[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019022134A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2019022134A1
WO2019022134A1 PCT/JP2018/027885 JP2018027885W WO2019022134A1 WO 2019022134 A1 WO2019022134 A1 WO 2019022134A1 JP 2018027885 W JP2018027885 W JP 2018027885W WO 2019022134 A1 WO2019022134 A1 WO 2019022134A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
suction pipe
opening
refrigerant
scroll compressor
Prior art date
Application number
PCT/JP2018/027885
Other languages
French (fr)
Japanese (ja)
Inventor
二上 義幸
悠介 今井
淳 作田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019532832A priority Critical patent/JP7022902B2/en
Publication of WO2019022134A1 publication Critical patent/WO2019022134A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present disclosure relates to scroll compressors.
  • a partition plate has been provided in a compression container, and a low pressure side chamber partitioned by the partition plate is provided with a compression element having a fixed scroll and a turning scroll, and an electric element for turning the turning scroll.
  • Sealed scroll compressors are known. In this type of sealed scroll compressor, the refrigerant sucked from the refrigerant suction pipe is compressed by the compression element, and the refrigerant compressed by the compression element is partitioned by the partition plate through the discharge port of the fixed scroll. It is discharged into the high pressure side chamber (see, for example, Patent Document 1).
  • FIG. 10 shows a scroll compressor described in Patent Document 1.
  • the refrigerant is introduced into the low pressure space 201 in the closed container via the refrigerant suction pipe 200.
  • the refrigerant is branched by colliding with the straightening vane 202 provided at a portion facing the opening of the refrigerant suction pipe 200.
  • the electric element is cooled by a part of the introduced refrigerant, and the remaining refrigerant is sucked into the compression element and compressed.
  • the present disclosure solves the problems as described above, and provides a highly efficient scroll compressor by preventing a decrease in volumetric efficiency due to heating of the sucked refrigerant.
  • a part of the refrigerant drawn from the suction pipe flows toward the compression mechanism without colliding with the straightening vane, and the remaining refrigerant drawn from the suction pipe
  • the current plate is configured such that it collides with the current plate and is diverted to the motor side.
  • the remaining amount of refrigerant can be made to flow out directly to the compression mechanism side while the amount of refrigerant necessary to cool the electric motor flows out to the electric motor side by the straightening vanes. Therefore, it is possible to prevent the decrease in the efficiency of the compressor caused by the intake refrigerant being heated by the partition plate.
  • disconnected the scroll compressor which concerns on Embodiment 1 of this indication longitudinally Sectional drawing which cut
  • Side view of orbiting scroll of scroll compressor according to Embodiment 1 Sectional drawing which cut
  • a scroll compressor includes a closed container, a partition plate that divides the inside of the closed container into a high pressure space and a low pressure space, a fixed scroll adjacent to the partition plate, and a fixed scroll engaged with the fixed scroll. And a motor for driving the orbiting scroll, a rotation suppressing member for preventing rotation of the orbiting scroll, a main bearing for supporting the orbiting scroll, and an opening opening toward the low pressure space. It has an intake pipe, and a straightening vane which diverts the refrigerant drawn into the closed container from the intake pipe.
  • the fixed scroll, the compression mechanism including the orbiting scroll and the rotation suppressing member, the motor, the current plate and the main bearing are disposed in the low pressure space, and the stationary scroll and the orbiting scroll are disposed between the partition plate and the main bearing.
  • the straightening vane part of the refrigerant sucked from the suction pipe flows to the compression mechanism side without colliding with the straightening vane, and the remaining refrigerant sucked from the suction pipe collides with the straightening vane to the motor side. It is configured to be diverted.
  • the remaining amount of refrigerant can be made to flow out directly to the compression mechanism side while the amount of refrigerant necessary to cool the electric motor flows out to the electric motor side by the straightening vanes. Therefore, it is possible to prevent the decrease in the efficiency of the compressor caused by the intake refrigerant being heated by the partition plate.
  • the compression mechanism portion has a suction portion into which at least a portion of the refrigerant sucked from the suction pipe is sucked, and the opening area of the opening portion of the suction pipe is set to A Assuming that the area of the overlapping portion between the opening of the opening and the straightening vane when viewed from the axial center direction of the suction pipe is B, A> B, and the overlapping portion corresponds to the compression mechanism portion of the straightening vane It may be located on the suction side of the
  • the refrigerant introduced from the suction pipe is diverted by the straightening vane.
  • the amount of refrigerant necessary for cooling the motor is branched to the motor side, and the remaining refrigerant is directly discharged to the suction portion side of the compression mechanism portion, so the refrigerant in the partition plate having a relatively high temperature Collision is avoided.
  • the sucked refrigerant is directly sucked from the suction portion of the fixed scroll without being heated by the partition plate.
  • the scroll compressor according to another aspect of the present disclosure may have a configuration in which a hole is provided at the overlapping portion of the straightening vane with the opening of the opening.
  • the straightening vane may be provided so as to cover the left and right portions of the opening of the suction pipe as viewed from the axial center direction of the suction pipe.
  • the refrigerant sucked from the suction pipe is prevented from being diverted from the opening of the opening portion in the left-right direction of the opening, that is, in the circumferential direction of the sealed container, and the refrigerant to the compression mechanism side and the motor side Can be efficiently discharged, and the refrigerant can be more efficiently introduced to the suction portion of the compression mechanism portion. Therefore, the contact of the refrigerant to the partition plate can be further reduced to suppress the decrease in the refrigerant density, and the efficiency of the scroll compressor can be improved.
  • the refrigerant sucked from the suction pipe is sucked from the suction portion of the compression mechanism portion, which is disposed at a linear position with respect to the opening of the suction pipe. For this reason, it is possible to further reduce the contact of the refrigerant to the partition plate, to suppress the decrease in the refrigerant density, and to improve the efficiency of the scroll compressor.
  • the distance between the suction pipe and the straightening vane may be larger than d / 2 and smaller than d. .
  • the pressure loss of the refrigerant flowing between the straightening vane and the inner wall surface of the hermetic container can be reduced, so the effect of the diversion by the straightening vane can be increased. Therefore, the efficiency of the scroll compressor can be improved.
  • the area B of the overlapping portion between the opening of the opening and the straightening vane when viewed from the axial center direction of the suction pipe is 30% of the opening area A of the opening It may be configured to be larger than 70%.
  • the refrigerant can be diverted to an appropriate amount for each of the compressor side and the motor side, and the efficiency of the compression mechanism can be improved while efficiently cooling the motor.
  • FIG. 1A is a cross-sectional view in which the scroll compressor according to the first embodiment is cut in the longitudinal direction.
  • FIG. 1B is a cross-sectional view of the scroll compression according to the first embodiment, cut in the vertical direction when viewed from the axial center of the suction pipe.
  • the compressor 1 is equipped with the cylindrical airtight container 10 long to an up-down direction as an outer shell, as shown to FIG. 1A and 1B.
  • the vertical direction is the Z-axis direction (the rotational axis direction of the motor) in each drawing.
  • the compressor 1 is a sealed scroll compressor including a compression mechanism portion 170 for compressing a refrigerant and an electric motor 80 for driving the compression mechanism portion 170 inside the sealed container 10.
  • the compression mechanism portion 170 is constituted by at least a fixed scroll 30, a orbiting scroll 40, a main bearing 60, and an Oldham ring 90 which is a rotation control member.
  • a partition plate 20 which divides the inside of the closed container 10 into upper and lower parts.
  • the partition plate 20 divides the space inside the closed container 10 into a high pressure space 11 and a low pressure space 12.
  • the high pressure space 11 is a space filled with a high pressure refrigerant after being compressed by the compression mechanism section 170
  • the low pressure space 12 is a space filled with a low pressure refrigerant before being compressed by the compression mechanism section 170.
  • an oil reservoir 15 At the bottom of the low pressure space 12 is formed an oil reservoir 15 in which lubricating oil is stored.
  • a refrigerant suction pipe (hereinafter referred to as a suction pipe) 13 connecting the outside of the closed container 10 with the low pressure space 12 and a refrigerant discharge pipe 14 connecting the outside of the closed container 10 with the high pressure space 11 It is connected.
  • a low pressure refrigerant is introduced to the low pressure space 12 from a refrigeration cycle circuit (not shown) provided outside the closed container 10 via the suction pipe 13. Further, the high pressure refrigerant compressed by the compression mechanism section 170 is introduced into the high pressure space 11 and then discharged from the high pressure space 11 via the refrigerant discharge pipe 14 into the refrigeration cycle circuit.
  • a flow straightening plate 160 for dividing the refrigerant sucked from the suction pipe 13 is provided as described below.
  • a flow straightening plate 160 is attached to the inner wall surface of the closed vessel 10 so as to face the closed vessel inner opening (hereinafter referred to as an opening) 13 a of the suction pipe 13.
  • the upper side of the baffle plate 160 is closed. That is, the baffle plate 160 is configured such that the refrigerant sucked from the suction pipe 13 does not flow out from the upper side in the vertical direction.
  • the opening area of the opening 13a of the suction pipe 13 is A, and the opening of the opening 13a of the suction pipe 13 and the rectifying plate 160 when viewed from the axial center direction of the suction pipe 13.
  • the area of the overlapping portion with B is B, A> B, and the overlapping portion corresponds to the suction portion of the compression mechanism portion 170 (in the present embodiment, the suction portion 38 of the fixed scroll 30) Provided on the) side.
  • the opening of the opening 13a is a circular area indicated by a vertical line.
  • the overlapping portion is a partial area of the above-described circle indicated by both vertical and horizontal lines.
  • the current plate 160 is configured to cover the left and right portions (the end portions in the circumferential direction of the sealed container 10) of the opening 13a of the suction pipe 13.
  • the straightening vane 160 is configured such that at least a part of the opening 13 a of the suction pipe 13 overlaps the suction portion 38 of the fixed scroll 30 when viewed from the axial center direction of the suction pipe 13 There is.
  • the distance between the suction pipe 13 and the straightening vane 160 is larger than d / 2 and smaller than d.
  • the area B of the overlapping portion where the opening of the opening 13a of the suction pipe 13 and the flow straightening plate 160 overlap is in the range of more than 30% and less than 70% of the opening area A of the opening 13a of the suction pipe 13 It is configured.
  • the compressor 1 includes a compression mechanism section 170 in the low pressure space 12 in the closed vessel 10.
  • the compression mechanism section 170 has a fixed scroll 30 and a orbiting scroll 40.
  • the fixed scroll 30 is a non-orbiting scroll.
  • the fixed scroll 30 is disposed below the partition plate 20 adjacent to the partition plate 20.
  • the orbiting scroll 40 is disposed below the fixed scroll 30 in mesh with the fixed scroll 30.
  • the fixed scroll 30 includes a disk-shaped fixed scroll end plate 31 and a spiral fixed spiral wrap 32 erected on the lower surface of the fixed scroll end plate 31.
  • the orbiting scroll 40 includes a disc-shaped orbiting scroll end plate 41, a spiral orbiting scroll wrap 42 provided on the upper surface of the orbiting scroll end plate 41, and a lower boss portion 43.
  • the lower boss portion 43 is a cylindrical protrusion formed substantially at the center of the lower surface of the orbiting scroll end plate 41.
  • a compression chamber 50 is formed between the orbiting scroll 40 and the fixed scroll 30 by meshing the orbiting spiral wrap 42 of the orbiting scroll 40 and the fixed spiral wrap 32 of the fixed scroll 30.
  • the compression chamber 50 is formed on the inner wall (described later) side of the swirling and spiral wrap 42 and the outer wall (described later) side.
  • the main bearing 60 includes a boss housing portion 62 provided substantially at the center of the upper surface of the main bearing 60 and a bearing portion 61 provided below the boss housing portion 62.
  • the boss accommodating portion 62 is a recess for accommodating the lower boss portion 43.
  • the upper portion of the bearing portion 61 is opened as a boss accommodating portion 62, and the lower portion of the bearing portion 61 is opened to the low pressure space 12 as a through hole.
  • the main bearing 60 supports the orbiting scroll 40 on the upper surface of the main bearing 60, and supports the rotating shaft 70 at the bearing portion 61.
  • the rotating shaft 70 has the vertical direction as an axis.
  • One end side of the rotating shaft 70 is pivotally supported by the bearing portion 61, and the other end side is pivotally supported by the auxiliary bearing 16.
  • the auxiliary bearing 16 is provided below the low pressure space 12, preferably in the oil reservoir 15. At the upper end of the rotating shaft 70, an eccentric shaft 71 eccentric to the axial center of the rotating shaft 70 is provided.
  • the eccentric shaft 71 is slidably inserted in the lower boss portion 43 via the swing bush 78 and the pivot bearing 79.
  • the lower boss portion 43 is rotationally driven by the eccentric shaft 71.
  • An oil passage 72 through which the lubricating oil passes is formed in the rotating shaft 70.
  • the oil passage 72 is a through hole formed in the axial direction of the rotating shaft 70.
  • One end of the oil passage 72 opens into the oil reservoir 15 as a suction port 73 provided at the lower end of the rotary shaft 70.
  • a paddle 74 for pumping the lubricating oil from the suction port 73 to the oil passage 72 is provided.
  • the rotating shaft 70 is coupled to the motor 80.
  • the motor 80 is disposed between the main bearing 60 and the sub bearing 16.
  • the electric motor 80 includes a stator 81 fixed to the sealed container 10 and a rotor 82 disposed inside the stator 81.
  • the rotating shaft 70 is fixed to the rotor 82.
  • the rotating shaft 70 includes a balance weight 17 a provided above the rotor 82 and a balance weight 17 b provided below.
  • the balance weight 17 a and the balance weight 17 b are disposed at positions shifted by 180 ° in the circumferential direction of the rotation shaft 70 in plan view.
  • the rotating shaft 70 rotates in balance with the centrifugal force generated by the balance weight 17 a and the balance weight 17 b and the centrifugal force generated by the revolving motion of the orbiting scroll 40.
  • the balance weight 17 a and the balance weight 17 b may be provided on the rotor 82.
  • An Oldham ring 90 which is a rotation suppressing member is provided between the orbiting scroll 40 and the main bearing 60.
  • the Oldham ring 90 prevents rotation of the orbiting scroll 40.
  • the orbiting scroll 40 pivots with respect to the fixed scroll 30 without rotating.
  • the fixed scroll 30, the orbiting scroll 40, the motor 80, the Oldham ring 90 and the main bearing 60 are disposed in the low pressure space 12.
  • the fixed scroll 30 and the orbiting scroll 40 are disposed between the partition plate 20 and the main bearing 60.
  • the partition plate 20 and the main bearing 60 are fixed to the closed container 10.
  • An elastic body (not shown) is provided on one of the fixed scroll 30 and the orbiting scroll 40. Then, at least one of the fixed scroll 30 and the orbiting scroll 40 provided with the elastic body is axially movably provided in at least a part of a section between the partition plate 20 and the main bearing 60 .
  • the at least one section is, for example, between the partition plate 20 and the orbiting scroll 40 or between the fixed scroll 30 and the main bearing 60.
  • the fixed scroll 30 is provided movably in the axial direction (vertical direction in FIG. 1) with respect to the columnar member 100 provided in the main bearing 60.
  • the lower end portion of the columnar member 100 is inserted and fixed in the bearing side hole portion 102, and the upper end portion is slidably inserted in the scroll side hole portion 101.
  • the columnar member 100 restricts the rotation and radial movement of the fixed scroll 30 and allows axial movement of the fixed scroll 30. That is, the fixed scroll 30 is supported by the main bearing 60 by the columnar member 100, and a partial section between the partition plate 20 and the main bearing 60, more specifically, between the partition plate 20 and the orbiting scroll 40 It is provided to be movable in the axial direction.
  • a plurality of columnar members 100 are provided, and are arranged at predetermined intervals in the circumferential direction. Desirably, the plurality of columnar members 100 are arranged substantially equally in the circumferential direction.
  • the columnar member 100 may be provided on the fixed scroll 30. That is, the lower end portion of the columnar member 100 may be slidably inserted in the bearing side hole portion 102, and the upper end portion may be inserted and fixed in the scroll side hole portion 101.
  • the rotary shaft 70 rotates with the rotor 82.
  • the orbiting scroll 40 pivots around the central axis of the rotating shaft 70 without rotating on its axis by the eccentric shaft 71 and the Oldham ring 90.
  • the volume of the compression chamber 50 is reduced, and the refrigerant in the compression chamber 50 is compressed.
  • the refrigerant in the refrigeration cycle circuit is introduced from the suction pipe 13 into the low pressure space 12. Then, the refrigerant introduced into the low pressure space 12 collides with the rectifying plate 160 and is diverted.
  • the suction pipe 13 and the flow straightening plate 160 have an area A of the opening 13a of the suction pipe 13 and an opening of the opening 13a when viewed from the axial center of the suction pipe 13. Assuming that the area of the overlapping portion of the straightening vane 160 is B, A> B, and the overlapping portion is provided on the suction portion 38 side of the fixed scroll 30 in the straightening vane 160.
  • the refrigerant introduced from the suction pipe 13 collides with the overlapping portion of the straightening vane 160 and a part thereof is diverted to the motor 80 side, and the rest passes through the opening 13 a of the suction pipe 13, It flows directly to the compression mechanism section 170 side. That is, only the amount of refrigerant necessary to cool the electric motor 80 is diverted to the electric motor 80 side, and the remaining refrigerant directly flows out to the suction portion 38 side of the fixed scroll 30 in the compression mechanism portion 170. In other words, the remaining refrigerant flows toward the suction portion 38 of the compression mechanism portion 170 and is sucked from the suction portion 38 while the collision with the partition plate 20 having a relatively high temperature is suppressed.
  • the refrigerant sucked from the suction pipe 13 can be prevented from being heated by the partition plate 20, and the decrease in refrigerant density due to the refrigerant being heated can be suppressed. Thereby, the efficiency of the scroll compressor can be improved.
  • the straightening vane 160 is a left and right portion of the opening 13a of the suction pipe 13 (a portion in the circumferential direction of the sealed container 10 in the opening 13a) when viewed from the axial center direction of the suction pipe 13. ) Is provided to cover the
  • the refrigerant sucked from the suction pipe 13 is prevented from being diverted from the opening 13a of the suction pipe 13 in the left-right direction, that is, the circumferential direction of the sealed container 10, and the compression mechanism 170 side and the electric motor 80 side. Can be diverted efficiently. Therefore, the refrigerant is more efficiently introduced to the suction portion 38 of the compression mechanism portion 170. Therefore, the contact of the refrigerant with the partition plate 20 can be further reduced, the decrease in refrigerant density can be suppressed, and the efficiency of the scroll compressor can be improved.
  • the opening of the opening 13a of the suction pipe 13 overlaps the suction 38 of the fixed scroll 30 when viewed from the axial center direction of the suction pipe.
  • the suction refrigerant flowing through the part of the opening 13 a of the suction pipe 13 linearly travels to the suction portion 38 of the compression mechanism 170. Therefore, the refrigerant can be directly sucked into the suction portion 38 of the compression mechanism portion 170 more efficiently. Therefore, the refrigerant can be prevented from coming into contact with the partition plate 20, and the decrease in the refrigerant density can be suppressed, and the efficiency of the scroll compressor can be improved.
  • the distance between the suction pipe 13 and the straightening vane 160 is in a range larger than d / 2 and smaller than d.
  • the distance between the suction pipe 13 and the straightening vane 160 By setting the distance between the suction pipe 13 and the straightening vane 160 to be larger than d / 2, the pressure loss of the refrigerant in the straightening vane 160 (between the straightening vane 160 and the inner wall surface of the sealed container 10) can be reduced. . Further, since the distance between the suction pipe 13 and the straightening vane 160 is smaller than d, the sucked refrigerant is likely to be diverted to the motor 80 by the straightening vane 160. That is, since the pressure loss of the refrigerant flowing between the straightening vane 160 and the inner wall surface of the sealed container 10 can be reduced, the refrigerant can be efficiently diverted to the motor 80 side and the compression mechanism portion 170 side. Thus, the efficiency of the scroll compressor can be improved.
  • the area B of the overlapping portion of the opening 13 a of the suction pipe 13 and the flow straightening plate 160 is within the range of more than 30% and less than 70% of the opening area A of the opening 13 a of the suction pipe 13. It is.
  • the area B of the overlapping portion By configuring the area B of the overlapping portion to be larger than 30% of the opening area A of the opening 13 a of the refrigerant suction pipe 13, it is possible to secure the amount of refrigerant diverted to the motor 80 to an appropriate amount. And the motor 80 can be cooled well.
  • the amount of refrigerant diverted to the compression mechanism 170 side can also be secured to an appropriate amount.
  • the compression mechanism unit 170 can perform compression well.
  • the refrigerant can be favorably compressed by the compression mechanism section 170 while the motor 80 is well cooled.
  • the refrigerant sucked from the suction pipe 13 is directly sucked from the suction portion 38 of the compression mechanism portion 170 without colliding with the partition plate 20 having a relatively high temperature to be heated, so the compression mechanism portion
  • the compression efficiency of the refrigerant at 170 can be improved.
  • the refrigerant compressed in the compression chamber 50 is discharged from the refrigerant discharge pipe (discharge pipe) 14 via the high pressure space 11.
  • the lubricating oil stored in the oil reservoir 15 is pumped up from the suction port 73 along the paddle 74 to the upper side of the oil passage 72 by the rotation of the rotating shaft 70.
  • the pumped lubricating oil is supplied from the first fuel inlet 75, the second fuel inlet 76, and the third fuel inlet 77 to the bearing portion 61, the sub bearing 16, and the boss housing portion 62, respectively. Further, the lubricating oil pumped up to the boss housing portion 62 is guided to the sliding surface between the main bearing 60 and the orbiting scroll 40, and is discharged through the return path 63 (see FIG. 5) to return to the oil reservoir 15 again. .
  • FIG. 2A is a side view of the orbiting scroll of the scroll compressor according to the present embodiment.
  • FIG. 2B is a cross-sectional view of the orbiting scroll in FIG. 2A cut along the line XX in FIG. 2A.
  • the swirling spiral wrap 42 shown in FIG. 2A has an involute curve-like cross section in which the starting end 42a located on the center side of the orbiting scroll end plate 41 is wounded and the radius is gradually expanded toward the end 42b located on the outer peripheral side. (See FIG. 2B).
  • the swirling spiral wrap 42 has a predetermined height (vertical length) and a predetermined wall thickness (radial length of the swirling spiral wrap 42).
  • a pair of first key grooves 91 configured to extend in the direction from the outer peripheral side toward the center side are provided (see FIG. 2B).
  • FIG. 3 is a bottom view of the fixed scroll of the scroll compressor according to the present embodiment.
  • FIG. 4 is an exploded perspective view of the fixed scroll as viewed obliquely from above.
  • the fixed spiral wrap 32 is an involute curve having a starting end 32 a located on the center side of the fixed scroll end plate 31 as a winding start and gradually expanding a radius toward the end 32 c located on the outer peripheral side.
  • Wall having a cross section of The fixed spiral wrap 32 has a predetermined height (vertical length) equal to the turning spiral wrap 42 and a predetermined wall thickness (radial length of the fixed spiral wrap 32).
  • the fixed spiral wrap 32 has an inner wall (wall on the center side) and an outer wall (wall on the outer circumference) from the start end 32a to the middle portion 32b, and only an inner wall from the middle portion 32b to the end 32c.
  • a first discharge port 35 is formed substantially at the center of the fixed scroll end plate 31. Further, a bypass port 36 and an intermediate pressure port 37 are formed in the fixed scroll end plate 31. The bypass port 36 is disposed in the vicinity of the first discharge port 35 in a region where the refrigerant at a high pressure immediately before the completion of the compression exists.
  • the bypass port 36 includes a bypass port 36 communicating with the compression chamber 50 formed on the outer wall side of the orbiting spiral wrap 42 (see FIG. 2B) with one set of three small holes, and on the inner wall side of the orbiting spiral wrap 42 Two sets of bypass ports 36 are provided which communicate with the compression chamber 50 being formed.
  • the medium pressure port 37 is disposed in the vicinity of the middle portion 32 b in a region where a refrigerant at a middle pressure during compression is present.
  • first flanges 34 a and a pair of second flanges 34 b are provided on the outer peripheral portion of the fixed scroll 30 so as to protrude outward from the peripheral wall 33.
  • the first flange 34 a and the second flange 34 b are provided below the fixed scroll end plate 31 (on the side of the orbiting scroll 40).
  • the second flange 34b is provided below the first flange 34a, and the lower surface (the surface on the side of the orbiting scroll 40) of the second flange 34b is positioned substantially flush with the tip surface of the fixed spiral wrap 32. .
  • Each of the pair of first flanges 34 a is substantially equally spaced in the circumferential direction of the rotation shaft 70 at a predetermined interval. Further, each of the pair of second flanges 34 b is arranged substantially equally spaced in the circumferential direction of the rotation shaft 70 at a predetermined interval.
  • a suction portion 38 for taking the refrigerant into the compression chamber 50 is formed on the peripheral wall 33 of the fixed scroll 30.
  • first flange 34a is provided with the scroll side hole 101 into which the upper end portion of the columnar member 100 (see FIG. 1) is inserted.
  • the scroll side holes 101 are provided one by one in each of the pair of first flanges 34 a.
  • the two scroll side holes 101 are arranged at predetermined intervals in the circumferential direction. Desirably, two scroll side hole parts 101 are equally arranged by the peripheral direction.
  • the scroll side hole portion 101 may not be a through hole, and may be a concave portion recessed from the lower surface side.
  • the scroll side hole portion 101 communicates with the outside of the fixed scroll 30, that is, the low pressure space 12 by a communication hole (not shown).
  • the second flange 34b is provided with a second key groove 92 (see FIG. 3).
  • the second key groove 92 is a pair of grooves provided in the pair of second flanges 34 b one by one and configured to be long in the direction from the outer peripheral side to the center side.
  • an upper boss 39 is provided at the center of the upper surface (the surface on the side of the partition plate 20) of the fixed scroll 30.
  • the upper boss portion 39 is a cylindrical protrusion that protrudes from the upper surface of the fixed scroll 30.
  • the first discharge port 35 and the bypass port 36 open on the upper surface of the upper boss portion 39.
  • a discharge space 30H is formed between the upper boss 39 and the partition plate 20 on the upper surface side of the upper boss 39 (see FIG. 7 described later). The first discharge port 35 and the bypass port 36 communicate with the discharge space 30H.
  • a ring-shaped convex portion 310 is provided on the outer peripheral side of the upper boss portion 39 on the upper surface of the fixed scroll 30.
  • a recess is formed on the upper surface of the fixed scroll 30 by the upper boss 39 and the ring-shaped protrusion 310.
  • the recess forms an intermediate pressure space 30M (see FIG. 7 described later).
  • the medium pressure port 37 opens on the upper surface (bottom surface of the recess) of the fixed scroll 30 and communicates with the medium pressure space 30M.
  • the pore size of the medium pressure port 37 is less than the wall thickness of the swirl wrap 42. As a result, the communication between the compression chamber 50 formed on the inner wall side of the orbiting spiral wrap 42 and the compression chamber 50 formed on the outer wall side of the orbiting spiral wrap 42 is prevented.
  • a bypass check valve 121 for opening and closing the bypass port 36 and a bypass check valve stop 122 for preventing excessive deformation of the bypass check valve 121 are provided on the upper surface of the upper boss portion 39.
  • a reed valve as the bypass check valve 121, the height can be reduced.
  • a V-shaped reed valve is used as the bypass check valve 121, so that a bypass port 36 communicating with the compression chamber 50 formed on the outer wall side of the swirl spiral wrap 42 and an inner wall side of the swirl spiral wrap 42
  • the bypass port 36 communicating with the compression chamber 50 formed in can be opened and closed by one reed valve.
  • a medium pressure non-return valve (not shown) that allows the medium pressure port 37 to be opened and closed, and a medium pressure nonreturn valve that prevents excessive deformation of the medium pressure check valve on the upper surface (bottom surface of the recess) of the fixed scroll 30
  • a valve stop (not shown) is provided.
  • the size in the height direction can be made compact by using a reed valve as the medium pressure check valve.
  • the medium pressure check valve can also be configured by a ball valve and a spring.
  • FIG. 5 is a perspective view of the main bearing of the scroll compressor according to the present embodiment as viewed obliquely from above.
  • a bearing side hole portion 102 into which the lower end portion of the columnar member 100 (see FIG. 1) is inserted is provided on the outer peripheral portion of the main bearing 60.
  • Two bearing side holes 102 are provided at predetermined intervals in the circumferential direction. Desirably, two bearing side hole parts 102 are equally distributed by the circumferential direction.
  • the bearing side hole 102 may not be a through hole, but may be a recess recessed from the upper surface side.
  • a return path 63 is formed in the main bearing 60.
  • One end of the return path 63 opens to the boss accommodating portion 62, and the other end opens to the lower surface of the main bearing 60.
  • one end of the return path 63 may be open at the upper surface of the main bearing 60.
  • the other end of the return path 63 may be open at the side surface of the main bearing 60.
  • the return path 63 also communicates with the bearing side hole 102. Accordingly, lubricating oil is supplied to the bearing side hole 102 by the return path 63.
  • FIG. 6 is a plan view showing an Oldham ring which is a rotation suppression member of the scroll compressor according to the present embodiment.
  • the Oldham ring 90 includes a substantially annular ring portion 95, and a pair of first keys 93 and a pair of second keys 94 protruding from the upper surface of the ring portion 95.
  • the first key 93 and the second key 94 are provided such that the straight line connecting the two first keys 93 and the straight line connecting the two second keys 94 are orthogonal to each other.
  • the first key 93 engages with the first key groove 91 (see FIG. 2B) of the orbiting scroll 40, and the second key 94 with the second key groove 92 of the fixed scroll 30 (see FIG. 3). Engage. As a result, the orbiting scroll 40 can pivot with respect to the fixed scroll 30 without rotating.
  • the fixed scroll 30, the orbiting scroll 40, and the oldham ring 90 are arranged in the order from the top in the axial direction of the rotating shaft 70 (see FIG. 1).
  • the first key 93 and the second key 94 are formed in the same plane in the ring portion 95. This makes it possible to process the first key 93 and the second key 94 from the same direction when creating the Oldham ring 90, and to reduce the number of times the Oldham ring 90 is detached from the processing apparatus. Therefore, the processing accuracy of the Oldham ring 90 can be improved and the processing cost can be reduced.
  • FIG. 7 is a cross-sectional view of the main part of the scroll compressor according to the present embodiment.
  • FIG. 8 is a perspective view showing the cross section of the main part of the scroll compressor according to the present embodiment.
  • the second discharge port 21 is provided at the center of the partition plate 20.
  • a discharge check valve 131 for opening and closing the second discharge port 21 and a discharge check valve stop 132 for preventing excessive deformation of the discharge check valve 131 are provided on the upper surface of the partition plate 20. .
  • a discharge space 30H is formed between the partition plate 20 and the fixed scroll 30.
  • the discharge space 30H communicates with the compression chamber 50 by the first discharge port 35 and the bypass port 36, and communicates with the high pressure space 11 by the second discharge port 21.
  • the discharge space 30H communicates with the high pressure space 11 via the second discharge port 21
  • a back pressure is applied to the upper surface side of the fixed scroll 30. That is, the fixed scroll 30 is pressed against the orbiting scroll 40 by the application of high pressure to the discharge space 30H. For this reason, the gap between the fixed scroll 30 and the orbiting scroll 40 can be eliminated, and the compressor 1 can perform highly efficient operation.
  • the plate thickness of the discharge check valve 131 is larger than the plate thickness of the bypass check valve 121. Thus, the discharge check valve 131 can be prevented from opening earlier than the bypass check valve 121.
  • the volume of the second discharge port 21 is larger than the volume of the first discharge port 35. Thereby, the pressure loss of the refrigerant discharged from the compression chamber 50 can be reduced.
  • a taper may be formed on the inflow side of the second discharge port 21. This can further reduce pressure loss.
  • annular projecting portion 22 is provided around the second discharge port 21.
  • the protrusion 22 is provided with a plurality of holes 221 into which a part of the closing member 150 described later is inserted.
  • the protrusion 22 is provided with a first seal member 141 and a second seal member 142.
  • the first seal member 141 is a ring-shaped seal member that protrudes from the protrusion 22 toward the center of the partition plate 20.
  • the tip of the first seal member 141 is in contact with the side surface of the upper boss 39. That is, the first seal member 141 is disposed in a gap between the partition plate 20 and the fixed scroll 30 and on the outer periphery of the discharge space 30H.
  • the second seal member 142 is a ring-shaped seal member that protrudes from the protrusion 22 toward the outer peripheral side of the partition plate 20.
  • the second seal member 142 is disposed outside the first seal member 141.
  • the tip of the second seal member 142 is in contact with the inner side surface of the ring-shaped convex portion 310. That is, the second seal member 142 is disposed between the partition plate 20 and the fixed scroll 30 in a gap located on the outer periphery of the intermediate pressure space 30M.
  • the discharge space 30H and the medium pressure space 30M are formed between the partition plate 20 and the fixed scroll 30 by the first seal member 141 and the second seal member 142.
  • the discharge space 30H is a space formed on the upper surface side of the upper boss portion 39
  • the medium pressure space 30M is a space formed on the outer peripheral side of the upper boss portion 39.
  • the first seal member 141 is a seal member that divides the discharge space 30H and the medium pressure space 30M
  • the second seal member 142 is a seal member that divides the medium pressure space 30M and the low pressure space 12.
  • first seal member 141 and the second seal member 142 for example, polytetrafluoroethylene, which is a fluorocarbon resin, is suitable in terms of sealability and assembly. Furthermore, the reliability of the seal is improved by using, as the first seal member 141 and the second seal member 142, a material in which a fiber material is mixed with a fluorine resin.
  • the first seal member 141 and the second seal member 142 are sandwiched between the closing member 150 and the projection 22. Therefore, after the first seal member 141, the second seal member 142, and the closing member 150 are assembled to the partition plate 20, they can be disposed in the sealed container 10. As a result, the number of parts of the compressor 1 can be reduced and the assembly of the compressor 1 becomes easy.
  • the closing member 150 includes a ring-shaped portion 151 disposed to face the protruding portion 22 of the partition plate 20 and a plurality of protruding portions 152 protruding from one surface of the ring-shaped portion 151.
  • the outer peripheral side of the first seal member 141 is sandwiched between a portion on the inner peripheral side of the upper surface of the ring-shaped portion 151 and the lower surface of the protrusion 22. Further, the inner peripheral side of the second seal member 142 is sandwiched between the outer peripheral portion of the upper surface of the ring-shaped portion 151 and the lower surface of the projecting portion 22.
  • the ring-shaped portion 151 is opposed to the lower surface of the protruding portion 22 of the partition plate 20 via the first seal member 141 and the second seal member 142.
  • the plurality of protrusions 152 are inserted into the plurality of holes 221 formed in the protrusion 22.
  • the upper end of the protrusion 152 is crimped so that the ring-shaped portion 151 is pressed against the lower surface of the protrusion 22. That is, the closing member 150 is fixed to the partition plate 20 such that the ring-shaped portion 151 is pressed against the lower surface of the projecting portion 22 by deforming the upper end of the projecting portion 152 into a flat plate shape.
  • the closing member 150 is easily crimped by being formed of an aluminum material.
  • the partition plate 20 to which the first seal member 141 and the second seal member 142 are attached is mounted in the sealed container 10, so that the portion on the inner circumferential side of the first seal member 141 corresponds to that of the fixed scroll 30.
  • the portion on the outer peripheral side of the second seal member 142 is pressed against the inner peripheral surface of the ring-shaped convex portion 310 of the fixed scroll 30 while being pressed against the outer peripheral surface of the upper boss portion 39.
  • the medium pressure space 30 ⁇ / b> M communicates with the region of the compression chamber 50 in the middle of compression in which the refrigerant at the intermediate pressure exists, by means of the medium pressure port 37. For this reason, the pressure of the medium pressure space 30M is lower than the pressure of the discharge space 30H and higher than the pressure of the low pressure space 12.
  • the intermediate pressure space 30M is formed between the partition plate 20 and the fixed scroll 30, so that adjustment of the pressing force of the fixed scroll 30 to the orbiting scroll 40 is easy. Become.
  • the medium pressure space 30M is formed by the first seal member 141 and the second seal member 142, the refrigerant leaks from the discharge space 30H to the medium pressure space 30M, and from the medium pressure space 30M to the low pressure space 12. Leakage of refrigerant can be reduced.
  • FIG. 9A is a cross-sectional view in which the scroll compressor according to the present embodiment is cut in the longitudinal direction.
  • FIG. 9B is a cross-sectional view of the scroll compressor according to the present embodiment, cut in the vertical direction when viewed from the axial center of the suction pipe.
  • a hole is formed in the overlapping portion of the opening 13a of the suction pipe 13 and the flow control plate 160 in the flow control plate 160 when viewed from the axial center direction of the suction pipe 13. 160a is provided.
  • the other configuration is the same as that of the compressor 1 according to the first embodiment shown in FIG. 1 and, therefore, the same configuration as the configuration described in FIG.
  • a part of the refrigerant sucked from the suction pipe 13 is diverted in the direction of the suction portion 38 of the fixed scroll 30 in the compression mechanism portion 170 through the hole portion 160 a of the straightening vane 160. Further, the remaining refrigerant collides with a portion other than the hole portion 160 a of the straightening vane 160 and is diverted to the motor 80 side.
  • the size of the hole 160a satisfies the relationship between the opening area A and the area B of the overlapping portion described in the first embodiment, the same effect as that of the first embodiment can be obtained.
  • the positional relationship between the suction pipe 13 and the straightening vane 160 can be simply processed by adding holes to the configuration of the existing compressor without changing, for example, shifting up and down. Similarly to the above, the reduction of the refrigerant density can be suppressed, and the efficiency of the compressor can be improved.
  • a scroll compressor with high efficiency can be provided. Therefore, it can be widely applied as a compressor of a refrigeration cycle apparatus such as a water heater, a hot water heater, an air conditioner, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A compressor (1), wherein a flow-adjusting plate (160) provided inside a sealed container (10) is configured such that some of a refrigerant flowing in from an intake tube (13) flows to a compression-mechanism (170) side without colliding with the flow-adjusting plate (160), and the rest of the refrigerant taken in from the intake tube (13) collides with the flow-adjusting plate (160) and is diverted to an electric-motor (80) side.

Description

スクロール圧縮機Scroll compressor
 本開示は、スクロール圧縮機に関する。 The present disclosure relates to scroll compressors.
 近年、圧縮容器内に仕切板を設けるとともに、当該仕切板で仕切られた低圧側の室に、固定スクロール及び旋回スクロールを有する圧縮要素と、当該旋回スクロールを旋回駆動する電動要素と、が配置された密閉型スクロール圧縮機が知られている。そして、この種の密閉型スクロール圧縮機では、冷媒吸入管から吸入された冷媒が圧縮要素で圧縮され、当該圧縮要素で圧縮された冷媒が、固定スクロールの吐出ポートを介して、仕切板で仕切られた高圧側の室に吐出される(例えば、特許文献1参照)。 In recent years, a partition plate has been provided in a compression container, and a low pressure side chamber partitioned by the partition plate is provided with a compression element having a fixed scroll and a turning scroll, and an electric element for turning the turning scroll. Sealed scroll compressors are known. In this type of sealed scroll compressor, the refrigerant sucked from the refrigerant suction pipe is compressed by the compression element, and the refrigerant compressed by the compression element is partitioned by the partition plate through the discharge port of the fixed scroll. It is discharged into the high pressure side chamber (see, for example, Patent Document 1).
 図10は、特許文献1に記載されたスクロール圧縮機を示している。冷媒は、冷媒吸入管200を介して密閉容器内の低圧空間201に導入される。その際、このスクロール圧縮機では、冷媒は、冷媒吸入管200の開口と対向する部分に設けられた整流板202に衝突することで、分流される。そして、導入された冷媒のうちの一部の冷媒で電動要素が冷却されるとともに、残りの冷媒が圧縮要素に吸入されて、圧縮される。 FIG. 10 shows a scroll compressor described in Patent Document 1. As shown in FIG. The refrigerant is introduced into the low pressure space 201 in the closed container via the refrigerant suction pipe 200. At this time, in the scroll compressor, the refrigerant is branched by colliding with the straightening vane 202 provided at a portion facing the opening of the refrigerant suction pipe 200. Then, the electric element is cooled by a part of the introduced refrigerant, and the remaining refrigerant is sucked into the compression element and compressed.
 しかしながら、上記従来の構成では、整流板202によって冷媒が分流される際、整流板202に衝突して分流された後の冷媒の流れの向きは、回転軸と平行(図10では上下方向)になる。そのため、整流板202から電動要素側の反対側へ流出した冷媒は、仕切板203に衝突する。仕切板203は、高圧空間204と接しているため、高温である。従って、冷媒は、仕切板203に接触することで加熱されるため、圧縮機構部205に吸入される冷媒密度が低下して体積効率が低下するという課題がある。 However, in the above-described conventional configuration, when the refrigerant is branched by the rectifying plate 202, the flow direction of the refrigerant after colliding with the rectifying plate 202 and being diverted is parallel to the rotation axis (vertical direction in FIG. 10) Become. Therefore, the refrigerant that has flowed out from the straightening vane 202 to the opposite side to the electric element side collides with the partition plate 203. Since the partition plate 203 is in contact with the high pressure space 204, the temperature is high. Therefore, since the refrigerant is heated by coming into contact with the partition plate 203, there is a problem that the density of the refrigerant sucked into the compression mechanism portion 205 is lowered and the volumetric efficiency is lowered.
特開平4-255595号公報Unexamined-Japanese-Patent No. 4-255595
 本開示は、上述のような問題を解決するもので、吸入された冷媒が加熱されることによる体積効率の低下を防止して、高効率なスクロール圧縮機を提供する。 The present disclosure solves the problems as described above, and provides a highly efficient scroll compressor by preventing a decrease in volumetric efficiency due to heating of the sucked refrigerant.
 具体的には、本開示に係るスクロール圧縮機は、吸入管から吸入された冷媒の一部が、当該整流板に衝突することなく圧縮機構部側に流れ、吸入管から吸入された冷媒の残りが、当該整流板に衝突して電動機側に分流されるように、整流板が構成されている。 Specifically, in the scroll compressor according to the present disclosure, a part of the refrigerant drawn from the suction pipe flows toward the compression mechanism without colliding with the straightening vane, and the remaining refrigerant drawn from the suction pipe The current plate is configured such that it collides with the current plate and is diverted to the motor side.
 これにより、整流板によって、電動機を冷却するのに必要な量の冷媒を電動機側に流出させつつ、残りの冷媒は、直接圧縮機構部側に流出させることができる。従って、吸入された冷媒が仕切板で加熱されることによる、圧縮機の効率の低下を防ぐことができる。 As a result, the remaining amount of refrigerant can be made to flow out directly to the compression mechanism side while the amount of refrigerant necessary to cool the electric motor flows out to the electric motor side by the straightening vanes. Therefore, it is possible to prevent the decrease in the efficiency of the compressor caused by the intake refrigerant being heated by the partition plate.
本開示の実施の形態1に係るスクロール圧縮機を縦方向に切断した断面図Sectional drawing which cut | disconnected the scroll compressor which concerns on Embodiment 1 of this indication longitudinally 同実施の形態1に係るスクロール圧縮を、吸入管の軸中心から見たときの、縦方向に切断した断面図Sectional drawing which cut | disconnected the scroll compression which concerns on the Embodiment 1 longitudinally, when it sees from the axial center of a suction pipe. 同実施の形態1に係るスクロール圧縮機の旋回スクロールの側面図Side view of orbiting scroll of scroll compressor according to Embodiment 1 図2Aにおける旋回スクロールを図2AのX-X線で切断した断面図Sectional drawing which cut | disconnected the turning scroll in FIG. 2A by XX of FIG. 2A 本開示の実施の形態1に係るスクロール圧縮機の固定スクロールの底面図Bottom view of fixed scroll of scroll compressor according to Embodiment 1 of the present disclosure 同実施の形態1に係る固定スクロールを斜め上から見た分解斜視図An exploded perspective view of the fixed scroll according to Embodiment 1 as viewed obliquely from above 同実施の形態1に係るスクロール圧縮機の主軸受を斜め上から見た斜視図The perspective view which looked at the main bearing of the scroll compressor concerning the embodiment 1 obliquely from the top 同実施の形態1に係るスクロール圧縮機の自転抑制部材の平面図Top view of rotation suppression member of scroll compressor according to Embodiment 1 of the present invention 同実施の形態1に係るスクロール圧縮機の要部の断面図Sectional view of the main part of the scroll compressor according to the first embodiment 同実施の形態1に係るスクロール圧縮機の要部の断面を示す斜視図The perspective view which shows the cross section of the principal part of the scroll compressor concerning the embodiment 1 本開示の実施の形態2に係るスクロール圧縮機を縦方向に切断した断面図Sectional drawing which cut | disconnected the scroll compressor which concerns on Embodiment 2 of this indication longitudinally 同実施の形態2に係るスクロール圧縮機を、吸入管の軸中心から見たときの、縦方向に切断した断面図Sectional drawing which cut | disconnected the scroll compressor which concerns on the Embodiment 2 longitudinally, when it sees from the axial center of a suction pipe. 従来のスクロール圧縮機を縦方向に切断した断面図Cross-sectional view of a conventional scroll compressor cut in the longitudinal direction
 本開示の一態様に係るスクロール圧縮機は、密閉容器と、密閉容器内を高圧空間及び低圧空間に区画する仕切板と、仕切板に隣接する固定スクロールと、固定スクロールに噛み合わされて、固定スクロールとともに圧縮室を形成する旋回スクロールと、旋回スクロールを駆動する電動機と、旋回スクロールの自転を防止する自転抑制部材と、旋回スクロールを支持する主軸受と、低圧空間に向けて開口する開口部を有する吸入管と、吸入管から密閉容器内に吸入された冷媒を分流する整流板と、を有する。固定スクロール、旋回スクロール及び自転抑制部材を含む圧縮機構部、電動機、整流板並びに主軸受が、低圧空間に配置され、固定スクロール及び旋回スクロールが、仕切板と主軸受との間に配置される。整流板は、吸入管から吸入された冷媒の一部が、整流板に衝突することなく圧縮機構部側に流れ、吸入管から吸入された冷媒の残りが、整流板に衝突して電動機側に分流されるように構成されている。 A scroll compressor according to an aspect of the present disclosure includes a closed container, a partition plate that divides the inside of the closed container into a high pressure space and a low pressure space, a fixed scroll adjacent to the partition plate, and a fixed scroll engaged with the fixed scroll. And a motor for driving the orbiting scroll, a rotation suppressing member for preventing rotation of the orbiting scroll, a main bearing for supporting the orbiting scroll, and an opening opening toward the low pressure space. It has an intake pipe, and a straightening vane which diverts the refrigerant drawn into the closed container from the intake pipe. The fixed scroll, the compression mechanism including the orbiting scroll and the rotation suppressing member, the motor, the current plate and the main bearing are disposed in the low pressure space, and the stationary scroll and the orbiting scroll are disposed between the partition plate and the main bearing. In the straightening vane, part of the refrigerant sucked from the suction pipe flows to the compression mechanism side without colliding with the straightening vane, and the remaining refrigerant sucked from the suction pipe collides with the straightening vane to the motor side. It is configured to be diverted.
 これにより、整流板によって、電動機を冷却するのに必要な量の冷媒を電動機側に流出させつつ、残りの冷媒は、直接圧縮機構部側に流出させることができる。従って、吸入された冷媒が仕切板で加熱されることによる、圧縮機の効率の低下を防ぐことができる。 As a result, the remaining amount of refrigerant can be made to flow out directly to the compression mechanism side while the amount of refrigerant necessary to cool the electric motor flows out to the electric motor side by the straightening vanes. Therefore, it is possible to prevent the decrease in the efficiency of the compressor caused by the intake refrigerant being heated by the partition plate.
 本開示の他の一態様に係るスクロール圧縮機は、圧縮機構部は、吸入管から吸入された冷媒の少なくとも一部が吸入される吸入部を有し、吸入管の開口部の開口面積をA、吸入管の軸中心方向から見たときの開口部の開口と整流板との重複部分の面積をBとすると、A>Bであり、かつ、当該重複部分は、整流板における、圧縮機構部の吸入部側に位置する構成であってもよい。 In a scroll compressor according to another aspect of the present disclosure, the compression mechanism portion has a suction portion into which at least a portion of the refrigerant sucked from the suction pipe is sucked, and the opening area of the opening portion of the suction pipe is set to A Assuming that the area of the overlapping portion between the opening of the opening and the straightening vane when viewed from the axial center direction of the suction pipe is B, A> B, and the overlapping portion corresponds to the compression mechanism portion of the straightening vane It may be located on the suction side of the
 この構成によれば、吸入管から導入された冷媒は、整流板によって分流される。この際、電動機側には、電動機の冷却に必要な量の冷媒が分流され、残りの冷媒は、直接圧縮機構部の吸入部側に流出されるため、比較的高温になった仕切板に冷媒が衝突することが回避される。このため、吸入された冷媒は、仕切板によって加熱されることなく直接、固定スクロールの吸入部から吸入され。これにより、冷媒が加熱されることによる冷媒密度の低下を抑制し、スクロール圧縮機の効率を向上させることができる。 According to this configuration, the refrigerant introduced from the suction pipe is diverted by the straightening vane. At this time, the amount of refrigerant necessary for cooling the motor is branched to the motor side, and the remaining refrigerant is directly discharged to the suction portion side of the compression mechanism portion, so the refrigerant in the partition plate having a relatively high temperature Collision is avoided. For this reason, the sucked refrigerant is directly sucked from the suction portion of the fixed scroll without being heated by the partition plate. Thus, it is possible to suppress the decrease in refrigerant density due to the refrigerant being heated, and to improve the efficiency of the scroll compressor.
 本開示の他の一態様に係るスクロール圧縮機は、整流板における、開口部の開口との重複部分に、孔部が設けられた構成であってもよい。 The scroll compressor according to another aspect of the present disclosure may have a configuration in which a hole is provided at the overlapping portion of the straightening vane with the opening of the opening.
 この構成によれば、孔部を設けるという簡単な構成により、冷媒が加熱されることによる冷媒密度の低下を抑制して、スクロール圧縮機の効率を向上させることができる。従って、吸入管及び整流板の位置を、従来のスクロール圧縮機から変更する必要がない。 According to this configuration, it is possible to improve the efficiency of the scroll compressor by suppressing the decrease in the refrigerant density due to the refrigerant being heated by the simple configuration in which the holes are provided. Therefore, the positions of the suction pipe and the straightening vane do not have to be changed from the conventional scroll compressor.
 本開示の他の一態様に係るスクロール圧縮機は、整流板が、吸入管の軸中心方向から見たときの吸入管の開口部の左右部分を覆うように設けられていてもよい。 In the scroll compressor according to another aspect of the present disclosure, the straightening vane may be provided so as to cover the left and right portions of the opening of the suction pipe as viewed from the axial center direction of the suction pipe.
 この構成によれば、吸入管から吸入された冷媒が、開口部の開口から開口の左右方向、すなわち密閉容器の周方向へ分流されるのを抑制して、圧縮機構部側及び電動機側へ冷媒を効率よく流出させることができ、さらに効率よく冷媒を圧縮機構部の吸入部へと導くことができる。よって、冷媒の仕切板への接触をより少なくして冷媒密度の低下を抑制し、スクロール圧縮機の効率を向上することができる。 According to this configuration, the refrigerant sucked from the suction pipe is prevented from being diverted from the opening of the opening portion in the left-right direction of the opening, that is, in the circumferential direction of the sealed container, and the refrigerant to the compression mechanism side and the motor side Can be efficiently discharged, and the refrigerant can be more efficiently introduced to the suction portion of the compression mechanism portion. Therefore, the contact of the refrigerant to the partition plate can be further reduced to suppress the decrease in the refrigerant density, and the efficiency of the scroll compressor can be improved.
 本開示の他の一態様に係るスクロール圧縮機は、吸入管は、吸入管の軸中心方向から見たときに、開口部の開口の少なくとも一部が、圧縮機構部の吸入部と重複するように構成されていてもよい。 In the scroll compressor according to another aspect of the present disclosure, at least a part of the opening of the suction pipe overlaps the suction section of the compression mechanism when viewed from the axial center direction of the suction pipe. May be configured.
 この構成によれば、吸入管から吸入された冷媒は、吸入管の開口部に対して直線的な位置に配置された、圧縮機構部の吸入部から吸入される。このため、冷媒の仕切板への接触をより少なくして冷媒密度の低下を抑制し、スクロール圧縮機の効率を向上することができる。 According to this configuration, the refrigerant sucked from the suction pipe is sucked from the suction portion of the compression mechanism portion, which is disposed at a linear position with respect to the opening of the suction pipe. For this reason, it is possible to further reduce the contact of the refrigerant to the partition plate, to suppress the decrease in the refrigerant density, and to improve the efficiency of the scroll compressor.
 本開示の他の一態様に係るスクロール圧縮機は、吸入管の開口部の直径をdとすると、吸入管と整流板との距離は、d/2より大きくdより小さく構成されていてもよい。 In the scroll compressor according to another aspect of the present disclosure, when the diameter of the opening of the suction pipe is d, the distance between the suction pipe and the straightening vane may be larger than d / 2 and smaller than d. .
 この構成によれば、整流板と密閉容器内壁面との間を流れる冷媒の圧力損失を低減することができるため、整流板による分流の効果を大きくすることができる。従って、スクロール圧縮機の効率を向上することができる。 According to this configuration, the pressure loss of the refrigerant flowing between the straightening vane and the inner wall surface of the hermetic container can be reduced, so the effect of the diversion by the straightening vane can be increased. Therefore, the efficiency of the scroll compressor can be improved.
 本開示の他の一態様に係るスクロール圧縮機は、吸入管の軸中心方向から見たときの開口部の開口と整流板との重複部分の面積Bが、開口部の開口面積Aの30%より大きく70%より小さくなるように構成されていてもよい。 In the scroll compressor according to another aspect of the present disclosure, the area B of the overlapping portion between the opening of the opening and the straightening vane when viewed from the axial center direction of the suction pipe is 30% of the opening area A of the opening It may be configured to be larger than 70%.
 この構成によれば、圧縮機側及び電動機側のそれぞれに対して冷媒を適量に分流することができ、効率よく電動機の冷却を行いつつ、圧縮機構部の効率を向上することができる。 According to this configuration, the refrigerant can be diverted to an appropriate amount for each of the compressor side and the motor side, and the efficiency of the compression mechanism can be improved while efficiently cooling the motor.
 以下、本開示の実施形態について、図面を参照しながら説明する。なお、以下の実施形態によって本開示が限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the present disclosure is not limited by the following embodiments.
 (実施の形態1)
 [1.スクロール圧縮機の全体構成]
 図1Aは、本実施の形態1に係るスクロール圧縮機を縦方向に切断した断面図である。また、図1Bは、同実施の形態1に係るスクロール圧縮を、吸入管の軸中心から見たときの、縦方向に切断した断面図である。
Embodiment 1
[1. Overall configuration of scroll compressor]
FIG. 1A is a cross-sectional view in which the scroll compressor according to the first embodiment is cut in the longitudinal direction. FIG. 1B is a cross-sectional view of the scroll compression according to the first embodiment, cut in the vertical direction when viewed from the axial center of the suction pipe.
 圧縮機1は、図1A及び図1Bに示すように、上下方向に長い、円筒状の密閉容器10を、外殻として備えている。なお、本明細書において、上下方向とは、各図におけるZ軸方向(電動機の回転軸方向)である。 The compressor 1 is equipped with the cylindrical airtight container 10 long to an up-down direction as an outer shell, as shown to FIG. 1A and 1B. In the present specification, the vertical direction is the Z-axis direction (the rotational axis direction of the motor) in each drawing.
 圧縮機1は、密閉容器10の内部に、冷媒を圧縮するための圧縮機構部170と、圧縮機構部170を駆動するための電動機80と、を備えた密閉型スクロール圧縮機である。圧縮機構部170は、少なくとも、固定スクロール30、旋回スクロール40、主軸受60及び自転制御部材であるオルダムリング90で構成される。 The compressor 1 is a sealed scroll compressor including a compression mechanism portion 170 for compressing a refrigerant and an electric motor 80 for driving the compression mechanism portion 170 inside the sealed container 10. The compression mechanism portion 170 is constituted by at least a fixed scroll 30, a orbiting scroll 40, a main bearing 60, and an Oldham ring 90 which is a rotation control member.
 密閉容器10内の上方には、密閉容器10の内部を上下に仕切る仕切板20が設けられている。仕切板20は、密閉容器10の内部の空間を、高圧空間11と低圧空間12とに区画している。高圧空間11は、圧縮機構部170で圧縮された後の高圧の冷媒で満たされる空間であり、低圧空間12は、圧縮機構部170で圧縮される前の低圧の冷媒で満たされる空間である。低圧空間12の底部には、潤滑油が貯留される油溜まり15が形成されている。 Above the closed container 10, a partition plate 20 is provided which divides the inside of the closed container 10 into upper and lower parts. The partition plate 20 divides the space inside the closed container 10 into a high pressure space 11 and a low pressure space 12. The high pressure space 11 is a space filled with a high pressure refrigerant after being compressed by the compression mechanism section 170, and the low pressure space 12 is a space filled with a low pressure refrigerant before being compressed by the compression mechanism section 170. At the bottom of the low pressure space 12 is formed an oil reservoir 15 in which lubricating oil is stored.
 密閉容器10には、密閉容器10の外部と低圧空間12とを連通させる冷媒吸入管(以下、吸入管)13、及び、密閉容器10の外部と高圧空間11とを連通させる冷媒吐出管14が接続されている。 In the closed container 10, a refrigerant suction pipe (hereinafter referred to as a suction pipe) 13 connecting the outside of the closed container 10 with the low pressure space 12 and a refrigerant discharge pipe 14 connecting the outside of the closed container 10 with the high pressure space 11 It is connected.
 圧縮機1には、吸入管13を介して、密閉容器10の外部に設けられた冷凍サイクル回路(図示せず)から、低圧空間12に低圧の冷媒が導入される。また、圧縮機構部170で圧縮された高圧の冷媒は、高圧空間11に導入され、その後、高圧空間11から冷媒吐出管14を介して、冷凍サイクル回路に吐出される。 In the compressor 1, a low pressure refrigerant is introduced to the low pressure space 12 from a refrigeration cycle circuit (not shown) provided outside the closed container 10 via the suction pipe 13. Further, the high pressure refrigerant compressed by the compression mechanism section 170 is introduced into the high pressure space 11 and then discharged from the high pressure space 11 via the refrigerant discharge pipe 14 into the refrigeration cycle circuit.
 また、密閉容器10内には、次に説明するように、吸入管13から吸入された冷媒を分流する整流板160が設けられている。 Further, in the sealed container 10, a flow straightening plate 160 for dividing the refrigerant sucked from the suction pipe 13 is provided as described below.
 [2.整流板の構成]
 密閉容器10の内壁面には、吸入管13の密閉容器内側開口部(以下、開口部)13aと対向するように整流板160が取り付けられている。整流板160は、上部の仕切板20側が閉塞されている。すなわち、整流板160は、吸入管13から吸入された冷媒が、鉛直方向の上側から流出しないように構成されている。整流板160及び吸入管13は、吸入管13から吸入された冷媒の一部が整流板160に衝突することなく圧縮機構部170側に流れ、吸入管13から吸入された冷媒の残りが整流板160に衝突して電動機80側に分流されるように構成されている。
[2. Configuration of current plate]
A flow straightening plate 160 is attached to the inner wall surface of the closed vessel 10 so as to face the closed vessel inner opening (hereinafter referred to as an opening) 13 a of the suction pipe 13. The upper side of the baffle plate 160 is closed. That is, the baffle plate 160 is configured such that the refrigerant sucked from the suction pipe 13 does not flow out from the upper side in the vertical direction. In the straightening vane 160 and the suction pipe 13, a part of the refrigerant sucked from the suction pipe 13 flows toward the compression mechanism portion 170 without colliding with the straightening vane 160, and the remaining refrigerant sucked from the suction pipe 13 is straightening vane It is configured to collide with 160 and be diverted to the motor 80 side.
 具体的には、図1Bに示すように、吸入管13の開口部13aの開口面積をA、吸入管13の軸中心方向から見たときの吸入管13の開口部13aの開口と整流板160との重複部分の面積をBとすると、A>Bであり、かつ、当該重複部分は、整流板160における、圧縮機構部170の吸入部(本実施の形態では、固定スクロール30の吸入部38)側に設けられている。 Specifically, as shown in FIG. 1B, the opening area of the opening 13a of the suction pipe 13 is A, and the opening of the opening 13a of the suction pipe 13 and the rectifying plate 160 when viewed from the axial center direction of the suction pipe 13. Assuming that the area of the overlapping portion with B is B, A> B, and the overlapping portion corresponds to the suction portion of the compression mechanism portion 170 (in the present embodiment, the suction portion 38 of the fixed scroll 30) Provided on the) side.
 なお、図1Bにおいて、開口部13aの開口は、縦線で示された、円形の領域である。また、重複部分は、縦線及び横線の両方の線で示された、上記円形のうちの一部の領域である。 In FIG. 1B, the opening of the opening 13a is a circular area indicated by a vertical line. In addition, the overlapping portion is a partial area of the above-described circle indicated by both vertical and horizontal lines.
 そして、本実施の形態では、図1Bに示すように、整流板160は、吸入管13の開口部13aの左右部分(密閉容器10の周方向における端部)を覆うように構成されている。 Further, in the present embodiment, as shown in FIG. 1B, the current plate 160 is configured to cover the left and right portions (the end portions in the circumferential direction of the sealed container 10) of the opening 13a of the suction pipe 13.
 さらに、整流板160は、吸入管13の開口部13aの開口の少なくとも一部が、吸入管13の軸中心方向から見たときに、固定スクロール30の吸入部38と重複するように構成されている。 Furthermore, the straightening vane 160 is configured such that at least a part of the opening 13 a of the suction pipe 13 overlaps the suction portion 38 of the fixed scroll 30 when viewed from the axial center direction of the suction pipe 13 There is.
 また、吸入管13の開口部13aの直径をdとしたとき、吸入管13と整流板160との距離は、d/2より大きくdより小さい。 When the diameter of the opening 13a of the suction pipe 13 is d, the distance between the suction pipe 13 and the straightening vane 160 is larger than d / 2 and smaller than d.
 さらに、吸入管13の開口部13aの開口と整流板160とが重なる重複部分の面積Bは、吸入管13の開口部13aの開口面積Aの30%より大きく70%より小さい範囲となるように構成されている。 Furthermore, the area B of the overlapping portion where the opening of the opening 13a of the suction pipe 13 and the flow straightening plate 160 overlap is in the range of more than 30% and less than 70% of the opening area A of the opening 13a of the suction pipe 13 It is configured.
 [3.圧縮機構部の構成]
 図1Aに示すように、圧縮機1は、密閉容器10内の低圧空間12に、圧縮機構部170を備えている。圧縮機構部170は、固定スクロール30と、旋回スクロール40と、有する。
[3. Configuration of compression mechanism section]
As shown in FIG. 1A, the compressor 1 includes a compression mechanism section 170 in the low pressure space 12 in the closed vessel 10. The compression mechanism section 170 has a fixed scroll 30 and a orbiting scroll 40.
 固定スクロール30は、非旋回スクロールである。固定スクロール30は、仕切板20の下方において、仕切板20と隣接して配置されている。旋回スクロール40は、固定スクロール30の下方に、固定スクロール30と噛み合わされて、配置されている。 The fixed scroll 30 is a non-orbiting scroll. The fixed scroll 30 is disposed below the partition plate 20 adjacent to the partition plate 20. The orbiting scroll 40 is disposed below the fixed scroll 30 in mesh with the fixed scroll 30.
 固定スクロール30は、円板状の固定スクロール端板31と、固定スクロール端板31の下面に立設された渦巻状の固定渦巻きラップ32とを備えている。 The fixed scroll 30 includes a disk-shaped fixed scroll end plate 31 and a spiral fixed spiral wrap 32 erected on the lower surface of the fixed scroll end plate 31.
 旋回スクロール40は、円板状の旋回スクロール端板41と、旋回スクロール端板41の上面に設けられた渦巻状の旋回渦巻きラップ42と、下方ボス部43と、を備えている。下方ボス部43は、旋回スクロール端板41の下面の略中央に形成された、円筒状の突起である。 The orbiting scroll 40 includes a disc-shaped orbiting scroll end plate 41, a spiral orbiting scroll wrap 42 provided on the upper surface of the orbiting scroll end plate 41, and a lower boss portion 43. The lower boss portion 43 is a cylindrical protrusion formed substantially at the center of the lower surface of the orbiting scroll end plate 41.
 旋回スクロール40の旋回渦巻きラップ42と固定スクロール30の固定渦巻きラップ32とが噛み合わさることで、旋回スクロール40と固定スクロール30との間に、圧縮室50が形成される。圧縮室50は、旋回渦巻きラップ42の内壁(後述する)側と、外壁(後述する)側とに形成される。 A compression chamber 50 is formed between the orbiting scroll 40 and the fixed scroll 30 by meshing the orbiting spiral wrap 42 of the orbiting scroll 40 and the fixed spiral wrap 32 of the fixed scroll 30. The compression chamber 50 is formed on the inner wall (described later) side of the swirling and spiral wrap 42 and the outer wall (described later) side.
 固定スクロール30及び旋回スクロール40の下方には、旋回スクロール40を支持する主軸受60が設けられている。主軸受60は、主軸受60の上面の略中央に設けられたボス収容部62と、ボス収容部62の下方に設けられた軸受部61と、を備えている。ボス収容部62は、下方ボス部43を収納するため凹部である。軸受部61の上部はボス収容部62として開口しており、軸受部61の下部は貫通孔として低圧空間12に開口している。 Below the fixed scroll 30 and the orbiting scroll 40, a main bearing 60 for supporting the orbiting scroll 40 is provided. The main bearing 60 includes a boss housing portion 62 provided substantially at the center of the upper surface of the main bearing 60 and a bearing portion 61 provided below the boss housing portion 62. The boss accommodating portion 62 is a recess for accommodating the lower boss portion 43. The upper portion of the bearing portion 61 is opened as a boss accommodating portion 62, and the lower portion of the bearing portion 61 is opened to the low pressure space 12 as a through hole.
 主軸受60は、主軸受60の上面で旋回スクロール40を支持するとともに、軸受部61で回転軸70を軸支する。 The main bearing 60 supports the orbiting scroll 40 on the upper surface of the main bearing 60, and supports the rotating shaft 70 at the bearing portion 61.
 回転軸70は、図1A及び図1Bに示すように、上下方向を軸とする。回転軸70の一端側は、軸受部61により軸支され、他端側は、副軸受16で軸支される。 As shown in FIGS. 1A and 1B, the rotating shaft 70 has the vertical direction as an axis. One end side of the rotating shaft 70 is pivotally supported by the bearing portion 61, and the other end side is pivotally supported by the auxiliary bearing 16.
 副軸受16は、低圧空間12の下方、望ましくは、油溜まり15内に設けられる。回転軸70の上端には、回転軸70の軸心に対して偏心した偏心軸71が設けられている。 The auxiliary bearing 16 is provided below the low pressure space 12, preferably in the oil reservoir 15. At the upper end of the rotating shaft 70, an eccentric shaft 71 eccentric to the axial center of the rotating shaft 70 is provided.
 偏心軸71は、スイングブッシュ78及び旋回軸受79を介して、下方ボス部43に摺動自在に挿入されている。下方ボス部43は、偏心軸71によって、旋回駆動される。 The eccentric shaft 71 is slidably inserted in the lower boss portion 43 via the swing bush 78 and the pivot bearing 79. The lower boss portion 43 is rotationally driven by the eccentric shaft 71.
 回転軸70の内部には、潤滑油が通過する油路72が形成されている。油路72は、回転軸70の軸方向に形成された貫通孔である。油路72の一端は、回転軸70の下端に設けられた吸込口73として、油溜まり15内に開口している。吸込口73の上部には、吸込口73から油路72に潤滑油を汲み上げるパドル74が設けられている。 An oil passage 72 through which the lubricating oil passes is formed in the rotating shaft 70. The oil passage 72 is a through hole formed in the axial direction of the rotating shaft 70. One end of the oil passage 72 opens into the oil reservoir 15 as a suction port 73 provided at the lower end of the rotary shaft 70. At the upper part of the suction port 73, a paddle 74 for pumping the lubricating oil from the suction port 73 to the oil passage 72 is provided.
 回転軸70は、電動機80に連結されている。電動機80は、主軸受60と副軸受16との間に配置されている。電動機80は、密閉容器10に固定されたステータ81と、ステータ81の内側に配置されたロータ82と、を備えている。 The rotating shaft 70 is coupled to the motor 80. The motor 80 is disposed between the main bearing 60 and the sub bearing 16. The electric motor 80 includes a stator 81 fixed to the sealed container 10 and a rotor 82 disposed inside the stator 81.
 回転軸70は、ロータ82に固定されている。回転軸70は、ロータ82の上方に設けられたバランスウェイト17aと、下方に設けられたバランスウェイト17bと、を備えている。バランスウェイト17aとバランスウェイト17bとは、平面視において、回転軸70の周方向に互いに180°ずれた位置に配置されている。 The rotating shaft 70 is fixed to the rotor 82. The rotating shaft 70 includes a balance weight 17 a provided above the rotor 82 and a balance weight 17 b provided below. The balance weight 17 a and the balance weight 17 b are disposed at positions shifted by 180 ° in the circumferential direction of the rotation shaft 70 in plan view.
 回転軸70は、バランスウェイト17a及びバランスウェイト17bによる遠心力と、旋回スクロール40の公転運動により発生する遠心力とで、バランスを取って回転する。なお、バランスウェイト17a及びバランスウェイト17bは、ロータ82に設けられてもよい。 The rotating shaft 70 rotates in balance with the centrifugal force generated by the balance weight 17 a and the balance weight 17 b and the centrifugal force generated by the revolving motion of the orbiting scroll 40. The balance weight 17 a and the balance weight 17 b may be provided on the rotor 82.
 旋回スクロール40と主軸受60との間には、自転抑制部材であるオルダムリング90が設けられている。オルダムリング90は、旋回スクロール40の自転を防止する。これにより、旋回スクロール40は自転することなく、固定スクロール30に対して旋回運動をする。 An Oldham ring 90 which is a rotation suppressing member is provided between the orbiting scroll 40 and the main bearing 60. The Oldham ring 90 prevents rotation of the orbiting scroll 40. Thus, the orbiting scroll 40 pivots with respect to the fixed scroll 30 without rotating.
 固定スクロール30、旋回スクロール40、電動機80、オルダムリング90及び主軸受60は、低圧空間12に配置されている。また、固定スクロール30及び旋回スクロール40は、仕切板20と主軸受60との間に配置されている。 The fixed scroll 30, the orbiting scroll 40, the motor 80, the Oldham ring 90 and the main bearing 60 are disposed in the low pressure space 12. The fixed scroll 30 and the orbiting scroll 40 are disposed between the partition plate 20 and the main bearing 60.
 仕切板20及び主軸受60は、密閉容器10に固定されている。固定スクロール30及び旋回スクロール40のいずれか一方には、弾性体(図示せず)が設けられている。そして、固定スクロール30及び旋回スクロール40のうち、少なくとも弾性体が設けられた一方は、仕切板20と主軸受60との間の少なくとも一部の区間において、軸方向に移動可能に設けられている。上記少なくとも一部の区間とは、例えば、仕切板20と旋回スクロール40との間、又は、固定スクロール30と主軸受60との間である。 The partition plate 20 and the main bearing 60 are fixed to the closed container 10. An elastic body (not shown) is provided on one of the fixed scroll 30 and the orbiting scroll 40. Then, at least one of the fixed scroll 30 and the orbiting scroll 40 provided with the elastic body is axially movably provided in at least a part of a section between the partition plate 20 and the main bearing 60 . The at least one section is, for example, between the partition plate 20 and the orbiting scroll 40 or between the fixed scroll 30 and the main bearing 60.
 本実施の形態では、固定スクロール30は、主軸受60に設けられた柱状部材100に対して、軸方向(図1における上下方向)に移動可能に設けられている。柱状部材100は、下端部が軸受側孔部102に挿入されて固定される一方、上端部がスクロール側孔部101に摺動自在に挿入されている。 In the present embodiment, the fixed scroll 30 is provided movably in the axial direction (vertical direction in FIG. 1) with respect to the columnar member 100 provided in the main bearing 60. The lower end portion of the columnar member 100 is inserted and fixed in the bearing side hole portion 102, and the upper end portion is slidably inserted in the scroll side hole portion 101.
 柱状部材100は、固定スクロール30の自転及び半径方向の動きを規制するとともに、固定スクロール30の軸方向の動きを許容する。つまり、固定スクロール30は、柱状部材100によって主軸受60で支持され、仕切板20と主軸受60との間の一部の区間、より詳細には、仕切板20と旋回スクロール40との間で軸方向に移動可能に設けられている。 The columnar member 100 restricts the rotation and radial movement of the fixed scroll 30 and allows axial movement of the fixed scroll 30. That is, the fixed scroll 30 is supported by the main bearing 60 by the columnar member 100, and a partial section between the partition plate 20 and the main bearing 60, more specifically, between the partition plate 20 and the orbiting scroll 40 It is provided to be movable in the axial direction.
 柱状部材100は、複数設けられており、周方向に所定の間隔をあけて配置されている。望ましくは、複数の柱状部材100は、周方向に略均等に配置される。 A plurality of columnar members 100 are provided, and are arranged at predetermined intervals in the circumferential direction. Desirably, the plurality of columnar members 100 are arranged substantially equally in the circumferential direction.
 なお、柱状部材100は、固定スクロール30に設けられてもよい。つまり、柱状部材100は、下端部が軸受側孔部102に摺動自在に挿入される一方、上端部がスクロール側孔部101に挿入され固定されていてもよい。 The columnar member 100 may be provided on the fixed scroll 30. That is, the lower end portion of the columnar member 100 may be slidably inserted in the bearing side hole portion 102, and the upper end portion may be inserted and fixed in the scroll side hole portion 101.
 [4.動作及び作用]
 以上のように構成された圧縮機1について、次にその動作及び作用を説明する。
[4. Operation and Action]
Next, the operation and action of the compressor 1 configured as described above will be described.
 電動機80が駆動されると、ロータ82とともに回転軸70が回転する。旋回スクロール40は、偏心軸71及びオルダムリング90によって、自転することなく回転軸70の中心軸を中心に旋回運動する。これによって、圧縮室50の容積が縮小し、圧縮室50の冷媒が圧縮される。 When the motor 80 is driven, the rotary shaft 70 rotates with the rotor 82. The orbiting scroll 40 pivots around the central axis of the rotating shaft 70 without rotating on its axis by the eccentric shaft 71 and the Oldham ring 90. As a result, the volume of the compression chamber 50 is reduced, and the refrigerant in the compression chamber 50 is compressed.
 冷凍サイクル回路中の冷媒は、吸入管13から低圧空間12に導入される。そして、低圧空間12に導入された冷媒は、整流板160に衝突し、分流される。 The refrigerant in the refrigeration cycle circuit is introduced from the suction pipe 13 into the low pressure space 12. Then, the refrigerant introduced into the low pressure space 12 collides with the rectifying plate 160 and is diverted.
 本実施の形態では、吸入管13及び整流板160は、図1Bに示すように、吸入管13の開口部13aの面積をA、吸入管13の軸中心から見たときの開口部13aの開口と整流板160との重複部分の面積をBとすると、A>Bであり、かつ、当該重複部分は、整流板160における、固定スクロール30の吸入部38側に設けられている。 In the present embodiment, as shown in FIG. 1B, the suction pipe 13 and the flow straightening plate 160 have an area A of the opening 13a of the suction pipe 13 and an opening of the opening 13a when viewed from the axial center of the suction pipe 13. Assuming that the area of the overlapping portion of the straightening vane 160 is B, A> B, and the overlapping portion is provided on the suction portion 38 side of the fixed scroll 30 in the straightening vane 160.
 従って、吸入管13から導入された冷媒は、整流板160における当該重複部分に衝突してその一部が電動機80側に分流されるとともに、残りは吸入管13の開口部13aを通過して、直接、圧縮機構部170側に流れる。すなわち、電動機80側には、電動機80の冷却に必要な量の冷媒だけが分流され、当該残りの冷媒は、直接、圧縮機構部170における固定スクロール30の吸入部38側へ流出する。換言すると、当該残りの冷媒は、比較的高温になった仕切板20への衝突が抑制されつつ、圧縮機構部170の吸入部38側に流れ、吸入部38から吸入される。そのため、吸入管13から吸入された冷媒が、仕切板20によって加熱されることを回避し、冷媒が加熱されることによる冷媒密度の低下を抑制することができる。これにより、スクロール圧縮機の効率を向上することができる。 Therefore, the refrigerant introduced from the suction pipe 13 collides with the overlapping portion of the straightening vane 160 and a part thereof is diverted to the motor 80 side, and the rest passes through the opening 13 a of the suction pipe 13, It flows directly to the compression mechanism section 170 side. That is, only the amount of refrigerant necessary to cool the electric motor 80 is diverted to the electric motor 80 side, and the remaining refrigerant directly flows out to the suction portion 38 side of the fixed scroll 30 in the compression mechanism portion 170. In other words, the remaining refrigerant flows toward the suction portion 38 of the compression mechanism portion 170 and is sucked from the suction portion 38 while the collision with the partition plate 20 having a relatively high temperature is suppressed. Therefore, the refrigerant sucked from the suction pipe 13 can be prevented from being heated by the partition plate 20, and the decrease in refrigerant density due to the refrigerant being heated can be suppressed. Thereby, the efficiency of the scroll compressor can be improved.
 また、本実施の形態では、整流板160は、吸入管13の軸中心方向から見たときの、吸入管13の開口部13aの左右部分(開口部13aにおける、密閉容器10の周方向の部分)を覆うように設けられている。 Further, in the present embodiment, the straightening vane 160 is a left and right portion of the opening 13a of the suction pipe 13 (a portion in the circumferential direction of the sealed container 10 in the opening 13a) when viewed from the axial center direction of the suction pipe 13. ) Is provided to cover the
 これにより、吸入管13から吸入された冷媒が、吸入管13の開口部13aから左右方向、すなわち密閉容器10の周方向に分流されるのを抑制して、圧縮機構部170側及び電動機80側へ効率よく分流することができる。従って、冷媒は、さらに効率よく圧縮機構部170の吸入部38へと導かれる。よって、冷媒の仕切板20との接触をより少なくして、冷媒密度の低下を抑制し、スクロール圧縮機の効率を向上することができる。 As a result, the refrigerant sucked from the suction pipe 13 is prevented from being diverted from the opening 13a of the suction pipe 13 in the left-right direction, that is, the circumferential direction of the sealed container 10, and the compression mechanism 170 side and the electric motor 80 side. Can be diverted efficiently. Therefore, the refrigerant is more efficiently introduced to the suction portion 38 of the compression mechanism portion 170. Therefore, the contact of the refrigerant with the partition plate 20 can be further reduced, the decrease in refrigerant density can be suppressed, and the efficiency of the scroll compressor can be improved.
 また、本実施の形態では、吸入管の軸中心方向から見たときに、吸入管13の開口部13aの開口の少なくとも一部が、固定スクロール30の吸入部38と重複するように構成されている。 Furthermore, in the present embodiment, at least a part of the opening of the opening 13a of the suction pipe 13 overlaps the suction 38 of the fixed scroll 30 when viewed from the axial center direction of the suction pipe. There is.
 これによって、吸入管13の開口部13aの開口の当該一部を流れる吸入冷媒は、直線的に圧縮機構部170の吸入部38に向かう。従って、冷媒を、圧縮機構部170の吸入部38に、さらに効率よく、直接吸入させることができる。よって、冷媒が仕切板20と接触することを回避して、冷媒密度の低下を抑制し、スクロール圧縮機の効率を向上することができる。 Thus, the suction refrigerant flowing through the part of the opening 13 a of the suction pipe 13 linearly travels to the suction portion 38 of the compression mechanism 170. Therefore, the refrigerant can be directly sucked into the suction portion 38 of the compression mechanism portion 170 more efficiently. Therefore, the refrigerant can be prevented from coming into contact with the partition plate 20, and the decrease in the refrigerant density can be suppressed, and the efficiency of the scroll compressor can be improved.
 また、本実施の形態では、吸入管13の開口部13aの直径をdとすると、吸入管13と整流板160との距離は、d/2より大きくdよち小さい範囲内である。 Further, in the present embodiment, assuming that the diameter of the opening 13a of the suction pipe 13 is d, the distance between the suction pipe 13 and the straightening vane 160 is in a range larger than d / 2 and smaller than d.
 吸入管13と整流板160との距離がd/2より大きく構成されることにより、整流板160内(整流板160と密閉容器10の内壁面との間)での冷媒の圧力損失を低減できる。また、吸入管13と整流板160との距離がdより小さく構成されることにより、吸入された冷媒が、整流板160によって電動機80側へ分流されやすくなる。つまり、整流板160と密閉容器10の内壁面との間を流れる冷媒の圧力損失を低減することができるため、電動機80側及び圧縮機構部170側への冷媒の分流が効率的に行われる。よって、スクロール圧縮機の効率を向上することができる。 By setting the distance between the suction pipe 13 and the straightening vane 160 to be larger than d / 2, the pressure loss of the refrigerant in the straightening vane 160 (between the straightening vane 160 and the inner wall surface of the sealed container 10) can be reduced. . Further, since the distance between the suction pipe 13 and the straightening vane 160 is smaller than d, the sucked refrigerant is likely to be diverted to the motor 80 by the straightening vane 160. That is, since the pressure loss of the refrigerant flowing between the straightening vane 160 and the inner wall surface of the sealed container 10 can be reduced, the refrigerant can be efficiently diverted to the motor 80 side and the compression mechanism portion 170 side. Thus, the efficiency of the scroll compressor can be improved.
 また、本実施の形態では、吸入管13の開口部13aと整流板160との重複部分の面積Bは、吸入管13の開口部13aの開口面積Aの30%より大きく70%より小さい範囲内である。 Further, in the present embodiment, the area B of the overlapping portion of the opening 13 a of the suction pipe 13 and the flow straightening plate 160 is within the range of more than 30% and less than 70% of the opening area A of the opening 13 a of the suction pipe 13. It is.
 当該重複部分の面積Bが、冷媒吸入管13の開口部13aの開口面積Aの30%より大きく構成されることにより、電動機80側へ分流される冷媒の量を適切な量に確保することができ、電動機80を良好に冷却することができる。 By configuring the area B of the overlapping portion to be larger than 30% of the opening area A of the opening 13 a of the refrigerant suction pipe 13, it is possible to secure the amount of refrigerant diverted to the motor 80 to an appropriate amount. And the motor 80 can be cooled well.
 また、当該重複部分の面積Bが吸入管13の開口部13aの開口面積Aの70%より小さく構成されることにより、圧縮機構部170側へ分流される冷媒の量も適切な量に確保でき、圧縮機構部170による圧縮を良好に行うことができる。 Further, by configuring the area B of the overlapping portion to be smaller than 70% of the opening area A of the opening 13a of the suction pipe 13, the amount of refrigerant diverted to the compression mechanism 170 side can also be secured to an appropriate amount. The compression mechanism unit 170 can perform compression well.
 つまり、電動機80の冷却を良好に行いつつ圧縮機構部170による冷媒の圧縮も良好に行うことができる。そして、吸入管13から吸入された冷媒は、比較的高温になった仕切板20に衝突して加熱されることなく、直接、圧縮機構部170の吸入部38から吸入されるため、圧縮機構部170における冷媒の圧縮効率を向上することができる。 That is, the refrigerant can be favorably compressed by the compression mechanism section 170 while the motor 80 is well cooled. The refrigerant sucked from the suction pipe 13 is directly sucked from the suction portion 38 of the compression mechanism portion 170 without colliding with the partition plate 20 having a relatively high temperature to be heated, so the compression mechanism portion The compression efficiency of the refrigerant at 170 can be improved.
 そして、圧縮室50で圧縮された冷媒は、高圧空間11を経由して、冷媒吐出管(吐出管)14から吐出される。 The refrigerant compressed in the compression chamber 50 is discharged from the refrigerant discharge pipe (discharge pipe) 14 via the high pressure space 11.
 また、油溜まり15に貯留された潤滑油は、回転軸70の回転によって、吸込口73からパドル74に沿って、油路72の上方へと汲み上げられる。 Further, the lubricating oil stored in the oil reservoir 15 is pumped up from the suction port 73 along the paddle 74 to the upper side of the oil passage 72 by the rotation of the rotating shaft 70.
 汲み上げられた潤滑油は、第1給油口75、第2給油口76及び第3給油口77から、軸受部61、副軸受16及びボス収容部62にそれぞれ供給される。また、ボス収容部62まで汲み上げられた潤滑油は、主軸受60と旋回スクロール40との摺動面に導かれるとともに、返送経路63(図5参照)を通じて排出されて、再び油溜まり15に戻る。 The pumped lubricating oil is supplied from the first fuel inlet 75, the second fuel inlet 76, and the third fuel inlet 77 to the bearing portion 61, the sub bearing 16, and the boss housing portion 62, respectively. Further, the lubricating oil pumped up to the boss housing portion 62 is guided to the sliding surface between the main bearing 60 and the orbiting scroll 40, and is discharged through the return path 63 (see FIG. 5) to return to the oil reservoir 15 again. .
 [5.圧縮機の詳細構成]
 圧縮機1の詳細な構成について、さらに説明する。
[5. Detailed configuration of compressor]
The detailed configuration of the compressor 1 will be further described.
 図2Aは、本実施の形態に係るスクロール圧縮機の旋回スクロールの側面図である。図2Bは、図2Aにおける旋回スクロールを図2AのX-X線で切断した断面図である。 FIG. 2A is a side view of the orbiting scroll of the scroll compressor according to the present embodiment. FIG. 2B is a cross-sectional view of the orbiting scroll in FIG. 2A cut along the line XX in FIG. 2A.
 図2Aに示す旋回渦巻きラップ42は、旋回スクロール端板41の中心側に位置する始端42aを巻き始めとし、外周側に位置する終端42bに向けて徐々に半径を拡大する、インボリュート曲線状の断面を有する壁である(図2B参照)。旋回渦巻きラップ42は、所定の高さ(上下方向の長さ)及び所定の壁厚(旋回渦巻きラップ42の径方向の長さ)を有する。 The swirling spiral wrap 42 shown in FIG. 2A has an involute curve-like cross section in which the starting end 42a located on the center side of the orbiting scroll end plate 41 is wounded and the radius is gradually expanded toward the end 42b located on the outer peripheral side. (See FIG. 2B). The swirling spiral wrap 42 has a predetermined height (vertical length) and a predetermined wall thickness (radial length of the swirling spiral wrap 42).
 旋回スクロール端板41の下面の両端には、外周側から中心側へ向かう方向に長く構成された、一対の第1のキー溝91が設けられている(図2B参照)。 At both ends of the lower surface of the orbiting scroll end plate 41, a pair of first key grooves 91 configured to extend in the direction from the outer peripheral side toward the center side are provided (see FIG. 2B).
 図3は、本実施の形態に係るスクロール圧縮機の固定スクロールの底面図である。図4は、同固定スクロールを斜め上から見た分解斜視図である。 FIG. 3 is a bottom view of the fixed scroll of the scroll compressor according to the present embodiment. FIG. 4 is an exploded perspective view of the fixed scroll as viewed obliquely from above.
 図3に示すように、固定渦巻きラップ32は、固定スクロール端板31の中心側に位置する始端32aを巻き始めとし、外周側に位置する終端32cに向けて徐々に半径を拡大する、インボリュート曲線状の断面を有する壁である。固定渦巻きラップ32は、旋回渦巻きラップ42と等しい所定の高さ(上下方向の長さ)、及び所定の壁厚(固定渦巻きラップ32の径方向の長さ)を有する。 As shown in FIG. 3, the fixed spiral wrap 32 is an involute curve having a starting end 32 a located on the center side of the fixed scroll end plate 31 as a winding start and gradually expanding a radius toward the end 32 c located on the outer peripheral side. Wall having a cross section of The fixed spiral wrap 32 has a predetermined height (vertical length) equal to the turning spiral wrap 42 and a predetermined wall thickness (radial length of the fixed spiral wrap 32).
 固定渦巻きラップ32は、始端32aから中間部32bにかけては、内壁(中心側の壁面)及び外壁(外周側の壁面)を備え、中間部32bから終端32cにかけては、内壁のみを備えている。 The fixed spiral wrap 32 has an inner wall (wall on the center side) and an outer wall (wall on the outer circumference) from the start end 32a to the middle portion 32b, and only an inner wall from the middle portion 32b to the end 32c.
 図3及び図4に示すように、固定スクロール端板31の略中心部には、第1吐出ポート35が形成されている。また、固定スクロール端板31には、バイパスポート36及び中圧ポート37が形成されている。バイパスポート36は、第1吐出ポート35の近傍で、圧縮完了直前の高圧圧力の冷媒が存在する領域に配置されている。 As shown in FIGS. 3 and 4, a first discharge port 35 is formed substantially at the center of the fixed scroll end plate 31. Further, a bypass port 36 and an intermediate pressure port 37 are formed in the fixed scroll end plate 31. The bypass port 36 is disposed in the vicinity of the first discharge port 35 in a region where the refrigerant at a high pressure immediately before the completion of the compression exists.
 バイパスポート36は、3つの小孔を1セットとして、旋回渦巻きラップ42(図2B参照)の外壁側に形成される圧縮室50と連通するバイパスポート36、及び、旋回渦巻きラップ42の内壁側に形成される圧縮室50と連通するバイパスポート36の2セットが設けられている。中圧ポート37は、中間部32b近傍で、圧縮途中の中間圧力の冷媒が存在する領域に配置されている。 The bypass port 36 includes a bypass port 36 communicating with the compression chamber 50 formed on the outer wall side of the orbiting spiral wrap 42 (see FIG. 2B) with one set of three small holes, and on the inner wall side of the orbiting spiral wrap 42 Two sets of bypass ports 36 are provided which communicate with the compression chamber 50 being formed. The medium pressure port 37 is disposed in the vicinity of the middle portion 32 b in a region where a refrigerant at a middle pressure during compression is present.
 図4に示すように、固定スクロール30の外周部には、周壁33から外周側に突出する一対の第1フランジ34a、及び、一対の第2フランジ34bが設けられている。第1フランジ34a及び第2フランジ34bは、固定スクロール端板31よりも下方(旋回スクロール40側)に設けられている。第2フランジ34bは、第1フランジ34aよりも下方に設けられ、第2フランジ34bの下面(旋回スクロール40側の面)は、固定渦巻きラップ32の先端面と略同一平面上に位置している。 As shown in FIG. 4, a pair of first flanges 34 a and a pair of second flanges 34 b are provided on the outer peripheral portion of the fixed scroll 30 so as to protrude outward from the peripheral wall 33. The first flange 34 a and the second flange 34 b are provided below the fixed scroll end plate 31 (on the side of the orbiting scroll 40). The second flange 34b is provided below the first flange 34a, and the lower surface (the surface on the side of the orbiting scroll 40) of the second flange 34b is positioned substantially flush with the tip surface of the fixed spiral wrap 32. .
 一対の第1フランジ34aのそれぞれは、回転軸70における周方向に、所定の間隔をあけて、ほぼ均等に配置されている。また、一対の第2フランジ34bのそれぞれは、回転軸70における周方向に、所定の間隔をあけて、ほぼ均等に配置されている。 Each of the pair of first flanges 34 a is substantially equally spaced in the circumferential direction of the rotation shaft 70 at a predetermined interval. Further, each of the pair of second flanges 34 b is arranged substantially equally spaced in the circumferential direction of the rotation shaft 70 at a predetermined interval.
 固定スクロール30の周壁33には、冷媒を圧縮室50に取り込むための吸入部38が形成されている。 A suction portion 38 for taking the refrigerant into the compression chamber 50 is formed on the peripheral wall 33 of the fixed scroll 30.
 また、第1フランジ34aには、柱状部材100(図1参照)の上端部が挿入される、スクロール側孔部101が設けられている。スクロール側孔部101は、一対の第1フランジ34aに、それぞれ1つずつ設けられている。2つのスクロール側孔部101は、周方向に所定の間隔をあけて配置されている。望ましくは、2つのスクロール側孔部101は、周方向に均等に配置される。なお、スクロール側孔部101は、貫通孔でなくてもよく、下面側から窪む凹部であってもよい。 Further, the first flange 34a is provided with the scroll side hole 101 into which the upper end portion of the columnar member 100 (see FIG. 1) is inserted. The scroll side holes 101 are provided one by one in each of the pair of first flanges 34 a. The two scroll side holes 101 are arranged at predetermined intervals in the circumferential direction. Desirably, two scroll side hole parts 101 are equally arranged by the peripheral direction. The scroll side hole portion 101 may not be a through hole, and may be a concave portion recessed from the lower surface side.
 スクロール側孔部101は、連通孔(図示せず)によって、固定スクロール30の外部、つまり、低圧空間12と連通している。 The scroll side hole portion 101 communicates with the outside of the fixed scroll 30, that is, the low pressure space 12 by a communication hole (not shown).
 第2フランジ34bには、第2のキー溝92が設けられている(図3参照)。第2のキー溝92は、一対の第2フランジ34bにそれぞれ1つずつ設けられた、外周側から中心側へ向かう方向に長く構成された、一対の溝である。 The second flange 34b is provided with a second key groove 92 (see FIG. 3). The second key groove 92 is a pair of grooves provided in the pair of second flanges 34 b one by one and configured to be long in the direction from the outer peripheral side to the center side.
 図4に示すように、固定スクロール30の上面(仕切板20側の面)には、中央に上方ボス部39が設けられている。上方ボス部39は、固定スクロール30の上面から突出する円柱状の突起である。第1吐出ポート35及びバイパスポート36は、上方ボス部39の上面に開口する。上方ボス部39の上面側には、上方ボス部39と仕切板20との間に、吐出空間30Hが形成されている(後述する図7参照)。第1吐出ポート35及びバイパスポート36は、吐出空間30Hと連通する。 As shown in FIG. 4, an upper boss 39 is provided at the center of the upper surface (the surface on the side of the partition plate 20) of the fixed scroll 30. The upper boss portion 39 is a cylindrical protrusion that protrudes from the upper surface of the fixed scroll 30. The first discharge port 35 and the bypass port 36 open on the upper surface of the upper boss portion 39. A discharge space 30H is formed between the upper boss 39 and the partition plate 20 on the upper surface side of the upper boss 39 (see FIG. 7 described later). The first discharge port 35 and the bypass port 36 communicate with the discharge space 30H.
 また、固定スクロール30の上面には、上方ボス部39の外周側に、リング状凸部310が設けられている。上方ボス部39及びリング状凸部310によって、固定スクロール30の上面には凹部が形成される。この凹部は、中圧空間30Mを形成する(後述する図7参照)。中圧ポート37は、固定スクロール30の上面(凹部の底面)に開口し、中圧空間30Mと連通する。 Further, a ring-shaped convex portion 310 is provided on the outer peripheral side of the upper boss portion 39 on the upper surface of the fixed scroll 30. A recess is formed on the upper surface of the fixed scroll 30 by the upper boss 39 and the ring-shaped protrusion 310. The recess forms an intermediate pressure space 30M (see FIG. 7 described later). The medium pressure port 37 opens on the upper surface (bottom surface of the recess) of the fixed scroll 30 and communicates with the medium pressure space 30M.
 中圧ポート37の孔径は、旋回渦巻きラップ42の壁厚より小さい。これにより、旋回渦巻きラップ42の内壁側に形成される圧縮室50と、旋回渦巻きラップ42の外壁側に形成される圧縮室50との連通が防止される。 The pore size of the medium pressure port 37 is less than the wall thickness of the swirl wrap 42. As a result, the communication between the compression chamber 50 formed on the inner wall side of the orbiting spiral wrap 42 and the compression chamber 50 formed on the outer wall side of the orbiting spiral wrap 42 is prevented.
 上方ボス部39の上面には、バイパスポート36を開閉可能とするバイパス逆止弁121と、バイパス逆止弁121の過度な変形を防止するバイパス逆止弁ストップ122と、が設けられている。バイパス逆止弁121としてリードバルブを用いられることで、高さを小さくできる。また、バイパス逆止弁121として、V字型のリードバルブを用いられることで、旋回渦巻きラップ42の外壁側に形成される圧縮室50と連通するバイパスポート36と、旋回渦巻きラップ42の内壁側に形成される圧縮室50と連通するバイパスポート36とを、1つのリードバルブで開閉することができる。 A bypass check valve 121 for opening and closing the bypass port 36 and a bypass check valve stop 122 for preventing excessive deformation of the bypass check valve 121 are provided on the upper surface of the upper boss portion 39. By using a reed valve as the bypass check valve 121, the height can be reduced. In addition, a V-shaped reed valve is used as the bypass check valve 121, so that a bypass port 36 communicating with the compression chamber 50 formed on the outer wall side of the swirl spiral wrap 42 and an inner wall side of the swirl spiral wrap 42 The bypass port 36 communicating with the compression chamber 50 formed in can be opened and closed by one reed valve.
 固定スクロール30の上面(凹部の底面)には、中圧ポート37を開閉可能とする中圧逆止弁(図示せず)と、中圧逆止弁の過度な変形を防止する中圧逆止弁ストップ(図示せず)とが設けられている。中圧逆止弁として、リードバルブを用いることで高さ方向の大きさをコンパクトにできる。また、中圧逆止弁は、ボールバルブ及びバネによって構成することもできる。 A medium pressure non-return valve (not shown) that allows the medium pressure port 37 to be opened and closed, and a medium pressure nonreturn valve that prevents excessive deformation of the medium pressure check valve on the upper surface (bottom surface of the recess) of the fixed scroll 30 A valve stop (not shown) is provided. The size in the height direction can be made compact by using a reed valve as the medium pressure check valve. The medium pressure check valve can also be configured by a ball valve and a spring.
 図5は、本実施の形態に係るスクロール圧縮機の主軸受を斜め上から見た斜視図である。 FIG. 5 is a perspective view of the main bearing of the scroll compressor according to the present embodiment as viewed obliquely from above.
 図5に示すように、主軸受60の外周部には、柱状部材100(図1参照)の下端部が挿入される軸受側孔部102が設けられている。軸受側孔部102は、周方向に所定の間隔をあけて、2つ設けられている。望ましくは、2つの軸受側孔部102は、周方向に均等に配置される。なお、軸受側孔部102は、貫通孔でなくてもよく、上面側から窪む凹部であってもよい。 As shown in FIG. 5, a bearing side hole portion 102 into which the lower end portion of the columnar member 100 (see FIG. 1) is inserted is provided on the outer peripheral portion of the main bearing 60. Two bearing side holes 102 are provided at predetermined intervals in the circumferential direction. Desirably, two bearing side hole parts 102 are equally distributed by the circumferential direction. The bearing side hole 102 may not be a through hole, but may be a recess recessed from the upper surface side.
 主軸受60には、返送経路63が形成されている。返送経路63は、一端がボス収容部62に開口し、他端が主軸受60の下面に開口する。なお、返送経路63の一端は、主軸受60の上面に開口してもよい。また、返送経路63の他端は、主軸受60の側面に開口してもよい。 A return path 63 is formed in the main bearing 60. One end of the return path 63 opens to the boss accommodating portion 62, and the other end opens to the lower surface of the main bearing 60. Note that one end of the return path 63 may be open at the upper surface of the main bearing 60. Further, the other end of the return path 63 may be open at the side surface of the main bearing 60.
 返送経路63は、軸受側孔部102とも連通している。従って、軸受側孔部102には、返送経路63によって、潤滑油が供給される。 The return path 63 also communicates with the bearing side hole 102. Accordingly, lubricating oil is supplied to the bearing side hole 102 by the return path 63.
 図6は、本実施の形態に係るスクロール圧縮機の自転抑制部材であるオルダムリングを示す平面図である。 FIG. 6 is a plan view showing an Oldham ring which is a rotation suppression member of the scroll compressor according to the present embodiment.
 図6に示すように、オルダムリング90は、略円環状のリング部95と、リング部95の上面から突出する、一対の第1のキー93及び一対の第2のキー94を備えている。第1のキー93及び第2のキー94は、2つの第1のキー93を結ぶ直線と、2つの第2のキー94を結ぶ直線とが直交するように設けられている。 As shown in FIG. 6, the Oldham ring 90 includes a substantially annular ring portion 95, and a pair of first keys 93 and a pair of second keys 94 protruding from the upper surface of the ring portion 95. The first key 93 and the second key 94 are provided such that the straight line connecting the two first keys 93 and the straight line connecting the two second keys 94 are orthogonal to each other.
 第1のキー93は、旋回スクロール40の第1のキー溝91(図2B参照)と係合し、第2のキー94は、固定スクロール30の第2のキー溝92(図3参照)と係合する。これによって、旋回スクロール40は、自転することなく、固定スクロール30に対して旋回運動をすることが可能となる。 The first key 93 engages with the first key groove 91 (see FIG. 2B) of the orbiting scroll 40, and the second key 94 with the second key groove 92 of the fixed scroll 30 (see FIG. 3). Engage. As a result, the orbiting scroll 40 can pivot with respect to the fixed scroll 30 without rotating.
 本実施の形態では、回転軸70の軸方向に、上方から、固定スクロール30、旋回スクロール40及びオルダムリング90の順に配置されている(図1参照)。このため、第1のキー93及び第2のキー94は、リング部95における同一平面に形成されている。これにより、オルダムリング90の作成時に、第1のキー93及び第2のキー94を、同一方向から加工することが可能となり、加工装置からオルダムリング90を脱着する回数を減らすことができる。このため、オルダムリング90の加工精度の向上及び加工費の削減を図ることができる。 In the present embodiment, the fixed scroll 30, the orbiting scroll 40, and the oldham ring 90 are arranged in the order from the top in the axial direction of the rotating shaft 70 (see FIG. 1). For this reason, the first key 93 and the second key 94 are formed in the same plane in the ring portion 95. This makes it possible to process the first key 93 and the second key 94 from the same direction when creating the Oldham ring 90, and to reduce the number of times the Oldham ring 90 is detached from the processing apparatus. Therefore, the processing accuracy of the Oldham ring 90 can be improved and the processing cost can be reduced.
 図7は、本実施の形態に係るスクロール圧縮機の要部の断面図である。図8は、本実施の形態に係るスクロール圧縮機の要部の断面を示す斜視図である。 FIG. 7 is a cross-sectional view of the main part of the scroll compressor according to the present embodiment. FIG. 8 is a perspective view showing the cross section of the main part of the scroll compressor according to the present embodiment.
 図7に示すように、仕切板20の中心部には、第2吐出ポート21が設けられている。仕切板20の上面には、第2吐出ポート21を開閉可能とする吐出逆止弁131と、吐出逆止弁131の過度な変形を防止する吐出逆止弁ストップ132と、が設けられている。 As shown in FIG. 7, the second discharge port 21 is provided at the center of the partition plate 20. A discharge check valve 131 for opening and closing the second discharge port 21 and a discharge check valve stop 132 for preventing excessive deformation of the discharge check valve 131 are provided on the upper surface of the partition plate 20. .
 仕切板20と固定スクロール30との間には、吐出空間30Hが形成される。吐出空間30Hは、第1吐出ポート35及びバイパスポート36によって圧縮室50と連通し、第2吐出ポート21によって高圧空間11と連通する。 A discharge space 30H is formed between the partition plate 20 and the fixed scroll 30. The discharge space 30H communicates with the compression chamber 50 by the first discharge port 35 and the bypass port 36, and communicates with the high pressure space 11 by the second discharge port 21.
 吐出空間30Hは、第2吐出ポート21を介して高圧空間11と連通しているため、固定スクロール30の上面側には背圧が加わる。つまり、吐出空間30Hに高圧圧力が加わることで、固定スクロール30は、旋回スクロール40に押し付けられる。このため、固定スクロール30と旋回スクロール40との隙間を無くすことができ、圧縮機1によって高効率な運転が行われる。 Since the discharge space 30H communicates with the high pressure space 11 via the second discharge port 21, a back pressure is applied to the upper surface side of the fixed scroll 30. That is, the fixed scroll 30 is pressed against the orbiting scroll 40 by the application of high pressure to the discharge space 30H. For this reason, the gap between the fixed scroll 30 and the orbiting scroll 40 can be eliminated, and the compressor 1 can perform highly efficient operation.
 吐出逆止弁131の板厚は、バイパス逆止弁121の板厚より大きい。これによって、吐出逆止弁131が、バイパス逆止弁121より先に開くことを防止できる。 The plate thickness of the discharge check valve 131 is larger than the plate thickness of the bypass check valve 121. Thus, the discharge check valve 131 can be prevented from opening earlier than the bypass check valve 121.
 第2吐出ポート21の容積は、第1吐出ポート35の容積より大きい。これによって、圧縮室50から吐出される冷媒の圧力損失を低減することができる。 The volume of the second discharge port 21 is larger than the volume of the first discharge port 35. Thereby, the pressure loss of the refrigerant discharged from the compression chamber 50 can be reduced.
 また、第2吐出ポート21の流入側にテーパが形成されてもよい。これによって、より圧力損失を低減できる。 Also, a taper may be formed on the inflow side of the second discharge port 21. This can further reduce pressure loss.
 仕切板20の下面には、第2吐出ポート21の周りに、円環状に突出する突出部22が設けられている。突出部22には、後述の閉塞部材150の一部が挿入される、複数の孔部221が設けられている。 On the lower surface of the partition plate 20, an annular projecting portion 22 is provided around the second discharge port 21. The protrusion 22 is provided with a plurality of holes 221 into which a part of the closing member 150 described later is inserted.
 図7及び図8に示すように、突出部22には、第1シール部材141と、第2シール部材142と、が設けられている。第1シール部材141は、突出部22から仕切板20の中心側に向けて突出する、リング状のシール部材である。第1シール部材141の先端は、上方ボス部39の側面に接している。つまり、第1シール部材141は、仕切板20と固定スクロール30との間であって、吐出空間30Hの外周に位置する隙間に配置されている。 As shown in FIGS. 7 and 8, the protrusion 22 is provided with a first seal member 141 and a second seal member 142. The first seal member 141 is a ring-shaped seal member that protrudes from the protrusion 22 toward the center of the partition plate 20. The tip of the first seal member 141 is in contact with the side surface of the upper boss 39. That is, the first seal member 141 is disposed in a gap between the partition plate 20 and the fixed scroll 30 and on the outer periphery of the discharge space 30H.
 第2シール部材142は、突出部22から仕切板20の外周側に向けて突出する、リング状のシール部材である。第2シール部材142は、第1シール部材141の外側に配置されている。第2シール部材142の先端は、リング状凸部310の内側面に接している。つまり、第2シール部材142は、仕切板20と固定スクロール30との間であって、中圧空間30Mの外周に位置する隙間に配置されている。 The second seal member 142 is a ring-shaped seal member that protrudes from the protrusion 22 toward the outer peripheral side of the partition plate 20. The second seal member 142 is disposed outside the first seal member 141. The tip of the second seal member 142 is in contact with the inner side surface of the ring-shaped convex portion 310. That is, the second seal member 142 is disposed between the partition plate 20 and the fixed scroll 30 in a gap located on the outer periphery of the intermediate pressure space 30M.
 換言すると、第1シール部材141及び第2シール部材142によって、仕切板20と固定スクロール30との間には、吐出空間30H及び中圧空間30Mが形成される。吐出空間30Hは、上方ボス部39の上面側に形成される空間であり、中圧空間30Mは、上方ボス部39の外周側に形成される空間である。 In other words, the discharge space 30H and the medium pressure space 30M are formed between the partition plate 20 and the fixed scroll 30 by the first seal member 141 and the second seal member 142. The discharge space 30H is a space formed on the upper surface side of the upper boss portion 39, and the medium pressure space 30M is a space formed on the outer peripheral side of the upper boss portion 39.
 第1シール部材141は、吐出空間30Hと中圧空間30Mとを区画するシール部材であり、第2シール部材142は、中圧空間30Mと低圧空間12とを区画するシール部材である。 The first seal member 141 is a seal member that divides the discharge space 30H and the medium pressure space 30M, and the second seal member 142 is a seal member that divides the medium pressure space 30M and the low pressure space 12.
 第1シール部材141及び第2シール部材142としては、例えばフッ素樹脂であるポリテトラフルオロエチレンが、シール性及び組み立て性の面において適している。さらに、第1シール部材141及び第2シール部材142として、フッ素樹脂に繊維材を混合させたものが用いられることで、シールの信頼性が向上する。 As the first seal member 141 and the second seal member 142, for example, polytetrafluoroethylene, which is a fluorocarbon resin, is suitable in terms of sealability and assembly. Furthermore, the reliability of the seal is improved by using, as the first seal member 141 and the second seal member 142, a material in which a fiber material is mixed with a fluorine resin.
 第1シール部材141及び第2シール部材142は、閉塞部材150と突出部22との間に挟み込まれている。このため、仕切板20に、第1シール部材141、第2シール部材142及び閉塞部材150が組み付けられた後に、これを密閉容器10内に配置させることができる。これによって、圧縮機1の部品点数を少なくできるとともに、圧縮機1の組み立てが容易となる。 The first seal member 141 and the second seal member 142 are sandwiched between the closing member 150 and the projection 22. Therefore, after the first seal member 141, the second seal member 142, and the closing member 150 are assembled to the partition plate 20, they can be disposed in the sealed container 10. As a result, the number of parts of the compressor 1 can be reduced and the assembly of the compressor 1 becomes easy.
 より詳細には、閉塞部材150は、仕切板20の突出部22に対向するように配置されるリング状部151と、リング状部151の一面から突出する複数の突出部152と、を有する。 More specifically, the closing member 150 includes a ring-shaped portion 151 disposed to face the protruding portion 22 of the partition plate 20 and a plurality of protruding portions 152 protruding from one surface of the ring-shaped portion 151.
 第1シール部材141の外周側は、リング状部151の上面の内周側の部分と突出部22の下面とで挟み込まれる。また、第2シール部材142の内周側は、リング状部151の上面の外周側の部分と突出部22の下面とで挟み込まれる。 The outer peripheral side of the first seal member 141 is sandwiched between a portion on the inner peripheral side of the upper surface of the ring-shaped portion 151 and the lower surface of the protrusion 22. Further, the inner peripheral side of the second seal member 142 is sandwiched between the outer peripheral portion of the upper surface of the ring-shaped portion 151 and the lower surface of the projecting portion 22.
 つまり、リング状部151は、第1シール部材141及び第2シール部材142を介して、仕切板20の突出部22の下面に対向している。 That is, the ring-shaped portion 151 is opposed to the lower surface of the protruding portion 22 of the partition plate 20 via the first seal member 141 and the second seal member 142.
 複数の突出部152は、突出部22に形成された複数の孔部221に挿入されている。そして、突出部152の上端は、リング状部151が突出部22の下面に押圧された状態となるように、かしめられている。つまり、突出部152の上端を平板状に変形させることで、リング状部151が突出部22の下面に押圧された状態となるように、閉塞部材150が仕切板20に固定されている。閉塞部材150は、アルミニウム材により形成されることで、容易にかしめられる。 The plurality of protrusions 152 are inserted into the plurality of holes 221 formed in the protrusion 22. The upper end of the protrusion 152 is crimped so that the ring-shaped portion 151 is pressed against the lower surface of the protrusion 22. That is, the closing member 150 is fixed to the partition plate 20 such that the ring-shaped portion 151 is pressed against the lower surface of the projecting portion 22 by deforming the upper end of the projecting portion 152 into a flat plate shape. The closing member 150 is easily crimped by being formed of an aluminum material.
 仕切板20に第1シール部材141及び第2シール部材142が取り付けられた状態において、第1シール部材141の内周部は、リング状部151から仕切板20の中心側に向けて突出し、第2シール部材142の外周部は、リング状部151から仕切板20の外周側に向けて突出する。 In a state where the first seal member 141 and the second seal member 142 are attached to the partition plate 20, the inner peripheral portion of the first seal member 141 protrudes from the ring-shaped portion 151 toward the center of the partition plate 20, The outer peripheral portion of the second seal member 142 protrudes from the ring-shaped portion 151 toward the outer peripheral side of the partition plate 20.
 そして、第1シール部材141及び第2シール部材142が取り付けられた仕切板20が、密閉容器10内に装着されることで、第1シール部材141の内周側の部分は、固定スクロール30の上方ボス部39の外周面に押圧され、第2シール部材142の外周側の部分は、固定スクロール30のリング状凸部310の内周面に押圧される。 Then, the partition plate 20 to which the first seal member 141 and the second seal member 142 are attached is mounted in the sealed container 10, so that the portion on the inner circumferential side of the first seal member 141 corresponds to that of the fixed scroll 30. The portion on the outer peripheral side of the second seal member 142 is pressed against the inner peripheral surface of the ring-shaped convex portion 310 of the fixed scroll 30 while being pressed against the outer peripheral surface of the upper boss portion 39.
 中圧空間30Mは、中圧ポート37によって、圧縮室50における、圧縮途中の中間圧力の冷媒が存在する領域と連通している。このため、中圧空間30Mの圧力は、吐出空間30Hの圧力より低く、低圧空間12の圧力よりも高い。 The medium pressure space 30 </ b> M communicates with the region of the compression chamber 50 in the middle of compression in which the refrigerant at the intermediate pressure exists, by means of the medium pressure port 37. For this reason, the pressure of the medium pressure space 30M is lower than the pressure of the discharge space 30H and higher than the pressure of the low pressure space 12.
 このように、仕切板20と固定スクロール30との間に、吐出空間30Hに加えて、中圧空間30Mが形成されることで、固定スクロール30の旋回スクロール40への押し付け力の調整が容易となる。 Thus, in addition to the discharge space 30H, the intermediate pressure space 30M is formed between the partition plate 20 and the fixed scroll 30, so that adjustment of the pressing force of the fixed scroll 30 to the orbiting scroll 40 is easy. Become.
 また、中圧空間30Mは、第1シール部材141及び第2シール部材142によって形成されるため、吐出空間30Hから中圧空間30Mへの冷媒の漏れ、及び、中圧空間30Mから低圧空間12への冷媒の漏れを低減することができる。 Further, since the medium pressure space 30M is formed by the first seal member 141 and the second seal member 142, the refrigerant leaks from the discharge space 30H to the medium pressure space 30M, and from the medium pressure space 30M to the low pressure space 12. Leakage of refrigerant can be reduced.
 (実施の形態2)
 図9Aは、本実施の形態に係るスクロール圧縮機を縦方向に切断した断面図である。また、図9Bは、本実施の形態に係るスクロール圧縮機を、吸入管の軸中心から見たときの、縦方向に切断した断面図である。
Second Embodiment
FIG. 9A is a cross-sectional view in which the scroll compressor according to the present embodiment is cut in the longitudinal direction. FIG. 9B is a cross-sectional view of the scroll compressor according to the present embodiment, cut in the vertical direction when viewed from the axial center of the suction pipe.
 本実施の形態では、図9Bに示すように、吸入管13の軸中心方向から見たときの、整流板160における、吸入管13の開口部13aと整流板160との重複部分に、孔部160aが設けられている。 In the present embodiment, as shown in FIG. 9B, a hole is formed in the overlapping portion of the opening 13a of the suction pipe 13 and the flow control plate 160 in the flow control plate 160 when viewed from the axial center direction of the suction pipe 13. 160a is provided.
 その他の構成は、図1で示した実施の形態1に係る圧縮機1と同じであるので、図1で説明した構成と同一構成には同一符号を付して説明を省略する。 The other configuration is the same as that of the compressor 1 according to the first embodiment shown in FIG. 1 and, therefore, the same configuration as the configuration described in FIG.
 上記構成によれば、吸入管13から吸入された冷媒の一部は、整流板160の孔部160aを通って、圧縮機構部170における固定スクロール30の吸入部38の方向へ分流される。また、残りの冷媒は、整流板160の孔部160a以外の部分に衝突して電動機80側へと分流される。 According to the above configuration, a part of the refrigerant sucked from the suction pipe 13 is diverted in the direction of the suction portion 38 of the fixed scroll 30 in the compression mechanism portion 170 through the hole portion 160 a of the straightening vane 160. Further, the remaining refrigerant collides with a portion other than the hole portion 160 a of the straightening vane 160 and is diverted to the motor 80 side.
 従って、上記孔部160aの大きさを、実施の形態1で説明した、開口面積Aと重複部分の面積Bとの関係が満たされるようすれば、実施の形態1と同様の効果が得られる。これによって、吸入管13と整流板160との位置関係について、例えば上下にずらす等の変更を加えることなく、既存の圧縮機の構成に対して孔を加えるという簡単な加工によって、実施の形態1と同様に、冷媒密度の低下を抑制し、圧縮機の効率を向上することができる。 Therefore, if the size of the hole 160a satisfies the relationship between the opening area A and the area B of the overlapping portion described in the first embodiment, the same effect as that of the first embodiment can be obtained. As a result, the positional relationship between the suction pipe 13 and the straightening vane 160 can be simply processed by adding holes to the configuration of the existing compressor without changing, for example, shifting up and down. Similarly to the above, the reduction of the refrigerant density can be suppressed, and the efficiency of the compressor can be improved.
 以上述べたように、本開示は、電動機に対する冷却性能を確保しつつ、仕切板において吸入された冷媒が加熱されることによる、圧縮効率の低下を防ぐことができる。従って、効率の高いスクロール圧縮機を提供することができる。よって、給湯機、温水暖房装置、空気調和装置等の冷凍サイクル装置の圧縮機として幅広く適用することができる。 As described above, according to the present disclosure, it is possible to prevent a decrease in compression efficiency due to the refrigerant sucked in at the partition plate being heated, while securing the cooling performance for the motor. Thus, a scroll compressor with high efficiency can be provided. Therefore, it can be widely applied as a compressor of a refrigeration cycle apparatus such as a water heater, a hot water heater, an air conditioner, and the like.
  1 圧縮機
 10 密閉容器
 11 高圧空間
 12 低圧空間
 13 冷媒吸入管(吸入管)
 13a 密閉容器内側開口部(開口部)
 14 冷媒吐出管(吐出管)
 16 副軸受
 17a バランスウェイト
 17b バランスウェイト
 20 仕切板
 21 第2吐出ポート
 22 突出部
 30 固定スクロール
 30H 吐出空間
 30M 中圧空間
 31 固定スクロール端板
 32 固定渦巻きラップ
 32a 始端
 32b 中間部
 32c 終端
 33 周壁
 34a フランジ
 34b フランジ
 35 第1吐出ポート
 36 バイパスポート
 37 中圧ポート
 38 吸入部
 39 上方ボス部
 40 旋回スクロール
 42 旋回渦巻きラップ
 42a 始端
 42b 終端
 43 下方ボス部
 50 圧縮室
 60 主軸受
 61 軸受部
 62 ボス収容部
 63 返送経路
 70 回転軸
 71 偏心軸
 72 油路
 73 吸込口
 74 パドル
 75 給油口
 76 給油口
 77 給油口
 80 電動機
 81 ステータ
 82 ロータ
 90 自転抑制部材(オルダムリング)
 91 キー溝
 92 キー溝
 93 第1のキー
 94 キー
 100 柱状部材
 101 スクロール側孔部
 102 軸受側孔部
 121 バイパス逆止弁
 122 バイパス逆止弁ストップ
 131 吐出逆止弁
 132 吐出逆止弁ストップ
 141 シール部材
 142 シール部材
 150 閉塞部材
 151 リング状部
 152 突出部
 160 整流板
 160a 孔部
 170 圧縮機構部
 221 孔部
1 compressor 10 sealed container 11 high pressure space 12 low pressure space 13 refrigerant suction pipe (suction pipe)
13a Sealed container inner opening (opening)
14 refrigerant discharge pipe (discharge pipe)
16 secondary bearing 17a balance weight 17b balance weight 20 partition plate 21 second discharge port 22 protrusion 30 fixed scroll 30H discharge space 30M medium pressure space 31 fixed scroll end plate 32 fixed scroll wrap 32a start end 32b middle part 32c end 33 peripheral wall 34a flange 34b Flange 35 first discharge port 36 bypass port 37 medium pressure port 38 suction portion 39 upper boss portion 40 orbiting scroll 42 orbiting scroll wrap 42a start end 42b end 43 lower boss portion 50 compression chamber 60 main bearing 61 bearing portion 62 boss housing portion 63 Return path 70 Rotating shaft 71 Eccentric shaft 72 Oil passage 73 Suction port 74 Paddle 75 Fuel port 76 Fuel port 80 Motor port 81 Motor 82 Stator 82 Rotor 90 Rotation suppressing member (Oldham ring)
91 key groove 92 key groove 93 first key 94 key 100 columnar member 101 scroll side hole 102 bearing side hole 121 bypass check valve 122 bypass check valve stop 131 discharge check valve 132 discharge check valve stop 141 seal Member 142 Sealing member 150 Closing member 151 Ring-shaped portion 152 Protruding portion 160 Flow straightening plate 160a Hole portion 170 Compression mechanism portion 221 Hole portion

Claims (7)

  1. 密閉容器と、
    前記密閉容器内を高圧空間及び低圧空間に区画する仕切板と、
    前記仕切板に隣接する固定スクロールと、
    前記固定スクロールに噛み合わされて、前記固定スクロールとともに圧縮室を形成する旋回スクロールと、
    前記旋回スクロールを駆動する電動機と、
    前記旋回スクロールの自転を防止する自転抑制部材と、
    前記旋回スクロールを支持する主軸受と、
    前記低圧空間に向けて開口する開口部を有する吸入管と、
    前記吸入管から前記密閉容器内に吸入された冷媒を分流する整流板と、を有し、
    前記固定スクロール、前記旋回スクロール及び前記自転抑制部材を含む圧縮機構部、前記電動機、前記整流板並びに前記主軸受が、前記低圧空間に配置され、
    前記固定スクロール及び前記旋回スクロールが、前記仕切板と前記主軸受との間に配置された、スクロール圧縮機であって、
    前記整流板は、前記吸入管から吸入された前記冷媒の一部が、前記整流板に衝突することなく前記圧縮機構部側に流れ、前記吸入管から吸入された前記冷媒の残りが、前記整流板に衝突して前記電動機側に分流されるように構成された、
    スクロール圧縮機。
    A closed container,
    A partition plate which divides the inside of the closed container into a high pressure space and a low pressure space;
    A stationary scroll adjacent to the divider;
    An orbiting scroll engaged with the fixed scroll to form a compression chamber with the fixed scroll;
    An electric motor for driving the orbiting scroll;
    A rotation suppressing member that prevents rotation of the orbiting scroll;
    A main bearing supporting the orbiting scroll;
    A suction pipe having an opening opening to the low pressure space;
    A rectifying plate for diverting the refrigerant drawn into the closed container from the suction pipe;
    The fixed scroll, a compression mechanism including the orbiting scroll and the rotation suppressing member, the electric motor, the straightening vane, and the main bearing are disposed in the low pressure space,
    The scroll compressor, wherein the fixed scroll and the orbiting scroll are disposed between the partition plate and the main bearing,
    In the flow straightening plate, a part of the refrigerant sucked from the suction pipe flows to the compression mechanism side without colliding with the flow straightening plate, and the remaining flow of the refrigerant sucked from the suction pipe is the flow straightening It is configured to collide with a plate and be diverted to the motor side,
    Scroll compressor.
  2. 前記圧縮機構部は、前記吸入管から吸入された前記冷媒の少なくとも一部が吸入される吸入部を有し、
    前記開口部の開口面積をA、前記吸入管の軸中心方向から見たときの前記開口部の開口と前記整流板との重複部分の面積をBとすると、A>Bであり、かつ、前記重複部分は、前記整流板における前記吸入部側に位置する、
    請求項1に記載のスクロール圧縮機。
    The compression mechanism portion has a suction portion to which at least a part of the refrigerant sucked from the suction pipe is sucked,
    Assuming that the opening area of the opening is A, and the area of the overlapping portion of the opening of the opening and the straightening vane when viewed from the axial center direction of the suction pipe is B, A> B, and The overlapping portion is located on the suction unit side of the straightening vane,
    The scroll compressor according to claim 1.
  3. 前記整流板における前記重複部分に孔部が設けられた、
    請求項2に記載のスクロール圧縮機。
    A hole is provided in the overlapping portion of the straightening vane,
    The scroll compressor according to claim 2.
  4. 前記整流板は、前記吸入管の軸中心方向から見たときの前記開口部の左右部分を覆うように設けられた、
    請求項2又は請求項3に記載のスクロール圧縮機。
    The straightening vanes are provided to cover left and right portions of the opening when viewed from the axial center direction of the suction pipe.
    The scroll compressor according to claim 2 or claim 3.
  5. 前記吸入管は、前記吸入管の軸中心方向から見たときに、前記開口部の開口の少なくとも一部が、前記吸入部と重複するように構成された、
    請求項2~4のいずれか一項に記載のスクロール圧縮機。
    The suction pipe is configured such that at least a part of the opening of the opening overlaps with the suction portion when viewed from the axial center direction of the suction pipe.
    The scroll compressor according to any one of claims 2 to 4.
  6. 前記開口部の直径をdとすると、前記吸入管と前記整流板との距離は、d/2より大きくdより小さい、
    請求項2~4のいずれか一項に記載のスクロール圧縮機。
    Assuming that the diameter of the opening is d, the distance between the suction pipe and the straightening vane is greater than d / 2 and less than d.
    The scroll compressor according to any one of claims 2 to 4.
  7. 前記重複部分の面積Bは、前記開口部の開口面積Aの30%より大きく70%より小さい、
    請求項2~6のいずれか一項に記載のスクロール圧縮機。
    The area B of the overlapping portion is more than 30% and less than 70% of the opening area A of the opening,
    The scroll compressor according to any one of claims 2 to 6.
PCT/JP2018/027885 2017-07-27 2018-07-25 Scroll compressor WO2019022134A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019532832A JP7022902B2 (en) 2017-07-27 2018-07-25 Scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017145075 2017-07-27
JP2017-145075 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019022134A1 true WO2019022134A1 (en) 2019-01-31

Family

ID=65039721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027885 WO2019022134A1 (en) 2017-07-27 2018-07-25 Scroll compressor

Country Status (2)

Country Link
JP (1) JP7022902B2 (en)
WO (1) WO2019022134A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114294222A (en) * 2021-12-08 2022-04-08 松下压缩机(大连)有限公司 Scroll compressor with air supplementing structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253090A (en) * 1993-12-13 1995-10-03 Carrier Corp Low-pressure side sealed type compressor
JP2001099080A (en) * 1999-09-29 2001-04-10 Mitsubishi Heavy Ind Ltd Closed scroll compressor
JP2004218536A (en) * 2003-01-15 2004-08-05 Mitsubishi Heavy Ind Ltd Electric compressor
JP2014066472A (en) * 2012-09-27 2014-04-17 Fujitsu General Ltd Air conditioning apparatus and compressor used for the same
WO2017002212A1 (en) * 2015-06-30 2017-01-05 三菱電機株式会社 Scroll compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253090A (en) * 1993-12-13 1995-10-03 Carrier Corp Low-pressure side sealed type compressor
JP2001099080A (en) * 1999-09-29 2001-04-10 Mitsubishi Heavy Ind Ltd Closed scroll compressor
JP2004218536A (en) * 2003-01-15 2004-08-05 Mitsubishi Heavy Ind Ltd Electric compressor
JP2014066472A (en) * 2012-09-27 2014-04-17 Fujitsu General Ltd Air conditioning apparatus and compressor used for the same
WO2017002212A1 (en) * 2015-06-30 2017-01-05 三菱電機株式会社 Scroll compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114294222A (en) * 2021-12-08 2022-04-08 松下压缩机(大连)有限公司 Scroll compressor with air supplementing structure

Also Published As

Publication number Publication date
JP7022902B2 (en) 2022-02-21
JPWO2019022134A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP6344574B2 (en) Scroll compressor
KR101473348B1 (en) Compressor having a shutdown valve
JPS6037320B2 (en) Scroll compressor
JP6555543B2 (en) Scroll compressor
CN113994098B (en) Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
JP6507557B2 (en) Compressor
JP6757898B2 (en) Scroll compressor
WO2016189801A1 (en) Cylinder-rotation-type compressor
JP6934612B2 (en) Scroll compressor
WO2019022134A1 (en) Scroll compressor
KR102182170B1 (en) Scroll compressor
KR102566589B1 (en) Scroll compressor
US11231035B2 (en) Scroll compressor
JP7262010B2 (en) scroll compressor
JP6767640B2 (en) Scroll compressor
JP5493958B2 (en) Compressor
JP2019138234A (en) Compressor
US20240328418A1 (en) Scroll compressor
US20230407866A1 (en) Scroll compressor
JP7223929B2 (en) scroll compressor
JPWO2018021058A1 (en) Scroll compressor
JP2022152796A (en) scroll compressor
JP2023178771A (en) Scroll-type electric compressor
US20190203714A1 (en) Rotary cylinder type compressor
KR20240014320A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838394

Country of ref document: EP

Kind code of ref document: A1