WO2019022408A1 - Secondary battery copper foil, manufacturing method therefor, and secondary battery comprising same - Google Patents
Secondary battery copper foil, manufacturing method therefor, and secondary battery comprising same Download PDFInfo
- Publication number
- WO2019022408A1 WO2019022408A1 PCT/KR2018/007724 KR2018007724W WO2019022408A1 WO 2019022408 A1 WO2019022408 A1 WO 2019022408A1 KR 2018007724 W KR2018007724 W KR 2018007724W WO 2019022408 A1 WO2019022408 A1 WO 2019022408A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper foil
- secondary battery
- sbr
- layer
- electrolytic copper
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a copper foil for a secondary battery, a method of manufacturing the same, and a secondary battery including the same. More particularly, the present invention relates to a copper foil for a secondary battery, The present invention relates to an electro-deposited copper foil having good performance as a battery-use copper foil, a production method thereof, and a secondary battery comprising the same.
- This application claims priority to Korean Patent Application No. 10-2017-0094256 filed on July 25, 2017 and Korean Patent Application No. 10-2018-0075894 filed on June 29, 2018 , The disclosure of which is incorporated herein by reference in its entirety.
- the secondary battery has a structure including a positive electrode and a negative electrode arranged with a separator interposed therebetween, and the positive electrode has a structure in which a positive electrode active material is attached to a positive electrode current collector, and the negative electrode has a negative electrode active material Structure.
- Electrolytic copper foil is mainly used as the material of the anode current collector. Electrolytic copper foil is used in almost all manufacturers because of its easiness to cope with phase stability, wide response, purity and long winding among various substances used as an anode current collector.
- electrolytic copper is oxidized from the moment it is exposed to the atmosphere in the electrolytic cell. This oxidation produces CuO and CuO 2 , which not only act as an impediment to electrical properties but also cause apparent problems. Therefore, conventionally, chromium components as rust prevention elements and surface modification elements of electrolytic copper foil have been widely used through chromium plating or chromate treatment. In particular, the chromate treatment has been used in most of electrolytic copper foils in the market in recent years. When the chromium component is present as a chromium compound, the oxidation number is trivalent or hexavalent. Toxicity to living organisms is much higher than that of hexavalent chromium, and mobility in soil is also high for hexavalent chromium compounds.
- EU European Union
- ELV Wood Vehicle Disposal Directive
- rust-preventive layer Metal components other than copper treated on the surface of the electrolytic copper foil are generally used to protect the electrolytic copper foil from atmospheric oxidation to secure long-term preservability, as called a rust-preventive treatment layer (rust-preventive layer).
- rust-preventive layer Metal components other than copper treated on the surface of the electrolytic copper foil are generally used to protect the electrolytic copper foil from atmospheric oxidation to secure long-term preservability
- rust-preventive layer a rust-preventive treatment layer
- the adhesion to the negative electrode active material layer is greatly influenced after being processed into the negative electrode collector.
- the electrodeposited copper foil has very good hydrophilic properties, but has a limit in adhesion to the negative electrode active material layer.
- This method must be accompanied by the solution of battery capacity / cost / equipment investment and adversely affects the overall yield and fairness due to the increase in process control factors.
- the present invention has been made to overcome the above problems, and it is an object of the present invention to provide a method for manufacturing a negative electrode, which is excellent in oxidation resistance without using chromium, And an excellent secondary battery copper foil.
- Another object of the present invention is to provide a method for producing such a copper foil for a secondary battery.
- Another object of the present invention is to provide a secondary battery using the copper foil for a secondary battery.
- a copper foil for a secondary battery according to the present invention is formed by forming a SBR (Styrene Butadiene Rubber) layer on the surface of an electrolytic copper foil.
- SBR Styrene Butadiene Rubber
- the SBR layer completely covers the surface of the electrolytic copper foil and is a continuous layer in the thickness direction, the width direction and the longitudinal direction.
- the SBR layer is formed on both surfaces of the electrolytic copper foil to prevent rusting, that is, to prevent rust.
- the electrolytic copper foil contains no chromium element as a rust-preventive surface treatment element.
- the SBR layer is directly coated on the electrolytic copper foil surface formed on the drum surface in an electrolytic bath without any other artificial treatment.
- the inventors of the present invention found that by positively using SBR as a rust-preventive treatment layer on the surface of an electrolytic copper foil, it is possible to secure excellent oxidation resistance even without employing a chromium-containing rust-preventive treatment layer such as chromate treatment, The present invention has been developed.
- Such a copper foil for a secondary battery can be applied to an anode current collector of a secondary battery.
- the thickness of the electrolytic copper foil may range from 3 mu m to 30 mu m.
- the thickness of the SBR layer may range from 0.5 [mu] m to 5 [mu] m.
- the electrolytic copper foil is electrodeposited on a drum in an electrolytic bath to produce the electrolytic copper foil, and while the electrolytic copper foil is taken out of the electrolytic bath, the electrolytic copper foil is wound on a bobbin can do.
- the SBR surface treatment section is provided with an SBR aqueous solution treatment tank and a hot-air drying furnace in an in-line manner.
- the SBR layer is preferably formed by coating an SBR aqueous solution in which SBR is dispersed in water at a concentration of 1 g / l to 10 g / l on the surface of the electrolytic copper foil and drying.
- the drying is performed in a temperature atmosphere of 160 ° C to 200 ° C.
- the copper foil for a secondary battery according to the present invention is applied as a negative current collector.
- the secondary battery includes an electrode assembly including an anode, a cathode, and a separator.
- the negative electrode is formed on the current collector with a negative electrode active material layer including a negative electrode active material, a conductive material and a binder.
- the content of the binder may be 1 to 15 wt% based on the total weight of the negative electrode active material layer.
- the binder may be SBR.
- the negative electrode may consist of an electrolytic copper foil, an SBR layer, and a negative active material layer.
- the copper foil for a secondary battery according to the present invention has a SBR layer formed as a rust-preventive treatment layer.
- the copper foil for a secondary battery having such a rust-preventive treatment layer has an advantage that chromium is not used in the rust-preventive treatment layer of the electrolytic copper foil and no harmful substance is used.
- the copper foil for a secondary battery according to the present invention exhibits the same or higher performance than a copper foil subjected to a conventional chromate treatment.
- the surface roughness is similar to that of the conventional electrolytic copper foil, and when the copper foil for a secondary battery according to the present invention is used as a negative electrode collector of a secondary battery, the secondary battery manufacturing process is not changed , And the adhesion between the negative electrode current collector and the negative electrode active material layer is 40 to 70% higher than that of the conventional electrolytic copper foil.
- the present specification describes only the rust-preventive treatment layer
- the presence of the rust-preventive treatment layer improves the adhesion to the negative electrode active material layer. Therefore, there is no need to form a primer coating layer which is to be additionally formed to improve adhesion with the anode active material layer in the case of electrolytic copper foil which has been subjected to the conventional chromate anticorrosion treatment.
- the SBR layer included in the copper foil for a secondary battery according to the present invention functions not only as an anti-rust treatment layer, but also as an adhesive layer that provides excellent adhesion with the negative electrode active material layer. Accordingly, the SBR layer included in the copper foil for a secondary battery according to the present invention may be referred to as an SBR composite functional layer.
- the amount of the binder in the anode active material slurry can be reduced.
- a portion where the binder is moved to the surface of the negative electrode active material layer during drying after coating the negative electrode active material causes a weakening of the adhesive force between the negative electrode active material and the negative electrode active material layer, and the binder content in the negative electrode active material slurry is increased in order to minimize this.
- the SBR layer included in the secondary battery battery copper foil of the present invention can minimize the movement of the binder in the negative electrode active material layer and ultimately reduce the amount of the binder in the negative electrode active material slurry and increase the amount of the negative electrode active material, Effect.
- the present invention not only is it superior in oxidation resistance, but it also has physical properties such as excellent adhesion with the negative electrode active material layer after being processed into the negative electrode collector, and the capacity of the secondary battery is also increased It is possible to provide a copper foil for a secondary battery.
- the copper foil for a secondary battery according to the present invention can be formed by immersing an electrolytic copper foil in an SBR aqueous solution as an antirust treatment layer. Therefore, the process management set in the existing electrolytic copper foil manufacturing process is not complicated and the management cost is not increased.
- FIG. 1 is a cross-sectional view showing a copper foil for a secondary battery according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view of a negative electrode manufactured using the copper foil for a secondary battery of FIG.
- FIG. 3 is an exploded perspective view schematically showing a configuration of a secondary battery according to an embodiment of the present invention.
- FIG. 4 is a perspective view of a secondary battery according to an embodiment of the present invention.
- FIG. 5 is a schematic view of an apparatus for performing a method of manufacturing a copper foil for a secondary battery according to an embodiment of the present invention.
- Figure 6 is a side schematic view of the Figure 5 apparatus.
- Fig. 7 shows an SBR aqueous solution treatment section which can be included in the Fig. 5 apparatus.
- the secondary battery refers to a lithium secondary battery.
- the lithium secondary battery is generally referred to as a secondary battery in which lithium ions act as working ions during charging and discharging to cause an electrochemical reaction between the positive electrode and the negative electrode.
- the secondary battery should be interpreted as being included in the category of the lithium secondary battery.
- the copper foil for a secondary battery of the present invention is applicable to a secondary battery other than a lithium secondary battery. Therefore, even if the working ion is not lithium ion, any kind of secondary battery to which the technical idea of the present invention can be applied should be interpreted as falling within the scope of the present invention.
- the secondary battery is not limited by the number of elements constituting it.
- the secondary battery may be a single cell assembly including a single cell including a positive electrode / separator / negative electrode assembly and an electrolyte in one battery case, a module in which a plurality of assemblies are connected in series and / or in parallel, / RTI > and / or parallel connected packs, a plurality of packs connected serially and / or in parallel, and the like.
- FIG. 1 a copper foil for a secondary battery according to an embodiment of the present invention will be described.
- FIG. 1 is a cross-sectional view showing a copper foil for a secondary battery according to an embodiment of the present invention.
- the copper foil 100 for a secondary battery according to an embodiment of the present invention shown in FIG. 1 is preferably used as a negative electrode collector of a secondary battery. That is, in the secondary battery, it is preferable to be used as an anode current collector coupled with the anode active material.
- the copper foil 100 for a secondary battery includes an SBR layer 20 formed on the surface of an electrolytic copper foil 10.
- the SBR layer 20 is formed on both surfaces of the electrolytic copper foil 10 and functions to prevent rusting.
- the SBR layer 20 is formed in the form of a continuous film without exposing a part of the electrolytic copper foil 10 evenly and uniformly on the surface of the electrolytic copper foil 10 in the form of a film. Therefore, the SBR layer 20 completely covers the surface of the electrolytic copper foil 10 and is a continuous layer in the thickness direction, the width direction, and the length direction. There is no other layer formed intentionally between the electrolytic copper foil 10 and the SBR layer 20. [ That is, the SBR layer 20 is formed directly on the surface of the electrolytic copper foil 10 without forming a layer such as a chromate treatment. For example, the surface of the electrolytic copper foil 10 formed on the surface of the drum in the electrolytic bath is directly coated with the SBR layer 20 without any other artificial treatment.
- the thickness of the electrolytic copper foil 10 is approximately 3 mu m to 30 mu m.
- the thickness of the electrolytic copper foil 10 is too thin to be less than about 3 ⁇ , handling in the secondary battery manufacturing process becomes difficult and the workability may be lowered. Conversely, when the thickness of the electrolytic copper foil 10 is about 30 ⁇ There is a problem that it becomes difficult to manufacture a secondary battery of a high capacity due to an increase in volume due to the thickness of the negative electrode collector when the negative electrode collector is used.
- the SBR layer 20 is formed on the surface of the electrolytic copper foil 10 for anti-corrosive treatment of the electrolytic copper foil 10. Further, the SBR layer 20 can not only provide anti-rust properties to the electrolytic copper foil 10 but also play a role of imparting a binding force increasing property to the negative electrode active material.
- the thickness of the SBR layer 20 may range from 0.5 [mu] m to 5 [mu] m. When the thickness of the SBR layer 20 is less than 0.5 ⁇ ⁇ , it is insufficient to obtain a desired degree of oxidation resistance and adhesion. If it is more than 5 mu m, the amount occupied by the SBR layer 20 relatively increases, which is not good for the battery capacity and can act as a resistance.
- the tensile strength and elongation of the secondary battery copper foil 100 are mainly determined by the tensile strength and elongation of the electrolytic copper foil 10 and the tensile strength and elongation of the electrolytic copper foil 10 are not lowered due to the formation of the SBR layer 20.
- the tensile strength of the secondary battery copper foil 100 may be 30 kgf / mm 2 to 35 kgf / mm 2 , but the SBR layer 20 is formed on the basis of all the electrolytic copper foil, regardless of the tensile strength of the electrolytic copper foil 10 Can be manufactured by further forming.
- the elongation of the electrolytic copper foil is usually about 5% to 20%, so that the copper foil 100 for a secondary battery manufactured from such electrolytic copper foil can have a similar degree of elongation.
- the elongation may be from 16% to 18%.
- Such a tensile strength and elongation can prevent breakage and deformation at the time of manufacturing the copper foil for a secondary battery, and enable a proper level of handling even when the negative electrode active material slurry is coated to be a negative electrode.
- the surface roughness of both surfaces of the secondary battery copper foil 100 is approximately 0.2 ⁇ to 2.5 ⁇ on the basis of Rz (ten point average roughness). If the surface roughness is less than about 0.2 ⁇ , adhesion between the copper foil 100 for a secondary battery and the negative electrode active material is deteriorated. If the adhesion between the copper foil 100 for a secondary battery and the negative electrode active material deteriorates, The risk of the desorption phenomenon is increased.
- the uniform coating of the negative electrode active material on the surface of the copper foil 100 for the secondary battery can not be performed due to the high roughness, so that the adhesion may be lowered.
- the discharge capacity retention rate of the produced secondary battery may be lowered.
- the surface roughness of both surfaces of the copper foil 100 for a secondary battery is 0.835 ⁇ to 1.115 ⁇ .
- the electrolytic copper foil 10 is different in roughness from the surface (drum contact surface) on the side contacting the drum to the side (air exposed surface) side exposed to the air on the opposite side.
- the surface roughness of the drum contact surface is larger than the surface roughness of the air exposure surface.
- the surface roughness of the drum contact surface may be, for example, 0.84 mu m and the surface roughness of the air exposed surface may be 1.09 mu m, for example.
- the copper foil 100 for a secondary battery having the SBR layer 20 is advantageous in that it does not use chromium in the rust preventive treatment layer of the electrolytic copper foil 10 and does not use harmful substances.
- the copper foil 100 for a secondary battery according to an embodiment of the present invention exhibits the same or higher performance than the electrolytic copper foil subjected to the conventional chromate treatment. In addition to the mechanical properties such as tensile strength and elongation, surface roughness is similar to that of a conventional electrolytic copper foil.
- the copper foil for a secondary battery according to the present invention is used as an anode current collector for a secondary battery, Do not.
- the copper foil 100 for a secondary battery according to the present invention may have an adhesive force with respect to the negative electrode active material layer.
- the adhesion strength between the negative electrode active material layer and the negative electrode active material layer may vary depending on the amount of the binder in the negative electrode active material layer. May be 20 gf to 30 gf.
- the adhesion force is as low as 40 to 70% of the adhesive strength level of the present invention.
- the present specification describes only the rust-preventive treatment layer
- the presence of the rust-preventive treatment layer improves the adhesion to the negative electrode active material layer. Therefore, in the present invention, there is no need to form a primer coating layer which is to be additionally formed for improving adhesion with the anode active material layer in the case of electrolytic copper foil which has been subjected to the conventional chromate anticorrosion treatment.
- the SBR layer 20 provided in the secondary battery-use copper foil 100 functions not only as an anti-rust treatment layer, but also as an adhesive layer that provides excellent adhesion with the negative electrode active material layer. Therefore, the SBR layer 20 provided in the secondary battery copper foil 100 may be referred to as an SBR composite functional layer.
- FIG. 2 is a cross-sectional view of a negative electrode manufactured using the copper foil for a secondary battery of FIG.
- the negative electrode 150 includes a negative electrode active material layer 110 formed on the copper foil 100 for a secondary battery.
- the negative electrode active material layer 110 includes a negative electrode active material 120, for example, graphite, a conductive material 130 and a binder 140.
