[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019031563A1 - Method for manufacturing optical module - Google Patents

Method for manufacturing optical module Download PDF

Info

Publication number
WO2019031563A1
WO2019031563A1 PCT/JP2018/029839 JP2018029839W WO2019031563A1 WO 2019031563 A1 WO2019031563 A1 WO 2019031563A1 JP 2018029839 W JP2018029839 W JP 2018029839W WO 2019031563 A1 WO2019031563 A1 WO 2019031563A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
spacer
optical module
manufacturing
optical
Prior art date
Application number
PCT/JP2018/029839
Other languages
French (fr)
Japanese (ja)
Inventor
剛 大場
誠二 及川
佐藤 修
幹也 山中
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2019031563A1 publication Critical patent/WO2019031563A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present invention relates to a method of manufacturing an optical module.
  • the lens array used for the optical system of a liquid crystal projector etc. press-molds the softened glass using a mold in which the shape of the lens array is inscribed in a matrix, or sticks the lens on a flat glass substrate It is obtained by doing.
  • the lens array may be further integrated with other optical members when assembled into an optical instrument.
  • a protrusion which is important as an optical component.
  • Patent Document 1 a method of protecting the projection by elastically deforming a flexible elastic member such as foamed polyurethane along the uneven shape of the wafer.
  • the lens which is a projection
  • the lens is the most important part as an optical element, and if there are scratches and dirt, it can not be treated as a product.
  • Patent Document 1 When the method described in Patent Document 1 is applied to a lens array, although the above-described protrusions are protected, there is contact with other members, so a process of cleaning and inspection for removing foreign matter adhering to the surface And the impact on the manufacturing cost of the product is a concern.
  • the present invention has been made under such a background, and an object thereof is to provide a method of manufacturing an optical module which can be manufactured with high productivity while avoiding the generation of scratches and stains on a protrusion.
  • the method for manufacturing an optical module comprises the steps of preparing a translucent substrate having a convex portion on at least one surface, a translucent spacer having a concave portion, and the convex portion. Placing the substrate on the spacer from the one side while being accommodated in the recess, laminating an optical member on the other side of the substrate via an ultraviolet curing adhesive, and Irradiating the ultraviolet light from the outside of the spacer to cure the adhesive with the ultraviolet light transmitted through the spacer and the substrate, and integrating the substrate and the optical member.
  • FIG. 7 is a cross-sectional view showing the step of preparing a substrate and a spacer in the method of manufacturing an optical module according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a step of placing the substrate of FIG. 1A on a spacer.
  • FIG. 7 is a cross-sectional view showing a process of laminating an optical member on the substrate of FIG. 1B.
  • Sectional drawing which shows the process of unifying the board
  • FIG. 3 is a cross-sectional view showing a step of placing the substrate of FIG. 2A on a spacer.
  • Sectional drawing which shows the process of laminating
  • Sectional drawing which shows the process of unifying the board
  • a sectional view showing the process of preparing the optical module and the optical unit which were obtained by integrating shown in FIG. 2D.
  • the method of manufacturing an optical module according to the present embodiment includes a preparing step, a mounting step, a laminating step, an integrating step, and a measuring step.
  • a substrate (base material) 1 and a spacer 2 are prepared.
  • the substrate 1 has translucency, and as shown in FIG. 1A, is provided with a plurality of convex portions 1c as a lens on one surface 1a.
  • the other surface 1b of the substrate 1 is formed flat.
  • the substrate 1 has an array structure in which a plurality of convex portions 1c are arranged in a lattice along the planar direction.
  • a thin portion 1 d where the thickness of the substrate 1 is the thinnest.
  • the surface of the thin portion 1d is formed flat.
  • a material of the substrate for example, a non-alkali glass such as alkali glass or borosilicate glass, a glass material such as quartz glass may be used, or a light-transmitting resin material or the like can be selected.
  • the spacer 2 is a light transmitting plate-like member, and as shown in FIG. 1A, is provided with a plurality of concave portions 2 a as through holes at positions corresponding to the convex portions 1 c of the substrate 1.
  • the recesses 2 a of the spacer 2 are arranged at a pitch corresponding to the protrusions 1 c of the substrate 1.
  • the convex portions 1 c of the substrate 1 are accommodated (inserted) in the concave portions 2 a of the spacer 2.
  • substrate 1 and the spacer 2 main body do not contact, it is avoidable that a convex part (lens which is a projection part) 1c has a flaw and dirt.
  • the spacer 2 has translucency in which the transmittance of light with a wavelength of 365 nm is 80% or more, and can transmit ultraviolet light. Since the light quantity of the ultraviolet light which permeate
  • the spacer 2 is made of quartz glass, borosilicate glass, or the like.
  • the spacer 2 preferably has a flatness of 10 ⁇ m or less as defined in JIS B 0021 (1998), or a parallelism of 10 ⁇ m or less as defined in JIS B 0021 (1998).
  • the optical module 8 in which warpage and distortion are suppressed can be obtained. If the flatness and parallelism of the spacer 2 are out of the above-mentioned range, the optical module 8 may be warped or the like, which is not preferable.
  • the spacer 2 is set (mounted) on the stage (base) 3.
  • the stage 3 may be made of a light transmitting material that transmits light (ultraviolet light), or the light is guided to allow light (ultraviolet light) to pass through the inside of the stage 3 main body.
  • a light hole or the like may be perforated.
  • a mirror etc. may be arrange
  • the substrate 1 is placed on the spacer 2 from the one surface 1 a side while the respective convex portions 1 c of the substrate 1 are accommodated (inserted) in the respective concave portions 2 a of the spacer 2. Do.
  • the inside of the recess 2 a of the spacer 2 may be depressurized through a depressurizing pump or the like during the execution of the step.
  • the substrate 1 thin portion 1 d of the substrate 1
  • the spacer 2 the flatness and the parallelism are high
  • the inclination of the substrate 1 or the like is suppressed.
  • the optical member 5 is laminated on the other surface 1b of the substrate 1 via the ultraviolet curing adhesive 7.
  • the optical member 5 is, for example, an optical member paired with the substrate 1.
  • One array structure is configured by combining the substrate 1 as one optical member and the other optical member 5.
  • the optical member 5 has translucency and has a structure symmetrical to the substrate 1.
  • the optical member 5 is provided with the several convex part 5a as a lens in one surface. Further, the other surface of the optical member 5 is formed flat.
  • the plurality of convex portions 5 a of the optical member 5 are arranged at positions corresponding to the convex portions 1 c of the substrate 1 (with a corresponding pitch).
  • the flat other surface of the optical member 5 and the flat other surface 1 b of the substrate 1 are laminated to each other through the adhesive 7.
  • the plurality of convex portions 5 a of the optical member 5 and the plurality of convex portions 1 c of the substrate 1 are disposed at the same position when the substrate 1 is viewed from the plane direction.
  • the convex portion 5 a of the optical member 5 and the convex portion 1 c of the substrate 1 constitute one convex lens.
  • the above-mentioned adhesive 7 comprises the thin part of the substrate 1 and the thin part of the optical member 5 having the thinnest thickness. Intervene in between.
  • the adhesive 7 (7a) is illustrated thick, and a relatively large gap is illustrated between the substrate 1 and the optical member 5. In practice, however, the substrate 1 and the optical member 5 are stacked in close contact with each other.
  • the ultraviolet light transmitted from the spacer 2 and the substrate 1 by irradiating ultraviolet light (ultraviolet light) from the outside (the stage 3 side) of the spacer 2 using the ultraviolet light source 9 The ultraviolet curing adhesive 7 is cured by light, and the substrate 1 and the optical member 5 are integrated via the cured adhesive 7a.
  • the dimension S as the optical module 8 in a state in which the optical member 5 is laminated on the substrate 1 is measured.
  • the thickness (total thickness of the convex portion 1c and the convex portion 5a) of the convex lens portion (convex portion 1c and convex portion 5a) of the optical module 8 the curvature of the convex lens portion, the substrate 1 and the optical member 5
  • the thin portion 1 d of the substrate 1 and the thin portion of the optical member 5 are appropriately cut to form the substrate 1 and the optical member 5.
  • This optical element is applied as, for example, a mirror, a prism, a filter or the like.
  • the optical module 8 can be manufactured with high productivity while avoiding that the convex lens portion (convex portion 1c) which is the projection portion is scratched or stained. It becomes possible to manufacture. Moreover, according to this manufacturing method, since the ultraviolet curing adhesive is applied to, for example, bond the glass substrate 1 and the optical member 5 to each other, compared with the case of applying the thermosetting adhesive etc. It is possible to suppress the formation of a film of an impurity (such as iron) on the surface of the lens portion due to a thermal factor and the like, thereby making it possible to suppress the occurrence of surface reflection and the like on the lens portion.
  • an impurity such as iron
  • FIGS. 2A to 2D the same components as the components in the first embodiment shown in FIGS. 1A to 1E are given the same reference numerals, and the redundant description will be omitted.
  • a substrate 21 and an optical member 25 are applied in place of the substrate 1 and the optical member 5 used as components in the first embodiment. That is, in the preparing step, as shown in FIG. 2A, the spacer 2 and the substrate (base material) 21 are prepared.
  • the substrate 21 has translucency, and as shown in FIG. 2A, is provided with a plurality of convex portions 21c as lenses on one surface 21a. Further, a plurality of convex portions 21 e as lenses are provided on the other surface 21 b.
  • the plurality of convex portions 21c on the side of the surface 21a of the substrate 21 and the plurality of convex portions 21e on the side of the other surface 21b are respectively arranged at the same position when the substrate 21 is viewed from the plane direction.
  • the convex portions 21c and 21e at the same position constitute one convex lens.
  • the substrate 21 has an array structure in which a plurality of convex portions 21c and 21e are arranged in a lattice along the planar direction.
  • a space between the protrusions 21c (or the protrusions 21e) in the planar direction of the substrate 21 is a thin-walled portion 21d having the smallest plate thickness in the substrate 21.
  • the surface of the thin portion 21d is formed flat.
  • the material of the substrate 21 those exemplified as the material of the substrate 1 are applied.
  • FIG. 2B in the mounting step, with the pressure in the recess 2a of the spacer 2 being reduced, each protrusion 21c of the substrate 21 is accommodated in each recess 2a of the spacer 2 while the substrate 21 is one of them. It mounts on the spacer 2 from the surface 21a side.
  • the optical member 25 is laminated on the other surface 21b side of the thin portion 21d of the substrate 21 via the ultraviolet-curable adhesive 27.
  • the optical member 25 includes, for example, a plurality of concave portions (through holes) 25 a as light guiding paths, for example, at positions facing the plurality of convex portions 21 e on the substrate 21.
  • ultraviolet light is irradiated from the outside of the spacer 2 to cure the ultraviolet curing adhesive 27 with the ultraviolet light transmitted through the spacer 2 and the substrate 21.
  • the substrate 21 and the optical member 25 are integrated through the adhesive 27a thus obtained to obtain an optical module 28.
  • the production of the optical module 28 is performed while avoiding that the convex lens portion (mainly the convex portion 21c) which is the projection of the substrate 21 is scratched or soiled. Can be enhanced.
  • FIGS. 3A to 3C the same components as those in the second embodiment shown in FIGS. 2A to 2D will be assigned the same reference numerals and overlapping explanations will be omitted.
  • the step of That is, in the second preparation step, as shown in FIG. 3A, the optical unit 33 and the optical module 28 and the stage 3 illustrated in FIG. 2D are prepared.
  • the optical unit 33 includes a substrate 31 and an optical member 35.
  • the substrate 31 has the same configuration as the substrate 21 of the second embodiment. Specifically, the substrate 31 has translucency, and as shown in FIG. 3A, is provided with a plurality of convex portions 31c as lenses on one surface 31a. Further, a plurality of convex portions 31e as a lens are provided on the other surface 31b.
  • the plurality of convex portions 31c on the side of the surface 31a of the substrate 31 and the plurality of convex portions 31e on the side of the other surface 31b are respectively arranged at the same position when the substrate 31 is viewed from the plane direction.
  • the convex portions 31c and 31e located at the same position constitute one convex lens.
  • the substrate 31 has an array structure in which a plurality of convex portions 31 c and 31 e are arranged in a lattice along the planar direction.
  • the optical member 35 includes, for example, a plurality of concave portions (through holes) 35a as light guiding paths at positions respectively facing the plurality of convex portions 31e on the substrate 31. That is, in the optical unit 33, the optical member 35 and the substrate 31 are bonded to each other in a state in which the plurality of convex portions 31e are accommodated (inserted) in the plurality of concave portions 35a.
  • the upper surface side of the optical module 28 (the other surface of the upper side of the optical member 25) is exposed to the light via the UV-curable adhesive 37.
  • the unit 33 (thin portion 31d of the substrate 31) is stacked.
  • ultraviolet light is irradiated from the outside of the spacer 2 to cure the ultraviolet-curable adhesive 37 with ultraviolet light transmitted through the spacer 2 and the optical module 28.
  • the optical module 28 and the optical unit 33 are integrated through the cured adhesive 37a to obtain an optical module 38.
  • the convex lens portion (mainly the convex portion 31c) which is the projection portion of the optical unit 33 (substrate 31) is scratched or stained.
  • the production efficiency of the optical module 38 can be improved.
  • the present invention is not limited to these embodiments as it is, and can be variously changed in the execution stage in the range which does not deviate from the gist.
  • some components may be deleted from all the components shown in the embodiment, and a plurality of components disclosed in the above embodiment may be combined as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

This method for manufacturing an optical module has: a step for preparing an optically transparent substrate that comprises a protrusion on at least one surface, and an optically transparent spacer that comprises a recess; a step for mounting the substrate on the spacer from the one-surface side while the protrusion is accommodated in the recess; a step for laminating an optical member on the other surface of the substrate via an ultraviolet-ray-curable adhesive; and a step for radiating ultraviolet light from the outer side of the spacer, thereby curing the adhesive using the ultraviolet light that has passed through the spacer and the substrate and integrating the substrate and the optical member.

Description

光学モジュールの製造方法Optical module manufacturing method
 本発明は、光学モジュールの製造方法に関する。 The present invention relates to a method of manufacturing an optical module.
 液晶プロジェクタの光学系等に用いられるレンズアレイは、マトリックス状にレンズアレイの形状が刻まれた金型を用いて軟化状態のガラスをプレス成形したり、平板状のガラス基板にレンズを貼り付けたりすることで得られる。 The lens array used for the optical system of a liquid crystal projector etc. press-molds the softened glass using a mold in which the shape of the lens array is inscribed in a matrix, or sticks the lens on a flat glass substrate It is obtained by doing.
 レンズアレイは、光学機器に組み付ける際、さらに他の光学部材と一体化されることがある。その際、光学部品として重要な突起部(レンズ)にキズが付かないよう配慮する必要がある。このため、発泡ポリウレタン等の柔軟な弾性部材をウエハの凹凸形状に沿って弾性変形させることで、突起部を保護する方法が提案されている(特許文献1参照)。 The lens array may be further integrated with other optical members when assembled into an optical instrument. At that time, it is necessary to take care not to damage a protrusion (lens) which is important as an optical component. For this reason, there has been proposed a method of protecting the projection by elastically deforming a flexible elastic member such as foamed polyurethane along the uneven shape of the wafer (see Patent Document 1).
特開2010-118584号公報JP, 2010-118584, A
 ここで、レンズアレイにおいては、突起部であるレンズは、光学素子として一番重要な箇所であり、キズや汚れがあると製品として扱うことができなくなる。特許文献1に示す方法をレンズアレイに適用する場合、上記した突起部は、保護されるものの、他部材との接触があるため、表面に付着する異物を除去するための洗浄や検査を行う工程が必要となり、製品の製造コストへの影響が懸念される。 Here, in the lens array, the lens, which is a projection, is the most important part as an optical element, and if there are scratches and dirt, it can not be treated as a product. When the method described in Patent Document 1 is applied to a lens array, although the above-described protrusions are protected, there is contact with other members, so a process of cleaning and inspection for removing foreign matter adhering to the surface And the impact on the manufacturing cost of the product is a concern.
 本発明は、このような背景によりなされたものであり、突起部にキズや汚れが付くことを回避し、生産性よく製造可能な光学モジュールの製造方法の提供を目的とする。 The present invention has been made under such a background, and an object thereof is to provide a method of manufacturing an optical module which can be manufactured with high productivity while avoiding the generation of scratches and stains on a protrusion.
 本発明の光学モジュールの製造方法は、少なくとも一方の面に凸部を備えた透光性を有する基板と、凹部を備えた透光性を有するスペーサと、を用意する工程と、前記凸部を前記凹部に収容させつつ前記基板を前記一方の面側から前記スペーサ上に載置する工程と、前記基板の他方の面に紫外線硬化型の接着剤を介して光学部材を積層する工程と、前記スペーサの外側から紫外光を照射することにより、前記スペーサ及び前記基板を透過した紫外光で前記接着剤を硬化し、前記基板と前記光学部材とを一体化する工程と、を有する。 The method for manufacturing an optical module according to the present invention comprises the steps of preparing a translucent substrate having a convex portion on at least one surface, a translucent spacer having a concave portion, and the convex portion. Placing the substrate on the spacer from the one side while being accommodated in the recess, laminating an optical member on the other side of the substrate via an ultraviolet curing adhesive, and Irradiating the ultraviolet light from the outside of the spacer to cure the adhesive with the ultraviolet light transmitted through the spacer and the substrate, and integrating the substrate and the optical member.
 本発明によれば、突起部にキズや汚れが付くことを回避し、生産性よく製造可能な光学モジュールの製造方法を提供することができる。 According to the present invention, it is possible to provide a method of manufacturing an optical module that can be manufactured with high productivity while avoiding the occurrence of scratches and dirt on the protrusions.
本発明の第1の実施形態に係る光学モジュールの製造方法において、基板及びスペーサを用意する工程を示す断面図。FIG. 7 is a cross-sectional view showing the step of preparing a substrate and a spacer in the method of manufacturing an optical module according to the first embodiment of the present invention. 図1Aの基板をスペーサ上に載置する工程を示す断面図。FIG. 2 is a cross-sectional view showing a step of placing the substrate of FIG. 1A on a spacer. 図1Bの基板に光学部材を積層する工程を示す断面図。FIG. 7 is a cross-sectional view showing a process of laminating an optical member on the substrate of FIG. 1B. 図1Cの基板と光学部材とを一体化する工程を示す断面図。Sectional drawing which shows the process of unifying the board | substrate and optical member of FIG. 1C. 図1Dの一体化する工程を経て得られた光学モジュールの寸法を測定する工程を示す断面図。Sectional drawing which shows the process of measuring the dimension of the optical module obtained through the integration process of FIG. 1D. 本発明の第2の実施形態に係る光学モジュールの製造方法において、基板及びスペーサを用意する工程を示す断面図。Sectional drawing which shows the process of preparing a board | substrate and a spacer in the manufacturing method of the optical module concerning the 2nd Embodiment of this invention. 図2Aの基板をスペーサ上に載置する工程を示す断面図。FIG. 3 is a cross-sectional view showing a step of placing the substrate of FIG. 2A on a spacer. 図2Bの基板に光学部材を積層する工程を示す断面図。Sectional drawing which shows the process of laminating | stacking an optical member on the board | substrate of FIG. 2B. 図2Cの基板と光学部材とを一体化する工程を示す断面図。Sectional drawing which shows the process of unifying the board | substrate and optical member of FIG. 2C. 本発明の第3の実施形態に係る光学モジュールの製造方法において、図2Dの一体化して得られた光学モジュールと光学ユニットとを用意する工程を示す断面図。In the manufacturing method of the optical module concerning the 3rd embodiment of the present invention, a sectional view showing the process of preparing the optical module and the optical unit which were obtained by integrating shown in FIG. 2D. 図3Aの光学モジュールと光学ユニットとを積層する工程を示す断面図。Sectional drawing which shows the process of laminating | stacking the optical module and optical unit of FIG. 3A. 図3Bの光学モジュールと光学ユニットとを一体化する工程を示す断面図。Sectional drawing which shows the process of integrating the optical module and optical unit of FIG. 3B.
 以下、本発明の実施の形態を図面に基づき説明する。
 <第1の実施の形態>
 本実施形態の光学モジュールの製造方法を図1A~図1Eに基づき説明する。図1Aに示すように、まず、本実施形態の光学モジュールの製造方法は、用意する工程、載置する工程、積層する工程、一体化する工程、測定する工程を有する。
Hereinafter, embodiments of the present invention will be described based on the drawings.
First Embodiment
A method of manufacturing the optical module of the present embodiment will be described based on FIGS. 1A to 1E. As shown in FIG. 1A, first, the method of manufacturing an optical module according to the present embodiment includes a preparing step, a mounting step, a laminating step, an integrating step, and a measuring step.
 用意する工程では、図1Aに示すように、基板(基材)1及びスペーサ2を用意する。基板1は、透光性を有し、図1Aに示すように、レンズとしての複数の凸部1cを一方の面1aに備えている。基板1の他方の面1bは、平坦に形成されている。基板1は、複数の凸部1cが平面方向に沿って格子状に配列されたアレイ構造を有している。 In the preparation step, as shown in FIG. 1A, a substrate (base material) 1 and a spacer 2 are prepared. The substrate 1 has translucency, and as shown in FIG. 1A, is provided with a plurality of convex portions 1c as a lens on one surface 1a. The other surface 1b of the substrate 1 is formed flat. The substrate 1 has an array structure in which a plurality of convex portions 1c are arranged in a lattice along the planar direction.
 基板1上の凸部1cどうしの間は、基板1の板厚が最も薄い箇所となる薄肉部1dである。この薄肉部1dの表面は、平坦に形成されている。基板1の材料としては、例えばアルカリガラス、硼珪酸ガラスなどの無アルカリガラス、石英ガラスといったガラス材を用いてもよいし、透光性を有する樹脂材料などを選択することも可能である。 Between the convex portions 1 c on the substrate 1 is a thin portion 1 d where the thickness of the substrate 1 is the thinnest. The surface of the thin portion 1d is formed flat. As a material of the substrate 1, for example, a non-alkali glass such as alkali glass or borosilicate glass, a glass material such as quartz glass may be used, or a light-transmitting resin material or the like can be selected.
 一方、スペーサ2は、透光性を有するプレート状の部材であって、図1Aに示すように、基板1の凸部1cと対応する位置に複数の凹部2aを貫通孔として備えている。スペーサ2の凹部2aは、基板1の凸部1cと対応するピッチで配置されている。基板1とスペーサ2とを重ね合わせた場合には、基板1の各凸部1cは、スペーサ2の各凹部2a内に収容(挿入)される。この際、基板1の各凸部1cとスペーサ2本体とは接触しないので、凸部(突起部であるレンズ)1cにキズや汚れが付くことを回避できる。 On the other hand, the spacer 2 is a light transmitting plate-like member, and as shown in FIG. 1A, is provided with a plurality of concave portions 2 a as through holes at positions corresponding to the convex portions 1 c of the substrate 1. The recesses 2 a of the spacer 2 are arranged at a pitch corresponding to the protrusions 1 c of the substrate 1. When the substrate 1 and the spacer 2 are superimposed, the convex portions 1 c of the substrate 1 are accommodated (inserted) in the concave portions 2 a of the spacer 2. Under the present circumstances, since each convex part 1c of the board | substrate 1 and the spacer 2 main body do not contact, it is avoidable that a convex part (lens which is a projection part) 1c has a flaw and dirt.
 ここで、スペーサ2は、波長365nmの光の透過率が80%以上となる透光性を有し、紫外光を透過させることが可能である。スペーサ2の波長365nmの光の透過率が80%未満であると、スペーサ2を透過する紫外光の光量が少なくなるため、後述する紫外線硬化型の接着剤7の硬化に時間を要するため好ましくない。スペーサ2は、石英ガラスやホウケイ酸ガラスなどを材料として構成されている。
 また、スペーサ2は、JIS B0021(1998)にて規定される平面度が10μm以下であり、もしくは、JIS B0021(1998)にて規定される平行度が10μm以下であることが好ましい。これにより、反りや歪みが抑制された光学モジュール8を得ることができる。スペーサ2の平面度、平行度が上述の範囲外であると、光学モジュール8に反り等が生じるおそれがあり好ましくない。
Here, the spacer 2 has translucency in which the transmittance of light with a wavelength of 365 nm is 80% or more, and can transmit ultraviolet light. Since the light quantity of the ultraviolet light which permeate | transmits the spacer 2 decreases that the transmittance | permeability of the light of wavelength 365 nm of the spacer 2 is less than 80%, since hardening of the ultraviolet curable adhesive 7 mentioned later takes time, it is unpreferable . The spacer 2 is made of quartz glass, borosilicate glass, or the like.
The spacer 2 preferably has a flatness of 10 μm or less as defined in JIS B 0021 (1998), or a parallelism of 10 μm or less as defined in JIS B 0021 (1998). Thereby, the optical module 8 in which warpage and distortion are suppressed can be obtained. If the flatness and parallelism of the spacer 2 are out of the above-mentioned range, the optical module 8 may be warped or the like, which is not preferable.
 図1Bに示すように、載置する工程では、まず、スペーサ2をステージ(台座)3上にセット(搭載)する。ステージ3は、光(紫外光)を透過させる透光性を有する材料で構成されていてもよいし、ステージ3本体内を光(紫外光)が通過できるようにするために、光を導く導光孔などが穿孔されていてもよい。また、導光孔の経路上には、ミラーなどが適宜配置されていてもよい。さらに、載置する工程では、基板1の各凸部1cをスペーサ2の各凹部2aに収容させつつ(挿入するようにして)、基板1をその一方の面1a側からスペーサ2上に載置する。 As shown in FIG. 1B, in the mounting step, first, the spacer 2 is set (mounted) on the stage (base) 3. The stage 3 may be made of a light transmitting material that transmits light (ultraviolet light), or the light is guided to allow light (ultraviolet light) to pass through the inside of the stage 3 main body. A light hole or the like may be perforated. Moreover, a mirror etc. may be arrange | positioned suitably on the path | route of a light guide hole. Further, in the mounting step, the substrate 1 is placed on the spacer 2 from the one surface 1 a side while the respective convex portions 1 c of the substrate 1 are accommodated (inserted) in the respective concave portions 2 a of the spacer 2. Do.
 また、載置する工程では、工程の実施中において、スペーサ2の凹部2a内を、減圧ポンプなどを介して減圧してもよい。これにより、平たん性の高められている(平面度、平行度が高い)スペーサ2上に、基板1(基板1の薄肉部1d)が密接する状態で載置されるので、載置時の基板1の傾きなどが抑制される。 Further, in the mounting step, the inside of the recess 2 a of the spacer 2 may be depressurized through a depressurizing pump or the like during the execution of the step. As a result, the substrate 1 (thin portion 1 d of the substrate 1) is placed in close contact with the spacer 2 (the flatness and the parallelism are high) in which the flatness is enhanced. The inclination of the substrate 1 or the like is suppressed.
 図1Cに示すように、積層する工程では、基板1の他方の面1bに紫外線硬化型の接着剤7を介して光学部材5を積層する。光学部材5は、例えば、基板1と対の光学部材である。一方の光学部材である基板1と他方の光学部材5とを組み合わせることで一つのアレイ構造体が構成される。 As shown in FIG. 1C, in the step of laminating, the optical member 5 is laminated on the other surface 1b of the substrate 1 via the ultraviolet curing adhesive 7. The optical member 5 is, for example, an optical member paired with the substrate 1. One array structure is configured by combining the substrate 1 as one optical member and the other optical member 5.
 つまり、光学部材5は、透光性を有し、基板1と対称的な構造を持つ。光学部材5は、レンズとしての複数の凸部5aを一方の面に備えている。また、光学部材5の他方の面は、平坦に形成されている。光学部材5の複数の凸部5aは、基板1の凸部1cと対応する位置に(対応するピッチで)配置されている。 That is, the optical member 5 has translucency and has a structure symmetrical to the substrate 1. The optical member 5 is provided with the several convex part 5a as a lens in one surface. Further, the other surface of the optical member 5 is formed flat. The plurality of convex portions 5 a of the optical member 5 are arranged at positions corresponding to the convex portions 1 c of the substrate 1 (with a corresponding pitch).
 図1Cに示すように、この光学部材5の平坦な他方の面と基板1の平坦な他方の面1bとが接着剤7を介して互いに積層される。光学部材5の複数の凸部5aと基板1の複数の凸部1cとは、基板1を平面方向から観てそれぞれ同じ位置に配置されている。光学部材5の凸部5aと基板1の凸部1cとで一つの凸レンズが構成される。上記の接着剤7は、このようなレンズの構成部分(凸部1c及び凸部5a)の位置を避けるために、基板1の薄肉部1dと光学部材5の板厚が最も薄い薄肉部との間に介在させる。 As shown in FIG. 1C, the flat other surface of the optical member 5 and the flat other surface 1 b of the substrate 1 are laminated to each other through the adhesive 7. The plurality of convex portions 5 a of the optical member 5 and the plurality of convex portions 1 c of the substrate 1 are disposed at the same position when the substrate 1 is viewed from the plane direction. The convex portion 5 a of the optical member 5 and the convex portion 1 c of the substrate 1 constitute one convex lens. In order to avoid the position of such lens constituent parts (convex part 1c and convex part 5a), the above-mentioned adhesive 7 comprises the thin part of the substrate 1 and the thin part of the optical member 5 having the thinnest thickness. Intervene in between.
 なお、図1C~図1Eでは、各工程における内容を把握しやくするために、接着剤7(7a)を厚く図示し、基板1と光学部材5との間に比較的大きな間隙を図示しているものの、実際には基板1と光学部材5とは、ほぼ密接した状態で積層される。 In FIG. 1C to FIG. 1E, in order to make it easy to grasp the contents in each step, the adhesive 7 (7a) is illustrated thick, and a relatively large gap is illustrated between the substrate 1 and the optical member 5. In practice, however, the substrate 1 and the optical member 5 are stacked in close contact with each other.
 図1Dに示すように、一体化する工程では、紫外線光源9を用いて、スペーサ2の外側(ステージ3側)から紫外光(紫外線)を照射することにより、スペーサ2及び基板1を透過した紫外光で紫外線硬化型の接着剤7を硬化し、この硬化した接着剤7aを介して基板1と光学部材5とを一体化する。 As shown in FIG. 1D, in the integration step, the ultraviolet light transmitted from the spacer 2 and the substrate 1 by irradiating ultraviolet light (ultraviolet light) from the outside (the stage 3 side) of the spacer 2 using the ultraviolet light source 9 The ultraviolet curing adhesive 7 is cured by light, and the substrate 1 and the optical member 5 are integrated via the cured adhesive 7a.
 図1Eに示すように、測定する工程では、基板1に光学部材5が積層された状態の光学モジュール8としての寸法Sを測定する。測定する寸法Sとしては、光学モジュール8の凸レンズ部分(凸部1c及び凸部5a)の厚さ(凸部1c及び凸部5aの総厚)、凸レンズ部分の曲率、基板1と光学部材5との薄肉部の総厚などが例示される。 As shown in FIG. 1E, in the measurement step, the dimension S as the optical module 8 in a state in which the optical member 5 is laminated on the substrate 1 is measured. As the dimension S to be measured, the thickness (total thickness of the convex portion 1c and the convex portion 5a) of the convex lens portion (convex portion 1c and convex portion 5a) of the optical module 8, the curvature of the convex lens portion, the substrate 1 and the optical member 5 The total thickness of the thin-walled portion of
 測定する工程を経た後、例えば良品となった光学モジュール(ウエハレベルレンズアレイ)8については、基板1の薄肉部1d及び光学部材5の薄肉部を適宜切断して、基板1及び光学部材5から凸部1c及び凸部5aを含む部位を、それぞれ分断することによって、凸レンズ(凸部1c及び凸部5a)を有する複数の光学素子が得られる。この光学素子は、例えばミラー、プリズム、フィルタなどとして適用される。 For example, for the optical module (wafer level lens array) 8 that has become non-defective after passing through the process of measurement, the thin portion 1 d of the substrate 1 and the thin portion of the optical member 5 are appropriately cut to form the substrate 1 and the optical member 5. By dividing the portion including the convex portion 1c and the convex portion 5a, a plurality of optical elements having convex lenses (convex portion 1c and convex portion 5a) can be obtained. This optical element is applied as, for example, a mirror, a prism, a filter or the like.
 既述したように、本実施形態に係る光学モジュールの製造方法によれば、突起部である凸レンズ部分(凸部1c)にキズや汚れが付くことを回避しつつ、生産性よく光学モジュール8を製造することが可能となる。また、この製法によれば、紫外線硬化型の接着剤を適用して、例えば各々ガラス製の基板1と光学部材5とを接合するので、熱硬化型の接着剤などを適用する場合と比べると、熱的要因でレンズ部分表面に不純物(鉄分など)の被膜が形成されてしまうことなどが抑制され、これにより、レンズ部分での表面反射の発生などを抑えることが可能となる。 As described above, according to the method of manufacturing an optical module according to the present embodiment, the optical module 8 can be manufactured with high productivity while avoiding that the convex lens portion (convex portion 1c) which is the projection portion is scratched or stained. It becomes possible to manufacture. Moreover, according to this manufacturing method, since the ultraviolet curing adhesive is applied to, for example, bond the glass substrate 1 and the optical member 5 to each other, compared with the case of applying the thermosetting adhesive etc. It is possible to suppress the formation of a film of an impurity (such as iron) on the surface of the lens portion due to a thermal factor and the like, thereby making it possible to suppress the occurrence of surface reflection and the like on the lens portion.
 <第2の実施の形態>
 次に、第2の実施の形態を図2A~図2Dに基づき説明する。なお、図2A~図2Dにおいて、図1A~図1Eに示した第1の実施形態中の構成要素と同一の構成要素については、同一の符号を付与し重複する説明を省略する。
Second Embodiment
Next, a second embodiment will be described based on FIGS. 2A to 2D. In FIGS. 2A to 2D, the same components as the components in the first embodiment shown in FIGS. 1A to 1E are given the same reference numerals, and the redundant description will be omitted.
 本実施形態の光学モジュールの製造方法は、第1の実施形態で構成部品として用いられていた基板1及び光学部材5に代えて、基板21及び光学部材25が適用されている。すなわち、用意する工程では、図2Aに示すように、スペーサ2と基板(基材)21を用意する。基板21は、透光性を有し、図2Aに示すように、レンズとしての複数の凸部21cを一方の面21aに備えている。また、レンズとしての複数の凸部21eを他方の面21bに備えている。 In the method of manufacturing an optical module according to this embodiment, a substrate 21 and an optical member 25 are applied in place of the substrate 1 and the optical member 5 used as components in the first embodiment. That is, in the preparing step, as shown in FIG. 2A, the spacer 2 and the substrate (base material) 21 are prepared. The substrate 21 has translucency, and as shown in FIG. 2A, is provided with a plurality of convex portions 21c as lenses on one surface 21a. Further, a plurality of convex portions 21 e as lenses are provided on the other surface 21 b.
 基板21の一方の面21a側の複数の凸部21cと、他方の面21b側の複数の凸部21eとは、基板21を平面方向から観てそれぞれ同じ位置に配置されている。同じ位置にある凸部21c、21eどうしは一つの凸レンズを構成する。基板21は、複数の凸部21c、21eが平面方向に沿って格子状に配列されたアレイ構造を有している。 The plurality of convex portions 21c on the side of the surface 21a of the substrate 21 and the plurality of convex portions 21e on the side of the other surface 21b are respectively arranged at the same position when the substrate 21 is viewed from the plane direction. The convex portions 21c and 21e at the same position constitute one convex lens. The substrate 21 has an array structure in which a plurality of convex portions 21c and 21e are arranged in a lattice along the planar direction.
 基板21の平面方向における凸部21c(又は凸部21e)どうしの間は、基板21において板厚が最も薄い薄肉部21dである。この薄肉部21dの表面は、平坦に形成されている。基板21の材料としては、基板1の材料として例示したものが適用されている。図2Bに示すように、載置する工程では、スペーサ2の凹部2a内を減圧した状態で、基板21の各凸部21cをスペーサ2の各凹部2aに収容させつつ、基板21をその一方の面21a側からスペーサ2上に載置する。 A space between the protrusions 21c (or the protrusions 21e) in the planar direction of the substrate 21 is a thin-walled portion 21d having the smallest plate thickness in the substrate 21. The surface of the thin portion 21d is formed flat. As the material of the substrate 21, those exemplified as the material of the substrate 1 are applied. As shown in FIG. 2B, in the mounting step, with the pressure in the recess 2a of the spacer 2 being reduced, each protrusion 21c of the substrate 21 is accommodated in each recess 2a of the spacer 2 while the substrate 21 is one of them. It mounts on the spacer 2 from the surface 21a side.
 図2Cに示すように、積層する工程では、基板21における薄肉部21dの他方の面21b側に、紫外線硬化型の接着剤27を介して光学部材25を積層する。光学部材25は、例えば、基板21上の複数の凸部21eとそれぞれ対向する位置に、複数の凹部(貫通孔)25aを例えば導光路として備えている。図2Dに示すように、一体化する工程では、スペーサ2の外側から紫外光を照射することにより、スペーサ2及び基板21を透過した紫外光で紫外線硬化型の接着剤27を硬化し、この硬化した接着剤27aを介して基板21と光学部材25とを一体化し、光学モジュール28を得る。 As shown in FIG. 2C, in the laminating step, the optical member 25 is laminated on the other surface 21b side of the thin portion 21d of the substrate 21 via the ultraviolet-curable adhesive 27. The optical member 25 includes, for example, a plurality of concave portions (through holes) 25 a as light guiding paths, for example, at positions facing the plurality of convex portions 21 e on the substrate 21. As shown in FIG. 2D, in the integration step, ultraviolet light is irradiated from the outside of the spacer 2 to cure the ultraviolet curing adhesive 27 with the ultraviolet light transmitted through the spacer 2 and the substrate 21. The substrate 21 and the optical member 25 are integrated through the adhesive 27a thus obtained to obtain an optical module 28.
 このように、本実施形態に係る光学モジュールの製造方法においても、基板21の突起部である凸レンズ部分(主に凸部21c)にキズや汚れが付くことを回避しつつ、光学モジュール28の生産性を高めることができる。 As described above, also in the method of manufacturing the optical module according to the present embodiment, the production of the optical module 28 is performed while avoiding that the convex lens portion (mainly the convex portion 21c) which is the projection of the substrate 21 is scratched or soiled. Can be enhanced.
 <第3の実施の形態>
 次に、第3の実施の形態を図3A~図3Cに基づき説明する。なお、図3A~図3Cにおいて、図2A~図2Dに示した第2の実施形態中の構成要素と同一の構成要素については、同一の符号を付与し重複する説明を省略する。
Third Embodiment
Next, a third embodiment will be described based on FIGS. 3A to 3C. In FIGS. 3A to 3C, the same components as those in the second embodiment shown in FIGS. 2A to 2D will be assigned the same reference numerals and overlapping explanations will be omitted.
 本実施形態の光学モジュールの製造方法は、第2の実施形態に係る光学モジュールの製造方法が有する工程に加え、第2の用意する工程と、第2の積層する工程と、第2の一体化する工程と、をさらに有している。つまり、第2の用意する工程では、図3Aに示すように、光学ユニット33と、図2Dに例示した光学モジュール28及びステージ3と、を用意する。 In the optical module manufacturing method of the present embodiment, in addition to the steps included in the optical module manufacturing method according to the second embodiment, a second preparing step, a second laminating step, and a second integration And the step of That is, in the second preparation step, as shown in FIG. 3A, the optical unit 33 and the optical module 28 and the stage 3 illustrated in FIG. 2D are prepared.
 光学ユニット33は、基板31及び光学部材35を備えている。基板31は、第2の実施形態の基板21と同様の構成を有する。具体的には、基板31は、透光性を有し、図3Aに示すように、レンズとしての複数の凸部31cを一方の面31aに備えている。また、レンズとしての複数の凸部31eを他方の面31bに備えている。 The optical unit 33 includes a substrate 31 and an optical member 35. The substrate 31 has the same configuration as the substrate 21 of the second embodiment. Specifically, the substrate 31 has translucency, and as shown in FIG. 3A, is provided with a plurality of convex portions 31c as lenses on one surface 31a. Further, a plurality of convex portions 31e as a lens are provided on the other surface 31b.
 基板31の一方の面31a側の複数の凸部31cと、他方の面31b側の複数の凸部31eとは、基板31を平面方向から観てそれぞれ同じ位置に配置されている。同じ位置にある凸部31c、31eどうしは一つの凸レンズを構成する。基板31は、複数の凸部31c、31eが平面方向に沿って格子状に配列されたアレイ構造を有している。 The plurality of convex portions 31c on the side of the surface 31a of the substrate 31 and the plurality of convex portions 31e on the side of the other surface 31b are respectively arranged at the same position when the substrate 31 is viewed from the plane direction. The convex portions 31c and 31e located at the same position constitute one convex lens. The substrate 31 has an array structure in which a plurality of convex portions 31 c and 31 e are arranged in a lattice along the planar direction.
 基板31の平面方向における凸部31c(又は凸部31e)どうしの間は、基板31において板厚が最も薄い薄肉部31dである。この薄肉部31dの表面は、平坦に形成されている。基板31の材料としては、基板1の材料として例示したものが適用されている。一方、光学部材35は、例えば、基板31上の複数の凸部31eとそれぞれ対向する位置に、複数の凹部(貫通孔)35aを例えば導光路として備えている。つまり、光学ユニット33は、複数の凹部35a内に複数の凸部31eをそれぞれ収容(挿入)する状態で、光学部材35と基板31とが互いに接合されて構成されている。 Between the convex portions 31 c (or the convex portions 31 e) in the planar direction of the substrate 31 is a thin portion 31 d having the smallest plate thickness in the substrate 31. The surface of the thin portion 31d is formed flat. As the material of the substrate 31, those exemplified as the material of the substrate 1 are applied. On the other hand, the optical member 35 includes, for example, a plurality of concave portions (through holes) 35a as light guiding paths at positions respectively facing the plurality of convex portions 31e on the substrate 31. That is, in the optical unit 33, the optical member 35 and the substrate 31 are bonded to each other in a state in which the plurality of convex portions 31e are accommodated (inserted) in the plurality of concave portions 35a.
 図3Bに示すように、第2の積層する工程では、光学モジュール28における上端側の他方の面(光学部材25の上端側の他方の面)に、紫外線硬化型の接着剤37を介して光学ユニット33(基板31の薄肉部31d)を積層する。図3Cに示すように、第2の一体化する工程では、スペーサ2の外側から紫外光を照射することにより、スペーサ2及び光学モジュール28を透過した紫外光で紫外線硬化型の接着剤37を硬化し、この硬化した接着剤37aを介して光学モジュール28と光学ユニット33とを一体化し、光学モジュール38を得る。 As shown in FIG. 3B, in the second laminating step, the upper surface side of the optical module 28 (the other surface of the upper side of the optical member 25) is exposed to the light via the UV-curable adhesive 37. The unit 33 (thin portion 31d of the substrate 31) is stacked. As shown in FIG. 3C, in the second integration step, ultraviolet light is irradiated from the outside of the spacer 2 to cure the ultraviolet-curable adhesive 37 with ultraviolet light transmitted through the spacer 2 and the optical module 28. The optical module 28 and the optical unit 33 are integrated through the cured adhesive 37a to obtain an optical module 38.
 上述したように、本実施形態に係る光学モジュールの製造方法によれば、光学ユニット33(基板31)の突起部である凸レンズ部分(主に凸部31c)にキズや汚れが付くことを回避しつつ、光学モジュール38の生産効率を向上させることができる。 As described above, according to the method of manufacturing an optical module according to the present embodiment, it is avoided that the convex lens portion (mainly the convex portion 31c) which is the projection portion of the optical unit 33 (substrate 31) is scratched or stained. At the same time, the production efficiency of the optical module 38 can be improved.
 以上、本発明を実施の形態により具体的に説明したが、本発明はこれらの実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々変更可能である。例えば、実施形態に示される全構成要素からいくつかの構成要素を削除してもよいし、上記実施形態に開示されている複数の構成要素を適宜組み合わせることも可能である。 As mentioned above, although this invention was concretely explained with the embodiment, the present invention is not limited to these embodiments as it is, and can be variously changed in the execution stage in the range which does not deviate from the gist. For example, some components may be deleted from all the components shown in the embodiment, and a plurality of components disclosed in the above embodiment may be combined as appropriate.
 1,21,31…基板、1a,21a,31a…一方の面、1b,21b,31b…他方の面、1c,5a,21c,21e,31c,31e…凸部、1d,21d,31d…薄肉部、2…スペーサ、2a,35a…凹部、5,25,35…光学部材、7,27,37…硬化前の接着剤、7a,27a,37a…硬化後の接着剤、8,28,38…光学モジュール、9…紫外線光源、33…光学ユニット。 1, 21, 31 ... substrate, 1a, 21a, 31a ... one surface, 1b, 21b, 31b ... the other surface, 1c, 5a, 21c, 21e, 31c, 31e ... projection, 1d, 21d, 31d ... thin wall Part 2: Spacer 2a, 35a: recessed part 5, 25, 35: optical member 7, 27, 37: adhesive before curing, 7a, 27a, 37a: adhesive after curing 8, 28, 38 ... optical module, 9 ... ultraviolet light source, 33 ... optical unit.

Claims (8)

  1.  少なくとも一方の面に凸部を備えた透光性を有する基板と、凹部を備えた透光性を有するスペーサと、を用意する工程と、
     前記凸部を前記凹部に収容させつつ前記基板を前記一方の面側から前記スペーサ上に載置する工程と、
     前記基板の他方の面に紫外線硬化型の接着剤を介して光学部材を積層する工程と、
     前記スペーサの外側から紫外光を照射することにより、前記スペーサ及び前記基板を透過した紫外光で前記接着剤を硬化し、前記基板と前記光学部材とを一体化する工程と、
     を有する光学モジュールの製造方法。
    Preparing a translucent substrate having a convex portion on at least one surface, and a translucent spacer having a concave portion;
    Placing the substrate on the spacer from the one side while accommodating the protrusion in the recess;
    Laminating an optical member to the other surface of the substrate via an ultraviolet curing adhesive;
    Irradiating the ultraviolet light from the outside of the spacer to cure the adhesive with the ultraviolet light transmitted through the spacer and the substrate to integrate the substrate and the optical member;
    A method of manufacturing an optical module having:
  2.  前記基板の凸部は、レンズである、
     請求項1に記載の光学モジュールの製造方法。
    The convex portion of the substrate is a lens,
    A method of manufacturing an optical module according to claim 1.
  3.  前記スペーサは、波長365nmの光の透過率が80%以上である、
     請求項1または2に記載の光学モジュールの製造方法。
    The spacer has a light transmittance of 80% or more at a wavelength of 365 nm.
    A method of manufacturing an optical module according to claim 1.
  4.  前記スペーサは、平面度が10μm以下、および/または、平行度が10μm以下である、
     請求項1から3までのいずれか1項に記載の光学モジュールの製造方法。
    The spacer has a flatness of 10 μm or less and / or a parallelism of 10 μm or less.
    The manufacturing method of the optical module of any one of Claim 1 to 3.
  5.  前記スペーサの凹部は、貫通孔である、
     請求項1から4までのいずれか1項に記載の光学モジュールの製造方法。
    The recess of the spacer is a through hole,
    The manufacturing method of the optical module of any one of Claim 1 to 4.
  6.  前記載置する工程では、前記スペーサの凹部内を減圧する、
     請求項1から5までのいずれか1項に記載の光学モジュールの製造方法。
    In the placing step, the pressure in the recess of the spacer is reduced.
    The manufacturing method of the optical module of any one of Claim 1 to 5.
  7.  前記基板に前記光学部材が積層された状態の光学モジュールとしての寸法を測定する工程をさらに有する、
     請求項1から6までのいずれか1項に記載の光学モジュールの製造方法。
    The method further includes the step of measuring the dimensions as an optical module in a state in which the optical member is stacked on the substrate.
    The manufacturing method of the optical module of any one of Claim 1 to 6.
  8.  前記積層する工程では、前記基板の板厚が最も薄い箇所と前記光学部材との間に前記接着剤を介在させる、
     請求項1から7までのいずれか1項に記載の光学モジュールの製造方法。
    In the laminating step, the adhesive is interposed between the thinnest portion of the substrate and the optical member.
    The manufacturing method of the optical module of any one of Claim 1-7.
PCT/JP2018/029839 2017-08-08 2018-08-08 Method for manufacturing optical module WO2019031563A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017153386 2017-08-08
JP2017-153386 2017-08-08

Publications (1)

Publication Number Publication Date
WO2019031563A1 true WO2019031563A1 (en) 2019-02-14

Family

ID=65271136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029839 WO2019031563A1 (en) 2017-08-08 2018-08-08 Method for manufacturing optical module

Country Status (1)

Country Link
WO (1) WO2019031563A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158200A (en) * 2006-12-22 2008-07-10 Sanyo Electric Co Ltd Optical lens, compound lens and their manufacturing method, cemented lens and its manufacturing method
JP2012242725A (en) * 2011-05-23 2012-12-10 Konica Minolta Advanced Layers Inc Method for manufacturing lens unit
WO2014092148A1 (en) * 2012-12-15 2014-06-19 コニカミノルタ株式会社 Method for manufacturing lens array structure, and lens array structure
JP2015219397A (en) * 2014-05-19 2015-12-07 コニカミノルタ株式会社 Lens array unit and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158200A (en) * 2006-12-22 2008-07-10 Sanyo Electric Co Ltd Optical lens, compound lens and their manufacturing method, cemented lens and its manufacturing method
JP2012242725A (en) * 2011-05-23 2012-12-10 Konica Minolta Advanced Layers Inc Method for manufacturing lens unit
WO2014092148A1 (en) * 2012-12-15 2014-06-19 コニカミノルタ株式会社 Method for manufacturing lens array structure, and lens array structure
JP2015219397A (en) * 2014-05-19 2015-12-07 コニカミノルタ株式会社 Lens array unit and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5852040B2 (en) Optical assembly
JP6051697B2 (en) Connector, manufacturing method thereof, and optical communication system
JP5117126B2 (en) Wafer scale method for manufacturing optical waveguide devices and waveguide devices manufactured thereby
US10379299B2 (en) Optical fiber array
JP2012078605A (en) Polarizing conversion element, polarizing conversion unit, projection device, and method for manufacturing polarizing conversion element
JP6574910B2 (en) Reflective aerial imaging element
JP5918938B2 (en) Lens array plate and erecting equal-magnification lens array plate manufacturing method
JP6299858B2 (en) Lens holding structure, lens holder, optical module, and lens holding method
JP2013216785A (en) Mounting structure for optical component, wavelength-selective device, and method for manufacturing mounting structure for optical device
JP2013101244A (en) Optical module
WO2016139718A1 (en) Display device and method for manufacturing display device
WO2019031563A1 (en) Method for manufacturing optical module
JP2012042585A (en) Manufacturing method of optical lens
JP4296147B2 (en) Optical semiconductor device and method of manufacturing optical semiconductor device
JP7124672B2 (en) Optical connection parts and optical connection structures
JP5282265B2 (en) Optical element manufacturing method
JP4443425B2 (en) Optical multilayer device
JP2008046271A (en) Method of manufacturing optical module and device of manufacturing optical module
TWI581031B (en) Wafer level lens system and method of fabricating the same
JP7244788B2 (en) Optical fiber connection structure
JP5520648B2 (en) Wafer lens module manufacturing method and lens module manufacturing method
CN110954976B (en) Wafer level homojunction optical structure and method of forming the same
JP6989266B2 (en) Wavelength selection element and manufacturing method of wavelength selection element
JP2007249130A (en) Flat-plate-like optical member, manufacturing method of optical device, and optical device
JP2018097230A (en) Method for manufacturing optical element and method for manufacturing reflective aerial imaging element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP