WO2019031276A1 - 発電システム及び発電システムの制御方法 - Google Patents
発電システム及び発電システムの制御方法 Download PDFInfo
- Publication number
- WO2019031276A1 WO2019031276A1 PCT/JP2018/028286 JP2018028286W WO2019031276A1 WO 2019031276 A1 WO2019031276 A1 WO 2019031276A1 JP 2018028286 W JP2018028286 W JP 2018028286W WO 2019031276 A1 WO2019031276 A1 WO 2019031276A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power generation
- inductance element
- current
- circuit
- current collection
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 290
- 238000000034 method Methods 0.000 title claims description 8
- 230000008878 coupling Effects 0.000 claims abstract description 20
- 238000010168 coupling process Methods 0.000 claims abstract description 20
- 238000005859 coupling reaction Methods 0.000 claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000013459 approach Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000001646 magnetic resonance method Methods 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
- H02J50/402—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S10/00—PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/32—Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0077—Plural converter units whose outputs are connected in series
Definitions
- the present invention relates to a power generation system, and more particularly to a solar power generation system and a control method thereof.
- the solar power generation system generally includes a plurality of solar cell modules, a wiring cable connecting them in series and in parallel, and a power conditioner for AC converting DC power generated by the solar cell modules.
- the power generation system described in Patent Document 1 includes a first power generation unit, a second power generation unit, and a combining unit.
- the first power generation unit and the second power generation unit each include an oscillator for converting DC energy output from the power generation device into high frequency energy, a power transmission antenna for transmitting high frequency energy output from the oscillator by magnetic resonance method, and a power receiving antenna ,including.
- the power receiving antenna transmits the high frequency energy transmitted from the power transmitting antenna to the combining unit.
- the phase difference between them is approximately 0.
- an oscillation phase control unit that performs phase control on the first power generation unit and the second power generation unit.
- phase control has been complicated. That is, in the above-described conventional configuration, since the lengths of the transmission lines from each power generation unit to the combining unit are different, it is necessary to individually set the control content by the oscillation phase control unit according to the length of each transmission line. . Therefore, it is necessary to prepare oscillation phase control units having different control contents according to the number of power generation units, and as a result, phase control becomes complicated.
- a power generation system includes: a first power generation element; a first alternating current generation circuit that converts a first direct current output from the first power generation element into a first alternating current;
- a first power generation module including a first module-side inductance element for generating a magnetic field from a first alternating current, a first phase information acquisition circuit, and a first control circuit, and the first module side
- a current collection closed circuit including a first current collection side inductance element for generating an induced electromotive force by electromagnetic coupling with an inductance element, wherein a reference alternating current flowing in the current collection closed circuit is the first current collection
- the first module side inductance element electromagnetically coupled to the first current collection side inductance element by flowing through the current side inductance element is the reference current in the first power generation module.
- An alternating current according to the current is generated, the first control circuit acquires phase information on the reference alternating current through the first phase information acquisition circuit, and the first control circuit generates the alternating current.
- a reference power generation element In the power generation system according to the above (1), a reference power generation element, a reference AC generation circuit that converts reference DC current output from the reference power generation element into AC current, and a module side that generates a magnetic field from the AC current
- a reference power generation module including a reference inductance element, wherein the current collection closed circuit generates an induced electromotive force and the reference alternating current in the current collection closed circuit by electromagnetic coupling with the module side reference inductance element. It may be configured to further include a current collection side reference inductance element.
- the power collection device further includes a second power generation module including a second module side inductance element generating a magnetic field from the second alternating current, a second phase information acquisition circuit, and a second control circuit.
- the closed circuit further includes a second current collection side inductance element generating an induced electromotive force by electromagnetic coupling with the second module side inductance element, and a reference AC wave generation source generating the reference alternating current.
- the second alternating current coupled with the second current collection side inductance element by the reference alternating current flowing in the current collection closed circuit flowing through the second current collection side inductance element The Joule side inductance element generates an alternating current corresponding to the reference alternating current in the second power generation module, and the second control circuit generates the reference alternating current via the second phase information acquisition circuit.
- the second control circuit may be configured to control the second AC generation circuit according to the phase information.
- the reference power generation module may further include a reference capacitive element that generates resonance with the module-side reference inductance element.
- the second power generation module may further include a second capacitive element that causes resonance with the second module-side inductance element.
- the first power generation module may further include a first capacitive element that generates resonance with the first module side inductance element.
- the first control circuit acquires frequency information on the reference alternating current through the first phase information acquisition circuit, and the first control circuit The capacitance value of the first capacitive element may be controlled according to the frequency information.
- the second control circuit acquires frequency information on the reference alternating current through the second phase information acquisition circuit, and the second control circuit The capacitance value of the second capacitive element may be controlled according to the frequency information.
- the first power generation module is connected in parallel to the first power generation element with the first AC generation circuit and the first phase.
- the information processing apparatus further includes a first switching element for switching to an information acquisition circuit, and when the first control circuit acquires the phase information, a connection destination of the first switching element is the first phase.
- the connection destination of the first switching element is the first AC generation It may be configured to switch to a circuit.
- the second power generation module is connected in parallel to the second power generation element with the second AC generation circuit and the second phase information acquisition circuit. And a second switching element for switching between the second and third phase information acquisition circuits when the second control circuit acquires the phase information. Switching, when the second control circuit controls the second AC generation circuit according to the phase information, switching the connection destination of the second switching element to the second AC generation circuit It may be
- the timing at which the first control circuit starts the mode for acquiring the phase information is the inductance value of the module side reference inductance element and the capacitance value of the reference capacitance element. It may be set using a comparison of the inductance value of the first module-side inductance element and the capacitance value of the first capacitive element.
- the timing at which the second control circuit starts the mode for acquiring the phase information is the period of the reference alternating current and the second module side inductance element. It is good also as composition set up using comparison with an inductance value and a cycle computed from a capacity value of the 2nd capacity element.
- the current collection side reference inductance element and the first current collection side inductance element are connected in series, and the current collection side reference inductance element and the first current A switching element may be disposed between the current collection side inductance element and the connection state of the current collection side reference inductance element and the first current collection side inductance element.
- the first current collection side inductance element and the second current collection side inductance element are connected in series, and the first current collection side inductance element A switching element may be disposed between the second current collection side inductance element and the connection state of the first current collection side inductance element and the second current collection side inductance element.
- the current collection closed circuit includes an induced electromotive force generated in the first current collection side inductance element and an induced electromotive force generated in the current collection side reference inductance element. , May be further included.
- the current collection closed circuit includes an induced electromotive force generated in the first current collection side inductance element and an induced electromotive force generated in the current collection side reference inductance element. , May be further included in a DC conversion circuit that converts DC into DC power.
- the current collection closed circuit includes an induced electromotive force generated in the first current collection side inductance element and an induced power generation in the second current collection side inductance element.
- An output terminal for outputting power may be further included.
- the current collection closed circuit includes an induced electromotive force generated in the first current collection side inductance element and an induced current generated in the second current collection side inductance element. It may be configured to further include a DC conversion circuit that converts power and DC power.
- the reference AC wave generation source is an induced electromotive force generated in at least one of the first current collection side inductance element and the second current collection side inductance element.
- the reference alternating current may be generated to be used.
- a control method of a power generation system includes a first power generation element, and a first AC generation circuit that converts a first DC current output from the first power generation element into a first AC current.
- a first power generation module including a first module side inductance element for generating a magnetic field from the first alternating current, a first phase information acquisition circuit, and a first control circuit;
- a control method of a power generation system including: a current collection closed circuit including a first current collection side inductance device for generating an induced electromotive force by electromagnetic coupling with the module side inductance device;
- the first module side inductance element electromagnetically coupled to the first current collection side inductance element by the flowing reference alternating current flowing through the first current collection side inductance element is Generating an alternating current according to the reference alternating current in a first power generation module, and the first control circuit acquiring phase information on the reference alternating current through the first phase information acquiring circuit And the first control circuit controlling the first alternating current generation circuit according to the phase information.
- FIG. 1 is a schematic circuit diagram showing a power generation system according to the present embodiment.
- FIG. 2 is a schematic diagram which shows the state which attached the closed circuit of the electric power generation system which concerns on this embodiment to the roof.
- FIG. 3 is a schematic circuit diagram showing a power generation system according to the present embodiment.
- FIG. 1 is a schematic circuit diagram showing a power generation system 100 according to the present embodiment.
- the power generation system 100 includes a power generation module group in which a reference power generation module 10, a first power generation module 20, a second power generation module 30, and the like are two-dimensionally arranged.
- the power generation system 100 includes a current collection closed circuit 40 that collects and outputs the power generated by the power generation module group.
- Each power generation module has a module side inductance element for generating a magnetic field from an alternating current
- the current collection closed circuit 40 includes a plurality of current collection side inductance elements arranged in proximity to the module side inductance element. Including.
- the reference power generation module 10 includes a reference power generation element 11, a reference AC generation circuit 12 for converting a reference DC current output from the reference power generation element 11 into a reference AC current, and a module side reference inductance element 13 for generating a magnetic field from the reference AC current. And.
- the reference AC generation circuit 12 is connected in parallel to the reference power generation element 11.
- the reference power generation element 11 is, for example, a photovoltaic power generation element, and a single crystal silicon solar cell, a polycrystalline silicon solar cell, a microcrystalline silicon solar cell, an amorphous silicon solar cell, or the like can be used.
- the reference power generation element 11 may be a photovoltaic power generation element using a compound semiconductor material such as gallium arsenide or CIS, or may be a photovoltaic power generation element using an organic material.
- the reference power generation element 11 may be a tandem solar power generation element in which various semiconductor materials are stacked.
- the reference AC generation circuit 12 includes, for example, a switching circuit, and switches the output direction of the reference DC current by the reference power generation element 11 at a predetermined frequency. By switching the output direction of the reference DC current by the reference AC generation circuit 12, the reference DC current is converted into an AC current.
- the first AC generation circuit 22 included in the first power generation module 20 and the second power generation module 30 are included according to the phase of the AC current generated by the reference AC generation circuit 12.
- the switching of the second alternating current generation circuit 32 is controlled.
- the module side reference inductance element 13 generates a magnetic field when the alternating current from the reference alternating current generation circuit 12 flows, and is electromagnetically coupled to the current collection side reference inductance element 41 of the current collection closed circuit 40.
- the reference power generation module 10 of the present embodiment further includes a reference capacitive element 14.
- the reference capacitive element 14 generates resonance with the first module side reference inductance element 13.
- the inductance value of the module-side reference inductance element 13 and the static capacitance of the reference capacitance element 14 have a frequency at which the reference AC generation circuit 12 described above switches the output direction of the reference DC power by the reference power generation element 11. It is set in advance according to the capacitance value. That is, at a frequency corresponding to a resonance frequency determined by the inductance value of the module side reference inductance element 13 and the capacitance value of the reference capacitance element 14, It is set in advance to switch the output direction.
- the first power generation module 20 has the same configuration as the above-described reference power generation module 10, and the first power generation element 21 and the first direct current output from the first power generation element 21 are output to the first power generation module 20.
- a side inductance element 23 and a first capacitive element 24 generating a resonance with the first module side inductance element 23 are included.
- the first power generation module 20 includes a first phase information acquisition circuit 25, a first control circuit 26, and a first switching element 27.
- the first control circuit 26 controls the switching operation of the first switching element 27, and the target connected in parallel to the first power generation element 21 is the first AC generation circuit 22 and the first phase information. Switching between the acquisition circuit 25 is performed. Specific operations of the first phase information acquisition circuit 25, the first control circuit 26, and the first switching element 27 will be described later.
- the second power generation module 30 has substantially the same configuration as the first power generation module 20 described above, and the second power generation element 31 and the second DC power output from the second power generation element 31 are output.
- a second AC generation circuit 32 for converting into a second AC power, and a second AC power generates a magnetic field when it flows, and a second electromagnetic coupling with a second current collection side inductance element 43 of the current collection closed circuit 40 And a second capacitive element 34 for generating a resonance together with the second module side inductance element 33.
- the second power generation module 30 includes a second phase information acquisition circuit 35, a second control circuit 36, and a second switching element 37.
- the second control circuit 36 controls the switching operation of the second switching element 37, and the target connected in parallel to the second power generation element 31 is the second AC generation circuit 32 and the second phase information. Switching between the acquisition circuit 35 is performed. The specific operations of the second phase information acquisition circuit 35, the second control circuit 36, and the second switching element 37 will be described later.
- the current collection closed circuit 40 includes a current collection side reference inductance element 41 that generates an induced electromotive force and a reference alternating current in the current collection closed circuit 40 by electromagnetic coupling with the module side reference inductance element 13. Further, the current collection closed circuit 40 includes a first current collection side inductance element 42 that generates an induced electromotive force by electromagnetic coupling with the first module side inductance element 23. Furthermore, the current collection closed circuit 40 includes a second current collection side inductance element 43 that generates an induced electromotive force by electromagnetic coupling with the second module side inductance element 33.
- the current collection side reference inductance element 41, the first current collection side inductance element 42, and the second current collection side inductance element 43 are connected in series in the current collection closed circuit 40, and The sum of the induced electromotive force generated in the charge-side reference inductance element 41, the induced electromotive force generated in the first current-collecting inductance element 42, and the induced electromotive force generated in the second current-collecting inductance element 43 is It is taken out from the output terminal 46 provided in the current collection closed circuit 40.
- the DC conversion circuit 47 is provided in the front stage of the output terminal 46, and DC power can be extracted from the output terminal 46.
- the current collection side reference inductance element 41 In the current collection closed circuit 40, the current collection side reference inductance element 41 generates a reference alternating current from the generated induced electromotive force.
- the reference alternating current circulates in the current collection closed circuit 40 and also flows to the first current collection side inductance element 42 and the second current collection side inductance element 43.
- a magnetic field corresponding to the phase and frequency of the reference alternating current is generated.
- the alternating current generated in the current collection side reference inductance element 41, the alternating current generated in the first current collection side inductance element 42, and the second current collection side inductance It is necessary to match the phase of the alternating current generated in the element 43.
