[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019021651A1 - Exposure device - Google Patents

Exposure device Download PDF

Info

Publication number
WO2019021651A1
WO2019021651A1 PCT/JP2018/022089 JP2018022089W WO2019021651A1 WO 2019021651 A1 WO2019021651 A1 WO 2019021651A1 JP 2018022089 W JP2018022089 W JP 2018022089W WO 2019021651 A1 WO2019021651 A1 WO 2019021651A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light irradiation
lens
lens barrel
lamp
Prior art date
Application number
PCT/JP2018/022089
Other languages
French (fr)
Japanese (ja)
Inventor
茂治 細谷
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2019021651A1 publication Critical patent/WO2019021651A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to an exposure apparatus, and more particularly to an exposure apparatus that performs various types of processing by irradiating vacuum ultraviolet light from a short arc flash lamp as parallel light onto an object to be processed.
  • VUV vacuum ultraviolet light
  • SAM film self-assembled monolayer
  • Patent Document 1 The structure is disclosed in (Patent Document 1). The schematic structure is shown in FIG. 9, and a short arc flash lamp 102 and a reflection mirror 103 are disposed in the housing 101 so that light is emitted downward, and a light transmission window 104 is provided below the short arc flash lamp 102 and the reflection mirror 103. , The inside of the housing is filled with nitrogen.
  • No member is disposed between the reflection mirror 103 and the light transmission window 104, and the light has a donut shape (annular shape) distribution on the window surface, so the aperture 105 is limited to a portion where the illuminance is high and uniform.
  • Patent Document 1 adopts a short arc flash lamp with a shorter light emission length as a light source, in place of the conventional lamp with a long light emission length (excimer lamp, low pressure mercury lamp).
  • the VUV light emitted from the flash lamp is converted into parallel light (or substantially parallel light) using a reflection mirror to constitute a light irradiation device as a light source for exposure.
  • a parabolic mirror is attached to a lamp as a reflection mirror, and parallel light is formed without an optical system such as a lens.
  • the light utilization efficiency is low because only a part of the light emitted in a donut shape is used.
  • the illuminance uniformity on the irradiated surface was not high.
  • the problem to be solved by the present invention is a short arc flash lamp emitting vacuum ultraviolet light having a wavelength of 200 nm or less into a lens barrel and a condensing mirror reflecting light from the lamp in view of the problems of the prior art.
  • An exposure apparatus comprising: a light irradiation apparatus comprising a light irradiation window at the lower part of the lens barrel, the exposure apparatus realizing an increase in the irradiation area while maintaining the uniformity of the illuminance distribution. It is to be.
  • the light irradiation apparatus includes, in the lens barrel, an optical system that collimates the light reflected by the condensing mirror, and the optical system is A plurality of lens members disposed linearly along the same optical axis between the lamp and the light irradiation window, and a plurality of the light irradiation devices are provided; A mask stage and a work stage, which are integrally transported below, are disposed, and in the plurality of light irradiators, a part of the light irradiance window of the light irradiators adjacent in the transport direction is It is characterized in that it is disposed in a positional relationship such that it overlaps in the transport direction, and an effective irradiation area is formed in which the integrated light amount is equalized in the transport direction.
  • the light irradiation window is a polygon having a pair of parallel sides.
  • the invention is characterized in that the light irradiation window is a right angle quadrilateral, and one side thereof is inclined to the transport direction.
  • the interior of the lens barrel in the light irradiation device is filled with an inert gas, and an inert gas outlet is provided on the lower end surface of the lens barrel, and the mask is viewed from the periphery of the light irradiation window. An inert gas is blown toward the mask on the stage.
  • a plurality of light irradiators can be densely arranged in a narrow range, and in the irradiation region of VUV parallel light from the light irradiators
  • the integrated illuminance of the present invention can be made uniform, and the irradiation area can be enlarged.
  • the inert gas is sprayed to the mask from the lower end face of each light irradiation device, the inert gas is uniformly present on the mask, and the VUV light emitted from the light irradiation window reaches the mask. Damping is effectively suppressed.
  • Sectional drawing of the light irradiation apparatus used for this invention Sectional drawing of the short arc type flash lamp in light irradiation apparatus. Sectional drawing (A) and top view (B) of the orthogonal direction with respect to the conveyance direction of the exposure apparatus of this invention. Sectional drawing (A) of the conveyance direction of exposure apparatus of this invention, and its top view (B). The partially expanded sectional view of the exposure apparatus of this invention. The bottom view of light irradiation equipment. An example of arrangement
  • FIG. 1 shows the whole of a light irradiation apparatus using a short arc flash lamp used in the exposure apparatus of the present invention.
  • a light irradiation device 1 used in the present invention includes a lens barrel 2, a short arc flash lamp 3 provided therein, a condenser mirror 4 surrounding the same, an optical system 5, and a lowermost portion. And a light irradiation window 6 provided.
  • the lens barrel 2 is composed of a plurality of lens barrel units 20 to 25.
  • the lamp 3 and a plurality of lens members 51 to 55 constituting the optical system 5 are held in each of the lens barrel units.
  • the optical system 5 is for collimating the light emitted from the lamp 3 and reflected by the condenser mirror 4 to equalize the illuminance, and, for example, the first lens member (bi-concave lens) 51, The second lens member (plano-convex lens) 52, the third lens member (integrator lens) 53, the fourth lens member (convex meniscus lens) 54, and the fifth lens member (biconvex lens) 55 are provided.
  • the lamp 3 and the focusing mirror 4 are held by the lamp barrel unit 20 located at the top.
  • the lamp 3 used here is a short arc flash lamp, and its outline structure is shown in FIG.
  • the short arc flash lamp 3 includes a light emitting tube 301 forming a light emitting space, a first sealing tube 302 continuously extending to one end of the light emitting tube 301 and extending outward along the tube axis, And a second sealing tube 303 extending outward along the tube axis direction, and a sealing glass tube 304 is inserted in the second sealing tube 303, and both overlap in the overlapping region. Is welded.
  • first main electrodes 305 and a second main electrode 306 are disposed opposite to each other.
  • the core wire 307 of the first main electrode 305 is sealed to the first sealing tube 302 by means of stepped glass or the like, and the first main electrode 305 is airtightly drawn outward, while the second main electrode 306 is
  • the core wire 308 is sealed to the sealing glass tube 304 by means of stepped glass and the like, and is drawn airtightly outward.
  • a pair of first start auxiliary electrodes 310 and a second start auxiliary electrode 311 are disposed between the pair of main electrodes 305 and 306 in the light emitting tube 301, and the respective internal leads 312 and 315 External leads 313 and 316 are electrically connected via metal foils 314 and 317 in the welding area between the second sealing tube 303 and the sealing glass tube 304.
  • a base 320 made of aluminum or the like is fixed to the second sealing pipe 303 on the side from which the external leads 313, 316 of the starting auxiliary electrodes 310, 311 are led out.
  • the first adhesive 321 is filled in the space between the base 320 and the second sealing tube 303, and the space between the base 320 and the sealing glass tube 304 is filled with the first adhesive 321 through the partition member 323. Is filled with a second adhesive 322.
  • the external leads 313, 316 drawn from the second sealing tube 303 are embedded, and are drawn from the rear of the mouthpiece 320 to the outside.
  • the outer leads 313, 316 are covered at the rear with insulating coverings 313a, 316a.
  • the details of such a short arc flash lamp 3 are disclosed in JP-A-2016-131135.
  • the lens barrel 2 has an elongated cylindrical shape, and is formed of, for example, a cylindrical member obtained by cutting aluminum.
  • the lens barrel 2 is composed of a plurality of lens barrel units 20 to 25.
  • the lens barrel unit located at the top constitutes a lamp lens barrel unit 20 for housing and holding the lamp 3 therein.
  • the condensing mirror 4 is provided so that the lamp 3 may be surrounded, and this condensing mirror 4 is an elliptical condensing mirror, for example.
  • the base 320 of the lamp 3 is held on the upper portion of the lamp barrel unit 20 by the lamp holding member 31.
  • the lamp holding member 31 is formed with an inert gas supply port 32 opened in the lens barrel 2.
  • the inert gas supply pipe 33 is connected to supply an inert gas such as nitrogen (N 2 ), neon (Ne), argon (Ar) or krypton (Kr).
  • the inert gas supplied into the lamp barrel unit 20 from the inert gas supply pipe 33 through the inert gas supply port 32 flows down along the lamp from the gap between the condenser mirror 4 and the lamp 3, The lamp 3 is cooled and flows further downward.
  • a plurality of lens barrel units 21 to 25 are provided below the lamp barrel unit 20, a plurality of lens barrel units 21 to 25 are provided, and the lens barrel units 21 to 25 are emitted from the lamp 3 and reflected by the condenser mirror 4 A plurality of lens members 51 to 55 constituting the optical system 5 for collimating the emitted light and making the illuminance uniform are respectively held. That is, the first lens member (bi-concave lens) 51 is used for the first lens barrel unit 21, the second lens member (plano-convex lens) 52 is used for the second lens barrel unit 22, and the third lens.
  • the lens barrel unit 23 has a third lens member (integrator lens) 53, the fourth lens barrel unit 24 has a fourth lens member (convex meniscus lens) 54, and the fifth lens barrel unit
  • the fifth lens member (biconvex lens) 55 is held at 25 respectively.
  • a light irradiation window 6 is provided at the lower end of the fifth lens barrel unit 25 located at the lowermost part.
  • the lens barrel 2 is configured by combining the lamp barrel unit 20 and the plurality of lens barrel units 21 to 25, and the first to fifth lens members 51 to 55 provided therein are the lamp 3 and An optical system 5 is linearly arranged along the same optical axis OA between the light irradiation windows 6.
  • Lens holding portions 211 to 251 are formed in each of the lens barrel units 21 to 25 and hold the first to fifth lens members 51 to 55, respectively.
  • the lens holding portion can be constituted by a flange portion which is cut in the lens barrel unit and protrudes inward as a step portion.
  • air vents 212 to 252 are formed in the lens holding portions 211 to 251 in the direction of the optical axis to communicate the spaces on the upper surface side and the lower surface side of the lens members 51 to 55 respectively. There is.
  • the inert gas discharge port 62 is formed in the flange area 61 other than the light extraction portion, After the inert gas supplied from the active gas supply port 32 into the barrel 2 flows downward through the barrel 2 to make the interior of the barrel 2 an inert gas atmosphere, the inert gas is discharged from the inert gas outlet 62. It spouts out of the lens barrel 2.
  • the flow rate of the inert gas (nitrogen gas) for suppressing the oxygen concentration in the barrel 2 to, for example, 10 ppm (volume ratio) or less while cooling the lamp is, for example, 25 L (liter) / min.
  • the lens members 51 to 55 constituting the optical system 5 and the light irradiation window 6 are made of, for example, a material that transmits light of 200 nm or less in order to use vacuum ultraviolet light efficiently. More preferably, the material has a transmittance of 80% or more for light with a wavelength of 200 nm.
  • those having properties are fluorides, and more specifically, for example, calcium fluoride (CaF 2 ), magnesium fluoride (MgF 2 ), and barium fluoride (BaF 2 ).
  • each lens barrel unit is described as having one lamp and one lens, but a plurality of these may be provided in one lens barrel.
  • the first lens barrel unit 21 is provided with the lamp 3 and the first lens member 51
  • the second lens barrel unit 22 is provided with the first lens member 51 and the second lens member 52. It is good also as composition.
  • FIG. 3 is a cross-sectional view (A) and a top view (B) in a direction orthogonal to the transport direction
  • FIG. 4 is a cross-sectional view (A) in a direction along the transport direction and a top view (B)
  • the plurality of light irradiation devices 1 are arranged such that the lens barrel 2 is held by a gantry 11 provided based on a frame such as an optical bench (not shown).
  • a work stage 12 is provided on the surface plate 10 so as to be movable in the horizontal direction (XY direction).
  • the work W is mounted on and supported by the upper surface of the work stage 12, and the work W can be rotated by providing a ⁇ rotation mechanism.
  • the mask 14 is exchangeably fixed to the mask stage 13 so that the position of the alignment mark (not shown) provided on the work matches the position of the alignment mark (not shown) provided on the mask 14
  • the position adjustment between the mask 14 and the work W is performed by moving the work stage 12 to
  • the mask 14 is formed, for example, by depositing a light shielding material such as chromium on a light transmitting substrate such as glass and etching the pattern to form an irradiation pattern including a light shielding portion and a light transmitting portion not provided with the light shielding portion.
  • a light shielding material such as chromium
  • a light transmitting substrate such as glass
  • etching the pattern to form an irradiation pattern including a light shielding portion and a light transmitting portion not provided with the light shielding portion.
  • binary masks, phase shift masks, etc. can
  • the mask stage 13 and the work stage 12 are integrally transported to the light irradiation apparatus 1, and the plurality of light irradiation apparatuses 1 are shown in FIGS. 3 (B) and 4 (B). Thus, they are arranged in a so-called zigzag shape as viewed in the transport direction S.
  • the light irradiation apparatus 1 is an example of three units in this example, it may be two units or four or more units in relation to the width of the work W.
  • the exposure apparatus of the present invention is a so-called scan type in which the work W is transported relative to the light irradiation device 1, and the light irradiation window at the lower end of the light irradiation device 1 is disposed close to the mask Will be present. Since the exposure apparatus of the present invention utilizes vacuum ultraviolet light of 200 nm or less, absorption occurs by oxygen present in the gap between the light irradiation window and the mask, but in order to suppress this absorption, a light irradiation apparatus At the lower end of the cover 1, a covering member 7 made of a plate material or a block material is provided, and is disposed in proximity to cover the mask 14 and the mask stage 13. Then, as shown in FIG.
  • the inert gas N jetted from the lower end surface of the lens barrel 2 is flowed along the mask 14 disposed in the vicinity below by the covering member 7, whereby the light irradiation window It is possible to effectively purge oxygen in the gap between the and the mask.
  • FIG. 6 An example of the light irradiation window 6 at the lower end face of the lens barrel 2 of the light irradiation device 1 used in the present invention is shown in FIG. 6, and it is square (A), rectangular (B), parallelogram (C), trapezoidal Examples of polygons such as (D) and hexagon (E) are shown. These polygons have a pair of sides parallel to one another.
  • An inert gas outlet 62 is formed around the light emitting window 6 in the flange region 61 other than the light extracting portion in such a light emitting window 6, and as described above, the housing of the light emitting device 1 The inert gas that has flowed down in the body 2 is ejected from the inert gas outlet 62.
  • FIG. 7 shows an example in which three light irradiation devices having square light irradiation windows 6 are arranged.
  • one side of the square light irradiation window 6 is arranged to be inclined without being orthogonal to the transport direction S.
  • the light irradiation devices 1 are disposed in a so-called zigzag shape, and in the plurality of light irradiation devices 1, in the light irradiation devices 1 adjacent to each other in the conveyance direction, a part of the light irradiation windows 6 is in the conveyance direction S It is arranged in an overlapping positional relationship.
  • the overlapping area Y is formed in the irradiation area of each light irradiation window 6, and the integrated light quantity of the overlapping area Y becomes equal to the integrated light quantity in the nonoverlapping area (non-overlapping area) Z.
  • the plurality of light irradiation devices 1 form an effective irradiation area X in which the integrated light amount is equalized in the transport direction S. Such a relationship is the same even when the number of light irradiation devices 1 is two or four or more.
  • FIG. 8 shows an example in which the light irradiation window 6 is other than a square, in which (A) is trapezoidal and (B) is hexagonal. In these examples, a pair of parallel sides are disposed orthogonal to the transport direction. In any of these examples, the respective light irradiation windows 6 are arranged such that a part thereof overlaps in the transport direction, whereby the overlapping portions Y are formed in the irradiation region by the respective light irradiation windows 6. The integrated light amount of the overlapping area Y is equal to the integrated light amount in the non-overlapping area Z. As a result, the formation of the effective irradiation area X is the same as in the embodiment of FIG.
  • a plurality of light irradiation apparatuses can be densely arranged in a narrow range, and the light irradiation of each light irradiation apparatus
  • the integrated illuminance can be made uniform in the irradiation area of the VUV parallel light from the light irradiation device, and a wide effective irradiation area can be formed. To achieve a large area.
  • the inert gas is sprayed to the mask from the lower end face of each light irradiation device, the inert gas is uniformly present on the mask, and the VUV light emitted from the light irradiation window reaches the mask. Damping is effectively suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Lens Barrels (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

[Problem] To provide an exposure device comprising light irradiation devices in which the interior of lens barrels is provided with short-arc flash lamps and converging mirrors that reflect the light from the lamps, and in which light irradiation windows are provided at the bottom of the lens barrels, wherein the size of the irradiation area is increased while preserving uniformity of illuminance distribution. [Solution] The present invention is characterized in that an optical system that parallelizes the light reflected from the converging mirrors is provided inside the lens barrels, the optical system comprises a plurality of lens members disposed in a straight line along the same light axis between the lamps and the light irradiation windows, the light irradiation devices are provided in plurality, a mask stage and a workpiece stage that are conveyed in an integrated manner are disposed below the plurality of light irradiation devices, those among the plurality of light irradiation devices that are adjacent as viewed from the conveying direction are disposed in a positional relationship such that some of the light irradiation windows overlap in the conveying direction, and effective irradiation regions are formed in which the cumulative light amounts are equivalent as viewed from the conveying direction.

Description

露光装置Exposure device
 この発明は露光装置に関するものであり、特に、ショートアークフラッシュランプからの真空紫外光を平行光として被処理物に照射して各種の処理を行う露光装置に係わるものである。 The present invention relates to an exposure apparatus, and more particularly to an exposure apparatus that performs various types of processing by irradiating vacuum ultraviolet light from a short arc flash lamp as parallel light onto an object to be processed.
 近年、波長200nm以下の真空紫外光(以下、VUVともいう)が様々な分野で用いられている。この波長帯の光を発光できるLEDは存在せず、放電ランプが光源として用いられている。例えば、フォトレジストによるパターン形成工程を用いずにVUVとマスクを用い、直接光で化学反応を引き起こして自己組織化単分子膜(以下、SAM膜)をパターニングする技術が開発されている。
 従来、このようなVUV光源としては、波長185nmに輝線を有する低圧水銀ランプが使用されてきた。しかしながら、最近では、より短波長の光、具体的には波長180nm以下のVUVが有効であるといわれることから、波長172nmの真空紫外光を放射するエキシマランプを光源とした開発も行われている。ところで、これらのランプから放射される光は発散光であるために、マスクを用いた微細な選択的表面改質(パターニング)には不向きであるとされ、解像可能なパターンサイズに限界があるといわれている。具体的に述べると、ラインパターンでは100μm程度が限界といわれている。
In recent years, vacuum ultraviolet light (hereinafter also referred to as VUV) having a wavelength of 200 nm or less is used in various fields. There is no LED capable of emitting light in this wavelength range, and a discharge lamp is used as a light source. For example, a technology has been developed in which a chemical reaction is caused by direct light to pattern a self-assembled monolayer (hereinafter, SAM film) using VUV and a mask without using a patterning process with a photoresist.
Heretofore, a low pressure mercury lamp having a bright line at a wavelength of 185 nm has been used as such a VUV light source. However, recently, since it is said that light of a shorter wavelength, specifically VUV of 180 nm or less in wavelength, is effective, development is also carried out using an excimer lamp emitting vacuum ultraviolet light of 172 nm in wavelength as a light source . By the way, since the light emitted from these lamps is diverging light, it is considered unsuitable for fine selective surface modification (patterning) using a mask, and there is a limit to the size of a resolvable pattern. It is said that. Specifically, in the line pattern, about 100 μm is said to be the limit.
 近時、より微細なパターニングに適した光源装置の開発が要請されており、このようなことから新規のVUV光源を用いた光照射装置について提案されていて、例えば、特開2016-192343号公報(特許文献1)にその構造が開示されている。
 図9にその概略構造が示されていて、ハウジング101内にショートアークフラッシュランプ102及び反射ミラー103を下方に光が照射されるように配し、下方には光透過窓104が設けられていて、ハウジングの内部を窒素で満たしている。
 反射ミラー103と光透過窓104との間には部材は配置されておらず、窓面において光はドーナツ状(円環状)の分布を示すので、その照度が高く均一である一部分にのみアパーチャ105を配置するものである。
In recent years, development of a light source device suitable for finer patterning has been required, and for this reason, a light irradiation device using a novel VUV light source has been proposed, for example, Japanese Patent Laid-Open No. 2016-192343 The structure is disclosed in (Patent Document 1).
The schematic structure is shown in FIG. 9, and a short arc flash lamp 102 and a reflection mirror 103 are disposed in the housing 101 so that light is emitted downward, and a light transmission window 104 is provided below the short arc flash lamp 102 and the reflection mirror 103. , The inside of the housing is filled with nitrogen.
No member is disposed between the reflection mirror 103 and the light transmission window 104, and the light has a donut shape (annular shape) distribution on the window surface, so the aperture 105 is limited to a portion where the illuminance is high and uniform. To place the
 この特許文献1記載の技術は、従来の発光長が長いランプ(エキシマランプ、低圧水銀ランプ)に替えて、発光長がより短いショートアークフラッシュランプを光源として採用するものである。このフラッシュランプから放射されたVUV光を、反射ミラーを用いて平行光(ないしは略平行光)として露光用光源としての光照射装置を構成するものである。 The technology described in Patent Document 1 adopts a short arc flash lamp with a shorter light emission length as a light source, in place of the conventional lamp with a long light emission length (excimer lamp, low pressure mercury lamp). The VUV light emitted from the flash lamp is converted into parallel light (or substantially parallel light) using a reflection mirror to constitute a light irradiation device as a light source for exposure.
 この従来技術によれば、ランプに反射ミラーとして放物面鏡を取り付け、レンズ等の光学系が無い状態で平行光を形成していた。しかしながら、ドーナツ状に放射される光の一部分のみを利用するものであるために、光利用効率が低かった。また、照射面での照度均一性も高くはなかった。 According to this prior art, a parabolic mirror is attached to a lamp as a reflection mirror, and parallel light is formed without an optical system such as a lens. However, the light utilization efficiency is low because only a part of the light emitted in a donut shape is used. In addition, the illuminance uniformity on the irradiated surface was not high.
特開2016-192343号公報JP, 2016-192343, A
 この発明が解決しようとする課題は、上記従来技術の問題点に鑑みて、鏡筒内に波長200nm以下の真空紫外光を放射するショートアークフラッシュランプおよび該ランプからの光を反射する集光鏡を備え、前記鏡筒の下部には光照射窓を備えてなる光照射装置を備えた露光装置において、照度分布の均一性を維持しつつ、照射面積の大面積化を実現した露光装置を提供することである。 The problem to be solved by the present invention is a short arc flash lamp emitting vacuum ultraviolet light having a wavelength of 200 nm or less into a lens barrel and a condensing mirror reflecting light from the lamp in view of the problems of the prior art. An exposure apparatus comprising: a light irradiation apparatus comprising a light irradiation window at the lower part of the lens barrel, the exposure apparatus realizing an increase in the irradiation area while maintaining the uniformity of the illuminance distribution. It is to be.
 上記課題を解決するために、この発明に係る露光装置では、前記光照射装置は、前記鏡筒内に、前記集光鏡によって反射された光を平行化する光学系を備え、該光学系は、前記ランプと前記光照射窓の間に同一光軸上に沿って直線状に配置された複数のレンズ部材からなるものであって、前記光照射装置が複数備えられるとともに、該光照射装置の下方には、一体的に搬送されるマスクステージとワークステージとが配置されていて、前記複数の光照射装置において、搬送方向にみて隣接する前記光照射装置は、その光照射窓の一部が搬送方向で重なり合うような位置関係に配置されていて、搬送方向にみて積算光量が均しくなる有効照射領域が形成されていることを特徴とする。 In order to solve the above problems, in the exposure apparatus according to the present invention, the light irradiation apparatus includes, in the lens barrel, an optical system that collimates the light reflected by the condensing mirror, and the optical system is A plurality of lens members disposed linearly along the same optical axis between the lamp and the light irradiation window, and a plurality of the light irradiation devices are provided; A mask stage and a work stage, which are integrally transported below, are disposed, and in the plurality of light irradiators, a part of the light irradiance window of the light irradiators adjacent in the transport direction is It is characterized in that it is disposed in a positional relationship such that it overlaps in the transport direction, and an effective irradiation area is formed in which the integrated light amount is equalized in the transport direction.
 また、前記光照射窓は平行な一対の辺を有する多角形であることを特徴とする。
 また、前記光照射窓が直角四辺形であって、その一辺が搬送方向に対し傾斜していることを特徴とする。
 また、前記光照射装置における前記鏡筒の内部は不活性ガスで充填されており、該鏡筒の下端面には不活性ガス排出口が設けられていて、前記光照射窓の周辺から前記マスクステージ上のマスクに向かって不活性ガスが吹き付けられることを特徴とする。
In addition, the light irradiation window is a polygon having a pair of parallel sides.
Further, the invention is characterized in that the light irradiation window is a right angle quadrilateral, and one side thereof is inclined to the transport direction.
The interior of the lens barrel in the light irradiation device is filled with an inert gas, and an inert gas outlet is provided on the lower end surface of the lens barrel, and the mask is viewed from the periphery of the light irradiation window. An inert gas is blown toward the mask on the stage.
 この発明のショートアークフラッシュランプを有する光照射装置を複数用いた露光装置によれば、複数の光照射装置を狭い範囲で密集して配置でき、該光照射装置からのVUV平行光の照射領域での積算照度の均一化が図られ、照射面積の大面積化が図られるものである。
 また、各光照射装置の下端面から不活性ガスをマスクに対して吹き付けるので、マスク上で不活性ガスが均一に存在して、光照射窓から出射したVUV光がマスクに至るまでの間での減衰が効果的に抑制される。
According to the exposure apparatus using a plurality of light irradiators having the short arc flash lamp of the present invention, a plurality of light irradiators can be densely arranged in a narrow range, and in the irradiation region of VUV parallel light from the light irradiators The integrated illuminance of the present invention can be made uniform, and the irradiation area can be enlarged.
In addition, since the inert gas is sprayed to the mask from the lower end face of each light irradiation device, the inert gas is uniformly present on the mask, and the VUV light emitted from the light irradiation window reaches the mask. Damping is effectively suppressed.
本発明に用いられる光照射装置の断面図。Sectional drawing of the light irradiation apparatus used for this invention. 光照射装置におけるショートアーク型フラッシュランプの断面図。Sectional drawing of the short arc type flash lamp in light irradiation apparatus. 本発明の露光装置の搬送方向に対する直交方向の断面図(A)と     その上面図(B)。Sectional drawing (A) and top view (B) of the orthogonal direction with respect to the conveyance direction of the exposure apparatus of this invention. 本発明の露光装置の搬送方向の断面図(A)とその上面図(B)。Sectional drawing (A) of the conveyance direction of exposure apparatus of this invention, and its top view (B). 本発明の露光装置の部分拡大断面図。The partially expanded sectional view of the exposure apparatus of this invention. 光照射装置の下面図。The bottom view of light irradiation equipment. 光照射装置の配置図の一例。An example of arrangement | positioning figure of light irradiation apparatus. 他の配置図の例。Example of another layout. 従来の光照射装置の断面図。Sectional drawing of the conventional light irradiation apparatus.
 図1は本発明の露光装置に用いられるショートアークフラッシュランプを用いた光照射装置の全体を表すものである。
 図1において、本発明に用いられる光照射装置1は、鏡筒2と、その内部に設けられたショートアークフラシュランプ3と、これを取り囲む集光鏡4と、光学系5と、最下部に設けられた光照射窓6とを備えている。
 鏡筒2は、複数の鏡筒ユニット20~25からなり、これら各鏡筒ユニットにはそれぞれランプ3や、光学系5を構成する複数のレンズ部材51~55が保持されている。
 この光学系5は、ランプ3から出射され集光鏡4で反射された光を、平行化し照度を均一化するためのものであって、例えば、第1のレンズ部材(両凹レンズ)51、第2のレンズ部材(平凸レンズ)52、第3のレンズ部材(インテグレータレンズ)53、第4のレンズ部材(凸メニスカスレンズ)54および第5のレンズ部材(両凸レンズ)55から構成されている。
FIG. 1 shows the whole of a light irradiation apparatus using a short arc flash lamp used in the exposure apparatus of the present invention.
In FIG. 1, a light irradiation device 1 used in the present invention includes a lens barrel 2, a short arc flash lamp 3 provided therein, a condenser mirror 4 surrounding the same, an optical system 5, and a lowermost portion. And a light irradiation window 6 provided.
The lens barrel 2 is composed of a plurality of lens barrel units 20 to 25. The lamp 3 and a plurality of lens members 51 to 55 constituting the optical system 5 are held in each of the lens barrel units.
The optical system 5 is for collimating the light emitted from the lamp 3 and reflected by the condenser mirror 4 to equalize the illuminance, and, for example, the first lens member (bi-concave lens) 51, The second lens member (plano-convex lens) 52, the third lens member (integrator lens) 53, the fourth lens member (convex meniscus lens) 54, and the fifth lens member (biconvex lens) 55 are provided.
 最上部に位置するランプ鏡筒ユニット20には、ランプ3および集光鏡4が保持されている。ここで用いられるランプ3はショートアークフラシュランプであり、図2にその概要構造が示されている。
 このショートアークフラッシュランプ3は、発光空間を形成する発光管301と、その発光管301の一端に連続して管軸方向に沿って外方に延びる第1封止管302と、他端に連続して管軸方向に沿って外方に延びる第2封止管303を有していて、前記第2封止管303には封止用ガラス管304が挿入されており、その重なり領域において両者は溶着されている。
The lamp 3 and the focusing mirror 4 are held by the lamp barrel unit 20 located at the top. The lamp 3 used here is a short arc flash lamp, and its outline structure is shown in FIG.
The short arc flash lamp 3 includes a light emitting tube 301 forming a light emitting space, a first sealing tube 302 continuously extending to one end of the light emitting tube 301 and extending outward along the tube axis, And a second sealing tube 303 extending outward along the tube axis direction, and a sealing glass tube 304 is inserted in the second sealing tube 303, and both overlap in the overlapping region. Is welded.
 前記発光管301内には、一対の第1主電極305と第2主電極306とが対向配置されている。前記第1主電極305は、その芯線307が第1封止管302に段継ガラスなどの手段により封着されて外方に気密に導出されており、一方、前記第2主電極306は、その芯線308が前記封止用ガラス管304に段継ガラスなどの手段により封着されて外方に気密に導出されている。 In the light emitting tube 301, a pair of first main electrodes 305 and a second main electrode 306 are disposed opposite to each other. The core wire 307 of the first main electrode 305 is sealed to the first sealing tube 302 by means of stepped glass or the like, and the first main electrode 305 is airtightly drawn outward, while the second main electrode 306 is The core wire 308 is sealed to the sealing glass tube 304 by means of stepped glass and the like, and is drawn airtightly outward.
 そして、前記発光管301内の一対の主電極305、306の間には、一対の第1始動補助電極310と第2始動補助電極311が配設されていて、それぞれの内部リード312、315と外部リード313、316とが、前記第2封止管303と封止用ガラス管304との間の溶着領域において、金属箔314、317を介して電気的に接続されている。 A pair of first start auxiliary electrodes 310 and a second start auxiliary electrode 311 are disposed between the pair of main electrodes 305 and 306 in the light emitting tube 301, and the respective internal leads 312 and 315 External leads 313 and 316 are electrically connected via metal foils 314 and 317 in the welding area between the second sealing tube 303 and the sealing glass tube 304.
 前記始動補助電極310、311の外部リード313、316が導出される側にある第2封止管303にはアルミニウム製などの口金320が固定されている。この口金320と第2封止管303との間の空隙には、第1の接着剤321が充填され、仕切り部材323を介して、口金320と封止用ガラス管304との間の空隙には第2の接着剤322が充填されている。
 この第2の接着剤322中には、第2封止管303から導出された外部リード313、316が埋設され、口金320の後方から外部に導出されている。この外部リード313、316は、その後方部において絶縁性の被覆材313a、316aによって被覆されている。
 なお、このようなショートアークフラシュランプ3の詳細は、特開2016-131135号公報に開示されている。
A base 320 made of aluminum or the like is fixed to the second sealing pipe 303 on the side from which the external leads 313, 316 of the starting auxiliary electrodes 310, 311 are led out. The first adhesive 321 is filled in the space between the base 320 and the second sealing tube 303, and the space between the base 320 and the sealing glass tube 304 is filled with the first adhesive 321 through the partition member 323. Is filled with a second adhesive 322.
In the second adhesive 322, the external leads 313, 316 drawn from the second sealing tube 303 are embedded, and are drawn from the rear of the mouthpiece 320 to the outside. The outer leads 313, 316 are covered at the rear with insulating coverings 313a, 316a.
The details of such a short arc flash lamp 3 are disclosed in JP-A-2016-131135.
 前記鏡筒2は、細長い筒状をなし、例えば、アルミニウムを切削した円筒状部材によって構成されている。この鏡筒2は、複数の鏡筒ユニット20~25からなり、最上部に位置する鏡筒ユニットは、内部にランプ3を収容保持するランプ鏡筒ユニット20を構成している。そして、このランプ鏡筒ユニット20内には、ランプ3を取り囲むように集光鏡4が設けられていて、この集光鏡4は、例えば楕円集光鏡である。 The lens barrel 2 has an elongated cylindrical shape, and is formed of, for example, a cylindrical member obtained by cutting aluminum. The lens barrel 2 is composed of a plurality of lens barrel units 20 to 25. The lens barrel unit located at the top constitutes a lamp lens barrel unit 20 for housing and holding the lamp 3 therein. And in this lamp barrel unit 20, the condensing mirror 4 is provided so that the lamp 3 may be surrounded, and this condensing mirror 4 is an elliptical condensing mirror, for example.
 ランプ3の口金320は、ランプ保持部材31によってランプ鏡筒ユニット20の上部に保持されており、このランプ保持部材31には、鏡筒2内に開口する不活性ガス供給口32が形成されていて、不活性ガス供給管33が接続され、窒素(N)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)などの不活性ガスが供給される。
 不活性ガス供給管33から不活性ガス供給口32を経てランプ鏡筒ユニット20内に供給される不活性ガスは、集光鏡4とランプ3の間隙からランプに沿って下方に流下して、ランプ3を冷却し、更に下方に流れていく。
The base 320 of the lamp 3 is held on the upper portion of the lamp barrel unit 20 by the lamp holding member 31. The lamp holding member 31 is formed with an inert gas supply port 32 opened in the lens barrel 2. The inert gas supply pipe 33 is connected to supply an inert gas such as nitrogen (N 2 ), neon (Ne), argon (Ar) or krypton (Kr).
The inert gas supplied into the lamp barrel unit 20 from the inert gas supply pipe 33 through the inert gas supply port 32 flows down along the lamp from the gap between the condenser mirror 4 and the lamp 3, The lamp 3 is cooled and flows further downward.
 ランプ鏡筒ユニット20の下方には、複数のレンズ鏡筒ユニット21~25が設けられていて、これらレンズ鏡筒ユニット21~25には、前記ランプ3から出射されて集光鏡4によって反射された光を平行化し、また、照度を均一化する光学系5を構成する複数のレンズ部材51~55がそれぞれ保持されている。
 つまり、第1のレンズ鏡筒ユニット21には第1のレンズ部材(両凹レンズ)51が、第2のレンズ鏡筒ユニット22には第2のレンズ部材(平凸レンズ)52が、第3のレンズ鏡筒ユニット23には第3のレンズ部材(インテグレータレンズ)53が、第4のレンズ鏡筒ユニット24には第4のレンズ部材(凸メニスカスレンズ)54が、そして、第5のレンズ鏡筒ユニット25には第5のレンズ部材(両凸レンズ)55が、それぞれ保持されている。
 そして、最下部に位置する第5のレンズ鏡筒ユニット25の下端には、光照射窓6が設けられている。
 なお、第1~第5のレンズの選択及び組合せは、目的とする平行度及び照度均一性に合わせて適宜選択可能である。
Below the lamp barrel unit 20, a plurality of lens barrel units 21 to 25 are provided, and the lens barrel units 21 to 25 are emitted from the lamp 3 and reflected by the condenser mirror 4 A plurality of lens members 51 to 55 constituting the optical system 5 for collimating the emitted light and making the illuminance uniform are respectively held.
That is, the first lens member (bi-concave lens) 51 is used for the first lens barrel unit 21, the second lens member (plano-convex lens) 52 is used for the second lens barrel unit 22, and the third lens. The lens barrel unit 23 has a third lens member (integrator lens) 53, the fourth lens barrel unit 24 has a fourth lens member (convex meniscus lens) 54, and the fifth lens barrel unit The fifth lens member (biconvex lens) 55 is held at 25 respectively.
A light irradiation window 6 is provided at the lower end of the fifth lens barrel unit 25 located at the lowermost part.
The selection and combination of the first to fifth lenses can be appropriately selected in accordance with the intended parallelism and illuminance uniformity.
 こうして、ランプ鏡筒ユニット20と複数のレンズ鏡筒ユニット21~25を組み合わせることで鏡筒2が構成され、その内部に設けられた第1~第5のレンズ部材51~55は、ランプ3と光照射窓6の間に同一光軸OA上に沿って直線状に配置された光学系5を構成する。 Thus, the lens barrel 2 is configured by combining the lamp barrel unit 20 and the plurality of lens barrel units 21 to 25, and the first to fifth lens members 51 to 55 provided therein are the lamp 3 and An optical system 5 is linearly arranged along the same optical axis OA between the light irradiation windows 6.
 各レンズ鏡筒ユニット21~25にはレンズ保持部211~251が形成されていて、それぞれ、第1~第5のレンズ部材51~55を保持している。このレンズ保持部は、レンズ鏡筒ユニットを切削加工して段部として内側に突出するフランジ部で構成することができる。
 そして、このレンズ保持部211~251には、これらを光軸方向に貫通する通気孔212~252がそれぞれ形成されていて、各レンズ部材51~55の上面側と下面側の空間を連通している。
Lens holding portions 211 to 251 are formed in each of the lens barrel units 21 to 25 and hold the first to fifth lens members 51 to 55, respectively. The lens holding portion can be constituted by a flange portion which is cut in the lens barrel unit and protrudes inward as a step portion.
Further, air vents 212 to 252 are formed in the lens holding portions 211 to 251 in the direction of the optical axis to communicate the spaces on the upper surface side and the lower surface side of the lens members 51 to 55 respectively. There is.
 そして、最下段に位置する第5のレンズ鏡筒ユニット25の下端に設けられた光照射窓6における、光取り出し部以外のフランジ領域61に、不活性ガス排出口62が形成されていて、不活性ガス供給口32から鏡筒2内に供給された不活性ガスが、鏡筒2内を下方に流れて該鏡筒2内を不活性ガス雰囲気とした後に、この不活性ガス排出口62から鏡筒2外に噴出される。
 このように、ランプを冷却しつつ、鏡筒2内の酸素濃度を例えば10ppm(体積比)以下に抑える不活性ガス(窒素ガス)の流量は、例えば、25L(リットル)/minである。
In the light irradiation window 6 provided at the lower end of the fifth lens barrel unit 25 positioned at the lowermost stage, the inert gas discharge port 62 is formed in the flange area 61 other than the light extraction portion, After the inert gas supplied from the active gas supply port 32 into the barrel 2 flows downward through the barrel 2 to make the interior of the barrel 2 an inert gas atmosphere, the inert gas is discharged from the inert gas outlet 62. It spouts out of the lens barrel 2.
Thus, the flow rate of the inert gas (nitrogen gas) for suppressing the oxygen concentration in the barrel 2 to, for example, 10 ppm (volume ratio) or less while cooling the lamp is, for example, 25 L (liter) / min.
 また、光学系5を構成するレンズ部材51~55や、光照射窓6は、真空紫外光を効率よく利用するために、例えば200nm以下の光を透過する材料によって構成されている。
 さらに好ましくは波長200nmの光の透過率が80%以上の材料で構成されている。具体的にそれらの性質を有するのはフッ化物であり、さらに具体的には例えばフッ化カルシウム(CaF)、フッ化マグネシウム(MgF)、フッ化バリウム(BaF)である。
Further, the lens members 51 to 55 constituting the optical system 5 and the light irradiation window 6 are made of, for example, a material that transmits light of 200 nm or less in order to use vacuum ultraviolet light efficiently.
More preferably, the material has a transmittance of 80% or more for light with a wavelength of 200 nm. Specifically, those having properties are fluorides, and more specifically, for example, calcium fluoride (CaF 2 ), magnesium fluoride (MgF 2 ), and barium fluoride (BaF 2 ).
 ところで、上記実施例では、各鏡筒ユニットには、ランプやレンズが1つずつ設けられたものとして説明したが、一つの鏡筒にこれらが複数設けられるものであってもよい。例えば、前記第1の鏡筒ユニット21にランプ3と第1のレンズ部材51が設けられ、あるいは、第2の鏡筒ユニット22に第1のレンズ部材51と第2のレンズ部材52が設けられる構成としてもよい。 By the way, in the above embodiment, each lens barrel unit is described as having one lamp and one lens, but a plurality of these may be provided in one lens barrel. For example, the first lens barrel unit 21 is provided with the lamp 3 and the first lens member 51, or the second lens barrel unit 22 is provided with the first lens member 51 and the second lens member 52. It is good also as composition.
 図3以下にこのような光照射装置を用いた露光装置の例が示されている。
 図3は、搬送方向に直交する方向の断面図(A)とその上面図(B)であり、図4は搬送方向に沿った方向の断面図(A)とその上面図(B)である。
 図3、4に示すように、複数の光照射装置1が、不図示の光学ベンチ等のフレームを基礎として設けられる架台11によって鏡筒2が保持されて配置される。定盤10上にはワークステージ12が、水平方向(XY方向)に移動可能に設けられている。このワークステージ12の上面にはワークWが載置支持されており、θ回転機構を設けてワークWを回転可能としている。
 一方、マスク14はマスクステージ13に交換可能に固定されており、マスク14に設けられたアライメントマーク(不図示)の位置に対し、ワークに設けられたアライメントマーク(不図示)の位置が合うようにワークステージ12を移動させることにより、マスク14とワークWとの位置調整を行う。
 マスク14は、例えば、ガラス等の光透過性基板上にクロム等の遮光材を蒸着後、パターンをエッチングし、遮光部と該遮光部が設けられていない透光部とを含む照射パターンを形成したものである。例えば、バイナリーマスク、位相シフトマスクなどを使用することができる。また、金属等の遮光性基板に対して透光部である開口部がパターン状に設けられたメタルマスクを使用することもできる。
The example of the exposure apparatus using such a light irradiation apparatus is shown by FIG. 3 or less.
FIG. 3 is a cross-sectional view (A) and a top view (B) in a direction orthogonal to the transport direction, and FIG. 4 is a cross-sectional view (A) in a direction along the transport direction and a top view (B) .
As shown in FIGS. 3 and 4, the plurality of light irradiation devices 1 are arranged such that the lens barrel 2 is held by a gantry 11 provided based on a frame such as an optical bench (not shown). A work stage 12 is provided on the surface plate 10 so as to be movable in the horizontal direction (XY direction). The work W is mounted on and supported by the upper surface of the work stage 12, and the work W can be rotated by providing a θ rotation mechanism.
On the other hand, the mask 14 is exchangeably fixed to the mask stage 13 so that the position of the alignment mark (not shown) provided on the work matches the position of the alignment mark (not shown) provided on the mask 14 The position adjustment between the mask 14 and the work W is performed by moving the work stage 12 to
The mask 14 is formed, for example, by depositing a light shielding material such as chromium on a light transmitting substrate such as glass and etching the pattern to form an irradiation pattern including a light shielding portion and a light transmitting portion not provided with the light shielding portion. It is For example, binary masks, phase shift masks, etc. can be used. Further, it is also possible to use a metal mask in which openings, which are light transmitting portions, are provided in a pattern on a light shielding substrate such as metal.
 このマスクステージ13とワークステージ12とは一体的に、前記光照射装置1に対して搬送されるものであり、複数の光照射装置1は、図3(B)、図4(B)に示すように、搬送方向Sにみていわゆる千鳥状に配置されている。なお、この例では、光照射装置1は3台の例であるが、ワークWの幅との関係で、2台であっても、あるいは4台以上であってもよい。 The mask stage 13 and the work stage 12 are integrally transported to the light irradiation apparatus 1, and the plurality of light irradiation apparatuses 1 are shown in FIGS. 3 (B) and 4 (B). Thus, they are arranged in a so-called zigzag shape as viewed in the transport direction S. In addition, although the light irradiation apparatus 1 is an example of three units in this example, it may be two units or four or more units in relation to the width of the work W.
 本発明の露光装置では、ワークWが光照射装置1に対して搬送される、いわゆる、スキャンタイプであり、光照射装置1の下端の光照射窓はマスク14に近接配置するが、一定の間隙が存在することになる。
 本発明の露光装置は200nm以下の真空紫外光を利用するものであるので、光照射窓とマスクの間の間隙に存在する酸素によって吸収が生じるが、この吸収を抑制するために、光照射装置1の下端には、板材もしくはブロック材などからなる被覆部材7が設けられていて、マスク14およびマスクステージ13上を覆うように近接配置される。
 そして、図5に示すように、鏡筒2の下端面から噴出する不活性ガスNは、この被覆部材7によって、下方に近接配置されたマスク14に沿うように流され、これによって光照射窓とマスクの間の間隙の酸素を効果的にパージすることができるものである。
The exposure apparatus of the present invention is a so-called scan type in which the work W is transported relative to the light irradiation device 1, and the light irradiation window at the lower end of the light irradiation device 1 is disposed close to the mask Will be present.
Since the exposure apparatus of the present invention utilizes vacuum ultraviolet light of 200 nm or less, absorption occurs by oxygen present in the gap between the light irradiation window and the mask, but in order to suppress this absorption, a light irradiation apparatus At the lower end of the cover 1, a covering member 7 made of a plate material or a block material is provided, and is disposed in proximity to cover the mask 14 and the mask stage 13.
Then, as shown in FIG. 5, the inert gas N jetted from the lower end surface of the lens barrel 2 is flowed along the mask 14 disposed in the vicinity below by the covering member 7, whereby the light irradiation window It is possible to effectively purge oxygen in the gap between the and the mask.
 図6に本発明に用いられる光照射装置1の鏡筒2の下端面の光照射窓6の例が示されていて、正方形(A)、長方形(B)、平行四辺形(C)、台形(D)、六角形(E)等の多角形の例が示されている。これら多角形は、いずれかに平行する一対の辺を有するものである。
 このような光照射窓6における、光取り出し部以外のフランジ領域61に、当該光出射窓6の周囲に不活性ガス排出口62が形成されていて、前述したように、光照射装置1の筐体2内を流下した不活性ガスは、この不活性ガス排出口62から噴出する。
An example of the light irradiation window 6 at the lower end face of the lens barrel 2 of the light irradiation device 1 used in the present invention is shown in FIG. 6, and it is square (A), rectangular (B), parallelogram (C), trapezoidal Examples of polygons such as (D) and hexagon (E) are shown. These polygons have a pair of sides parallel to one another.
An inert gas outlet 62 is formed around the light emitting window 6 in the flange region 61 other than the light extracting portion in such a light emitting window 6, and as described above, the housing of the light emitting device 1 The inert gas that has flowed down in the body 2 is ejected from the inert gas outlet 62.
 図7に、正方形状の光照射窓6を有する光照射装置が3台配置された例が示されている。
 この実施例の場合、正方形の光照射窓6は、その一辺が、搬送方向Sに対して直交することなく、傾斜して配置される。そして、これら光照射装置1は、いわゆる千鳥状に配置され、複数の光照射装置1において、搬送方向にみて隣接する光照射装置1は、その光照射窓6の一部が、搬送方向Sで重なり合うような位置関係に配置されている。
 こうすることで、各光照射窓6の照射領域には、重畳領域Yが形成され、この重畳領域Yの積算光量は、重ならない領域(非重畳領域)Zでの積算光量と等しくなる。これにより、複数の光照射装置1によって、搬送方向Sにみて積算光量が均しくなる有効照射領域Xが形成される。
 このような関係は、光照射装置1が2台の場合、あるいは、4台以上の場合でも同様である。
FIG. 7 shows an example in which three light irradiation devices having square light irradiation windows 6 are arranged.
In the case of this embodiment, one side of the square light irradiation window 6 is arranged to be inclined without being orthogonal to the transport direction S. The light irradiation devices 1 are disposed in a so-called zigzag shape, and in the plurality of light irradiation devices 1, in the light irradiation devices 1 adjacent to each other in the conveyance direction, a part of the light irradiation windows 6 is in the conveyance direction S It is arranged in an overlapping positional relationship.
By doing this, the overlapping area Y is formed in the irradiation area of each light irradiation window 6, and the integrated light quantity of the overlapping area Y becomes equal to the integrated light quantity in the nonoverlapping area (non-overlapping area) Z. As a result, the plurality of light irradiation devices 1 form an effective irradiation area X in which the integrated light amount is equalized in the transport direction S.
Such a relationship is the same even when the number of light irradiation devices 1 is two or four or more.
 図8には、光照射窓6が四角形以外の例が示され、(A)は台形であり、(B)は六角形である。
 これらの例の場合、平行する一対の辺は、搬送方向に対して直交して配置される。
 このいずれの例においても、各光照射窓6はその一部が搬送方向で重なり合うように配置されていて、これにより、各光照射窓6によって、照射領域には、重畳部分Yが形成されて、この重畳領域Yの積算光量は、非重畳領域Zでの積算光量と等しくなる。これにより、有効照射領域Xが形成されることは、図7の実施例と同様である。
FIG. 8 shows an example in which the light irradiation window 6 is other than a square, in which (A) is trapezoidal and (B) is hexagonal.
In these examples, a pair of parallel sides are disposed orthogonal to the transport direction.
In any of these examples, the respective light irradiation windows 6 are arranged such that a part thereof overlaps in the transport direction, whereby the overlapping portions Y are formed in the irradiation region by the respective light irradiation windows 6. The integrated light amount of the overlapping area Y is equal to the integrated light amount in the non-overlapping area Z. As a result, the formation of the effective irradiation area X is the same as in the embodiment of FIG.
 以上説明したように、本発明に係るショートアークフラッシュランプを有する光照射装置を用いた露光装置では、複数の光照射装置を狭い範囲で密集して配置でき、しかも、各光照射装置の光照射窓の一部を搬送方向で重なり合うように配置することで、該光照射装置からのVUV平行光の照射領域での積算照度の均一化が図られ、幅広の有効照射領域が形成でき、照射面積の大面積化が図られるものである。
 また、各光照射装置の下端面から不活性ガスをマスクに対して吹き付けるので、マスク上で不活性ガスが均一に存在して、光照射窓から出射したVUV光がマスクに至るまでの間での減衰が効果的に抑制される。
As described above, in the exposure apparatus using the light irradiation apparatus having the short arc flash lamp according to the present invention, a plurality of light irradiation apparatuses can be densely arranged in a narrow range, and the light irradiation of each light irradiation apparatus By arranging a part of the windows so as to overlap in the transport direction, the integrated illuminance can be made uniform in the irradiation area of the VUV parallel light from the light irradiation device, and a wide effective irradiation area can be formed. To achieve a large area.
In addition, since the inert gas is sprayed to the mask from the lower end face of each light irradiation device, the inert gas is uniformly present on the mask, and the VUV light emitted from the light irradiation window reaches the mask. Damping is effectively suppressed.
  1     光照射装置
  2     鏡筒
  20    ランプ鏡筒ユニット
  21~25 第1~第5のレンズ鏡筒ユニット
  211~251 レンズ保持部
  212~252 通気孔
  3     ショートアークフラッシュランプ
  32    不活性ガス供給口
  4     集光鏡
  5     光学系
  51~55 第1~第5のレンズ部材
  6     光照射窓
  62    不活性ガス排出口
  7     被覆部材
  12    ワークステージ
  13    マスクステージ
  14    マスク
  W     ワーク
  X     有効照射領域
  Y     重畳領域
  X     非重畳領域
 
 
 
DESCRIPTION OF SYMBOLS 1 light irradiation apparatus 2 lens-barrel 20 lamp-barrel unit 21-25 1st-5th lens-barrel unit 211-251 lens holding part 212-252 air hole 3 short arc flash lamp 32 inert gas supply port 4 condensing Mirror 5 Optical system 51 to 55 First to fifth lens members 6 Light irradiation window 62 Inert gas outlet 7 Coating member 12 Work stage 13 Mask stage 14 Mask W Work X Effective irradiation area Y Superposition area X Non-superimposition area

Claims (4)

  1.  鏡筒内に波長200nm以下の真空紫外光を放射するショートアークフラッシュランプおよび該ランプからの光を反射する集光鏡を備え、前記鏡筒の下部には光照射窓を有する光照射装置を備えた露光装置であって、
     前記光照射装置は、前記鏡筒内に、前記集光鏡によって反射された光を平行化する光学系を備え、該光学系は、前記ランプと前記光照射窓の間に同一光軸上に沿って直線状に配置された複数のレンズ部材からなるものであって、
     前記光照射装置が複数備えられるとともに、該光照射装置の下方には、一体的に搬送されるマスクステージとワークステージとが配置されていて、
     前記複数の光照射装置において、搬送方向にみて隣接する前記光照射装置は、その光照射窓の一部が搬送方向で重なり合うような位置関係に配置されていて、搬送方向にみて積算光量が均しくなる有効照射領域が形成されていることを特徴とする露光装置。
    The lens barrel includes a short arc flash lamp that emits vacuum ultraviolet light having a wavelength of 200 nm or less and a focusing mirror that reflects light from the lamp, and a light irradiation device having a light irradiation window is provided below the lens barrel. Exposure apparatus, and
    The light irradiation apparatus includes an optical system for collimating the light reflected by the condensing mirror in the lens barrel, and the optical system is on the same optical axis between the lamp and the light irradiation window. Comprising a plurality of lens members arranged linearly along the
    A plurality of the light irradiation devices are provided, and a mask stage and a work stage, which are integrally transported, are disposed below the light irradiation devices,
    In the plurality of light irradiators, the light irradiators adjacent to each other in the transport direction are disposed in such a positional relationship that a part of the light irradiation windows overlap in the transport direction, and the integrated light amount is equal in the transport direction. An exposure apparatus characterized in that an effective irradiation area which makes it difficult is formed.
  2.  前記光照射窓は平行な一対の辺を有する多角形であることを特徴とする請求項1に記載の露光装置。 The exposure apparatus according to claim 1, wherein the light irradiation window is a polygon having a pair of parallel sides.
  3.  前記光照射窓が直角四辺形であって、その一辺が搬送方向に対し傾斜していることを特徴とする請求項2に記載の露光装置。 The exposure apparatus according to claim 2, wherein the light irradiation window is a rectangular quadrilateral, and one side thereof is inclined with respect to the transport direction.
  4.  前記光照射装置における前記鏡筒の内部は不活性ガスで充填されており、該鏡筒の下端面には不活性ガス排出口が設けられていて、前記光照射窓の周辺から前記マスクステージ上のマスクに向かって不活性ガスが吹き付けられることを特徴とする請求項1~3のいずれかに記載の露光装置。
     
     
     
    The interior of the lens barrel in the light irradiation apparatus is filled with an inert gas, and an inert gas outlet is provided on the lower end surface of the lens barrel, and the mask stage is mounted on the periphery of the light irradiation window. The exposure apparatus according to any one of claims 1 to 3, wherein an inert gas is blown toward the mask of (4).


PCT/JP2018/022089 2017-07-26 2018-06-08 Exposure device WO2019021651A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017144717A JP6562316B2 (en) 2017-07-26 2017-07-26 Exposure equipment
JP2017-144717 2017-07-26

Publications (1)

Publication Number Publication Date
WO2019021651A1 true WO2019021651A1 (en) 2019-01-31

Family

ID=65039616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022089 WO2019021651A1 (en) 2017-07-26 2018-06-08 Exposure device

Country Status (2)

Country Link
JP (1) JP6562316B2 (en)
WO (1) WO2019021651A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199800A (en) * 1997-01-09 1998-07-31 Nikon Corp Illumination optical device equipped with optical integrator
WO2009093553A1 (en) * 2008-01-21 2009-07-30 Nikon Corporation Illuminating apparatus, exposure apparatus, exposure method and device manufacturing method
JP2011119594A (en) * 2009-12-07 2011-06-16 Nsk Ltd Proximity exposure device and proximity exposure method
JP2014235965A (en) * 2013-06-05 2014-12-15 ウシオ電機株式会社 Light-source device, light-irradiation device equipped with light-source device, and method for patterning of self-structuring monomolecular film by use of light-irradiation device
JP2015126044A (en) * 2013-12-26 2015-07-06 ウシオ電機株式会社 Vacuum-ultraviolet light irradiation processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199800A (en) * 1997-01-09 1998-07-31 Nikon Corp Illumination optical device equipped with optical integrator
WO2009093553A1 (en) * 2008-01-21 2009-07-30 Nikon Corporation Illuminating apparatus, exposure apparatus, exposure method and device manufacturing method
JP2011119594A (en) * 2009-12-07 2011-06-16 Nsk Ltd Proximity exposure device and proximity exposure method
JP2014235965A (en) * 2013-06-05 2014-12-15 ウシオ電機株式会社 Light-source device, light-irradiation device equipped with light-source device, and method for patterning of self-structuring monomolecular film by use of light-irradiation device
JP2015126044A (en) * 2013-12-26 2015-07-06 ウシオ電機株式会社 Vacuum-ultraviolet light irradiation processing apparatus

Also Published As

Publication number Publication date
JP6562316B2 (en) 2019-08-21
JP2019028144A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US7050149B2 (en) Exposure apparatus and exposure method
US6379024B1 (en) Dielectric barrier excimer lamp and ultraviolet light beam irradiating apparatus with the lamp
US7061573B2 (en) Contamination prevention in optical system
US6919573B2 (en) Method and apparatus for recycling gases used in a lithography tool
US7988312B2 (en) Light source apparatus with reflector gas-blasting structure
WO2016009624A1 (en) Vacuum ultraviolet light source device, light irradiation device and method for patterning self-assembled monomolecular film
TWI480681B (en) Light processing device and light processing method
JP6217146B2 (en) Light source device, light irradiation device equipped with the light source device, and patterning method of self-assembled monolayer using the light irradiation device
JP6197641B2 (en) Vacuum ultraviolet irradiation treatment equipment
US20170338620A1 (en) Laser device
TWI519903B (en) Ultraviolet lithography apparatus and patterning methods
JP2008279396A (en) Ultraviolet irradiation device
JP6201707B2 (en) UV irradiation equipment
WO2019021651A1 (en) Exposure device
WO2003105203A1 (en) Exposure system and exposure method
JP2018155982A (en) Light irradiation device and exposure device therewith
WO2020153184A1 (en) Patterning device
JP6398839B2 (en) Light source device
JP6590252B2 (en) Exposure equipment
CN112823314A (en) Photoresist-free lithography, photofabrication tool and method using VUV or deep UV lamp
JPWO2005083759A1 (en) Exposure apparatus and method for manufacturing device having fine pattern
JP3552818B2 (en) Method and apparatus for manufacturing panel substrate for plasma display
JP2005183624A (en) Lens barrel, aligner and method of manufacturing device
JP2018198119A (en) Laser drive light source device and exposure device
KR20050019118A (en) Exposure system and exposure method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837497

Country of ref document: EP

Kind code of ref document: A1