction orthogonal to the surface from the optical surface 11 is larger than the amount L1 of protrusion projecting in the direction orthogonal to the surface from the optical surface 11 of the nozzle 24. ing. In other words, the projection amount L1 of the nozzle 24 which protrudes in the surface orthogonal direction from the optical surface 11 is smaller than the projection amount L2 which protrudes in the surface orthogonal direction from the optical surface of the liquid nozzle.
 これにより、図12及び図13に示すように、ノズル24の噴射軸線SLを相対的に光学面11と平行にできるとともに、液体ノズル110の噴射軸線SLを相対的に光学面11に対して所定の角度を有するように傾斜させることができる。 As a result, as shown in FIGS. 12 and 13, the ejection axis SL of the nozzle 24 can be made relatively parallel to the optical surface 11, and the ejection axis SL of the liquid nozzle 110 is relatively predetermined relative to the optical surface 11. It can be inclined to have an angle of
 上述した構成により、以下の効果を奏する。
 (14)空気が噴射されるノズル24に加え、液体ノズル110を備えるため、液体による洗浄を行うことができる。
The following effects are achieved by the configuration described above.
(14) Since the liquid nozzle 110 is provided in addition to the nozzle 24 from which air is jetted, cleaning with liquid can be performed.
 (15)液体ノズル110は、ノズル24を挟んで両側に配置されているため、回動するノズル24によって液体ノズル110に対応する領域に対して流体(空気)を噴射することができる。そして、ノズル24は、光学面11から面直交方向に突出する突出量L1が液体ノズル110の光学面11から面直交方向に突出する突出量L2よりも小さいため、ノズル24から噴射する空気を沿わせて光学面11に付着する水滴等の異物を吹き飛ばすことができる。 (15) Since the liquid nozzles 110 are disposed on both sides of the nozzle 24, the fluid (air) can be jetted to the area corresponding to the liquid nozzle 110 by the rotating nozzles 24. And since the amount L1 of protrusion which protrudes in the surface orthogonal direction from the optical surface 11 is smaller than the amount L2 of protrusion which protrudes in the surface orthogonal direction from the optical surface 11, the nozzle 24 Thus, foreign matter such as water droplets adhering to the optical surface 11 can be blown away.
 (16)液体ノズル110の噴射軸線SLが光学面11に対して交差するように構成されるため、液体ノズル110から噴射された液体(ウォッシャ液)を光学面11に衝突させて拡散させることができ、光学面11の広範囲に液体を供給することができ、光学面11の広範囲を洗浄することが可能となる。 (16) Since the jet axis SL of the liquid nozzle 110 is configured to intersect the optical surface 11, the liquid (washer liquid) ejected from the liquid nozzle 110 may collide with the optical surface 11 and be diffused. As a result, the liquid can be supplied to the wide area of the optical surface 11 and the wide area of the optical surface 11 can be cleaned.
 なお、上記例では、液体ノズル110を2つ設ける構成としたが、液体ノズル110を1つ又は3つ以上に変更してもよい。また、ノズル110の配置はノズル24を挟むような配置に限らず適宜変更可能である。例えばノズル24の左右方向の一方側のみに複数設ける構成を採用してもよい。また、ノズル24を挟むように液体ノズル110を設けた場合にノズル24の一方に設けた液体ノズル110とノズル24の他方に設けた液体ノズル110とで個数が異なってもよい。また、上記例では、ノズル24以外に液体ノズル110を設けたが、液体ノズル110に関わらず、気体(空気)を噴射するエアノズルであってもよい。 In the above example, two liquid nozzles 110 are provided, but the liquid nozzles 110 may be changed to one or three or more. Further, the arrangement of the nozzles 110 is not limited to the arrangement in which the nozzles 24 are sandwiched, and can be appropriately changed. For example, a configuration in which a plurality of nozzles 24 are provided only on one side in the left-right direction may be employed. When the liquid nozzles 110 are provided so as to sandwich the nozzles 24, the number may differ between the liquid nozzles 110 provided on one side of the nozzles 24 and the liquid nozzles 110 provided on the other side of the nozzles 24. Moreover, although the liquid nozzle 110 was provided in addition to the nozzle 24 in the said example, the air nozzle which injects gas (air) irrespective of the liquid nozzle 110 may be sufficient.
 また、光学面11の面方向に沿ってノズル91がスライド移動する第2実施形態に適用する場合には、ノズル91の移動範囲と干渉しない位置に液体ノズルを設けることが好ましい。 Further, in the case of applying to the second embodiment in which the nozzle 91 slides along the surface direction of the optical surface 11, it is preferable to provide the liquid nozzle at a position not interfering with the movement range of the nozzle 91.
 ・上記各実施形態では、可動ノズルとしてのノズル24,91を1つ設ける構成としたが、複数設ける構成を採用してもよい。このような構成を上記第1実施形態に適用した例を図15に示す。 In each of the above embodiments, one nozzle 24 or 91 as the movable nozzle is provided. However, a plurality of the nozzles may be provided. An example in which such a configuration is applied to the first embodiment is shown in FIG.
 図15に示すように、車載センサ洗浄装置20は、3つのノズル24を有する。ノズル24は、流路切替部120を介してポンプ22から流体(空気)が供給される。例えば、流路切替部120は、3つのノズル24から順次流体が噴射されるようにポンプ22と各ノズル24間の流路を切り替えるものである。これによって、各ノズル24から順次流体が噴射される。また、3つのノズル24は、駆動部26と連結されて回動されるようになっている。ここで、3つのノズル24を回動する駆動部26として、1つの駆動源(モータ41)の駆動力を各ノズル24に伝達してノズル24を回動させるような構成を採用してもよい。 As shown in FIG. 15, the on-vehicle sensor cleaning device 20 has three nozzles 24. The nozzle 24 is supplied with fluid (air) from the pump 22 via the flow path switching unit 120. For example, the flow path switching unit 120 switches the flow path between the pump 22 and each nozzle 24 so that fluid is sequentially ejected from the three nozzles 24. As a result, fluid is sequentially ejected from the nozzles 24. In addition, the three nozzles 24 are connected to the drive unit 26 so as to be rotated. Here, as the drive unit 26 that rotates the three nozzles 24, a configuration may be adopted in which the driving force of one drive source (motor 41) is transmitted to each nozzle 24 to rotate the nozzles 24. .
 ・上記各実施形態では、可動ノズルとしてのノズル24に単一の噴射口32aを設ける構成としたが、これに限らず、複数の噴射口を設ける構成を採用してもよい。複数の噴射口を有する構成を上記第1実施形態に適用した一例として図16~図18を用いて説明する。 In each of the above-described embodiments, the nozzle 24 as the movable nozzle is provided with the single injection port 32a. However, the present invention is not limited to this, and a plurality of injection ports may be provided. A configuration having a plurality of injection ports will be described as an example applied to the first embodiment with reference to FIGS. 16 to 18.
 図17に示すようにノズル24(本体部32)には、2つの噴射口32a,32bを有する。各噴射口32a,32bは、ノズル24の周方向180度反対側に形成されている。 As shown in FIG. 17, the nozzle 24 (main body 32) has two injection ports 32a and 32b. The injection ports 32 a and 32 b are formed on the opposite side of the nozzle 24 in the circumferential direction 180 degrees.