- the negative electrode active material 120 may include one or more carbon selected from the group consisting of crystalline artificial graphite, crystalline natural graphite, amorphous hard carbon, low crystalline soft carbon, carbon black, acetylene black, graphene, Li x Fe 2 O 3 (0? X? 1), Li x WO 2 (0? X? 1), Sn x Me 1 - x Me y y z (Me: Mn, Fe , Pb, Ge; Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, Halogen; 0? X? 1; 1? Y?
- Metal complex oxides Lithium metal; Lithium alloy; Silicon-based alloys; Tin alloy; SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4, And Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials; Titanium oxide; Lithium titanium oxide, and the like, but the present invention is not limited thereto.
- the conductive material 130 is not particularly limited as long as it has electrical conductivity without causing any chemical change in the secondary battery.
- graphite such as natural graphite or artificial graphite
- Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black
- Conductive fibers such as carbon fiber and metal fiber
- Metal powders such as carbon fluoride, aluminum, and nickel powder
- Conductive whiskers such as zinc oxide and potassium titanate
- Conductive metal oxides such as titanium oxide
- Conductive materials such as polyphenylene derivatives and the like can be used.
- acetylene black series such as Chevron Chemical Company, Denka Singapore Private Limited and Gulf Oil Company products
- EC series Armak Company Vulcan XC-72 (from Cabot Company)
- Super P from Timcal
- the negative electrode active material layer 110 is prepared by coating a negative electrode active material slurry containing the negative electrode active material 120, the conductive material 130 and the binder 140 on the copper foil 100 for a secondary battery and drying the same.
- a filler may be selectively added to the negative electrode active material slurry as a component for suppressing the expansion of the electrode.
- Such a filler is not particularly limited as long as it is a fibrous material without causing any chemical change in the secondary battery, and examples thereof include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.
- viscosity modifier may be added up to 30% by weight based on the total weight of the negative electrode active material slurry, as a component for adjusting the viscosity of the negative electrode active material slurry so that the mixing process of the negative electrode active material slurry and the coating process thereof are easy.
- viscosity modifiers include, but are not limited to, CMC and polyvinylidene fluoride.
- the easiest method for realizing a high capacity in a secondary battery is to place a large amount of electrode active material on a current collector.
- this method if a certain level of electrode adhesion is not secured, And the secondary cell performance and stability may be deteriorated.
- electrode active materials, conductive materials, and current collectors constituting the electrode are solid at room temperature, have different surface characteristics and are difficult to easily bond at room temperature.
- a polymeric binder is used, So that the desorption phenomenon of the electrode can be suppressed during the electrode coating, drying and rolling processes.
- the binder contained in the slurry state moves in the direction in which the solvent is volatilized (the direction far from the current collector) due to the temperature condition of Tg or more of the binder, There is a problem that the adhesive force between the electrode current collector and the electrode active material is weakened.
- the adhesion between the copper foil 100 for a secondary battery and the anode active material layer 110 according to an embodiment of the present invention may be 20 gf to 30 gf, which is 40 to 70% higher than that of a conventional electrolytic copper foil.
- the SBR layer 20 of the secondary battery 100 can minimize the movement of the binder 140 in the anode active material layer 110, and ultimately reduce the binder 140 in the anode active material slurry, And the capacity of the secondary battery including the cathode 150 is increased.
- the SBR layer 20 maximizes the bonding between the anode active material 120 and the electrolytic copper foil 10, even if the content ratio of the binder 140 is reduced, a much higher level of adhesive force than conventionally can be obtained. It is possible to use a binder in an amount that is much smaller than the amount of the binder necessary for obtaining the adhesive force, thereby achieving an effect of reducing the cost and exhibiting an effect beyond a certain level in terms of the capacity and conductivity of the electrode.
- the copper foil 100 for a secondary battery has an SBR layer 20 and thus has good adhesion to the anode active material layer 110. Therefore, when the copper foil 100 for a secondary battery is used as an anode current collector, the amount of the binder 140 in the anode active material slurry can be reduced. When the content of the binder 140 is too high, the resistance of the electrode is increased to deteriorate the characteristics of the battery. As the content of the electrode active material and the conductive material is relatively lowered, the capacity and conductivity of the electrode are lowered , Which is undesirable.
- the amount of the binder 140 may be in the range of 1 to 15% by weight based on the total weight of the anode active material layer 110, since sufficient adhesion can be secured even if the amount of the binder 140 is reduced. If the content of the binder 140 is less than 1% by weight, the effect of the addition of the binder 140 is insignificant. If the content of the binder 140 is more than 15% by weight, it is not preferable from the viewpoint of the capacity and conductivity of the cathode 150.
- the conductive material 130 may be present in an amount of 20 to 100 parts by weight based on 100 parts by weight of the binder 140. If the amount of the conductive material 140 is less than 20 parts by weight, the desired degree of conductivity can not be obtained. If the amount of the conductive material 140 is more than 100 parts by weight, the content of the negative electrode active material 120 decreases, Which is undesirable.
- the cathode 150 includes the SBR layer 20, the anode 150 may have excellent adhesion with the anode active material layer 110. Therefore, it is not necessary to coat the electrolytic copper foil with a carbon layer as a primer or multilayering the active material coating layer by a double layer method to solve the adhesive force, and the cathode 150 is formed of the electrolytic copper foil 10, the SBR layer 20, Can be formed only of the active material layer 110 and can have a very simple and simple structure and a manufacturing process.
- the anode active material layer 110 is formed on one surface of the secondary battery 100, the anode active material layer 110 is formed on both surfaces of the secondary battery battery 100 The case is also possible.
- the secondary battery according to the present invention can be manufactured in the same or similar form as a known secondary battery by including the cathode 150 as a battery element.
- the secondary battery according to the present invention includes the cathode 150 and a corresponding anode, and a separator is interposed between the cathode 150 and the anode 150.
- the secondary battery according to the present invention includes a cathode, a cathode, a separator, and an electrolyte.
- the electrode assembly and the electrolyte having the interposed structure can be sealed in the battery case.
- FIG. 3 is an exploded perspective view schematically illustrating a configuration of a secondary battery according to an embodiment of the present invention
- FIG. 4 is a perspective view of a secondary battery according to an embodiment of the present invention.
- a secondary battery 190 is a pouch type battery including an electrode assembly 180 and a pouch 185.
- the electrode assembly 180 is configured such that the cathode 150 and the anode 160 are opposed to each other and a separation membrane 155 is interposed between the cathode 150 and the anode 160.
- Such an electrode assembly 180 may be configured as a stacked, stacked, folded, or jelly roll type.
- the negative electrode 150 is formed as a structure in which the negative electrode current collector is coated with the negative electrode active material slurry on the copper foil 100 for a secondary battery as described above.
- the anode 160 is also formed with a structure in which a cathode active material slurry is coated on a cathode current collector such as aluminum.
- An electrode tab corresponding to each electrode is formed on the non-coated portion, and a negative electrode lead 152 is formed on the negative electrode tab and a negative electrode lead is formed on the positive electrode lead, (162) is connected to the outside of the pouch (185).
- the pouch 185 is a battery case having a receptacle which is a concave space as indicated by R in the figure and which can accommodate at least a part of the electrode assembly 180 and an electrolyte such as an electrolyte have.
- the pouch 185 may be composed of an upper sheet T and a lower sheet B to facilitate insertion of the electrode assembly 180.
- the pouch 100 may be formed so as to accommodate both the upper sheet T and the lower sheet B, So that the portion R is formed.
- the upper sheet T and the lower sheet B may not be separated from each other, but may be connected to each other to form a unit sheet.
- the upper sheet T and the lower sheet B are each provided with a sealing portion S at the edge of the inner accommodating space and the sealing portions S are bonded to each other to seal the inner accommodating space have.
- a sealing tape 170 may further be provided between the upper sheet T and the lower sheet B to further improve adhesion to the leads 152 and 162.
- the pouch 185 seals the electrode assembly 180 and electrolyte contained therein, and protects the electrode assembly 180 from the outside.
- the present invention is not limited to the structure and the kind of the secondary battery according to the present invention, and the secondary battery according to the present invention is only required to use the copper foil for a secondary battery according to the present invention as an anode current collector.
- general matters relating to the secondary battery can be referred to the applicant's prior patent documents, and thus a detailed description thereof will be omitted.
- the process for manufacturing a copper foil for a secondary battery according to the present invention is carried out by constructing a process line by relatively simple modification such as removing a chromate treatment section of a process line for manufacturing an existing electrolytic copper foil and adding an SBR aqueous solution treatment tank .
- the electrolytic copper foil is electrodeposited on the drum in an electrolytic bath, and the electrolytic copper foil passes through the SBR surface treatment section and is wound on the bobbin while the electrolytic copper foil is taken out of the electrolytic bath. This will be described in detail below.
- FIG. 5 is a schematic view of an apparatus for performing a method of manufacturing a copper foil for a secondary battery according to an embodiment of the present invention.
- Figure 6 is a side schematic view of the Figure 5 apparatus.
- Fig. 7 shows an SBR aqueous solution treatment section which can be included in the Fig. 5 apparatus.
- the electrolytic copper foil 10 can be manufactured first by using the electrolytic copper foil manufacturing apparatus 300 in which the electrodes are placed.
- a copper sulfate electrolytic solution may be added to the electrolytic bath 200 and electrodeposited on the drum 210 by adjusting the current density ratio.
- the copper sulfate electrolyte typically has a copper concentration of 50 to 350 g / l and a sulfuric acid concentration of 50 to 200 g / l.
- Gelatin, gelatin, HEC (Hydroxyethyl Cellulose), and polyvinyl alcohol are added to the copper sulfate electrolyte to obtain the electrolytic copper foil 10 having the desired physical properties and to control the mechanical properties and the surface condition of the electrolytic copper foil 10, Sulfide compounds, polyethylene glycols, nitrides, and the like.
- the temperature of the copper sulfate electrolyte may be 40 to 70 ° C.
- the current density is adjusted according to various conditions such as the copper concentration, the sulfuric acid concentration, the liquid supply rate, the inter-pole distance, and the temperature of the copper sulfate electrolyte. (Copper plating in the form of layers) and roughening plating (copper plating in the form of a ball-shaped or needle-shaped or hoarfrost-shaped copper) ), And the current density at the boundary between them is defined as the limiting current density, and the current density is maintained within the limit of the normal plating.
- the current density may be between 10 and 80 A / dm < 2 >.
- the electrolytic copper foil 10 has good releasability with the drum 210 and is manufactured with excellent phase stability as an anode current collector of a secondary battery.
- the electrolytic copper foil 10 made in the electrolytic bath 200 of FIG. 5 can be wound on the bobbin 270 through the transfer part 250.
- the electrolytic copper foil 10 produced by the electrolytic plating proceeds from the moment when it is exposed to the atmosphere in the electrolytic bath 200.
- This oxidation produces CuO and CuO 2 , which not only act as an impediment to electrical properties but also cause apparent problems. Therefore, conventionally, a section for the chromate treatment was required in the middle of the transfer unit 250.
- an SBR surface treatment section 260 is added instead of the chromate treatment section.
- the electrolytic copper foil 10 made on the surface of the drum 210 in the electrolytic bath 200 passes through the SBR surface treatment section 260 while the surface or the back surface of the electrolytic copper foil 10,
- the SBR layer 20 is formed on the bobbin 270 to be a copper foil 100 for a secondary battery. Thereafter, the copper foil 100 for a secondary battery is cut to a required length, and then a negative electrode active material layer is formed to be used as a negative electrode.
- a method of forming the SBR layer 20 on the surface of the electrolytic copper foil 10 in the SBR surface treatment section 260 can be performed by coating the electrolytic copper foil 10 with an SBR aqueous solution and drying the SBR aqueous solution.
- the SBR aqueous solution may be a form in which the SBR is dispersed in an emulsion form, or a form in which some or all of the SBR is dissolved.
- the SBR content is determined at a level that determines the viscosity of the SBR aqueous solution in consideration of the possibility of mixing with water, the ease of coating, the shape maintenance after coating, and the like.
- An additive for viscosity control such as CMC may be further included.
- the SBR aqueous solution is diluted with SBR as a raw material, which is a solvent, to determine the application amount.
- the electrolytic copper foil 10 may be continuously processed so as to be taken out of the electrolytic bath 200, passed through the SBR surface treatment section 260, and wound around the bobbin 270. Alternatively, the electrolytic copper foil 10 may be wound on the bobbin 270 after a certain period of time in the SBR surface treatment section 260.
- Water is inexpensive and can be purchased more easily. In addition, water is more environmentally friendly and is generally easier to store and process. Accordingly, there is no difficulty in maintaining the SBR surface treatment section 260 compared to the conventional chromate treatment.
- the SBR aqueous solution may be left in a stirred state.
- the SBR aqueous solution may begin to cure and / or separate when left alone without stirring.
- the coating method may be spraying by spraying an SBR aqueous solution, coating in a coater, dipping, or shedding.
- the SBR aqueous solution treatment tank 262 is shown in Fig. 7 as an example of immersion.
- an SBR aqueous solution in which SBR is dispersed in water at a concentration of 1 g / l to 10 g / l is contained in the SBR aqueous solution treatment tank 262, and the electrolytic copper foil 10 is immersed in the SBR aqueous solution treatment tank 262 . Then, the electrolytic copper foil 10 treated with the SBR aqueous solution is dried to form the SBR layer 20 on the surface of the electrolytic copper foil 10. At this time, it is preferable to install the hot-air drying furnace 264 at the stage following the SBR aqueous solution treatment tank 262 in an in-line manner.
- the SBR aqueous solution coated on the surface of the electrolytic copper foil 10 may be dried by directly contacting hot air.
- Box type, and tunnel type drying furnace, and infrared heat, high frequency heating, or heating by hot wire may be used as a heat source.
- the drying furnace 264 may be a linear hot air drying furnace, such as a halogen line heater.
- the drying is preferably performed in a temperature atmosphere of 160 ° C to 200 ° C. Further, it is preferable to continue the above-mentioned drying in a temperature atmosphere of 180 to 190 ⁇ for 30 to 240 minutes to obtain a baking effect together with drying beyond the concept of simple drying.
- baking is a process of increasing the adhesive force of the SBR layer 20 on the surface of the electrolytic copper foil 10, in addition to evaporation of water in the coated SBR aqueous solution, as well as tight bonding between the remaining SBRs, This also includes the meaning of relocation of materials and densification of the film for close bonding.
- the SBR layer 20 is formed in the form of a continuous film without exposing a part of the electrolytic copper foil 10 to the surface of the electrolytic copper foil 10 evenly and with a constant thickness in the form of a film And defects such as fine cracks and pin holes do not occur.
- a commercially available electrolytic copper foil (comparative example) having a thickness of 18 mu m and a copper foil (example) sample for a secondary battery according to the present invention were prepared, and mechanical properties, surface roughness and adhesive strength were measured.
- the sample was formed by coating an SBR aqueous solution in which SBR was dispersed in water at a concentration of 5 g / l on the surface of an electrolytic copper foil having a thickness of 18 ⁇ and drying it.
- the thickness of the SBR layer after drying was approximately 2 mu m.
- the specimens were cut out from each copper foil using a tensile punching machine.
- the tensile strengths of the specimens were measured at 130 ° C for 10 minutes and then at room temperature for 5 minutes.
- Tensile strength was measured by using a UTM (Universal Test Machine) widely used for measuring mechanical properties, using INSTRON UTM equipment.
- the specimens were mounted on a UTM facility and subjected to TA (tension annealing) at a speed of 50 mm / min And the force at break was measured and then calculated.
- TA tension annealing
- the surface roughness and the adhesive force were measured for the drum contact surface and the air exposed surface of the electrolytic copper foil, respectively.
- the surface roughness was measured by a ten-point average calculation method using a surface roughness meter (Rz roughness).
- the ten-point average calculation method takes a reference length as a section curve and calculates a straight line that is parallel to the average line of the section and does not cut the cross-section curve transversely between the mountain peaks from the highest to the fifth and from the deepest to the fifth To indicate the difference of the average.
- an anode active material slurry was prepared, coated on each copper foil, and then dried at room temperature / high temperature, and evaluated before and after rolling.
- TA meter was used, and specimens with a length of 2.0 mm (W) x 152.4 mm (L) were produced.
- the anode active material layer was fixed on a slide glass using a double-sided tape, and the specimen was peeled off from the adherend and peeled to determine the state of adhesion (peel test). The pulling angle was varied between 90 ° and 180 °.
- Table 1 summarizes tensile strength, elongation, Rz roughness, and adhesion measurement results.
- the adhesive strength of the present invention is significantly increased compared with the conventional adhesive.
- the adhesive strength increased by 42.6% before rolling on the air-exposed surface, and the adhesion increased by 25.3% after the air-exposed surface was rolled.
- the adhesive force increased by 67.6% before rolling on the drum contact surface and increased by 54.8% after rolling on the drum contact surface. Therefore, according to the present invention, since the adhesive strength to the negative electrode active material layer is greatly improved, the amount of the binder in the negative electrode active material slurry can be reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
The present invention relates to: a secondary battery copper foil having excellent oxidation resistance, even without using chromium, and having excellent adhesion to an active material layer after being processed into an electrode collector; a method for manufacturing the secondary battery copper foil; and a secondary battery comprising the same. The secondary battery copper foil according to the present invention has a styrene-butadiene rubber (SBR) layer formed on the surface of an electrodeposited copper foil.
Description
본 발명은 이차전지용 동박(copper foil), 그 제조 방법 및 이를 포함하는 이차전지에 관한 것으로서, 더욱 상세하게는 녹방지(방청) 등의 표면 처리 원소로서 크롬 원소(Cr)를 함유하지 않아도, 이차전지용 동박으로서 양호한 성능을 구비하는 전해 동박(electro-deposited copper foil), 그 제조 방법 및 이를 포함하는 이차전지에 관한 것이다. 본 출원은 2017년 7월 25일자로 출원된 대한민국 특허출원 번호 제10-2017-0094256호 및 2018년 6월 29일자로 출원된 대한민국 특허출원 번호 제10-2018-0075894호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다. The present invention relates to a copper foil for a secondary battery, a method of manufacturing the same, and a secondary battery including the same. More particularly, the present invention relates to a copper foil for a secondary battery, The present invention relates to an electro-deposited copper foil having good performance as a battery-use copper foil, a production method thereof, and a secondary battery comprising the same. This application claims priority to Korean Patent Application No. 10-2017-0094256 filed on July 25, 2017 and Korean Patent Application No. 10-2018-0075894 filed on June 29, 2018 , The disclosure of which is incorporated herein by reference in its entirety.
근래에 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차전지에 대한 연구가 활발히 진행되고 있다. 현재 상용화된 이차전지 중에서 리튬 이차전지는 니켈 계열의 이차전지에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 인해 각광을 받고 있다. 2. Description of the Related Art In recent years, demand for portable electronic products such as notebook computers, video cameras, and portable telephones has rapidly increased, and electric vehicles, storage batteries for energy storage, robots, and satellites have been developed in earnest. Are being studied actively. Among the currently commercialized secondary batteries, lithium secondary batteries have been in the limelight due to their low charge and discharge, very low self-discharge rate, and high energy density because they have almost no memory effect compared with nickel-based secondary batteries.
일반적으로 이차전지는 분리막을 사이에 두고 배치된 양극 및 음극을 포함하는 구조를 가지며, 상기 양극은 양극 집전체에 양극 활물질이 부착된 구조를 가지고, 상기 음극은 음극 집전체에 음극 활물질이 부착된 구조를 갖는다. Generally, the secondary battery has a structure including a positive electrode and a negative electrode arranged with a separator interposed therebetween, and the positive electrode has a structure in which a positive electrode active material is attached to a positive electrode current collector, and the negative electrode has a negative electrode active material Structure.
리튬 이차전지에 있어서 음극 집전체의 소재로는 주로 전해 동박이 이용된다. 전해 동박은 음극 집전체로 이용되는 여러가지 물질 중에서도 상 안정성, 광폭 대응성, 순수성, 장권취 대응에 용이한 관계로, 거의 모든 제조사에서 채택하고 있다. In the lithium secondary battery, an electrolytic copper foil is mainly used as the material of the anode current collector. Electrolytic copper foil is used in almost all manufacturers because of its easiness to cope with phase stability, wide response, purity and long winding among various substances used as an anode current collector.
그런데 전해 동박은 전해조에서 대기로 노출되는 순간부터 산화가 진행된다. 이러한 산화는 CuO 및 CuO2를 만들고, 이는 전기적 특성을 저해하는 요소로 작용할 뿐 아니라, 외관상의 문제를 야기한다. 따라서, 종래부터 전해 동박의 녹방지 원소, 표면 개질 원소로서 크롬 성분이 크롬 도금 또는 크로메이트 처리를 통해 널리 사용되어 왔다. 특히, 크로메이트 처리는, 최근 시장에 있는 전해 동박의 대부분에 이용되고 있다. 크롬 성분은, 크롬 화합물로서 존재하는 경우에는 산화수가 3가(價) 또는 6가이다. 생물에 대한 독성은, 6가 크롬이 훨씬 높고, 또한 토양 중에서의 이동성도 6가 크롬 화합물이 크다. However, electrolytic copper is oxidized from the moment it is exposed to the atmosphere in the electrolytic cell. This oxidation produces CuO and CuO 2 , which not only act as an impediment to electrical properties but also cause apparent problems. Therefore, conventionally, chromium components as rust prevention elements and surface modification elements of electrolytic copper foil have been widely used through chromium plating or chromate treatment. In particular, the chromate treatment has been used in most of electrolytic copper foils in the market in recent years. When the chromium component is present as a chromium compound, the oxidation number is trivalent or hexavalent. Toxicity to living organisms is much higher than that of hexavalent chromium, and mobility in soil is also high for hexavalent chromium compounds.
그 때문에, EU(유럽연합) ELV(폐자동차처리지침)에서는, EU 시장에서 등록되는 신차에 대해 납, 6가 크롬, 수은, 카드뮴의 환경 부하 물질의 사용을 2003년 7월 1일 이후 금지하는 안이 채택되어, 3가 크롬의 적극적인 사용이 제창되고 있다. 또한, 최근의 환경 문제에 대한 의식의 고양으로부터, 3가 크롬을 사용하여도 폐기 처리를 잘못하면 6가 크롬으로 전화(轉化)되거나, 분석 수법이 틀리면 6가 크롬이라고 판단될 우려도 있다. 이와 같은 문제를 감안하여, 크롬이라고 하는 성분 자체를 사용하지 않는 전해 동박을 개발할 필요가 있다.As a result, EU (European Union) ELV (Waste Vehicle Disposal Directive) prohibits the use of environmentally hazardous substances such as lead, hexavalent chrome, mercury and cadmium in new vehicles registered in the EU market after July 1, 2003 And the active use of trivalent chromium is being promoted. In addition, from the heightened awareness of the recent environmental problems, there is a concern that even if trivalent chromium is used, it is converted to hexavalent chromium if the waste treatment is carried out incorrectly, or if the analysis method is wrong, it may be judged as hexavalent chromium. In view of such a problem, it is necessary to develop an electrolytic copper foil which does not use a component called chromium itself.
전해 동박의 표면에 처리되는 구리 이외의 금속 성분은, 일반적으로 녹방지 처리층(방청층)이라고 부르는 바와 같이, 전해 동박을 대기 산화로부터 보호하여 장기 보존성을 확보하기 위해 사용한다. 그런데, 이 녹방지 처리층의 종류에 따라, 음극 집전체로 가공한 이후에 음극 활물질층과의 접착력에도 큰 영향을 미친다.Metal components other than copper treated on the surface of the electrolytic copper foil are generally used to protect the electrolytic copper foil from atmospheric oxidation to secure long-term preservability, as called a rust-preventive treatment layer (rust-preventive layer). However, depending on the kind of the rust-preventive treatment layer, the adhesion to the negative electrode active material layer is greatly influenced after being processed into the negative electrode collector.
전해 동박의 녹방지 처리층 개발과 별개로, 이차전지 전극 제조공정에서의 연구도 진행 중이다. 전해 동박은 매우 우수한 친수성 성질을 띄고 있으나, 음극 활물질층과의 접착력에 많은 한계를 가지고 있다. 이를 회피하기 위해 현재 음극 활물질 슬러리 구성시 바인더의 함량을 증가시키거나, 탄소층을 프라이머(primer)로서 전해 동박에 코팅하거나, 이중층(double layer)이라는 공법을 통해 음극 활물질 코팅층을 다층화하여 접착력을 해결하는 기술들이 적용 중에 있다. 이러한 방법은 전지 용량/비용/설비투자 등의 해결이 반드시 수반되어야 하며, 공정 관리 요소가 증가하는 관계로, 전체적인 수율 및 공정성에 악영향을 주게 된다.Apart from the development of the antirust treatment layer of the electrolytic copper foil, research in the secondary cell electrode manufacturing process is underway. The electrodeposited copper foil has very good hydrophilic properties, but has a limit in adhesion to the negative electrode active material layer. In order to avoid this problem, it is necessary to increase the content of the binder in the current active material slurry composition, to coat the carbon layer with the electrolytic copper foil as a primer, or to make the anode active material coating layer multilayer by the double layer method Are being applied. This method must be accompanied by the solution of battery capacity / cost / equipment investment and adversely affects the overall yield and fairness due to the increase in process control factors.
따라서, 전해 동박의 녹방지 처리층에 크롬을 사용하지 않아도 방청성, 내산화성을 가지고, 음극 집전체로 가공한 이후에 음극 활물질층과의 접착력이 우수한 이차전지용 동박에 관한 필요성이 크다.Therefore, there is a great need for a copper foil for a secondary battery which is excellent in adhesion to the negative electrode active material layer after being processed into an anode current collector, which has antirust properties and oxidation resistance without using chromium in the rust preventive treatment layer of the electrolytic copper foil.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 본 발명이 해결하고자 하는 과제는, 크롬을 사용하지 않아도 내산화성이 우수하고, 음극 집전체로 가공한 이후에 음극 활물질층과의 접착력이 우수한 이차전지용 동박을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made to overcome the above problems, and it is an object of the present invention to provide a method for manufacturing a negative electrode, which is excellent in oxidation resistance without using chromium, And an excellent secondary battery copper foil.
본 발명이 해결하고자 하는 다른 과제는 이러한 이차전지용 동박을 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing such a copper foil for a secondary battery.
본 발명이 해결하고자 하는 또 다른 과제는 이러한 이차전지용 동박을 이용한 이차전지를 제공하는 것이다. Another object of the present invention is to provide a secondary battery using the copper foil for a secondary battery.
다만, 본 발명이 해결하고자 하는 과제는 상술한 과제에 한정되지 않으며, 위에서 언급되지 않은 또 다른 기술적 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.It is to be understood, however, that the present invention is not limited to the above-described problems, and other technical objects not mentioned above may be clearly understood by those skilled in the art from the following description of the present invention.
상기와 같은 과제를 해결하기 위한 본 발명에 따른 이차전지용 동박은 전해 동박 표면에 SBR(Styrene Butadiene Rubber; 스티렌 부타디엔 고무)층이 형성된 것이다. In order to solve the above problems, a copper foil for a secondary battery according to the present invention is formed by forming a SBR (Styrene Butadiene Rubber) layer on the surface of an electrolytic copper foil.
상기 SBR층은 상기 전해 동박 표면을 완전히 피복하며 두께방향, 너비방향 및 길이방향으로 연속적인 층이다.The SBR layer completely covers the surface of the electrolytic copper foil and is a continuous layer in the thickness direction, the width direction and the longitudinal direction.
상기 SBR층은 상기 전해 동박의 양면에 형성되며, 녹방지, 즉, 방청 기능을 한다. 그리고, 상기 전해 동박은 녹방지 표면 처리 원소로서 크롬 원소를 함유하지 않는다. The SBR layer is formed on both surfaces of the electrolytic copper foil to prevent rusting, that is, to prevent rust. The electrolytic copper foil contains no chromium element as a rust-preventive surface treatment element.
상기 SBR층은, 전해조에서 드럼 표면에 만들어진 전해 동박 표면에 다른 인위적인 처리없이 곧바로 피복된 것이다.The SBR layer is directly coated on the electrolytic copper foil surface formed on the drum surface in an electrolytic bath without any other artificial treatment.
본건 발명자는, 전해 동박의 표면에 녹방지 처리층으로서 SBR을 적극적으로 사용함으로써, 크로메이트 처리 등의 크롬 함유 녹방지 처리층을 채용하지 않아도 우수한 내산화성을 확보하고, 나아가 음극 활물질층과의 접착력도 향상되는 점을 발견하여, 본 발명을 창안하기에 이르렀다. The inventors of the present invention found that by positively using SBR as a rust-preventive treatment layer on the surface of an electrolytic copper foil, it is possible to secure excellent oxidation resistance even without employing a chromium-containing rust-preventive treatment layer such as chromate treatment, The present invention has been developed.
이러한 이차전지용 동박은 이차전지의 음극 집전체로 적용될 수 있다.Such a copper foil for a secondary battery can be applied to an anode current collector of a secondary battery.
상기 전해 동박의 두께는 3㎛ 내지 30㎛ 범위일 수 있다. The thickness of the electrolytic copper foil may range from 3 mu m to 30 mu m.
상기 SBR층의 두께는 0.5㎛ 내지 5㎛ 범위일 수 있다. The thickness of the SBR layer may range from 0.5 [mu] m to 5 [mu] m.
또한, 본 발명에 따른 이차전지용 동박 제조 방법에 있어서, 전해조에서 드럼에 전착하여 상기 전해 동박을 제조하고 상기 전해조 밖으로 취출하는 동안 상기 전해 동박이 SBR 표면처리 구간을 통과해 보빈(bobbin)에 권취되도록 할 수 있다. 특히, 상기 SBR 표면처리 구간은 SBR 수용액 처리조 및 열풍 방식의 건조로를 인라인(in-line) 방식으로 설치한 것임이 바람직하다. In the method for manufacturing a copper foil for a secondary battery according to the present invention, the electrolytic copper foil is electrodeposited on a drum in an electrolytic bath to produce the electrolytic copper foil, and while the electrolytic copper foil is taken out of the electrolytic bath, the electrolytic copper foil is wound on a bobbin can do. Particularly, it is preferable that the SBR surface treatment section is provided with an SBR aqueous solution treatment tank and a hot-air drying furnace in an in-line manner.
상기 SBR층은, SBR을 1g/l 내지 10g/l 농도로 물에 분산시킨 SBR 수용액을 상기 전해 동박의 표면에 코팅하고 건조함으로써 형성하는 것이 바람직하다. The SBR layer is preferably formed by coating an SBR aqueous solution in which SBR is dispersed in water at a concentration of 1 g / l to 10 g / l on the surface of the electrolytic copper foil and drying.
또한, 본 발명에 따른 이차전지용 동박 제조 방법에 있어서, 상기 건조는 160℃ 내지 2OO℃의 온도 분위기에서 행하는 것이 바람직하다. In the method for manufacturing a copper foil for a secondary battery according to the present invention, it is preferable that the drying is performed in a temperature atmosphere of 160 ° C to 200 ° C.
또한, 단순한 건조라고 하는 개념을 넘어, 상기 건조를 180℃ 내지 190℃의 온도 분위기에서 30분 내지 240분 계속하여, 건조와 함께 베이킹(baking) 효과를 얻는 것이 바람직하다. Furthermore, it is preferable to continue the above drying in a temperature atmosphere of 180 to 190 캜 for 30 to 240 minutes to obtain a baking effect together with drying, beyond the concept of simple drying.
한편, 본 발명에 따른 이차전지는, 본 발명에 따른 이차전지용 동박이 음극의 집전체로 적용된 것이다. Meanwhile, in the secondary battery according to the present invention, the copper foil for a secondary battery according to the present invention is applied as a negative current collector.
상기 이차전지는 양극, 음극 및 분리막을 포함하는 전극 조립체를 포함한다. The secondary battery includes an electrode assembly including an anode, a cathode, and a separator.
상기 음극은 상기 집전체 상에 음극 활물질, 도전재 및 바인더를 포함하는 음극 활물질층이 형성된 것이고, 상기 바인더의 함량은 상기 음극 활물질층의 전체 중량을 기준으로 1 내지 15 중량%일 수 있다. 특히, 상기 바인더는 SBR일 수 있다. The negative electrode is formed on the current collector with a negative electrode active material layer including a negative electrode active material, a conductive material and a binder. The content of the binder may be 1 to 15 wt% based on the total weight of the negative electrode active material layer. In particular, the binder may be SBR.
바람직하게, 상기 음극은 전해 동박, SBR층 및 음극 활물질층으로만 이루어질 수 있다.Preferably, the negative electrode may consist of an electrolytic copper foil, an SBR layer, and a negative active material layer.
본 발명에 따른 이차전지용 동박은, 녹방지 처리층으로서 SBR층이 형성된 상태의 것이다. 이와 같은 녹방지 처리층을 구비하는 이차전지용 동박은, 전해 동박의 녹방지 처리층에 크롬을 사용하지 않아 유해물질을 사용하지 않는 장점이 있다. The copper foil for a secondary battery according to the present invention has a SBR layer formed as a rust-preventive treatment layer. The copper foil for a secondary battery having such a rust-preventive treatment layer has an advantage that chromium is not used in the rust-preventive treatment layer of the electrolytic copper foil and no harmful substance is used.
본 발명에 따른 이차전지용 동박은, 종래의 크로메이트 처리가 실시된 동박과 비교하여도, 동등 혹은 그 이상의 성능을 발휘한다. 인장강도 및 연신율과 같은 기계적 특성뿐 아니라, 표면 조도는 종래의 전해 동박과 유사하게 하여, 본 발명에 따른 이차전지용 동박을 이차전지의 음극 집전체로 이용할 경우 이차전지 제조 공정에 변화를 일으키지 않으면서도, 음극 집전체와 음극 활물질층 사이의 접착력은 종래의 전해 동박보다 40 내지 70% 향상되도록 한다.The copper foil for a secondary battery according to the present invention exhibits the same or higher performance than a copper foil subjected to a conventional chromate treatment. The surface roughness is similar to that of the conventional electrolytic copper foil, and when the copper foil for a secondary battery according to the present invention is used as a negative electrode collector of a secondary battery, the secondary battery manufacturing process is not changed , And the adhesion between the negative electrode current collector and the negative electrode active material layer is 40 to 70% higher than that of the conventional electrolytic copper foil.
즉, 본건 명세서에서는, 단지 녹방지 처리층이라고 기재하고 있지만, 이 녹방지 처리층의 존재에 의해 음극 활물질층과의 접착성이 개선된다. 따라서, 종래 크로메이트 방청 처리된 전해 동박 이용시 음극 활물질층과의 접착력 개선을 위해 추가로 형성해야 하던 프라이머 코팅층을 형성할 필요가 없다.That is, although the present specification describes only the rust-preventive treatment layer, the presence of the rust-preventive treatment layer improves the adhesion to the negative electrode active material layer. Therefore, there is no need to form a primer coating layer which is to be additionally formed to improve adhesion with the anode active material layer in the case of electrolytic copper foil which has been subjected to the conventional chromate anticorrosion treatment.
이처럼 본 발명에 따른 이차전지용 동박에 구비되는 SBR층은 녹방지 처리층의 기능뿐 아니라, 음극 활물질층과의 우수한 접착력을 제공하는 접착층으로서의 기능도 한다. 따라서, 본 발명에 따른 이차전지용 동박에 구비되는 SBR층은 SBR 복합 기능층이라고 부를 수 있다. As described above, the SBR layer included in the copper foil for a secondary battery according to the present invention functions not only as an anti-rust treatment layer, but also as an adhesive layer that provides excellent adhesion with the negative electrode active material layer. Accordingly, the SBR layer included in the copper foil for a secondary battery according to the present invention may be referred to as an SBR composite functional layer.
이러한 이차전지용 동박을 음극 집전체로 이용하는 경우, 음극 활물질 슬러리 안의 바인더 양을 줄일 수 있는 효과도 있다. 종래에는 음극 활물질 코팅 후 건조 중에 바인더가 음극 활물질층의 표면으로 이동하면서 음극 집전체와 음극 활물질층의 접착력이 약화되는 부분이 발생하고, 이를 최소화하기 위해 음극 활물질 슬러리 안의 바인더 함량을 늘리고 있다. 본 발명의 이차전지용 동박에 구비되는 SBR층은 음극 활물질층 안의 바인더의 이동을 최소화할 수 있어, 궁극적으로 음극 활물질 슬러리 안에 바인더를 적게 하고 음극 활물질 양을 늘려줄 수 있게 되어, 이차전지의 용량을 증가시키는 효과를 가져온다.When such a copper foil for a secondary battery is used as an anode current collector, the amount of the binder in the anode active material slurry can be reduced. Conventionally, a portion where the binder is moved to the surface of the negative electrode active material layer during drying after coating the negative electrode active material causes a weakening of the adhesive force between the negative electrode active material and the negative electrode active material layer, and the binder content in the negative electrode active material slurry is increased in order to minimize this. The SBR layer included in the secondary battery battery copper foil of the present invention can minimize the movement of the binder in the negative electrode active material layer and ultimately reduce the amount of the binder in the negative electrode active material slurry and increase the amount of the negative electrode active material, Effect.
이와 같이, 본 발명에 따르면, 우수한 내산화성을 가질 뿐 아니라, 음극 집전체로 가공한 이후의 음극 활물질층과의 우수한 접착력 등의 물성을 가지게 되고, 음극 집전체로 활용시 이차전지의 용량도 증가시키는 이차전지용 동박을 제공할 수 있게 된다. As described above, according to the present invention, not only is it superior in oxidation resistance, but it also has physical properties such as excellent adhesion with the negative electrode active material layer after being processed into the negative electrode collector, and the capacity of the secondary battery is also increased It is possible to provide a copper foil for a secondary battery.
또한, 본 발명에 따른 이차전지용 동박은, 녹방지 처리층으로서 SBR층을 SBR 수용액 안에 전해 동박을 침지하여 형성하는 것이 가능하다. 따라서, 기존 전해 동박 제조 공정에서 설정된 공정 관리가 번잡해지지 않고 관리 비용이 상승하지도 않는다.The copper foil for a secondary battery according to the present invention can be formed by immersing an electrolytic copper foil in an SBR aqueous solution as an antirust treatment layer. Therefore, the process management set in the existing electrolytic copper foil manufacturing process is not complicated and the management cost is not increased.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention and, together with the description of the invention given below, serve to further the understanding of the technical idea of the invention, And should not be construed as limiting.
도 1은 본 발명의 일 실시예에 따른 이차전지용 동박을 나타내는 단면도이다.1 is a cross-sectional view showing a copper foil for a secondary battery according to an embodiment of the present invention.
도 2는 도 1의 이차전지용 동박을 이용해 제조한 음극의 단면도이다. 2 is a cross-sectional view of a negative electrode manufactured using the copper foil for a secondary battery of FIG.
도 3은 본 발명의 일 실시예에 따른 이차전지의 구성을 개략적으로 도시한 분해 사시도이다.3 is an exploded perspective view schematically showing a configuration of a secondary battery according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 이차전지의 사시도이다.4 is a perspective view of a secondary battery according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 이차전지용 동박 제조 방법을 수행할 수 있는 장치의 개략도이다.5 is a schematic view of an apparatus for performing a method of manufacturing a copper foil for a secondary battery according to an embodiment of the present invention.
도 6은 도 5 장치의 측면 개략도이다.Figure 6 is a side schematic view of the Figure 5 apparatus.
도 7은 도 5 장치에 포함될 수 있는 SBR 수용액 처리구간을 도시한다.Fig. 7 shows an SBR aqueous solution treatment section which can be included in the Fig. 5 apparatus.
본 발명의 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.BRIEF DESCRIPTION OF THE DRAWINGS The objects and advantages of the present invention will be understood by the following description and will be more clearly understood by means of the embodiments of the present invention. It will also be readily apparent that the objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately It should be interpreted in accordance with the meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. Therefore, the embodiments described in the present specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. Therefore, It is to be understood that equivalents and modifications are possible.
이하에서 설명되는 실시예에 있어서, 이차전지는 리튬 이차전지를 일컫는다. 여기서, 리튬 이차전지라 함은 충전과 방전이 이루어지는 동안 리튬 이온이 작동 이온으로 작용하여 양극과 음극에서 전기화학적 반응을 유발하는 이차전지를 총칭한다. In the embodiments described below, the secondary battery refers to a lithium secondary battery. Here, the lithium secondary battery is generally referred to as a secondary battery in which lithium ions act as working ions during charging and discharging to cause an electrochemical reaction between the positive electrode and the negative electrode.
한편, 리튬 이차전지에 사용된 전해질이나 분리막의 종류, 이차전지의 외관을 이루는 전지 케이스의 종류, 리튬 이차전지의 내부 또는 외부의 구조 등에 따라 이차전지의 명칭이 변경되더라도 리튬 이온이 작동 이온으로 사용되는 이차전지라면 모두 상기 리튬 이차전지의 범주에 포함되는 것으로 해석하여야 한다. On the other hand, even if the name of the secondary battery is changed depending on the type of the electrolyte or separator used in the lithium secondary battery, the type of the battery case that forms the external appearance of the secondary battery, the internal or external structure of the lithium secondary battery, The secondary battery should be interpreted as being included in the category of the lithium secondary battery.
본 발명의 이차전지용 동박은 리튬 이차전지 이외의 다른 이차전지에도 적용이 가능하다. 따라서 작동 이온이 리튬 이온이 아니더라도 본 발명의 기술적 사상이 적용될 수 있는 이차전지라면 그 종류에 상관 없이 모두 본 발명의 범주에 포함되는 것으로 해석하여야 한다. The copper foil for a secondary battery of the present invention is applicable to a secondary battery other than a lithium secondary battery. Therefore, even if the working ion is not lithium ion, any kind of secondary battery to which the technical idea of the present invention can be applied should be interpreted as falling within the scope of the present invention.
또한, 이차전지는 그것을 구성하는 요소의 수에 의해 한정되지 않는다. 따라서 이차전지는 하나의 전지 케이스 내에 양극/분리막/음극의 전극 조립체 및 전해질이 포함된 단일 셀을 비롯하여 단일 셀의 어셈블리, 다수의 어셈블리가 직렬 및/또는 병렬로 연결된 모듈, 다수의 모듈이 직렬 및/또는 병렬로 연결된 팩, 다수의 팩이 직렬 및/또는 병렬로 연결된 전지 시스템 등도 포함하는 것으로 해석되어야 한다.The secondary battery is not limited by the number of elements constituting it. Thus, the secondary battery may be a single cell assembly including a single cell including a positive electrode / separator / negative electrode assembly and an electrolyte in one battery case, a module in which a plurality of assemblies are connected in series and / or in parallel, / RTI > and / or parallel connected packs, a plurality of packs connected serially and / or in parallel, and the like.
먼저, 도 1을 참조하여 본 발명의 일 실시예에 따른 이차전지용 동박을 설명하기로 한다. First, referring to FIG. 1, a copper foil for a secondary battery according to an embodiment of the present invention will be described.
도 1은 본 발명의 일 실시예에 따른 이차전지용 동박을 나타내는 단면도이다.1 is a cross-sectional view showing a copper foil for a secondary battery according to an embodiment of the present invention.
도 1에 도시된 본 발명의 일 실시예에 따른 이차전지용 동박(100)은, 이차전지의 음극 집전체로 이용되는 것이 바람직하다. 즉, 이차전지에 있어서, 음극 활물질과 결합되는 음극 집전체로 이용되는 것이 바람직하다.The copper foil 100 for a secondary battery according to an embodiment of the present invention shown in FIG. 1 is preferably used as a negative electrode collector of a secondary battery. That is, in the secondary battery, it is preferable to be used as an anode current collector coupled with the anode active material.
본 발명의 일 실시예에 따른 이차전지용 동박(100)은 전해 동박(10) 표면에 SBR층(20)이 형성된 것이다. SBR층(20)은 전해 동박(10)의 양면에 형성되며, 녹방지(방청) 기능을 한다. The copper foil 100 for a secondary battery according to an embodiment of the present invention includes an SBR layer 20 formed on the surface of an electrolytic copper foil 10. The SBR layer 20 is formed on both surfaces of the electrolytic copper foil 10 and functions to prevent rusting.
SBR층(20)은 피막의 형태로, 전해 동박(10)의 표면에 고르게, 일정한 두께로, 전해 동박(10) 일부라도 노출시키는 일이 없이, 연속된 막의 형태로 형성되는 것이 바람직하다. 따라서, SBR층(20)은 전해 동박(10) 표면을 완전히 피복하며 두께방향, 너비방향 및 길이방향으로 연속적인 층이다. 그리고, 전해 동박(10)과 SBR층(20) 사이에는 일부러 형성한 다른 층은 없다. 즉, 전해 동박(10) 표면에 크로메이트 처리와 같은 층을 형성하지 않고 SBR층(20)이 곧바로 형성된다. 예를 들어, 전해조에서 드럼 표면에 만들어진 전해 동박(10) 표면에 다른 인위적인 처리없이 곧바로 SBR층(20)이 피복된 것이다. It is preferable that the SBR layer 20 is formed in the form of a continuous film without exposing a part of the electrolytic copper foil 10 evenly and uniformly on the surface of the electrolytic copper foil 10 in the form of a film. Therefore, the SBR layer 20 completely covers the surface of the electrolytic copper foil 10 and is a continuous layer in the thickness direction, the width direction, and the length direction. There is no other layer formed intentionally between the electrolytic copper foil 10 and the SBR layer 20. [ That is, the SBR layer 20 is formed directly on the surface of the electrolytic copper foil 10 without forming a layer such as a chromate treatment. For example, the surface of the electrolytic copper foil 10 formed on the surface of the drum in the electrolytic bath is directly coated with the SBR layer 20 without any other artificial treatment.
전해 동박(10)의 두께는 대략 3㎛ 내지 30㎛인 것이 바람직하다. It is preferable that the thickness of the electrolytic copper foil 10 is approximately 3 mu m to 30 mu m.
전해 동박(10)의 두께가 대략 3㎛ 미만으로 너무 얇은 경우에는 이차전지 제조 공정에서 핸들링(handling)이 어려워져 작업성이 저하될 수 있고, 반대로 전해 동박(10)의 두께가 대략 30㎛를 초과하는 경우에는, 음극 집전체로 이용되었을 때 음극 집전체의 두께로 인한 체적 증가로 인해 고용량의 이차전지를 제조하기가 곤란해지는 문제점이 있다.If the thickness of the electrolytic copper foil 10 is too thin to be less than about 3 탆, handling in the secondary battery manufacturing process becomes difficult and the workability may be lowered. Conversely, when the thickness of the electrolytic copper foil 10 is about 30 탆 There is a problem that it becomes difficult to manufacture a secondary battery of a high capacity due to an increase in volume due to the thickness of the negative electrode collector when the negative electrode collector is used.
SBR층(20)은, 전해 동박(10)의 방청 처리를 위해 전해 동박(10)의 표면에 형성된 것이다. 그리고, SBR층(20)은 전해 동박(10)에 대한 방청 특성뿐만 아니라, 음극 활물질과의 결합력 증대 특성을 부여하는 역할 또한 할 수 있다. The SBR layer 20 is formed on the surface of the electrolytic copper foil 10 for anti-corrosive treatment of the electrolytic copper foil 10. Further, the SBR layer 20 can not only provide anti-rust properties to the electrolytic copper foil 10 but also play a role of imparting a binding force increasing property to the negative electrode active material.
SBR층(20)의 두께는 0.5㎛ 내지 5㎛ 범위일 수 있다. SBR층(20)의 두께가 0.5㎛ 미만인 경우에는, 원하는 정도의 내산화성과 접착력을 얻기 부족하다. 5㎛를 초과하는 경우에는, SBR층(20)이 차지하는 양이 상대적으로 늘어나 전지 용량에 좋지 않으며, 저항으로 작용할 수 있으므로 바람직하지 않다. The thickness of the SBR layer 20 may range from 0.5 [mu] m to 5 [mu] m. When the thickness of the SBR layer 20 is less than 0.5 占 퐉, it is insufficient to obtain a desired degree of oxidation resistance and adhesion. If it is more than 5 mu m, the amount occupied by the SBR layer 20 relatively increases, which is not good for the battery capacity and can act as a resistance.
이차전지용 동박(100)의 인장강도와 연신율은 전해 동박(10)의 인장강도와 연신율에 의해 주로 결정되며 SBR층(20) 형성으로 인해 전해 동박(10)의 인장강도와 연신율이 저하되지 않는다. 예를 들어, 이차전지용 동박(100)의 인장강도는 30kgf/mm2 내지 35kgf/mm2일 수 있으나 전해 동박(10)의 인장강도에 상관없이 모든 전해 동박을 기본으로 하여 SBR층(20)을 추가 형성해 제조할 수 있다. 그리고 전해 동박의 연신율은 보통 5% 내지 20% 정도라서, 이러한 전해 동박으로부터 제조하는 이차전지용 동박(100)도 이와 유사한 수준의 연신율을 가질 수 있다. 예를 들어, 연신율은 16% 내지 18%일 수 있다. 이 정도의 인장강도와 연신율은 이차전지용 동박의 제조시에 끊어짐과 변형을 방지할 수 있으며, 이후 음극 활물질 슬러리를 코팅해 음극으로 제조할 때에도 적절한 수준의 핸들링이 가능하도록 하는 것이다. The tensile strength and elongation of the secondary battery copper foil 100 are mainly determined by the tensile strength and elongation of the electrolytic copper foil 10 and the tensile strength and elongation of the electrolytic copper foil 10 are not lowered due to the formation of the SBR layer 20. [ For example, the tensile strength of the secondary battery copper foil 100 may be 30 kgf / mm 2 to 35 kgf / mm 2 , but the SBR layer 20 is formed on the basis of all the electrolytic copper foil, regardless of the tensile strength of the electrolytic copper foil 10 Can be manufactured by further forming. The elongation of the electrolytic copper foil is usually about 5% to 20%, so that the copper foil 100 for a secondary battery manufactured from such electrolytic copper foil can have a similar degree of elongation. For example, the elongation may be from 16% to 18%. Such a tensile strength and elongation can prevent breakage and deformation at the time of manufacturing the copper foil for a secondary battery, and enable a proper level of handling even when the negative electrode active material slurry is coated to be a negative electrode.
기존 크로메이트 처리에 의할 경우, 이미 만들어진 전해 동박의 조도 특성이 변화되는 문제가 있다. 그러나, 본 발명에서는 크로메이트 처리없이 SBR층(20)을 형성하므로 전해 동박(10)의 조도 특성이 거의 그대로 유지된다. In the conventional chromate treatment, there is a problem that the roughness characteristic of the electrolytic copper foil that has already been produced is changed. However, in the present invention, since the SBR layer 20 is formed without chromate treatment, the roughness characteristic of the electrolytic copper foil 10 is maintained almost intact.
이차전지용 동박(100)의 양면의 표면 조도는, Rz(십점 평균거칠기) 기준으로 대략 0.2㎛ 내지 2.5㎛인 것이 바람직하다. 표면조도가 대략 0.2㎛ 미만인 경우에는 이차전지용 동박(100)과 음극 활물질간의 밀착성이 저하되는 문제점이 있으며, 이처럼 이차전지용 동박(100)과 음극 활물질간의 밀착성 저하가 발생되면 이차전지의 사용 과정에서 활물질 탈리 현상이 발생될 위험이 커지게 된다. It is preferable that the surface roughness of both surfaces of the secondary battery copper foil 100 is approximately 0.2 탆 to 2.5 탆 on the basis of Rz (ten point average roughness). If the surface roughness is less than about 0.2 탆, adhesion between the copper foil 100 for a secondary battery and the negative electrode active material is deteriorated. If the adhesion between the copper foil 100 for a secondary battery and the negative electrode active material deteriorates, The risk of the desorption phenomenon is increased.
반대로, 표면 조도가 대략 2.5㎛를 초과하는 경우에는 높은 조도로 인해 이차전지용 동박(100)의 표면에 음극 활물질의 균일한 코팅이 이루어질 수 없어 밀착력이 저하될 수 있으며, 이처럼 음극 활물질의 균일한 코팅이 이루어지지 않는 경우에는 제조된 이차전지의 방전용량 유지율이 저하될 수 있다. On the contrary, when the surface roughness is more than about 2.5 μm, the uniform coating of the negative electrode active material on the surface of the copper foil 100 for the secondary battery can not be performed due to the high roughness, so that the adhesion may be lowered. The discharge capacity retention rate of the produced secondary battery may be lowered.
바람직하게, 이차전지용 동박(100)의 양면의 표면 조도는 0.835㎛ 내지 1.115㎛이다. 일반적으로 전해 동박(10)은 그 제조 방법상, 드럼과 닿는 쪽의 면(드럼접촉면) 조도와 반대쪽으로 공기에 노출되는 쪽의 면(공기노출면) 조도가 다르다. 보통은 드럼접촉면의 표면 조도가 공기노출면의 표면 조도보다 크다. 본 발명의 일 실시예에 따른 이차전지용 동박(100)의 경우, 드럼접촉면의 표면 조도는 예를 들어 0.84㎛이고 공기노출면의 표면 조도는 예를 들어 1.09㎛일 수 있다.Preferably, the surface roughness of both surfaces of the copper foil 100 for a secondary battery is 0.835 탆 to 1.115 탆. In general, the electrolytic copper foil 10 is different in roughness from the surface (drum contact surface) on the side contacting the drum to the side (air exposed surface) side exposed to the air on the opposite side. Normally, the surface roughness of the drum contact surface is larger than the surface roughness of the air exposure surface. In the case of the copper foil 100 for a secondary battery according to an embodiment of the present invention, the surface roughness of the drum contact surface may be, for example, 0.84 mu m and the surface roughness of the air exposed surface may be 1.09 mu m, for example.
이와 같은 SBR층(20)을 구비하는 이차전지용 동박(100)은, 전해 동박(10)의 녹방지 처리층에 크롬을 사용하지 않아 유해물질을 사용하지 않는 장점이 있다. 본 발명의 일 실시예에 따른 이차전지용 동박(100)은, 종래의 크로메이트 처리가 실시된 전해 동박과 비교하여도, 동등 혹은 그 이상의 성능을 발휘한다. 인장강도 및 연신율과 같은 기계적 특성뿐 아니라, 표면 조도는 종래의 전해 동박과 유사하게 하여, 본 발명에 따른 이차전지용 동박을 이차전지의 음극 집전체로 이용할 경우 이미 설정된 이차전지 제조 공정에 변화를 일으키지 않는다.The copper foil 100 for a secondary battery having the SBR layer 20 is advantageous in that it does not use chromium in the rust preventive treatment layer of the electrolytic copper foil 10 and does not use harmful substances. The copper foil 100 for a secondary battery according to an embodiment of the present invention exhibits the same or higher performance than the electrolytic copper foil subjected to the conventional chromate treatment. In addition to the mechanical properties such as tensile strength and elongation, surface roughness is similar to that of a conventional electrolytic copper foil. When the copper foil for a secondary battery according to the present invention is used as an anode current collector for a secondary battery, Do not.
음극 활물질층 안의 바인더 양에 따라 이차전지용 동박(100)과 음극 활물질층간의 접착력이 달라질 수 있으나, 바인더의 양을 정해 놓고 예를 들어 본 발명의 이차전지용 동박(100)은 음극 활물질층과의 접착력이 20gf 내지 30gf가 되도록 제조할 수도 있다. 종래의 전해 동박에 상기 정해진 같은 양의 바인더를 사용하는 음극 활물질층을 적용해보면 접착력이 본 발명 접착력 수준의 40 내지 70%로까지 약하게 나타난다. 종래의 전해 동박에서 본 발명과 같은 수준의 접착력을 나타내려면 바인더 양을 늘려야만 할 것이다. 이와 같이 본 발명에 따르면 바인더 양을 증가시킬 필요없이 종래의 전해 동박보다 40 내지 70% 향상된 수준의 접착력도 얻을 수 있다.For example, the copper foil 100 for a secondary battery according to the present invention may have an adhesive force with respect to the negative electrode active material layer. For example, the adhesion strength between the negative electrode active material layer and the negative electrode active material layer may vary depending on the amount of the binder in the negative electrode active material layer. May be 20 gf to 30 gf. When the negative electrode active material layer using the same amount of binder as described above is applied to a conventional electrolytic copper foil, the adhesion force is as low as 40 to 70% of the adhesive strength level of the present invention. In order to exhibit the same level of adhesion as in the present invention in a conventional electrolytic copper foil, it is necessary to increase the amount of the binder. Thus, according to the present invention, it is possible to obtain an adhesive strength of 40 to 70% higher than that of the conventional electrolytic copper foil without the need to increase the amount of the binder.
즉, 본건 명세서에서는, 단지 녹방지 처리층이라고 기재하고 있지만, 이 녹방지 처리층의 존재에 의해 음극 활물질층과의 접착성이 개선된다. 따라서, 종래 크로메이트 방청 처리된 전해 동박 이용시 음극 활물질층과의 접착력 개선을 위해 추가로 형성해야 하던 프라이머 코팅층을 본 발명에서는 형성할 필요가 없다.That is, although the present specification describes only the rust-preventive treatment layer, the presence of the rust-preventive treatment layer improves the adhesion to the negative electrode active material layer. Therefore, in the present invention, there is no need to form a primer coating layer which is to be additionally formed for improving adhesion with the anode active material layer in the case of electrolytic copper foil which has been subjected to the conventional chromate anticorrosion treatment.
이처럼 이차전지용 동박(100)에 구비되는 SBR층(20)은 녹방지 처리층의 기능뿐 아니라, 음극 활물질층과의 우수한 접착력을 제공하는 접착층으로서의 기능도 한다. 따라서, 이차전지용 동박(100)에 구비되는 SBR층(20)은 SBR 복합 기능층이라고 부를 수 있다. As described above, the SBR layer 20 provided in the secondary battery-use copper foil 100 functions not only as an anti-rust treatment layer, but also as an adhesive layer that provides excellent adhesion with the negative electrode active material layer. Therefore, the SBR layer 20 provided in the secondary battery copper foil 100 may be referred to as an SBR composite functional layer.
도 2는 도 1의 이차전지용 동박을 이용해 제조한 음극의 단면도이다. 2 is a cross-sectional view of a negative electrode manufactured using the copper foil for a secondary battery of FIG.
도 2를 참조하면, 음극(150)은, 이차전지용 동박(100)에 음극 활물질층(110)이 형성된 것이다. 음극 활물질층(110)은 음극 활물질(120), 예를 들어 흑연과, 도전재(130) 및 바인더(140)를 포함한다. Referring to FIG. 2, the negative electrode 150 includes a negative electrode active material layer 110 formed on the copper foil 100 for a secondary battery. The negative electrode active material layer 110 includes a negative electrode active material 120, for example, graphite, a conductive material 130 and a binder 140.
음극 활물질(120)은 예를 들어 결정질 인조 흑연, 결정질 천연 흑연, 비정질 하드카본, 저결정질 소프트카본, 카본 블랙, 아세틸렌 블랙, 그래핀(graphene), 및 섬유상 탄소로 이루어진 군으로부터 선택되는 하나 이상의 탄소계 물질, Si계 물질, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1
-
xMe'yOz(Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, 및 Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 포함할 수 있지만, 이들만으로 한정되는 것은 아니다. The negative electrode active material 120 may include one or more carbon selected from the group consisting of crystalline artificial graphite, crystalline natural graphite, amorphous hard carbon, low crystalline soft carbon, carbon black, acetylene black, graphene, Li x Fe 2 O 3 (0? X? 1), Li x WO 2 (0? X? 1), Sn x Me 1 - x Me y y z (Me: Mn, Fe , Pb, Ge; Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, Halogen; 0? X? 1; 1? Y? Metal complex oxides; Lithium metal; Lithium alloy; Silicon-based alloys; Tin alloy; SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4, And Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials; Titanium oxide; Lithium titanium oxide, and the like, but the present invention is not limited thereto.
도전재(130)는 당해 이차전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다. The conductive material 130 is not particularly limited as long as it has electrical conductivity without causing any chemical change in the secondary battery. For example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used. Concrete examples of commercially available conductive materials include acetylene black series such as Chevron Chemical Company, Denka Singapore Private Limited and Gulf Oil Company products), EC series (Armak Company Vulcan XC-72 (from Cabot Company) and Super P (from Timcal).
바인더(140)는 폴리비닐리덴 플로라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, SBR, 불소 고무, 또는 스티렌(styrene monomer: SM), 부타디엔(butadiene: BD), 및 부틸 아크릴레이트(butyl acrylate: BA)로 이루어진 군에서 선택되는 하나 이상의 단량체들의 다양한 공중합체일 수 있다. The binder 140 may be selected from the group consisting of polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Styrene (SM), butadiene (BD), and butyl acrylate (BA)), polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, SBR, ≪ / RTI > may be various copolymers of one or more monomers selected from the group consisting of < RTI ID = 0.0 >
음극 활물질층(110)은 이러한 음극 활물질(120), 도전재(130) 및 바인더(140)를 포함하는 음극 활물질 슬러리를 이차전지용 동박(100)에 코팅하고 건조하여 제조한다. 이 때, 음극 활물질 슬러리 안에는 전극의 팽창을 억제하는 성분으로서 충진제가 선택적으로 첨가될 수 있다. 이러한 충진제는 당해 이차전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다. 또한, 점도 조절제, 접착 촉진제 등의 기타의 성분들이 선택적으로 또는 둘 이상의 조합으로서 더 포함될 수 있다. 상기 점도 조절제는 음극 활물질 슬러리의 혼합 공정과 그것의 코팅 공정이 용이할 수 있도록 음극 활물질 슬러리의 점도를 조절하는 성분으로서, 음극 활물질 슬러리 전체 중량을 기준으로 30 중량%까지 첨가될 수 있다. 이러한 점도 조절제의 예로는, CMC, 폴리비닐리덴 플로라이드 등이 있지만, 이들만으로 한정되는 것은 아니다. The negative electrode active material layer 110 is prepared by coating a negative electrode active material slurry containing the negative electrode active material 120, the conductive material 130 and the binder 140 on the copper foil 100 for a secondary battery and drying the same. At this time, a filler may be selectively added to the negative electrode active material slurry as a component for suppressing the expansion of the electrode. Such a filler is not particularly limited as long as it is a fibrous material without causing any chemical change in the secondary battery, and examples thereof include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used. In addition, other components such as a viscosity adjusting agent, an adhesion promoter and the like may be further included as a selective or a combination of two or more. The viscosity modifier may be added up to 30% by weight based on the total weight of the negative electrode active material slurry, as a component for adjusting the viscosity of the negative electrode active material slurry so that the mixing process of the negative electrode active material slurry and the coating process thereof are easy. Examples of such viscosity modifiers include, but are not limited to, CMC and polyvinylidene fluoride.
일반적으로, 이차전지에서 고용량을 구현하기 위한 가장 쉬운 방법은 집전체 위에 많은 양의 전극 활물질을 올리는 것이지만, 이러한 방법은 일정 수준의 전극 접착력이 확보되지 않으면 전극 코팅, 건조, 압연 공정 시에 전극 탈리가 발생하게 되어 이차전지 성능 및 안정성이 저하되는 문제를 야기할 수 있다. Generally, the easiest method for realizing a high capacity in a secondary battery is to place a large amount of electrode active material on a current collector. However, in this method, if a certain level of electrode adhesion is not secured, And the secondary cell performance and stability may be deteriorated.
따라서, 고용량을 구현하면서도 성능 및 안정성이 우수한 이차전지를 제조하기 위해, 전극 접착력을 향상시키는 방법에 대한 연구가 당업계에서 활발히 진행되었으며, 현재 전극 접착력을 향상시키기 위한 바인더(140)를 전극 내에 포함하는 방법이 널리 쓰이고 있다.Therefore, studies have been actively made in the related art to improve the electrode adhesive strength in order to manufacture a secondary battery which is excellent in performance and stability while realizing a high capacity, and a binder 140 for improving the electrode adhesion force is now included in the electrode Is widely used.
일반적으로, 전극을 구성하는 전극 활물질, 도전재, 및 집전체는 상온 상태가 고체이고, 표면 특성이 상이하여, 상온에서 쉽게 결합하기 어렵지만, 고분자 바인더를 사용할 경우, 상기 전극의 구성요소들 간의 결합력을 높여, 전극 코팅, 건조, 압연 공정 시에 전극의 탈리 현상을 억제할 수 있다. 그러나 여전히, 전극을 코팅한 후 100℃ 이상의 고온으로 건조하는 과정에서, 바인더의 Tg 이상의 온도 조건으로 인해, 슬러리 상태로 포함되어 있는 바인더가 용매가 휘발되는 방향(집전체에서 먼 방향)으로 움직여, 전극 집전체와 전극 활물질 사이의 접착력이 약화되는 문제점이 존재하였다.Generally, electrode active materials, conductive materials, and current collectors constituting the electrode are solid at room temperature, have different surface characteristics and are difficult to easily bond at room temperature. However, when a polymeric binder is used, So that the desorption phenomenon of the electrode can be suppressed during the electrode coating, drying and rolling processes. However, in the process of drying the electrode at a high temperature of 100 DEG C or higher after coating the electrode, the binder contained in the slurry state moves in the direction in which the solvent is volatilized (the direction far from the current collector) due to the temperature condition of Tg or more of the binder, There is a problem that the adhesive force between the electrode current collector and the electrode active material is weakened.
따라서, 종래에는 전극 활물질 코팅 후 건조 중에 바인더가 전극 활물질층의 표면으로 이동하면서 전극 집전체와 전극 활물질층의 접착력이 약화되는 부분이 발생하고, 이를 최소화하기 위해 전극 활물질 슬러리 안의 바인더 함량을 늘리고 있다. 본 발명의 일 실시예에 따른 이차전지용 동박(100)과 음극 활물질층(110)과의 접착력은 20gf 내지 30gf일 수 있고, 이는 종래의 전해 동박보다 40 내지 70% 향상된 수준이다. 이처럼 이차전지용 동박(100)의 SBR층(20)은 음극 활물질층(110) 안의 바인더(140)의 이동을 최소화할 수 있어, 궁극적으로 음극 활물질 슬러리 안에 바인더(140)를 적게 하고 음극 활물질(120) 양을 늘려줄 수 있게 되어, 이러한 음극(150)을 포함하는 이차전지의 용량을 증가시키는 효과를 가져온다. Therefore, conventionally, during coating after the coating of the electrode active material, the binder moves to the surface of the electrode active material layer, thereby weakening the adhesive force between the electrode current collector and the electrode active material layer. In order to minimize this, the binder content in the electrode active material slurry is increased . The adhesion between the copper foil 100 for a secondary battery and the anode active material layer 110 according to an embodiment of the present invention may be 20 gf to 30 gf, which is 40 to 70% higher than that of a conventional electrolytic copper foil. As described above, the SBR layer 20 of the secondary battery 100 can minimize the movement of the binder 140 in the anode active material layer 110, and ultimately reduce the binder 140 in the anode active material slurry, And the capacity of the secondary battery including the cathode 150 is increased.
이와 같이, SBR층(20)은 음극 활물질(120)과 전해 동박(10)간의 결합을 극대화하므로 바인더(140)의 함량비를 적게 하여도, 종래보다 월등히 높은 수준의 접착력을 얻을 수 있고, 이러한 접착력을 갖기 위해 필요했던 바인더의 양보다 훨씬 적은 양의 바인더를 사용하는 것이 가능하여, 가격 절감의 효과를 가짐과 동시에, 전극의 용량 및 전도성 측면에서도 일정 수준 이상의 효과를 발휘한다. Since the SBR layer 20 maximizes the bonding between the anode active material 120 and the electrolytic copper foil 10, even if the content ratio of the binder 140 is reduced, a much higher level of adhesive force than conventionally can be obtained. It is possible to use a binder in an amount that is much smaller than the amount of the binder necessary for obtaining the adhesive force, thereby achieving an effect of reducing the cost and exhibiting an effect beyond a certain level in terms of the capacity and conductivity of the electrode.
특히, 바인더(140)로서 SBR을 사용하면, SBR층(20)과의 재료적 동일성으로 인하여 SBR층(20)과 음극 활물질층(110)간의 결합 계면에 소정의 연속성을 부여하여, 향후 이차전지 사용시 잦은 충방전 사이클이 적용되더라도 구조적 강건함을 도모할 수 있어 바람직하다. Particularly, when SBR is used as the binder 140, a predetermined continuity is given to the bonding interface between the SBR layer 20 and the anode active material layer 110 due to the material identity with the SBR layer 20, It is preferable to use a charging / discharging cycle which is frequently used, because structural strength can be achieved.
이처럼 이차전지용 동박(100)은 SBR층(20)을 구비하므로 음극 활물질층(110)과의 접착력이 좋다. 따라서, 이차전지용 동박(100)을 음극 집전체로 이용하는 경우, 음극 활물질 슬러리 안의 바인더(140) 양을 줄일 수 있는 효과도 있다. 바인더(140)의 함량이 너무 높은 경우에는, 전극 내의 저항 증가를 초래하여 전지의 특성이 저하되고, 전극 활물질 및 도전재의 함량이 상대적으로 낮아짐에 따라 전극의 용량 및 전도성이 낮아지는 문제가 있는 바, 바람직하지 않다. 본 발명에서는 바인더(140) 양을 종래보다 줄여도 충분한 접착력을 확보할 수 있으므로, 음극 활물질층(110)의 전체 중량을 기준으로, 바인더(140)의 함량은 1 내지 15 중량%일 수 있다. 바인더(140)의 함량이 1 중량% 미만이면 바인더(140) 첨가의 효과가 미미하다. 바인더(140)의 함량이 15 중량% 초과이면 음극(150)의 용량 및 전도성 측면에서 바람직하지 못하다. As described above, the copper foil 100 for a secondary battery has an SBR layer 20 and thus has good adhesion to the anode active material layer 110. Therefore, when the copper foil 100 for a secondary battery is used as an anode current collector, the amount of the binder 140 in the anode active material slurry can be reduced. When the content of the binder 140 is too high, the resistance of the electrode is increased to deteriorate the characteristics of the battery. As the content of the electrode active material and the conductive material is relatively lowered, the capacity and conductivity of the electrode are lowered , Which is undesirable. The amount of the binder 140 may be in the range of 1 to 15% by weight based on the total weight of the anode active material layer 110, since sufficient adhesion can be secured even if the amount of the binder 140 is reduced. If the content of the binder 140 is less than 1% by weight, the effect of the addition of the binder 140 is insignificant. If the content of the binder 140 is more than 15% by weight, it is not preferable from the viewpoint of the capacity and conductivity of the cathode 150.
도전재(130)의 함량은 바인더(140) 100 중량부 대비 20 중량부 내지 100 중량부일 수 있다. 상기 범위를 벗어나, 도전재(140)의 함량이 20 중량부 미만인 경우에는 소망하는 정도의 전도성을 얻을 수 없고, 100 중량부를 초과하는 경우에는 상대적으로 음극 활물질(120)의 함량이 줄어 용량이 감소하는 바, 바람직하지 않다. The conductive material 130 may be present in an amount of 20 to 100 parts by weight based on 100 parts by weight of the binder 140. If the amount of the conductive material 140 is less than 20 parts by weight, the desired degree of conductivity can not be obtained. If the amount of the conductive material 140 is more than 100 parts by weight, the content of the negative electrode active material 120 decreases, Which is undesirable.
이와 같이, 음극(150)은 SBR층(20)을 포함하기 때문에 음극 활물질층(110)과의 우수한 접착력을 가질 수 있다. 따라서, 종래처럼 탄소층을 프라이머로서 전해 동박에 코팅하거나, 이중층이라는 공법을 통해 활물질 코팅층을 다층화하여 접착력을 해결할 필요가 없고, 음극(150)이 전해 동박(10), SBR층(20) 및 음극 활물질층(110)으로만 이루어질 수 있어 매우 단순하고 간결한 구조 및 제조 공정을 가질 수 있다.Since the cathode 150 includes the SBR layer 20, the anode 150 may have excellent adhesion with the anode active material layer 110. Therefore, it is not necessary to coat the electrolytic copper foil with a carbon layer as a primer or multilayering the active material coating layer by a double layer method to solve the adhesive force, and the cathode 150 is formed of the electrolytic copper foil 10, the SBR layer 20, Can be formed only of the active material layer 110 and can have a very simple and simple structure and a manufacturing process.
한편, 본 실시예에서는 이차전지용 동박(100)의 한쪽면에 음극 활물질층(110)이 형성된 경우를 도시하고 설명하였으나, 이차전지용 동박(100)의 양쪽면에 음극 활물질층(110)이 형성되는 경우도 물론 가능하다. Although the anode active material layer 110 is formed on one surface of the secondary battery 100, the anode active material layer 110 is formed on both surfaces of the secondary battery battery 100 The case is also possible.
본 발명에 따른 이차전지는 이와 같은 음극(150)을 전지 요소로서 포함시켜, 기존에 알려진 이차전지와 동일하거나 유사한 형태로 제조될 수 있다. 일반적으로 이차전지는, 양극, 음극, 분리막, 전해질을 가지며 전지 케이스에 의해 수용된 구조로 되어 있으므로, 본 발명에 따른 이차전지는 이러한 음극(150)과 이에 대응되는 양극을 포함하고 그 사이에 분리막이 개재된 구조의 전극 조립체와 전해질을 전지 케이스에 넣어 밀봉해 제조할 수 있는 것이다. 예컨대 도 4와 같은 파우치형 이차전지로 제조될 수 있다. The secondary battery according to the present invention can be manufactured in the same or similar form as a known secondary battery by including the cathode 150 as a battery element. The secondary battery according to the present invention includes the cathode 150 and a corresponding anode, and a separator is interposed between the cathode 150 and the anode 150. The secondary battery according to the present invention includes a cathode, a cathode, a separator, and an electrolyte. The electrode assembly and the electrolyte having the interposed structure can be sealed in the battery case. For example, a pouch-type secondary battery as shown in FIG.
도 3은 본 발명의 일 실시예에 따른 이차전지의 구성을 개략적으로 도시한 분해 사시도이고, 도 4는 본 발명의 일 실시예에 따른 이차전지의 사시도이다.FIG. 3 is an exploded perspective view schematically illustrating a configuration of a secondary battery according to an embodiment of the present invention, and FIG. 4 is a perspective view of a secondary battery according to an embodiment of the present invention.
도 3 및 도 4를 참조하면, 본 발명의 일 실시예에 따른 이차 전지(190)는 파우치형 전지로서, 전극 조립체(180) 및 파우치(185)를 포함한다.Referring to FIGS. 3 and 4, a secondary battery 190 according to an embodiment of the present invention is a pouch type battery including an electrode assembly 180 and a pouch 185.
전극 조립체(180)는, 음극(150)과 양극(160)이 서로 대향하도록 배치된 형태로 구성되며, 이러한 음극(150)과 양극(160) 사이에는 분리막(155)이 개재된다. 이러한 전극 조립체(180)는 스택형, 스택 앤 폴딩형 또는 젤리롤형으로 구성될 수 있다. The electrode assembly 180 is configured such that the cathode 150 and the anode 160 are opposed to each other and a separation membrane 155 is interposed between the cathode 150 and the anode 160. Such an electrode assembly 180 may be configured as a stacked, stacked, folded, or jelly roll type.
음극(150)은 앞에서 설명한 바와 같이 이차전지용 동박(100)을 음극 집전체로 하여, 그 위에 음극 활물질 슬러리가 코팅된 구조로서 형성된다. 양극(160)도 이와 마찬가지로 알루미늄과 같은 양극 집전체 위에 양극 활물질 슬러리가 코팅된 구조로 형성된다. 그리고, 각각의 집전체들에는 슬러리가 코팅되지 않는 무지부가 존재할 수 있고, 이러한 무지부에는 각각의 전극에 대응되는 전극 탭이 형성되어, 음극 탭에는 음극 리드(152)가, 양극 탭에는 양극 리드(162)가 연결되어 파우치(185) 외부로 인출되도록 할 수 있다.The negative electrode 150 is formed as a structure in which the negative electrode current collector is coated with the negative electrode active material slurry on the copper foil 100 for a secondary battery as described above. The anode 160 is also formed with a structure in which a cathode active material slurry is coated on a cathode current collector such as aluminum. An electrode tab corresponding to each electrode is formed on the non-coated portion, and a negative electrode lead 152 is formed on the negative electrode tab and a negative electrode lead is formed on the positive electrode lead, (162) is connected to the outside of the pouch (185).
파우치(185)는 전지 케이스로서, 도면에서 R로 표시된 바와 같이 오목한 형태의 공간인 수용부를 구비하며, 이러한 수용부(R)에 전극 조립체(180)의 적어도 일부 및 전해질, 예컨대 전해액을 수납할 수 있다. 또한, 파우치(185)는, 전극 조립체(180)의 삽입을 용이하게 하기 위해, 상부 시트(T)와 하부 시트(B)로 구성될 수 있다. 이 때, 파우치(100)는, 상부 시트(T)와 하부 시트(B)에 수용부(R)가 모두 형성되도록 할 수 있으나, 상부 시트(T)나 하부 시트(B) 중 어느 하나에만 수용부(R)가 형성되도록 할 수도 있다. 또한 상부 시트(T)와 하부 시트(B)는 서로 분리된 것이 아니라 서로 연결되어 1 단위의 시트를 구성하는 것일 수도 있다.The pouch 185 is a battery case having a receptacle which is a concave space as indicated by R in the figure and which can accommodate at least a part of the electrode assembly 180 and an electrolyte such as an electrolyte have. In addition, the pouch 185 may be composed of an upper sheet T and a lower sheet B to facilitate insertion of the electrode assembly 180. At this time, the pouch 100 may be formed so as to accommodate both the upper sheet T and the lower sheet B, So that the portion R is formed. Further, the upper sheet T and the lower sheet B may not be separated from each other, but may be connected to each other to form a unit sheet.
그리고, 이러한 상부 시트(T)와 하부 시트(B)는, 내부 수납 공간의 테두리에 실링부(S)를 구비하고, 이러한 실링부(S)가 서로 접착됨으로써, 내부 수납 공간이 밀봉되도록 할 수 있다. 상부 시트(T)와 하부 시트(B) 사이에는 리드(152, 162)와의 접착성을 더욱 개선하기 위해 실링 테이프(170)가 더 구비될 수 있다.The upper sheet T and the lower sheet B are each provided with a sealing portion S at the edge of the inner accommodating space and the sealing portions S are bonded to each other to seal the inner accommodating space have. A sealing tape 170 may further be provided between the upper sheet T and the lower sheet B to further improve adhesion to the leads 152 and 162.
이처럼, 파우치(185)는, 내부에 수납된 전극 조립체(180)와 전해액을 밀봉하고, 외부로부터 이들을 보호한다.As described above, the pouch 185 seals the electrode assembly 180 and electrolyte contained therein, and protects the electrode assembly 180 from the outside.
여기 설명한 것들이 본 발명에 따른 이차전지의 구조나 종류를 제한하는 것은 아니며, 본 발명에 따른 이차전지는 본 발명에 따른 이차전지용 동박을 음극 집전체로 이용하는 것이기만 하면 된다. 여기 설명한 것 이외에 이차전지에 관한 일반적인 사항은 본 출원인의 선행 특허문헌들을 참고할 수 있으므로, 이외에 자세한 설명은 생략하기로 한다. The present invention is not limited to the structure and the kind of the secondary battery according to the present invention, and the secondary battery according to the present invention is only required to use the copper foil for a secondary battery according to the present invention as an anode current collector. In addition to the above description, general matters relating to the secondary battery can be referred to the applicant's prior patent documents, and thus a detailed description thereof will be omitted.
다음으로 본 발명의 일 실시예에 따른 이차전지용 동박 제조 방법에 관하여 설명한다. Next, a method for manufacturing a copper foil for a secondary battery according to an embodiment of the present invention will be described.
우선, 본 발명에 따른 이차전지용 동박 제조 방법은, 기존 전해 동박을 제조하는 공정 라인의 크로메이트 처리 구간을 제거하고, SBR 수용액 처리조를 추가하는 등의 비교적 간단한 변경에 의하여 공정 라인을 구성하여 수행할 수 있다. First, the process for manufacturing a copper foil for a secondary battery according to the present invention is carried out by constructing a process line by relatively simple modification such as removing a chromate treatment section of a process line for manufacturing an existing electrolytic copper foil and adding an SBR aqueous solution treatment tank .
바람직하게, 전해조에서 드럼에 전착하여 전해 동박을 제조하고 상기 전해조 밖으로 취출하는 동안 상기 전해 동박이 SBR 표면처리 구간을 통과해 보빈에 권취되도록 한다. 이하에서 상세히 설명한다. Preferably, the electrolytic copper foil is electrodeposited on the drum in an electrolytic bath, and the electrolytic copper foil passes through the SBR surface treatment section and is wound on the bobbin while the electrolytic copper foil is taken out of the electrolytic bath. This will be described in detail below.
도 5는 본 발명의 일 실시예에 따른 이차전지용 동박 제조 방법을 수행할 수 있는 장치의 개략도이다. 도 6은 도 5 장치의 측면 개략도이다. 도 7은 도 5 장치에 포함될 수 있는 SBR 수용액 처리구간을 도시한다. 5 is a schematic view of an apparatus for performing a method of manufacturing a copper foil for a secondary battery according to an embodiment of the present invention. Figure 6 is a side schematic view of the Figure 5 apparatus. Fig. 7 shows an SBR aqueous solution treatment section which can be included in the Fig. 5 apparatus.
예를 들어, 도 5에서와 같이, 전해조(200) 중에, 이리듐 코티드 티탄제(Ir coated Ti) 회전 캐소드 드럼(210)과, 드럼(210)의 주위에 3 ∼ 20 ㎜ 정도의 극간 거리를 두고 전극을 배치한 전해 동박 제조 장치(300)를 이용하여 전해 동박(10)을 먼저 제조할 수 있다. For example, as shown in FIG. 5, in the electrolytic bath 200, iridium-coated titanium (Ir coated Ti) rotating cathode drum 210 and a gap of about 3 to 20 mm The electrolytic copper foil 10 can be manufactured first by using the electrolytic copper foil manufacturing apparatus 300 in which the electrodes are placed.
본 발명에 관련된 전해 동박(10)을 제조하는 경우에는, 전해조(200) 중에 황산 구리 전해액을 넣고, 전류 밀도비를 조절하여 드럼(210)에 전착함으로써 실시할 수 있다. 황산 구리 전해액은 전형적으로는 구리 농도 : 50 ∼ 350 g/ℓ, 황산 농도 : 50 ∼ 200 g/ℓ로 할 수 있다. 소망하는 물성을 갖는 전해 동박(10)의 수득을 위해, 그리고 전해 동박(10)의 역학적 특성이나 표면 상태를 컨트롤하기 위해, 상기 황산 구리 전해액에는 유기 첨가제로 아교, 젤라틴, HEC(Hydroxyethyl Cellulose), 설파이드(sulfide)계 화합물, 폴리에틸렌글리콜, 질화물 등을 더 포함할 수 있다. 상기 황산 구리 전해액의 온도는 40 ~ 70℃일 수 있다. 전류 밀도는, 구리 농도, 황산 농도, 급액 속도, 극간 거리, 황산 구리 전해액 온도 등 여러 조건에 따라 조절한다. 정상 도금(구리가 층상으로 석출되어 있는 상태)과 조화(粗化) 도금(번드 플레이팅, 구리가 결정상(구상(ball-shaped)이나 침상(needle-shaped)이나 수빙상(hoarfrost-shaped) 등)으로 석출되어 있는 상태, 요철이 있다)과의 경계의 전류 밀도를 한계 전류 밀도로 정의하고, 정상 도금이 되는 한계 내로 전류 밀도를 유지하도록 한다. 전류 밀도는 10 ∼ 80 A/dm2일 수 있다. When the electrolytic copper foil 10 according to the present invention is produced, a copper sulfate electrolytic solution may be added to the electrolytic bath 200 and electrodeposited on the drum 210 by adjusting the current density ratio. The copper sulfate electrolyte typically has a copper concentration of 50 to 350 g / l and a sulfuric acid concentration of 50 to 200 g / l. Gelatin, gelatin, HEC (Hydroxyethyl Cellulose), and polyvinyl alcohol are added to the copper sulfate electrolyte to obtain the electrolytic copper foil 10 having the desired physical properties and to control the mechanical properties and the surface condition of the electrolytic copper foil 10, Sulfide compounds, polyethylene glycols, nitrides, and the like. The temperature of the copper sulfate electrolyte may be 40 to 70 ° C. The current density is adjusted according to various conditions such as the copper concentration, the sulfuric acid concentration, the liquid supply rate, the inter-pole distance, and the temperature of the copper sulfate electrolyte. (Copper plating in the form of layers) and roughening plating (copper plating in the form of a ball-shaped or needle-shaped or hoarfrost-shaped copper) ), And the current density at the boundary between them is defined as the limiting current density, and the current density is maintained within the limit of the normal plating. The current density may be between 10 and 80 A / dm < 2 >.
전해 동박(10)은 드럼(210)과 양호한 이형성을 가지고 이차전지의 음극 집전체로서 기본적으로 우수한 상 안정성을 가지며 제조된다. 도 5의 전해조(200)에서 만들어지는 전해 동박(10)은 이송부(250)를 거쳐 보빈(270)에 권취될 수 있다. The electrolytic copper foil 10 has good releasability with the drum 210 and is manufactured with excellent phase stability as an anode current collector of a secondary battery. The electrolytic copper foil 10 made in the electrolytic bath 200 of FIG. 5 can be wound on the bobbin 270 through the transfer part 250.
그런데 이와 같은 전해 도금으로 제조되는 전해 동박(10)은 전해조(200)에서 대기로 노출되는 순간부터 산화가 진행된다. 이러한 산화는 CuO 및 CuO2를 만들고, 이는 전기적 특성을 저해하는 요소로 작용할 뿐 아니라, 외관상의 문제를 야기한다. 따라서, 기존에는 이송부(250) 중간에 기존에는 크로메이트 처리를 위한 구간이 필요하였다. 본 발명에서는 크로메이트 처리 구간 대신에 SBR 표면처리 구간(260)을 추가한다. However, the electrolytic copper foil 10 produced by the electrolytic plating proceeds from the moment when it is exposed to the atmosphere in the electrolytic bath 200. This oxidation produces CuO and CuO 2 , which not only act as an impediment to electrical properties but also cause apparent problems. Therefore, conventionally, a section for the chromate treatment was required in the middle of the transfer unit 250. In the present invention, an SBR surface treatment section 260 is added instead of the chromate treatment section.
전해조(200)에서 드럼(210) 표면에 만들어지는 전해 동박(10)은, 도 6에도 나타낸 바와 같이, SBR 표면처리 구간(260)을 통과하면서 전해 동박(10)의 표면 또는 이면, 나아가서는 양면에, SBR층(20)이 형성되어, 이차전지용 동박(100)이 되어 보빈(270)에 권취될 수 있다. 이후 이차전지용 동박(100)을 필요한 길이로 재단한 후, 음극 활물질층을 형성하여 음극으로 제조하는 공정에 투입이 된다. 6, the electrolytic copper foil 10 made on the surface of the drum 210 in the electrolytic bath 200 passes through the SBR surface treatment section 260 while the surface or the back surface of the electrolytic copper foil 10, The SBR layer 20 is formed on the bobbin 270 to be a copper foil 100 for a secondary battery. Thereafter, the copper foil 100 for a secondary battery is cut to a required length, and then a negative electrode active material layer is formed to be used as a negative electrode.
도 6과 같은, SBR 표면처리 구간(260)에서 전해 동박(10) 표면에 SBR층(20)을 형성하는 방법은 SBR 수용액을 전해 동박(10)에 코팅하고 건조하는 방법에 의할 수 있다. 6, a method of forming the SBR layer 20 on the surface of the electrolytic copper foil 10 in the SBR surface treatment section 260 can be performed by coating the electrolytic copper foil 10 with an SBR aqueous solution and drying the SBR aqueous solution.
SBR은 물에도 에멀젼 형태로 용이하게 분산될 수 있다. 따라서, SBR 수용액은 SBR이 에멀젼 형태로 분산된 형태일 수도 있고, 일부 또는 전부가 용해된 형태일 수도 있다. 이 때, SBR 함량은 물에의 혼합 가능 여부, 코팅 용이성, 코팅 후 형태 유지 등을 고려하여 SBR 수용액의 점도를 결정하는 수준으로 결정한다. CMC와 같은 점도 조절을 위한 첨가제가 더 포함될 수도 있다. SBR 수용액은 원료로서 SBR을 용매인 물에 희석해서 도포량을 정한다. 전해 동박(10)은 전해조(200)에서 취출되어 SBR 표면처리 구간(260)을 통과해 보빈(270)에 권취되도록 연속적으로 처리될 수 있다. 대신, 전해 동박(10)은 SBR 표면처리 구간(260)에서 일정 시간 머문 후 보빈(270)에 권취될 수도 있다. SBR can be easily dispersed in water or emulsion form. Thus, the SBR aqueous solution may be a form in which the SBR is dispersed in an emulsion form, or a form in which some or all of the SBR is dissolved. At this time, the SBR content is determined at a level that determines the viscosity of the SBR aqueous solution in consideration of the possibility of mixing with water, the ease of coating, the shape maintenance after coating, and the like. An additive for viscosity control such as CMC may be further included. The SBR aqueous solution is diluted with SBR as a raw material, which is a solvent, to determine the application amount. The electrolytic copper foil 10 may be continuously processed so as to be taken out of the electrolytic bath 200, passed through the SBR surface treatment section 260, and wound around the bobbin 270. Alternatively, the electrolytic copper foil 10 may be wound on the bobbin 270 after a certain period of time in the SBR surface treatment section 260.
물은 저렴하고 더욱 용이하게 구입할 수 있다. 또한, 물은 더욱 환경 친화적이고, 일반적으로 보관 및 처리가 용이하다. 따라서, SBR 표면처리 구간(260)을 유지하는 데에 기존 크로메이트 처리 대비 어려워지는 점은 없다. Water is inexpensive and can be purchased more easily. In addition, water is more environmentally friendly and is generally easier to store and process. Accordingly, there is no difficulty in maintaining the SBR surface treatment section 260 compared to the conventional chromate treatment.
SBR 수용액은 교반 상태에 둘 수 있다. 교반을 하지 않고 홀로 남겨 놓을 경우에 SBR 수용액은 경화 및/또는 분리되기 시작할 수 있다. The SBR aqueous solution may be left in a stirred state. The SBR aqueous solution may begin to cure and / or separate when left alone without stirring.
코팅 방법은, SBR 수용액의 스프레이에 의한 분사, 코터에서의 코팅, 침지, 흘림 등 어느 것이어도 된다. 본 실시예에서는 침지의 경우를 예로 들어, 도 7에 SBR 수용액 처리조(262)를 도시하였다. The coating method may be spraying by spraying an SBR aqueous solution, coating in a coater, dipping, or shedding. In this embodiment, the SBR aqueous solution treatment tank 262 is shown in Fig. 7 as an example of immersion.
예를 들어, SBR 수용액 처리조(262)에는 SBR을 1g/l 내지 10g/l 농도로 물에 분산시킨 SBR 수용액을 담아두고, 전해 동박(10)이 SBR 수용액 처리조(262)에 침지되었다가 인출되도록 한다. 그런 다음, SBR 수용액 처리된 전해 동박(10)을 건조시켜 전해 동박(10) 표면에 SBR층(20)을 형성하도록 한다. 이 때, 열풍 방식의 건조로(264)를 인라인 방식으로 SBR 수용액 처리조(262) 다음 단에 설치를 하는 것이 바람직하다. 건조로(264)에서는 전해 동박(10) 표면에 코팅된 SBR 수용액이 직접 열풍에 접촉되어지는 방식으로 건조될 수 있다. 상자형, 터널형 건조로가 가능하며 열원으로써 적외선 가열, 고주파 가열, 혹은 열선에 의한 가열 등이 이용될 수 있다. 예를 들어 건조로(264)는 할로겐 라인 히터와 같은 선형 열풍 건조로일 수 있다. 이와 같이 인라인 방식으로 구성을 하면, 보빈(270)에 권취된 전해 동박을 따로 옮겨 풀어내서 SBR 처리를 한 후 재권취하지 않아도 되므로, 연속 생산에도 적합한 높은 생산성으로 저렴하게 이차전지용 동박(100)을 얻을 수 있다.For example, an SBR aqueous solution in which SBR is dispersed in water at a concentration of 1 g / l to 10 g / l is contained in the SBR aqueous solution treatment tank 262, and the electrolytic copper foil 10 is immersed in the SBR aqueous solution treatment tank 262 . Then, the electrolytic copper foil 10 treated with the SBR aqueous solution is dried to form the SBR layer 20 on the surface of the electrolytic copper foil 10. At this time, it is preferable to install the hot-air drying furnace 264 at the stage following the SBR aqueous solution treatment tank 262 in an in-line manner. In the drying furnace 264, the SBR aqueous solution coated on the surface of the electrolytic copper foil 10 may be dried by directly contacting hot air. Box type, and tunnel type drying furnace, and infrared heat, high frequency heating, or heating by hot wire may be used as a heat source. For example, the drying furnace 264 may be a linear hot air drying furnace, such as a halogen line heater. When the in-line configuration is adopted, the electrolytic copper foil wound on the bobbin 270 is separately transferred and untwisted so that the SBR treatment is not required, so that the copper foil 100 for a secondary battery can be obtained at low cost with high productivity suited for continuous production .
상기 건조는 160℃ 내지 2OO℃의 온도 분위기에서 행하는 것이 바람직하다. 또한, 단순한 건조라고 하는 개념을 넘어, 상기 건조를 180℃ 내지 190℃의 온도 분위기에서 30분 내지 240분 계속하여, 건조와 함께 베이킹 효과를 얻는 것이 바람직하다. 여기서 베이킹이란 전해 동박(10)의 표면에 SBR층(20)의 접착력을 증가시키는 일환으로, 코팅된 SBR 수용액 중의 물을 증발시키는 것 이외에도 남아있는 SBR간의 긴밀한 결합 그리고 SBR과 전해 동박(10)간의 긴밀한 결합을 위한 물질 재배치 및 피막의 고밀도화라는 의미도 포함하는 것이다. 이러한 건조를 통하여, SBR층(20)은 피막의 형태로, 전해 동박(10)의 표면에 고르게, 일정한 두께로, 전해 동박(10) 일부라도 노출시키는 일이 없이, 연속된 막의 형태로 형성될 수 있고, 미세한 크랙(crack)이나 핀홀(pin hole) 등의 결함이 발생하지 않는다. The drying is preferably performed in a temperature atmosphere of 160 ° C to 200 ° C. Further, it is preferable to continue the above-mentioned drying in a temperature atmosphere of 180 to 190 캜 for 30 to 240 minutes to obtain a baking effect together with drying beyond the concept of simple drying. Here, baking is a process of increasing the adhesive force of the SBR layer 20 on the surface of the electrolytic copper foil 10, in addition to evaporation of water in the coated SBR aqueous solution, as well as tight bonding between the remaining SBRs, This also includes the meaning of relocation of materials and densification of the film for close bonding. Through this drying, the SBR layer 20 is formed in the form of a continuous film without exposing a part of the electrolytic copper foil 10 to the surface of the electrolytic copper foil 10 evenly and with a constant thickness in the form of a film And defects such as fine cracks and pin holes do not occur.
<실험예><Experimental Example>
18㎛ 두께의 일반적인 시판 전해 동박(비교예) 및 본 발명에 따른 이차전지용 동박(실시예) 샘플을 마련해 기계적 특성, 표면 조도 및 접착력을 측정하였다.A commercially available electrolytic copper foil (comparative example) having a thickness of 18 mu m and a copper foil (example) sample for a secondary battery according to the present invention were prepared, and mechanical properties, surface roughness and adhesive strength were measured.
실시예 샘플은 SBR을 5g/l 농도로 물에 분산시킨 SBR 수용액을 18㎛ 두께의 전해 동박의 표면에 코팅하고 건조함으로써 형성하였다. 건조 후 SBR층의 두께는 대략 2㎛이었다. The sample was formed by coating an SBR aqueous solution in which SBR was dispersed in water at a concentration of 5 g / l on the surface of an electrolytic copper foil having a thickness of 18 탆 and drying it. The thickness of the SBR layer after drying was approximately 2 mu m.
인장타발 시편기를 이용하여 각 동박에서 12.7mm(W) × 152.4mm(L) 시편을 잘라낸 후, 열처리 130℃/10min 후 5분 상온대기 상태에서 인장강도를 측정하였다. 인장강도는 기계적 물성을 측정하는 데에 널리 이용되는 UTM(Universal Test Machine)으로서 INSTRON사 UTM 설비를 이용하고, 시편을 UTM 설비에 장착한 후 TA(Tension Annealing) : speed 50mm/min 조건으로 잡아 당기면서 걸리는 힘을 측정하여 파단시의 힘을 측정한 후 계산을 통해 구하였다. The specimens were cut out from each copper foil using a tensile punching machine. The tensile strengths of the specimens were measured at 130 ° C for 10 minutes and then at room temperature for 5 minutes. Tensile strength was measured by using a UTM (Universal Test Machine) widely used for measuring mechanical properties, using INSTRON UTM equipment. The specimens were mounted on a UTM facility and subjected to TA (tension annealing) at a speed of 50 mm / min And the force at break was measured and then calculated.
이러한 인장 시험에서 파단 직전까지의 늘어난 길이를 측정해 연신율을 계산하였다. 시편의 최초 길이를 L0, 파단 직전의 길이가 L이라고 하면 △L(=L- L0)은 시편이 늘어난 길이이다. 이 늘어난 길이를 퍼센트로 나타낸 양, 즉 (△L / L0) ×100이 연신율이 된다. In this tensile test, elongation was measured by measuring elongation length up to just before fracture. If the initial length of the specimen is L 0 and the length immediately before the fracture is L, ΔL (= L-L 0 ) is the length of the specimen. The increased amount of the length indicated as a percentage, that is, (△ L / L 0) × 100 is the elongation.
표면 조도와 접착력은 전해 동박의 드럼접촉면 및 공기노출면에 대해 각각 측정하였다. The surface roughness and the adhesive force were measured for the drum contact surface and the air exposed surface of the electrolytic copper foil, respectively.
표면 조도는 표면조도계를 이용해 십점 평균 산출법으로 측정하였다(Rz 조도). 잘 알려진 바와 같이, 십점 평균 산출법은 단면곡선으로 기준길이를 취해서 그 부분의 평균선에 평행으로 단면곡선을 횡으로 자르지 않은 직선으로 높은 쪽부터 5번째까지의 산봉우리와, 깊은 쪽에서 5번째까지의 계곡 사이의 간격을 측정하여 평균의 차이를 나타내는 것이다. The surface roughness was measured by a ten-point average calculation method using a surface roughness meter (Rz roughness). As is well known, the ten-point average calculation method takes a reference length as a section curve and calculates a straight line that is parallel to the average line of the section and does not cut the cross-section curve transversely between the mountain peaks from the highest to the fifth and from the deepest to the fifth To indicate the difference of the average.
접착력 평가를 위해서는 음극 활물질 슬러리를 제조해 각 동박에 코팅한 후 상온/고온 건조하여, 압연 전, 압연 후 평가하였다. TA 측정기를 이용하였으며, 2.0mm(W) × 152.4mm(L) 길이의 시편으로 제작했다. 양면 테이프를 이용해 음극 활물질층을 슬라이드 글라스에 고정한 상태에서 시편을 접착된 끝으로부터 잡아당겨 벗기고 그 파열 상태를 보아 접착 상태를 판단하였다(peel test). 잡아당기는 각도는 90°와 180°로 달리 하여 평가를 진행하였다.For the evaluation of adhesion, an anode active material slurry was prepared, coated on each copper foil, and then dried at room temperature / high temperature, and evaluated before and after rolling. TA meter was used, and specimens with a length of 2.0 mm (W) x 152.4 mm (L) were produced. The anode active material layer was fixed on a slide glass using a double-sided tape, and the specimen was peeled off from the adherend and peeled to determine the state of adhesion (peel test). The pulling angle was varied between 90 ° and 180 °.
표 1은 인장강도, 연신율, Rz 조도, 그리고 접착력 측정 결과를 정리한 것이다.Table 1 summarizes tensile strength, elongation, Rz roughness, and adhesion measurement results.
표 1에 나타낸 바와 같이, 기계적 특성 및 표면 조도는 종래(비교예)와 본 발명(실시예)이 비슷한 수준으로 측정이 되었다. 즉, 본 발명의 경우 기존에 이용하던 음극 집전체로서의 전해 동박 스펙 조건을 충족할 수 있다는 것이다.As shown in Table 1, mechanical properties and surface roughness were measured at a similar level in the conventional (comparative) and inventive (embodiment). That is, in the case of the present invention, it is possible to satisfy the electrolytic copper foil specification condition as a negative electrode current collector that has been used in the past.
주목할만한 것은 본 발명의 경우 종래에 비하여 접착력이 크게 상승하였다는 것이다. 공기노출면의 압연 전에는 접착력이 42.6% 상승하고 공기노출면의 압연 후에는 접착력이 25.3% 상승하였다. 드럼접촉면의 압연 전에는 접착력이 67.6% 상승하고 드럼접촉면의 압연 후에는 접착력이 54.8% 상승하였다. 따라서, 본 발명에 의할 경우 음극 활물질층과의 접착력이 크게 개선되므로 음극 활물질 슬러리 안의 바인더 양을 줄일 수 있다. It is notable that the adhesive strength of the present invention is significantly increased compared with the conventional adhesive. The adhesive strength increased by 42.6% before rolling on the air-exposed surface, and the adhesion increased by 25.3% after the air-exposed surface was rolled. The adhesive force increased by 67.6% before rolling on the drum contact surface and increased by 54.8% after rolling on the drum contact surface. Therefore, according to the present invention, since the adhesive strength to the negative electrode active material layer is greatly improved, the amount of the binder in the negative electrode active material slurry can be reduced.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood that various modifications and changes may be made without departing from the scope of the appended claims.
Claims (11)
- 전해 동박 표면에 SBR(Styrene Butadiene Rubber; 스티렌 부타디엔 고무)층이 형성된 이차전지용 동박.A copper foil for a secondary battery, wherein a layer of SBR (Styrene Butadiene Rubber) is formed on the surface of the electrolytic copper foil.
- 제1항에 있어서, 상기 전해 동박은 녹방지 표면 처리 원소로서 크롬 원소를 함유하지 않는 것을 특징으로 하는 이차전지용 동박.The copper foil for a secondary battery according to claim 1, wherein the electrolytic copper foil contains no chromium element as an antirust surface treatment element.
- 제1항에 있어서, 전해조에서 드럼 표면에 만들어진 전해 동박 표면에 다른 인위적인 처리없이 상기 SBR층이 곧바로 피복된 것을 특징으로 하는 이차전지용 동박.The copper foil for a secondary battery according to claim 1, wherein the surface of the electrolytic copper foil formed on the drum surface in the electrolytic bath is directly coated with the SBR layer without any other artificial treatment.
- 전해 동박 표면에 대해 SBR 수용액으로 표면 처리를 실시하여, 상기 동박 표면에 SBR층을 형성하는 공정을 포함하는 이차전지용 동박 제조 방법.Subjecting the surface of the electrolytic copper foil to a surface treatment with an SBR aqueous solution to form an SBR layer on the surface of the copper foil.
- 제4항에 있어서, 전해조에서 드럼에 전착하여 상기 전해 동박을 제조하고 상기 전해조 밖으로 취출하는 동안 상기 전해 동박이 SBR 표면처리 구간을 통과해 보빈에 권취되도록 하는 것을 특징으로 하는 이차전지용 동박 제조 방법.5. The method for manufacturing a copper foil for a secondary battery according to claim 4, wherein the electrolytic copper foil is electrodeposited on a drum in an electrolytic bath to produce the electrolytic copper foil, and the electrolytic copper foil is wound on the bobbin through the SBR surface treatment section while being taken out of the electrolytic bath.
- 제5항에 있어서, 상기 SBR 표면처리 구간은 SBR 수용액 처리조 및 열풍 방식의 건조로를 인라인 방식으로 설치한 것임을 특징으로 하는 이차전지용 동박 제조 방법.The method for manufacturing a copper foil for a secondary battery according to claim 5, wherein the SBR surface treatment section is provided with an SBR aqueous solution treatment tank and a hot air drying furnace in an inline manner.
- 제4항에 있어서, 상기 SBR층은, SBR을 1g/l 내지 10g/l 농도로 물에 분산시킨 SBR 수용액을 상기 전해 동박의 표면에 코팅하고 건조함으로써 형성하는 것을 특징으로 하는 이차전지용 동박 제조 방법.5. The method for manufacturing a copper foil for a secondary battery according to claim 4, wherein the SBR layer is formed by coating an SBR aqueous solution in which SBR is dispersed in water at a concentration of 1 g / l to 10 g / l on the surface of the electrolytic copper foil, .
- 제1항에 따른 이차전지용 동박이 음극의 집전체로 적용된 이차전지. The secondary battery according to claim 1, wherein the copper foil for a secondary battery is applied as a negative current collector.
- 제8항에 있어서, 상기 집전체 중의 전해 동박의 두께는 3㎛ 내지 30㎛ 범위이고, SBR층의 두께는 0.5㎛ 내지 5㎛ 범위이며,9. The method according to claim 8, wherein the thickness of the electrolytic copper foil in the collector is in the range of 3 to 30 mu m, the thickness of the SBR layer is in the range of 0.5 to 5 mu m,상기 음극은 상기 집전체 상에 음극 활물질, 도전재 및 바인더를 포함하는 음극 활물질층이 형성된 것이고,Wherein the negative electrode comprises a negative electrode active material layer including a negative electrode active material, a conductive material, and a binder on the current collector,상기 바인더의 함량은 상기 음극 활물질층의 전체 중량을 기준으로 1 내지 15 중량%인 것을 특징으로 하는 이차전지.Wherein the content of the binder is 1 to 15% by weight based on the total weight of the negative electrode active material layer.
- 제9항에 있어서, 상기 바인더는 SBR인 것을 특징으로 하는 이차전지. The secondary battery according to claim 9, wherein the binder is SBR.
- 제8항에 있어서, 상기 이차전지는 양극, 음극 및 분리막을 포함하는 전극 조립체를 포함하며, 상기 음극은 전해 동박, SBR층 및 음극 활물질층으로 이루어진 것을 특징으로 하는 이차전지. The secondary battery according to claim 8, wherein the secondary battery includes an electrode assembly including a cathode, a cathode, and a separator, and the anode comprises an electrolytic copper foil, an SBR layer, and an anode active material layer.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880004627.0A CN109997265B (en) | 2017-07-25 | 2018-07-06 | Copper foil for secondary battery, method for manufacturing the same, and secondary battery including the same |
US16/467,317 US11367876B2 (en) | 2017-07-25 | 2018-07-06 | Copper foil for secondary battery, method of manufacturing the same, and secondary battery including the same |
EP18838027.3A EP3550647A4 (en) | 2017-07-25 | 2018-07-06 | Secondary battery copper foil, manufacturing method therefor, and secondary battery comprising same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0094256 | 2017-07-25 | ||
KR20170094256 | 2017-07-25 | ||
KR10-2018-0075894 | 2018-06-29 | ||
KR1020180075894A KR102184170B1 (en) | 2017-07-25 | 2018-06-29 | Copper foil for secondary battery, method thereof and Secondary battery comprising the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019022408A1 true WO2019022408A1 (en) | 2019-01-31 |
Family
ID=65041390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/007724 WO2019022408A1 (en) | 2017-07-25 | 2018-07-06 | Secondary battery copper foil, manufacturing method therefor, and secondary battery comprising same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019022408A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116168874A (en) * | 2023-02-09 | 2023-05-26 | 一道新能源科技(衢州)有限公司 | High-conductivity solar cell conductor slurry and preparation process thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11250916A (en) * | 1998-02-26 | 1999-09-17 | Nippon Zeon Co Ltd | Material for covering current collector, current collector, electrode for lithium ion secondary battery, its manufacture, and battery |
JP2002043192A (en) * | 2000-07-24 | 2002-02-08 | Awi Mach:Kk | Manufacturing method of sheet-like electrode |
KR20100112127A (en) * | 2008-01-10 | 2010-10-18 | 산요덴키가부시키가이샤 | Nonaqueous electrolyte secondary battery and method for manufacturing the same |
JP5622059B2 (en) * | 2010-12-06 | 2014-11-12 | トヨタ自動車株式会社 | Method for producing lithium ion secondary battery |
KR20170053888A (en) * | 2015-11-09 | 2017-05-17 | 엘에스엠트론 주식회사 | Electrolytic Copper Foil, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same |
KR20170094256A (en) | 2014-11-25 | 2017-08-17 | 윌리엄 마쉬 라이스 유니버시티 | Camera based photoplethysmogram estimation |
KR20180075894A (en) | 2016-12-27 | 2018-07-05 | 한국항공대학교산학협력단 | System and method for controlling unmanned aerial vehicle and non-transitory computer-readable recording medium |
-
2018
- 2018-07-06 WO PCT/KR2018/007724 patent/WO2019022408A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11250916A (en) * | 1998-02-26 | 1999-09-17 | Nippon Zeon Co Ltd | Material for covering current collector, current collector, electrode for lithium ion secondary battery, its manufacture, and battery |
JP2002043192A (en) * | 2000-07-24 | 2002-02-08 | Awi Mach:Kk | Manufacturing method of sheet-like electrode |
KR20100112127A (en) * | 2008-01-10 | 2010-10-18 | 산요덴키가부시키가이샤 | Nonaqueous electrolyte secondary battery and method for manufacturing the same |
JP5622059B2 (en) * | 2010-12-06 | 2014-11-12 | トヨタ自動車株式会社 | Method for producing lithium ion secondary battery |
KR20170094256A (en) | 2014-11-25 | 2017-08-17 | 윌리엄 마쉬 라이스 유니버시티 | Camera based photoplethysmogram estimation |
KR20170053888A (en) * | 2015-11-09 | 2017-05-17 | 엘에스엠트론 주식회사 | Electrolytic Copper Foil, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same |
KR20180075894A (en) | 2016-12-27 | 2018-07-05 | 한국항공대학교산학협력단 | System and method for controlling unmanned aerial vehicle and non-transitory computer-readable recording medium |
Non-Patent Citations (1)
Title |
---|
See also references of EP3550647A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116168874A (en) * | 2023-02-09 | 2023-05-26 | 一道新能源科技(衢州)有限公司 | High-conductivity solar cell conductor slurry and preparation process thereof |
CN116168874B (en) * | 2023-02-09 | 2024-05-28 | 一道新能源科技股份有限公司 | High-conductivity solar cell conductor slurry and preparation process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017171409A1 (en) | Anode for secondary battery, manufacturing method therefor, and secondary battery comprising same | |
WO2019103465A1 (en) | Anode for lithium secondary battery and method for manufacturing same | |
WO2016208863A1 (en) | Electrolytic copper foil, current collector including same electrolytic copper foil, electrode including same current collector, secondary battery including same electrode, and method for manufacturing same | |
WO2015142101A1 (en) | Electrolytic copper foil, and collector, negative electrode, and lithium battery comprising same | |
WO2013095057A1 (en) | Jelly roll-type electrode assembly with active material pattern-coated thereon, and secondary battery having same | |
WO2015142100A1 (en) | Electrolytic copper foil, and collector, negative electrode, and lithium battery comprising same | |
WO2019066497A2 (en) | Electrode mixture manufacturing method and electrode mixture | |
WO2020032471A1 (en) | Electrode for lithium secondary battery and lithium secondary battery comprising same | |
KR102184170B1 (en) | Copper foil for secondary battery, method thereof and Secondary battery comprising the same | |
WO2012093864A2 (en) | Electrode assembly including asymmetrically coated separation membrane and electrochemical device including electrode assembly | |
WO2016114474A1 (en) | Slurry composition for electrode, electrode, and secondary battery | |
WO2017082542A1 (en) | Electrolytic copper foil, electrode including same, secondary battery including same, and method for manufacturing same | |
WO2019093836A1 (en) | Strip-shaped electrode used for cylindrical jelly roll and lithium secondary battery comprising same | |
WO2018044013A1 (en) | Method for manufacturing electrode using current collector having penetration-type pores or holes formed thereon | |
WO2018093240A2 (en) | Electrode for electrochemical element and method for manufacturing same | |
WO2019013557A2 (en) | Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same | |
WO2022085984A1 (en) | Secondary battery electrode and method for manufacturing secondary battery electrode | |
WO2019045374A2 (en) | Electrolytic copper foil, method for producing same, and high-capacity li secondary battery negative electrode including same | |
WO2022045554A1 (en) | Current collector comprising primer coating layer having improved adhesive strength, and manufacturing method for same | |
WO2017171294A1 (en) | Method for manufacturing electrode | |
WO2019045387A1 (en) | Electrolytic copper foil, method for producing same, and anode for high capacity li secondary battery including same | |
WO2019168278A1 (en) | Anode slurry composition, and anode and secondary battery manufactured using same | |
WO2019083273A2 (en) | One-sided electrode with reduced twisting for a secondary battery, and method for producing same | |
KR20170085425A (en) | Copper Foil, Method for Manufacturing The Same, Electrode Comprising The Same, and Secondary Battery Comprising The Same | |
WO2018062844A2 (en) | Lithium secondary battery negative electrode including protection layer made of conductive fabric, and lithium secondary battery including same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18838027 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018838027 Country of ref document: EP Effective date: 20190703 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |