[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019021637A1 - Method for producing metal bonded laminate - Google Patents

Method for producing metal bonded laminate Download PDF

Info

Publication number
WO2019021637A1
WO2019021637A1 PCT/JP2018/021411 JP2018021411W WO2019021637A1 WO 2019021637 A1 WO2019021637 A1 WO 2019021637A1 JP 2018021411 W JP2018021411 W JP 2018021411W WO 2019021637 A1 WO2019021637 A1 WO 2019021637A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonded
bonding
metal
bonding composition
silver
Prior art date
Application number
PCT/JP2018/021411
Other languages
French (fr)
Japanese (ja)
Inventor
智文 渡辺
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2018530164A priority Critical patent/JP6467114B1/en
Publication of WO2019021637A1 publication Critical patent/WO2019021637A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Definitions

  • the present invention relates to a method of manufacturing a metal bonded laminate.
  • a bonding material such as a solder, a conductive adhesive, a silver paste, an anisotropic conductive film or the like is used for mechanical, electrical and / or thermal bonding of metal parts.
  • These bonding materials may be used not only for metal parts but also for bonding ceramic parts, resin parts and the like.
  • applications of the bonding material include applications in which a light emitting element such as an LED is bonded to a substrate, applications in which a semiconductor chip is bonded to a substrate, and applications in which those substrates are further bonded to a heat dissipation member.
  • Patent Document 1 relates to a bonding material and a bonding method using the same, which is a bonding material comprising silver paste in which silver fine particles and a solvent are mixed, wherein the solvent is a diol and has one or more methyl groups as an additive.
  • a mixture of triols is disclosed.
  • the present inventor has researched and developed a bonding composition containing silver particles in order to use a silver particle sintered layer as a bonding material. And, it has been found that by blending an organic component such as a dispersion medium in the composition for bonding, it is possible to secure good coating properties (printability) and pot life (use time) of the composition for bonding. There is room for improvement in that voids and peeling are likely to occur at the time of firing to sinter the particles, and a desired bonding strength can not be obtained.
  • This invention is made in view of the said present condition, and it aims at providing the manufacturing method of the metal-joining layered product which can obtain high junction intensity, securing the good handling nature of the composition for junctions. .
  • the present inventor variously studied a method for producing a metal-bonded laminate capable of obtaining high bonding strength while securing good handleability of the bonding composition, and focused on the organic component contained in the bonding composition. . Then, as a result of intensive investigations, the inventor of the present invention maintains the content of the organic component at 4% by mass or more before pressing the second bonded body on the bonding composition applied to the first bonded body. Thus, the porosity (void fraction) in the silver particle sintered layer is suppressed, while securing the coatability (printability) and pot life (pot life) of the bonding composition by performing the heat drying treatment, The inventors have found that high bonding strength can be obtained and completed the present invention.
  • the method for producing a metal-bonded laminate according to the present invention is a method for producing a metal-bonded laminate in which a first bonded body and a second bonded body are bonded by a silver particle sintered layer, A step (1) of applying a bonding composition containing silver particles and an organic component to the material to be bonded, a step (2) of heating and drying the applied bonding composition, and the heat-dried bonding Including the step (3) of pressing the second body to be bonded to the second composition and the step (4) of heating and sintering the bonding composition to form the silver particle sintered layer
  • the content of the organic component in the bonding composition heat-dried in the step (2) is 4% by mass or more.
  • the porosity of the silver particle sintered layer is preferably 20% by volume or less.
  • the second object to be bonded is preferably pressed with a load of 1 MPa or less.
  • the first object to be joined and the second object to be joined are joined under no pressure.
  • the manufacturing method of the metal-joining laminated body from which high joint strength is obtained can be provided, ensuring the favorable handleability of the composition for joining.
  • the method of manufacturing a metal-bonded laminate according to the present embodiment is a method of manufacturing a metal-bonded laminate in which a first bonded body and a second bonded body are bonded by a silver particle sintered layer, A step (1) of applying a bonding composition containing silver particles and an organic component to one object to be bonded, a step (2) of heating and drying the applied bonding composition, and the above-described heat-dried step Including the step (3) of pressing the second body to be bonded to the bonding composition, and the step (4) of heating and sintering the bonding composition to form the silver particle sintered layer.
  • the content of the organic component in the bonding composition heat-dried in the step (2) is 4% by mass or more.
  • the metal bonded laminate manufactured in the present embodiment is obtained by bonding a first bonded body and a second bonded body by a silver particle sintered layer.
  • the types of the first and second objects to be joined are not particularly limited, but it is preferably a member having heat resistance not to be damaged by the temperature at the time of heat sintering of the bonding composition, and rigid Or flexible. Further, from the viewpoint of obtaining high bonding strength, it is preferable that the bonding surface of the first body and the second body be formed of a metal such as Cu, Ag, Au or the like.
  • the shape and thickness of a 1st to-be-joined body and a 2nd to-be-joined body are not specifically limited, It can select suitably.
  • first to-be-bonded body and / or the second to-be-bonded body may be subjected to surface treatment in order to enhance the adhesion with the silver particle sintered layer.
  • surface treatment include dry treatments such as corona treatment, plasma treatment, UV treatment and electron beam treatment, and a method of providing a primer layer and a conductive paste-receptive layer on an object to be bonded.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a power device which is an example of a metal bonding laminate.
  • the power semiconductor chip 11 has a main body made of Si, SiC, GaN or the like, and the lower surface thereof is plated with Au.
  • the bonding material 12 is a silver particle sintered layer obtained by firing a bonding composition containing silver particles and an organic component.
  • the copper-clad insulating substrate 13 has a Cu layer 13b plated with Ag on both sides of a base 13a made of silicon nitride or the like. In some cases, the Cu layer 13b is not plated with Ag.
  • a heat dissipating material 14 and a heat sink 15 are attached in order to release the heat generated in the power semiconductor chip 11. Arrows in FIG. 1 indicate heat release paths. Further, a wire bond 16 is attached to the upper portion of the power semiconductor chip 11 in order to supply power to the power semiconductor chip 11.
  • the bonding material 12 composed of the silver particle sintered layer can strongly bond the power semiconductor chip 11 to the copper-clad insulating substrate 13 mechanically, electrically and thermally.
  • the silver particles are nanometer-sized particles, they can be sintered at low temperatures due to the melting point depression specific to the nanoparticles, and high conductivity and thermal conductivity close to those of metal foils can be realized.
  • bonding is performed by melting and solidifying the solder.
  • the bonding temperature of the bonding material 12 is the melting point of the solder, and the heat resistant temperature (usable temperature) of the bonding material 12 is lower than the melting temperature (the bonding temperature) of the solder.
  • long-term reliability means that the mechanical properties and the like of the joined body are maintained for a long time, and for example, it is difficult to reduce the mechanical properties and the like of the joined body even by applying a large number of heat cycles. means.
  • the silver particle sintered layer is formed through the steps (1) to (4) using the bonding composition as a raw material.
  • the bonding composition used in the step (1) will be described.
  • composition for bonding is not particularly limited as long as it contains silver particles and an organic component, but is preferably in a paste form so as to be easily applied.
  • metals whose ionization sequence is nobler than hydrogen that is, particles of gold, copper, platinum, palladium, etc. may be used in combination to make migration difficult to occur.
  • the average particle diameter of the silver particles is preferably 1 to 20 ⁇ m.
  • silver particles having an average particle diameter of 1 to 20 ⁇ m volume shrinkage due to sintering can be reduced, and a homogeneous and dense bonding material 12 can be obtained.
  • small particles having an average particle size of less than 1 ⁇ m are used, sintering proceeds at a low temperature, but when sintering between particles proceeds, the volume shrinkage increases with the increase of the average particle diameter, and the volume shrinkage of the workpiece May not be able to follow In such a case, defects such as voids occur in the bonding material 12 and the bonding strength and reliability of the bonding material 12 are reduced.
  • particles having an average particle diameter of greater than 20 ⁇ m are used, sintering at a low temperature hardly progresses, and large gaps formed between particles may remain even after sintering.
  • the average particle size of the silver particles can be measured by Dynamic Light Scattering, small-angle X-ray scattering, or wide-angle X-ray diffraction.
  • the "average particle diameter" refers to the dispersion median diameter.
  • As another method of measuring the average particle diameter there is a method of calculating an arithmetic average value of the particle diameter of about 50 to 100 particles from a photograph taken using a scanning electron microscope or a transmission electron microscope. It can be mentioned.
  • the above-mentioned composition for junction may contain metal fine particles smaller in diameter than silver particles.
  • the metal fine particles may be separated from the silver particles and dispersed in the bonding composition, or may be attached to at least a part of the surface of the silver particles.
  • Such metals include, for example, gold, silver, copper, nickel, bismuth, tin, iron and platinum group elements (ruthenium, rhodium, palladium, osmium, iridium and platinum). Among them, gold, silver, copper and platinum are preferable, and silver is more preferable. These metals may be used alone or in combination of two or more.
  • the average particle diameter of the metal fine particles is not particularly limited as long as the effects of the present invention are not impaired. However, it is preferable that the metal fine particles have a nanometer size causing melting point depression, and is 1 to 100 nm. Is more preferred. If the average particle diameter of the metal fine particles is 1 nm or more, a bonding composition capable of forming a favorable bonding material 12 can be obtained, and the production of the metal fine particles is practical without increasing the cost. Moreover, if it is 100 nm or less, the dispersibility of the metal fine particles hardly changes with time, which is preferable.
  • the organic component is not particularly limited, and is used for the purpose of adjusting the dispersibility of silver particles, the viscosity of the bonding composition, the adhesiveness, the drying property, the surface tension and the coating property (printability) other than the dispersion medium. Additives are used.
  • dispersion medium examples include organic solvents such as hydrocarbons, alcohols, and carbitols.
  • the dispersion medium is preferably volatile during the step of applying the bonding composition, and is preferably less volatile at room temperature.
  • hydrocarbon an aliphatic hydrocarbon, cyclic hydrocarbon, an alicyclic hydrocarbon etc. are mentioned, You may use each independently and may use 2 or more types together.
  • aliphatic hydrocarbon examples include saturated or unsaturated aliphatic carbonized hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, isoparaffin, etc. Hydrogen is mentioned.
  • cyclic hydrocarbon toluene, xylene etc. are mentioned, for example.
  • Examples of the above-mentioned alicyclic hydrocarbon include limonene, dipentene, terpinene, terpinene (also referred to as terpinene), nesol, sinene, orange flavor, terpinolene, terpinolene (also referred to as terpinolene), ferandrene, mentadiene, tereben, dihydro
  • Examples thereof include simen, musulene, isoterpinene, isoterpinene (also referred to as isoterpinene), clitormen, kautuzin, kajepten, eulimen, pinene, turpent, mentane, pinan, terpene, cyclohexane and the like.
  • the alcohol is a compound containing one or more OH groups in the molecular structure, and includes aliphatic alcohols, cyclic alcohols and alicyclic alcohols, which may be used alone or in combination of two or more. Good.
  • a part of the OH group may be derived to an acetoxy group or the like within the range not impairing the effects of the present invention.
  • Examples of the above aliphatic alcohols include heptanol, octanol (1-octanol, 2-octanol, 3-octanol etc.), decanol (1-decanol etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, 2-ethyl-1 -Saturated or unsaturated C6-30 aliphatic alcohols such as hexanol, octadecyl alcohol, hexadecenol, oleyl alcohol etc. may be mentioned.
  • Examples of the cyclic alcohol include cresol and eugenol.
  • alicyclic alcohol for example, cycloalkanol such as cyclohexanol, terpineol (including ⁇ , ⁇ , ⁇ isomers or any mixture thereof), and terpene alcohol such as dihydroterpineol (monoterpene alcohol etc.) And dihydroterpineol, myrtenol, sobrerole, menthol, carveol, perillyl alcohol, pinocarbeole, sobrerol, verbenol and the like.
  • cycloalkanol such as cyclohexanol, terpineol (including ⁇ , ⁇ , ⁇ isomers or any mixture thereof)
  • terpene alcohol such as dihydroterpineol (monoterpene alcohol etc.)
  • dihydroterpineol myrtenol, sobrerole, menthol, carveol, perillyl alcohol, pinocarbeole, sobrerol, verbenol and
  • carbitols examples include butyl carbitol, butyl carbitol acetate, hexyl carbitol and the like.
  • the initial content in the case of including the dispersion medium in the composition for bonding may be adjusted according to desired characteristics such as viscosity, and the initial content of the dispersion medium in the composition for bonding is 1 to 30% by mass Is preferred.
  • the initial content of the dispersion medium is 1 to 30% by mass, the effect of adjusting the viscosity can be obtained within the range in which the composition for bonding can be easily used.
  • a more preferable initial content of the dispersion medium is 1 to 20% by mass, and a further preferable initial content is 4 to 15% by mass.
  • an amine, carboxylic acid, a polymer dispersing agent, unsaturated hydrocarbon etc. are mentioned, for example.
  • Amines and carboxylic acids contribute to the stability of silver particles in a storage state, because the functional group adsorbs to the surface of silver particles with appropriate strength and prevents the silver particles from contacting each other. It is believed that the additive adsorbed on the surface of the silver particles moves and / or volatilizes from the surface of the particles during heating, thereby promoting fusion between the silver particles and bonding with the substrate.
  • the polymer dispersant can maintain dispersion stability without losing the low-temperature sinterability of silver particles by attaching an appropriate amount to at least a part of silver particles.
  • An organic component adheres to at least a part of the surface of the silver particle (that is, at least a part of the surface of the silver particle is covered with an organic protective layer composed of the organic component), and an organic component (organic compound)
  • the protective layer preferably contains an amine.
  • an organic protective layer be provided on at least a part of the surface of the metal particles.
  • the amine can be suitably used as an organic protective layer because the functional group is adsorbed on the surface of silver particles with an appropriate strength.
  • the above-mentioned amine is not particularly limited, and examples thereof include alkylamines (linear alkylamines, which may have a side chain) such as oleylamine, butylamine, pentylamine, hexylamine and hexylamine, and N- (3- (Methoxypropyl) propane-1,3-diamines, alkoxyamines such as 2-methoxyethylamine, 3-methoxypropylamine, 3-ethoxypropylamine etc., cycloalkylamines such as cyclopentylamine, cyclohexylamine etc., allylamines such as aniline etc.
  • alkylamines linear alkylamines, which may have a side chain
  • alkylamines linear alkylamines, which may have a side chain
  • alkoxyamines such as 2-methoxyethylamine, 3-methoxypropylamine, 3-ethoxypropylamine etc.
  • Primary amines such as dipropylamine, dibutylamine, piperidine and hexamethyleneimine, tripropylamine, dimethylpropanediamine, cyclohexyldimethylamine, tertiary amines such as pyridine and quinoline, octylamine, etc.
  • Can be carbon atoms include units of the order of 2 to 20, preferably carbon atoms used 4-7 amine.
  • the amine having 4 to 7 carbon atoms heptylamine, butylamine, pentylamine and hexylamine can be exemplified. Since the amine having 4 to 7 carbon atoms moves and / or volatilizes at relatively low temperature, the low temperature sinterability of silver particles can be fully utilized.
  • the amine may be linear, branched, or have a side chain.
  • organic components when these organic components are chemically or physically bonded to silver particles, it is also considered to be converted into anions or cations, and in this embodiment, ions derived from these organic components are considered. And complexes are also included in the above organic components.
  • the amine may be, for example, a compound containing a functional group other than an amine, such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group or a mercapto group.
  • a functional group other than an amine such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group or a mercapto group.
  • the above amines may be used alone or in combination of two or more.
  • the boiling point at normal temperature is preferably 300 ° C. or less, more preferably 250 ° C. or less.
  • the compound which has an at least 1 carboxyl group can be used widely, for example, a formic acid, an oxalic acid, an acetic acid, a hexanoic acid, an acrylic acid, an octylic acid, levulinic acid, an oleic acid etc. are mentioned.
  • a part of carboxyl groups of the carboxylic acid may form a salt with the metal ion.
  • 2 or more types of metal ions may be contained.
  • the carboxylic acid may be, for example, a compound containing a functional group other than a carboxyl group, such as an amino group, a hydroxyl group, an alkoxy group, a carbonyl group, an ester group or a mercapto group.
  • the number of carboxyl groups is preferably equal to or greater than the number of functional groups other than carboxyl groups.
  • the carboxylic acids may be used alone or in combination of two or more.
  • the boiling point at normal temperature is preferably 300 ° C. or less, more preferably 250 ° C. or less.
  • the amine and the carboxylic acid form an amide group.
  • An amide group may be contained in the organic component because the amide group is also appropriately adsorbed on the surface of silver particles.
  • composition ratio (mass) in the case of using an amine and a carboxylic acid in combination can be optionally selected in the range of 1/99 to 99/1, but is preferably 20/80 to 98/2. Preferably, it is 30/70 to 97/3.
  • a commercially available polymer dispersant can be used as the above-mentioned polymer dispersant.
  • Commercially available polymer dispersants include, for example, Solsperse (SOLSPERSE) 11200, Solsparse 13940, Solsparse 16000, Solsparse 17000, Solsparse 18000, Solsparse 20000, Solsparse 24000, Solsparse 26000, Solsparse 27000, Solsparse 28000 (Japan Lubrizol, Inc.
  • DISPERVIK (DISPERBYK) 142, DISPERVIK 160, DISPERVIK 161, DISPERVIK 162, DISPERVIK 163, DISPERVIK 166, DISPERVIK 170, DISPERVIK 180, DISPERVIK 182, DISPERVIK 184, DISPERVIK 190, Disperbic 2155 (above, Big Chemie Ja EFKA-46, EFKA-47, EFKA-48, EFKA-49 (all available from EFKA Chemical Corporation); polymer 100, polymer 120, polymer 150, polymer 400, polymer 401, polymer 401, polymer 402, polymer 403, Polymer 450, Polymer 451, Polymer 452, Polymer 453 (above, made by EFKA Chemical Co., Ltd.); Addisper PB711, Addisper PA 111, Addisper PB 811, Addisper PW911 (above, made by Ajinomoto Co., Ltd.); Floren DOPA
  • Solsparse 11200 From the viewpoint of low-temperature sinterability and dispersion stability, it is preferable to use Solsparse 11200, Solsparse 13940, Solsparse 16000, Solsparse 17000, Solsparse 18000, Solsparse 28000, Dispervic 142 or Dispervic 2155.
  • the content of the polymer dispersant is preferably 0.1 to 15% by mass.
  • the content of the polymer dispersant is 0.1% by mass or more, the dispersion stability of the obtained composition for bonding is improved, but when the content is too large, the bonding property is lowered.
  • the more preferable content of the polymer dispersant is 0.03 to 3% by mass, and the more preferable content is 0.05 to 2% by mass.
  • the silver particles can be obtained, for example, by mixing a metal ion source and a dispersing agent and reducing the mixture.
  • the amount of the organic component can be controlled by adjusting the amounts of the dispersant and the reducing agent to be added.
  • Examples of the unsaturated hydrocarbon include ethylene, acetylene, benzene, acetone, 1-hexene, 1-octene, 4-vinylcyclohexene, cyclohexanone, terpene alcohols, allyl alcohol, oleyl alcohol, 2-palmitoleic acid, and petroselinic acid. And oleic acid, elaidic acid, thianicic acid, ricinoleic acid, linoleic acid, linoleic acid, linolenic acid, arachidonic acid, acrylic acid, methacrylic acid, gallic acid, salicylic acid and the like.
  • unsaturated hydrocarbons having a hydroxyl group are preferably used.
  • the hydroxyl group is easily coordinated to the surface of the silver particle, and aggregation of the silver particle can be suppressed.
  • the unsaturated hydrocarbon having a hydroxyl group include terpene alcohols, allyl alcohol, oleyl alcohol, thianic acid, ricinoleic acid, gallic acid, salicylic acid and the like.
  • they are unsaturated fatty acids having a hydroxyl group, and examples thereof include thianic acid, ricinoleic acid, gallic acid, salicylic acid and the like.
  • Activators, thickeners, surface tension modifiers and the like may be included.
  • the resin component examples include polyester resins, polyurethane resins such as blocked isocyanate, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins, terpene resins, etc. These may be used alone or in combination of two or more.
  • organic solvent except for those mentioned above as the dispersion medium, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, 2-propyl alcohol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,2,6-hexanetriol, 1-ethoxy-2-propanol, 2-butoxyethanol, ethylene glycol, diethylene glycol, triethylene glycol, weight average molecular weight in the range of 200 to 1,000 Polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol having a weight average molecular weight in the range of 300 to 1,000, N, N-dimethylformamide, dimethyl sulfoxide, - methyl-2-pyrrolidone, N, N- dimethylacetamide, glycerin, acetone and the like may be used each of which alone or in combination of two or more.
  • the thickener examples include clay minerals such as clay, bentonite and hectorite, polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins, emulsions such as blocked isocyanate, methyl cellulose, carboxymethyl cellulose and hydroxyethyl cellulose, There may be mentioned cellulose derivatives such as hydroxypropyl cellulose and hydroxypropyl methylcellulose, polysaccharides such as xanthan gum and guar gum, etc. These may be used alone or in combination of two or more.
  • the surfactant is not particularly limited, and any of anionic surfactants, cationic surfactants, and nonionic surfactants can be used, and examples thereof include alkyl benzene sulfonates, quaternary ammonium salts and the like. Be Fluorine-based surfactants are preferred because the effect can be obtained with a small amount of addition.
  • the initial content of the organic component in the bonding composition used in the method for producing a metal-bonded laminate according to this embodiment is preferably 5 to 50% by mass. If the initial content is 5% by mass or more, the storage stability of the bonding composition tends to be improved, and if the initial content is 50% by mass or less, the conductivity of the bonding composition tends to be good. A more preferable initial content of the organic component is 5 to 30% by mass, and a further preferable initial content is 5 to 15% by mass.
  • the initial content of the organic component it is simple to adjust by heating. Moreover, you may carry out by adjusting the quantity of the organic component added at the time of producing silver particle, and may change the washing
  • the heating can be performed in an oven, an evaporator, or the like, and may be performed under reduced pressure. When carried out under normal pressure, it can be carried out in the atmosphere or in an inert atmosphere. Furthermore, the above-mentioned amine, carboxylic acid and the like can be added later to finely adjust the initial content of the organic component.
  • the organic component contained in the bonding composition and the amount thereof can be confirmed, for example, by measurement using TG-DTA / GC-MS manufactured by Rigaku Corporation.
  • the conditions for this measurement may be adjusted as appropriate, but for example, TG-DTA / GC-MS measurement is performed when a 10 mg sample is kept in the air up to room temperature to 550 ° C. (heating rate 10 ° C./min). It is good.
  • the composition for joining is apply
  • the term "application” is a concept that includes the case of applying the bonding composition in a planar manner and the case of applying (drawing) in a linear manner.
  • the shape of the coating film made of the bonding composition in the state of being applied and before firing by heating can be made into a desired shape. Therefore, the bonding material (silver particle sintered layer) 12 of the present embodiment after sintering by heating may be either planar or linear, and may be continuous on the first body to be bonded. It may be discontinuous.
  • Examples of the method for applying the bonding composition include screen printing (metal mask printing), dispenser method, pin transfer method, dipping, spray method, bar coating method, spin coating method, ink jet method, brush application method, It may be appropriately selected from a casting method, a flexo method, a gravure method, an offset method, a transfer method, a hydrophilic / hydrophobic pattern method, a syringe method and the like.
  • the viscosity of the bonding composition is, for example, preferably in the range of 0.01 to 5000 Pa ⁇ S, more preferably in the range of 0.1 to 1000 Pa ⁇ S, and still more preferably in the range of 1 to 100 Pa ⁇ S.
  • a wide method can be applied as a method of apply
  • the viscosity can be adjusted by adjusting the particle size of silver particles, adjusting the content of the organic component, adjusting the compounding ratio of each component, adding a thickener, and the like.
  • the viscosity of the bonding composition can be measured, for example, by a cone and plate viscometer (for example, a rheometer MCR301 manufactured by Anton Paar Co., Ltd.).
  • Step (2) the applied bonding composition (coating film) is dried by heating.
  • the bonding composition applied to the first object to be joined has a large amount of organic component to secure the coatability (printability) and the pot life (pot life).
  • the bonding composition is dried by heating in step (2) to reduce the content of the organic component in the bonding composition in advance. At this time, if the content of the organic component in the composition for bonding is too small, the second bonded body does not sufficiently adhere to the composition for bonding, so that voids and peeling occur.
  • the heating and drying (preliminary drying) in the step (2) is performed such that the content of the organic component in the heat-dried bonding composition is 4% by mass or more. Further, from the viewpoint of suppressing the generation of voids in the silver particle sintered layer to be generated, the content of the organic component in the heat-dried bonding composition is preferably 6% by mass or less.
  • the heating temperature (preliminary drying temperature) in the step (2) is preferably 25 ° C. or more and 100 ° C. or less. If it is less than 25 ° C., the dispersion medium in the bonding composition can not be volatilized efficiently. When the temperature exceeds 100 ° C., the dispersion medium can be sufficiently volatilized, but a part of the dispersant attached to the silver particles may also volatilize, and sintering may start, in which case the second object When the bonded body is pressed, it can not be brought into close contact, and bonding without pressure becomes difficult.
  • a more preferable lower limit of the predrying temperature is 50 ° C., and a further preferable lower limit is 60 ° C.
  • the organic component in the composition for joining after predrying becomes a thing which does not substantially contain the organic component which has a boiling point below the maximum temperature of predrying.
  • the heating time in the said process (2) is not specifically limited, It is preferable to carry out until content of the organic component in the composition for joining does not change.
  • the method of heating and drying in the step (2) is not particularly limited, and, for example, a conventionally known oven can be used.
  • Step (3) the second workpiece is pressed against the heat-dried bonding composition.
  • the second object to be bonded is preferably pressed with a load of 1 MPa or less. When the pressing load exceeds 1 MPa, there is a concern that the second semiconductor object such as the power semiconductor chip 11 may be damaged (surface damage or cracking).
  • the pressing load is preferably 0.05 MPa or more. If the pressing load is less than 0.05 MPa, the adhesion is insufficient and there is a risk of peeling.
  • the method of pressing the second bonded body in the step (3) is not particularly limited, and various conventionally known methods can be applied. However, the heat-dried bonding composition (dried film) is used. The method of uniformly pressurizing is preferable.
  • the dispersion medium when pre-drying is performed after step (3), the dispersion medium can not be volatilized efficiently, so it takes only a longer time than when pre-drying is performed before step (3).
  • the dispersion medium In the state of being sandwiched between the first object and the second object, the dispersion medium is only volatilized from the side of the coating, so only the end of the coating starts to bond, and the inside of the coating is The organic component is likely to remain on the surface, resulting in void formation.
  • Step (4) the bonding composition is heated and sintered to form a silver particle sintered layer.
  • the dispersion medium is mainly volatilized among the organic components, and the dispersing agent and the like attached to the silver particles remain in the bonding composition, but the heating in the step (4) Most or all of the organic components in the bonding composition volatilize.
  • the bonding composition contains a binder component
  • the binder component is also sintered from the viewpoint of improving the strength of the bonding material and the bonding strength between members to be bonded.
  • the main purpose of the binder component may be to control firing conditions to remove all the binder component.
  • the silver particle sintered layer preferably has a small residual amount of the organic component from the viewpoint of obtaining high bonding strength and high reliability, and preferably contains substantially no organic component, but the effect of the present invention is not impaired. A portion of the organic component may remain in the range.
  • the content of the organic component in the silver particle sintered layer is preferably less than 1% by mass.
  • the silver particles are not only bonded together in the bonding composition by heating in the step (4), but also in the vicinity of the interface between the first and second materials to be bonded and the silver particle sintered layer.
  • the metal diffuses between adjacent layers. As a result, a strong bond is formed between the first bonding body and the silver particle sintered layer, and between the second bonding body and the silver particle sintered layer.
  • the said process (4) may join while pressurizing a 1st to-be-joined body and a 2nd to-be-joined body, a 1st to-be-joined body and a 2nd to-be-joined body It may be joined under no pressure. Bonding under no pressure is excellent in productivity because pressing and heating are not performed simultaneously.
  • the method of this embodiment is suitable when joining a 1st to-be-joined body and a 2nd to-be-joined body under pressure-free in a process (4).
  • the heating temperature in the step (4) is not particularly limited as long as it can form a silver particle sintered layer, but is preferably 200 to 300 ° C.
  • the heating temperature is 200 to 300 ° C.
  • organic components and the like can be removed by evaporation or decomposition while preventing damage to the first and second objects to be bonded, and high bonding strength can be obtained.
  • temperature may be raised or lowered stepwise, and it is preferable to raise temperature from room temperature.
  • the heating time in the step (4) is not particularly limited, and may be adjusted according to the heating temperature so that the bonding strength can be sufficiently obtained.
  • the method of heating in step (4) is not particularly limited, and, for example, a conventionally known oven can be used.
  • the silver particle sintered layer is preferably a dense sintered body from the viewpoint of obtaining a mechanically, electrically and thermally strong bonding state, and specifically, the porosity of the silver particle sintered layer Is preferably 20% by volume or less. According to the method for producing a metal-bonded laminate of this embodiment, a silver particle sintered layer having a porosity of 5 to 20% by volume can be easily formed even when bonding is performed under no pressure.
  • the thickness of the silver particle sintered layer is, for example, 10 to 200 ⁇ m, preferably 20 to 100 ⁇ m.
  • the content of the organic component in the bonding composition is adjusted by the predrying in the step (2).
  • the adhesion of the bonding composition before firing to the bonded body can be improved, and a silver particle sintered layer (bonding material) having a low porosity and high bonding strength can be obtained.
  • the thickness of the silver particle sintered layer can be easily controlled by the thickness of the coating film.
  • Example 1 While sufficiently stirring 2.0 g of 3-methoxypropylamine with a magnetic stirrer, 3.0 g of silver oxalate was added to thicken the solution. The obtained viscous substance was placed in a constant temperature bath and allowed to react, and then 10 g of levulinic acid was added and further reacted to obtain a suspension. Next, in order to replace the dispersion medium of the suspension, methanol was added and stirred, and then silver particles coated on the surface with levulinic acid were precipitated and separated by centrifugation, and the supernatant was discarded. This operation was repeated once more.
  • the obtained bonding composition A was applied on a silver-plated copper plate (20 mm square) to a 11 mm square using a metal mask, and was put in an oven set at 70 ° C. as preliminary drying and dried for 3 minutes.
  • a gold-plated Si chip (bottom area 10 mm ⁇ 10 mm) was stacked on the dried bonding composition A, and pressed at 0.2 MPa.
  • the obtained laminate is placed in a reflow furnace (made by Shin-Apex), raised to a maximum temperature of 250 ° C. at a temperature rising rate of 3.8 ° C./min from room temperature in the air, and held for 60 minutes for firing
  • the treatment was performed to form a silver particle sintered layer.
  • no pressure was applied and no pressure was applied.
  • Metal bonding lamination in which a silver-plated copper plate (first bonded body) and a gold-plated Si chip (second bonded body) are bonded by a silver particle sintered layer by the formation of a silver particle sintered layer The body is complete.
  • Example 2 A metal-bonded laminate was produced in the same manner as in Example 1 except that the firing treatment was carried out under a nitrogen atmosphere and that a pure copper plate ultrasonically washed with dilute sulfuric acid was used instead of the silver-plated copper plate.
  • Example 3 Performed except that 0.2 g of hexyl carbitol was added instead of 0.05 g of tridecanol and 0.06 g of butyl carbitol acetate to obtain a bonding composition B, and the predrying time was changed to 15 minutes.
  • a metal-bonded laminate was produced in the same manner as in Example 1.
  • Example 4 A metal-bonded laminate was produced in the same manner as in Example 3 except that the firing treatment was carried out in a nitrogen atmosphere, and that a pure copper plate ultrasonically washed with dilute sulfuric acid was used instead of the silver-plated copper plate.
  • Example 5 A metal-bonded laminate was produced in the same manner as in Example 3 except that the maximum temperature in the firing treatment was set to 280 ° C.
  • Example 6 A metal-bonded laminate was produced in the same manner as in Example 3 except that the temperature and time in the preliminary drying were set to 100 ° C. for 5 minutes.
  • Example 7 A metal-bonded laminate was prepared in the same manner as in Example 3 except that 1.5 g of 3-ethoxypropylamine and 0.4 g of diglycolamine were added instead of 3-methoxypropylamine to obtain a bonding composition C. Made.
  • Example 8 A metal-bonded laminate was produced in the same manner as in Example 7 except that the firing treatment was carried out in a nitrogen atmosphere, and that a pure copper plate ultrasonically washed with dilute sulfuric acid was used instead of the silver-plated copper plate.
  • Comparative Example 2 A metal-bonded laminate was produced in the same manner as in Example 1 except that predrying was not performed.
  • Comparative Example 3 A metal-bonded laminate was produced in the same manner as in Example 3 except that predrying was not performed.
  • Comparative Example 4 A metal-bonded laminate was produced in the same manner as in Example 3 except that the temperature and time in the preliminary drying were set to 100 ° C. for 10 minutes.
  • Void Ratio The cross section was exposed by polishing the metallurgical laminate, and the cross section was observed with a scanning electron microscope. From the obtained electron micrograph, the porosity was calculated by dividing the area of the voids in the silver particle sintered layer by the entire area of the silver particle sintered layer. The void ratio of 20% or less was ⁇ , 21 to 30% was ⁇ , and 31% or more was x. Moreover, regardless of the value of the porosity, the thing in which the big space
  • Comparative Example 1 the content of the organic component in the composition for bonding D is small, and the content of the organic component in the composition for bonding after the preliminary drying is 3.2 mass%. Even if the pressed Si chip was pressed, it did not adhere sufficiently. For this reason, the porosity of the silver particle sintered layer was low, and high bonding strength was not obtained. Moreover, in Comparative Examples 2 and 3, since preliminary drying was not performed, many voids (voids) were generated in the silver particle sintered layer, and the bonding strength was low. Further, in Comparative Example 4, since the predrying temperature is high and the content of the organic component in the bonding composition after predrying is 3.5% by mass, the Si chip subjected to the gold plating is sufficiently pressed. It did not stick. For this reason, the porosity of the silver particle sintered layer was low, and high bonding strength was not obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Die Bonding (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

The present invention provides a method for producing a metal bonded laminate, which enables the achievement of high bonding strength, while ensuring good handling properties of a bonding composition. The present invention is a method for producing a metal bonded laminate where a first body to be bonded and a second body to be bonded are bonded to each other by means of a silver particle sintered layer; and this method comprises a step (1) wherein a bonding composition, which contains silver particles and an organic component, is applied to the first body to be bonded, a step (2) wherein the applied bonding composition is heated and dried, a step (3) wherein the second body to be bonded is pressed against the heated and dried bonding composition, and a step (4) wherein the bonding composition is sintered by means of heating, thereby forming the silver particle sintered layer. With respect to this method for producing a metal bonded laminate, the content of the organic component in the bonding composition that is heated and dried in the step (2) is 4% by mass or more.

Description

金属接合積層体の製造方法Method of manufacturing metal-bonded laminate
本発明は、金属接合積層体の製造方法に関する。 The present invention relates to a method of manufacturing a metal bonded laminate.
金属部品同士の機械的、電気的及び/又は熱的な接合のために、従来、半田、導電性接着剤、銀ペースト、異方導電性フィルム等の接合材が用いられている。これらの接合材は、金属部品だけでなく、セラミック部品、樹脂部品等の接合に用いられることもある。接合材の用途としては、例えば、LED等の発光素子を基板に接合する用途、半導体チップを基板に接合する用途、それらの基板を更に放熱部材に接合する用途等が挙げられる。 Conventionally, a bonding material such as a solder, a conductive adhesive, a silver paste, an anisotropic conductive film or the like is used for mechanical, electrical and / or thermal bonding of metal parts. These bonding materials may be used not only for metal parts but also for bonding ceramic parts, resin parts and the like. Examples of applications of the bonding material include applications in which a light emitting element such as an LED is bonded to a substrate, applications in which a semiconductor chip is bonded to a substrate, and applications in which those substrates are further bonded to a heat dissipation member.
特許文献1には、接合材及びそれを用いた接合方法に関し、銀微粒子と溶剤を混合した銀ペーストからなる接合材であって、溶剤がジオールであり、添加剤として1以上のメチル基を有するトリオールが混合されたものが開示されている。 Patent Document 1 relates to a bonding material and a bonding method using the same, which is a bonding material comprising silver paste in which silver fine particles and a solvent are mixed, wherein the solvent is a diol and has one or more methyl groups as an additive. A mixture of triols is disclosed.
特開2016-8332号公報JP, 2016-8332, A
本発明者は、接合材として銀粒子焼結層を用いるために、銀粒子を含有する接合用組成物について研究開発を行っている。そして、接合用組成物中に分散媒等の有機成分を配合することにより、接合用組成物の良好な塗布性(印刷性)やポットライフ(可使時間)を確保できることを見出したが、銀粒子を焼結させるための焼成時にボイドや剥離が発生しやすく、所望の接合強度が得られない点で改善の余地があった。 The present inventor has researched and developed a bonding composition containing silver particles in order to use a silver particle sintered layer as a bonding material. And, it has been found that by blending an organic component such as a dispersion medium in the composition for bonding, it is possible to secure good coating properties (printability) and pot life (use time) of the composition for bonding. There is room for improvement in that voids and peeling are likely to occur at the time of firing to sinter the particles, and a desired bonding strength can not be obtained.
本発明は、上記現状に鑑みてなされたものであり、接合用組成物の良好な取り扱い性を確保しつつ、高い接合強度が得られる金属接合積層体の製造方法を提供することを目的とする。 This invention is made in view of the said present condition, and it aims at providing the manufacturing method of the metal-joining layered product which can obtain high junction intensity, securing the good handling nature of the composition for junctions. .
本発明者は、接合用組成物の良好な取り扱い性を確保しつつ、高い接合強度が得られる金属接合積層体の製造方法について種々検討し、接合用組成物中に含まれる有機成分に着目した。そして、本発明者は、鋭意検討した結果、第一の被接合体に塗布した接合用組成物に第二の被接合体を押し付ける前に、有機成分の含有量が4質量%以上を維持するように加熱乾燥処理を行うことによって、接合用組成物の塗布性(印刷性)やポットライフ(可使時間)を確保しつつ、銀粒子焼結層における空隙率(ボイド率)を抑制し、高い接合強度が得られることを見出し、本発明を完成した。 The present inventor variously studied a method for producing a metal-bonded laminate capable of obtaining high bonding strength while securing good handleability of the bonding composition, and focused on the organic component contained in the bonding composition. . Then, as a result of intensive investigations, the inventor of the present invention maintains the content of the organic component at 4% by mass or more before pressing the second bonded body on the bonding composition applied to the first bonded body. Thus, the porosity (void fraction) in the silver particle sintered layer is suppressed, while securing the coatability (printability) and pot life (pot life) of the bonding composition by performing the heat drying treatment, The inventors have found that high bonding strength can be obtained and completed the present invention.
本発明の金属接合積層体の製造方法は、第一の被接合体と第二の被接合体とが銀粒子焼結層により接合された金属接合積層体の製造方法であって、上記第一の被接合体に、銀粒子及び有機成分を含有する接合用組成物を塗布する工程(1)と、塗布した上記接合用組成物を加熱乾燥する工程(2)と、加熱乾燥された上記接合用組成物に上記第二の被接合体を押し付ける工程(3)と、上記接合用組成物を加熱して焼結させ、上記銀粒子焼結層を形成する工程(4)とを含み、上記工程(2)で加熱乾燥された上記接合用組成物中の上記有機成分の含有量は4質量%以上であることを特徴とする。 The method for producing a metal-bonded laminate according to the present invention is a method for producing a metal-bonded laminate in which a first bonded body and a second bonded body are bonded by a silver particle sintered layer, A step (1) of applying a bonding composition containing silver particles and an organic component to the material to be bonded, a step (2) of heating and drying the applied bonding composition, and the heat-dried bonding Including the step (3) of pressing the second body to be bonded to the second composition and the step (4) of heating and sintering the bonding composition to form the silver particle sintered layer The content of the organic component in the bonding composition heat-dried in the step (2) is 4% by mass or more.
上記銀粒子焼結層の空隙率は、20体積%以下であることが好ましい。 The porosity of the silver particle sintered layer is preferably 20% by volume or less.
上記工程(2)では、25℃以上、100℃以下の温度で加熱乾燥することが好ましい。 It is preferable to heat-dry at the temperature of 25 degreeC or more and 100 degrees C or less in said process (2).
上記工程(3)では、上記第二の被接合体を1MPa以下の荷重で押し付けることが好ましい。 In the step (3), the second object to be bonded is preferably pressed with a load of 1 MPa or less.
上記工程(4)では、上記第一の被接合体と上記第二の被接合体とを無加圧下で接合することが好ましい。 In the step (4), preferably, the first object to be joined and the second object to be joined are joined under no pressure.
本発明によれば、接合用組成物の良好な取り扱い性を確保しつつ、高い接合強度が得られる金属接合積層体の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the metal-joining laminated body from which high joint strength is obtained can be provided, ensuring the favorable handleability of the composition for joining.
金属接合積層体の一例であるパワーデバイスの構成を示した断面模式図である。It is the cross-sectional schematic diagram which showed the structure of the power device which is an example of a metal joining laminated body.
本実施形態の金属接合積層体の製造方法は、第一の被接合体と第二の被接合体とが銀粒子焼結層により接合された金属接合積層体の製造方法であって、上記第一の被接合体に、銀粒子及び有機成分を含有する接合用組成物を塗布する工程(1)と、塗布した上記接合用組成物を加熱乾燥する工程(2)と、加熱乾燥された上記接合用組成物に上記第二の被接合体を押し付ける工程(3)と、上記接合用組成物を加熱して焼結させ、上記銀粒子焼結層を形成する工程(4)とを含み、上記工程(2)で加熱乾燥された上記接合用組成物中の上記有機成分の含有量は4質量%以上であることを特徴とする。 The method of manufacturing a metal-bonded laminate according to the present embodiment is a method of manufacturing a metal-bonded laminate in which a first bonded body and a second bonded body are bonded by a silver particle sintered layer, A step (1) of applying a bonding composition containing silver particles and an organic component to one object to be bonded, a step (2) of heating and drying the applied bonding composition, and the above-described heat-dried step Including the step (3) of pressing the second body to be bonded to the bonding composition, and the step (4) of heating and sintering the bonding composition to form the silver particle sintered layer. The content of the organic component in the bonding composition heat-dried in the step (2) is 4% by mass or more.
本実施形態において製造される金属接合積層体は、第一の被接合体と第二の被接合体とが銀粒子焼結層により接合されたものである。第一の被接合体及び第二の被接合体の種類は特に限定されないが、接合用組成物の加熱焼結時の温度により損傷しない程度の耐熱性を具備した部材であることが好ましく、リジッドであってもフレキシブルでもよい。また、高い接合強度を得る観点から、第一の被接合体及び第二の被接合体の接合面は、Cu、Ag、Au等の金属で構成されることが好ましい。また、第一の被接合体及び第二の被接合体の形状及び厚さは特に限定されず、適宜選択することができる。 The metal bonded laminate manufactured in the present embodiment is obtained by bonding a first bonded body and a second bonded body by a silver particle sintered layer. The types of the first and second objects to be joined are not particularly limited, but it is preferably a member having heat resistance not to be damaged by the temperature at the time of heat sintering of the bonding composition, and rigid Or flexible. Further, from the viewpoint of obtaining high bonding strength, it is preferable that the bonding surface of the first body and the second body be formed of a metal such as Cu, Ag, Au or the like. Moreover, the shape and thickness of a 1st to-be-joined body and a 2nd to-be-joined body are not specifically limited, It can select suitably.
また、第一の被接合体及び/又は第二の被接合体は、銀粒子焼結層との密着性を高めるために、表面処理が行われていてもよい。上記表面処理としては、例えば、コロナ処理、プラズマ処理、UV処理、電子線処理等のドライ処理や、被接合体上にプライマー層や導電性ペースト受容層を設ける方法等が挙げられる。 In addition, the first to-be-bonded body and / or the second to-be-bonded body may be subjected to surface treatment in order to enhance the adhesion with the silver particle sintered layer. Examples of the surface treatment include dry treatments such as corona treatment, plasma treatment, UV treatment and electron beam treatment, and a method of providing a primer layer and a conductive paste-receptive layer on an object to be bonded.
本実施形態において製造される金属接合積層体としては、例えば、電力用半導体素子(パワーデバイス)が挙げられる。図1は、金属接合積層体の一例であるパワーデバイスの構成を示した断面模式図である。図1に示したパワーデバイスは、パワー半導体チップ(第二の被接合体)11の下面と銅張絶縁基板(第一の被接合体)13の上面とが接合材12によって接合されている。パワー半導体チップ11は、Si、SiC、GaN等で本体が構成され、下面にはAuメッキが施されている。接合材12は、銀粒子及び有機成分を含有する接合用組成物を焼成することで得られる銀粒子焼結層である。銅張絶縁基板13は、窒化ケイ素等で構成された基材13aの両面に、Agメッキが施されたCu層13bを有するものである。Cu層13bにAgメッキが施されないこともある。 As a metal junction laminated body manufactured in this embodiment, the semiconductor element for electric power (power device) is mentioned, for example. FIG. 1 is a schematic cross-sectional view showing the configuration of a power device which is an example of a metal bonding laminate. In the power device shown in FIG. 1, the lower surface of the power semiconductor chip (second bonded body) 11 and the upper surface of the copper-clad insulating substrate (first bonded body) 13 are bonded by a bonding material 12. The power semiconductor chip 11 has a main body made of Si, SiC, GaN or the like, and the lower surface thereof is plated with Au. The bonding material 12 is a silver particle sintered layer obtained by firing a bonding composition containing silver particles and an organic component. The copper-clad insulating substrate 13 has a Cu layer 13b plated with Ag on both sides of a base 13a made of silicon nitride or the like. In some cases, the Cu layer 13b is not plated with Ag.
銅張絶縁基板13の下には、パワー半導体チップ11で発生した熱を放出させるために、放熱材14及びヒートシンク15が取り付けられる。図1中の矢印は、熱の放出経路を示している。また、パワー半導体チップ11の上部には、パワー半導体チップ11への電力供給のために、ワイヤーボンド16が取り付けられる。 Under the copper-clad insulating substrate 13, a heat dissipating material 14 and a heat sink 15 are attached in order to release the heat generated in the power semiconductor chip 11. Arrows in FIG. 1 indicate heat release paths. Further, a wire bond 16 is attached to the upper portion of the power semiconductor chip 11 in order to supply power to the power semiconductor chip 11.
上記銀粒子焼結層で構成される接合材12は、パワー半導体チップ11を銅張絶縁基板13に対し、機械的、電気的及び熱的に強固に接合することができる。銀粒子がナノメートルサイズの粒子である場合には、ナノ粒子特有の融点降下によって低温で焼結させることができ、かつ金属箔に近い高い導電性や熱伝導性を実現できる。一方、従来のように、接合材12として半田を用いる場合には、半田を融解した後、凝固させることによって接合が行われる。この場合、接合材12の接合温度は、半田の融点であり、接合材12の耐熱温度(使用可能温度)は、半田の融点(接合温度)よりも低くなる。このため、接合材12の耐熱温度を上げようとすると、接合温度も上がってしまう。パワーデバイスの開発においては、耐熱性や長期信頼性の向上が求められており、半田よりも高温での信頼性に優れた銀粒子焼結層が好適に用いられる。ここで、長期信頼性とは、接合体の機械的特性等が長期間維持されることを意味し、例えば、多数のヒートサイクルの印加によっても接合体の機械的特性等が低下し難いことを意味する。 The bonding material 12 composed of the silver particle sintered layer can strongly bond the power semiconductor chip 11 to the copper-clad insulating substrate 13 mechanically, electrically and thermally. When the silver particles are nanometer-sized particles, they can be sintered at low temperatures due to the melting point depression specific to the nanoparticles, and high conductivity and thermal conductivity close to those of metal foils can be realized. On the other hand, in the case where solder is used as the bonding material 12 as in the prior art, bonding is performed by melting and solidifying the solder. In this case, the bonding temperature of the bonding material 12 is the melting point of the solder, and the heat resistant temperature (usable temperature) of the bonding material 12 is lower than the melting temperature (the bonding temperature) of the solder. For this reason, if it is going to raise the heat-resistant temperature of the joining material 12, the joining temperature will also rise. In the development of power devices, improvement in heat resistance and long-term reliability is required, and a silver particle sintered layer having high reliability at a higher temperature than solder is preferably used. Here, long-term reliability means that the mechanical properties and the like of the joined body are maintained for a long time, and for example, it is difficult to reduce the mechanical properties and the like of the joined body even by applying a large number of heat cycles. means.
上記銀粒子焼結層は、接合用組成物を原料とし、上記工程(1)~(4)を経て形成される。まず、上記工程(1)に用いる接合用組成物から説明する。 The silver particle sintered layer is formed through the steps (1) to (4) using the bonding composition as a raw material. First, the bonding composition used in the step (1) will be described.
<接合用組成物>
上記接合用組成物は、銀粒子及び有機成分を含有するものであれば特に限定されないが、塗布しやすいようにペースト状であることが好ましい。また、マイグレーションを起こりにくくするために、銀粒子以外に、イオン化列が水素より貴である金属、すなわち金、銅、白金、パラジウム等の粒子が併用されてもよい。
<Composition for bonding>
The composition for bonding is not particularly limited as long as it contains silver particles and an organic component, but is preferably in a paste form so as to be easily applied. In addition to silver particles, metals whose ionization sequence is nobler than hydrogen, that is, particles of gold, copper, platinum, palladium, etc. may be used in combination to make migration difficult to occur.
上記銀粒子の平均粒径は1~20μmであることが好ましい。平均粒径が1~20μmの銀粒子を用いることで焼結による体積収縮を低減することができ、均質かつ緻密な接合材12を得ることができる。平均粒径が1μm未満の小さな粒子を用いると、低温で焼結が進行するが、粒子同士の焼結が進むと平均粒径の増加に伴い体積収縮が大きくなり、被接合体が当該体積収縮に追従できなくなるおそれがある。そのような場合には、接合材12にボイド等の欠陥が発生し、接合材12の接合強度及び信頼性が低下してしまう。一方、平均粒径が20μmより大きな粒子を用いると、低温での焼結は殆ど進行せず、粒子間に形成される大きな空隙が焼結後も残存してしまうおそれがある。 The average particle diameter of the silver particles is preferably 1 to 20 μm. By using silver particles having an average particle diameter of 1 to 20 μm, volume shrinkage due to sintering can be reduced, and a homogeneous and dense bonding material 12 can be obtained. When small particles having an average particle size of less than 1 μm are used, sintering proceeds at a low temperature, but when sintering between particles proceeds, the volume shrinkage increases with the increase of the average particle diameter, and the volume shrinkage of the workpiece May not be able to follow In such a case, defects such as voids occur in the bonding material 12 and the bonding strength and reliability of the bonding material 12 are reduced. On the other hand, when particles having an average particle diameter of greater than 20 μm are used, sintering at a low temperature hardly progresses, and large gaps formed between particles may remain even after sintering.
上記銀粒子の平均粒径は、動的光散乱法(Dynamic Light Scattering)、小角X線散乱法、広角X線回折法で測定することができる。本明細書中、「平均粒径」とは、分散メジアン径をいう。なお、平均粒径を測定するその他の手法としては、走査型電子顕微鏡や透過型電子顕微鏡を用いて撮影した写真から、50~100個程度の粒子の粒径の算術平均値を算出する方法が挙げられる。 The average particle size of the silver particles can be measured by Dynamic Light Scattering, small-angle X-ray scattering, or wide-angle X-ray diffraction. In the present specification, the "average particle diameter" refers to the dispersion median diameter. As another method of measuring the average particle diameter, there is a method of calculating an arithmetic average value of the particle diameter of about 50 to 100 particles from a photograph taken using a scanning electron microscope or a transmission electron microscope. It can be mentioned.
上記接合用組成物は、銀粒子よりも小径の金属微粒子を含有していてもよい。金属微粒子は、銀粒子とは分離して接合用組成物中に分散されていてもよいし、銀粒子の表面の少なくとも一部に付着していてもよい。かかる金属としては、例えば、金、銀、銅、ニッケル、ビスマス、スズ、鉄及び白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)が挙げられる。なかでも、金、銀、銅及び白金が好ましく、銀がより好ましい。これらの金属は単独で用いても、2種以上を併用して用いてもよい。 The above-mentioned composition for junction may contain metal fine particles smaller in diameter than silver particles. The metal fine particles may be separated from the silver particles and dispersed in the bonding composition, or may be attached to at least a part of the surface of the silver particles. Such metals include, for example, gold, silver, copper, nickel, bismuth, tin, iron and platinum group elements (ruthenium, rhodium, palladium, osmium, iridium and platinum). Among them, gold, silver, copper and platinum are preferable, and silver is more preferable. These metals may be used alone or in combination of two or more.
上記金属微粒子の平均粒径は、本発明の効果を損なわない範囲であれば特に制限されるものではないが、金属微粒子において融点降下が生じるナノメートルサイズであることが好ましく、1~100nmであることがより好ましい。金属微粒子の平均粒径が1nm以上であれば、良好な接合材12を形成可能な接合用組成物が得られ、かつ金属微粒子の製造がコスト高とならず実用的である。また、100nm以下であれば、金属微粒子の分散性が経時的に変化しにくく、好ましい。 The average particle diameter of the metal fine particles is not particularly limited as long as the effects of the present invention are not impaired. However, it is preferable that the metal fine particles have a nanometer size causing melting point depression, and is 1 to 100 nm. Is more preferred. If the average particle diameter of the metal fine particles is 1 nm or more, a bonding composition capable of forming a favorable bonding material 12 can be obtained, and the production of the metal fine particles is practical without increasing the cost. Moreover, if it is 100 nm or less, the dispersibility of the metal fine particles hardly changes with time, which is preferable.
上記有機成分としては特に限定されず、分散媒の他、銀粒子の分散性や、接合用組成物の粘性、密着性、乾燥性、表面張力、塗布性(印刷性)を調整する目的で用いられる添加物等が用いられる。 The organic component is not particularly limited, and is used for the purpose of adjusting the dispersibility of silver particles, the viscosity of the bonding composition, the adhesiveness, the drying property, the surface tension and the coating property (printability) other than the dispersion medium. Additives are used.
上記分散媒としては、例えば、炭化水素、アルコール、カルビトール類等の有機溶媒が挙げられる。分散媒は、接合用組成物を塗布する工程の間に揮発しくいものが好ましく、室温で揮発しにくいものが好ましい。 Examples of the dispersion medium include organic solvents such as hydrocarbons, alcohols, and carbitols. The dispersion medium is preferably volatile during the step of applying the bonding composition, and is preferably less volatile at room temperature.
上記炭化水素としては、脂肪族炭化水素、環状炭化水素、脂環式炭化水素等が挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。 As said hydrocarbon, an aliphatic hydrocarbon, cyclic hydrocarbon, an alicyclic hydrocarbon etc. are mentioned, You may use each independently and may use 2 or more types together.
上記脂肪族炭化水素としては、例えば、テトラデカン、オクタデカン、ヘプタメチルノナン、テトラメチルペンタデカン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、トリデカン、メチルペンタン、ノルマルパラフィン、イソパラフィン等の飽和又は不飽和脂肪族炭化水素が挙げられる。 Examples of the aliphatic hydrocarbon include saturated or unsaturated aliphatic carbonized hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, isoparaffin, etc. Hydrogen is mentioned.
上記環状炭化水素としては、例えば、トルエン、キシレン等が挙げられる。 As said cyclic hydrocarbon, toluene, xylene etc. are mentioned, for example.
上記脂環式炭化水素としては、例えば、リモネン、ジペンテン、テルピネン、ターピネン(テルピネンともいう。)、ネソール、シネン、オレンジフレーバー、テルピノレン、ターピノレン(テルピノレンともいう。)、フェランドレン、メンタジエン、テレベン、ジヒドロサイメン、モスレン、イソテルピネン、イソターピネン(イソテルピネンともいう。)、クリトメン、カウツシン、カジェプテン、オイリメン、ピネン、テレビン、メンタン、ピナン、テルペン、シクロヘキサン等が挙げられる。 Examples of the above-mentioned alicyclic hydrocarbon include limonene, dipentene, terpinene, terpinene (also referred to as terpinene), nesol, sinene, orange flavor, terpinolene, terpinolene (also referred to as terpinolene), ferandrene, mentadiene, tereben, dihydro Examples thereof include simen, musulene, isoterpinene, isoterpinene (also referred to as isoterpinene), clitormen, kautuzin, kajepten, eulimen, pinene, turpent, mentane, pinan, terpene, cyclohexane and the like.
上記アルコールは、OH基を分子構造中に1つ以上含む化合物であり、脂肪族アルコール、環状アルコール、脂環式アルコールが挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。また、OH基の一部は、本発明の効果を損なわない範囲でアセトキシ基等に誘導されていてもよい。 The alcohol is a compound containing one or more OH groups in the molecular structure, and includes aliphatic alcohols, cyclic alcohols and alicyclic alcohols, which may be used alone or in combination of two or more. Good. In addition, a part of the OH group may be derived to an acetoxy group or the like within the range not impairing the effects of the present invention.
上記脂肪族アルコールとしては、例えば、ヘプタノール、オクタノール(1-オクタノール、2-オクタノール、3-オクタノール等)、デカノール(1-デカノール等)、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、2-エチル-1-ヘキサノール、オクタデシルアルコール、ヘキサデセノール、オレイルアルコール等の飽和又は不飽和C6-30脂肪族アルコール等が挙げられる。 Examples of the above aliphatic alcohols include heptanol, octanol (1-octanol, 2-octanol, 3-octanol etc.), decanol (1-decanol etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, 2-ethyl-1 -Saturated or unsaturated C6-30 aliphatic alcohols such as hexanol, octadecyl alcohol, hexadecenol, oleyl alcohol etc. may be mentioned.
上記環状アルコールとしては、例えば、クレゾール、オイゲノール等が挙げられる。 Examples of the cyclic alcohol include cresol and eugenol.
上記脂環式アルコールとしては、例えば、シクロヘキサノール等のシクロアルカノール、テルピネオール(α、β、γ異性体、又はこれらの任意の混合物を含む。)、ジヒドロテルピネオール等のテルペンアルコール(モノテルペンアルコール等)、ジヒドロターピネオール、ミルテノール、ソブレロール、メントール、カルベオール、ペリリルアルコール、ピノカルベオール、ソブレロール、ベルベノール等が挙げられる。 As the above-mentioned alicyclic alcohol, for example, cycloalkanol such as cyclohexanol, terpineol (including α, β, γ isomers or any mixture thereof), and terpene alcohol such as dihydroterpineol (monoterpene alcohol etc.) And dihydroterpineol, myrtenol, sobrerole, menthol, carveol, perillyl alcohol, pinocarbeole, sobrerol, verbenol and the like.
上記カルビトール類としては、例えば、ブチルカルビトール、ブチルカルビトールアセテート、ヘキシルカルビトール等が挙げられる。 Examples of the carbitols include butyl carbitol, butyl carbitol acetate, hexyl carbitol and the like.
上記接合用組成物中に分散媒を含有させる場合の初期含有量は、粘度等の所望の特性によって調整すればよく、接合用組成物中の分散媒の初期含有量は、1~30質量%であることが好ましい。分散媒の初期含有量が1~30質量%であれば、接合用組成物として使いやすい範囲で粘度を調整する効果を得ることができる。分散媒のより好ましい初期含有量は1~20質量%であり、更に好ましい初期含有量は4~15質量%である。 The initial content in the case of including the dispersion medium in the composition for bonding may be adjusted according to desired characteristics such as viscosity, and the initial content of the dispersion medium in the composition for bonding is 1 to 30% by mass Is preferred. When the initial content of the dispersion medium is 1 to 30% by mass, the effect of adjusting the viscosity can be obtained within the range in which the composition for bonding can be easily used. A more preferable initial content of the dispersion medium is 1 to 20% by mass, and a further preferable initial content is 4 to 15% by mass.
上記銀粒子の分散性を向上させる添加物としては、例えば、アミン、カルボン酸、高分子分散剤、不飽和炭化水素等が挙げられる。アミンやカルボン酸は官能基が銀粒子の表面に適度の強さで吸着し、銀粒子の相互の接触を妨げるため、保管状態での銀粒子の安定性に寄与する。銀粒子の表面に吸着した添加物は加熱時に粒子の表面から移動及び/又は揮発することにより、銀粒子同士の融着及び基材との接合を促進すると考えられる。上記高分子分散剤は、銀粒子の少なくとも一部に適量付着させることで銀粒子の低温焼結性を失うことなく、分散安定性を保持することができる。 As an additive which improves the dispersibility of the said silver particle, an amine, carboxylic acid, a polymer dispersing agent, unsaturated hydrocarbon etc. are mentioned, for example. Amines and carboxylic acids contribute to the stability of silver particles in a storage state, because the functional group adsorbs to the surface of silver particles with appropriate strength and prevents the silver particles from contacting each other. It is believed that the additive adsorbed on the surface of the silver particles moves and / or volatilizes from the surface of the particles during heating, thereby promoting fusion between the silver particles and bonding with the substrate. The polymer dispersant can maintain dispersion stability without losing the low-temperature sinterability of silver particles by attaching an appropriate amount to at least a part of silver particles.
上記銀粒子の表面の少なくとも一部には有機成分が付着しており(すなわち、銀粒子の表面の少なくとも一部が有機成分で構成される有機保護層で被覆されており)、有機成分(有機保護層)はアミンを含むことが好ましい。融点降下能を示すナノメートルサイズの銀粒子を安定的に保管するためには、金属粒子の表面の少なくとも一部に有機保護層が設けられることが望ましい。ここで、アミンは官能基が銀粒子の表面に適度の強さで吸着することから、有機保護層として好適に用いることができる。 An organic component adheres to at least a part of the surface of the silver particle (that is, at least a part of the surface of the silver particle is covered with an organic protective layer composed of the organic component), and an organic component (organic compound) The protective layer preferably contains an amine. In order to stably store nanometer-size silver particles exhibiting a melting point lowering ability, it is desirable that an organic protective layer be provided on at least a part of the surface of the metal particles. Here, the amine can be suitably used as an organic protective layer because the functional group is adsorbed on the surface of silver particles with an appropriate strength.
上記アミンは特に限定されず、例えば、オレイルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘキシルアミン等のアルキルアミン(直鎖状アルキルアミン、側鎖を有していてもよい。)、N-(3-メトキシプロピル)プロパン-1,3-ジアミン、2-メトキシエチルアミン、3-メトキシプロピルアミン、3-エトキシプロピルアミン等のアルコキシアミン、シクロペンチルアミン、シクロヘキシルアミン等のシクロアルキルアミン、アニリン等のアリルアミン等の第1級アミン、ジプロピルアミン、ジブチルアミン、ピペリジン、ヘキサメチレンイミン等の第2級アミン、トリプロピルアミン、ジメチルプロパンジアミン、シクロヘキシルジメチルアミン、ピリジン、キノリン等の第3級アミン、オクチルアミン等のように炭素数が2~20程度のものを例示することができるが、炭素数が4~7のアミンを用いることが好ましい。炭素数が4~7のアミンの具体例としては、ヘプチルアミン、ブチルアミン、ペンチルアミン、及びヘキシルアミンを例示することができる。炭素数が4~7のアミンは比較的低温で移動及び/又は揮発するため、銀粒子の低温焼結性を充分に活用することができる。また、上記アミンは直鎖状であってもよいし、分岐鎖状であってもよいし、側鎖を有していてもよい。 The above-mentioned amine is not particularly limited, and examples thereof include alkylamines (linear alkylamines, which may have a side chain) such as oleylamine, butylamine, pentylamine, hexylamine and hexylamine, and N- (3- (Methoxypropyl) propane-1,3-diamines, alkoxyamines such as 2-methoxyethylamine, 3-methoxypropylamine, 3-ethoxypropylamine etc., cycloalkylamines such as cyclopentylamine, cyclohexylamine etc., allylamines such as aniline etc. Primary amines, secondary amines such as dipropylamine, dibutylamine, piperidine and hexamethyleneimine, tripropylamine, dimethylpropanediamine, cyclohexyldimethylamine, tertiary amines such as pyridine and quinoline, octylamine, etc. Can be carbon atoms include units of the order of 2 to 20, preferably carbon atoms used 4-7 amine. As specific examples of the amine having 4 to 7 carbon atoms, heptylamine, butylamine, pentylamine and hexylamine can be exemplified. Since the amine having 4 to 7 carbon atoms moves and / or volatilizes at relatively low temperature, the low temperature sinterability of silver particles can be fully utilized. The amine may be linear, branched, or have a side chain.
なお、これらの有機成分は、銀粒子と化学的又は物理的に結合している場合、アニオンやカチオンに変化していることも考えられ、本実施形態においては、これらの有機成分に由来するイオンや錯体等も上記有機成分に含まれる。 In addition, when these organic components are chemically or physically bonded to silver particles, it is also considered to be converted into anions or cations, and in this embodiment, ions derived from these organic components are considered. And complexes are also included in the above organic components.
上記アミンは、例えば、ヒドロキシル基、カルボキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、アミン以外の官能基を含む化合物であってもよい。また、上記アミンは、それぞれ単独で用いてもよく、2種以上を併用してもよい。加えて、常温での沸点が300℃以下であることが好ましく、250℃以下であることがより好ましい。 The amine may be, for example, a compound containing a functional group other than an amine, such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group or a mercapto group. In addition, the above amines may be used alone or in combination of two or more. In addition, the boiling point at normal temperature is preferably 300 ° C. or less, more preferably 250 ° C. or less.
上記カルボン酸としては、少なくとも1つのカルボキシル基を有する化合物を広く用いることができ、例えば、ギ酸、シュウ酸、酢酸、ヘキサン酸、アクリル酸、オクチル酸、レブリン酸、オレイン酸等が挙げられる。カルボン酸の一部のカルボキシル基が金属イオンと塩を形成していてもよい。なお、当該金属イオンについては、2種以上の金属イオンが含まれていてもよい。 As said carboxylic acid, the compound which has an at least 1 carboxyl group can be used widely, For example, a formic acid, an oxalic acid, an acetic acid, a hexanoic acid, an acrylic acid, an octylic acid, levulinic acid, an oleic acid etc. are mentioned. A part of carboxyl groups of the carboxylic acid may form a salt with the metal ion. In addition, about the said metal ion, 2 or more types of metal ions may be contained.
上記カルボン酸は、例えば、アミノ基、ヒドロキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、カルボキシル基以外の官能基を含む化合物であってもよい。この場合、カルボキシル基の数が、カルボキシル基以外の官能基の数以上であることが好ましい。また、上記カルボン酸は、それぞれ単独で用いてもよく、2種以上を併用してもよい。加えて、常温での沸点が300℃以下であることが好ましく、250℃以下であることがより好ましい。 The carboxylic acid may be, for example, a compound containing a functional group other than a carboxyl group, such as an amino group, a hydroxyl group, an alkoxy group, a carbonyl group, an ester group or a mercapto group. In this case, the number of carboxyl groups is preferably equal to or greater than the number of functional groups other than carboxyl groups. The carboxylic acids may be used alone or in combination of two or more. In addition, the boiling point at normal temperature is preferably 300 ° C. or less, more preferably 250 ° C. or less.
また、アミンとカルボン酸はアミド基を形成する。当該アミド基も銀粒子表面に適度に吸着するため、有機成分にはアミド基が含まれていてもよい。 Also, the amine and the carboxylic acid form an amide group. An amide group may be contained in the organic component because the amide group is also appropriately adsorbed on the surface of silver particles.
アミンとカルボン酸とを併用する場合の組成比(質量)としては、1/99~99/1の範囲で任意に選択することができるが、好ましくは20/80~98/2であり、より好ましくは30/70~97/3である。 The composition ratio (mass) in the case of using an amine and a carboxylic acid in combination can be optionally selected in the range of 1/99 to 99/1, but is preferably 20/80 to 98/2. Preferably, it is 30/70 to 97/3.
上記高分子分散剤としては、市販されている高分子分散剤を使用することができる。市販の高分子分散剤としては、例えば、ソルスパース(SOLSPERSE)11200、ソルスパース13940、ソルスパース16000、ソルスパース17000、ソルスパース18000、ソルスパース20000、ソルスパース24000、ソルスパース26000、ソルスパース27000、ソルスパース28000(以上、日本ルーブリゾール社製);ディスパービック(DISPERBYK)142、ディスパービック160、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック166、ディスパービック170、ディスパービック180、ディスパービック182、ディスパービック184、ディスパービック190、ディスパービック2155(以上、ビックケミー・ジャパン社製);EFKA-46、EFKA-47、EFKA-48、EFKA-49(以上、EFKAケミカル社製);ポリマー100、ポリマー120、ポリマー150、ポリマー400、ポリマー401、ポリマー402、ポリマー403、ポリマー450、ポリマー451、ポリマー452、ポリマー453(以上、EFKAケミカル社製);アジスパーPB711、アジスパーPA111、アジスパーPB811、アジスパーPW911(以上、味の素社製);フローレンDOPA-15B、フローレンDOPA-22、フローレンDOPA-17、フローレンTG-730W、フローレンG-700、フローレンTG-720W(以上、共栄社化学工業社製)等を挙げることができる。低温焼結性及び分散安定性の観点からは、ソルスパース11200、ソルスパース13940、ソルスパース16000、ソルスパース17000、ソルスパース18000、ソルスパース28000、ディスパービック142又はディスパービック2155を用いることが好ましい。 A commercially available polymer dispersant can be used as the above-mentioned polymer dispersant. Commercially available polymer dispersants include, for example, Solsperse (SOLSPERSE) 11200, Solsparse 13940, Solsparse 16000, Solsparse 17000, Solsparse 18000, Solsparse 20000, Solsparse 24000, Solsparse 26000, Solsparse 27000, Solsparse 28000 (Japan Lubrizol, Inc. Made of; DISPERVIK (DISPERBYK) 142, DISPERVIK 160, DISPERVIK 161, DISPERVIK 162, DISPERVIK 163, DISPERVIK 166, DISPERVIK 170, DISPERVIK 180, DISPERVIK 182, DISPERVIK 184, DISPERVIK 190, Disperbic 2155 (above, Big Chemie Ja EFKA-46, EFKA-47, EFKA-48, EFKA-49 (all available from EFKA Chemical Corporation); polymer 100, polymer 120, polymer 150, polymer 400, polymer 401, polymer 401, polymer 402, polymer 403, Polymer 450, Polymer 451, Polymer 452, Polymer 453 (above, made by EFKA Chemical Co., Ltd.); Addisper PB711, Addisper PA 111, Addisper PB 811, Addisper PW911 (above, made by Ajinomoto Co., Ltd.); Floren DOPA-15B, Floren DOPA-22, Floren DOPA-17, FLORENE TG-730W, FLORENE G-700, FLORENE TG-720W (above, manufactured by Kyoeisha Chemical Industry Co., Ltd.) and the like can be mentioned. From the viewpoint of low-temperature sinterability and dispersion stability, it is preferable to use Solsparse 11200, Solsparse 13940, Solsparse 16000, Solsparse 17000, Solsparse 18000, Solsparse 28000, Dispervic 142 or Dispervic 2155.
上記高分子分散剤の含有量は0.1~15質量%であることが好ましい。高分子分散剤の含有量が0.1質量%以上であれば得られる接合用組成物の分散安定性が良くなるが、含有量が多過ぎる場合は接合性が低下することとなる。このような観点から、高分子分散剤のより好ましい含有量は0.03~3質量%であり、更に好ましい含有量は0.05~2質量%である。 The content of the polymer dispersant is preferably 0.1 to 15% by mass. When the content of the polymer dispersant is 0.1% by mass or more, the dispersion stability of the obtained composition for bonding is improved, but when the content is too large, the bonding property is lowered. From such a viewpoint, the more preferable content of the polymer dispersant is 0.03 to 3% by mass, and the more preferable content is 0.05 to 2% by mass.
上記銀粒子は、例えば、金属イオンソースと分散剤とを混合し、還元法によって得ることができる。この場合、添加する分散剤や還元剤の量等を調整することによって、有機成分量を制御することができる。 The silver particles can be obtained, for example, by mixing a metal ion source and a dispersing agent and reducing the mixture. In this case, the amount of the organic component can be controlled by adjusting the amounts of the dispersant and the reducing agent to be added.
上記銀粒子に付着する有機成分量を調整するためには、銀粒子に対する加熱処理、酸(硫酸、塩酸、硝酸等)による洗浄、アセトンやメタノール等の脂溶性有機溶剤による洗浄等を用いることができる。なお、洗浄中に超音波を印加することで、より効率的に有機成分を取り除くことができる。 In order to adjust the amount of organic components attached to the silver particles, heat treatment with silver particles, washing with an acid (sulfuric acid, hydrochloric acid, nitric acid, etc.), washing with a fat-soluble organic solvent such as acetone or methanol, etc. may be used. it can. In addition, an organic component can be removed more efficiently by applying an ultrasonic wave during washing | cleaning.
上記不飽和炭化水素としては、例えば、エチレン、アセチレン、ベンゼン、アセトン、1-ヘキセン、1-オクテン、4-ビニルシクロヘキセン、シクロヘキサノン、テルペン系アルコール、アリルアルコール、オレイルアルコール、2-パルミトレイン酸、ペトロセリン酸、オレイン酸、エライジン酸、チアンシ酸、リシノール酸、リノール酸、リノエライジン酸、リノレン酸、アラキドン酸、アクリル酸、メタクリル酸、没食子酸、サリチル酸等が挙げられる。 Examples of the unsaturated hydrocarbon include ethylene, acetylene, benzene, acetone, 1-hexene, 1-octene, 4-vinylcyclohexene, cyclohexanone, terpene alcohols, allyl alcohol, oleyl alcohol, 2-palmitoleic acid, and petroselinic acid. And oleic acid, elaidic acid, thianicic acid, ricinoleic acid, linoleic acid, linoleic acid, linolenic acid, arachidonic acid, acrylic acid, methacrylic acid, gallic acid, salicylic acid and the like.
上記不飽和炭化水素のなかでも、水酸基を有する不飽和炭化水素が好適に用いられる。水酸基は銀粒子の表面に配位しやすく、当該銀粒子の凝集を抑制することができる。水酸基を有する不飽和炭化水素としては、例えば、テルペン系アルコール、アリルアルコール、オレイルアルコール、チアンシ酸、リシノール酸、没食子酸、サリチル酸等が挙げられる。好ましくは、水酸基を有する不飽和脂肪酸であり、例えば、チアンシ酸、リシノール酸、没食子酸、サリチル酸等が挙げられる。 Among the above-mentioned unsaturated hydrocarbons, unsaturated hydrocarbons having a hydroxyl group are preferably used. The hydroxyl group is easily coordinated to the surface of the silver particle, and aggregation of the silver particle can be suppressed. Examples of the unsaturated hydrocarbon having a hydroxyl group include terpene alcohols, allyl alcohol, oleyl alcohol, thianic acid, ricinoleic acid, gallic acid, salicylic acid and the like. Preferably, they are unsaturated fatty acids having a hydroxyl group, and examples thereof include thianic acid, ricinoleic acid, gallic acid, salicylic acid and the like.
また、上記有機成分には、本発明の効果を損なわない範囲で、バインダーとしての役割を果たすオリゴマー成分、樹脂成分、有機溶剤(固形分の一部を溶解又は分散していてよい。)、界面活性剤、増粘剤、表面張力調整剤等が含まれてもよい。 In the above organic component, an oligomer component that plays a role as a binder, a resin component, an organic solvent (a part of solid content may be dissolved or dispersed), an interface, as long as the effects of the present invention are not impaired. Activators, thickeners, surface tension modifiers and the like may be included.
上記樹脂成分としては、例えば、ポリエステル系樹脂、ブロックドイソシアネート等のポリウレタン系樹脂、ポリアクリレート系樹脂、ポリアクリルアミド系樹脂、ポリエーテル系樹脂、メラミン系樹脂、テルペン系樹脂等を挙げることができ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the resin component include polyester resins, polyurethane resins such as blocked isocyanate, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins, terpene resins, etc. These may be used alone or in combination of two or more.
上記有機溶剤としては、上記の分散媒として挙げられたものを除き、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、2-プロピルアルコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,2,6-ヘキサントリオール、1-エトキシ-2-プロパノール、2-ブトキシエタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、重量平均分子量が200以上1,000以下の範囲内であるポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、重量平均分子量が300以上1,000以下の範囲内であるポリプロピレングリコール、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、グリセリン、アセトン等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。 As the organic solvent, except for those mentioned above as the dispersion medium, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, 2-propyl alcohol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,2,6-hexanetriol, 1-ethoxy-2-propanol, 2-butoxyethanol, ethylene glycol, diethylene glycol, triethylene glycol, weight average molecular weight in the range of 200 to 1,000 Polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol having a weight average molecular weight in the range of 300 to 1,000, N, N-dimethylformamide, dimethyl sulfoxide, - methyl-2-pyrrolidone, N, N- dimethylacetamide, glycerin, acetone and the like may be used each of which alone or in combination of two or more.
上記増粘剤としては、例えば、クレイ、ベントナイト、ヘクトライト等の粘土鉱物、ポリエステル系エマルジョン樹脂、アクリル系エマルジョン樹脂、ポリウレタン系エマルジョン樹脂、ブロックドイソシアネート等のエマルジョン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体、キサンタンガム、グアーガム等の多糖類等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the thickener include clay minerals such as clay, bentonite and hectorite, polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins, emulsions such as blocked isocyanate, methyl cellulose, carboxymethyl cellulose and hydroxyethyl cellulose, There may be mentioned cellulose derivatives such as hydroxypropyl cellulose and hydroxypropyl methylcellulose, polysaccharides such as xanthan gum and guar gum, etc. These may be used alone or in combination of two or more.
上記界面活性剤としては特に限定されず、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤のいずれも用いることができ、例えば、アルキルベンゼンスルホン酸塩、4級アンモニウム塩等が挙げられる。少量の添加量で効果が得られるので、フッ素系界面活性剤が好ましい。 The surfactant is not particularly limited, and any of anionic surfactants, cationic surfactants, and nonionic surfactants can be used, and examples thereof include alkyl benzene sulfonates, quaternary ammonium salts and the like. Be Fluorine-based surfactants are preferred because the effect can be obtained with a small amount of addition.
本実施形態の金属接合積層体の製造方法に用いられる接合用組成物中の有機成分の初期含有量は、5~50質量%であることが好ましい。初期含有量が5質量%以上であれば、接合用組成物の貯蔵安定性が良くなる傾向があり、50質量%以下であれば、接合用組成物の導電性が良い傾向がある。有機成分のより好ましい初期含有量は5~30質量%であり、更に好ましい初期含有量は5~15質量%である。 The initial content of the organic component in the bonding composition used in the method for producing a metal-bonded laminate according to this embodiment is preferably 5 to 50% by mass. If the initial content is 5% by mass or more, the storage stability of the bonding composition tends to be improved, and if the initial content is 50% by mass or less, the conductivity of the bonding composition tends to be good. A more preferable initial content of the organic component is 5 to 30% by mass, and a further preferable initial content is 5 to 15% by mass.
なお、有機成分の初期含有量を所定の範囲に調整する方法としては、加熱を行って調整するのが簡便である。また、銀粒子を作製する際に添加する有機成分の量を調整することで行ってもよく、銀粒子調製後の洗浄条件や回数を変えてもよい。加熱はオーブンやエバポレーターなどで行うことができ、減圧下で行ってもよい。常圧下で行う場合は、大気中でも不活性雰囲気中でも行うことができる。更に、有機成分の初期含有量の微調整のために、上記アミン、カルボン酸等を後で加えることもできる。 In addition, as a method of adjusting the initial content of the organic component to a predetermined range, it is simple to adjust by heating. Moreover, you may carry out by adjusting the quantity of the organic component added at the time of producing silver particle, and may change the washing | cleaning conditions and frequency | count after silver particle preparation. The heating can be performed in an oven, an evaporator, or the like, and may be performed under reduced pressure. When carried out under normal pressure, it can be carried out in the atmosphere or in an inert atmosphere. Furthermore, the above-mentioned amine, carboxylic acid and the like can be added later to finely adjust the initial content of the organic component.
なお、接合用組成物に含まれる有機成分とその量については、例えば、リガク社製のTG-DTA/GC-MSを用いた測定により確認することができる。この測定の条件については適宜調整すればよいが、例えば、10mgの試料を大気中で室温~550℃(昇温速度10℃/min)まで保持した際のTG-DTA/GC-MS測定を行えばよい。 The organic component contained in the bonding composition and the amount thereof can be confirmed, for example, by measurement using TG-DTA / GC-MS manufactured by Rigaku Corporation. The conditions for this measurement may be adjusted as appropriate, but for example, TG-DTA / GC-MS measurement is performed when a 10 mg sample is kept in the air up to room temperature to 550 ° C. (heating rate 10 ° C./min). It is good.
<工程(1)>
上記工程(1)では、第一の被接合体に接合用組成物を塗布する。ここで、「塗布」とは、接合用組成物を面状に塗布する場合も線状に塗布(描画)する場合も含む概念である。塗布されて、加熱により焼成される前の状態の接合用組成物からなる塗膜の形状は、所望する形状にすることが可能である。したがって、加熱による焼結後の本実施形態の接合材(銀粒子焼結層)12は、面状及び線状のいずれであってもよく、第一の被接合体上において連続していても不連続であってもよい。
<Step (1)>
At the said process (1), the composition for joining is apply | coated to a 1st to-be-joined body. Here, the term "application" is a concept that includes the case of applying the bonding composition in a planar manner and the case of applying (drawing) in a linear manner. The shape of the coating film made of the bonding composition in the state of being applied and before firing by heating can be made into a desired shape. Therefore, the bonding material (silver particle sintered layer) 12 of the present embodiment after sintering by heating may be either planar or linear, and may be continuous on the first body to be bonded. It may be discontinuous.
上記接合用組成物を塗布する方法としては、例えば、スクリーン印刷(メタルマスク印刷)、ディスペンサー法、ピントランスファー法、ディッピング、スプレー方式、バーコート法、スピンコート法、インクジェット法、刷毛による塗布方式、流延法、フレキソ法、グラビア法、オフセット法、転写法、親疎水パターン法、シリンジ法等から適宜選択してよい。 Examples of the method for applying the bonding composition include screen printing (metal mask printing), dispenser method, pin transfer method, dipping, spray method, bar coating method, spin coating method, ink jet method, brush application method, It may be appropriately selected from a casting method, a flexo method, a gravure method, an offset method, a transfer method, a hydrophilic / hydrophobic pattern method, a syringe method and the like.
上記接合用組成物の粘度は、例えば、0.01~5000Pa・Sの範囲が好ましく、0.1~1000Pa・Sの範囲がより好ましく、1~100Pa・Sの範囲であることが更に好ましい。当該粘度範囲とすることにより、接合用組成物を塗布する方法として幅広い方法を適用することができる。粘度の調整は、銀粒子の粒径の調整、有機成分の含有量の調整、各成分の配合比の調整、増粘剤の添加等によって行うことができる。接合用組成物の粘度は、例えば、コーンプレート型粘度計(例えばアントンパール社製のレオメーターMCR301)により測定することができる。 The viscosity of the bonding composition is, for example, preferably in the range of 0.01 to 5000 Pa · S, more preferably in the range of 0.1 to 1000 Pa · S, and still more preferably in the range of 1 to 100 Pa · S. By setting it as the said viscosity range, a wide method can be applied as a method of apply | coating the composition for joining. The viscosity can be adjusted by adjusting the particle size of silver particles, adjusting the content of the organic component, adjusting the compounding ratio of each component, adding a thickener, and the like. The viscosity of the bonding composition can be measured, for example, by a cone and plate viscometer (for example, a rheometer MCR301 manufactured by Anton Paar Co., Ltd.).
<工程(2)>
上記工程(2)では、塗布した接合用組成物(塗膜)を加熱乾燥する。第一の被接合体に塗布された接合用組成物は、塗布性(印刷性)及びポットライフ(可使時間)を確保するために有機成分の量が多くされており、そのまま第二の被接合体を押し付け加熱焼結させると、生成する銀粒子焼結層中に空隙(ボイド)が多く発生してしまう。そこで、接合用組成物に第二の被接合体を押し付ける前に、工程(2)において接合用組成物を加熱乾燥し、接合用組成物中の有機成分の含有量を予め低減する。このとき、接合用組成物中の有機成分の含有量を少なくし過ぎると、第二の被接合体が接合用組成物と充分に密着しないため、ボイドや剥離が発生してしまう。そこで、工程(2)における加熱乾燥(予備乾燥)は、加熱乾燥された接合用組成物中の有機成分の含有量が4質量%以上となるように行われる。また、生成する銀粒子焼結層中にボイドが発生することを抑制する観点からは、加熱乾燥された接合用組成物中の有機成分の含有量は6質量%以下とされることが好ましい。
<Step (2)>
In the step (2), the applied bonding composition (coating film) is dried by heating. The bonding composition applied to the first object to be joined has a large amount of organic component to secure the coatability (printability) and the pot life (pot life). When the bonded body is pressed and heated and sintered, many voids (voids) are generated in the formed silver particle sintered layer. Therefore, before pressing the second body to be bonded to the bonding composition, the bonding composition is dried by heating in step (2) to reduce the content of the organic component in the bonding composition in advance. At this time, if the content of the organic component in the composition for bonding is too small, the second bonded body does not sufficiently adhere to the composition for bonding, so that voids and peeling occur. Therefore, the heating and drying (preliminary drying) in the step (2) is performed such that the content of the organic component in the heat-dried bonding composition is 4% by mass or more. Further, from the viewpoint of suppressing the generation of voids in the silver particle sintered layer to be generated, the content of the organic component in the heat-dried bonding composition is preferably 6% by mass or less.
上記工程(2)における加熱温度(予備乾燥温度)は、25℃以上、100℃以下であることが好ましい。25℃未満では、接合用組成物中の分散媒を効率よく揮発させることができない。100℃を超えると、分散媒を充分に揮発させることができるが、銀粒子に付着させた分散剤の一部も揮発し、焼結が始まってしまうおそれがあり、その場合、第二の被接合体を押し付けた際に密着させることができず、無加圧での接合が困難となる。予備乾燥温度のより好ましい下限は、50℃であり、更に好ましい下限は60℃である。なお、予備乾燥後の接合用組成物中の有機成分は、予備乾燥の最高温度以下の沸点を有する有機成分を実質的に含有しないものとなる。上記工程(2)における加熱時間は特に限定されないが、接合用組成物中の有機成分の含有量が変化しなくなるまで行うことが好ましい。上記工程(2)における加熱乾燥を行う方法は特に限定されず、例えば従来公知のオーブン等を用いることができる。 The heating temperature (preliminary drying temperature) in the step (2) is preferably 25 ° C. or more and 100 ° C. or less. If it is less than 25 ° C., the dispersion medium in the bonding composition can not be volatilized efficiently. When the temperature exceeds 100 ° C., the dispersion medium can be sufficiently volatilized, but a part of the dispersant attached to the silver particles may also volatilize, and sintering may start, in which case the second object When the bonded body is pressed, it can not be brought into close contact, and bonding without pressure becomes difficult. A more preferable lower limit of the predrying temperature is 50 ° C., and a further preferable lower limit is 60 ° C. In addition, the organic component in the composition for joining after predrying becomes a thing which does not substantially contain the organic component which has a boiling point below the maximum temperature of predrying. Although the heating time in the said process (2) is not specifically limited, It is preferable to carry out until content of the organic component in the composition for joining does not change. The method of heating and drying in the step (2) is not particularly limited, and, for example, a conventionally known oven can be used.
<工程(3)>
上記工程(3)では、加熱乾燥された接合用組成物に第二の被接合体を押し付ける。第二の被接合体は、1MPa以下の荷重で押し付けられることが好ましい。押し付け荷重が1MPaを超えると、パワー半導体チップ11等の第二の被接合体へのダメージ(表面の傷つきや割れ)が懸念される。押し付け荷重は0.05MPa以上であることが好ましい。押し付け荷重が0.05MPa未満であると、密着不足となり剥離してしまうおそれがある。上記工程(3)における第二の被接合体の押し付けを行う方法は特に限定されず、従来公知のさまざまな方法が適用可能であるが、加熱乾燥された接合用組成物(乾燥塗膜)を均一に加圧する方法が好ましい。
<Step (3)>
In the step (3), the second workpiece is pressed against the heat-dried bonding composition. The second object to be bonded is preferably pressed with a load of 1 MPa or less. When the pressing load exceeds 1 MPa, there is a concern that the second semiconductor object such as the power semiconductor chip 11 may be damaged (surface damage or cracking). The pressing load is preferably 0.05 MPa or more. If the pressing load is less than 0.05 MPa, the adhesion is insufficient and there is a risk of peeling. The method of pressing the second bonded body in the step (3) is not particularly limited, and various conventionally known methods can be applied. However, the heat-dried bonding composition (dried film) is used. The method of uniformly pressurizing is preferable.
ちなみに、工程(3)の後に予備乾燥を行った場合には、分散媒を効率よく揮発させることができないため、工程(3)の前に予備乾燥を行った場合と比べて長い時間がかかるだけでなく、第一の被接合体と第二の被接合体とに挟まれた状態では塗膜の側方からしか分散媒が揮発しないため、塗膜端部のみが接合し始め、塗膜内部に有機成分が残りやすくボイドが発生してしまう。 Incidentally, when pre-drying is performed after step (3), the dispersion medium can not be volatilized efficiently, so it takes only a longer time than when pre-drying is performed before step (3). In the state of being sandwiched between the first object and the second object, the dispersion medium is only volatilized from the side of the coating, so only the end of the coating starts to bond, and the inside of the coating is The organic component is likely to remain on the surface, resulting in void formation.
<工程(4)>
上記工程(4)では、接合用組成物を加熱して焼結させ、銀粒子焼結層を形成する。工程(2)の予備加熱では、有機成分のうち、主に分散媒が揮発し、銀粒子に付着させた分散剤等は接合用組成物内に残存するが、工程(4)における加熱により、接合用組成物中の有機成分の大部分又は全てが揮発する。本実施形態においては、接合用組成物がバインダー成分を含む場合は、接合材の強度向上及び被接合部材間の接合強度向上等の観点から、バインダー成分も焼結することになるが、場合によっては、各種印刷法へ適用するために接合用組成物の粘度を調整することをバインダー成分の主目的として、焼成条件を制御してバインダー成分を全て除去してもよい。銀粒子焼結層は、高い接合強度と高い信頼性を得るという点で有機成分の残存量は少ない方がよく、有機成分を実質的に含有しないことが好ましいが、本発明の効果を損なわない範囲で有機成分の一部が残存していても構わない。銀粒子焼結層中の有機成分の含有量は、1質量%未満であることが好ましい。
<Step (4)>
In the step (4), the bonding composition is heated and sintered to form a silver particle sintered layer. In the preheating of the step (2), the dispersion medium is mainly volatilized among the organic components, and the dispersing agent and the like attached to the silver particles remain in the bonding composition, but the heating in the step (4) Most or all of the organic components in the bonding composition volatilize. In the present embodiment, when the bonding composition contains a binder component, the binder component is also sintered from the viewpoint of improving the strength of the bonding material and the bonding strength between members to be bonded. In order to adjust the viscosity of the bonding composition for application to various printing methods, the main purpose of the binder component may be to control firing conditions to remove all the binder component. The silver particle sintered layer preferably has a small residual amount of the organic component from the viewpoint of obtaining high bonding strength and high reliability, and preferably contains substantially no organic component, but the effect of the present invention is not impaired. A portion of the organic component may remain in the range. The content of the organic component in the silver particle sintered layer is preferably less than 1% by mass.
また、工程(4)における加熱により、接合用組成物内において銀粒子同士が結合するだけでなく、第一の被接合体及び第二の被接合体と銀粒子焼結層との界面近傍では、隣接する層間で金属が拡散し合う。これにより、第一の被接合体と銀粒子焼結層の間、及び、第二の被接合体と銀粒子焼結層の間で強固な結合が形成される。 In addition, the silver particles are not only bonded together in the bonding composition by heating in the step (4), but also in the vicinity of the interface between the first and second materials to be bonded and the silver particle sintered layer. The metal diffuses between adjacent layers. As a result, a strong bond is formed between the first bonding body and the silver particle sintered layer, and between the second bonding body and the silver particle sintered layer.
上記工程(4)は、第一の被接合体と第二の被接合体とを加圧しつつ接合するものであってもよいが、第一の被接合体と第二の被接合体とを無加圧下で接合するものであってもよい。無加圧下での接合は、加圧と加熱を同時に行わないことから、生産性に優れている。無加圧下で接合する場合には、接合用組成物を加熱して焼結させる際の有機成分の揮発に起因して銀粒子焼結層内に空隙が発生しやすいが、本実施形態では、工程(2)の予備乾燥により接合用組成物中の有機成分の含有量が調整されているため、無加圧下で接合しても空隙の発生が抑制され、高い接合強度を有する銀粒子焼結層(接合材)が得られる。したがって、本実施形態の方法は、工程(4)において、第一の被接合体と第二の被接合体とを無加圧下で接合する場合に好適である。 Although the said process (4) may join while pressurizing a 1st to-be-joined body and a 2nd to-be-joined body, a 1st to-be-joined body and a 2nd to-be-joined body It may be joined under no pressure. Bonding under no pressure is excellent in productivity because pressing and heating are not performed simultaneously. In the case of bonding under no pressure, voids are easily generated in the silver particle sintered layer due to volatilization of the organic component when heating and sintering the bonding composition, but in the present embodiment, Since the content of the organic component in the bonding composition is adjusted by the preliminary drying in the step (2), generation of voids is suppressed even when bonding is performed under no pressure, and silver particles are sintered with high bonding strength. A layer (bonding material) is obtained. Therefore, the method of this embodiment is suitable when joining a 1st to-be-joined body and a 2nd to-be-joined body under pressure-free in a process (4).
工程(4)における加熱温度は、銀粒子焼結層を形成することができれば特に限定されないが、200~300℃であることが好ましい。加熱温度が200~300℃であれば、第一の被接合体及び第二の被接合体へのダメージを防止しつつ、有機成分等を蒸発又は分解により除去でき、高い接合強度が得られる。また、加熱を行う際、温度を段階的に上げたり下げたりしてもよく、室温から昇温することが好ましい。工程(4)における加熱時間は特に限定されず、加熱温度に応じて、接合強度が充分に得られるように調整すればよい。工程(4)における加熱を行う方法は特に限定されず、例えば従来公知のオーブン等を用いることができる。 The heating temperature in the step (4) is not particularly limited as long as it can form a silver particle sintered layer, but is preferably 200 to 300 ° C. When the heating temperature is 200 to 300 ° C., organic components and the like can be removed by evaporation or decomposition while preventing damage to the first and second objects to be bonded, and high bonding strength can be obtained. Moreover, when heating, temperature may be raised or lowered stepwise, and it is preferable to raise temperature from room temperature. The heating time in the step (4) is not particularly limited, and may be adjusted according to the heating temperature so that the bonding strength can be sufficiently obtained. The method of heating in step (4) is not particularly limited, and, for example, a conventionally known oven can be used.
上記銀粒子焼結層は、機械的、電気的及び熱的に強固な接合状態を得る観点から、緻密な焼結体であることが好ましく、具体的には、銀粒子焼結層の空隙率は、20体積%以下であることが好ましい。本実施形態の金属接合積層体の製造方法によれば、無加圧下で接合しても、空隙率が5~20体積%の銀粒子焼結層を容易に形成することができる。 The silver particle sintered layer is preferably a dense sintered body from the viewpoint of obtaining a mechanically, electrically and thermally strong bonding state, and specifically, the porosity of the silver particle sintered layer Is preferably 20% by volume or less. According to the method for producing a metal-bonded laminate of this embodiment, a silver particle sintered layer having a porosity of 5 to 20% by volume can be easily formed even when bonding is performed under no pressure.
上記銀粒子焼結層の厚さは、例えば、10~200μmであり、好ましくは20~100μmである。 The thickness of the silver particle sintered layer is, for example, 10 to 200 μm, preferably 20 to 100 μm.
本実施形態によれば、先に述べたように、工程(2)の予備乾燥により接合用組成物中の有機成分の含有量が調整されるため、第一の被接合体及び第二の被接合体に対する焼成前の接合用組成物の密着性を向上でき、空隙率が低く、高い接合強度を有する銀粒子焼結層(接合材)が得られる。なお、銀粒子焼結層の厚さは塗膜の厚さによって容易に制御することができる。 According to the present embodiment, as described above, the content of the organic component in the bonding composition is adjusted by the predrying in the step (2). The adhesion of the bonding composition before firing to the bonded body can be improved, and a silver particle sintered layer (bonding material) having a low porosity and high bonding strength can be obtained. The thickness of the silver particle sintered layer can be easily controlled by the thickness of the coating film.
以下、本発明について実施例を掲げて更に詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
<実施例1>
3-メトキシプロピルアミン2.0gをマグネティックスターラーで充分に撹拌を行いながら、シュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を恒温槽に入れて反応させた後、レブリン酸を10g添加して更に反応させ、懸濁液を得た。次に、懸濁液の分散媒を置換するため、メタノールを加えて撹拌後、遠心分離によりレブリン酸で表面が被覆された銀粒子を沈殿させて分離し、上澄みを捨てた。この操作をもう一度繰り返した。このレブリン酸で表面を被覆された銀粒子1gとミクロン銀粒子(福田金属箔粉工業社製、Ag-HWQ1.5)1gに、分散媒としてトリデカノールを0.05g、ブチルカルビトールアセテートを0.06g、リシノール酸を0.005g加えて撹拌混合し、銀粒子及び有機成分を含有する接合用組成物Aを得た。
Example 1
While sufficiently stirring 2.0 g of 3-methoxypropylamine with a magnetic stirrer, 3.0 g of silver oxalate was added to thicken the solution. The obtained viscous substance was placed in a constant temperature bath and allowed to react, and then 10 g of levulinic acid was added and further reacted to obtain a suspension. Next, in order to replace the dispersion medium of the suspension, methanol was added and stirred, and then silver particles coated on the surface with levulinic acid were precipitated and separated by centrifugation, and the supernatant was discarded. This operation was repeated once more. To 1 g of silver particles coated on the surface with this levulinic acid and 1 g of micron silver particles (Ag-HWQ 1.5 manufactured by Fukuda Metal Foil & Powder Industry Co., Ltd.), 0.05 g of tridecanol as a dispersion medium, and butyl carbitol acetate was added 0. 06 g and 0.005 g of ricinoleic acid were added and stirred and mixed to obtain a bonding composition A containing silver particles and an organic component.
得られた接合用組成物Aを銀メッキした銅板(20mm角)にメタルマスクを用いて11mm角に塗布し、予備乾燥として70℃に設定したオーブン入れて3分間乾燥させた。乾燥させた接合用組成物Aの上に、金メッキを施したSiチップ(底面積10mm×10mm)を積層し、0.2MPaで押し付けた。 The obtained bonding composition A was applied on a silver-plated copper plate (20 mm square) to a 11 mm square using a metal mask, and was put in an oven set at 70 ° C. as preliminary drying and dried for 3 minutes. A gold-plated Si chip (bottom area 10 mm × 10 mm) was stacked on the dried bonding composition A, and pressed at 0.2 MPa.
そして、得られた積層体を、リフロー炉(シンアペックス社製)に入れ、大気中で室温から昇温速度を3.8℃/minで最高温度250℃まで上げた後に60分間保持して焼成処理を行い、銀粒子焼結層を形成した。焼成処理の際、加圧は行わず無加圧で行った。銀粒子焼結層の形成により、銀メッキした銅板(第一の被接合体)と金メッキを施したSiチップ(第二の被接合体)とが銀粒子焼結層により接合された金属接合積層体が完成した。 Then, the obtained laminate is placed in a reflow furnace (made by Shin-Apex), raised to a maximum temperature of 250 ° C. at a temperature rising rate of 3.8 ° C./min from room temperature in the air, and held for 60 minutes for firing The treatment was performed to form a silver particle sintered layer. During the firing process, no pressure was applied and no pressure was applied. Metal bonding lamination in which a silver-plated copper plate (first bonded body) and a gold-plated Si chip (second bonded body) are bonded by a silver particle sintered layer by the formation of a silver particle sintered layer The body is complete.
<実施例2>
焼成処理を窒素雰囲気下で実施したことと、銀メッキした銅板の代わりに希硫酸にて超音波洗浄した無垢銅板を使用したこと以外は実施例1と同様にして金属接合積層体を作製した。
Example 2
A metal-bonded laminate was produced in the same manner as in Example 1 except that the firing treatment was carried out under a nitrogen atmosphere and that a pure copper plate ultrasonically washed with dilute sulfuric acid was used instead of the silver-plated copper plate.
<実施例3>
トリデカノール0.05g及びブチルカルビトールアセテート0.06gの代わりにヘキシルカルビトール0.2gを添加して接合用組成物Bを得たことと、予備乾燥の時間を15分間に変えたこと以外は実施例1と同様にして金属接合積層体を作製した。
Example 3
Performed except that 0.2 g of hexyl carbitol was added instead of 0.05 g of tridecanol and 0.06 g of butyl carbitol acetate to obtain a bonding composition B, and the predrying time was changed to 15 minutes. A metal-bonded laminate was produced in the same manner as in Example 1.
<実施例4>
焼成処理を窒素雰囲気下で実施したことと、銀メッキした銅板の代わりに希硫酸にて超音波洗浄した無垢銅板を使用したこと以外は実施例3と同様にして金属接合積層体を作製した。
Example 4
A metal-bonded laminate was produced in the same manner as in Example 3 except that the firing treatment was carried out in a nitrogen atmosphere, and that a pure copper plate ultrasonically washed with dilute sulfuric acid was used instead of the silver-plated copper plate.
<実施例5>
焼成処理における最高温度を280℃にしたこと以外は実施例3と同様にして金属接合積層体を作製した。
Example 5
A metal-bonded laminate was produced in the same manner as in Example 3 except that the maximum temperature in the firing treatment was set to 280 ° C.
<実施例6>
予備乾燥における温度と時間を100℃5分間にしたこと以外は実施例3と同様にして金属接合積層体を作製した。
Example 6
A metal-bonded laminate was produced in the same manner as in Example 3 except that the temperature and time in the preliminary drying were set to 100 ° C. for 5 minutes.
<実施例7>
3-メトキシプロピルアミンの代わりに3-エトキシプロピルアミン1.5gとジグリコールアミン0.4gを添加して接合用組成物Cを得たこと以外は実施例3と同様にして金属接合積層体を作製した。
Example 7
A metal-bonded laminate was prepared in the same manner as in Example 3 except that 1.5 g of 3-ethoxypropylamine and 0.4 g of diglycolamine were added instead of 3-methoxypropylamine to obtain a bonding composition C. Made.
<実施例8>
焼成処理を窒素雰囲気下で実施したことと、銀メッキした銅板の代わりに希硫酸にて超音波洗浄した無垢銅板を使用したこと以外は実施例7と同様にして金属接合積層体を作製した。
Example 8
A metal-bonded laminate was produced in the same manner as in Example 7 except that the firing treatment was carried out in a nitrogen atmosphere, and that a pure copper plate ultrasonically washed with dilute sulfuric acid was used instead of the silver-plated copper plate.
<比較例1>
3-メトキシプロピルアミン8.0gとドデシルアミン0.40gを混合し、マグネティックスターラーで充分に撹拌してアミン混合液を調製した。アミン混合液に、撹拌を行いながらシュウ酸銀6.0gと銀粒子(三井金属鉱業社製、還元粉、D50(メジアン径)=1.5μm)10gを添加し、増粘させた。得られた粘性物質を恒温槽に入れ、反応させ、懸濁液を得た。懸濁液の分散媒を置換するため、メタノールを加えて撹拌後、遠心分離により銀微粒子で表面を被覆された銀粒子を沈殿させて分離し、上澄みを捨てた。この操作をもう一度繰り返した。この銀微粒子で表面を被覆された銀粒子15gに、分散媒としてトリデカノールを0.4g、ブチルカルビトールアセテートを0.4g、リシノール酸を0.01g加えて撹拌混合し、接合用組成物Dを得た。接合用組成物Dを得たこと以外は実施例1と同様にして金属接合積層体を作製した。
Comparative Example 1
8.0 g of 3-methoxypropylamine and 0.40 g of dodecylamine were mixed and sufficiently stirred by a magnetic stirrer to prepare an amine mixture. While stirring, 6.0 g of silver oxalate and 10 g of silver particles (reduced powder manufactured by Mitsui Mining & Smelting Co., Ltd., reduced powder, D50 (median diameter) = 1.5 μm) were added to the amine mixed solution to thicken the mixture. The resulting viscous material was placed in a thermostat and allowed to react to obtain a suspension. In order to replace the dispersion medium of the suspension, methanol was added and stirred, and then silver particles coated on the surface with silver fine particles were precipitated by centrifugation and separated, and the supernatant was discarded. This operation was repeated once more. 0.4 g of tridecanol as a dispersion medium, 0.4 g of butyl carbitol acetate, and 0.01 g of ricinoleic acid are added to 15 g of the silver particles whose surface is covered with the silver fine particles as a dispersion medium, and mixed by stirring. Obtained. A metal-bonded laminate was produced in the same manner as in Example 1 except that the bonding composition D was obtained.
<比較例2>
予備乾燥を行わなかったこと以外は実施例1と同様にして金属接合積層体を作製した。
Comparative Example 2
A metal-bonded laminate was produced in the same manner as in Example 1 except that predrying was not performed.
<比較例3>
予備乾燥を行わなかったこと以外は実施例3と同様にして金属接合積層体を作製した。
Comparative Example 3
A metal-bonded laminate was produced in the same manner as in Example 3 except that predrying was not performed.
<比較例4>
予備乾燥における温度と時間を100℃10分間にしたこと以外は実施例3と同様にして金属接合積層体を作製した。
Comparative Example 4
A metal-bonded laminate was produced in the same manner as in Example 3 except that the temperature and time in the preliminary drying were set to 100 ° C. for 10 minutes.
[評価試験]
実施例及び比較例で作製した接合用組成物を用いて下記評価試験を行った。その結果を表1に示した。
[Evaluation test]
The following evaluation test was done using the composition for joining produced by the Example and the comparative example. The results are shown in Table 1.
(1)銀粒子の平均粒径の測定
日立ハイテクノロジーズ社製の走査型電子顕微鏡(型番:S4800)を用いて200000倍で撮影した写真から、50~100個程度の粒子の粒径の算術平均値を算出する方法にて銀粒子の平均粒径を得た。
(1) Measurement of average particle diameter of silver particles From a photograph taken at 200,000 magnification using a scanning electron microscope (model number: S4800) manufactured by Hitachi High-Technologies Corporation, the arithmetic average of the particle diameter of about 50 to 100 particles The average particle diameter of silver particles was obtained by the method of calculating the value.
(2)予備乾燥後の有機成分の含有量の測定
予備乾燥の前後で接合用組成物の質量を測定し、得られた質量を基に、下記式を用いて予備乾燥後の有機成分の含有量を算出した。
有機成分の揮発量(g)=塗布した接合用組成物の質量(g)-予備乾燥後の接合用組成物の質量(g)
予備乾燥後の有機成分の含有量(質量%)={有機成分の添加量(g)-有機成分の揮発量(g)/塗布した接合用組成物の質量(g)}×100
(2) Measurement of the content of the organic component after preliminary drying The mass of the bonding composition is measured before and after preliminary drying, and based on the obtained mass, the content of the organic component after preliminary drying using the following formula The amount was calculated.
Volatile amount of organic component (g) = mass of bonding composition applied (g) -mass of bonding composition after preliminary drying (g)
Content of organic component after preliminary drying (mass%) = {addition amount of organic component (g) -volatilization amount of organic component (g) / mass of bonding composition applied (g)} × 100
(3)接合強度の測定
常温にてボンドテスター(レスカ社製)を用いて接合強度試験を行った。
(3) Measurement of Bonding Strength A bonding strength test was conducted using a bond tester (made by Lesca) at normal temperature.
(4)空隙率(ボイド率)の測定
金属接合積層体を研磨にて断面を露出させ、走査型電子顕微鏡にて断面観察を行った。得られた電子顕微鏡写真から、銀粒子焼結層内の空隙の面積を銀粒子焼結層の全体の面積で割って空隙率を算出した。空隙率が20%以下は○、21~30%は△、31%以上は×とした。また、空隙率の値に関わらず、大きな空隙が存在したり、接合した界面が剥離したりしているものは×とした。
(4) Measurement of Void Ratio (Void Ratio) The cross section was exposed by polishing the metallurgical laminate, and the cross section was observed with a scanning electron microscope. From the obtained electron micrograph, the porosity was calculated by dividing the area of the voids in the silver particle sintered layer by the entire area of the silver particle sintered layer. The void ratio of 20% or less was ○, 21 to 30% was Δ, and 31% or more was x. Moreover, regardless of the value of the porosity, the thing in which the big space | gap existed or the interface which joined was peeling was made into x.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1から分かるように、実施例1~8では、銀メッキした銅板(第一の被接合体)上に塗布した接合用組成物に対し、金メッキを施したSiチップ(第二の被接合体)を押し付ける前に、接合用組成物中の有機成分の含有量が4質量%以上となる程度に予備乾燥を行ったことから、作製された金属接合積層体は、銀粒子焼結層の空隙率が低く、高い接合強度が得られた。 As can be seen from Table 1, in Examples 1 to 8, Si chip (second object to be joined) plated with gold for a bonding composition applied on a silver-plated copper plate (first object to be joined) Since the pre-drying was performed to such an extent that the content of the organic component in the bonding composition would be 4% by mass or more before pressing B), the prepared metal bonded laminate had a void of the silver particle sintered layer The rate was low, and high bond strength was obtained.
一方、比較例1では、接合用組成物D中の有機成分の含有量が少なく、予備乾燥後の接合用組成物中の有機成分の含有量が3.2質量%であったため、金メッキを施したSiチップを押し付けても充分に密着しなかった。このため、銀粒子焼結層の空隙率が低くなり、高い接合強度が得られなかった。また、比較例2及び3では、予備乾燥が行われなかったため、銀粒子焼結層内に空隙(ボイド)が多く発生し、接合強度が低かった。また、比較例4では、予備乾燥温度が高く、予備乾燥後の接合用組成物中の有機成分の含有量が3.5質量%であったため、金メッキを施したSiチップを押し付けても充分に密着しなかった。このため、銀粒子焼結層の空隙率が低くなり、高い接合強度が得られなかった。 On the other hand, in Comparative Example 1, the content of the organic component in the composition for bonding D is small, and the content of the organic component in the composition for bonding after the preliminary drying is 3.2 mass%. Even if the pressed Si chip was pressed, it did not adhere sufficiently. For this reason, the porosity of the silver particle sintered layer was low, and high bonding strength was not obtained. Moreover, in Comparative Examples 2 and 3, since preliminary drying was not performed, many voids (voids) were generated in the silver particle sintered layer, and the bonding strength was low. Further, in Comparative Example 4, since the predrying temperature is high and the content of the organic component in the bonding composition after predrying is 3.5% by mass, the Si chip subjected to the gold plating is sufficiently pressed. It did not stick. For this reason, the porosity of the silver particle sintered layer was low, and high bonding strength was not obtained.
11 パワー半導体チップ
12 接合材
13 銅張絶縁基板
13a 基材
13b Cu層
14 放熱材
15 ヒートシンク
16 ワイヤーボンド
11 Power Semiconductor Chip 12 Bonding Material 13 Copper-clad Insulating Substrate 13a Base Material 13b Cu Layer 14 Heat Dissipating Material 15 Heat Sink 16 Wire Bonding

Claims (5)

  1. 第一の被接合体と第二の被接合体とが銀粒子焼結層により接合された金属接合積層体の製造方法であって、
    前記第一の被接合体に、銀粒子及び有機成分を含有する接合用組成物を塗布する工程(1)と、
    塗布した前記接合用組成物を加熱乾燥する工程(2)と、
    加熱乾燥された前記接合用組成物に前記第二の被接合体を押し付ける工程(3)と、
    前記接合用組成物を加熱して焼結させ、前記銀粒子焼結層を形成する工程(4)とを含み、
    前記工程(2)で加熱乾燥された前記接合用組成物中の前記有機成分の含有量は4質量%以上であることを特徴とする金属接合積層体の製造方法。
    A method for producing a metal-bonded laminate, in which a first bonded body and a second bonded body are bonded by a silver particle sintered layer,
    Applying a bonding composition containing silver particles and an organic component to the first body to be bonded;
    Heat-drying the applied bonding composition (2);
    A step (3) of pressing the second object to be bonded to the heat-dried bonding composition;
    Heating and sintering the bonding composition to form the silver particle sintered layer (4);
    Content of the said organic component in the said composition for joining heat-dried by the said process (2) is 4 mass% or more, The manufacturing method of the metal joint laminated body characterized by the above-mentioned.
  2. 前記銀粒子焼結層の空隙率は、20体積%以下であることを特徴とする請求項1に記載の金属接合積層体の製造方法。 The porosity of the said silver particle sintered layer is 20 volume% or less, The manufacturing method of the metal-joining laminated body of Claim 1 characterized by the above-mentioned.
  3. 前記工程(2)では、25℃以上、100℃以下の温度で加熱乾燥することを特徴とする請求項1又は2に記載の金属接合積層体の製造方法。 In the said process (2), it heat-drys at the temperature of 25 degreeC or more and 100 degrees C or less, The manufacturing method of the metal joining laminated body of Claim 1 or 2 characterized by the above-mentioned.
  4. 前記工程(3)では、前記第二の被接合体を1MPa以下の荷重で押し付けることを特徴とする請求項1~3のいずれかに記載の金属接合積層体の製造方法。 The method for producing a metal-bonded laminate according to any one of claims 1 to 3, wherein in the step (3), the second bonded body is pressed with a load of 1 MPa or less.
  5. 前記工程(4)では、前記第一の被接合体と前記第二の被接合体とを無加圧下で接合することを特徴とする請求項1~4のいずれかに記載の金属接合積層体の製造方法。 The metal-bonded laminate according to any one of claims 1 to 4, wherein in the step (4), the first object to be joined and the second object to be joined are joined under no pressure. Manufacturing method.
PCT/JP2018/021411 2017-07-27 2018-06-04 Method for producing metal bonded laminate WO2019021637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018530164A JP6467114B1 (en) 2017-07-27 2018-06-04 Method for producing metal bonded laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-145811 2017-07-27
JP2017145811 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019021637A1 true WO2019021637A1 (en) 2019-01-31

Family

ID=65040451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021411 WO2019021637A1 (en) 2017-07-27 2018-06-04 Method for producing metal bonded laminate

Country Status (3)

Country Link
JP (1) JP6467114B1 (en)
TW (1) TW201911989A (en)
WO (1) WO2019021637A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020190015A (en) * 2019-05-22 2020-11-26 協立化学産業株式会社 Method for producing joint body
CN113614894A (en) * 2019-03-29 2021-11-05 三井金属矿业株式会社 Bonded body and method for producing same
WO2022102660A1 (en) * 2020-11-12 2022-05-19 パナソニックIpマネジメント株式会社 Manufacturing method for complex and manufacturing method for semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7257738B2 (en) * 2017-10-10 2023-04-14 Dic株式会社 Fine metal particle ink for offset printing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212976A (en) * 2007-03-05 2008-09-18 Toda Kogyo Corp Joining member and joining method
WO2011007402A1 (en) * 2009-07-14 2011-01-20 Dowaエレクトロニクス株式会社 Bonding material and bonding method each using metal nanoparticles
JP2012084514A (en) * 2010-09-03 2012-04-26 Heraeus Materials Technology Gmbh & Co Kg Use of aliphatic hydrocarbon and paraffin as solvent in silver paste to be sintered
WO2015056589A1 (en) * 2013-10-17 2015-04-23 Dowaエレクトロニクス株式会社 Joining silver sheet, method for manufacturing same, and method for joining electronic part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212976A (en) * 2007-03-05 2008-09-18 Toda Kogyo Corp Joining member and joining method
WO2011007402A1 (en) * 2009-07-14 2011-01-20 Dowaエレクトロニクス株式会社 Bonding material and bonding method each using metal nanoparticles
JP2012084514A (en) * 2010-09-03 2012-04-26 Heraeus Materials Technology Gmbh & Co Kg Use of aliphatic hydrocarbon and paraffin as solvent in silver paste to be sintered
WO2015056589A1 (en) * 2013-10-17 2015-04-23 Dowaエレクトロニクス株式会社 Joining silver sheet, method for manufacturing same, and method for joining electronic part

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614894A (en) * 2019-03-29 2021-11-05 三井金属矿业株式会社 Bonded body and method for producing same
US12030125B2 (en) 2019-03-29 2024-07-09 Mitsui Mining & Smelting Co., Ltd. Bonded body and method for manufacturing same
JP2020190015A (en) * 2019-05-22 2020-11-26 協立化学産業株式会社 Method for producing joint body
JP7029182B2 (en) 2019-05-22 2022-03-03 協立化学産業株式会社 Manufacturing method of bonded body
WO2022102660A1 (en) * 2020-11-12 2022-05-19 パナソニックIpマネジメント株式会社 Manufacturing method for complex and manufacturing method for semiconductor device
EP4246559A4 (en) * 2020-11-12 2024-05-08 Panasonic Intellectual Property Management Co., Ltd. Manufacturing method for complex and manufacturing method for semiconductor device

Also Published As

Publication number Publication date
JPWO2019021637A1 (en) 2019-11-07
JP6467114B1 (en) 2019-02-06
TW201911989A (en) 2019-03-16

Similar Documents

Publication Publication Date Title
JP6766160B2 (en) Composition for metal bonding
TWI651149B (en) Metal bonding composition
JP2007527102A (en) Nanoscale metal pastes for interconnection and methods of use
JP6467114B1 (en) Method for producing metal bonded laminate
JP6736782B2 (en) Composition for bonding
JP6659026B2 (en) Low temperature joining method using copper particles
WO2014057633A1 (en) Bonding composition
TW201542731A (en) Bonding composition and metal bonded article using the same
JP2017155166A (en) Joining composition
TWI744372B (en) Bonding composition and production method thereof, bonding laminate, and cladded silver nanoparticle
TWI737643B (en) Bonding composition and electronic component assembly
WO2017006531A1 (en) Joining composition and joining method
JP6380791B2 (en) Joining method using micro-sized silver particles
JP6347385B2 (en) Copper material joining method
JPWO2016067599A1 (en) Bonding composition
JP6669420B2 (en) Bonding composition
JP2007136503A (en) Clad solder for joining
JP6267835B1 (en) Bonding composition and method for producing the same
JP2007080635A (en) Particle for production of conductive component
JP6085724B2 (en) Bonding composition
CN118302263A (en) Sintering composition comprising an organic silver precursor and agglomerated silver nanoparticles

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530164

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838214

Country of ref document: EP

Kind code of ref document: A1