- an alternating current generated in the collection side reference inductance element 41 using the phase information possessed by the reference alternating current generated by the collection side reference inductance element 41 from the induced electromotive force, the first current collection An operation example for matching the phase of the alternating current generated in the side inductance element 42 and the alternating current generated in the second current collection side inductance element 43 will be described below.
- the operation of the power generation system 100 includes an initial mode for generating a reference alternating current in the current collection closed circuit 40 and a first phase information acquisition circuit 25 included in the first power generation module 20 after this initial mode. It includes a passive operation mode to operate as an element and an active operation mode to operate the first control circuit 26 included in the first power generation module 20 as an active element.
- the reference AC generation circuit 12 included in the reference power generation module 10 switches the output direction of the reference DC current by the reference power generation element 11 at a predetermined frequency to convert it into AC current.
- the module side reference inductance element 13 generates a magnetic field from the alternating current generated by the reference alternating current generation circuit 12.
- the module side reference inductance element 13 and the current collection side reference inductance element 41 included in the current collection closed circuit 40 are electromagnetically coupled.
- the current collection side reference inductance element 41 generates an induced electromotive force.
- the current collection side reference inductance element 41 generates a reference alternating current as an induced current.
- the reference alternating current includes phase information and frequency information, and circulation of the reference alternating current in the current collection closed circuit 40 causes the first current collection side inductance element 42 included in the current collection closed circuit 40, and Also in the second current collection side inductance element 43, a magnetic field corresponding to the reference alternating current is generated.
- the first control circuit 26 switches the connection destination of the first switching element 27 from the first AC generation circuit 22 to the first phase information acquisition circuit 25, and the first phase information
- the acquisition circuit 25 is connected in parallel to the first power generation element 21 and the first module-side inductance element 23.
- the second control circuit 36 switches the connection destination of the second switching element 37 from the second AC generation circuit 32 to the second phase information acquisition circuit 35, and the second phase information acquisition circuit 35.
- the second power generation element 31 and the second module side inductance element 33 are connected in parallel.
- the reference alternating current flowing in the current collection closed circuit 40 flows through the first current collection side inductance element 42, whereby the first current collection side inductance element A first module-side inductance element 23 electromagnetically coupled to 42 generates an alternating current in the first power generation module 20 according to the reference alternating current.
- a second module side inductance element electromagnetically coupled to the second current collection side inductance element 43 when a reference alternating current flowing in the current collection closed circuit 40 flows through the second current collection side inductance element 43 In the second power generation module 30, an alternating current corresponding to the reference alternating current is generated.
- An alternating current corresponding to the reference alternating current is circulated in the first power generation module 20 and the second power generation module 30.
- the first phase information acquisition circuit 25 included in the first power generation module 20 and the second phase information acquisition circuit 35 included in the second power generation module 30 include, for example, an ammeter, a voltmeter, and the like.
- the first control circuit 26 acquires phase information by detecting a change in current value flowing to the first phase information acquisition circuit 25 or a change in voltage value caused by a change in current value.
- the second control circuit 36 acquires phase information by detecting a change in current value flowing to the second phase information acquisition circuit 35 or a change in voltage value caused by a change in current value.
- the first phase information acquisition circuit 25 and the second phase information acquisition circuit 35 respectively function as passive elements
- the first control circuit 26 is a first phase information acquisition circuit. 25.
- the mode for acquiring the phase information on the reference alternating current described above via 25 and the second control circuit 36 to acquire the phase information on the reference alternating current described above via the second phase information acquisition circuit 35 It has become.
- the first control circuit 26 acquires phase information on the reference alternating current via the first phase information acquisition circuit 25, and the second control circuit 36
- the configuration has been described by way of example in which the phase information on the reference alternating current is acquired via the second phase information acquisition circuit 35.
- the first control circuit 26 and the second control circuit 36 are not limited to the reference AC. Not only phase information on current but also frequency information on reference alternating current may be acquired.
- the switching timing from the initial mode to the passive operation mode described above is, for example, a predetermined period of the initial mode. Can be set when
- the inductance value of the module side reference inductance element 13 and the capacitance value of the reference capacitance element 14 and the first module side It can be set using a comparison of the inductance value of the inductance element 23 and the capacitance value of the first capacitance element 24.
- the product of the inductance value of the module-side reference inductance element 13 and the capacitance value of the reference capacitance element 14, the inductance value of the first module-side inductance element 23 and the capacitance value and product of the first capacitance element 24 When the difference between and is large, the difference between the period of the alternating current generated in the reference power generation module 10 and the period of the alternating current generated in the first power generation module 20 becomes large. Therefore, it is necessary to frequently switch to the passive operation mode to align the phase of the alternating current generated in the first power generation module 20 with the phase related to the reference alternating current. Therefore, when the above difference is large, the period until switching from the initial mode to the passive operation mode is set short, and when the difference is small, the period from switching from the initial mode to the passive operation mode is set long.
- the inductance value of the module side reference inductance element 13 and the capacitance value of the reference capacitance element 14 and the second module side inductance element It can be set using a comparison of the inductance value of 33 and the capacitance value of the second capacitive element 34. If the difference between the two is large, the period until switching from the initial mode to the passive operation mode is set short, and if the difference is small, the period from switching from the initial mode to the passive operation mode is set long.
- the passive operation mode when the first control circuit 26 acquires phase information on the reference alternating current via the first phase information acquisition circuit 25, the first control circuit 26 starts the active operation mode. Specifically, the first control circuit 26 switches the connection destination of the first switching element 27 from the first phase information acquisition circuit 25 to the first alternating current generation circuit 22, and the first alternating current generation circuit 22 The first power generation element 21 and the first module side inductance element 23 are connected in parallel.
- the first control circuit 26 acquires the switching operation of the first alternating current generation circuit 22 in the first power generation module 20, and the reference alternating current acquired via the first phase information acquisition circuit 25 in the passive operation mode. Control according to the phase information on
- the second control circuit 36 sets the active operation mode to Start. Specifically, the second control circuit 36 switches the connection destination of the second switching element 37 from the second phase information acquisition circuit 35 to the second AC generation circuit 32, and the second AC generation circuit 32 The second power generation element 31 and the second module side inductance element 33 are connected in parallel.
- the second control circuit 36 acquires the switching operation of the second AC generation circuit 32 in the second power generation module 30 in the passive operation mode, and acquires the reference AC current acquired via the second phase information acquisition circuit 35. Control according to the phase information on
- the power generation system 100 has the phase related to the reference AC current, the phase of the switching operation of the first AC generation circuit 22 included in the first power generation module 20, and the second The phase of the switching operation of the second AC generation circuit 32 included in the power generation module 30 can be synchronized. As a result, the power generation system 100 of the present embodiment can perform phase control of each power generation module by a simple method.
- the first control circuit 26 acquires not only phase information on the reference AC but also frequency information on the reference AC via the first phase information acquisition circuit 25, It is desirable to use a capacitive element of variable capacitance value as the first capacitive element 24.
- the inductance value of the module-side reference inductance element 13 and the capacitance value of the reference capacitive element 14 in the reference power generation module 10 and the first module in the first power generation module 20 due to the influence of temperature and the like. Even when there is a deviation between the inductance value of the side inductance element 23 and the capacitance value of the first capacitance element 24, the reference power generation is performed by adjusting the capacitance value of the first capacitance element 24.
- the resonance frequency in the module 10 close to the resonance frequency in the first power generation module 20. That is, the first control circuit 26 acquires frequency information on the reference alternating current from the first phase information acquisition circuit 25 and controls the capacitance value of the first capacitive element 24 accordingly. It is possible to make the resonance frequency in the reference power generation module 10 determined according to the product of the inductance value and the capacitance value close to the resonance frequency in the first power generation module 20.
- the second control circuit 36 acquires not only phase information on the reference AC but also frequency information on the reference AC via the second phase information acquisition circuit 35. It is desirable to use a capacitance element of variable capacitance value as the second capacitance element 34. With such a configuration, the inductance value of the module side reference inductance element 13 and the capacitance value of the reference capacitive element 14 in the reference power generation module 10 due to the influence of temperature etc., and the second module in the second power generation module 30 Even when there is a deviation between the inductance value of the side inductance element 33 and the capacitance value of the second capacitive element 34, the reference power generation is performed by adjusting the capacitance value of the second capacitive element 34.
- the second control circuit 36 acquires frequency information on the reference alternating current from the second phase information acquisition circuit 35, and controls the capacitance value of the second capacitive element 34 accordingly. It is possible to make the resonance frequency in the reference power generation module 10 determined according to the product of the inductance value and the capacitance value close to the resonance frequency in the second power generation module 30.
- the switching element 44 is connected between the current collection side reference inductance element 41 included in the current collection closed circuit 40 and the first current collection side inductance element 42.
- the switching element 45 is connected between the first current collection side inductance element 42 and the second current collection side inductance element 43.
- the switching element 44 switches the connection state between the current collection side reference inductance element 41 and the first current collection side inductance element 42, and the switching element 45 has a first current collection side inductance element 42 and a second current collection side. It is possible to switch the connection status with the power-side inductance element 43.
- the current collection closed circuit 40 is disposed on the roof 70 or on the indoor side of the roof as shown in FIG. Keep it.
- the first power generation module 20 is connected to the first power generation module 20 so that the module side reference inductance element 13 included in the reference power generation module 10 approaches the power collection side reference inductance element 41.
- the second module-side inductance element 33 included in the second power generation module 30 is in proximity to the second current-collecting inductance element 43 such that the first module-side inductance element 23 included is in proximity.
- the reference power generation module 10, the first power generation module 20, and the second power generation module 30 is connected to the first power generation module 20 so that the module side reference inductance element 13 included in the reference power generation module 10 approaches the power collection side reference inductance element 41.
- the second module-side inductance element 33 included in the second power generation module 30 is in proximity to the second current-collecting inductance element 43 such that the first module-side inductance element 23 included is in proximity.
- each of the module side inductance elements and the current collection side inductance elements can be electromagnetically coupled.
- it can suppress that the current collection closed circuit 40 degrades by setting it as the structure which arrange
- the module side reference inductance element 13 is connected to the back surface side of the reference power generation element 11 of the reference power generation module 10, and the back surface side of the reference power generation module 10 on which the module side reference inductance element 13 is disposed is , And disposed above the current collecting side reference inductance element 41.
- the first module side inductance element 23 is connected to the back surface side of the first power generation element 21 of the first power generation module 20, and the first module side inductance element 23 is disposed.
- the back side of the power generation module 20 is disposed above the first current collection side inductance element 42.
- a second module side inductance element 33 is connected to the back surface side of the second power generation element 31 of the second power generation module 30, and the second module side inductance element 33 is disposed.
- the back surface side of the power generation module 30 is disposed above the second current collection side inductance element 43.
- the current collection side reference inductance element 41, the first current collection side inductance element 42, and the second current collection side inductance element 43 provided in the current collection closed circuit 40 are respectively connected in series.
- the current collection side inductance elements may be connected in parallel.
- Each of the reference power generation module 10, the first power generation module 20, and the second power generation module 30 may be configured to include resistance components.
- FIG. 3 is a schematic circuit diagram showing a power generation system 100A according to the present embodiment.
- the power generation system 100A includes a power generation module group in which the first power generation module 20, the second power generation module 30, and the like are two-dimensionally arranged.
- the power generation system 100A also includes a current collection closed circuit 40A that collects and outputs the power generated by the power generation module group.
- Each power generation module has a module side inductance element for generating a magnetic field from an alternating current
- the current collection closed circuit 40A includes a plurality of current collection side inductance elements arranged to be close to the module side inductance element. Including.
- the first power generation module 20 includes a first power generation element 21, a first AC generation circuit 22 that converts the first DC power output from the first power generation element 21 into first AC power, and Together with the first module side inductance element 23 electromagnetically coupled to the first current collection side inductance element 42 of the current collection closed circuit 40A, and the first module side inductance element 23 And a first capacitive element 24 that generates resonance.
- the first power generation module 20 includes a first phase information acquisition circuit 25, a first control circuit 26, and a first switching element 27.
- the first control circuit 26 controls the switching operation of the first switching element 27, and the target connected in parallel to the first power generation element 21 is the first AC generation circuit 22 and the first phase information. Switching between the acquisition circuit 25 is performed. Specific operations of the first phase information acquisition circuit 25, the first control circuit 26, and the first switching element 27 will be described later.
- the second power generation module 30 includes a second power generation element 31, a second AC generation circuit 32 for converting the second DC power output from the second power generation element 31 into a second AC power, and a second power generation module. Together with a second module-side inductance element 33 electromagnetically coupled to the second current-collecting inductance element 43 of the current-collecting closed circuit 40A, and the second module-side inductance element 33. And a second capacitive element 34 that generates resonance.
- the second power generation module 30 includes a second phase information acquisition circuit 35, a second control circuit 36, and a second switching element 37.
- the second control circuit 36 controls the switching operation of the second switching element 37, and the target connected in parallel to the second power generation element 31 is the second AC generation circuit 32 and the second phase information. Switching between the acquisition circuit 35 is performed. The specific operations of the second phase information acquisition circuit 35, the second control circuit 36, and the second switching element 37 will be described later.
- the current collection closed circuit 40A includes a first current collection side inductance element 42 that generates an induced electromotive force by electromagnetic coupling with the first module side inductance element 23. Furthermore, the current collection closed circuit 40A includes a second current collection side inductance element 43 that generates an induced electromotive force by electromagnetic coupling with the second module side inductance element 33.
- the first current collection side inductance element 42 and the second current collection side inductance element 43 are connected in series in the current collection closed circuit 40A, and the first current collection side inductance element 42
- the sum of the induced electromotive force generated in the second current-collecting inductance element 43 and the like is extracted from the output terminal 46 provided in the current collection closed circuit 40A.
- the DC conversion circuit 47 is provided in the front stage of the output terminal 46, and DC power can be extracted from the output terminal 46.
- the current collection closed circuit 40A is a switching element By switching the 49 connection destinations, a configuration may be adopted in which the reference AC wave generation source 48 described later is not included in the current collection closed circuit 40A.
- FIG. 3 does not show a control circuit for controlling the switching operation of the switching element 49, the current collection closed circuit 40A may have a separate control circuit for controlling the switching operation of the switching element 49. .
- the current collection closed circuit 40A includes the reference AC wave generation source 48.
- the reference AC wave generation source 48 can be realized including, for example, a switching element.
- the alternating current generated by the reference alternating wave generator 48 is a reference alternating current.
- the reference AC wave generation source 48 switches the connection destination of the switching element 49 to make the reference AC wave generation source 48 in the current collection closed circuit 40A. Shall be included in
- the reference AC wave generation source 48 generates a reference AC current using an induced electromotive force generated in the first current collection side inductance element 42 and the second current collection side inductance element 43.
- electromagnetic induction between the first current collection side inductance element 42 and the first module side inductance element 23 causes an induction in the first current collection side inductance element 42.
- Power is generated.
- induced electromotive force is generated in the second current-collecting inductance element 43 by electromagnetic coupling between the second current-collecting inductance element 43 and the second module-side inductance element 33.
- the reference AC wave generation source 48 performs switching operation using at least one of the dielectric electromotive force generated in the first current collection side inductance element 42 and the dielectric electromotive force generated in the second current collection side inductance element 43. By doing, a reference alternating current is generated.
- the reference alternating current generated by the reference AC wave generation source 48 circulates in the current collection closed circuit 40A, and also flows to the first current collection side inductance element 42 and the second current collection side inductance element 43. With the circulation of the reference alternating current, a magnetic field corresponding to the phase and frequency of the reference alternating current is generated in the first current collection side inductance element 42 and the second current collection side inductance element 43.
- the alternating current generated in the first current collection side inductance device 42 and the second current collection side inductance device using the phase information possessed by the reference alternating current generated by the reference alternating current wave generation source 48 An operation example of matching the phase of the alternating current generated at 43 will be described below.
- the operation of the power generation system 100A includes an initial mode in which the reference AC wave generation source 48 generates a reference AC current in the current collection closed circuit 40A, and a first power generation module 20 included in the first power generation module 20 after the initial mode.
- a passive operation mode in which the phase information acquisition circuit 25 and the second phase information acquisition circuit 35 included in the second power generation module 30 are operated as passive elements, and the first control included in the first power generation module 20
- the circuit 26 includes an active operation mode for operating the second control circuit 36 included in the second power generation module 30 as an active element.
- the first AC generation circuit 22 included in the first power generation module 20 switches the output direction of the first DC current by the first power generation element 21 at a predetermined frequency, Convert to alternating current.
- the first module side inductance element 23 generates a magnetic field from the alternating current generated by the first alternating current generating circuit 22.
- the first module side inductance element 23 and the first current collection side inductance element 42 included in the current collection closed circuit 40A are electromagnetically coupled. By this electromagnetic coupling, the first current collection side inductance element 42 generates an induced electromotive force.
- the second AC generation circuit 32 included in the second power generation module 30 switches the output direction of the second DC current by the second power generation element 31 at a predetermined frequency to convert it into an AC current.
- the second module side inductance element 33 generates a magnetic field from the alternating current generated by the second alternating current generating circuit 32.
- the second module side inductance element 33 and the second current collection side inductance element 43 included in the current collection closed circuit 40A are electromagnetically coupled. By this electromagnetic coupling, the second current collection side inductance element 43 generates an induced electromotive force.
- the switching element 49 is connected to the reference AC wave generation source 48, and the reference AC wave generation source 48 is included in the current collection closed circuit 40A.
- An alternating current is generated in the current collection closed circuit 40A from the induced electromotive force generated in the first current collection side inductance element 42 and the second current collection side inductance element 43.
- the reference AC wave generation source 48 generates a reference AC current by the switching operation on this AC current. That is, the reference AC wave generation source 48 generates a reference AC current using the induced electromotive force generated in the first current collection side inductance element 42 and the second current collection side inductance element 43.
- both of the first power generation module 20 and the second power generation module 30 are activated, and both of the first current collection side inductance element 42 and the second current collection side inductance element 43
- the configuration has been described by way of example in which an induced electromotive force is generated, and the reference AC wave generation source 48 generates a reference alternating current using these induced electromotive forces.
- the configuration is such that the reference AC wave generation source 48 generates the reference AC current by activating at least one of the power generation modules and using the induced electromotive force generated in at least one of the current collection side inductance elements. It is also good.
- the reference AC wave generation source 48 may be generated from the current source by separately providing a current source in the current collection closed circuit 40A.
- the reference alternating current may be generated by performing a switching operation on the generated current.
- an induced electromotive force generated in at least one of the first current collection side inductance element 42 and the second current collection side inductance element 43 It is not necessary to provide another current source etc. in the current collection closed circuit 40A, and it is desirable in circuit design.
- using energy generated by the first power generation module 20 or the second power generation module 30 to generate the reference alternating current makes effective use of the generated energy, thereby preventing global environment protection. It is also desirable from the viewpoint.
- the reference AC current generated by the reference AC wave generation source 48 includes phase information and frequency information, and is included in the current collection closed circuit 40A by the circulation of the reference current alternating current in the current collection closed circuit 40A. Also in the first current collection side inductance element 42 and the second current collection side inductance element 43, a magnetic field corresponding to the reference alternating current is generated.
- the first control circuit 26 switches the connection destination of the first switching element 27 from the first AC generation circuit 22 to the first phase information acquisition circuit 25, and the first phase information
- the acquisition circuit 25 is connected in parallel to the first power generation element 21 and the first module-side inductance element 23.
- the second control circuit 36 switches the connection destination of the second switching element 37 from the second AC generation circuit 32 to the second phase information acquisition circuit 35, and the second phase information acquisition circuit 35.
- the second power generation element 31 and the second module side inductance element 33 are connected in parallel.
- the reference alternating current flowing in the current collection closed circuit 40A flows through the first current collection side inductance element 42, whereby the first current collection side inductance element A first module-side inductance element 23 electromagnetically coupled to 42 generates an alternating current in the first power generation module 20 according to the reference alternating current.
- An alternating current corresponding to the reference alternating current is circulated in the first power generation module 20 and the second power generation module 30, respectively.
- the first phase information acquisition circuit 25 included in the first power generation module 20 and the second phase information acquisition circuit 35 included in the second power generation module 30 include, for example, an ammeter, a voltmeter, and the like.
- the first control circuit 26 acquires phase information by detecting a change in current value flowing to the first phase information acquisition circuit 25 or a change in voltage value caused by a change in current value.
- the second control circuit 36 acquires phase information by detecting a change in current value flowing to the second phase information acquisition circuit 35 or a change in voltage value caused by a change in current value.
- the first phase information acquisition circuit 25 and the second phase information acquisition circuit 35 respectively function as passive elements
- the first control circuit 26 is a first phase information acquisition circuit. 25.
- the mode for acquiring the phase information on the reference alternating current described above via 25 and the second control circuit 36 to acquire the phase information on the reference alternating current described above via the second phase information acquisition circuit 35 It has become.
- the first control circuit 26 acquires phase information on the reference alternating current via the first phase information acquisition circuit 25, and the second control circuit 36
- the configuration has been described by way of example in which the phase information on the reference alternating current is acquired via the second phase information acquisition circuit 35.
- the first control circuit 26 and the second control circuit 36 are not limited to the reference AC. Not only phase information on current but also frequency information on reference alternating current may be acquired.
- the switching timing from the initial mode to the passive operation mode described above is, for example, a predetermined period of the initial mode. Can be set when
- the period of the reference alternating current generated by the reference AC wave generation source 48 and the first module side inductance element 23 It can be set using a comparison of the inductance value and the period calculated from the capacitance value of the first capacitive element 24. For example, if the difference between the period of the reference alternating current and the period calculated from the inductance value of the first module-side inductance element 23 and the capacitance value of the first capacitance element 24 is large, the passive operation mode is frequently performed. It is necessary to switch to match the phase of the reference alternating current with the phase of the alternating current generated in the first power generation module 20. Therefore, when the above difference is large, the period until switching from the initial mode to the passive operation mode is set short, and when the difference is small, the period from switching from the initial mode to the passive operation mode is set long.
- the period of the reference AC generated by the reference AC wave generation source 48 and the inductance of the second module-side inductance element 33 It can be set using a comparison of the value and the period calculated from the capacitance value of the second capacitive element 34. If the difference between the two is large, the period until switching from the initial mode to the passive operation mode is set short, and if the difference is small, the period from switching from the initial mode to the passive operation mode is set long.
- the passive operation mode when the first control circuit 26 acquires phase information on the reference alternating current via the first phase information acquisition circuit 25, the first control circuit 26 starts the active operation mode. Specifically, the first control circuit 26 switches the connection destination of the first switching element 27 from the first phase information acquisition circuit 25 to the first alternating current generation circuit 22, and the first alternating current generation circuit 22 The first power generation element 21 and the first module side inductance element 23 are connected in parallel.
- the first control circuit 26 acquires the switching operation of the first alternating current generation circuit 22 in the first power generation module 20, and the reference alternating current acquired via the first phase information acquisition circuit 25 in the passive operation mode. Control according to the phase information on
- the second control circuit 36 sets the active operation mode to Start. Specifically, the second control circuit 36 switches the connection destination of the second switching element 37 from the second phase information acquisition circuit 35 to the second AC generation circuit 32, and the second AC generation circuit 32 The second power generation element 31 and the second module side inductance element 33 are connected in parallel.
- the second control circuit 36 acquires the switching operation of the second AC generation circuit 32 in the second power generation module 30 in the passive operation mode, and acquires the reference AC current acquired via the second phase information acquisition circuit 35. Control according to the phase information on
- the power generation system 100A has the phase of the switching operation of the first AC generation circuit 22 included in the first power generation module 20 and the phase of the reference AC current according to the configuration and the operation described above.
- the phase of the switching operation of the second alternating current generation circuit 32 included in the power generation module 30 can be synchronized.
- the power generation system 100A of this embodiment can perform phase control of each power generation module by a simple method.
- the first control circuit 26 acquires not only phase information on the reference AC but also frequency information on the reference AC via the first phase information acquisition circuit 25, It is desirable to use a capacitive element of variable capacitance value as the first capacitive element 24.
- the inductance value of the first module-side inductance element 23 and the capacitance value of the first capacitance element 24 in the first power generation module 20 are different from the desired values due to the influence of temperature and the like. Even in the case where a shift has occurred, it is possible to make the resonance frequency in the first power generation module 20 approach the frequency of the reference alternating current by adjusting the capacitance value of the first capacitive element 24 .
- the first control circuit 26 acquires frequency information on the reference alternating current from the first phase information acquisition circuit 25 and controls the capacitance value of the first capacitive element 24 accordingly. It is possible to make the resonance frequency in the first power generation module 20 determined according to the product of the inductance value and the capacitance value approach the frequency of the reference AC current.
- the second control circuit 36 acquires not only phase information on the reference AC but also frequency information on the reference AC via the second phase information acquisition circuit 35. It is desirable to use a capacitance element of variable capacitance value as the second capacitance element 34. With such a configuration, the inductance value of the second module-side inductance element 33 and the capacitance value of the second capacitance element 34 in the second power generation module 30 are different from the desired values due to the influence of temperature and the like. Even when there is a gap, the resonance frequency of the second power generation module 30 can be made closer to the frequency of the reference AC current by adjusting the capacitance value of the second capacitance element 34. .
- the second control circuit 36 acquires frequency information on the reference alternating current from the second phase information acquisition circuit 35, and controls the capacitance value of the second capacitive element 34 accordingly. It is possible to make the resonance frequency in the second power generation module 30 determined according to the product of the inductance value and the capacitance value approach the frequency of the reference AC current.
- a switching element is provided between the first current collection side inductance element 42 and the second current collection side inductance element 43 included in the current collection closed circuit 40A. It is desirable to connect 45.
- the switching element 45 can switch the connection state between the first current collection side inductance element 42 and the second current collection side inductance element 43.
- a configuration in which the first current collection side inductance device 42 and the second current collection side inductance device 43 provided in the current collection closed circuit 40A are respectively connected in series is taken as an example. Although it has been described, the current collecting side inductance elements may be connected in parallel.
- Each of the first power generation module 20 and the second power generation module 30 may be configured to include resistance components.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Inverter Devices (AREA)
- Control Of Eletrric Generators (AREA)
- Control Of Electrical Variables (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本開示の発電システムは、発電素子と、発電素子が出力した直流電流を交流電流に変換する交流生成回路と、交流電流から磁界を発生させるモジュール側インダクタンス素子と、位相情報取得回路と、制御回路と、を含む発電モジュールと、モジュール側インダクタンス素子との電磁結合により誘導起電力を発生させる集電側インダクタンス素子を含む集電閉回路と、を含み、集電閉回路内を流れる基準交流電流が、集電側インダクタンス素子を流れることにより、集電側インダクタンス素子と電磁結合されたモジュール側インダクタンス素子が、基準交流電流に応じた交流電流を発生させ、制御回路が、位相情報取得回路を介して基準交流電流に関する位相情報を取得し、位相情報に応じて交流生成回路を制御する。
Description
本発明は、発電システム、特に太陽光発電システム及びその制御方法に関する。
太陽光発電システムは、一般に複数の太陽電池モジュールと、それらを直並列に接続する配線ケーブルと、太陽電池モジュールによって発電された直流電力を交流変換するパワーコンディショナー等から構成されている。近年、太陽電池の発電コストが化石エネルギーによる発電コストに近づくのに従い、一般住宅や大型ビル等の建築物への太陽光発電システムの設置が一般的になりつつある。同時に太陽電池モジュールに対する要求仕様も厳しくなり、30年を超える設計寿命が求められている。
この点、特許文献1に記載の発電システムは、第1の発電ユニットと、第2の発電ユニットと、合成部とを備えている。第1の発電ユニット、第2の発電ユニットは、発電デバイスから出力された直流エネルギーを高周波エネルギーに変換する発振器と、発振器から出力された高周波エネルギーを磁気共振方式により伝送する送電アンテナ、受電アンテナと、を含む。受電アンテナは、送電アンテナから伝送された高周波エネルギーを、合成部へと送出する。さらに、下記特許文献1に記載の発電システムは、第1の発電ユニットの高周波出力と、第2の発電ユニットの高周波出力とが合成される際に、それらの位相差が略0になるように、第1の発電ユニットと第2の発電ユニットに対して位相制御を行う発振位相制御部を備えている。
しかし、従来の発電システムにおいては、位相制御が複雑になっていた。即ち、上記従来の構成においては、各発電ユニットから合成部までの伝送線路の長さが異なるため、各伝送線路の長さに応じて発振位相制御部による制御内容を個別に設定する必要がある。そのため、発電ユニットの数に応じて制御内容の異なる発振位相制御部を準備する必要があり、その結果として位相制御が複雑となっていた。
本開示は、上記課題に鑑みてなされたものであり、その目的は、位相制御をより簡便に行うことができる構成を実現させることである。
(1)本開示に係る発電システムは、第1の発電素子と、前記第1の発電素子が出力した第1の直流電流を第1の交流電流に変換する第1の交流生成回路と、前記第1の交流電流から磁界を発生させる第1のモジュール側インダクタンス素子と、第1の位相情報取得回路と、第1の制御回路と、を含む第1の発電モジュールと、前記第1のモジュール側インダクタンス素子との電磁結合により誘導起電力を発生させる第1の集電側インダクタンス素子を含む集電閉回路と、を含み、前記集電閉回路内を流れる基準交流電流が、前記第1の集電側インダクタンス素子を流れることにより、前記第1の集電側インダクタンス素子と電磁結合された前記第1のモジュール側インダクタンス素子が、前記第1の発電モジュール内において前記基準交流電流に応じた交流電流を発生させ、前記第1の制御回路が、前記第1の位相情報取得回路を介して前記基準交流電流に関する位相情報を取得し、前記第1の制御回路が、前記位相情報に応じて前記第1の交流生成回路を制御する構成としている。
(2)上記(1)における発電システムにおいて、基準発電素子と、前記基準発電素子が出力した基準直流電流を、交流電流に変換する基準交流生成回路と、前記交流電流から磁界を発生させるモジュール側基準インダクタンス素子と、を含む基準発電モジュールを更に含み、前記集電閉回路が、前記モジュール側基準インダクタンス素子との電磁結合により誘導起電力と前記基準交流電流とを前記集電閉回路内において発生させる集電側基準インダクタンス素子を更に含む構成としてもよい。
(3)上記(1)における発電システムにおいて、第2の発電素子と、前記第2の発電素子が出力した第2の直流電流を第2の交流電流に変換する第2の交流生成回路と、前記第2の交流電流から磁界を発生させる第2のモジュール側インダクタンス素子と、第2の位相情報取得回路と、第2の制御回路と、を含む第2の発電モジュールを更に含み、前記集電閉回路が、前記第2のモジュール側インダクタンス素子との電磁結合により誘導起電力を発生させる第2の集電側インダクタンス素子と、前記基準交流電流を発生させる基準交流波発生源と、を更に含み、前記集電閉回路内を流れる前記基準交流電流が、前記第2の集電側インダクタンス素子を流れることにより、前記第2の集電側インダクタンス素子と電磁結合された前記第2のモジュール側インダクタンス素子が、前記第2の発電モジュール内において前記基準交流電流に応じた交流電流を発生させ、前記第2の制御回路が、前記第2の位相情報取得回路を介して前記基準交流電流に関する位相情報を取得し、前記第2の制御回路が、前記位相情報に応じて前記第2の交流生成回路を制御する構成としてもよい。
(4)上記(2)における発電システムにおいて、前記基準発電モジュールは、前記モジュール側基準インダクタンス素子と共に共振を発生させる基準容量素子を更に含む構成としてもよい。
(5)上記(3)における発電システムにおいて、前記第2の発電モジュールは、前記第2のモジュール側インダクタンス素子と共に共振を発生させる第2の容量素子を更に含む構成としてもよい。
(6)上記(1)~(5)における発電システムにおいて、前記第1の発電モジュールは、前記第1のモジュール側インダクタンス素子と共に共振を発生させる第1の容量素子を更に含む構成としてもよい。
(7)上記(6)における発電システムにおいて、前記第1の制御回路が、前記第1の位相情報取得回路を介して前記基準交流電流に関する周波数情報を取得し、前記第1の制御回路が、前記周波数情報に応じて前記第1の容量素子の容量値を制御する構成としてもよい。
(8)上記(5)における発電システムにおいて、前記第2の制御回路が、前記第2の位相情報取得回路を介して前記基準交流電流に関する周波数情報を取得し、前記第2の制御回路が、前記周波数情報に応じて前記第2の容量素子の容量値を制御する構成としてもよい。
(9)上記(1)~(8)における発電システムにおいて、前記第1の発電モジュールが、前記第1の発電素子に並列接続される対象を前記第1の交流生成回路と前記第1の位相情報取得回路との間で切り替える第1のスイッチング素子を更に備え、前記第1の制御回路が、前記位相情報を取得する際には、前記第1のスイッチング素子の接続先を前記第1の位相情報取得回路に切り替え、前記第1の制御回路が、前記位相情報に応じて前記第1の交流生成回路を制御する際には、前記第1のスイッチング素子の接続先を前記第1の交流生成回路に切り替える構成としてもよい。
(10)上記(3)における発電システムにおいて、前記第2の発電モジュールが、前記第2の発電素子に並列接続される対象を前記第2の交流生成回路と前記第2の位相情報取得回路との間で切り替える第2のスイッチング素子を更に備え、前記第2の制御回路が、前記位相情報を取得する際には、前記第2のスイッチング素子の接続先を前記第2の位相情報取得回路に切り替え、前記第2の制御回路が、前記位相情報に応じて前記第2の交流生成回路を制御する際には、前記第2のスイッチング素子の接続先を前記第2の交流生成回路に切り替える構成としてもよい。
(11)上記(6)における発電システムにおいて、前記第1の制御回路が、前記位相情報を取得するモードを開始するタイミングは、前記モジュール側基準インダクタンス素子のインダクタンス値及び前記基準容量素子の容量値と、前記第1のモジュール側インダクタンス素子のインダクタンス値及び前記第1の容量素子の容量値と、の比較を用いて設定される構成としてもよい。
(12)上記(5)における発電システムにおいて、前記第2の制御回路が、前記位相情報を取得するモードを開始するタイミングは、前記基準交流電流の周期と、前記第2のモジュール側インダクタンス素子のインダクタンス値及び前記第2の容量素子の容量値から算出される周期と、の比較を用いて設定される構成としてもよい。
(13)上記(2)における発電システムにおいて、前記集電側基準インダクタンス素子と前記第1の集電側インダクタンス素子とは直列に接続されており、前記集電側基準インダクタンス素子と前記第1の集電側インダクタンス素子との間には、前記集電側基準インダクタンス素子と前記第1の集電側インダクタンス素子との接続状況を切り替えるスイッチング素子が配置された構成としてもよい。
(14)上記(3)における発電システムにおいて、前記第1の集電側インダクタンス素子と前記第2の集電側インダクタンス素子とは直列に接続されており、前記第1の集電側インダクタンス素子と前記第2の集電側インダクタンス素子との間には、前記第1の集電側インダクタンス素子と前記第2の集電側インダクタンス素子との接続状況を切り替えるスイッチング素子が配置された構成としてもよい。
(15)上記(2)における発電システムにおいて、前記集電閉回路は、前記第1の集電側インダクタンス素子において発生した誘導起電力と、前記集電側基準インダクタンス素子において発生した誘導起電力と、を出力する出力端子を更に含む構成としてもよい。
(16)上記(15)における発電システムにおいて、前記集電閉回路は、前記第1の集電側インダクタンス素子において発生した誘導起電力と、前記集電側基準インダクタンス素子において発生した誘導起電力と、を直流電力に変換する直流変換回路を更に含む構成としてもよい。
(17)上記(3)における発電システムにおいて、前記集電閉回路は、前記第1の集電側インダクタンス素子において発生した誘導起電力と、前記第2の集電側インダクタンス素子において発生した誘導起電力と、を出力する出力端子を更に含む構成としてもよい。
(18)上記(17)における発電システムにおいて、前記集電閉回路は、前記第1の集電側インダクタンス素子において発生した誘導起電力と、前記第2の集電側インダクタンス素子において発生した誘導起電力と、を直流電力に変換する直流変換回路を更に含む構成としてもよい。
(19)上記(3)における発電システムにおいて、前記基準交流波発生源は、前記第1の集電側インダクタンス素子、及び前記第2の集電側インダクタンス素子の少なくとも一方において発生した誘導起電力を用いて前記基準交流電流を発生させる構成としてもよい。
(20)本開示に係る発電システムの制御方法は、第1の発電素子と、前記第1の発電素子が出力した第1の直流電流を第1の交流電流に変換する第1の交流生成回路と、前記第1の交流電流から磁界を発生させる第1のモジュール側インダクタンス素子と、第1の位相情報取得回路と、第1の制御回路と、を含む第1の発電モジュールと、前記第1のモジュール側インダクタンス素子との電磁結合により誘導起電力を発生させる第1の集電側インダクタンス素子を含む集電閉回路と、を含む発電システムの制御方法であって、前記集電閉回路内を流れる基準交流電流が、前記第1の集電側インダクタンス素子を流れることにより、前記第1の集電側インダクタンス素子と電磁結合された前記第1のモジュール側インダクタンス素子が、前記第1の発電モジュール内において前記基準交流電流に応じた交流電流を発生させるステップと、前記第1の制御回路が、前記第1の位相情報取得回路を介して前記基準交流電流に関する位相情報を取得するステップと、前記第1の制御回路が、前記位相情報に応じて前記第1の交流生成回路を制御するステップと、を含む。
[第1の実施形態]
本開示の第1の実施形態について、図面を用いて以下に説明する。
本開示の第1の実施形態について、図面を用いて以下に説明する。
[発電システム100]
図1は、本実施形態に係る発電システム100を示す模式的な回路図である。
図1は、本実施形態に係る発電システム100を示す模式的な回路図である。
図1に示すように、発電システム100は、基準発電モジュール10、第1の発電モジュール20、及び第2の発電モジュール30等が2次元的に配置されてなる発電モジュール群を含む。また、発電システム100は、この発電モジュール群が生み出した電力を集め出力する集電閉回路40を含む。
各発電モジュールはそれぞれ交流電流から磁界を発生させるモジュール側インダクタンス素子を有しており、集電閉回路40は、このモジュール側インダクタンス素子に近接するように配置された複数の集電側インダクタンス素子を含む。
[基準発電モジュール10]
基準発電モジュール10は、基準発電素子11と、基準発電素子11が出力した基準直流電流を基準交流電流に変換する基準交流生成回路12と、基準交流電流から磁界を発生させるモジュール側基準インダクタンス素子13と、を含む。基準交流生成回路12は、基準発電素子11に対して並列に接続されている。
基準発電モジュール10は、基準発電素子11と、基準発電素子11が出力した基準直流電流を基準交流電流に変換する基準交流生成回路12と、基準交流電流から磁界を発生させるモジュール側基準インダクタンス素子13と、を含む。基準交流生成回路12は、基準発電素子11に対して並列に接続されている。
基準発電素子11は、例えば、太陽光発電素子であり、単結晶シリコン太陽電池、多結晶シリコン太陽電池、微結晶シリコン太陽電池、アモルファスシリコン太陽電池等を用いることができる。その他、基準発電素子11は、ガリウムヒ素、CISなどの化合物半導体材料を用いた太陽光発電素子であってもよく、有機材料を用いた太陽光発電素子であってもよい。また、基準発電素子11は、各種半導体材料を積層したタンデム型の太陽光発電素子であってもよい。
基準交流生成回路12は、例えばスイッチング回路を含んでおり、基準発電素子11による基準直流電流の出力方向を所定の周波数で切り替える。この基準交流生成回路12による基準直流電流の出力方向の切り替えにより、基準直流電流が交流電流に変換される。
本実施形態においては、この基準交流生成回路12により生成された交流電流が有する位相に応じて、第1の発電モジュール20に含まれる第1の交流生成回路22、第2の発電モジュール30に含まれる第2の交流生成回路32のスイッチングが制御される。
モジュール側基準インダクタンス素子13は、基準交流生成回路12からの交流電流が流れると磁界を発生させ、集電閉回路40の集電側基準インダクタンス素子41と電磁結合する。
本実施形態の基準発電モジュール10は、更に基準容量素子14を含む。基準容量素子14は、第1のモジュール側基準インダクタンス素子13とともに共振を発生させる。
本実施形態においては、上述した基準交流生成回路12が、基準発電素子11による基準直流電力の出力方向を切り替える周波数を、モジュール側基準インダクタンス素子13が有するインダクタンス値、及び基準容量素子14が有する静電容量値に応じて予め設定しておく。即ち、モジュール側基準インダクタンス素子13が有するインダクタンス値、及び基準容量素子14が有する静電容量値によって定まる共振周波数に対応する周波数で、基準交流生成回路12が、基準発電素子11による基準直流電流の出力方向を切り替えるよう予め設定しておく。
[第1の発電モジュール20]
第1の発電モジュール20は、上述した基準発電モジュール10と共通の構成を有しており、第1の発電素子21と、第1の発電素子21が出力した第1の直流電流を第1の交流電流に変換する第1の交流生成回路22と、第1の交流電流が流れると磁界を発生させ、集電閉回路40の第1の集電側インダクタンス素子42と電磁結合する第1のモジュール側インダクタンス素子23と、第1のモジュール側インダクタンス素子23とともに共振を発生させる第1の容量素子24と、を含む。
第1の発電モジュール20は、上述した基準発電モジュール10と共通の構成を有しており、第1の発電素子21と、第1の発電素子21が出力した第1の直流電流を第1の交流電流に変換する第1の交流生成回路22と、第1の交流電流が流れると磁界を発生させ、集電閉回路40の第1の集電側インダクタンス素子42と電磁結合する第1のモジュール側インダクタンス素子23と、第1のモジュール側インダクタンス素子23とともに共振を発生させる第1の容量素子24と、を含む。
更に、第1の発電モジュール20は、上記構成に加えて、第1の位相情報取得回路25、第1の制御回路26、及び第1のスイッチング素子27を有している。第1の制御回路26は、第1のスイッチング素子27の切り替え動作を制御しており、第1の発電素子21に並列接続される対象を、第1の交流生成回路22と第1の位相情報取得回路25との間で切り替えている。これら第1の位相情報取得回路25、第1の制御回路26、及び第1のスイッチング素子27の具体的な動作については後述する。
[第2の発電モジュール30]
第2の発電モジュール30は、上述した第1の発電モジュール20と略同様の構成を有しており、第2の発電素子31と、第2の発電素子31が出力した第2の直流電力を第2の交流電力に変換する第2の交流生成回路32と、第2の交流電力が流れると磁界を発生させ、集電閉回路40の第2の集電側インダクタンス素子43と電磁結合する第2のモジュール側インダクタンス素子33と、第2のモジュール側インダクタンス素子33とともに共振を発生させる第2の容量素子34と、を含む。
第2の発電モジュール30は、上述した第1の発電モジュール20と略同様の構成を有しており、第2の発電素子31と、第2の発電素子31が出力した第2の直流電力を第2の交流電力に変換する第2の交流生成回路32と、第2の交流電力が流れると磁界を発生させ、集電閉回路40の第2の集電側インダクタンス素子43と電磁結合する第2のモジュール側インダクタンス素子33と、第2のモジュール側インダクタンス素子33とともに共振を発生させる第2の容量素子34と、を含む。
また、第2の発電モジュール30は、上記構成に加えて、第2の位相情報取得回路35、第2の制御回路36、及び第2のスイッチング素子37を有している。第2の制御回路36は、第2のスイッチング素子37の切り替え動作を制御しており、第2の発電素子31に並列接続される対象を、第2の交流生成回路32と第2の位相情報取得回路35との間で切り替えている。これら第2の位相情報取得回路35、第2の制御回路36、及び第2のスイッチング素子37の具体的な動作については後述する。
[集電閉回路40]
集電閉回路40は、モジュール側基準インダクタンス素子13との電磁結合により、誘導起電力と基準交流電流とを集電閉回路40内において発生させる集電側基準インダクタンス素子41を含む。また、集電閉回路40は、第1のモジュール側インダクタンス素子23との電磁結合により、誘導起電力を発生させる第1の集電側インダクタンス素子42を含む。更に、集電閉回路40は、第2のモジュール側インダクタンス素子33との電磁結合により、誘導起電力を発生させる第2の集電側インダクタンス素子43を含む。
集電閉回路40は、モジュール側基準インダクタンス素子13との電磁結合により、誘導起電力と基準交流電流とを集電閉回路40内において発生させる集電側基準インダクタンス素子41を含む。また、集電閉回路40は、第1のモジュール側インダクタンス素子23との電磁結合により、誘導起電力を発生させる第1の集電側インダクタンス素子42を含む。更に、集電閉回路40は、第2のモジュール側インダクタンス素子33との電磁結合により、誘導起電力を発生させる第2の集電側インダクタンス素子43を含む。
本実施形態において、集電側基準インダクタンス素子41、第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43は、集電閉回路40内において直列に接続されており、集電側基準インダクタンス素子41において発生する誘導起電力、第1の集電側インダクタンス素子42において発生する誘導起電力、及び第2の集電側インダクタンス素子43において発生する誘導起電力等の和が、集電閉回路40内に設けられた出力端子46から取り出される。なお、本実施形態においては、出力端子46の前段に直流変換回路47が設けられており、出力端子46からは直流電力を取り出すことができる。
集電閉回路40内において、集電側基準インダクタンス素子41は、発生した誘導起電力から基準交流電流を生成する。基準交流電流は、集電閉回路40内を循環し、第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43にも流れる。第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43においては、基準交流電流の位相、周波数に応じた磁界が生じる。
出力端子46から取り出される電力を大きくするためには、集電側基準インダクタンス素子41において発生する交流電流、第1の集電側インダクタンス素子42において発生する交流電流、及び第2の集電側インダクタンス素子43において発生する交流電流の位相を合わせる必要がある。本実施形態においては、集電側基準インダクタンス素子41が、誘導起電力から生成した基準交流電流が有する位相情報を用いて、集電側基準インダクタンス素子41において発生する交流電流、第1の集電側インダクタンス素子42において発生する交流電流、及び第2の集電側インダクタンス素子43において発生する交流電流の位相を合わせる動作例について、以下説明する。
[発電システム100の動作例]
以下、発電システム100の動作例について説明する。発電システム100の動作は、集電閉回路40内において基準交流電流を発生させる初期モードと、この初期モードの後に、第1の発電モジュール20に含まれた第1の位相情報取得回路25を受動素子として動作させる受動動作モードと、第1の発電モジュール20に含まれた第1の制御回路26を能動素子として動作させる能動動作モードを含む。
以下、発電システム100の動作例について説明する。発電システム100の動作は、集電閉回路40内において基準交流電流を発生させる初期モードと、この初期モードの後に、第1の発電モジュール20に含まれた第1の位相情報取得回路25を受動素子として動作させる受動動作モードと、第1の発電モジュール20に含まれた第1の制御回路26を能動素子として動作させる能動動作モードを含む。
[初期モード]
初期モードでは、上述したとおり、まず、基準発電モジュール10に含まれる基準交流生成回路12が、基準発電素子11による基準直流電流の出力方向を所定の周波数で切り替え、交流電流に変換する。次に、モジュール側基準インダクタンス素子13は、基準交流生成回路12により生成された交流電流から磁界を発生させる。その結果、モジュール側基準インダクタンス素子13と、集電閉回路40に含まれた集電側基準インダクタンス素子41とが電磁結合される。この電磁結合により、集電側基準インダクタンス素子41は、誘導起電力を発生させる。また、集電側基準インダクタンス素子41は、誘導電流として基準交流電流を発生させる。基準交流電流には位相情報、及び周波数情報が含まれており、集電閉回路40内における基準交流電流の循環により、集電閉回路40に含まれる第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43においても、この基準交流電流に応じた磁界が発生する。
初期モードでは、上述したとおり、まず、基準発電モジュール10に含まれる基準交流生成回路12が、基準発電素子11による基準直流電流の出力方向を所定の周波数で切り替え、交流電流に変換する。次に、モジュール側基準インダクタンス素子13は、基準交流生成回路12により生成された交流電流から磁界を発生させる。その結果、モジュール側基準インダクタンス素子13と、集電閉回路40に含まれた集電側基準インダクタンス素子41とが電磁結合される。この電磁結合により、集電側基準インダクタンス素子41は、誘導起電力を発生させる。また、集電側基準インダクタンス素子41は、誘導電流として基準交流電流を発生させる。基準交流電流には位相情報、及び周波数情報が含まれており、集電閉回路40内における基準交流電流の循環により、集電閉回路40に含まれる第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43においても、この基準交流電流に応じた磁界が発生する。
[受動動作モード]
受動動作モードにおいては、第1の制御回路26が、第1のスイッチング素子27の接続先を第1の交流生成回路22から第1の位相情報取得回路25に切り替えており、第1の位相情報取得回路25が、第1の発電素子21、及び第1のモジュール側インダクタンス素子23に並列に接続された状態となっている。
受動動作モードにおいては、第1の制御回路26が、第1のスイッチング素子27の接続先を第1の交流生成回路22から第1の位相情報取得回路25に切り替えており、第1の位相情報取得回路25が、第1の発電素子21、及び第1のモジュール側インダクタンス素子23に並列に接続された状態となっている。
同様に、第2の制御回路36が、第2のスイッチング素子37の接続先を第2の交流生成回路32から第2の位相情報取得回路35に切り替えており、第2の位相情報取得回路35が、第2の発電素子31、及び第2のモジュール側インダクタンス素子33に並列に接続された状態となっている。
この受動動作モードでは、まず集電閉回路40内において、集電閉回路40内を流れる基準交流電流が、第1の集電側インダクタンス素子42を流れることにより、第1の集電側インダクタンス素子42と電磁結合する第1のモジュール側インダクタンス素子23が、第1の発電モジュール20内において、基準交流電流に応じた交流電流を発生させる。
同様に、集電閉回路40内を流れる基準交流電流が、第2の集電側インダクタンス素子43を流れることにより、第2の集電側インダクタンス素子43と電磁結合する第2のモジュール側インダクタンス素子33が、第2の発電モジュール30内において、基準交流電流に応じた交流電流を発生させる。
この基準交流電流に応じた交流電流は、第1の発電モジュール20内、及び第2の発電モジュール30内において循環される。
第1の発電モジュール20に含まれる第1の位相情報取得回路25、及び第2の発電モジュール30に含まれる第2の位相情報取得回路35は、例えば電流計、電圧計等を含んでいる。第1の制御回路26は、第1の位相情報取得回路25に流れた電流値の変化、または電流値の変化に起因する電圧値の変化を検知することにより位相情報を取得する。同様に、第2の制御回路36は、第2の位相情報取得回路35に流れた電流値の変化、または電流値の変化に起因する電圧値の変化を検知することにより位相情報を取得する。
この受動動作モードでは、この第1の位相情報取得回路25、及び第2の位相情報取得回路35がそれぞれ受動素子として機能しており、第1の制御回路26が、第1の位相情報取得回路25を介して上述した基準交流電流に関する位相情報を取得し、第2の制御回路36が、第2の位相情報取得回路35を介して上述した基準交流電流に関する位相情報を取得するためのモードとなっている。
なお、この受動動作モードにおいて、本実施形態においては、第1の制御回路26が第1の位相情報取得回路25を介して、基準交流電流に関する位相情報を取得し、第2の制御回路36が、第2の位相情報取得回路35を介して、基準交流電流に関する位相情報を取得する構成を例に挙げて説明したが、第1の制御回路26、及び第2の制御回路36が、基準交流電流に関する位相情報のみならず、基準交流電流に関する周波数情報を取得する構成としても構わない。
なお、上述した初期モードから受動動作モードへの切り替えタイミング、即ち、第1の制御回路26、及び第2の制御回路36が位相情報の取得を開始するタイミングは、例えば、初期モードが所定の期間を経過した時点に設定することができる。
具体的には、第1の制御回路26が初期モードから受動動作モードへ切り替えるタイミングは、例えばモジュール側基準インダクタンス素子13が持つインダクタンス値及び基準容量素子14が持つ容量値と、第1のモジュール側インダクタンス素子23が持つインダクタンス値及び第1の容量素子24が持つ容量値と、の比較を用いて設定することができる。例えばモジュール側基準インダクタンス素子13が持つインダクタンス値と基準容量素子14が持つ容量値との積と、第1のモジュール側インダクタンス素子23が持つインダクタンス値と第1の容量素子24が持つ容量値と積と、の差が大きい場合、基準発電モジュール10において発生する交流電流の周期と、第1の発電モジュール20において発生する交流電流の周期との差が大きくなる。そのため、頻繁に受動動作モードに切り替えて、第1の発電モジュール20内において発生させる交流電流の位相を、基準交流電流に関する位相に合わせる必要がある。従って、上述した差が大きい場合には、初期モードから受動動作モードへ切り替えるまでの期間は短く設定し、差が小さい場合には、初期モードから受動動作モードへ切り替えるまでの期間を長く設定する。
同様に、第2の制御回路36が初期モードから受動動作モードへ切り替えるタイミングは、例えばモジュール側基準インダクタンス素子13が持つインダクタンス値及び基準容量素子14が持つ容量値と、第2のモジュール側インダクタンス素子33が持つインダクタンス値及び第2の容量素子34が持つ容量値と、の比較を用いて設定することができる。両者の差が大きい場合には、初期モードから受動動作モードへ切り替えるまでの期間は短く設定し、差が小さい場合には、初期モードから受動動作モードへ切り替えるまでの期間を長く設定する。
[能動動作モード]
受動動作モードにおいて、第1の制御回路26が、第1の位相情報取得回路25を介して、基準交流電流に関する位相情報を取得すると、第1の制御回路26が、能動動作モードを開始する。具体的には、第1の制御回路26が、第1のスイッチング素子27の接続先を第1の位相情報取得回路25から第1の交流生成回路22に切り替え、第1の交流生成回路22が、第1の発電素子21、及び第1のモジュール側インダクタンス素子23に並列に接続された状態とする。
受動動作モードにおいて、第1の制御回路26が、第1の位相情報取得回路25を介して、基準交流電流に関する位相情報を取得すると、第1の制御回路26が、能動動作モードを開始する。具体的には、第1の制御回路26が、第1のスイッチング素子27の接続先を第1の位相情報取得回路25から第1の交流生成回路22に切り替え、第1の交流生成回路22が、第1の発電素子21、及び第1のモジュール側インダクタンス素子23に並列に接続された状態とする。
第1の制御回路26は、第1の発電モジュール20内において、第1の交流生成回路22のスイッチング動作を、受動動作モードにおいて、第1の位相情報取得回路25を介して取得した基準交流電流に関する位相情報に応じて制御する。
同様に、受動動作モードにおいて、第2の制御回路36が、第2の位相情報取得回路35を介して、基準交流電流に関する位相情報を取得すると、第2の制御回路36が、能動動作モードを開始する。具体的には、第2の制御回路36が、第2のスイッチング素子37の接続先を第2の位相情報取得回路35から第2の交流生成回路32に切り替え、第2の交流生成回路32が、第2の発電素子31、及び第2のモジュール側インダクタンス素子33に並列に接続された状態とする。
第2の制御回路36は、第2の発電モジュール30内において、第2の交流生成回路32のスイッチング動作を、受動動作モードにおいて、第2の位相情報取得回路35を介して取得した基準交流電流に関する位相情報に応じて制御する。
本実施形態における発電システム100は、上述した構成、及び動作により、基準交流電流に関する位相に、第1の発電モジュール20に含まれる第1の交流生成回路22のスイッチング動作の位相、及び第2の発電モジュール30に含まれる第2の交流生成回路32のスイッチング動作の位相を同期させることができる。その結果として、本実施形態の発電システム100は、簡便な方法により各発電モジュールの位相制御を行うことができる。
なお、受動動作モードにおいて、第1の制御回路26が、第1の位相情報取得回路25を介して、基準交流電流に関する位相情報のみならず、基準交流電流に関する周波数情報を取得する場合には、第1の容量素子24として容量値可変の容量素子を用いておくことが望ましい。このような構成とすることにより、温度などの影響により、基準発電モジュール10におけるモジュール側基準インダクタンス素子13のインダクタンス値及び基準容量素子14の容量値と、第1の発電モジュール20における第1のモジュール側インダクタンス素子23のインダクタンス値及び第1の容量素子24の容量値と、の間にずれが生じてしまっている場合においても、第1の容量素子24の容量値を調整することにより、基準発電モジュール10における共振周波数と、第1の発電モジュール20における共振周波数と、を近づけることが可能となる。即ち、第1の制御回路26が、第1の位相情報取得回路25から、基準交流電流に関する周波数情報を取得し、これに応じて、第1の容量素子24の容量値を制御することにより、インダクタンス値と容量値との積に応じて決定される基準発電モジュール10における共振周波数と、第1の発電モジュール20における共振周波数と、を近づけることが可能となる。
同様に、受動動作モードにおいて、第2の制御回路36が、第2の位相情報取得回路35を介して、基準交流電流に関する位相情報のみならず、基準交流電流に関する周波数情報を取得する場合には、第2の容量素子34として容量値可変の容量素子を用いておくことが望ましい。このような構成とすることにより、温度などの影響により、基準発電モジュール10におけるモジュール側基準インダクタンス素子13のインダクタンス値及び基準容量素子14の容量値と、第2の発電モジュール30における第2のモジュール側インダクタンス素子33のインダクタンス値及び第2の容量素子34の容量値と、の間にずれが生じてしまっている場合においても、第2の容量素子34の容量値を調整することにより、基準発電モジュール10における共振周波数と、第2の発電モジュール30における共振周波数と、を近づけることが可能となる。即ち、第2の制御回路36が、第2の位相情報取得回路35から、基準交流電流に関する周波数情報を取得し、これに応じて、第2の容量素子34の容量値を制御することにより、インダクタンス値と容量値との積に応じて決定される基準発電モジュール10における共振周波数と、第2の発電モジュール30における共振周波数を、近づけることが可能となる。
更に、本実施形態においては、図1に示すように、集電閉回路40に含まれる集電側基準インダクタンス素子41と第1の集電側インダクタンス素子42との間にスイッチング素子44を接続しており、第1の集電側インダクタンス素子42と第2の集電側インダクタンス素子43との間にスイッチング素子45を接続している。スイッチング素子44は、集電側基準インダクタンス素子41と第1の集電側インダクタンス素子42との間の接続状況を切り替え、スイッチング素子45は、第1の集電側インダクタンス素子42と第2の集電側インダクタンス素子43との間の接続状況を切り替えることができる。
このような構成とすることにより、発電システム100内に何等かの異常が発生したような場合に、集電閉回路40内において直接に接続された各集電側インダクタンス素子間の接続を切ることが可能となる。その結果、異常時において、集電閉回路40内に高電圧が発生することを抑制することができる。
なお、このような発電システム100を、例えば住居の屋根に配置するような場合には、図2に示すように、まず集電閉回路40を屋根70の上、または屋根面の室内側に配置しておく。そして、集電側基準インダクタンス素子41には、基準発電モジュール10に含まれるモジュール側基準インダクタンス素子13が近接するように、第1の集電側インダクタンス素子42には、第1の発電モジュール20に含まれる第1のモジュール側インダクタンス素子23が近接するように、第2の集電側インダクタンス素子43には、第2の発電モジュール30に含まれる第2のモジュール側インダクタンス素子33が近接するように、基準発電モジュール10、第1の発電モジュール20、及び第2の発電モジュール30を配置する。このような配置とすることにより、上述した各モジュール側インダクタンス素子と各集電側インダクタンス素子とを電磁結合させることができる。なお、集電閉回路40を屋根面の室内側に配置する構成とすることにより、集電閉回路40が劣化するのを抑制することができる。
より具体的には、基準発電モジュール10の基準発電素子11の裏面側にモジュール側基準インダクタンス素子13を接続しておき、このモジュール側基準インダクタンス素子13が配置された基準発電モジュール10の裏面側を、集電側基準インダクタンス素子41の上方に配置する。同様に、第1の発電モジュール20の第1の発電素子21の裏面側に第1のモジュール側インダクタンス素子23を接続しておき、この第1のモジュール側インダクタンス素子23が配置された第1の発電モジュール20の裏面側を、第1の集電側インダクタンス素子42の上方に配置する。同様に、第2の発電モジュール30の第2の発電素子31の裏面側に第2のモジュール側インダクタンス素子33を接続しておき、この第2のモジュール側インダクタンス素子33が配置された第2の発電モジュール30の裏面側を、第2の集電側インダクタンス素子43の上方に配置する。
なお、本実施形態においては、集電閉回路40に設けられた集電側基準インダクタンス素子41、第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43が、それぞれ直列接続される構成を例に挙げて説明したが、各集電側インダクタンス素子が並列に接続される構成としても構わない。
なお、基準発電モジュール10、第1の発電モジュール20、及び第2の発電モジュール30内が、それぞれ抵抗成分を含む構成としても構わない。
[第2の実施形態]
本開示の第2の実施形態について、図面を用いて以下に説明する。なお、第1の実施形態と同様の構成については、同じ符号を付して、その説明を省略する。
本開示の第2の実施形態について、図面を用いて以下に説明する。なお、第1の実施形態と同様の構成については、同じ符号を付して、その説明を省略する。
[発電システム100A]
図3は、本実施形態に係る発電システム100Aを示す模式的な回路図である。
図3は、本実施形態に係る発電システム100Aを示す模式的な回路図である。
図3に示すように、発電システム100Aは、第1の発電モジュール20、及び第2の発電モジュール30等が2次元的に配置されてなる発電モジュール群を含む。また、発電システム100Aは、この発電モジュール群が生み出した電力を集め出力する集電閉回路40Aを含む。
各発電モジュールはそれぞれ交流電流から磁界を発生させるモジュール側インダクタンス素子を有しており、集電閉回路40Aは、このモジュール側インダクタンス素子に近接するように配置された複数の集電側インダクタンス素子を含む。
[第1の発電モジュール20]
第1の発電モジュール20は、第1の発電素子21と、第1の発電素子21が出力した第1の直流電力を第1の交流電力に変換する第1の交流生成回路22と、第1の交流電流が流れることにより磁界を発生させ、集電閉回路40Aの第1の集電側インダクタンス素子42と電磁結合する第1のモジュール側インダクタンス素子23と、第1のモジュール側インダクタンス素子23とともに共振を発生させる第1の容量素子24と、を含む。
第1の発電モジュール20は、第1の発電素子21と、第1の発電素子21が出力した第1の直流電力を第1の交流電力に変換する第1の交流生成回路22と、第1の交流電流が流れることにより磁界を発生させ、集電閉回路40Aの第1の集電側インダクタンス素子42と電磁結合する第1のモジュール側インダクタンス素子23と、第1のモジュール側インダクタンス素子23とともに共振を発生させる第1の容量素子24と、を含む。
更に、第1の発電モジュール20は、上記構成に加えて、第1の位相情報取得回路25、第1の制御回路26、及び第1のスイッチング素子27を有している。第1の制御回路26は、第1のスイッチング素子27の切り替え動作を制御しており、第1の発電素子21に並列接続される対象を、第1の交流生成回路22と第1の位相情報取得回路25との間で切り替えている。これら第1の位相情報取得回路25、第1の制御回路26、及び第1のスイッチング素子27の具体的な動作については後述する。
本実施形態においては、上述した第1の交流生成回路22が、第1の発電素子21による第1の直流電力の出力方向を切り替える周波数を、第1のモジュール側インダクタンス素子23が有するインダクタンス値、及び第1の容量素子24が有する静電容量値に応じて予め設定しておく。即ち、第1のモジュール側インダクタンス素子23が有するインダクタンス値、及び第1の容量素子24が有する静電容量値によって定まる共振周波数に対応する周波数で、第1の交流生成回路22が、第1の発電素子21による第1の直流電力の出力方向を切り替えるよう予め設定しておく。
[第2の発電モジュール30]
第2の発電モジュール30は、第2の発電素子31と、第2の発電素子31が出力した第2の直流電力を第2の交流電力に変換する第2の交流生成回路32と、第2の交流電流が流れることにより磁界を発生させ、集電閉回路40Aの第2の集電側インダクタンス素子43と電磁結合する第2のモジュール側インダクタンス素子33と、第2のモジュール側インダクタンス素子33とともに共振を発生させる第2の容量素子34と、を含む。
第2の発電モジュール30は、第2の発電素子31と、第2の発電素子31が出力した第2の直流電力を第2の交流電力に変換する第2の交流生成回路32と、第2の交流電流が流れることにより磁界を発生させ、集電閉回路40Aの第2の集電側インダクタンス素子43と電磁結合する第2のモジュール側インダクタンス素子33と、第2のモジュール側インダクタンス素子33とともに共振を発生させる第2の容量素子34と、を含む。
更に、第2の発電モジュール30は、上記構成に加えて、第2の位相情報取得回路35、第2の制御回路36、及び第2のスイッチング素子37を有している。第2の制御回路36は、第2のスイッチング素子37の切り替え動作を制御しており、第2の発電素子31に並列接続される対象を、第2の交流生成回路32と第2の位相情報取得回路35との間で切り替えている。これら第2の位相情報取得回路35、第2の制御回路36、及び第2のスイッチング素子37の具体的な動作については後述する。
本実施形態においては、上述した第2の交流生成回路32が、第2の発電素子31による第2の直流電力の出力方向を切り替える周波数を、第2のモジュール側インダクタンス素子33が有するインダクタンス値、及び第2の容量素子34が有する静電容量値に応じて予め設定しておく。即ち、第2のモジュール側インダクタンス素子33が有するインダクタンス値、及び第2の容量素子34が有する静電容量値によって定まる共振周波数に対応する周波数で、第2の交流生成回路32が、第2の発電素子31による第2の直流電力の出力方向を切り替えるよう予め設定しておく。
[集電閉回路40A]
集電閉回路40Aは、第1のモジュール側インダクタンス素子23との電磁結合により、誘導起電力を発生させる第1の集電側インダクタンス素子42を含む。更に、集電閉回路40Aは、第2のモジュール側インダクタンス素子33との電磁結合により、誘導起電力を発生させる第2の集電側インダクタンス素子43を含む。
集電閉回路40Aは、第1のモジュール側インダクタンス素子23との電磁結合により、誘導起電力を発生させる第1の集電側インダクタンス素子42を含む。更に、集電閉回路40Aは、第2のモジュール側インダクタンス素子33との電磁結合により、誘導起電力を発生させる第2の集電側インダクタンス素子43を含む。
本実施形態において、第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43は、集電閉回路40A内において直列に接続されており、第1の集電側インダクタンス素子42において発生する誘導起電力、及び第2の集電側インダクタンス素子43において発生する誘導起電力等の和が、集電閉回路40A内に設けられた出力端子46から取り出される。なお、本実施形態においては、出力端子46の前段に直流変換回路47が設けられており、出力端子46からは直流電力を取り出すことができる。
なお、第1の集電側インダクタンス素子42において発生する誘導起電力、及び第2の集電側インダクタンス素子43において発生する誘導起電力を集電する際は、集電閉回路40Aが、スイッチング素子49の接続先を切り替えることによって、後述する基準交流波発生源48が、集電閉回路40A内に含まれない構成としてもよい。なお、図3においては、スイッチング素子49のスイッチング動作を制御する制御回路を図示していないが、集電閉回路40Aが、スイッチング素子49のスイッチング動作を制御する制御回路を別途有する構成としてもよい。
更に、本実施形態においては、集電閉回路40Aが基準交流波発生源48を備えている。基準交流波発生源48は、例えばスイッチング素子などを含んで実現することができる。本実施形態においては、基準交流波発生源48が発生させる交流電流が、基準交流電流である。基準交流波発生源48が基準交流電流を発生させる際には、基準交流波発生源48が、スイッチング素子49の接続先を切り替えることによって、基準交流波発生源48が、集電閉回路40A内に含まれる構成とする。
基準交流波発生源48は、第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43において生じた誘導起電力を用いて、基準交流電流を発生させる。具体的には、集電閉回路40A内において、第1の集電側インダクタンス素子42と第1のモジュール側インダクタンス素子23との電磁結合により、第1の集電側インダクタンス素子42においては誘導起電力が発生している。同様に、第2の集電側インダクタンス素子43と第2のモジュール側インダクタンス素子33との電磁結合により、第2の集電側インダクタンス素子43においては誘導起電力が発生している。この第1の集電側インダクタンス素子42において生じる誘電起電力、及び第2の集電側インダクタンス素子43において生じる誘電起電力の内の少なくとも一方を用いて、基準交流波発生源48がスイッチング動作を行うことにより、基準交流電流を発生させる。
基準交流波発生源48が発生させた基準交流電流は、集電閉回路40A内を循環し、第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43にも流れる。この基準交流電流の循環に伴い、第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43においては、基準交流電流の位相、周波数に応じた磁界が生じる。
出力端子46から取り出される電力を大きくするためには、第1の集電側インダクタンス素子42において発生する交流電流、及び第2の集電側インダクタンス素子43において発生する交流電流の位相を合わせる必要がある。本実施形態においては、基準交流波発生源48が生成した基準交流電流が有する位相情報を用いて、第1の集電側インダクタンス素子42において発生する交流電流、及び第2の集電側インダクタンス素子43において発生する交流電流の位相を合わせる動作例について、以下説明する。
[発電システム100Aの動作例]
以下、発電システム100Aの動作例について説明する。発電システム100Aの動作は、集電閉回路40A内において基準交流波発生源48が基準交流電流を発生させる初期モードと、この初期モードの後に、第1の発電モジュール20に含まれた第1の位相情報取得回路25、及び第2の発電モジュール30に含まれた第2の位相情報取得回路35を受動素子として動作させる受動動作モードと、第1の発電モジュール20に含まれた第1の制御回路26、及び第2の発電モジュール30に含まれた第2の制御回路36を能動素子として動作させる能動動作モードを含む。
以下、発電システム100Aの動作例について説明する。発電システム100Aの動作は、集電閉回路40A内において基準交流波発生源48が基準交流電流を発生させる初期モードと、この初期モードの後に、第1の発電モジュール20に含まれた第1の位相情報取得回路25、及び第2の発電モジュール30に含まれた第2の位相情報取得回路35を受動素子として動作させる受動動作モードと、第1の発電モジュール20に含まれた第1の制御回路26、及び第2の発電モジュール30に含まれた第2の制御回路36を能動素子として動作させる能動動作モードを含む。
[初期モード]
初期モードでは、上述したとおり、まず、第1の発電モジュール20に含まれる第1の交流生成回路22が、第1の発電素子21による第1の直流電流の出力方向を所定の周波数で切り替え、交流電流に変換する。次に、第1のモジュール側インダクタンス素子23は、第1の交流生成回路22により生成された交流電流から磁界を発生させる。その結果、第1のモジュール側インダクタンス素子23と、集電閉回路40Aに含まれた第1の集電側インダクタンス素子42とが電磁結合される。この電磁結合により、第1の集電側インダクタンス素子42は、誘導起電力を発生させる。
初期モードでは、上述したとおり、まず、第1の発電モジュール20に含まれる第1の交流生成回路22が、第1の発電素子21による第1の直流電流の出力方向を所定の周波数で切り替え、交流電流に変換する。次に、第1のモジュール側インダクタンス素子23は、第1の交流生成回路22により生成された交流電流から磁界を発生させる。その結果、第1のモジュール側インダクタンス素子23と、集電閉回路40Aに含まれた第1の集電側インダクタンス素子42とが電磁結合される。この電磁結合により、第1の集電側インダクタンス素子42は、誘導起電力を発生させる。
同様に、第2の発電モジュール30に含まれる第2の交流生成回路32が、第2の発電素子31による第2の直流電流の出力方向を所定の周波数で切り替え、交流電流に変換する。次に、第2のモジュール側インダクタンス素子33は、第2の交流生成回路32により生成された交流電流から磁界を発生させる。その結果、第2のモジュール側インダクタンス素子33と、集電閉回路40Aに含まれた第2の集電側インダクタンス素子43とが電磁結合される。この電磁結合により、第2の集電側インダクタンス素子43は、誘導起電力を発生させる。
初期モードにおいては、スイッチング素子49は基準交流波発生源48に接続されており、集電閉回路40A内に基準交流波発生源48が含まれた状態となっている。第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43において発生した誘導起電力から、集電閉回路40A内には、交流電流が発生している。基準交流波発生源48は、この交流電流に対するスイッチング動作により、基準交流電流を発生させる。即ち、基準交流波発生源48は、第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43において発生した誘導起電力を用いて、基準交流電流を発生させる。
なお、本実施形態においては、第1の発電モジュール20、及び第2の発電モジュール30の双方を起動させ、第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43の双方において誘導起電力を発生させ、これらの誘導起電力を用いて、基準交流波発生源48が、基準交流電流を発生させる構成を例に挙げて説明した。しかし、少なくともいずれか一方の発電モジュールを起動させ、少なくともいずれか一方の集電側インダクタンス素子において発生させた誘導起電力を用いて、基準交流波発生源48が、基準交流電流を発生させる構成としてもよい。
あるいは、第1の発電モジュール20、及び第2の発電モジュール30を起動させずに、集電閉回路40A内に別途、電流源を設けるなどして、基準交流波発生源48が当該電流源から生成された電流に対してスイッチング動作を行うことにより、基準交流電流を発生させる構成としてもよい。ただし、基準交流波発生源48が基準交流電流を発生させる際に、第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43の内の少なくとも一方において発生させた誘導起電力を用いる構成とする方が、集電閉回路40A内に別の電流源等を設ける必要がなく、回路設計上望ましい。また、基準交流電流の生成に、第1の発電モジュール20、または第2の発電モジュール30により発電したエネルギーを利用する構成とした方が、発電エネルギーを有効活用することになり、地球環境保護の視点からも望ましい。
基準交流波発生源48が発生させた基準交流電流には、位相情報、及び周波数情報が含まれており、集電閉回路40A内における基準交流電流の循環により、集電閉回路40Aに含まれる第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43においても、この基準交流電流に応じた磁界が発生する。
[受動動作モード]
受動動作モードにおいては、第1の制御回路26が、第1のスイッチング素子27の接続先を第1の交流生成回路22から第1の位相情報取得回路25に切り替えており、第1の位相情報取得回路25が、第1の発電素子21、及び第1のモジュール側インダクタンス素子23に並列に接続された状態となっている。
受動動作モードにおいては、第1の制御回路26が、第1のスイッチング素子27の接続先を第1の交流生成回路22から第1の位相情報取得回路25に切り替えており、第1の位相情報取得回路25が、第1の発電素子21、及び第1のモジュール側インダクタンス素子23に並列に接続された状態となっている。
同様に、第2の制御回路36が、第2のスイッチング素子37の接続先を第2の交流生成回路32から第2の位相情報取得回路35に切り替えており、第2の位相情報取得回路35が、第2の発電素子31、及び第2のモジュール側インダクタンス素子33に並列に接続された状態となっている。
この受動動作モードでは、まず集電閉回路40A内において、集電閉回路40A内を流れる基準交流電流が、第1の集電側インダクタンス素子42を流れることにより、第1の集電側インダクタンス素子42と電磁結合する第1のモジュール側インダクタンス素子23が、第1の発電モジュール20内において、基準交流電流に応じた交流電流を発生させる。
同様に、集電閉回路40A内を流れる基準交流電流が、第2の集電側インダクタンス素子43を流れることにより、第2の集電側インダクタンス素子43と電磁結合する第2のモジュール側インダクタンス素子33が、第2の発電モジュール30内において、基準交流電流に応じた交流電流を発生させる。
この基準交流電流に応じた交流電流は、第1の発電モジュール20内、及び第2の発電モジュール30内において、それぞれ循環される。
第1の発電モジュール20に含まれる第1の位相情報取得回路25、及び第2の発電モジュール30に含まれる第2の位相情報取得回路35は、例えば電流計、電圧計等を含んでいる。第1の制御回路26は、第1の位相情報取得回路25に流れた電流値の変化、または電流値の変化に起因する電圧値の変化を検知することにより位相情報を取得する。同様に、第2の制御回路36は、第2の位相情報取得回路35に流れた電流値の変化、または電流値の変化に起因する電圧値の変化を検知することにより位相情報を取得する。
この受動動作モードでは、この第1の位相情報取得回路25、及び第2の位相情報取得回路35がそれぞれ受動素子として機能しており、第1の制御回路26が、第1の位相情報取得回路25を介して上述した基準交流電流に関する位相情報を取得し、第2の制御回路36が、第2の位相情報取得回路35を介して上述した基準交流電流に関する位相情報を取得するためのモードとなっている。
なお、この受動動作モードにおいて、本実施形態においては、第1の制御回路26が第1の位相情報取得回路25を介して、基準交流電流に関する位相情報を取得し、第2の制御回路36が、第2の位相情報取得回路35を介して、基準交流電流に関する位相情報を取得する構成を例に挙げて説明したが、第1の制御回路26、及び第2の制御回路36が、基準交流電流に関する位相情報のみならず、基準交流電流に関する周波数情報を取得する構成としても構わない。
なお、上述した初期モードから受動動作モードへの切り替えタイミング、即ち、第1の制御回路26、及び第2の制御回路36が位相情報の取得を開始するタイミングは、例えば、初期モードが所定の期間を経過した時点に設定することができる。
具体的には、第1の制御回路26が初期モードから受動動作モードへ切り替えるタイミングは、例えば基準交流波発生源48が発生させた基準交流電流の周期と、第1のモジュール側インダクタンス素子23が持つインダクタンス値及び第1の容量素子24が持つ容量値から算出される周期と、の比較を用いて設定することができる。例えば基準交流電流の周期と、第1のモジュール側インダクタンス素子23が持つインダクタンス値及び第1の容量素子24が持つ容量値から算出される周期と、の差が大きい場合、頻繁に受動動作モードに切り替えて、基準交流電流の位相と、第1の発電モジュール20内において発生する交流電流の位相と、を合わせる必要がある。そのため、上述した差が大きい場合には、初期モードから受動動作モードへ切り替えるまでの期間は短く設定し、差が小さい場合には、初期モードから受動動作モードへ切り替えるまでの期間は長く設定する。
同様に、第2の制御回路36が初期モードから受動動作モードへ切り替えるタイミングは、例えば基準交流波発生源48が発生させた基準交流電流の周期と、第2のモジュール側インダクタンス素子33が持つインダクタンス値及び第2の容量素子34が持つ容量値から算出される周期と、の比較を用いて設定することができる。両者の差が大きい場合には、初期モードから受動動作モードへ切り替えるまでの期間は短く設定し、差が小さい場合には、初期モードから受動動作モードへ切り替えるまでの期間は長く設定する。
[能動動作モード]
受動動作モードにおいて、第1の制御回路26が、第1の位相情報取得回路25を介して、基準交流電流に関する位相情報を取得すると、第1の制御回路26が、能動動作モードを開始する。具体的には、第1の制御回路26が、第1のスイッチング素子27の接続先を第1の位相情報取得回路25から第1の交流生成回路22に切り替え、第1の交流生成回路22が、第1の発電素子21、及び第1のモジュール側インダクタンス素子23に並列に接続された状態とする。
受動動作モードにおいて、第1の制御回路26が、第1の位相情報取得回路25を介して、基準交流電流に関する位相情報を取得すると、第1の制御回路26が、能動動作モードを開始する。具体的には、第1の制御回路26が、第1のスイッチング素子27の接続先を第1の位相情報取得回路25から第1の交流生成回路22に切り替え、第1の交流生成回路22が、第1の発電素子21、及び第1のモジュール側インダクタンス素子23に並列に接続された状態とする。
第1の制御回路26は、第1の発電モジュール20内において、第1の交流生成回路22のスイッチング動作を、受動動作モードにおいて、第1の位相情報取得回路25を介して取得した基準交流電流に関する位相情報に応じて制御する。
同様に、受動動作モードにおいて、第2の制御回路36が、第2の位相情報取得回路35を介して、基準交流電流に関する位相情報を取得すると、第2の制御回路36が、能動動作モードを開始する。具体的には、第2の制御回路36が、第2のスイッチング素子37の接続先を第2の位相情報取得回路35から第2の交流生成回路32に切り替え、第2の交流生成回路32が、第2の発電素子31、及び第2のモジュール側インダクタンス素子33に並列に接続された状態とする。
第2の制御回路36は、第2の発電モジュール30内において、第2の交流生成回路32のスイッチング動作を、受動動作モードにおいて、第2の位相情報取得回路35を介して取得した基準交流電流に関する位相情報に応じて制御する。
本実施形態における発電システム100Aは、上述した構成、及び動作により、基準交流電流が有する位相に、第1の発電モジュール20に含まれる第1の交流生成回路22のスイッチング動作の位相、及び第2の発電モジュール30に含まれる第2の交流生成回路32のスイッチング動作の位相を同期させることができる。その結果として、本実施形態の発電システム100Aは、簡便な方法により各発電モジュールの位相制御を行うことができる。
なお、受動動作モードにおいて、第1の制御回路26が、第1の位相情報取得回路25を介して、基準交流電流に関する位相情報のみならず、基準交流電流に関する周波数情報を取得する場合には、第1の容量素子24として容量値可変の容量素子を用いておくことが望ましい。このような構成とすることにより、温度などの影響により、第1の発電モジュール20における第1のモジュール側インダクタンス素子23のインダクタンス値及び第1の容量素子24の容量値が、所望の値に対してずれが生じてしまっている場合においても、第1の容量素子24の容量値を調整することにより、第1の発電モジュール20における共振周波数を、基準交流電流の周波数に近づけることが可能となる。即ち、第1の制御回路26が、第1の位相情報取得回路25から、基準交流電流に関する周波数情報を取得し、これに応じて、第1の容量素子24の容量値を制御することにより、インダクタンス値と容量値との積に応じて決定される第1の発電モジュール20における共振周波数を、基準交流電流の周波数に近づけることが可能となる。
同様に、受動動作モードにおいて、第2の制御回路36が、第2の位相情報取得回路35を介して、基準交流電流に関する位相情報のみならず、基準交流電流に関する周波数情報を取得する場合には、第2の容量素子34として容量値可変の容量素子を用いておくことが望ましい。このような構成とすることにより、温度などの影響により、第2の発電モジュール30における第2のモジュール側インダクタンス素子33のインダクタンス値及び第2の容量素子34の容量値が、所望の値に対してずれが生じてしまっている場合においても、第2の容量素子34の容量値を調整することにより、第2の発電モジュール30における共振周波数を、基準交流電流の周波数に近づけることが可能となる。即ち、第2の制御回路36が、第2の位相情報取得回路35から、基準交流電流に関する周波数情報を取得し、これに応じて、第2の容量素子34の容量値を制御することにより、インダクタンス値と容量値との積に応じて決定される第2の発電モジュール30における共振周波数を、基準交流電流の周波数に近づけることが可能となる。
なお、本実施形態においても、第1の実施形態と同様に、集電閉回路40Aに含まれる第1の集電側インダクタンス素子42と第2の集電側インダクタンス素子43との間にスイッチング素子45を接続することが望ましい。スイッチング素子45は、第1の集電側インダクタンス素子42と第2の集電側インダクタンス素子43との間の接続状況を切り替えることができる。
このような構成とすることにより、発電システム100A内に何等かの異常が発生したような場合に、集電閉回路40A内において直接に接続された各集電側インダクタンス素子間の接続を切ることが可能となる。その結果、異常時において、集電閉回路40A内に高電圧が発生することを抑制することができる。
なお、本実施形態においては、集電閉回路40Aに設けられた第1の集電側インダクタンス素子42、及び第2の集電側インダクタンス素子43が、それぞれ直列接続される構成を例に挙げて説明したが、各集電側インダクタンス素子が並列に接続される構成としても構わない。
なお、第1の発電モジュール20、及び第2の発電モジュール30内が、それぞれ抵抗成分を含む構成としても構わない。
Claims (20)
- 第1の発電素子と、前記第1の発電素子が出力した第1の直流電流を第1の交流電流に変換する第1の交流生成回路と、前記第1の交流電流から磁界を発生させる第1のモジュール側インダクタンス素子と、第1の位相情報取得回路と、第1の制御回路と、を含む第1の発電モジュールと、
前記第1のモジュール側インダクタンス素子との電磁結合により誘導起電力を発生させる第1の集電側インダクタンス素子を含む集電閉回路と、を含み、
前記集電閉回路内を流れる基準交流電流が、前記第1の集電側インダクタンス素子を流れることにより、前記第1の集電側インダクタンス素子と電磁結合された前記第1のモジュール側インダクタンス素子が、前記第1の発電モジュール内において前記基準交流電流に応じた交流電流を発生させ、前記第1の制御回路が、前記第1の位相情報取得回路を介して前記基準交流電流に関する位相情報を取得し、前記第1の制御回路が、前記位相情報に応じて前記第1の交流生成回路を制御する、
発電システム。 - 基準発電素子と、前記基準発電素子が出力した基準直流電流を、交流電流に変換する基準交流生成回路と、前記交流電流から磁界を発生させるモジュール側基準インダクタンス素子と、を含む基準発電モジュールを更に含み、
前記集電閉回路が、前記モジュール側基準インダクタンス素子との電磁結合により誘導起電力と前記基準交流電流とを前記集電閉回路内において発生させる集電側基準インダクタンス素子を更に含む、
請求項1に記載の発電システム。 - 第2の発電素子と、前記第2の発電素子が出力した第2の直流電流を第2の交流電流に変換する第2の交流生成回路と、前記第2の交流電流から磁界を発生させる第2のモジュール側インダクタンス素子と、第2の位相情報取得回路と、第2の制御回路と、を含む第2の発電モジュールを更に含み、
前記集電閉回路が、前記第2のモジュール側インダクタンス素子との電磁結合により誘導起電力を発生させる第2の集電側インダクタンス素子と、前記基準交流電流を発生させる基準交流波発生源と、を更に含み、
前記集電閉回路内を流れる前記基準交流電流が、前記第2の集電側インダクタンス素子を流れることにより、前記第2の集電側インダクタンス素子と電磁結合された前記第2のモジュール側インダクタンス素子が、前記第2の発電モジュール内において前記基準交流電流に応じた交流電流を発生させ、前記第2の制御回路が、前記第2の位相情報取得回路を介して前記基準交流電流に関する位相情報を取得し、前記第2の制御回路が、前記位相情報に応じて前記第2の交流生成回路を制御する、
請求項1に記載の発電システム。 - 前記基準発電モジュールは、前記モジュール側基準インダクタンス素子と共に共振を発生させる基準容量素子を更に含む、
請求項2に記載の発電システム。 - 前記第2の発電モジュールは、前記第2のモジュール側インダクタンス素子と共に共振を発生させる第2の容量素子を更に含む、
請求項3に記載の発電システム。 - 前記第1の発電モジュールは、前記第1のモジュール側インダクタンス素子と共に共振を発生させる第1の容量素子を更に含む、
請求項1乃至5のいずれか一つに記載の発電システム。 - 前記第1の制御回路が、前記第1の位相情報取得回路を介して前記基準交流電流に関する周波数情報を取得し、
前記第1の制御回路が、前記周波数情報に応じて前記第1の容量素子の容量値を制御する、
請求項6に記載の発電システム。 - 前記第2の制御回路が、前記第2の位相情報取得回路を介して前記基準交流電流に関する周波数情報を取得し、
前記第2の制御回路が、前記周波数情報に応じて前記第2の容量素子の容量値を制御する、
請求項5に記載の発電システム。 - 前記第1の発電モジュールが、前記第1の発電素子に並列接続される対象を前記第1の交流生成回路と前記第1の位相情報取得回路との間で切り替える第1のスイッチング素子を更に備え、
前記第1の制御回路が、前記位相情報を取得する際には、前記第1のスイッチング素子の接続先を前記第1の位相情報取得回路に切り替え、
前記第1の制御回路が、前記位相情報に応じて前記第1の交流生成回路を制御する際には、前記第1のスイッチング素子の接続先を前記第1の交流生成回路に切り替える、
請求項1乃至8のいずれか一つに記載の発電システム。 - 前記第2の発電モジュールが、前記第2の発電素子に並列接続される対象を前記第2の交流生成回路と前記第2の位相情報取得回路との間で切り替える第2のスイッチング素子を更に備え、
前記第2の制御回路が、前記位相情報を取得する際には、前記第2のスイッチング素子の接続先を前記第2の位相情報取得回路に切り替え、
前記第2の制御回路が、前記位相情報に応じて前記第2の交流生成回路を制御する際には、前記第2のスイッチング素子の接続先を前記第2の交流生成回路に切り替える、
請求項3に記載の発電システム。 - 前記第1の制御回路が、前記位相情報を取得するモードを開始するタイミングは、前記モジュール側基準インダクタンス素子のインダクタンス値及び前記基準容量素子の容量値と、前記第1のモジュール側インダクタンス素子のインダクタンス値及び前記第1の容量素子の容量値と、の比較を用いて設定される、
請求項6に記載の発電システム。 - 前記第2の制御回路が、前記位相情報を取得するモードを開始するタイミングは、前記基準交流電流の周期と、前記第2のモジュール側インダクタンス素子のインダクタンス値及び前記第2の容量素子の容量値から算出される周期と、の比較を用いて設定される、
請求項5に記載の発電システム。 - 前記集電側基準インダクタンス素子と前記第1の集電側インダクタンス素子とは直列に接続されており、
前記集電側基準インダクタンス素子と前記第1の集電側インダクタンス素子との間には、前記集電側基準インダクタンス素子と前記第1の集電側インダクタンス素子との接続状況を切り替えるスイッチング素子が配置された、
請求項2に記載の発電システム。 - 前記第1の集電側インダクタンス素子と前記第2の集電側インダクタンス素子とは直列に接続されており、
前記第1の集電側インダクタンス素子と前記第2の集電側インダクタンス素子との間には、前記第1の集電側インダクタンス素子と前記第2の集電側インダクタンス素子との接続状況を切り替えるスイッチング素子が配置された、
請求項3に記載の発電システム。 - 前記集電閉回路は、前記第1の集電側インダクタンス素子において発生した誘導起電力と、前記集電側基準インダクタンス素子において発生した誘導起電力と、を出力する出力端子を更に含む、
請求項2に記載の発電システム。 - 前記集電閉回路は、前記第1の集電側インダクタンス素子において発生した誘導起電力と、前記集電側基準インダクタンス素子において発生した誘導起電力と、を直流電力に変換する直流変換回路を更に含む、
請求項15に記載の発電システム。 - 前記集電閉回路は、前記第1の集電側インダクタンス素子において発生した誘導起電力と、前記第2の集電側インダクタンス素子において発生した誘導起電力と、を出力する出力端子を更に含む、
請求項3に記載の発電システム。 - 前記集電閉回路は、前記第1の集電側インダクタンス素子において発生した誘導起電力と、前記第2の集電側インダクタンス素子において発生した誘導起電力と、を直流電力に変換する直流変換回路を更に含む、
請求項17に記載の発電システム。 - 前記基準交流波発生源は、前記第1の集電側インダクタンス素子、及び前記第2の集電側インダクタンス素子の少なくとも一方において発生した誘導起電力を用いて前記基準交流電流を発生させる、
請求項3に記載の発電システム。 - 第1の発電素子と、前記第1の発電素子が出力した第1の直流電流を第1の交流電流に変換する第1の交流生成回路と、前記第1の交流電流から磁界を発生させる第1のモジュール側インダクタンス素子と、第1の位相情報取得回路と、第1の制御回路と、を含む第1の発電モジュールと、
前記第1のモジュール側インダクタンス素子との電磁結合により誘導起電力を発生させる第1の集電側インダクタンス素子を含む集電閉回路と、を含む発電システムの制御方法であって、
前記集電閉回路内を流れる基準交流電流が、前記第1の集電側インダクタンス素子を流れることにより、前記第1の集電側インダクタンス素子と電磁結合された前記第1のモジュール側インダクタンス素子が、前記第1の発電モジュール内において前記基準交流電流に応じた交流電流を発生させるステップと、
前記第1の制御回路が、前記第1の位相情報取得回路を介して前記基準交流電流に関する位相情報を取得するステップと、
前記第1の制御回路が、前記位相情報に応じて前記第1の交流生成回路を制御するステップと、を含む、
発電システムの制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18844271.9A EP3667864B1 (en) | 2017-08-10 | 2018-07-27 | Power generation system and power generation system control method |
CN201880051977.2A CN111033941B (zh) | 2017-08-10 | 2018-07-27 | 发电系统和发电系统的控制方法 |
JP2019535108A JP6761906B2 (ja) | 2017-08-10 | 2018-07-27 | 発電システム及び発電システムの制御方法 |
US16/638,001 US10958078B2 (en) | 2017-08-10 | 2018-07-27 | Power generation system and power generation system control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-155958 | 2017-08-10 | ||
JP2017155958 | 2017-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019031276A1 true WO2019031276A1 (ja) | 2019-02-14 |
Family
ID=65271608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/028286 WO2019031276A1 (ja) | 2017-08-10 | 2018-07-27 | 発電システム及び発電システムの制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10958078B2 (ja) |
EP (1) | EP3667864B1 (ja) |
JP (1) | JP6761906B2 (ja) |
CN (1) | CN111033941B (ja) |
WO (1) | WO2019031276A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004203178A (ja) * | 2002-12-25 | 2004-07-22 | Murata Mach Ltd | 給電設備及び給電設備の定電流電源ユニットの接続方法 |
JP2010220301A (ja) * | 2009-03-13 | 2010-09-30 | Riso Kagaku Corp | 給電装置 |
US20120019074A1 (en) * | 2011-09-29 | 2012-01-26 | Sunlight Photonics Inc. | Methods and apparatus for high-frequency electrical power collection and transfer |
WO2012046452A1 (ja) | 2010-10-08 | 2012-04-12 | パナソニック株式会社 | 発電システムおよび発電ユニット |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5764032B2 (ja) | 2011-03-03 | 2015-08-12 | 株式会社アドバンテスト | ワイヤレス給電装置、受電装置および給電システム |
US9263971B2 (en) * | 2011-12-16 | 2016-02-16 | Empower Micro Systems Inc. | Distributed voltage source inverters |
US9876535B2 (en) * | 2013-02-21 | 2018-01-23 | Qualcomm Incorporated | Modular inductive power transfer power supply and method of operation |
-
2018
- 2018-07-27 EP EP18844271.9A patent/EP3667864B1/en active Active
- 2018-07-27 WO PCT/JP2018/028286 patent/WO2019031276A1/ja unknown
- 2018-07-27 JP JP2019535108A patent/JP6761906B2/ja active Active
- 2018-07-27 US US16/638,001 patent/US10958078B2/en active Active
- 2018-07-27 CN CN201880051977.2A patent/CN111033941B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004203178A (ja) * | 2002-12-25 | 2004-07-22 | Murata Mach Ltd | 給電設備及び給電設備の定電流電源ユニットの接続方法 |
JP2010220301A (ja) * | 2009-03-13 | 2010-09-30 | Riso Kagaku Corp | 給電装置 |
WO2012046452A1 (ja) | 2010-10-08 | 2012-04-12 | パナソニック株式会社 | 発電システムおよび発電ユニット |
US20120019074A1 (en) * | 2011-09-29 | 2012-01-26 | Sunlight Photonics Inc. | Methods and apparatus for high-frequency electrical power collection and transfer |
Non-Patent Citations (1)
Title |
---|
See also references of EP3667864A4 |
Also Published As
Publication number | Publication date |
---|---|
US20200220356A1 (en) | 2020-07-09 |
EP3667864A1 (en) | 2020-06-17 |
JP6761906B2 (ja) | 2020-09-30 |
US10958078B2 (en) | 2021-03-23 |
EP3667864A4 (en) | 2021-01-13 |
CN111033941A (zh) | 2020-04-17 |
CN111033941B (zh) | 2023-12-22 |
JPWO2019031276A1 (ja) | 2020-01-09 |
EP3667864B1 (en) | 2022-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8053930B2 (en) | Solar power plant | |
EP2208236B1 (en) | High efficiency remotely controllable solar energy system | |
CN109842369B (zh) | 串联连接的逆变器 | |
EP2569847B1 (en) | Uninterruptible power supply systems and methods using isolated interface for variably available power source | |
TWI713291B (zh) | 用於將電力提供至一負載之系統及方法 | |
US20140333141A1 (en) | Photovoltaic (pv)-based ac module and solar systems therefrom | |
KR20140119710A (ko) | 별도의 dc 소스를 갖는 적층 전압원 인버터 | |
KR20130124772A (ko) | 전력변환 시스템 및 전력변환 방법과, 그 시스템을 제어하는 장치 및 방법 | |
AU2013206703A1 (en) | Power converter module, photovoltaic system with power converter module, and method for operating a photovoltaic system | |
JP2010225776A (ja) | 太陽光発電システム | |
EP3117500B1 (en) | Method and apparatus for obtaining electricity from offshore wind turbines | |
KR20160129265A (ko) | 태양광 컨버터 및 에너지 저장 컨버터를 이용한 계통 연계형 통합 장치 | |
KR20160129266A (ko) | 태양광 컨버터, 에너지 저장 컨버터 및 풍력 컨버터를 이용한 계통 연계형 통합 장치 | |
CN104620492A (zh) | 用于控制能量存储装置的耦合装置的方法和能量供应系统 | |
KR20120004202A (ko) | 풍력발전장치의 대기전력 공급장치 | |
Dhople et al. | A global maximum power point tracking method for PV module integrated converters | |
US8575781B2 (en) | Photovoltaic inverter with option for switching between a power supply system with a fixed frequency and a load variable frequency | |
JP6761906B2 (ja) | 発電システム及び発電システムの制御方法 | |
CN103814514A (zh) | 逆变器的输入线路的电位限定 | |
US11770063B2 (en) | Power inverter with voltage control circuitry | |
Venkatramanan et al. | Power Conversion Technologies for High-Performance AC Micro-grid | |
AU2016286182B2 (en) | Energy management system for an energy generation system | |
KR101737970B1 (ko) | 하이브리드 수배전반 | |
JP6169259B2 (ja) | 改良型ゲートウェイモジュールを備える電気設備 | |
CN106505945B (zh) | 用于操作光伏系统的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18844271 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019535108 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018844271 Country of ref document: EP Effective date: 20200310 |