 図16~図18に示すように、ノズル24の本体部32の周囲には、ノズル24の周方向180度の範囲を覆う規制壁部130が設けられる。規制壁部130は、ノズル24が回動中に2つの噴射口32a,32bのうちの1つと常時対向し、対向する噴射口32a,32bからの流体の噴射を規制するようになっている。そして、本例では、規制壁部130によって覆われていない部分が光学面11に対して流体を実際に噴射可能な範囲となっている。また、規制壁部130による流体の噴射の規制範囲は、光学面11に対する流体の噴射を許容する領域の外である。 As shown in FIGS. 16 to 18, around the main body 32 of the nozzle 24, a regulation wall 130 covering a range of 180 degrees in the circumferential direction of the nozzle 24 is provided. The restricting wall portion 130 always faces one of the two injection ports 32a and 32b during rotation of the nozzle 24, and restricts the injection of fluid from the opposed injection ports 32a and 32b. And in this example, the portion which is not covered by regulation wall part 130 has become the range which can actually jet fluid to optical surface 11. In addition, the control range of the injection of the fluid by the control wall portion 130 is outside the area that allows the injection of the fluid to the optical surface 11.
 このような構成とすることで、例えば図18(a)~(d)に示すようにノズル24を一方向に回転させることで、2つの噴射口32a,32bの内の一方が外部に露出する状態となり流体を噴射可能となっている。また、前述したように、規制壁部130によって覆われている箇所においては噴射口32a,32bからの流体の噴射が規制されるようになっている。ノズル24の周囲に噴射口32a,32bからの流体の噴射を規制する規制壁部130を設けることで、不要な箇所への流体の噴射を抑えることができる。つまり、光学面11に対する流体を噴射する領域外において噴射口32a,32bからの流体の噴射を規制することで光学面11以外の箇所に流体を噴射することを抑えることができる。そして、ノズル24を一方向に回転させるだけで常時流体を噴射することができるため、ノズル24の反転動作等が不要となる。このため、モータ41の正逆回転を切り換えるといった煩雑な制御が不要となる。また、反転動作に伴う反転位置(モータ41の回転数)を検出するためのセンサ等を設ける必要がない。 With such a configuration, for example, as shown in FIGS. 18A to 18D, one of the two injection ports 32a and 32b is exposed to the outside by rotating the nozzle 24 in one direction. It becomes a state and can jet fluid. In addition, as described above, the injection of the fluid from the injection ports 32 a and 32 b is restricted at the portion covered by the restriction wall portion 130. By providing the restriction wall portion 130 for restricting the injection of the fluid from the injection ports 32 a and 32 b around the nozzle 24, it is possible to suppress the injection of the fluid to unnecessary points. That is, by restricting the ejection of the fluid from the ejection ports 32 a and 32 b outside the area for ejecting the fluid to the optical surface 11, it is possible to suppress the ejection of the fluid to a place other than the optical surface 11. Then, since the fluid can be constantly ejected only by rotating the nozzle 24 in one direction, the reversing operation of the nozzle 24 and the like is not necessary. For this reason, the complicated control of switching the forward and reverse rotation of the motor 41 is unnecessary. Further, it is not necessary to provide a sensor or the like for detecting the reverse position (the number of rotations of the motor 41) accompanying the reverse operation.
 なお、規制壁部130は、複数の噴射口32a,32bを設ける構成に限らず、単一の噴射口を設けるノズルに対しても適用してもよい。また、ノズルの回動方向は一方向だけでなく正逆回転させて往復揺動されるノズルに対して規制壁部130を設ける構成を採用してもよい。また、上記の変形例では規制壁部130をノズル24の周方向180度の範囲を覆う構成としたが、その範囲は適宜変更可能である。 The restriction wall portion 130 is not limited to the configuration in which the plurality of injection ports 32a and 32b are provided, but may be applied to a nozzle in which a single injection port is provided. In addition, it is possible to adopt a configuration in which the control wall portion 130 is provided for the nozzle that is reciprocated by being rotated forward and reverse not only in one direction but also in one direction. Moreover, although it was set as the structure which covers the range of the circumferential direction 180 degree | times of the nozzle 24 in the said modification, the range can be changed suitably.
 ・上記各実施形態では、車載センサ洗浄装置20を構成するノズルユニット21(ノズル24,91)を車載光学センサ10の鉛直方向上側に設ける構成としたが、ノズルユニット21(ノズル24,91)を車載光学センサ10の鉛直方向下側に設ける構成や、車載光学センサ10と水平方向(左右方向)において隣接する構成を採用してもよい。 In the above embodiments, the nozzle unit 21 (nozzles 24, 91) constituting the in-vehicle sensor cleaning device 20 is provided above the in-vehicle optical sensor 10 in the vertical direction, but the nozzle unit 21 (nozzles 24, 91) is You may employ | adopt the structure provided in the perpendicular direction lower side of the vehicle-mounted optical sensor 10, and the structure adjacent to the vehicle-mounted optical sensor 10 in a horizontal direction (left-right direction).
 ・上記各実施形態では、ノズル24,91を覆うノズルカバー52,102を設ける構成としたが、カバー52,102を省略した構成を採用してもよい。
 ・上記各実施形態では、光学面11を湾曲形状(湾曲面)としたが、これに限らず、例えば光学面11を平面形状としてもよい。
In the above embodiments, the nozzle covers 52 and 102 covering the nozzles 24 and 91 are provided. However, the configurations in which the covers 52 and 102 are omitted may be employed.
In the above embodiments, the optical surface 11 has a curved shape (curved surface). However, the present invention is not limited to this. For example, the optical surface 11 may have a planar shape.
 ・上記第1及び第2実施形態では、駆動部26,97を1つのモータ41,98と減速機構42,99とで構成したが、これに限らない。例えば減速機構42,99を省略する構成を採用してもよい。また、減速機構42,99の構成、すなわちギア数や減速比は適宜変更可能である。 In the first and second embodiments, the drive units 26 and 97 are configured by the single motors 41 and 98 and the reduction mechanisms 42 and 99, but the invention is not limited thereto. For example, a configuration may be employed in which the reduction mechanisms 42 and 99 are omitted. Further, the configuration of the reduction mechanisms 42 and 99, that is, the number of gears and the reduction ratio can be changed as appropriate.
 ・上記第1実施形態では、光学面11と面一の湾曲形状をなす案内壁部51を設ける構成としたが、これに限らない。光学面11と案内壁部51とが面一でない構成を採用してもよい。また、湾曲形状の光学面11に対して案内壁部51を平面形状としてもよい。また、案内壁部51を省略した構成を採用してもよい。 In the first embodiment, the guide wall 51 having a curved shape flush with the optical surface 11 is provided. However, the present invention is not limited to this. A configuration in which the optical surface 11 and the guide wall 51 are not flush may be employed. In addition, the guide wall 51 may have a planar shape with respect to the curved optical surface 11. Moreover, you may employ | adopt the structure which abbreviate | omitted the guide wall part 51. FIG.
 ・上記第1実施形態では、駆動部26のモータ41の回転駆動力によりノズル24を回動させる構成としたが、これに限らず、流体の供給によってノズル24を回動(揺動)させる構成を採用してもよい。 In the first embodiment, the nozzle 24 is rotated by the rotational driving force of the motor 41 of the drive unit 26. However, the present invention is not limited to this. The nozzle 24 is rotated (oscillated) by the supply of fluid. May be adopted.
 ・上記第1実施形態では、ノズル24の回動中心(中心軸線CL)に流体(空気)を導入可能な流路P2が設けられる構成としたが、これに限らず、ノズル24の回動中心(中心軸線CL)から逸脱した位置に流路P2を設ける構成を採用してもよい。 In the first embodiment, the flow path P2 capable of introducing the fluid (air) to the rotation center (central axis line CL) of the nozzle 24 is provided. However, the present invention is not limited thereto. You may employ | adopt the structure which provides the flow path P2 in the position which deviated from (central axis line CL).
 ・上記各実施形態では、ポンプ22として遠心ポンプを採用したが、これに限らず、軸流・斜流ポンプ、ダイヤフラムポンプやスクリューポンプなどの連続的に流体を供給可能なポンプを採用してもよい。 In each of the above embodiments, a centrifugal pump is employed as the pump 22. However, the pump is not limited to this, and a pump capable of continuously supplying fluid such as an axial flow or diagonal flow pump, a diaphragm pump or a screw pump may be employed. Good.
 ・上記第2実施形態では、スライド機構92として、複数のプーリ95a~95eと、各プーリ95a~95eに架設されるワイヤ96とを有する構成としたが、これに限らない。 In the second embodiment, the slide mechanism 92 is configured to include the plurality of pulleys 95a to 95e and the wire 96 installed around the pulleys 95a to 95e, but the present invention is not limited thereto.
 図19に示すスライド機構140は、スライダクランクを用いる構成となっている。スライド機構140は、筐体141に設けられる2つのガイドレール142a,142bと、スライダクランク143と、スライダクランク143を駆動させる駆動部144とを有する。 The slide mechanism 140 shown in FIG. 19 is configured to use a slider crank. The slide mechanism 140 includes two guide rails 142 a and 142 b provided in the housing 141, a slider crank 143, and a drive unit 144 that drives the slider crank 143.
 ガイドレール142a,142bは、光学面11に沿って並設されており、光学面11の曲率と略同等をなすような湾曲形状をなしている。各ガイドレール142a,142bにはノズル145が摺動可能に設けられる。 The guide rails 142a and 142b are juxtaposed along the optical surface 11, and have a curved shape that is substantially equal to the curvature of the optical surface 11. A nozzle 145 is slidably provided on each of the guide rails 142a and 142b.
 駆動部144は、モータ146と、減速機構147とを有する。減速機構147は、モータ146の出力軸146aに設けられるウォーム148と、該ウォーム148と噛合するウォームホイール149とを有する。 The drive unit 144 includes a motor 146 and a speed reduction mechanism 147. The reduction mechanism 147 includes a worm 148 provided on an output shaft 146 a of the motor 146 and a worm wheel 149 meshing with the worm 148.
 スライダクランク143は、ウォームホイール149の回転中心から径方向外側にずれた位置で連結されるリンク150と、リンク150と連結されるスライダ151とを備える。リンク150は、その基端部がウォームホイール149と連結され、先端部がスライダ151の基端部に連結される。スライダ151は、基端部が前記リンク150と連結され、先端部がノズル145に設けられる長孔部145aと摺動可能に連結されている。また、スライダ151は、各端部間に設定された支持軸151aによって回動(揺動)可能に支持されている。このため、例えばモータ146が回転駆動されると、その回転駆動力が伝達されてスライダ151が支持軸151aを中心として回動されることとなる。ここで、スライダ151の揺動中心(回転中心)である支持軸151aと、ガイドレール142a,142bの曲率中心はずれている。このため、通常であれば、スライダ151を揺動させてもガイドレール142a,142bに沿ってノズル145を揺動させることは難しい。そこで、本例では、ノズル145に長孔部145aを設けることで長孔部145aの長手方向においてスライダ151の先端部の移動が許容させ、ノズル145をガイドレール142a,142bに沿って揺動させることが可能となっている。 The slider crank 143 includes a link 150 connected at a position shifted radially outward from the rotation center of the worm wheel 149 and a slider 151 connected to the link 150. The link 150 is connected at its proximal end to the worm wheel 149 and at its distal end to the proximal end of the slider 151. The slider 151 has a proximal end connected to the link 150 and a distal end slidably connected to a long hole 145 a provided in the nozzle 145. In addition, the slider 151 is supported so as to be capable of rotating (pivoting) by a support shaft 151a set between the end portions. Therefore, for example, when the motor 146 is rotationally driven, the rotational driving force is transmitted, and the slider 151 is rotated about the support shaft 151a. Here, the center of curvature of the support shaft 151a, which is the swing center (rotation center) of the slider 151, and the guide rails 142a and 142b are offset. Therefore, normally, even if the slider 151 is swung, it is difficult to swing the nozzle 145 along the guide rails 142a and 142b. Therefore, in the present embodiment, by providing the long hole 145a in the nozzle 145, the movement of the tip of the slider 151 is allowed in the longitudinal direction of the long hole 145a, and the nozzle 145 is swung along the guide rails 142a and 142b. It has become possible.
 上述したようにスライド機構140においてスライダクランク143を用いることでモータ146を正逆回転させずとも、ノズル145を光学面11に沿って揺動させることが可能となっている。 As described above, by using the slider crank 143 in the slide mechanism 140, it is possible to swing the nozzle 145 along the optical surface 11 without rotating the motor 146 in the forward and reverse directions.
 ・上記実施形態では、車載センサとして光学センサである車載光学センサ10(例えばLIDARやカメラ)を採用したが、これに限らない。車載光学センサ10以外の他の車載センサ(電波を用いるレーダー(例えばミリ波レーダー)やコーナーセンサとして用いられる超音波センサ)を車載センサとして採用してもよい。 In the above embodiment, the on-vehicle optical sensor 10 (for example, LIDAR or camera) which is an optical sensor is adopted as the on-vehicle sensor, but the invention is not limited thereto. Other on-vehicle sensors (a radar using radio waves (for example, a millimeter wave radar) or an ultrasonic sensor used as a corner sensor) other than the on-vehicle optical sensor 10 may be adopted as the on-vehicle sensor.
 ・図9~13に示す変形例では、ノズル24から気体を噴射し、液体ノズル110から液体(ウォッシャ液)を噴射する構成としたが、これらの組み合わせは適宜変更してもよい。つまり、回動するノズル24から液体を噴射し、ノズル110から気体を噴射する構成を採用してもよい。また、各ノズル24,110から液体のみを噴射させる構成や、各ノズル24,110から気体のみを噴射させる構成を採用してもよい。 In the modification shown in FIGS. 9 to 13, the gas is jetted from the nozzle 24 and the liquid (washer liquid) is jetted from the liquid nozzle 110, but the combination of these may be changed as appropriate. That is, a configuration may be employed in which the liquid is ejected from the rotating nozzle 24 and the gas is ejected from the nozzle 110. In addition, a configuration in which only the liquid is ejected from each of the nozzles 24 and 110 or a configuration in which only the gas is ejected from each of the nozzles 24 and 110 may be adopted.
 ・図9~13に示す変形例では、ノズル24は、光学面11から面直交方向に突出する突出量L1が液体ノズル110の光学面11から面直交方向に突出する突出量L2よりも小さい構成としたが、これに限らない。ノズル24と液体ノズル110の突出量L1,L2を同じとしてもよい。また、ノズル24の突出量L1を液体ノズル110の突出量L2よりも小さい構成を採用してもよい。 In the modified example shown in FIGS. 9 to 13, the nozzle 24 has a configuration in which the projection amount L1 projecting in the surface orthogonal direction from the optical surface 11 is smaller than the projection amount L2 projecting in the surface orthogonal direction from the optical surface 11 of the liquid nozzle 110. And, but it is not limited to this. The protrusion amounts L1 and L2 of the nozzle 24 and the liquid nozzle 110 may be the same. In addition, a configuration in which the protrusion amount L1 of the nozzle 24 is smaller than the protrusion amount L2 of the liquid nozzle 110 may be employed.
 ・上記実施形態並びに上記各変形例は適宜組み合わせてもよい。
 (第3実施形態)
 次に、車載センサ洗浄装置の第3実施形態を説明する。なお、本実施形態においては、第1実施形態並びに第2実施形態との相違点を中心に説明し、第1実施形態並びに第2実施形態と同様の構成には同一の符号を付して説明の一部又は全部を割愛する。
-The above-mentioned embodiment and each above-mentioned modification may be combined suitably.
Third Embodiment
Next, a third embodiment of the in-vehicle sensor cleaning device will be described. In the present embodiment, differences from the first embodiment and the second embodiment are mainly described, and the same reference numerals are given to the same configuration as the first embodiment and the second embodiment. Omit some or all of the
 図20~図22に示すように、車載センサ洗浄装置20は、車載光学センサ10の上方(鉛直方向上側)に積層配置されるノズルユニット21と、ノズルユニット21に対して流体を供給するポンプ22(図1参照)とを有する。 As shown in FIGS. 20 to 22, the on-vehicle sensor cleaning device 20 includes a nozzle unit 21 stacked and disposed above (on the upper side in the vertical direction) the on-vehicle optical sensor 10 and a pump 22 that supplies fluid to the nozzle unit 21. (See FIG. 1).
 ノズルユニット21は、筐体23と、筐体から少なくとも一部が前方に露出するように設けられる可動ノズルとしてのノズル24と、ノズル24とポンプ22との間に設けられる接続部25と、筐体23内に収容される駆動部26とを有する。 The nozzle unit 21 includes a housing 23, a nozzle 24 as a movable nozzle provided so as to expose at least a part of the housing forward, a connection portion 25 provided between the nozzle 24 and the pump 22, and a housing And a drive 26 housed within the body 23.
 駆動部26は、筐体23内にモータ181と、モータ181の駆動力を伝達する駆動力伝達機構182とを有する。
 駆動力伝達機構182は、減速部183と、第1運動変換部186と、第2運動変換部191とを有する。
The drive unit 26 includes a motor 181 and a driving force transmission mechanism 182 for transmitting the driving force of the motor 181 in the housing 23.
The driving force transmission mechanism 182 includes a speed reduction unit 183, a first motion converter 186, and a second motion converter 191.
 減速部183は、ウォーム184と、第1ギア185とを有する。ウォーム184は、モータ181の出力軸181aに形成されており、第1ギア185のウォームホイール185aと噛合されている。第1ギア185は、ウォームホイール185aと一体構成で該ウォームホイール185aと同軸上で一体回転するとともにウォームホイール185aよりも小径の平歯車185bを有し、平歯車185bが第2ギア187と噛合する。 The speed reduction unit 183 has a worm 184 and a first gear 185. The worm 184 is formed on the output shaft 181 a of the motor 181 and is engaged with the worm wheel 185 a of the first gear 185. The first gear 185 is integrally formed with the worm wheel 185 a and integrally rotates coaxially with the worm wheel 185 a and has a spur gear 185 b smaller in diameter than the worm wheel 185 a, and the spur gear 185 b meshes with the second gear 187. .
 図20及び図21に示すように、第1運動変換部186は、円運動(回転運動)を往復直線運動に変換する所謂往復スライダ・クランク機構であり、前記第2ギア187と、第2ギア187と一端側で連結されるロッド部材188と、ロッド部材188の他端部側が連結されるスライダ部材189とを有する。第2ギア187は、平歯車で構成される。第2ギア187の軸方向端面187aには、第2ギア187の回転中心から離れた位置において第1運動変換部186を構成するロッド部材188の一端部が接続される。つまり、第2ギア187は、往復スライダ・クランク機構のクランクとして作用する。ロッド部材188の他端部は、スライダ部材189の一端部に接続される。スライダ部材189は、左右方向に延びる直線状のガイド部材190によって支持されており、ガイド部材190に沿って往復直線移動が可能となっている。 As shown in FIGS. 20 and 21, the first motion converter 186 is a so-called reciprocating slider-crank mechanism that converts circular motion (rotational motion) into reciprocating linear motion, and the second gear 187 and the second gear A rod member 188 is connected to one end of the rod member 187, and a slider member 189 is connected to the other end of the rod member 188. The second gear 187 is configured by a spur gear. One end of a rod member 188 constituting the first motion converter 186 is connected to the axial end surface 187 a of the second gear 187 at a position away from the rotation center of the second gear 187. That is, the second gear 187 acts as a crank of the reciprocating slider-crank mechanism. The other end of the rod member 188 is connected to one end of the slider member 189. The slider member 189 is supported by a linear guide member 190 extending in the left-right direction, and is capable of reciprocating linear movement along the guide member 190.
 上記のように構成された第1運動変換部186では、第2ギア187が回転駆動されると、その駆動力がロッド部材188を介してスライダ部材189に伝達される。スライダ部材189は、伝達された駆動力によってガイド部材190に沿って左右方向に往復直線運動することとなる。 In the first motion converter 186 configured as described above, when the second gear 187 is rotationally driven, the driving force is transmitted to the slider member 189 via the rod member 188. The slider member 189 reciprocates linearly along the guide member 190 by the transmitted driving force.
 ここで、前述したように円運動(回転運動)を往復直線運動に変換する場合、第2ギア187を等速で円運動させた場合には変換後のスライダ部材189の速度は正弦波(余弦波)と同様に変化することとなる。 Here, in the case of converting circular movement (rotational movement) to reciprocating linear movement as described above, when the second gear 187 is circularly moved at a constant speed, the speed of the slider member 189 after conversion is a sine wave (cosine Changes in the same way as waves).
 第2運動変換部191は、往復直線運動を円運動に変換するものであり、本例では例えばラックアンドピニオンが用いられている。より具体的には、第2運動変換部191は、前記スライダ部材189と、ピニオンギア部192とを有する。ここで、スライダ部材189がラックに相当し、ピニオンギア部192がピニオンに相当する。すなわち、スライダ部材189は第1運動変換部186と第2運動変換部191との両方(両方の一部)を構成する。 The second motion converter 191 converts reciprocating linear motion into circular motion, and in this example, a rack and pinion is used. More specifically, the second motion converter 191 includes the slider member 189 and a pinion gear 192. Here, the slider member 189 corresponds to a rack, and the pinion gear portion 192 corresponds to a pinion. That is, the slider member 189 constitutes both the first motion converter 186 and the second motion converter 191 (parts of both).
 スライダ部材189は、その表面に歯部189aが形成される。スライダ部材189の歯部189aは、ノズル24の円筒部31の外周面に形成されたピニオンギア部192と噛合する。つまり、スライダ部材189が往復直線運動すると、スライダ部材189の歯部189aと噛合するピニオンギア部192が回転し、ノズル24が回動する。このとき、スライダ部材189は往復直線運動するものであるため、スライダ部材189が往動する際にはピニオンギア部192並びにノズル24が一方向に回動し、スライダ部材189が復動する際にはピニオンギア部192並びにノズル24が他方向に回動する。このようにしてノズル24は、噴射口32aの向きを所定の範囲H(図22参照)において変化させるように回動する。 The slider member 189 has a tooth portion 189a formed on the surface thereof. The tooth portion 189 a of the slider member 189 meshes with a pinion gear portion 192 formed on the outer peripheral surface of the cylindrical portion 31 of the nozzle 24. That is, when the slider member 189 reciprocates linearly, the pinion gear portion 192 meshing with the tooth portion 189a of the slider member 189 rotates, and the nozzle 24 rotates. At this time, since the slider member 189 reciprocates linearly, when the slider member 189 moves forward, the pinion gear portion 192 and the nozzle 24 rotate in one direction, and the slider member 189 returns. The pinion gear portion 192 and the nozzle 24 rotate in the other direction. Thus, the nozzle 24 rotates so as to change the direction of the injection port 32a in the predetermined range H (see FIG. 22).
 次に、車載センサ洗浄装置20の作用を説明する。
 本実施形態の車載センサ洗浄装置20のノズルユニット21は、モータ181が回転駆動されると、減速部183によって低速高トルク回転に変換される。そして、第1運動変換部186によって回転運動が往復直線運動に変換される。さらに、第2運動変換部191によって往復直線運動が回転運動(往復回転運動)に変換されてその回転駆動力がノズル24に伝達される。このようにして、ノズル24は所定の範囲H内で回動される。
Next, the operation of the in-vehicle sensor cleaning device 20 will be described.
When the motor 181 is driven to rotate, the nozzle unit 21 of the in-vehicle sensor cleaning device 20 of the present embodiment is converted into low-speed high-torque rotation by the speed reduction unit 183. Then, the rotational motion is converted into the reciprocating linear motion by the first motion converter 186. Furthermore, the reciprocating linear motion is converted to rotational motion (reciprocal rotational motion) by the second motion converter 191, and the rotational driving force is transmitted to the nozzle 24. Thus, the nozzle 24 is rotated within the predetermined range H.
 このとき、等速回転運動を往復直線運動に変換すると、前述したようにその際の速度は正弦波と同様に変化する。つまり、本例のような構成を採用することでモータ181の出力軸181aを略一定速で回転駆動(回転運動)させると、ノズル24の回動速度が正弦波と同様に変化する。より具体的には、図23に示すように、ノズル24の正逆回転が切り替わる位置(往復動の切り替わる位置)においてノズル24の回動速度が最も遅く、ノズル24の噴射軸線SLが中央に位置する時にノズル24の回転速度が最も速くなる。 At this time, when the constant velocity rotational motion is converted into reciprocating linear motion, the velocity at that time changes in the same manner as a sine wave as described above. That is, when the output shaft 181a of the motor 181 is rotationally driven (rotational movement) at a substantially constant speed by adopting the configuration as in this embodiment, the rotational speed of the nozzle 24 changes in the same manner as a sine wave. More specifically, as shown in FIG. 23, the rotational speed of the nozzle 24 is the slowest at the position where forward and reverse rotation of the nozzle 24 switches (the position where reciprocation switches), and the injection axis SL of the nozzle 24 is positioned at the center At the same time, the rotational speed of the nozzle 24 is the highest.
 ここで、光学面11は、前述したように前方に凸状をなして上下方向から見て湾曲形状をなすような面である。このため、ノズル24の正逆回転が切り替わる部位が直線上の噴射軸線SLに対して光学面11の曲面の変化率が他の部位と比較して大きくなる。このため、前述したようにノズル24の正逆回転が切り替わる部位においてノズル24の速度を遅くすることで光学面11の対象部位を効率よく洗浄できる。 Here, as described above, the optical surface 11 is a surface which is convex forward and has a curved shape as viewed in the vertical direction. For this reason, the change rate of the curved surface of the optical surface 11 with respect to the injection axis SL on a straight line is larger in the portion where the normal and reverse rotations of the nozzle 24 are switched than in other portions. For this reason, as described above, the target portion of the optical surface 11 can be efficiently cleaned by reducing the speed of the nozzle 24 at the portion where the forward and reverse rotation of the nozzle 24 switches.
 次に、本実施形態の効果を記載する。
 (16)モータ181の一方向への回転運動を往復回転運動に変換する変換機構としての第1運動変換部186及び第2運動変換部191を備えることで、モータ181の正逆回転を切り替えることなくノズル24を所定範囲で往復回転運動(往復回動)させることができる。第1運動変換部186によって一度回転運動を往復直線運動に変換することで、第2運動変換部191によって往復直線運動を回転運動に変換する際には自ずと往復回転運動となり、モータ181の正逆回転を切り替えることなくノズル24を所定範囲で往復回転運動(往復回動)させることができる。
Next, the effects of the present embodiment will be described.
(16) The forward and reverse rotation of the motor 181 is switched by providing the first motion converting unit 186 and the second motion converting unit 191 as conversion mechanisms for converting the rotational movement of the motor 181 in one direction into reciprocating rotational movement. Instead, the nozzle 24 can be reciprocated and rotated (reciprocally rotated) within a predetermined range. Once the rotational movement is converted to reciprocating linear movement by the first movement converting unit 186, when converting the reciprocating linear movement to rotational movement by the second movement converting unit 191, it naturally becomes reciprocating rotational movement. The nozzle 24 can be reciprocated and rotated (reciprocally rotated) within a predetermined range without switching the rotation.
 (17)第1運動変換部186として往復スライダ・クランク機構を用いることで回転運動を往復直線運動に確実に変換できる。
 なお、第3実施形態は、以下のように変更してもよい。
(17) By using a reciprocating slider-crank mechanism as the first motion converter 186, rotational motion can be reliably converted to reciprocating linear motion.
The third embodiment may be modified as follows.
 ・上記各実施形態では特に言及していないが、駆動部26(モータ41)の回転速度を制御してノズル24の回動速度(回転速度)を制御して光学面11上における噴射軸線SLの回動速度を変更する制御部を備える構成を採用してもよい。 Although not particularly mentioned in the above embodiments, the rotational speed of the nozzle 24 is controlled by controlling the rotational speed of the drive unit 26 (motor 41) to control the injection axis SL on the optical surface 11 You may employ | adopt the structure provided with the control part which changes rotation speed.
 ・上記第3実施形態では、第1運動変換部186として所謂往復スライダ・クランク機構を用いる構成としたが、これに限らない。例えば、図24に示す構成や図25及び図26に示す構成を採用してもよい。 In the third embodiment, a so-called reciprocating slider / crank mechanism is used as the first motion converter 186. However, the present invention is not limited to this. For example, the configuration shown in FIG. 24 or the configurations shown in FIGS. 25 and 26 may be adopted.
 図24に示すように、第1運動変換部は、減速部183のウォームホイール185aと一体構成で該ウォームホイール185aと同軸上で一体回転するとともにウォームホイール185aよりも小径の小径ギア201と、小径ギア201と噛合されるスライダ部材202とを備える。 As shown in FIG. 24, the first motion converter is integrally formed with the worm wheel 185a of the reduction gear 183 and integrally rotates coaxially with the worm wheel 185a, and has a small diameter gear 201 smaller in diameter than the worm wheel 185a, A slider member 202 engaged with the gear 201 is provided.
 小径ギア201は、2つのギア歯201bを有する歯部201aを周方向に等間隔で計3つ設けて構成される。
 スライダ部材202は、モータ収容部203と一体形成されたシリンダ203a内を往復動可能に支持されている。モータ収容部203は、例えば筐体23の一部を構成してモータ181を収容する。
The small diameter gear 201 is configured by providing a total of three tooth portions 201a having two gear teeth 201b at equal intervals in the circumferential direction.
The slider member 202 is supported so as to reciprocate in a cylinder 203 a integrally formed with the motor housing portion 203. The motor housing portion 203 constitutes, for example, a part of the housing 23 and houses the motor 181.
 スライダ部材202は、その一端側に前記歯部201aのギア歯201bと噛合する歯部202aが形成され、その他端側に前記ピニオンギア部192と噛合する歯部202bが形成される。また、スライダ部材202の長手方向の途中位置であってシリンダ203a内に収容(挿通)された部位にはフランジ部202cが形成される。フランジ部202cとシリンダ203aの底部203bとの間にはばね204が設けられる。ばね204は、シリンダ203aの底部203bとは反対側の開口部203cに向けてフランジ部202cを付勢する。 The slider member 202 has a tooth portion 202a formed on one end side thereof for meshing with the gear teeth 201b of the tooth portion 201a, and a tooth portion 202b formed on the other end side for meshing with the pinion gear portion 192. Further, a flange portion 202c is formed at an intermediate position in the longitudinal direction of the slider member 202 and at a portion accommodated (inserted) in the cylinder 203a. A spring 204 is provided between the flange portion 202c and the bottom portion 203b of the cylinder 203a. The spring 204 biases the flange portion 202c toward the opening 203c opposite to the bottom portion 203b of the cylinder 203a.
 ここで、例えば、モータ181の出力軸181aが一方向に回転駆動すると、小径ギア201が一方向に回転する。このとき、スライダ部材202の歯部202aと小径ギア201の歯部201aとが噛合するとスライダ部材202が前記ばね204の付勢力に抗してばね204の付勢する方向と逆向きに移動する。そして、モータ181の出力軸181aの回転が進み、スライダ部材202の歯部202aと小径ギア201の歯部201aとが噛合状態が解除されると、スライダ部材202はばね204の付勢力によってばね204の付勢する方向に移動する。このような動作を繰り返すことでスライダ部材202が往復直線運動することとなる。そして、スライダ部材202が往復直線運動すると、スライダ部材202の歯部202bと噛合するピニオンギア部192が回転し、ノズル24が回動する。 Here, for example, when the output shaft 181a of the motor 181 is rotationally driven in one direction, the small diameter gear 201 is rotated in one direction. At this time, when the teeth 202a of the slider member 202 mesh with the teeth 201a of the small diameter gear 201, the slider 202 moves in the direction opposite to the biasing direction of the spring 204 against the biasing force of the spring 204. Then, when the rotation of the output shaft 181a of the motor 181 proceeds and the toothed portion 202a of the slider member 202 and the toothed portion 201a of the small diameter gear 201 are disengaged, the slider member 202 is biased by the spring 204 and the spring 204 Move in the direction to bias the By repeating such an operation, the slider member 202 reciprocates linearly. Then, when the slider member 202 reciprocates linearly, the pinion gear portion 192 meshing with the tooth portion 202 b of the slider member 202 rotates, and the nozzle 24 rotates.
 図25及び図26に示す構成では、ウォームホイール185aの軸方向端面205にばね207の一端を支持するばね支持部205aを設けている。筐体23の一部を構成してモータ181等を収容するモータ収容部206とばね支持部205aとの間にはばね207の他端を支持するばね支持部206aが設けられている。これにより、ばね207によってモータ181による駆動方向とは逆方向に付勢力が生じるような構成となっている。また、ウォームホイール185aと一体構成で該ウォームホイール185aと同軸上で一体回転するとともにウォームホイール185aよりも小径の小径ギア208は、はす歯(ウォームホイール)で構成される。ウォームホイール185aは、ノズル24の円筒部31に形成されたウォーム209と噛合する。モータ181の出力軸181aをばね207の付勢力に抗して一方向に回転駆動させることでノズル24が一方向に回動し、モータ181の動作を停止するとばね207の付勢力によってノズル24が他方向に回動する。 In the configuration shown in FIGS. 25 and 26, the axial end surface 205 of the worm wheel 185a is provided with a spring support portion 205a for supporting one end of the spring 207. A spring support portion 206a for supporting the other end of the spring 207 is provided between the spring support portion 205a and the motor accommodation portion 206 which constitutes a part of the housing 23 and accommodates the motor 181 and the like. As a result, a biasing force is generated by the spring 207 in the direction opposite to the driving direction of the motor 181. Further, the small diameter gear 208 which is integrally formed with the worm wheel 185a and integrally rotates coaxially with the worm wheel 185a and which has a diameter smaller than that of the worm wheel 185a is formed by helical teeth (worm wheel). The worm wheel 185 a meshes with a worm 209 formed on the cylindrical portion 31 of the nozzle 24. The nozzle 24 is rotated in one direction by rotationally driving the output shaft 181a of the motor 181 in one direction against the biasing force of the spring 207, and the operation of the motor 181 is stopped by the biasing force of the spring 207. It turns in the other direction.
 ・上記各実施形態並びに各変形例は適宜組み合わせてもよい。 -Each above-mentioned embodiment and each modification may be combined suitably.

Claims (26)

  1.  センシング面を備える車載センサに設けられる車載センサ洗浄装置において、
     前記車載センサのセンシング範囲外に配置された状態で、前記センシング面に対して流体を噴射する噴射口と、
     該噴射口の噴射軸線位置が変更されるように前記噴射口を可動する可動ノズルと、を備える車載センサ洗浄装置。
    In the in-vehicle sensor cleaning device provided in an in-vehicle sensor having a sensing surface,
    An ejection port for ejecting a fluid to the sensing surface in a state of being disposed outside the sensing range of the in-vehicle sensor;
    An on-vehicle sensor cleaning device comprising: a movable nozzle that moves the injection port so that an injection axis position of the injection port is changed;
  2.  請求項1に記載の車載センサ洗浄装置において、
     前記可動ノズルに連続的に流体を供給する流体ポンプを更に備える車載センサ洗浄装置。
    In the in-vehicle sensor cleaning device according to claim 1,
    An on-vehicle sensor cleaning apparatus further comprising a fluid pump for continuously supplying fluid to the movable nozzle.
  3.  請求項1に記載の車載センサ洗浄装置において、前記可動ノズルは、前記センシング面の面直交方向に沿って延びる回動軸線を中心に回動して前記センシング面に対して流体を噴射するように構成されている車載センサ洗浄装置。 The on-vehicle sensor cleaning device according to claim 1, wherein the movable nozzle is rotated about a rotation axis extending along a direction perpendicular to the sensing surface to eject fluid to the sensing surface. On-board sensor cleaning device configured.
  4.  請求項3に記載の車載センサ洗浄装置において、
     前記可動ノズルは、単一の噴射口を含む車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 3,
    The in-vehicle sensor cleaning device according to claim 1, wherein the movable nozzle includes a single injection port.
  5.  請求項3に記載の車載センサ洗浄装置において、
     前記可動ノズルは、複数の噴射口を含む車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 3,
    The in-vehicle sensor cleaning device according to claim 1, wherein the movable nozzle includes a plurality of injection ports.
  6.  請求項5に記載の車載センサ洗浄装置において、
     前記可動ノズルの周囲に設けられ、前記噴射口からの流体の噴射を規制する規制壁部を更に備える車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 5,
    An on-vehicle sensor cleaning device further comprising a restriction wall portion provided around the movable nozzle and restricting the injection of fluid from the injection port.
  7.  請求項6に記載の車載センサ洗浄装置において、
     前記可動ノズルは、一方向に回動するものであり、
     前記規制壁部は、前記センシング面に対する流体の噴射を許容する領域の外において前記噴射口と対向するように設けられ、前記噴射口からの流体の噴射を規制する車載センサ洗浄装置。
    In the in-vehicle sensor cleaning device according to claim 6,
    The movable nozzle rotates in one direction,
    The in-vehicle sensor cleaning device is provided so as to face the injection port outside the region that allows the injection of the fluid to the sensing surface, and restricts the injection of the fluid from the injection port.
  8.  請求項3に記載の車載センサ洗浄装置において、
     前記可動ノズルは、正逆方向に回動可能である車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 3,
    The on-vehicle sensor cleaning device, wherein the movable nozzle is rotatable in forward and reverse directions.
  9.  請求項3に記載の車載センサ洗浄装置において、
     前記センシング面は、凸状をなす湾曲面であり、
     前記可動ノズルから噴射される流体を前記センシング面に案内する案内壁部を更に備える車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 3,
    The sensing surface is a convex curved surface,
    The on-vehicle sensor cleaning device further comprises a guide wall for guiding the fluid jetted from the movable nozzle to the sensing surface.
  10.  請求項9に記載の車載センサ洗浄装置において、
     前記案内壁部は、前記センシング面と面一である車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 9,
    The in-vehicle sensor cleaning device, wherein the guide wall portion is flush with the sensing surface.
  11.  請求項3に記載の車載センサ洗浄装置において、
     前記可動ノズルから噴射される流体の噴射軸線を除いた範囲に設けられ、前記可動ノズルを覆うカバーを更に備える車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 3,
    An on-vehicle sensor cleaning device further comprising a cover which is provided in a range excluding an injection axis of a fluid ejected from the movable nozzle and covers the movable nozzle.
  12.  請求項3に記載の車載センサ洗浄装置において、
     前記可動ノズルは、空気が噴射されるものであり、
     前記センシング面に対して液体を噴射する液体ノズルを更に備える車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 3,
    The movable nozzle is one from which air is injected.
    An on-vehicle sensor cleaning device further comprising a liquid nozzle for ejecting a liquid to the sensing surface.
  13.  請求項12に記載の車載センサ洗浄装置において、
     前記液体ノズルは、前記可動ノズルを挟んで両側に配置されている車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 12,
    The on-vehicle sensor cleaning device in which the liquid nozzle is disposed on both sides of the movable nozzle.
  14.  請求項12に記載の車載センサ洗浄装置において、
     前記可動ノズルの前記センシング面から面直交方向に突出する突出量は、前記液体ノズルの前記センシング面から面直交方向に突出する突出量よりも小さい車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 12,
    An on-vehicle sensor cleaning device in which the amount of protrusion of the movable nozzle in the direction orthogonal to the surface from the sensing surface is smaller than the amount of protrusion of the liquid nozzle in the direction orthogonal to the surface.
  15.  請求項14に記載の車載センサ洗浄装置において、
     前記液体ノズルは、その噴射軸線が前記センシング面に対して交差するように構成される車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 14,
    An on-vehicle sensor cleaning device according to claim 1, wherein the liquid nozzle is configured such that an injection axis thereof intersects the sensing surface.
  16.  請求項3に記載の車載センサ洗浄装置において、
     前記可動ノズルを回動させる駆動力を発生する駆動部を更に備える車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 3,
    An on-vehicle sensor cleaning device further comprising: a drive unit that generates a driving force for rotating the movable nozzle.
  17.  請求項16に記載の車載センサ洗浄装置において、
     前記駆動部は、回転駆動する駆動源と、該駆動源の駆動力を前記可動ノズルに伝達する減速機構と、を含む車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 16,
    The in-vehicle sensor cleaning device according to claim 1, wherein the drive unit includes a drive source that is driven to rotate, and a speed reduction mechanism that transmits the drive force of the drive source to the movable nozzle.
  18.  請求項16に記載の車載センサ洗浄装置において、
     前記駆動部並びに前記可動ノズルは、前記車載センサの鉛直方向上側に設けられる車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 16,
    The said drive part and the said movable nozzle are vehicle-mounted sensor washing | cleaning apparatuses provided in the perpendicular direction upper side of the said vehicle-mounted sensor.
  19.  請求項16に記載の車載センサ洗浄装置において、
     前記駆動部の回転速度を制御して前記センシング面上における噴射軸線の回動速度を変更する制御部を更に備える車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 16,
    An on-vehicle sensor cleaning device further comprising: a control unit that controls the rotational speed of the drive unit to change the rotational speed of the injection axis on the sensing surface.
  20.  請求項19に記載の車載センサ洗浄装置において、
     前記制御部は、噴射優先度が高い領域ほど前記可動ノズルの回動速度を遅くするように前記駆動部を制御する車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 19,
    The said control part controls the said drive part so that the rotational speed of the said movable nozzle may be late | slow as the area | region where injection priority is high is on-vehicle sensor washing | cleaning apparatus.
  21.  請求項19に記載の車載センサ洗浄装置において、
     前記制御部は、前記センシング面上の洗浄対象領域が噴射軸線方向において可動ノズルから遠いほど前記可動ノズルの回動速度を遅くするように前記駆動部を制御する車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 19,
    The control unit controls the drive unit such that the rotational speed of the movable nozzle decreases as the area to be cleaned on the sensing surface is farther from the movable nozzle in the injection axial direction.
  22.  請求項16に記載の車載センサ洗浄装置において、
     前記駆動部は、駆動源の一方向への回転運動を往復回転運動に変換する変換機構を含む車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 16,
    The said drive part is a vehicle-mounted sensor washing | cleaning apparatus containing the conversion mechanism which converts the rotational movement to one direction of a drive source into reciprocating rotational movement.
  23.  請求項22に記載の車載センサ洗浄装置において、
     前記変換機構は、前記駆動源の一方向への回転運動を往復直線運動に変換する第1運動変換部と、該第1運動変換部によって変換された往復直線運動を往復回転運動に変換する第2運動変換部と、を含む車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 22,
    The conversion mechanism includes: a first motion converter that converts rotational movement of the drive source in one direction to reciprocating linear motion; and conversion of reciprocating linear motion converted by the first motion converter to reciprocating rotational movement 2 Motion converter, and on-vehicle sensor cleaning device.
  24.  請求項23に記載の車載センサ洗浄装置において、
     前記第1運動変換部は、往復スライダ・クランク機構である車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 23,
    The on-vehicle sensor cleaning device according to the present invention, wherein the first motion converter is a reciprocating slider / crank mechanism.
  25.  請求項3に記載の車載センサ洗浄装置において、
     前記可動ノズルの回動中心には流体を導入可能な流路が設けられる車載センサ洗浄装置。
    In the on-vehicle sensor cleaning device according to claim 3,
    An on-vehicle sensor cleaning device in which a flow passage capable of introducing a fluid is provided at a rotation center of the movable nozzle.
  26.  請求項1に記載の車載センサ洗浄装置において、
     前記センシング面に沿って前記可動ノズルをスライド可能なスライド機構を更に備え、該スライド機構により前記噴射口の噴射軸線位置が変更される車載センサ洗浄装置。
    In the in-vehicle sensor cleaning device according to claim 1,
    The on-vehicle sensor cleaning device according to claim 1, further comprising: a slide mechanism capable of sliding the movable nozzle along the sensing surface, wherein the position of the jet axis of the jet port is changed by the slide mechanism.
PCT/JP2018/019808 2017-08-15 2018-05-23 On-board sensor cleaning device WO2019035255A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/628,242 US11679422B2 (en) 2017-08-15 2018-05-23 On-board sensor cleaning device
DE112018004171.9T DE112018004171T5 (en) 2017-08-15 2018-05-23 Cleaning device for an on-board sensor
CN201880051437.4A CN111225838B (en) 2017-08-15 2018-05-23 Vehicle-mounted sensor cleaning device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-156863 2017-08-15
JP2017156863 2017-08-15
JP2017-166721 2017-08-31
JP2017166721A JP7020001B2 (en) 2017-08-31 2017-08-31 In-vehicle sensor cleaning device
JP2018020077A JP7130975B2 (en) 2017-08-15 2018-02-07 In-vehicle sensor cleaning device
JP2018-020077 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019035255A1 true WO2019035255A1 (en) 2019-02-21

Family

ID=65362233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019808 WO2019035255A1 (en) 2017-08-15 2018-05-23 On-board sensor cleaning device

Country Status (1)

Country Link
WO (1) WO2019035255A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152325A (en) * 2019-03-22 2020-09-24 株式会社東海理化電機製作所 Visual recognition device for vehicle
CN112718665A (en) * 2020-12-29 2021-04-30 苏州星格纳测控技术有限公司 Shaft type sensor convenient to clean and cleaning device thereof
WO2022013240A1 (en) * 2020-07-14 2022-01-20 Bayerische Motoren Werke Aktiengesellschaft Pump device of a wiper water system of a vehicle, and wiper water system of a vehicle having such a pump device
FR3117970A3 (en) * 2020-12-23 2022-06-24 Compagnie Plastic Omnium Se Motor vehicle body part equipped with a cleaning system
WO2023068050A1 (en) * 2021-10-20 2023-04-27 株式会社小糸製作所 Cleaner system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148295A (en) * 1995-11-27 1997-06-06 Dainippon Screen Mfg Co Ltd Rotary substrate processor
JP2014019403A (en) * 2012-07-23 2014-02-03 Denso Corp Washing equipment for on-vehicle optical sensor
JP2015029956A (en) * 2013-08-02 2015-02-16 株式会社丸島アクアシステム Multistage air diffusion apparatus
JP2017513772A (en) * 2014-04-11 2017-06-01 ディエルエイチ・ボウルズ・インコーポレイテッドdlhBOWLES Inc. Compact thin nozzle assembly and compact fluid circuit as an integrated automotive system for wide-angle image sensor exterior cleaning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148295A (en) * 1995-11-27 1997-06-06 Dainippon Screen Mfg Co Ltd Rotary substrate processor
JP2014019403A (en) * 2012-07-23 2014-02-03 Denso Corp Washing equipment for on-vehicle optical sensor
JP2015029956A (en) * 2013-08-02 2015-02-16 株式会社丸島アクアシステム Multistage air diffusion apparatus
JP2017513772A (en) * 2014-04-11 2017-06-01 ディエルエイチ・ボウルズ・インコーポレイテッドdlhBOWLES Inc. Compact thin nozzle assembly and compact fluid circuit as an integrated automotive system for wide-angle image sensor exterior cleaning

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152325A (en) * 2019-03-22 2020-09-24 株式会社東海理化電機製作所 Visual recognition device for vehicle
JP7230310B2 (en) 2019-03-22 2023-03-01 株式会社東海理化電機製作所 Visual recognition device for vehicles
WO2022013240A1 (en) * 2020-07-14 2022-01-20 Bayerische Motoren Werke Aktiengesellschaft Pump device of a wiper water system of a vehicle, and wiper water system of a vehicle having such a pump device
FR3117970A3 (en) * 2020-12-23 2022-06-24 Compagnie Plastic Omnium Se Motor vehicle body part equipped with a cleaning system
CN112718665A (en) * 2020-12-29 2021-04-30 苏州星格纳测控技术有限公司 Shaft type sensor convenient to clean and cleaning device thereof
WO2023068050A1 (en) * 2021-10-20 2023-04-27 株式会社小糸製作所 Cleaner system

Similar Documents

Publication Publication Date Title
WO2019035255A1 (en) On-board sensor cleaning device
CN111225838B (en) Vehicle-mounted sensor cleaning device
WO2019106930A1 (en) On-board sensor cleaning device
JP7130975B2 (en) In-vehicle sensor cleaning device
WO2017115506A1 (en) Adhering object removal device
JP2019001447A (en) On-board sensor cleaning device
JP6439589B2 (en) In-vehicle optical sensor cleaning system and in-vehicle optical sensor cleaning method
CN110869253A (en) Vehicle-mounted sensor cleaning device
JP2019043270A (en) On-board sensor cleaning device
JP2019156260A (en) Vehicle cleaner nozzle and assembly method of the same
JP2016215839A (en) On-board optical sensor mounting bracket and on-board optical sensor unit
US20060167342A1 (en) Endoscope having a rotatable distal endoscope head
WO2019012882A1 (en) Onboard sensor cleaning device
KR20110124021A (en) Propulsion apparatus for ship and ship including the same
WO2018225343A1 (en) Device for cleaning in-vehicle sensor
KR101231256B1 (en) Multi swing type nozzle apparatus for fountain
JP2019051789A (en) On-vehicle sensor cleaning device
US20110139907A1 (en) Tank-cleaning nozzle
JP2014144502A (en) Cutting fluid supply device
KR100881090B1 (en) Sprayer
JP6148470B2 (en) Vehicle washer pump device
JP2019038511A (en) On-vehicle sensor cleaning device
KR101531705B1 (en) The multidegree of freedom fountain nozzle device
US20190145411A1 (en) Gas ejection apparatus
WO2022244360A1 (en) On-board sensor cleaning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846070

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18846070

Country of ref document: EP

Kind code of ref document: A1