WO2019021478A1 - Soundproof structure, vehicle component, and automobile - Google Patents
Soundproof structure, vehicle component, and automobile Download PDFInfo
- Publication number
- WO2019021478A1 WO2019021478A1 PCT/JP2017/027531 JP2017027531W WO2019021478A1 WO 2019021478 A1 WO2019021478 A1 WO 2019021478A1 JP 2017027531 W JP2017027531 W JP 2017027531W WO 2019021478 A1 WO2019021478 A1 WO 2019021478A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- soundproof structure
- absorbing member
- sound absorbing
- sound
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R13/00—Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
- B60R13/08—Insulating elements, e.g. for sound insulation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/162—Selection of materials
- G10K11/168—Plural layers of different materials, e.g. sandwiches
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/172—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
Definitions
- the present invention relates to a soundproof structure, parts for vehicles and automobiles.
- a vehicle such as a car is a machine that has a power source such as an engine and can be moved by human operation, and generates various vibrations and noises.
- the sounds transmitted to the inside of the vehicle include not only the sounds emitted by the power source but also the sounds generated outside the vehicle such as road noise, tire pattern noise and wind noise generated when the vehicle travels. .
- these sounds When these sounds are transmitted to the inside of the vehicle, they cause discomfort to people, so sound insulation and sound absorbing members are used in the engine, engine room, interior, body, exhaust pipe, etc. Measures have been taken.
- Patent Document 1 discloses a flexible porous foam molded by foam molding, an introduction passage opened on one surface, and a hollow portion formed at the back of the introduction passage and having a cross-sectional area larger than that of the introduction passage.
- a sound absorbing member is disclosed which has a large number of resonance chambers.
- Patent Document 2 discloses a sound / sound insulation structure including a resin molded body having a plurality of independent blind cavities having openings on the front or back and a sound absorbing member, and having a specific 100 Hz to 10 kHz resonant sound absorption peak frequency. It is done.
- the noise generated from the road surface during traveling such as tire pattern noise (in a frequency range of 500 to 3000 Hz and simply referred to as pattern noise) is less likely to be reflected and diffused around the lower part of the vehicle body, and the degree of sound intruding into the vehicle Is estimated to be high. Similar problems can occur with electric vehicles.
- the soundproof structure is achieved by arranging the opening of a member having an opening such as the sound absorbing member described in Patent Document 1 or the resin molded body described in Patent Document 2 to be opposed to a member constituting the vehicle. Noise can be absorbed by forming the body.
- the sound transmitted through the soundproof structure may be large, that is, the transmission loss of the soundproof structure may not be sufficiently large.
- the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a soundproof structure having a sufficiently large transmission loss.
- the present inventors found that the surface roughness of the surface of the introduction passage of the Helmholtz resonance structure affects the magnitude of the transmission loss of the soundproof structure. , Completed the present invention.
- the soundproof structure of the present invention comprises a sound absorbing member having a non-through hole; It is a soundproof structure which consists of a sound insulation material provided to be separated by a predetermined distance with an air layer opposed to the surface of the sound absorption member opened by the non-through hole.
- the non-through hole of the sound absorbing member has a Helmholtz resonance structure including an introduction passage opened on the surface and a hollow portion connected to the outside through the introduction passage,
- the surface roughness Ra of the introduction passage is characterized in that it is 0.1 to 100 ⁇ m.
- the surface roughness Ra of the introduction passage is 0.1 to 100 ⁇ m.
- the space between the sound insulation member and the sound absorbing member is a spring
- the air in the introduction passage is a mass portion
- the hollow portion is a spring.
- the surface roughness Ra of the introduction passage exceeds 100 ⁇ m, the range in which the air in the introduction passage can move becomes small, and the Helmholtz resonance mechanism due to the vibration of the air in the introduction passage becomes difficult to function. Therefore, the transmission loss is reduced.
- the surface roughness Ra of the introduction passage can be adjusted by the processing conditions of the introduction passage, polishing treatment, and roughening treatment such as sand blasting.
- the surface roughness Ra of the introduction passage is preferably 0.16 to 98 ⁇ m.
- the transmission loss can be increased.
- the surface roughness Ra of the introduction passage is preferably 1.02 to 98 ⁇ m.
- the introduction passage is preferably cylindrical. It is advantageous that the introduction passage has a cylindrical shape, because the soundproof property is not anisotropic.
- the sound absorbing member preferably includes an upper layer having a first through hole forming the introduction passage, and a lower layer having the hollow portion laminated on the upper layer.
- the sound absorbing member in the soundproof structure of the present invention can be easily manufactured by laminating the upper layer provided with the first through hole serving as the introduction passage and the lower layer having the hollow portion.
- the surface roughness of the introduction passage can be easily adjusted by separately manufacturing the upper layer and the lower layer.
- the lower layer of the sound absorbing member is formed of one layer, It is preferable that the upper layer and the lower layer be adhered by an adhesive layer.
- the adhesive is attached, the Helmholtz resonance structure is not easily deformed even when a compressive stress is applied, and the value of the surface roughness Ra of the introduction passage is hardly changed.
- the lower layer of the sound absorbing member is formed of one layer, It is preferable that a space be formed between the upper layer and the surface of the lower layer other than the hollow portion. Since the space exhibits the same effect as the unevenness of the inner wall of the introduction passage, the soundproof effect can be enhanced.
- the lower layer of the sound absorbing member is A side layer having a second through hole whose opening diameter is larger than that of the first through hole; It is preferable that the bottom layer in which the through holes are not formed be sequentially stacked, and the hollow portion be formed by the second through holes and the bottom layer. With such a configuration, the sound absorbing member in the soundproof structure of the present invention can be easily manufactured by sequentially laminating the upper layer, the side layer and the bottom layer.
- the upper layer and the side layer are preferably adhered by an adhesive layer.
- the adhesive is attached, the Helmholtz resonance structure is not easily deformed even when a compressive stress is applied, and the value of the surface roughness Ra of the introduction passage is hardly changed.
- a space is formed between the upper layer and a surface of the side surface layer other than the second through hole. Since the space exhibits the same effect as the unevenness of the inner wall of the introduction passage, the soundproof effect can be enhanced.
- the side layer and the bottom layer are preferably bonded by an adhesive layer.
- the adhesive is attached, the Helmholtz resonance structure is less likely to be deformed even when a compressive stress is applied, and the soundproof property is less likely to change due to the compressive deformation.
- a space is formed between the bottom layer and the surface other than the second through hole in the surface of the side layer. If a space is formed between the side surface layer and the bottom surface layer, the space acts as a vibrating spring and transmission loss can be further increased.
- the sound absorbing member is preferably made of a resin or a fibrous material.
- the resin is preferably an elastomer such as a foamed resin or rubber.
- the sound absorbing member is made of resin, weight reduction can be easily achieved, which is particularly desirable as a component for a vehicle.
- the resin is a foamed resin, the weight thereof can be made lighter, which can contribute to the improvement of the fuel efficiency when it is used as a component for a vehicle.
- the sound absorbing member may be a composite material of resin and fiber. As a method of compounding, resin and fiber may be mixed, resin and fiber may be combined in a block shape, and a plate of resin and fiber may be laminated.
- a fiber layer is further formed on the surface on the opening forming side of the sound absorbing member, It is preferable that an opening communicating with the opening of the introduction passage is formed in the fiber layer.
- the sound absorbing member has a Helmholtz resonance structure, it can absorb sound in a predetermined frequency range, but the width of the frequency range that can absorb sound is not wide, and in particular, it is difficult to sufficiently absorb sound in a high frequency range of 2000 Hz or more. .
- the fiber layer is formed, sound in a high frequency region of 2000 Hz or more can be absorbed.
- the sound insulation material is preferably a metal plate, and aluminum or a steel plate can be used, but a steel plate having a large specific gravity is preferable.
- the parts for vehicles of the present invention are characterized by including the soundproof structure of the present invention. Since the soundproof structure of the present invention is excellent in soundproofing performance, it is excellent as a component for a vehicle. As parts for vehicles provided with the soundproof structure of the present invention, a raising member, a partition member, a luggage box, etc. are mentioned.
- An automobile according to the present invention is characterized in that the soundproof structure according to the present invention is arranged with the above-mentioned sound insulation material directed to the road surface.
- FIG. 1 is a cross-sectional view schematically showing an example of the soundproof structure of the present invention.
- FIG. 2 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
- FIG. 3 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
- FIG. 4 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
- FIG. 5 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
- FIG. 6 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
- FIG. 7 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
- FIG.8 (a) is explanatory drawing which shows typically an example of the site
- FIG.8 (b) is a part of the area
- FIG. 9 is an explanatory view schematically showing an outline of a sound transmission loss test on the soundproof structure.
- FIGS. 10 (a), 10 (b) and 10 (c) are graphs showing the relationship between the frequency and the transmission loss in Examples 1, 2 and 3, respectively.
- FIGS. 11A and 11B are graphs showing the relationship between the frequency and the transmission loss in Comparative Examples 1 and 2, respectively.
- the soundproof structure according to the present invention comprises a sound absorbing member having a non-penetrating hole, and a sound insulating member provided opposite to a surface of the sound absorbing member with the non-penetrating hole open, with an air layer therebetween.
- the non-penetrating hole of the sound absorbing member has a Helmholtz resonance structure including an introduction passage opened on the surface and a hollow portion connected to the outside through the introduction passage.
- the surface roughness Ra of the introduction passage is 0.1 to 100 ⁇ m.
- the sound absorption member which comprises the soundproof structure of this invention is demonstrated.
- the sound absorbing member constituting the soundproof structure of the present invention is a member having a non-through hole, and the non-through hole is a Helmholtz consisting of an introduction passage opened on the surface and a hollow portion connected to the outside through the introduction passage. It has a resonant structure.
- parts other than the non-through-hole part of the sound-absorbing member which comprises the soundproof structure of this invention consist of resin or fibrous material.
- the resin is preferably any of a foamed resin composed of expandable resin particles (beads), a foamed resin having cells, a fiber, a thermoplastic resin, and a thermosetting resin. Among these, a foamed resin is more preferable.
- the density of the resin constituting the sound absorbing member in the soundproof structure according to the present invention is preferably a material having a density of 0.01 to 1 g / cm 3 , and further preferably has a density of 0.02 to 0.1 g / cm 3. desirable.
- the density of the resin indicates the density of the foamed resin that has been foam-molded. If the density of the resin is within the above range, it is easy to obtain the strength necessary for the sound absorbing member. On the other hand, when the density of the resin is less than 0.01 g / cm 3 , mechanical strength sufficient as a sound absorbing member may not be obtained. When the density of the resin exceeds 1 g / cm 3 , the weight of the sound absorbing member increases, which hinders the weight reduction of the vehicle. Moreover, as resin which comprises the sound absorption member in the soundproof structure of this invention, the foamed resin which consists of foamable resin particles (beads) is more desirable.
- the resin is a foamed resin composed of expandable resin particles (beads)
- the weight of the sound absorbing member can be reduced while maintaining the strength, which can contribute to the improvement of fuel efficiency when used for parts for vehicles .
- the foamed resin is obtained by foaming and molding expandable resin particles.
- the foamable resin particles (beads) constituting the sound absorbing member in the soundproof structure of the present invention are particles containing a foaming agent inside the resin particles, and known materials can be suitably used.
- a resin component which comprises the foamable resin particle which comprises the sound absorbing member in the soundproof structure of this invention Styrene resin, such as olefin resin, such as polyethylene and a polypropylene, polystyrene, is mentioned, for example.
- a styrene resin a copolymer obtained by copolymerizing a styrene homopolymer, styrene, and a monomer (or its derivative) copolymerizable with styrene is mentioned.
- the styrene copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer.
- the blowing agent include hydrocarbons such as propane, butane and pentane.
- the foamable resin particles constituting the sound absorbing member in the soundproof structure according to the present invention may, if necessary, be a flame retardant, a flame retardant aid, a processing aid, a filler, an antioxidant, a light resistance stabilizer, antistatic Known additives such as additives and colorants may be added. As an example of use of an additive, if a black thing is used for a coloring agent, a stain will become inconspicuous.
- Flame retardants include hydrated metal flame retardants such as aluminum hydroxide and magnesium hydroxide, phosphoric acid flame retardants such as red phosphorus and ammonium phosphate, tetrabromobisphenol A (TABB), brominated polystyrene, chlorinated paraffin And halogen-based flame retardants, ammonium carbonate, nitrogen-based flame retardants such as melamine cyanurate, and the like.
- phosphoric acid flame retardants such as red phosphorus and ammonium phosphate, tetrabromobisphenol A (TABB), brominated polystyrene, chlorinated paraffin And halogen-based flame retardants, ammonium carbonate, nitrogen-based flame retardants such as melamine cyanurate, and the like.
- TABB tetrabromobisphenol A
- brominated polystyrene chlorinated paraffin And halogen-based flame retardants
- ammonium carbonate such as melamine cyanurate
- antioxidant examples include alkylphenols, alkylene bisphenols, alkylphenol thioethers, ⁇ , ⁇ -thiopropionic acid esters, organic phosphites and phenol-nickel complexes.
- light fastness stabilizer examples include benzotriazole-based UV absorbers and hindered amine-based stabilizers.
- antistatic agent examples include low molecular weight antistatic agents such as fatty acid ester compounds, aliphatic ethanolamine compounds and aliphatic ethanolamide compounds, and high molecular weight antistatic agents.
- a coloring agent a dye, a pigment, etc. are mentioned.
- the average particle diameter of the expandable resin particles constituting the sound absorbing member in the soundproof structure of the present invention is preferably 300 ⁇ m to 2400 ⁇ m, and more preferably 800 ⁇ m to 2000 ⁇ m.
- the expansion ratio of the foamable resin particles constituting the sound absorbing member in the soundproof structure of the present invention is preferably 10 to 60 times. By setting the expansion ratio to 10 to 60 times, the density of the resin can be easily adjusted to the range of 0.02 to 0.1 g / cm 3 . On the other hand, if the expansion ratio is less than 10 times, the sound absorbing member may be too hard or too heavy. When the expansion ratio exceeds 60 times, the strength of the sound absorbing member may be insufficient. Polyurethane etc.
- a foamed resin which has a bubble which comprises the sound absorption member in the soundproof structure of this invention.
- a foamed resin having air bubbles can be obtained, whereby a sound absorbing member can be manufactured.
- Organic fibers and inorganic fibers can be used as the fibrous material constituting the sound absorbing member in the soundproof structure of the present invention, and polyester, polyamide, acetate and the like can be used as the organic fibers.
- the inorganic fibers alumina, silica and mullite fibers are desirable. It is desirable to bond the fibers together with the binder into a felt.
- thermoplastic resin constituting the sound absorbing member in the soundproof structure of the present invention polypropylene resin, polyethylene resin, polyester resin (such as nylon 6-6), polystyrene resin, etc. can be used.
- a thermoplastic resin can be molded as a resin pellet, and the resin pellet can be heated to produce a sound absorbing member by molding such as injection molding and extrusion molding.
- thermosetting resin which comprises the sound absorption member in the soundproof structure of this invention, an epoxy resin, a phenol resin, a melamine resin, a urea resin, polyurethane, polyurea, polyamide, a polyacrylamide, etc. can be used.
- the thermosetting resin can be preheated, placed in a mold, pressurized, raised in temperature, and cured to produce a sound absorbing member.
- parts other than resin-made may be materials, such as an inorganic material and a metal material, other than resin-made parts in the sound-insulation member in the soundproof structure of this invention.
- the thickness of the sound absorbing member in the soundproof structure of the present invention is not particularly limited, it is desirable that the thickness is 1.0 cm or more. Further, the thickness of the sound absorbing member is preferably 12 cm or less. More preferably, the thickness of the sound absorbing member is 2 to 10 cm. If the thickness of the sound absorbing member is less than 1.0 cm, it may be difficult to design a soundproof structure having a sufficiently large transmission loss because the length of the non-through hole is too short.
- the non-through hole provided in the sound absorbing member in the soundproof structure of the present invention has a Helmholtz resonance structure including an introduction passage opened on the surface and a hollow portion connected to the outside through the introduction passage.
- the shapes of the non-through holes provided in plural in the sound absorbing member may be all the same shape or may be different shapes.
- the arrangement pattern of non-through holes provided in the sound absorbing member may be a square arrangement in which non-through holes are disposed at the apexes of squares in a plane in which squares are continuously arranged vertically and horizontally.
- the introduction paths may be arranged at apexes of triangles in a plane in which regular triangles are arranged continuously in the vertical and horizontal directions.
- a staggered arrangement is desirable.
- the arrangement pattern of the non-through holes is a staggered arrangement, the adjacent non-through holes are likely to be equally spaced, so that the sound absorbing effect is improved.
- the strength as the sound absorbing member can be obtained.
- the introduction passage preferably has a cylindrical shape, and the cross-sectional shape in the direction perpendicular to the longitudinal direction preferably is a perfect circle. It is advantageous that the introduction passage has a cylindrical shape because the sound absorption characteristics do not have anisotropy.
- the diameter of the bottom surface in the case where the introduction passage is cylindrical is preferably 1 to 30 mm.
- the diameter of the introduction passage is determined as the equivalent circle diameter.
- the equivalent circle diameter is the diameter when the cross-sectional area of the introduction passage when the introduction passage is cut in the direction perpendicular to the length direction is replaced by a true circle of the same area.
- the cross-sectional shape of the introduction passage is a true circle, the diameter may be taken as the equivalent circle diameter.
- the length (height) of the introduction passage is preferably 1 to 20 mm.
- the surface roughness Ra of the introduction passage is 0.1 to 100 ⁇ m. Further, the surface roughness Ra of the introduction passage is desirably 0.16 to 98 ⁇ m.
- the surface roughness Ra of the introduction passage refers to the arithmetic average roughness defined by JIS B 0601 (2001), and means a value measured by the following method. First, 10%, 30%, 50%, 70%, and 90% portions are taken as surface roughness measurement reference points in the direction from the hollow portion side end of the introduction passage to the opposite end portion. Next, the surface roughness Ra in a square area centering on each surface roughness measurement reference point is measured using a laser type surface roughness measuring device (model name: manufactured by Keyence Corporation product name: VX-9700). . The measurement is performed as follows.
- a measurement piece cut in the direction perpendicular to the cross section of the introduction passage is prepared.
- fix it to the measuring device make it 50 times the magnification of the microscope of the laser type surface roughness measuring device, focus on the measurement reference point, 400 nm wavelength
- make measurements with a laser at this time, the surface roughness curve of the surface is measured and drawn at intervals of 10 ⁇ m in a square area with a height of 100 ⁇ m and a width of 100 ⁇ m with the measurement reference point as the center (therefore, 10 surface roughness curves are drawn)
- the Ra is calculated from each surface roughness curve, and the average of these ten Ra values is taken as the surface roughness Ra of the measurement reference point.
- the same measurement is performed at each measurement reference point, and the average value of the measurement values of five measurement reference points is taken as the surface roughness Ra of the introduction passage.
- the surface roughness Ra of the introduction passage can be adjusted by the processing conditions of the introduction passage, polishing treatment, and roughening treatment such as sand blasting.
- the hollow portion preferably has a cylindrical shape, and the cross-sectional shape in the direction perpendicular to the longitudinal direction preferably is a perfect circle.
- the height is preferably 1 to 20 mm, and more preferably 3 to 15 mm.
- the diameter of the hollow portion is determined as the equivalent circle diameter.
- the equivalent circle diameter is the diameter when the cross-sectional area of the hollow portion when the hollow portion is cut in the direction perpendicular to the length direction is replaced with a true circle of the same area.
- the cross-sectional shape of the hollow portion is a perfect circle, the diameter may be used as the equivalent circle diameter.
- the circle equivalent diameter of the hollow portion is larger than the circle equivalent diameter of the introduction passage.
- the diameter of the hollow portion is preferably 4 to 171 mm, preferably 10 mm or more, and more preferably 150 mm or less.
- the positional relationship between the introduction passage and the hollow portion may be such that the hollow portion is connected to the outside via the introduction passage, and the center of the introduction passage and the hollow portion (direction perpendicular to the thickness direction The center in the cross-sectional shape when cut into two may or may not coincide.
- a fiber layer is further formed on the surface on the opening formation side of the sound absorbing member, and the fiber layer is formed with an opening communicating with the opening of the introduction passage.
- the sound absorbing member has a Helmholtz resonance structure, it can absorb sound in a predetermined frequency range, but the width of the frequency range that can absorb sound is not wide, and in particular, it is difficult to sufficiently absorb sound in a high frequency range of 2000 Hz or more. .
- the fiber layer is formed, sound in a high frequency region of 2000 Hz or more can be absorbed.
- the material constituting the fiber layer is preferably selected from natural fibers, synthetic resin fibers, and inorganic fibers.
- Natural fibers include vegetable fibers, animal fibers and mineral fibers.
- synthetic resin fibers include polyamide resins (nylon etc.), polyester resins (polyethylene terephthalate (PET), polyethylene naphthalate (PEN) etc.), acrylic resins, polyvinyl alcohol resins, polyolefin resins (polyethylene, polypropylene etc.) etc. It can be mentioned.
- As the inorganic fibers alumina fibers, silica fibers, silica-alumina fibers, glass fibers, carbon fibers, potassium titanate fibers, rock wool and the like can be mentioned.
- the fiber layer may be formed as a felt or non-woven fabric.
- the thickness of the fiber layer is preferably 1 to 20 mm.
- air vibration occurs in the space, and sound in a high frequency region can be absorbed.
- the sound absorbing member and the fiber layer may or may not be bonded by an adhesive layer.
- the sound absorbing member is formed of a resin layer of one layer, and Helmholtz formed of a hollow portion connected to the outside through the introduction passage opened on the surface and the introduction passage What was manufactured by forming the non-penetrating hole which has a resonance structure is mentioned.
- the method to form a non-penetrating hole in a resin layer is not specifically limited, For example, you may form a through-hole manually by using tools, such as a cutter, in a resin layer.
- the structure which consists of an upper layer which has a 1st through-hole which forms an introductory path, and a lower layer which has a hollow part laminated
- the sound absorbing member is constituted by the laminated structure of the upper layer and the lower layer
- Helmholtz resonance is obtained by laminating the upper layer and the lower layer.
- the upper and lower layers may or may not be adhered by an adhesive layer.
- the adhesive layer is preferably provided on the surface of the lower layer other than the hollow portion.
- the upper and lower layers may be connected by providing a female portion and a male portion in the upper and lower layer contact portions and fitting them together.
- the first through holes in the upper layer have a columnar shape and be a portion having a columnar space only with air. It is preferable that the diameter of the through hole is constant from the inlet side to the outlet side in the thickness direction of the plate material. That is, it is preferable not to include a form in which gas passes in the thickness direction but the other side can not be seen (does not penetrate) in top view in the thickness direction, such as communicating pores in a porous material.
- the first through hole is preferably a through hole formed by machining a plate material having no through hole, and drilling using a punching, a drill, a laser or the like is suitably used.
- the lower layer having the hollow portion may be a single layer or two layers.
- the layers constituting the sound absorbing member in the soundproof structure of the present invention are two layers of the upper layer and the lower layer except for the adhesive layer in the case where the adhesive layer is provided.
- a recess is formed up to the middle of the thickness direction of one plate material constituting the lower layer to form a hollow portion.
- the concave portion is a portion which is a columnar space having an open upper surface, surrounded by the bottom surface and the side surface, with the material constituting the plate material as the bottom surface and the side surface.
- the diameter of the recess is preferably constant from the top surface to the bottom surface. Moreover, it is preferable that the diameter of the bottom face of the recess is larger than the diameter of the first through hole that constitutes the upper layer.
- the recess (hollow portion) is preferably formed by machining a plate having no through hole, and cutting with an end mill or processing with a hot wire is suitably used.
- plate material used as a lower layer you may integrally form the board
- a foamed resin comprising expandable resin particles (beads) as a plate material, it is possible to produce a plate material having a recess also by performing foam molding in a mold having a protrusion corresponding to the shape of the recess. it can.
- the upper layer and the lower layer may be bonded by an adhesive layer.
- an adhesive layer As a material which comprises an adhesive bond layer, a vinyl resin adhesive, a styrene resin adhesive, an epoxy resin adhesive, a cyanoacrylate adhesive etc. are mentioned.
- the adhesive layer one obtained by hollowing out a sheet-like adhesive according to the shape and position of the hollow portion may be used, and the adhesive is applied to a portion where the hollow portion is not provided to the surface of the lower layer. It may be done.
- a space may be formed between the upper layer and the surface of the lower layer other than the hollow portion.
- most of the space between the upper layer and the surface of the lower layer other than the hollow portion is a space, and the upper layer and the lower layer are partially fixed by adhesion, fitting or the like. Just do it.
- the thickness of the upper layer is preferably 1 to 20 mm
- the thickness of the lower layer is preferably 10 to 120 mm.
- it is more preferable that the thickness of the lower layer is 20 to 100 mm.
- the lower layer is two layers
- the layers constituting the sound absorbing member in the soundproof structure of the present invention are three layers of the upper layer, the side layer, and the bottom layer except for the adhesive layer in the case where the adhesive layer is provided.
- the side layer is made of a plate material, and the plate material is provided with a second through hole.
- the second through hole is in a columnar shape, and is a portion having a columnar space only with air. It is preferable that the diameter of the through hole is constant from the inlet side to the outlet side in the thickness direction of the plate material. That is, it is preferable not to include a form in which gas passes in the thickness direction but the other side can not be seen (does not penetrate) in top view in the thickness direction, such as communicating pores in a porous material.
- the second through hole is preferably a through hole formed by machining a plate material having no through hole, and drilling using a punching, a drill, a laser or the like is suitably used.
- the bottom layer is made of a plate material and no through hole is provided. By overlapping the side surface layer and the bottom surface layer, a hollow portion is formed by the second through holes of the side surface layer and the bottom surface layer.
- the upper layer and the side layer may be adhered by an adhesive layer.
- the side layer and the bottom layer may be bonded by an adhesive layer.
- a material which comprises an adhesive bond layer a vinyl resin adhesive, a styrene resin adhesive, an epoxy resin adhesive, a cyanoacrylate adhesive etc. are mentioned.
- the adhesive layer one obtained by hollowing out a sheet-like adhesive in accordance with the shape and position of the hollow portion may be used, and the adhesive is applied to the surface of the side layer where the hollow portion is not provided. It may be applied.
- a female part and a male part may be provided at the contact part of the upper layer and the side layer, and these may be fitted to connect the upper layer and the side layer.
- a female portion and a male portion may be provided at the contact portion of the side surface layer and the bottom surface layer, and these may be fitted to connect the side surface layer and the bottom surface layer.
- the lower layer of the sound absorbing member comprises two layers of the side layer and the bottom layer
- most of the space between the upper layer and the surface other than the second through hole in the surface of the side layer is a space, and the upper layer and a part of the side layer are bonded, fitted, etc. Should be fixed.
- the lower layer of the sound absorbing member when the lower layer of the sound absorbing member is composed of two layers of a side layer and a bottom layer, a space is formed between the bottom layer and the surface other than the second through holes in the surface of the side layer. It may be done. In this case, most of the surface between the bottom surface layer and the surface other than the second through hole in the surface of the side surface layer is a space, and a part of the side surface layer and the bottom surface layer is bonded or fitted. Should be fixed.
- the upper layer preferably has a thickness of 1 to 20 mm, and the thickness of the plate constituting the side layer is 1 It is desirable that the distance be about 20 mm, and more preferably 3 to 15 mm.
- the thickness of the plate material constituting the side layer is the length of the second through hole, and the height of the hollow portion. That is, the length of the second through hole is preferably 1 to 20 mm.
- the thickness of the plate constituting the bottom layer is preferably 1 to 20 mm.
- the material of the plate material constituting the upper layer, the lower layer, the side surface layer and the bottom layer parts other than the non-through hole portion of the sound absorbing member constituting the soundproof structure according to the present invention
- the resin or fibrous material described as the material to be used can be preferably used.
- plate material which comprises an upper layer, a lower layer, a side layer, and a bottom layer is the same material, different materials may be sufficient as it.
- the sound insulation member in the soundproof structure according to the present invention is a member provided opposite to the surface of the sound absorption member where the non-through holes are opened, and separated by a predetermined distance from the air layer.
- a connecting member for providing an air layer may be separately provided between the sound absorbing member and the sound insulating member, and the sound insulating member and the sound insulating member are respectively fixed to the place where the soundproof structure of the present invention is installed.
- An air layer may be provided between the material and the sound absorbing member.
- the sound insulation material in the soundproof structure of this invention is a plate-shaped member, and it is preferable that it is a steel plate.
- a part of the steel plate constituting the vehicle body can also be regarded as a sound insulator.
- the sound insulation material in the soundproof structure of the present invention preferably has a thickness of 0.1 to 20 cm.
- the thickness of the air layer in the soundproof structure of the present invention is a predetermined distance between the sound absorbing member and the sound insulating material, and the thickness of the air layer is 0 cm or more, preferably 0.1 to 20 cm.
- the soundproof structure of the present invention it is preferable to arrange the sound absorbing member and the sound insulating material so that their surfaces are parallel to each other. In this case, the thickness of the air layer is constant.
- the thickness of the air layer is the average of the distance between the sound absorbing member and the sound insulating member when there is a level difference on the surface of the sound absorbing member or the sound insulating member, or when the surfaces of the sound absorbing member and the sound insulating member are not parallel. It is preferable to set it as a value (average value at 9 points).
- FIG. 1 is a cross-sectional view schematically showing an example of the soundproof structure of the present invention.
- the soundproofing structure 1 shown in FIG. 1 is composed of a sound absorbing member 100 and a sound insulating material 70.
- the sound absorbing member 100 is a sound absorbing member in which the lower layer is a single layer.
- the sound absorbing member 100 shown in FIG. 1 has an upper layer 10, a lower layer 20, and an adhesive layer 30, and the upper layer 10 and the lower layer 20 are bonded by the adhesive layer 30.
- the upper layer 10 is provided with a first through hole 110 forming the introduction passage 110, and the lower layer 20 is provided with a hollow portion 120.
- the introduction passage 110 and the hollow portion 120 form a Helmholtz resonance structure.
- the introduction passage 110 and the hollow portion 120 are cylindrical.
- the upper layer 10 is a plate material, and a plate-like first through hole 110 is provided in the plate material.
- the lower layer 20 is also a plate material, and a hollow portion 120 is provided by forming a concave portion halfway in the thickness direction of one plate material.
- the surface roughness Ra of the introduction passage 10 is 0.1 to 100 ⁇ m.
- the sound insulating material 70 is provided opposite to the sound absorbing member 100, spaced apart from the air layer, and separated by a predetermined distance.
- the sound insulation member 70 shown in FIG. 1 is a plate-like member, and has an area larger than the area of the surface of the sound absorption member 100 where the non-through holes are opened. Therefore, the sound insulating material is present opposite to the opening of the non-through hole.
- FIG. 2 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
- the soundproofing structure 2 shown in FIG. 2 is composed of a sound absorbing member 200 and a sound insulating material 70.
- the sound absorbing member 200 is a sound absorbing member in which the lower layer is a single layer.
- the sound absorbing member 200 shown in FIG. 2 has an upper layer 10 and a lower layer 20.
- the upper layer 10 is provided with a first through hole 110 forming the introduction passage 110
- the lower layer 20 is provided with a hollow portion 120.
- the introduction passage 110 and the hollow portion 120 form a Helmholtz resonance structure.
- the introduction passage 110 and the hollow portion 120 are cylindrical.
- the upper layer 10 is a plate material, and a plate-like first through hole 110 is provided in the plate material.
- the lower layer 20 is also a plate material, and a hollow portion 120 is provided by forming a concave portion halfway in the thickness direction of one plate material.
- a male portion 10 a is formed on the upper layer 10 of the contact portion between the upper layer 10 and the lower layer 20, and a female portion 20 a is formed on the lower layer 20. And male part 10a and female part 20a are fitted, and upper layer 10 and lower layer 20 are connected.
- the surface roughness Ra of the introduction passage 110 is 0.1 to 100 ⁇ m.
- the sound insulating material 70 is provided opposite to the sound absorbing member 200 and spaced apart by a predetermined distance from the air layer.
- the sound insulation member 70 shown in FIG. 2 is a plate-like member, and has an area larger than the area of the surface of the sound absorption member 200 where the non-through holes are opened. Therefore, the sound insulating material is present opposite to the opening of the non-through hole.
- FIG. 3 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
- the soundproofing structure 3 shown in FIG. 3 is composed of a sound absorbing member 300 and a sound insulating material 70.
- the sound absorbing member 300 is a sound absorbing member in which the lower layer is a single layer.
- the sound absorbing member 300 shown in FIG. 3 has an upper layer 10 and a lower layer 20.
- the upper layer 10 is provided with a first through hole 110 forming the introduction passage 110
- the lower layer 20 is provided with a hollow portion 120.
- the introduction passage 110 and the hollow portion 120 form a Helmholtz resonance structure.
- the introduction passage 110 and the hollow portion 120 are cylindrical.
- the upper layer 10 is a plate material, and a plate-like first through hole 110 is provided in the plate material.
- the lower layer 20 is also a plate material, and a hollow portion 120 is provided by forming a concave portion halfway in the thickness direction of one plate material.
- a space 50 is formed between the surfaces of the upper layer 10 and the lower layer 20 other than the hollow portion 120. Further, a spacer 51 for fixing the positions of the upper layer 10 and the lower layer 20 and forming a space 50 between the upper layer 10 and the lower layer 20 is provided around the periphery.
- the surface roughness Ra of the introduction passage 110 is 0.1 to 100 ⁇ m.
- the sound insulation member 70 is provided opposite to the sound absorbing member 300 and spaced apart from the air layer by a predetermined distance.
- the sound insulation member 70 shown in FIG. 3 is a plate-like member, and has a larger area than the area of the surface of the sound absorption member 300 where the non-through holes are opened. Therefore, the sound insulating material is present opposite to the opening of the non-through hole.
- FIG. 4 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
- the soundproofing structure 4 shown in FIG. 4 is composed of a sound absorbing member 400 and a sound insulating material 70.
- the sound absorbing member 400 is a sound absorbing member having two lower layers.
- the lower layer 20 is composed of two layers of a side layer 21 and a bottom layer 22.
- the side layer 21 is provided with a second through hole 120, and the second through hole 120 is a hollow portion 120.
- a wall surface 121 which is a part of the side layer 21 is a side surface of the hollow portion 120
- a surface 122 of the bottom layer 22 which is a part of the bottom layer 22 is a bottom surface of the hollow portion 120.
- the upper layer 10 and the lower layer 20 are bonded by an adhesive layer 30. Of the layers constituting the lower layer 20, the side layer 21 is adhered to the upper layer 10. An adhesive layer 40 is also provided between the side layer 21 and the bottom layer 22, and the side layer 21 and the bottom layer 22 are also adhered.
- the upper layer 10 is provided with a first through hole 110 forming the introduction passage 110, and the lower layer 20 is provided with a hollow portion 120.
- the introduction passage 110 and the hollow portion 120 form a Helmholtz resonance structure. In the sound absorbing member 400, the introduction passage 110 and the hollow portion 120 are cylindrical.
- the upper layer 10 is a plate material, and a plate-like first through hole 110 is provided in the plate material.
- the side layer 21 and the bottom layer 22 constituting the lower layer 20 are also plate members.
- a cylindrical second through hole 120 is provided in the plate member that constitutes the side layer 21. The through holes are not provided in the plate material constituting the bottom layer 22.
- the surface roughness Ra of the introduction passage 110 is 0.1 to 100 ⁇ m.
- the sound insulation member 70 is provided opposite to the sound absorbing member 400 and spaced apart from the air layer by a predetermined distance.
- the sound insulation member 70 shown in FIG. 4 is a plate-like member, and has a larger area than the area of the surface of the sound absorption member 400 where the non-through holes are opened. Therefore, the sound insulating material is present opposite to the opening of the non-through hole.
- FIG. 5 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
- the soundproofing structure 5 shown in FIG. 5 is composed of a sound absorbing member 500 and a sound insulating material 70.
- the sound absorbing member 500 is a sound absorbing member having two lower layers.
- the lower layer 20 is composed of two layers of a side layer 21 and a bottom layer 22.
- the side layer 21 is provided with a second through hole 120, and the second through hole 120 is a hollow portion 120.
- a wall surface 121 which is a part of the side layer 21 is a side surface of the hollow portion 120
- a surface 122 of the bottom layer 22 which is a part of the bottom layer 22 is a bottom surface of the hollow portion 120.
- a male portion 10 a is formed on the upper layer 10 of the contact surface between the upper layer 10 and the side layer 21, and a female portion 21 a is formed on the side layer 21. And male part 10a and female part 21a are fitted, and upper layer 10 and side layer 21 are connected.
- a female portion 21 b is formed on the side surface layer 21 in the contact surface between the side surface layer 21 and the bottom surface layer 22, and a male portion 22 b is formed on the bottom surface layer 22. And the female part 21b and the male part 22b are fitted, and the side layer 21 and the bottom layer 22 are connected.
- the upper layer 10 is provided with a first through hole 110 forming the introduction passage 110, and the lower layer 20 is provided with a hollow portion 120.
- the introduction passage 110 and the hollow portion 120 form a Helmholtz resonance structure.
- the introduction passage 110 and the hollow portion 120 are cylindrical.
- the upper layer 10 is a plate material, and a plate-like first through hole 110 is provided in the plate material.
- the side layer 21 and the bottom layer 22 constituting the lower layer 20 are also plate members.
- a cylindrical second through hole 120 is provided in the plate member that constitutes the side layer 21. The through holes are not provided in the plate material constituting the bottom layer 22.
- the surface roughness Ra of the introduction passage 110 is 0.1 to 100 ⁇ m.
- the sound insulation member 70 is provided opposite to the sound absorption member 500 and separated by a predetermined distance from the air layer.
- the sound insulation member 70 shown in FIG. 5 is a plate-like member, and has an area larger than the area of the surface of the sound absorption member 500 where the non-through holes are opened. Therefore, the sound insulating material is present opposite to the opening of the non-through hole.
- FIG. 6 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
- the soundproof structure 6 shown in FIG. 6 includes a sound absorbing member 600 and a sound insulating member 70.
- the sound absorbing member 600 is a sound absorbing member in which the lower layer is a double layer.
- the lower layer 20 is composed of two layers of a side layer 21 and a bottom layer 22.
- the side layer 21 is provided with a second through hole 120, and the second through hole 120 is a hollow portion 120.
- a wall surface 121 which is a part of the side layer 21 is a side surface of the hollow portion 120
- a surface 122 of the bottom layer 22 which is a part of the bottom layer 22 is a bottom surface of the hollow portion 120.
- the upper layer 10 is provided with a first through hole 110 forming the introduction passage 110, and the lower layer 20 is provided with a hollow portion 120.
- the introduction passage 110 and the hollow portion 120 form a Helmholtz resonance structure.
- the introduction passage 110 and the hollow portion 120 are cylindrical.
- the upper layer 10 is a plate material, and a plate-like first through hole 110 is provided in the plate material.
- the side layer 21 and the bottom layer 22 constituting the lower layer 20 are also plate members.
- a cylindrical second through hole 120 is provided in the plate member that constitutes the side layer 21. The through holes are not provided in the plate material constituting the bottom layer 22.
- a space 50 is formed between surfaces of the upper layer 10 and the side layer 21 except the hollow portion 120. Further, a spacer 51 for fixing the position of the upper layer 10 and the side layer 21 and forming a space 50 between the upper layer 10 and the side layer 21 is provided around the periphery. Furthermore, a space 60 is formed between the bottom layer 22 and the surface other than the hollow portion 120 in the surface of the side layer 21. In addition, a spacer 61 for fixing the position of the side layer 21 and the bottom layer 22 and forming a space 60 between the side layer 21 and the bottom layer 22 is provided on the periphery. In the sound absorbing member 600, the surface roughness Ra of the introduction passage 110 is 0.1 to 100 ⁇ m.
- the sound insulation member 70 is provided opposite to the sound absorbing member 600 and spaced apart from the air layer by a predetermined distance.
- the sound insulation member 70 shown in FIG. 6 is a plate-like member, and has a larger area than the area of the surface of the sound absorption member 600 where the non-through holes are opened. Therefore, the sound insulating material is present opposite to the opening of the non-through hole.
- FIG. 7 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
- the soundproofing structure 7 shown in FIG. 7 includes a sound absorbing member 700 and a sound insulating material 70.
- the sound absorbing member 700 is a sound absorbing member in which the whole is a single layer.
- the sound absorbing member 700 is provided with an introduction passage 110 and a hollow portion 120.
- the introduction passage 110 and the hollow portion 120 form a Helmholtz resonance structure.
- the introduction passage 110 and the hollow portion 120 are cylindrical.
- the surface roughness Ra of the introduction passage 110 is 0.1 to 100 ⁇ m.
- the sound insulation member 70 is provided opposite to the sound absorbing member 700 and spaced apart from the air layer by a predetermined distance.
- the sound insulation member 70 shown in FIG. 7 is a plate-like member, and has an area larger than the area of the surface of the sound absorption member 700 where the non-through holes are opened. Therefore, the sound insulating material is present opposite to the opening of the non-through hole.
- the parts for vehicles of the present invention are characterized by including the soundproof structure of the present invention. Since the soundproof structure of the present invention is excellent in soundproofing performance, it is excellent as a component for a vehicle. As parts for vehicles provided with the soundproof structure of the present invention, a raising member, a partition member, a luggage box, etc. are mentioned.
- An automobile according to the present invention is characterized in that the soundproof structure according to the present invention is arranged with the above-mentioned sound insulation material directed to the road surface.
- FIGS. 8 (a) and 8 (b) An example in which the sound absorbing member of the present invention is used as a component for a vehicle and an example of an automobile in which the sound absorbing member of the present invention is disposed will be described with reference to FIGS. 8 (a) and 8 (b).
- Fig.8 (a) is explanatory drawing which shows typically an example of the site
- FIG.8 (b) is a part of the area
- the automobile 91 is provided with a luggage room 93 at the rear of the rear seat 92.
- a plate-like floor member 94 is laid under the luggage room 93, and an underfloor space 95 exists below the floor member 94.
- a steel plate 70 which is a part of the body of the automobile 91 is present, and this steel plate 70 becomes the sound insulation 70 of the soundproof structure 1.
- the sound absorbing member 100 is provided on the sound insulating member 70 so that the open surfaces of the non-through holes face each other, and the soundproof structure 1 including the sound insulating member 70 and the sound absorbing member 100 is disposed in the automobile.
- the thickness of the air layer between the sound insulating member 70 and the sound absorbing member 100 is adjusted so as to enhance the soundproofing characteristics (increase the transmission loss).
- the sound absorbing member in the sound absorbing structure of the present invention can be manufactured, for example, by laminating an upper layer in which a first through hole is provided in a plate material and a lower layer in which a hollow portion is provided.
- the sound absorbing member with one lower layer can be manufactured by the following process. Producing an upper layer which is a plate material having a first through hole; Adjusting the surface roughness of the first through hole; Producing a lower layer which is a plate material having a hollow portion; Step of laminating the upper layer and the lower layer.
- Step of producing upper layer A plate material of a predetermined thickness made of a material such as a resin that can be used as a plate material is prepared.
- the upper layer can be produced by forming the first through hole by means of punching, drilling, laser or the like for the plate material having no through hole.
- a foamed resin composed of expandable resin particles (beads) as a plate material, it is also possible to provide projections for forming the first through holes in the mold to foam the expandable resin particles.
- the upper layer which is a board material which has the 1st penetration hole can be produced.
- Step of adjusting the surface roughness of the first through hole Next, the surface of the first through hole is roughened using sand blast or the like so that the surface roughness Ra of the first through hole is 0.1 to 100 ⁇ m.
- a plate material of a predetermined thickness made of a material such as a resin that can be used as a plate material is prepared.
- a lower layer can be produced by forming a concave portion to be a hollow portion by the middle in the thickness direction of a plate material having no through hole.
- the diameter of the recess is made larger than the diameter of the first through hole.
- the recess is preferably formed by machining, and cutting with an end mill or processing with a hot wire is preferably used.
- the fitting portion male portion or female portion
- Step of laminating upper and lower layers Next, in the case of bonding the upper layer and the lower layer with an adhesive, prepare a sheet-like adhesive in accordance with the shape and position of the recess (hollow part) of the lower layer, and prepare a layer between the upper layer and the lower layer.
- the upper layer and the lower layer can be adhered by the adhesive layer by exerting the adhesive force of the adhesive between them.
- the position of the first through hole of the upper layer and the hollow portion (concave portion) of the lower layer are aligned to form a Helmholtz resonance structure.
- the upper layer and the lower layer are adhered by the adhesive layer by applying the adhesive according to the shape and position of the lower concave portion (hollow part), laminating the upper layer and the lower layer, and exerting the adhesive force of the adhesive. it can.
- the conditions for exerting the adhesive strength of the adhesive conditions in accordance with the adhesive characteristics of the adhesive may be used.
- the upper layer and the lower layer may be stacked while sandwiching a spacer between the upper layer and the lower layer.
- the sound absorbing member with two lower layers can be manufactured by the following process. Producing an upper layer which is a plate material having a first through hole; Adjusting the surface roughness of the first through hole; Producing a side layer which is a plate material having a second through hole; Preparing a plate material to be a bottom layer; By laminating the plate material to be the upper layer, the plate material to be the side layer, and the plate material to be the bottom layer to form a hollow portion by the second through hole and the bottom layer and to form the lower layer consisting of the side layer and the bottom layer Step of laminating the upper layer and the lower layer.
- the upper layer can be manufactured in the same manner as in the case where the lower layer is a single-layer sound absorbing member.
- a plate material of a predetermined thickness made of a material such as a resin that can be used as a plate material is prepared.
- the upper layer can be produced by forming the first through hole by means of punching, drilling, laser or the like for the plate material having no through hole.
- a foamed resin composed of expandable resin particles (beads) as a plate material, it is also possible to provide projections for forming the first through holes in the mold to foam the expandable resin particles.
- the upper layer in which the first through hole is provided in the plate material can be manufactured.
- Step of adjusting the surface roughness of the first through hole Next, the surface of the first through hole is roughened using sand blast or the like so that the surface roughness Ra of the first through hole is 0.1 to 100 ⁇ m.
- a plate material of a predetermined thickness made of a material such as a resin that can be used as a plate material is prepared.
- a side layer can be produced by forming a second through hole by means of punching, drilling, laser or the like for a plate material having no through hole. The diameter of the second through hole is made larger than that of the first through hole.
- a foamed resin composed of expandable resin particles (beads) as a plate material
- projections may be provided in the mold to form the second through holes, and the expandable resin particles may be foamed, too.
- a side layer in which the second through hole is provided in the plate material can be manufactured.
- Step of preparing plate material to be bottom layer A plate made of a material such as resin that can be used as a plate and having a predetermined thickness without a through hole is prepared.
- a fitting part male part or female part
- Step of laminating upper and lower layers When laminating the upper layer and the lower layer (side surface layer and bottom surface layer) with an adhesive, prepare two sheets of sheet-like adhesive cut out according to the shape and position of the second through holes of the side surface layer, The upper layer, the side layer, and the bottom layer can be bonded by the adhesive layer by exerting the adhesive strength of the adhesive between the upper layer and the side layer and between the side layer and the bottom layer. At this time, the Helmholtz resonance structure is formed on the sound absorbing member.
- An adhesive is applied according to the shape and position of the second through hole of the side layer, and the upper layer, the side layer and the bottom layer are laminated to exert the adhesive force of the adhesive, thereby the upper layer, the side layer and the bottom layer Can be adhered by an adhesive layer.
- the conditions for exerting the adhesive strength of the adhesive conditions in accordance with the adhesive characteristics of the adhesive may be used.
- the spacer is interposed between the upper layer and the side layer and between the side layer and the bottom layer.
- the sound absorbing member which is a single layer as a whole, is, for example, a resin layer through the introduction passage and the introduction passage opened on the surface. It can manufacture by forming the non-penetrating hole which has a Helmholtz resonance structure which consists of a hollow part connected with the exterior.
- the method to form a non-penetrating hole in a resin layer is not specifically limited, For example, you may form a through-hole manually by using tools, such as a cutter, in a resin layer.
- the surface of the first through holes is roughened by sand blasting or the like so that the surface roughness Ra of the first through holes is 0.1 to 100 ⁇ m. Good.
- the soundproof structure of the present invention can be obtained by providing the sound insulation material so as to separate the air layer and to separate the air layer by a predetermined distance so as to face the surface of the sound absorption member obtained in this way.
- the sound insulation material may be provided by separately providing a connecting member for providing an air layer between the sound absorption material and the sound insulation material, and the sound absorption material and the sound insulation material may be fixed to the place where the soundproof structure of the present invention is installed.
- the air layer may be provided between the sound insulation member and the sound absorbing member by the above.
- the soundproof member is regarded as a part of the steel plate that constitutes the vehicle body as a sound insulation member, and the sound absorbing member is arranged to be separated from the steel plate by a predetermined distance. A structure may be obtained.
- Example 1 Preparation of Plate Material Primary foam particles (made of polypropylene, average particle diameter: 3.5 mm, foaming agent: carbon dioxide) prepared by prefoaming foamable resin particles are filled in a mold and foam molding is performed by heating steam (143) C. for 10 seconds, removed from the mold, and dried at 80.degree. C. for 12 hours to produce three plate members of 800 mm long x 800 mm wide x 10 mm thick made of a foamed resin. At this time, the expansion ratio of the foamed resin was 30 times.
- foaming agent carbon dioxide
- a through hole (first through hole) having a diameter of 3 mm so as to form a staggered arrangement of the hole pitch of 10 mm in one of the plate members having a thickness of 10 mm manufactured in the above (1) Were drilled to produce the upper layer.
- a circular through hole (second through hole) having a diameter of 10 mm is formed by drilling in another 10 mm thick plate material manufactured in the above (1) so as to form a staggered arrangement of the hole pitch 10 mm.
- the side layer was made.
- One plate having a thickness of 10 mm according to (1) above was not processed but was used as a bottom layer.
- the surface roughness Ra of the first through holes is adjusted to 1.02 ⁇ m by sandblasting (shot blasting apparatus manufactured by Shinto Kogyo Co., Ltd.) The surface of the through hole 1 was roughened.
- Example 2 and 3 and Comparative Examples 1 and 2 Sound absorbing members according to Examples 2 and 3 and Comparative Examples 1 and 2 were obtained in the same manner as Example 1 except that the surface roughness Ra of the first through holes was changed as shown in Table 1. .
- FIG. 9 is an explanatory view schematically showing an outline of a sound transmission loss test on the soundproof structure.
- An acoustic transmission loss measurement device 80 is shown in FIG.
- the sound transmission loss measuring apparatus 80 is provided with a sound source room 81 for generating a sound from the speaker 83 and a sound receiving room 82 for receiving a sound through the soundproof structure 1 as a test body.
- the sound source room side microphone 84 is provided in the sound source room 81, and the sound reception room side microphone 85 is provided in the sound reception room 82, and the sound pressure level L1 measured by the sound source room side microphone 84 and the sound reception room side microphone 85.
- the sound pressure level L2 measured by the above can be taken into the measuring device 86.
- the sound absorbing member and the sound insulating material (that is, the soundproof structure) according to each example and each comparative example are set between the sound source room and the sound receiving room shown in FIG.
- the sound pressure level L1 in the sound source room and the sound pressure level L2 in the sound receiving room were measured, respectively.
- FIGS. 10 (a), 10 (b) and 10 (c) are graphs showing the relationship between the frequency and the transmission loss in Examples 1, 2 and 3, respectively.
- FIGS. 11A and 11B are graphs showing the relationship between the frequency and the transmission loss in Comparative Examples 1 and 2, respectively. In each graph, plots of frequencies of 1000 Hz and 1600 Hz are shown in white, and these values are also shown in Table 1.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Mechanical Engineering (AREA)
- Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
- Body Structure For Vehicles (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
A soundproof structure that comprises: a sound absorption member that has blind holes; and a sound-blocking material that is provided at a prescribed distance, with a layer of air therebetween, from the surface of the sound absorption member at which the blind holes open. The soundproof structure is characterized in that the blind holes in the sound absorption member have a Helmholtz resonance structure that comprises: an inlet passage that opens at the surface; and a hollow part that is connected to the outside by the inlet passage. The soundproof structure is also characterized in that the surface roughness Ra of the inlet passages is 0.1–100 μm.
Description
本発明は、防音構造体、車両用部品及び自動車に関する。
BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a soundproof structure, parts for vehicles and automobiles.
自動車等の車両は、エンジンなどの動力源を有し、人の操作によって移動できる機械であり、様々な振動や騒音を発生させる。車両内に伝達される音としては、動力源が発する音だけではなく、車両が走行する際に発生するロードノイズ、タイヤパターンノイズ、風切音等の、車両の外で発生する音も含まれる。これらの音が車両内に伝達されてしまうと、人に対して不快感を与えてしまうため、エンジン、エンジンルーム内、内装、ボディ、排気管周辺等において、遮音材・吸音部材を用いて防音対策が行われている。
A vehicle such as a car is a machine that has a power source such as an engine and can be moved by human operation, and generates various vibrations and noises. The sounds transmitted to the inside of the vehicle include not only the sounds emitted by the power source but also the sounds generated outside the vehicle such as road noise, tire pattern noise and wind noise generated when the vehicle travels. . When these sounds are transmitted to the inside of the vehicle, they cause discomfort to people, so sound insulation and sound absorbing members are used in the engine, engine room, interior, body, exhaust pipe, etc. Measures have been taken.
特許文献1には、発泡成形により成形された柔軟な多孔質発泡体に、一方の面に開口する導入通路と、該導入通路の奥に形成され該導入通路よりも大きな断面積を持つ中空部とからなる多数の共鳴室を有する吸音部材が開示されている。
Patent Document 1 discloses a flexible porous foam molded by foam molding, an introduction passage opened on one surface, and a hollow portion formed at the back of the introduction passage and having a cross-sectional area larger than that of the introduction passage. A sound absorbing member is disclosed which has a large number of resonance chambers.
特許文献2には、表面又は裏面に開口部を有する複数個の独立した盲空洞を有する樹脂成形体と吸音部材を備え、特定の100Hz~10kHz共鳴吸音ピーク周波数を有する吸・遮音構造体が開示されている。
Patent Document 2 discloses a sound / sound insulation structure including a resin molded body having a plurality of independent blind cavities having openings on the front or back and a sound absorbing member, and having a specific 100 Hz to 10 kHz resonant sound absorption peak frequency. It is done.
しかしながら、自動車の技術改良に伴い、自動車に対する新たな防音対策の必要が生じている。例えば、自動車の燃費向上の方策の一つとして、自動車の重心及び最低地上高を下げることが検討されている。自動車の重心を下げることで車両の安定感及び操作性が向上し、最低地上高を下げることで空気抵抗を低減することができる。しかしながら、自動車の最低地上高が低くなることで、走行時に車両と路面との間を流れる空気の粘性が高まる。そうすると、タイヤパターンノイズ(500~3000Hzの周波数領域であり、単にパターンノイズともいう)等の走行時に路面から発生する騒音が車体下の周囲に反射・拡散しにくく、車両内に侵入する音の度合いが高くなると推定される。同様の問題は電気自動車でも起こりうる。
However, along with the technological improvement of automobiles, there is a need for new soundproofing measures for automobiles. For example, as one of the measures to improve the fuel efficiency of automobiles, it is considered to lower the center of gravity and the minimum ground clearance of the automobile. By lowering the center of gravity of the vehicle, the stability and operability of the vehicle can be improved, and the air resistance can be reduced by lowering the minimum ground clearance. However, as the minimum ground clearance of the vehicle decreases, the viscosity of the air flowing between the vehicle and the road surface increases when traveling. In this case, the noise generated from the road surface during traveling such as tire pattern noise (in a frequency range of 500 to 3000 Hz and simply referred to as pattern noise) is less likely to be reflected and diffused around the lower part of the vehicle body, and the degree of sound intruding into the vehicle Is estimated to be high. Similar problems can occur with electric vehicles.
従って、自動車の燃費向上の為に自動車の重心及び最低地上高を下げた場合、従来は自動車外に拡散していた騒音が、自動車に乗車している人に伝達されてしまうことが想定される。特に、車両後部、かつ、収容スペースが配置されているラゲッジルーム下部(床下空間)の底部からこれらの騒音が侵入しやすいと考えられる。
Therefore, when the center of gravity and minimum ground height of the vehicle are lowered to improve the fuel efficiency of the vehicle, it is assumed that the noise that has conventionally diffused outside the vehicle is transmitted to the person riding the vehicle . In particular, it is considered that these noises are likely to intrude from the bottom of the rear portion of the vehicle and the lower portion of the luggage room (under floor space) where the accommodation space is disposed.
ここで、特許文献1に記載された吸音部材や特許文献2に記載された樹脂成形体のような、開口を有する部材の開口部を車両を構成する部材に対向させて配置することによって防音構造体を形成することによって、騒音を吸音させることができる。
しかしながら、このような防音構造体を用いた場合に、防音構造体を透過する音が大きくなってしまうこと、すなわち防音構造体の透過損失が充分に大きくならないことがあった。 Here, the soundproof structure is achieved by arranging the opening of a member having an opening such as the sound absorbing member described inPatent Document 1 or the resin molded body described in Patent Document 2 to be opposed to a member constituting the vehicle. Noise can be absorbed by forming the body.
However, when such a soundproof structure is used, the sound transmitted through the soundproof structure may be large, that is, the transmission loss of the soundproof structure may not be sufficiently large.
しかしながら、このような防音構造体を用いた場合に、防音構造体を透過する音が大きくなってしまうこと、すなわち防音構造体の透過損失が充分に大きくならないことがあった。 Here, the soundproof structure is achieved by arranging the opening of a member having an opening such as the sound absorbing member described in
However, when such a soundproof structure is used, the sound transmitted through the soundproof structure may be large, that is, the transmission loss of the soundproof structure may not be sufficiently large.
本発明は、上記問題点を解決するためになされた発明であり、本発明は、透過損失が充分に大きい防音構造体を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a soundproof structure having a sufficiently large transmission loss.
本発明者らは、防音構造体の透過損失に影響を与える要因について検討した結果、ヘルムホルツ共鳴構造の導入通路の表面の表面粗さが防音構造体の透過損失の大きさに影響することを見出し、本発明を完成させた。
As a result of examining the factors affecting the transmission loss of the soundproof structure, the present inventors found that the surface roughness of the surface of the introduction passage of the Helmholtz resonance structure affects the magnitude of the transmission loss of the soundproof structure. , Completed the present invention.
すなわち、本発明の防音構造体は、非貫通孔を有する吸音部材と、
上記吸音部材の上記非貫通孔が開口した面に対向して、空気層を隔てて所定距離離間して設けられた遮音材と、からなる防音構造体であって、
上記吸音部材の上記非貫通孔は、表面に開口する導入通路と上記導入通路を介して外部と接続される中空部からなるヘルムホルツ共鳴構造を有しており、
上記導入通路の表面粗さRaは、0.1~100μmであることを特徴とする。 That is, the soundproof structure of the present invention comprises a sound absorbing member having a non-through hole;
It is a soundproof structure which consists of a sound insulation material provided to be separated by a predetermined distance with an air layer opposed to the surface of the sound absorption member opened by the non-through hole.
The non-through hole of the sound absorbing member has a Helmholtz resonance structure including an introduction passage opened on the surface and a hollow portion connected to the outside through the introduction passage,
The surface roughness Ra of the introduction passage is characterized in that it is 0.1 to 100 μm.
上記吸音部材の上記非貫通孔が開口した面に対向して、空気層を隔てて所定距離離間して設けられた遮音材と、からなる防音構造体であって、
上記吸音部材の上記非貫通孔は、表面に開口する導入通路と上記導入通路を介して外部と接続される中空部からなるヘルムホルツ共鳴構造を有しており、
上記導入通路の表面粗さRaは、0.1~100μmであることを特徴とする。 That is, the soundproof structure of the present invention comprises a sound absorbing member having a non-through hole;
It is a soundproof structure which consists of a sound insulation material provided to be separated by a predetermined distance with an air layer opposed to the surface of the sound absorption member opened by the non-through hole.
The non-through hole of the sound absorbing member has a Helmholtz resonance structure including an introduction passage opened on the surface and a hollow portion connected to the outside through the introduction passage,
The surface roughness Ra of the introduction passage is characterized in that it is 0.1 to 100 μm.
また、本発明の防音構造体では、導入通路の表面粗さRaは、0.1~100μmである。
防音構造体では、遮音材と吸音部材の間をバネとし、導入通路内の空気を質量部とし、中空部内をバネとするモデルにより導入通路内の空気の振動をモデル化して考えることができる。
導入通路の表面粗さRaが0.1μm未満であると、導入通路内の空気の振動幅が大きく、導入通路の両端を超えて質量部が拡がる。すると、導入通路内の空気の両端にあるバネが相対的に短くなり過ぎてしまうために透過損失が小さくなる。
一方、導入通路の表面粗さRaが100μmを超えると、導入通路内の空気が動ける範囲が小さくなり、導入通路内の空気の振動によるヘルムホルツ共鳴機構が機能しにくくなる。そのため、透過損失が小さくなる。
これらの事情を踏まえて、導入通路の表面粗さRaを0.1~100μmの範囲に設定することにより、防音構造体を透過する音を小さくすること、すなわち透過損失を充分に大きくすることが可能となる。
なお、導入通路の表面粗さRaは、導入通路の加工条件や研磨処理、サンドブラスト等の粗面化処理により調整することができる。 In the soundproof structure according to the present invention, the surface roughness Ra of the introduction passage is 0.1 to 100 μm.
In the soundproof structure, it is possible to consider the vibration of the air in the introduction passage by a model in which the space between the sound insulation member and the sound absorbing member is a spring, the air in the introduction passage is a mass portion, and the hollow portion is a spring.
When the surface roughness Ra of the introduction passage is less than 0.1 μm, the vibration width of the air in the introduction passage is large, and the mass portion spreads beyond both ends of the introduction passage. Then, the transmission loss is reduced because the springs at both ends of the air in the introduction passage become relatively short.
On the other hand, when the surface roughness Ra of the introduction passage exceeds 100 μm, the range in which the air in the introduction passage can move becomes small, and the Helmholtz resonance mechanism due to the vibration of the air in the introduction passage becomes difficult to function. Therefore, the transmission loss is reduced.
Based on these circumstances, by setting the surface roughness Ra of the introduction passage in the range of 0.1 to 100 μm, it is possible to reduce the sound transmitted through the soundproof structure, that is, to make the transmission loss sufficiently large. It becomes possible.
The surface roughness Ra of the introduction passage can be adjusted by the processing conditions of the introduction passage, polishing treatment, and roughening treatment such as sand blasting.
防音構造体では、遮音材と吸音部材の間をバネとし、導入通路内の空気を質量部とし、中空部内をバネとするモデルにより導入通路内の空気の振動をモデル化して考えることができる。
導入通路の表面粗さRaが0.1μm未満であると、導入通路内の空気の振動幅が大きく、導入通路の両端を超えて質量部が拡がる。すると、導入通路内の空気の両端にあるバネが相対的に短くなり過ぎてしまうために透過損失が小さくなる。
一方、導入通路の表面粗さRaが100μmを超えると、導入通路内の空気が動ける範囲が小さくなり、導入通路内の空気の振動によるヘルムホルツ共鳴機構が機能しにくくなる。そのため、透過損失が小さくなる。
これらの事情を踏まえて、導入通路の表面粗さRaを0.1~100μmの範囲に設定することにより、防音構造体を透過する音を小さくすること、すなわち透過損失を充分に大きくすることが可能となる。
なお、導入通路の表面粗さRaは、導入通路の加工条件や研磨処理、サンドブラスト等の粗面化処理により調整することができる。 In the soundproof structure according to the present invention, the surface roughness Ra of the introduction passage is 0.1 to 100 μm.
In the soundproof structure, it is possible to consider the vibration of the air in the introduction passage by a model in which the space between the sound insulation member and the sound absorbing member is a spring, the air in the introduction passage is a mass portion, and the hollow portion is a spring.
When the surface roughness Ra of the introduction passage is less than 0.1 μm, the vibration width of the air in the introduction passage is large, and the mass portion spreads beyond both ends of the introduction passage. Then, the transmission loss is reduced because the springs at both ends of the air in the introduction passage become relatively short.
On the other hand, when the surface roughness Ra of the introduction passage exceeds 100 μm, the range in which the air in the introduction passage can move becomes small, and the Helmholtz resonance mechanism due to the vibration of the air in the introduction passage becomes difficult to function. Therefore, the transmission loss is reduced.
Based on these circumstances, by setting the surface roughness Ra of the introduction passage in the range of 0.1 to 100 μm, it is possible to reduce the sound transmitted through the soundproof structure, that is, to make the transmission loss sufficiently large. It becomes possible.
The surface roughness Ra of the introduction passage can be adjusted by the processing conditions of the introduction passage, polishing treatment, and roughening treatment such as sand blasting.
本発明の防音構造体では、上記導入通路の表面粗さRaは、0.16~98μmであることが好ましい。導入通路の表面粗さRaをこの範囲とすると透過損失を大きくすることができる。
さらに、上記導入通路の表面粗さRaは、1.02~98μmであることが好ましい。 In the soundproof structure of the present invention, the surface roughness Ra of the introduction passage is preferably 0.16 to 98 μm. When the surface roughness Ra of the introduction passage is in this range, the transmission loss can be increased.
Furthermore, the surface roughness Ra of the introduction passage is preferably 1.02 to 98 μm.
さらに、上記導入通路の表面粗さRaは、1.02~98μmであることが好ましい。 In the soundproof structure of the present invention, the surface roughness Ra of the introduction passage is preferably 0.16 to 98 μm. When the surface roughness Ra of the introduction passage is in this range, the transmission loss can be increased.
Furthermore, the surface roughness Ra of the introduction passage is preferably 1.02 to 98 μm.
本発明の防音構造体では、上記導入通路は円柱状であることが好ましい。
導入通路が円柱状であると、防音特性に異方性がないため有利である。 In the soundproof structure of the present invention, the introduction passage is preferably cylindrical.
It is advantageous that the introduction passage has a cylindrical shape, because the soundproof property is not anisotropic.
導入通路が円柱状であると、防音特性に異方性がないため有利である。 In the soundproof structure of the present invention, the introduction passage is preferably cylindrical.
It is advantageous that the introduction passage has a cylindrical shape, because the soundproof property is not anisotropic.
本発明の防音構造体において、上記吸音部材は、上記導入通路を形成する第1の貫通孔を有する上層と、上記上層に積層された上記中空部を有する下層からなることが好ましい。
本発明の防音構造体における吸音部材は、導入通路となる第1の貫通孔を備える上層と、中空部を有する下層とを積層することにより容易に製造することができる。
また、上層と下層とを別々に製造することにより、導入通路の表面粗さを容易に調節することができる。 In the soundproof structure according to the present invention, the sound absorbing member preferably includes an upper layer having a first through hole forming the introduction passage, and a lower layer having the hollow portion laminated on the upper layer.
The sound absorbing member in the soundproof structure of the present invention can be easily manufactured by laminating the upper layer provided with the first through hole serving as the introduction passage and the lower layer having the hollow portion.
In addition, the surface roughness of the introduction passage can be easily adjusted by separately manufacturing the upper layer and the lower layer.
本発明の防音構造体における吸音部材は、導入通路となる第1の貫通孔を備える上層と、中空部を有する下層とを積層することにより容易に製造することができる。
また、上層と下層とを別々に製造することにより、導入通路の表面粗さを容易に調節することができる。 In the soundproof structure according to the present invention, the sound absorbing member preferably includes an upper layer having a first through hole forming the introduction passage, and a lower layer having the hollow portion laminated on the upper layer.
The sound absorbing member in the soundproof structure of the present invention can be easily manufactured by laminating the upper layer provided with the first through hole serving as the introduction passage and the lower layer having the hollow portion.
In addition, the surface roughness of the introduction passage can be easily adjusted by separately manufacturing the upper layer and the lower layer.
本発明の防音構造体において、上記吸音部材の上記下層は1層からなり、
上記上層と上記下層は、接着剤層により接着されていることが好ましい。
接着がされていると圧縮応力が加わってもヘルムホルツ共鳴構造が変形しにくく、導入通路の表面粗さRaの値が変化しにくいからである。 In the soundproof structure of the present invention, the lower layer of the sound absorbing member is formed of one layer,
It is preferable that the upper layer and the lower layer be adhered by an adhesive layer.
When the adhesive is attached, the Helmholtz resonance structure is not easily deformed even when a compressive stress is applied, and the value of the surface roughness Ra of the introduction passage is hardly changed.
上記上層と上記下層は、接着剤層により接着されていることが好ましい。
接着がされていると圧縮応力が加わってもヘルムホルツ共鳴構造が変形しにくく、導入通路の表面粗さRaの値が変化しにくいからである。 In the soundproof structure of the present invention, the lower layer of the sound absorbing member is formed of one layer,
It is preferable that the upper layer and the lower layer be adhered by an adhesive layer.
When the adhesive is attached, the Helmholtz resonance structure is not easily deformed even when a compressive stress is applied, and the value of the surface roughness Ra of the introduction passage is hardly changed.
本発明の防音構造体において、上記吸音部材の上記下層は1層からなり、
上記上層と、上記下層の表面のうち上記中空部以外の表面と、の間には空間が形成されていることが好ましい。
空間が導入通路の内壁の凹凸と同様の効果を奏するため、防音効果を高くすることができるからである。 In the soundproof structure of the present invention, the lower layer of the sound absorbing member is formed of one layer,
It is preferable that a space be formed between the upper layer and the surface of the lower layer other than the hollow portion.
Since the space exhibits the same effect as the unevenness of the inner wall of the introduction passage, the soundproof effect can be enhanced.
上記上層と、上記下層の表面のうち上記中空部以外の表面と、の間には空間が形成されていることが好ましい。
空間が導入通路の内壁の凹凸と同様の効果を奏するため、防音効果を高くすることができるからである。 In the soundproof structure of the present invention, the lower layer of the sound absorbing member is formed of one layer,
It is preferable that a space be formed between the upper layer and the surface of the lower layer other than the hollow portion.
Since the space exhibits the same effect as the unevenness of the inner wall of the introduction passage, the soundproof effect can be enhanced.
本発明の防音構造体において、上記吸音部材の上記下層は、
上記第1の貫通孔よりも開口径が大きい第2の貫通孔を有する側面層と、
貫通孔が形成されていない底面層とが順に積層されてなり、上記第2の貫通孔と上記底面層とにより上記中空部が形成されていることが好ましい。
このような構成であると、上層、側面層及び底面層を順に積層することにより、容易に本発明の防音構造体における吸音部材を製造することができる。 In the soundproof structure of the present invention, the lower layer of the sound absorbing member is
A side layer having a second through hole whose opening diameter is larger than that of the first through hole;
It is preferable that the bottom layer in which the through holes are not formed be sequentially stacked, and the hollow portion be formed by the second through holes and the bottom layer.
With such a configuration, the sound absorbing member in the soundproof structure of the present invention can be easily manufactured by sequentially laminating the upper layer, the side layer and the bottom layer.
上記第1の貫通孔よりも開口径が大きい第2の貫通孔を有する側面層と、
貫通孔が形成されていない底面層とが順に積層されてなり、上記第2の貫通孔と上記底面層とにより上記中空部が形成されていることが好ましい。
このような構成であると、上層、側面層及び底面層を順に積層することにより、容易に本発明の防音構造体における吸音部材を製造することができる。 In the soundproof structure of the present invention, the lower layer of the sound absorbing member is
A side layer having a second through hole whose opening diameter is larger than that of the first through hole;
It is preferable that the bottom layer in which the through holes are not formed be sequentially stacked, and the hollow portion be formed by the second through holes and the bottom layer.
With such a configuration, the sound absorbing member in the soundproof structure of the present invention can be easily manufactured by sequentially laminating the upper layer, the side layer and the bottom layer.
また、本発明の防音構造体において、上記上層と上記側面層は、接着剤層により接着されていることが好ましい。
接着がされていると圧縮応力が加わってもヘルムホルツ共鳴構造が変形しにくく、導入通路の表面粗さRaの値が変化しにくいからである。 Further, in the soundproof structure according to the present invention, the upper layer and the side layer are preferably adhered by an adhesive layer.
When the adhesive is attached, the Helmholtz resonance structure is not easily deformed even when a compressive stress is applied, and the value of the surface roughness Ra of the introduction passage is hardly changed.
接着がされていると圧縮応力が加わってもヘルムホルツ共鳴構造が変形しにくく、導入通路の表面粗さRaの値が変化しにくいからである。 Further, in the soundproof structure according to the present invention, the upper layer and the side layer are preferably adhered by an adhesive layer.
When the adhesive is attached, the Helmholtz resonance structure is not easily deformed even when a compressive stress is applied, and the value of the surface roughness Ra of the introduction passage is hardly changed.
また、本発明の防音構造体において、上記上層と、上記側面層の表面のうち上記第2の貫通孔以外の表面と、の間には空間が形成されていることが好ましい。
空間が導入通路の内壁の凹凸と同様の効果を奏するため、防音効果を高くすることができるからである。 Further, in the soundproof structure according to the present invention, it is preferable that a space is formed between the upper layer and a surface of the side surface layer other than the second through hole.
Since the space exhibits the same effect as the unevenness of the inner wall of the introduction passage, the soundproof effect can be enhanced.
空間が導入通路の内壁の凹凸と同様の効果を奏するため、防音効果を高くすることができるからである。 Further, in the soundproof structure according to the present invention, it is preferable that a space is formed between the upper layer and a surface of the side surface layer other than the second through hole.
Since the space exhibits the same effect as the unevenness of the inner wall of the introduction passage, the soundproof effect can be enhanced.
また、本発明の防音構造体において、上記側面層と上記底面層は、接着剤層により接着されていることが好ましい。
接着がされていると圧縮応力が加わってもヘルムホルツ共鳴構造が変形しにくく、防音特性が圧縮変形で変化しにくいからである。 Moreover, in the soundproof structure of the present invention, the side layer and the bottom layer are preferably bonded by an adhesive layer.
When the adhesive is attached, the Helmholtz resonance structure is less likely to be deformed even when a compressive stress is applied, and the soundproof property is less likely to change due to the compressive deformation.
接着がされていると圧縮応力が加わってもヘルムホルツ共鳴構造が変形しにくく、防音特性が圧縮変形で変化しにくいからである。 Moreover, in the soundproof structure of the present invention, the side layer and the bottom layer are preferably bonded by an adhesive layer.
When the adhesive is attached, the Helmholtz resonance structure is less likely to be deformed even when a compressive stress is applied, and the soundproof property is less likely to change due to the compressive deformation.
また、本発明の防音構造体において、上記側面層の表面のうち上記第2の貫通孔以外の表面と、上記底面層と、の間には空間が形成されていることが好ましい。
側面層と底面層の間に空間が形成されていると、空間が振動するバネとして働き、透過損失をより高めることができる。 Further, in the soundproof structure according to the present invention, it is preferable that a space is formed between the bottom layer and the surface other than the second through hole in the surface of the side layer.
If a space is formed between the side surface layer and the bottom surface layer, the space acts as a vibrating spring and transmission loss can be further increased.
側面層と底面層の間に空間が形成されていると、空間が振動するバネとして働き、透過損失をより高めることができる。 Further, in the soundproof structure according to the present invention, it is preferable that a space is formed between the bottom layer and the surface other than the second through hole in the surface of the side layer.
If a space is formed between the side surface layer and the bottom surface layer, the space acts as a vibrating spring and transmission loss can be further increased.
本発明の防音構造体では、上記吸音部材が樹脂又は繊維質材料からなることが好ましい。上記樹脂は、発泡樹脂、ゴムなどのエラストマーであることが望ましい。
吸音部材が樹脂製であると、軽量化が図りやすいため車両用部品として特に望ましい。
また、樹脂が発泡樹脂であると、その重量をより軽くすることができ、車両用部品とした場合に燃費の向上に寄与することができる。
本発明の防音構造体では、吸音部材が樹脂及び繊維の複合材であってもよい。複合化の方法としては、樹脂と繊維を混合してもよく、樹脂と繊維をブロック状に組み合わせてもよく、樹脂と繊維の板状体を積層してもよい。 In the soundproof structure according to the present invention, the sound absorbing member is preferably made of a resin or a fibrous material. The resin is preferably an elastomer such as a foamed resin or rubber.
When the sound absorbing member is made of resin, weight reduction can be easily achieved, which is particularly desirable as a component for a vehicle.
In addition, when the resin is a foamed resin, the weight thereof can be made lighter, which can contribute to the improvement of the fuel efficiency when it is used as a component for a vehicle.
In the soundproof structure of the present invention, the sound absorbing member may be a composite material of resin and fiber. As a method of compounding, resin and fiber may be mixed, resin and fiber may be combined in a block shape, and a plate of resin and fiber may be laminated.
吸音部材が樹脂製であると、軽量化が図りやすいため車両用部品として特に望ましい。
また、樹脂が発泡樹脂であると、その重量をより軽くすることができ、車両用部品とした場合に燃費の向上に寄与することができる。
本発明の防音構造体では、吸音部材が樹脂及び繊維の複合材であってもよい。複合化の方法としては、樹脂と繊維を混合してもよく、樹脂と繊維をブロック状に組み合わせてもよく、樹脂と繊維の板状体を積層してもよい。 In the soundproof structure according to the present invention, the sound absorbing member is preferably made of a resin or a fibrous material. The resin is preferably an elastomer such as a foamed resin or rubber.
When the sound absorbing member is made of resin, weight reduction can be easily achieved, which is particularly desirable as a component for a vehicle.
In addition, when the resin is a foamed resin, the weight thereof can be made lighter, which can contribute to the improvement of the fuel efficiency when it is used as a component for a vehicle.
In the soundproof structure of the present invention, the sound absorbing member may be a composite material of resin and fiber. As a method of compounding, resin and fiber may be mixed, resin and fiber may be combined in a block shape, and a plate of resin and fiber may be laminated.
本発明の防音構造体では、上記吸音部材の開口形成側の面に、さらに繊維層が形成され、
上記繊維層には上記導入通路の開口に連通する開口が形成されてなることが好ましい。
吸音部材がヘルムホルツ共鳴構造を有すると、所定の周波数領域の音を吸音することができるが、吸音できる周波数領域の幅は広くなく、特に、2000Hz以上の高周波数領域の音を充分に吸収しにくい。
しかし、繊維層が形成されていると、2000Hz以上の高周波数領域の音を吸音することができる。 In the soundproof structure according to the present invention, a fiber layer is further formed on the surface on the opening forming side of the sound absorbing member,
It is preferable that an opening communicating with the opening of the introduction passage is formed in the fiber layer.
When the sound absorbing member has a Helmholtz resonance structure, it can absorb sound in a predetermined frequency range, but the width of the frequency range that can absorb sound is not wide, and in particular, it is difficult to sufficiently absorb sound in a high frequency range of 2000 Hz or more. .
However, when the fiber layer is formed, sound in a high frequency region of 2000 Hz or more can be absorbed.
上記繊維層には上記導入通路の開口に連通する開口が形成されてなることが好ましい。
吸音部材がヘルムホルツ共鳴構造を有すると、所定の周波数領域の音を吸音することができるが、吸音できる周波数領域の幅は広くなく、特に、2000Hz以上の高周波数領域の音を充分に吸収しにくい。
しかし、繊維層が形成されていると、2000Hz以上の高周波数領域の音を吸音することができる。 In the soundproof structure according to the present invention, a fiber layer is further formed on the surface on the opening forming side of the sound absorbing member,
It is preferable that an opening communicating with the opening of the introduction passage is formed in the fiber layer.
When the sound absorbing member has a Helmholtz resonance structure, it can absorb sound in a predetermined frequency range, but the width of the frequency range that can absorb sound is not wide, and in particular, it is difficult to sufficiently absorb sound in a high frequency range of 2000 Hz or more. .
However, when the fiber layer is formed, sound in a high frequency region of 2000 Hz or more can be absorbed.
本発明の防音構造体では、上記遮音材が金属板であることが望ましく、アルミ二ウムや鋼板を使用できるが、比重が大きい鋼板であることが好ましい。
In the soundproof structure of the present invention, the sound insulation material is preferably a metal plate, and aluminum or a steel plate can be used, but a steel plate having a large specific gravity is preferable.
本発明の車両用部品は、本発明の防音構造体を備えることを特徴とする。
本発明の防音構造体は防音性能に優れるため、車両用部品として優れる。
本発明の防音構造体を備える車両用部品としては、嵩上げ材、仕切り部材、ラゲッジボックス等が挙げられる。 The parts for vehicles of the present invention are characterized by including the soundproof structure of the present invention.
Since the soundproof structure of the present invention is excellent in soundproofing performance, it is excellent as a component for a vehicle.
As parts for vehicles provided with the soundproof structure of the present invention, a raising member, a partition member, a luggage box, etc. are mentioned.
本発明の防音構造体は防音性能に優れるため、車両用部品として優れる。
本発明の防音構造体を備える車両用部品としては、嵩上げ材、仕切り部材、ラゲッジボックス等が挙げられる。 The parts for vehicles of the present invention are characterized by including the soundproof structure of the present invention.
Since the soundproof structure of the present invention is excellent in soundproofing performance, it is excellent as a component for a vehicle.
As parts for vehicles provided with the soundproof structure of the present invention, a raising member, a partition member, a luggage box, etc. are mentioned.
本発明の自動車は、本発明の防音構造体を、上記遮音材を路面方向に向けて配置してなることを特徴とする。
本発明の防音構造体を、遮音材を路面方向に向けて配置することで、路面から伝わるタイヤパターンノイズの騒音が防音構造体を透過して車内に伝わることを防止することができる。 An automobile according to the present invention is characterized in that the soundproof structure according to the present invention is arranged with the above-mentioned sound insulation material directed to the road surface.
By arranging the sound insulation material of the soundproof structure of the present invention in the direction of the road surface, it is possible to prevent the noise of the tire pattern noise transmitted from the road surface from transmitting through the soundproof structure to the inside of the vehicle.
本発明の防音構造体を、遮音材を路面方向に向けて配置することで、路面から伝わるタイヤパターンノイズの騒音が防音構造体を透過して車内に伝わることを防止することができる。 An automobile according to the present invention is characterized in that the soundproof structure according to the present invention is arranged with the above-mentioned sound insulation material directed to the road surface.
By arranging the sound insulation material of the soundproof structure of the present invention in the direction of the road surface, it is possible to prevent the noise of the tire pattern noise transmitted from the road surface from transmitting through the soundproof structure to the inside of the vehicle.
(発明の詳細な説明)
以下、本発明の防音構造体について詳述する。
本発明の防音構造体は、非貫通孔を有する吸音部材と、上記吸音部材の上記非貫通孔が開口した面に対向して、空気層を隔てて所定距離離間して設けられた遮音材と、からなる防音構造体であって、上記吸音部材の上記非貫通孔は、表面に開口する導入通路と上記導入通路を介して外部と接続される中空部からなるヘルムホルツ共鳴構造を有しており、上記導入通路の表面粗さRaは、0.1~100μmであることを特徴とする。 (Detailed Description of the Invention)
Hereinafter, the soundproof structure of the present invention will be described in detail.
The soundproof structure according to the present invention comprises a sound absorbing member having a non-penetrating hole, and a sound insulating member provided opposite to a surface of the sound absorbing member with the non-penetrating hole open, with an air layer therebetween. And the non-penetrating hole of the sound absorbing member has a Helmholtz resonance structure including an introduction passage opened on the surface and a hollow portion connected to the outside through the introduction passage. The surface roughness Ra of the introduction passage is 0.1 to 100 μm.
以下、本発明の防音構造体について詳述する。
本発明の防音構造体は、非貫通孔を有する吸音部材と、上記吸音部材の上記非貫通孔が開口した面に対向して、空気層を隔てて所定距離離間して設けられた遮音材と、からなる防音構造体であって、上記吸音部材の上記非貫通孔は、表面に開口する導入通路と上記導入通路を介して外部と接続される中空部からなるヘルムホルツ共鳴構造を有しており、上記導入通路の表面粗さRaは、0.1~100μmであることを特徴とする。 (Detailed Description of the Invention)
Hereinafter, the soundproof structure of the present invention will be described in detail.
The soundproof structure according to the present invention comprises a sound absorbing member having a non-penetrating hole, and a sound insulating member provided opposite to a surface of the sound absorbing member with the non-penetrating hole open, with an air layer therebetween. And the non-penetrating hole of the sound absorbing member has a Helmholtz resonance structure including an introduction passage opened on the surface and a hollow portion connected to the outside through the introduction passage. The surface roughness Ra of the introduction passage is 0.1 to 100 μm.
まず、本発明の防音構造体を構成する吸音部材について説明する。
本発明の防音構造体を構成する吸音部材は、非貫通孔を有する部材であり、非貫通孔は、表面に開口する導入通路と上記導入通路を介して外部と接続される中空部からなるヘルムホルツ共鳴構造を有している。 First, the sound absorption member which comprises the soundproof structure of this invention is demonstrated.
The sound absorbing member constituting the soundproof structure of the present invention is a member having a non-through hole, and the non-through hole is a Helmholtz consisting of an introduction passage opened on the surface and a hollow portion connected to the outside through the introduction passage. It has a resonant structure.
本発明の防音構造体を構成する吸音部材は、非貫通孔を有する部材であり、非貫通孔は、表面に開口する導入通路と上記導入通路を介して外部と接続される中空部からなるヘルムホルツ共鳴構造を有している。 First, the sound absorption member which comprises the soundproof structure of this invention is demonstrated.
The sound absorbing member constituting the soundproof structure of the present invention is a member having a non-through hole, and the non-through hole is a Helmholtz consisting of an introduction passage opened on the surface and a hollow portion connected to the outside through the introduction passage. It has a resonant structure.
本発明の防音構造体を構成する吸音部材の非貫通孔部分以外の部分は、樹脂又は繊維質材料からなることが好ましい。
樹脂としては、発泡性樹脂粒子(ビーズ)からなる発泡樹脂、気泡を有する発泡樹脂、繊維、熱可塑性樹脂、熱硬化性樹脂のいずれかであることが好ましい。
これらのなかでは、発泡樹脂であることがより好ましい。
本発明の防音構造体における吸音部材を構成する樹脂の密度は0.01~1g/cm3である材料であることが好ましく、密度が0.02~0.1g/cm3であることがさらに望ましい。なお、上記樹脂が発泡樹脂である場合、樹脂の密度は、発泡成形された発泡樹脂の密度を指す。
樹脂の密度が上記範囲内であると、吸音部材として必要な強度を得やすい。
一方、樹脂の密度が0.01g/cm3未満であると、吸音部材として充分な機械的強度を得られないことがある。また樹脂の密度が1g/cm3を超える場合には、吸音部材の重量が増加してしまい、車両の軽量化の妨げとなる。
また、本発明の防音構造体における吸音部材を構成する樹脂は、発泡性樹脂粒子(ビーズ)からなる発泡樹脂がより望ましい。樹脂が発泡性樹脂粒子(ビーズ)からなる発泡樹脂であると、強度を維持したまま吸音部材の重量を軽くすることができ、車両用部品に使用した場合に燃費の向上に寄与することができる。
なお、発泡樹脂は、発泡性樹脂粒子を発泡・成形して得られる。 It is preferable that parts other than the non-through-hole part of the sound-absorbing member which comprises the soundproof structure of this invention consist of resin or fibrous material.
The resin is preferably any of a foamed resin composed of expandable resin particles (beads), a foamed resin having cells, a fiber, a thermoplastic resin, and a thermosetting resin.
Among these, a foamed resin is more preferable.
The density of the resin constituting the sound absorbing member in the soundproof structure according to the present invention is preferably a material having a density of 0.01 to 1 g / cm 3 , and further preferably has a density of 0.02 to 0.1 g / cm 3. desirable. When the resin is a foamed resin, the density of the resin indicates the density of the foamed resin that has been foam-molded.
If the density of the resin is within the above range, it is easy to obtain the strength necessary for the sound absorbing member.
On the other hand, when the density of the resin is less than 0.01 g / cm 3 , mechanical strength sufficient as a sound absorbing member may not be obtained. When the density of the resin exceeds 1 g / cm 3 , the weight of the sound absorbing member increases, which hinders the weight reduction of the vehicle.
Moreover, as resin which comprises the sound absorption member in the soundproof structure of this invention, the foamed resin which consists of foamable resin particles (beads) is more desirable. When the resin is a foamed resin composed of expandable resin particles (beads), the weight of the sound absorbing member can be reduced while maintaining the strength, which can contribute to the improvement of fuel efficiency when used for parts for vehicles .
The foamed resin is obtained by foaming and molding expandable resin particles.
樹脂としては、発泡性樹脂粒子(ビーズ)からなる発泡樹脂、気泡を有する発泡樹脂、繊維、熱可塑性樹脂、熱硬化性樹脂のいずれかであることが好ましい。
これらのなかでは、発泡樹脂であることがより好ましい。
本発明の防音構造体における吸音部材を構成する樹脂の密度は0.01~1g/cm3である材料であることが好ましく、密度が0.02~0.1g/cm3であることがさらに望ましい。なお、上記樹脂が発泡樹脂である場合、樹脂の密度は、発泡成形された発泡樹脂の密度を指す。
樹脂の密度が上記範囲内であると、吸音部材として必要な強度を得やすい。
一方、樹脂の密度が0.01g/cm3未満であると、吸音部材として充分な機械的強度を得られないことがある。また樹脂の密度が1g/cm3を超える場合には、吸音部材の重量が増加してしまい、車両の軽量化の妨げとなる。
また、本発明の防音構造体における吸音部材を構成する樹脂は、発泡性樹脂粒子(ビーズ)からなる発泡樹脂がより望ましい。樹脂が発泡性樹脂粒子(ビーズ)からなる発泡樹脂であると、強度を維持したまま吸音部材の重量を軽くすることができ、車両用部品に使用した場合に燃費の向上に寄与することができる。
なお、発泡樹脂は、発泡性樹脂粒子を発泡・成形して得られる。 It is preferable that parts other than the non-through-hole part of the sound-absorbing member which comprises the soundproof structure of this invention consist of resin or fibrous material.
The resin is preferably any of a foamed resin composed of expandable resin particles (beads), a foamed resin having cells, a fiber, a thermoplastic resin, and a thermosetting resin.
Among these, a foamed resin is more preferable.
The density of the resin constituting the sound absorbing member in the soundproof structure according to the present invention is preferably a material having a density of 0.01 to 1 g / cm 3 , and further preferably has a density of 0.02 to 0.1 g / cm 3. desirable. When the resin is a foamed resin, the density of the resin indicates the density of the foamed resin that has been foam-molded.
If the density of the resin is within the above range, it is easy to obtain the strength necessary for the sound absorbing member.
On the other hand, when the density of the resin is less than 0.01 g / cm 3 , mechanical strength sufficient as a sound absorbing member may not be obtained. When the density of the resin exceeds 1 g / cm 3 , the weight of the sound absorbing member increases, which hinders the weight reduction of the vehicle.
Moreover, as resin which comprises the sound absorption member in the soundproof structure of this invention, the foamed resin which consists of foamable resin particles (beads) is more desirable. When the resin is a foamed resin composed of expandable resin particles (beads), the weight of the sound absorbing member can be reduced while maintaining the strength, which can contribute to the improvement of fuel efficiency when used for parts for vehicles .
The foamed resin is obtained by foaming and molding expandable resin particles.
本発明の防音構造体における吸音部材を構成する発泡性樹脂粒子(ビーズ)は、樹脂粒子の内部に発泡剤を含有する粒子であり、公知のものを好適に使用することができる。
本発明の防音構造体における吸音部材を構成する発泡性樹脂粒子を構成する樹脂成分としては、例えば、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、ポリスチレン等のスチレン系樹脂が挙げられる。スチレン系樹脂としては、スチレン単重合体、スチレン及びスチレンと共重合可能な単量体(又はその誘導体)を共重合して得られる共重合体が挙げられる。スチレン共重合体は、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれであってもよい。
発泡剤としては、例えば、プロパン、ブタン、ペンタン等の炭化水素類等が挙げられる。 The foamable resin particles (beads) constituting the sound absorbing member in the soundproof structure of the present invention are particles containing a foaming agent inside the resin particles, and known materials can be suitably used.
As a resin component which comprises the foamable resin particle which comprises the sound absorbing member in the soundproof structure of this invention, Styrene resin, such as olefin resin, such as polyethylene and a polypropylene, polystyrene, is mentioned, for example. As a styrene resin, a copolymer obtained by copolymerizing a styrene homopolymer, styrene, and a monomer (or its derivative) copolymerizable with styrene is mentioned. The styrene copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer.
Examples of the blowing agent include hydrocarbons such as propane, butane and pentane.
本発明の防音構造体における吸音部材を構成する発泡性樹脂粒子を構成する樹脂成分としては、例えば、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、ポリスチレン等のスチレン系樹脂が挙げられる。スチレン系樹脂としては、スチレン単重合体、スチレン及びスチレンと共重合可能な単量体(又はその誘導体)を共重合して得られる共重合体が挙げられる。スチレン共重合体は、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれであってもよい。
発泡剤としては、例えば、プロパン、ブタン、ペンタン等の炭化水素類等が挙げられる。 The foamable resin particles (beads) constituting the sound absorbing member in the soundproof structure of the present invention are particles containing a foaming agent inside the resin particles, and known materials can be suitably used.
As a resin component which comprises the foamable resin particle which comprises the sound absorbing member in the soundproof structure of this invention, Styrene resin, such as olefin resin, such as polyethylene and a polypropylene, polystyrene, is mentioned, for example. As a styrene resin, a copolymer obtained by copolymerizing a styrene homopolymer, styrene, and a monomer (or its derivative) copolymerizable with styrene is mentioned. The styrene copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer.
Examples of the blowing agent include hydrocarbons such as propane, butane and pentane.
本発明の防音構造体における吸音部材を構成する発泡性樹脂粒子には、必要に応じて、難燃剤、難燃助剤、加工助剤、充填剤、抗酸化剤、耐光性安定剤、帯電防止剤及び着色剤等の公知の添加剤を添加してもよい。添加剤の使用の一例としては、着色剤に黒系のものを用いれば、汚れが目立たなくなる。
The foamable resin particles constituting the sound absorbing member in the soundproof structure according to the present invention may, if necessary, be a flame retardant, a flame retardant aid, a processing aid, a filler, an antioxidant, a light resistance stabilizer, antistatic Known additives such as additives and colorants may be added. As an example of use of an additive, if a black thing is used for a coloring agent, a stain will become inconspicuous.
難燃剤としては、水酸化アルミニウム、水酸化マグネシウム等の水和金属系難燃剤、赤リン、リン酸アンモニウム等のリン酸系難燃剤、テトラブロモビスフェノールA(TABB)、臭素化ポリスチレン、塩素化パラフィン等のハロゲン系難燃剤、炭酸アンモニウム、メラミンシアヌレート等の窒素系難燃剤等が挙げられる。
難燃助剤としては、三酸化アンチモン、五酸化アンチモン等が挙げられる。
加工助剤としては、ステアリン酸塩、流動パラフィン、オレフィン系ワックス、ステアリルアミド系化合物、エポキシ化合物等が挙げられる。
充填剤としては、シリカ、タルク、ケイ酸カルシウム等が挙げられる。
抗酸化剤としては、アルキルフェノール、アルキレンビスフェノール、アルキルフェノールチオエーテル、β,β-チオプロピオン酸エステル、有機亜リン酸エステル及びフェノール・ニッケル複合体等が挙げられる。
耐光性安定剤としては、ベンゾトリアゾール系の紫外線吸収剤及びヒンダードアミン系の安定剤等が挙げられる。
帯電防止剤としては、脂肪酸エステル化合物、脂肪族エタノールアミン化合物及び脂肪族エタノールアミド化合物等の低分子型帯電防止剤並びに高分子型帯電防止剤等が挙げられる。
着色剤としては、染料及び顔料等が挙げられる。 Flame retardants include hydrated metal flame retardants such as aluminum hydroxide and magnesium hydroxide, phosphoric acid flame retardants such as red phosphorus and ammonium phosphate, tetrabromobisphenol A (TABB), brominated polystyrene, chlorinated paraffin And halogen-based flame retardants, ammonium carbonate, nitrogen-based flame retardants such as melamine cyanurate, and the like.
Examples of the flame retardant auxiliary include antimony trioxide and antimony pentoxide.
Examples of processing aids include stearates, liquid paraffin, olefin waxes, stearylamide compounds, and epoxy compounds.
As the filler, silica, talc, calcium silicate and the like can be mentioned.
Examples of the antioxidant include alkylphenols, alkylene bisphenols, alkylphenol thioethers, β, β-thiopropionic acid esters, organic phosphites and phenol-nickel complexes.
Examples of the light fastness stabilizer include benzotriazole-based UV absorbers and hindered amine-based stabilizers.
Examples of the antistatic agent include low molecular weight antistatic agents such as fatty acid ester compounds, aliphatic ethanolamine compounds and aliphatic ethanolamide compounds, and high molecular weight antistatic agents.
As a coloring agent, a dye, a pigment, etc. are mentioned.
難燃助剤としては、三酸化アンチモン、五酸化アンチモン等が挙げられる。
加工助剤としては、ステアリン酸塩、流動パラフィン、オレフィン系ワックス、ステアリルアミド系化合物、エポキシ化合物等が挙げられる。
充填剤としては、シリカ、タルク、ケイ酸カルシウム等が挙げられる。
抗酸化剤としては、アルキルフェノール、アルキレンビスフェノール、アルキルフェノールチオエーテル、β,β-チオプロピオン酸エステル、有機亜リン酸エステル及びフェノール・ニッケル複合体等が挙げられる。
耐光性安定剤としては、ベンゾトリアゾール系の紫外線吸収剤及びヒンダードアミン系の安定剤等が挙げられる。
帯電防止剤としては、脂肪酸エステル化合物、脂肪族エタノールアミン化合物及び脂肪族エタノールアミド化合物等の低分子型帯電防止剤並びに高分子型帯電防止剤等が挙げられる。
着色剤としては、染料及び顔料等が挙げられる。 Flame retardants include hydrated metal flame retardants such as aluminum hydroxide and magnesium hydroxide, phosphoric acid flame retardants such as red phosphorus and ammonium phosphate, tetrabromobisphenol A (TABB), brominated polystyrene, chlorinated paraffin And halogen-based flame retardants, ammonium carbonate, nitrogen-based flame retardants such as melamine cyanurate, and the like.
Examples of the flame retardant auxiliary include antimony trioxide and antimony pentoxide.
Examples of processing aids include stearates, liquid paraffin, olefin waxes, stearylamide compounds, and epoxy compounds.
As the filler, silica, talc, calcium silicate and the like can be mentioned.
Examples of the antioxidant include alkylphenols, alkylene bisphenols, alkylphenol thioethers, β, β-thiopropionic acid esters, organic phosphites and phenol-nickel complexes.
Examples of the light fastness stabilizer include benzotriazole-based UV absorbers and hindered amine-based stabilizers.
Examples of the antistatic agent include low molecular weight antistatic agents such as fatty acid ester compounds, aliphatic ethanolamine compounds and aliphatic ethanolamide compounds, and high molecular weight antistatic agents.
As a coloring agent, a dye, a pigment, etc. are mentioned.
本発明の防音構造体における吸音部材を構成する発泡性樹脂粒子の平均粒径は、300μm~2400μmであることが望ましく、800μm~2000μmであることがより望ましい。
本発明の防音構造体における吸音部材を構成する発泡性樹脂粒子の発泡倍率は、10~60倍であることが望ましい。
発泡倍率を10~60倍の範囲にすることにより、樹脂の密度を0.02~0.1g/cm3の範囲に調整しやすくなる。
一方、発泡倍率が10倍未満の場合、吸音部材が硬くなりすぎたり、重くなりすぎる場合がある。また発泡倍率が60倍を超える場合、吸音部材として強度が不足することがある。
本発明の防音構造体における吸音部材を構成する気泡を有する発泡樹脂としては、ポリウレタン等を用いることができる。主剤となるポリウレタン、発泡剤等を混合し、発泡、成形させることで、気泡を有する発泡樹脂を得ることができ、それにより吸音部材を製作することができる。
本発明の防音構造体における吸音部材を構成する繊維質材料としては、有機繊維、無機繊維を用いることができ、有機繊維としてはポリエステル、ポリアミド、アセテート等を使用できる。無機繊維としては、アルミナ、シリカ、ムライトファイバーが望ましい。繊維をバインダで相互に接着してフェルト状にすることが望ましい。
本発明の防音構造体における吸音部材を構成する熱可塑性樹脂としては、ポリプロピレン樹脂、ポリエチレン樹脂、ポリエステル樹脂(ナイロン6-6等)、ポリスチレン樹脂などを用いることができる。熱可塑性樹脂を樹脂ペレットとして成形し、樹脂ペレットを加熱させ、射出成形、押出成形等の成形加工による吸音部材を作製することができる。
本発明の防音構造体における吸音部材を構成する熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、ポリウレタン、ポリウレア、ポリアミド及びポリアクリルアミドなどを用いることができる。熱硬化性樹脂を予熱し、金型に入れ、加圧し、金型温度を上げて、硬化させることで吸音部材を作製することができる。 The average particle diameter of the expandable resin particles constituting the sound absorbing member in the soundproof structure of the present invention is preferably 300 μm to 2400 μm, and more preferably 800 μm to 2000 μm.
The expansion ratio of the foamable resin particles constituting the sound absorbing member in the soundproof structure of the present invention is preferably 10 to 60 times.
By setting the expansion ratio to 10 to 60 times, the density of the resin can be easily adjusted to the range of 0.02 to 0.1 g / cm 3 .
On the other hand, if the expansion ratio is less than 10 times, the sound absorbing member may be too hard or too heavy. When the expansion ratio exceeds 60 times, the strength of the sound absorbing member may be insufficient.
Polyurethane etc. can be used as a foamed resin which has a bubble which comprises the sound absorption member in the soundproof structure of this invention. By mixing polyurethane, a foaming agent and the like as a main ingredient, foaming, and forming, a foamed resin having air bubbles can be obtained, whereby a sound absorbing member can be manufactured.
Organic fibers and inorganic fibers can be used as the fibrous material constituting the sound absorbing member in the soundproof structure of the present invention, and polyester, polyamide, acetate and the like can be used as the organic fibers. As the inorganic fibers, alumina, silica and mullite fibers are desirable. It is desirable to bond the fibers together with the binder into a felt.
As the thermoplastic resin constituting the sound absorbing member in the soundproof structure of the present invention, polypropylene resin, polyethylene resin, polyester resin (such as nylon 6-6), polystyrene resin, etc. can be used. A thermoplastic resin can be molded as a resin pellet, and the resin pellet can be heated to produce a sound absorbing member by molding such as injection molding and extrusion molding.
As a thermosetting resin which comprises the sound absorption member in the soundproof structure of this invention, an epoxy resin, a phenol resin, a melamine resin, a urea resin, polyurethane, polyurea, polyamide, a polyacrylamide, etc. can be used. The thermosetting resin can be preheated, placed in a mold, pressurized, raised in temperature, and cured to produce a sound absorbing member.
本発明の防音構造体における吸音部材を構成する発泡性樹脂粒子の発泡倍率は、10~60倍であることが望ましい。
発泡倍率を10~60倍の範囲にすることにより、樹脂の密度を0.02~0.1g/cm3の範囲に調整しやすくなる。
一方、発泡倍率が10倍未満の場合、吸音部材が硬くなりすぎたり、重くなりすぎる場合がある。また発泡倍率が60倍を超える場合、吸音部材として強度が不足することがある。
本発明の防音構造体における吸音部材を構成する気泡を有する発泡樹脂としては、ポリウレタン等を用いることができる。主剤となるポリウレタン、発泡剤等を混合し、発泡、成形させることで、気泡を有する発泡樹脂を得ることができ、それにより吸音部材を製作することができる。
本発明の防音構造体における吸音部材を構成する繊維質材料としては、有機繊維、無機繊維を用いることができ、有機繊維としてはポリエステル、ポリアミド、アセテート等を使用できる。無機繊維としては、アルミナ、シリカ、ムライトファイバーが望ましい。繊維をバインダで相互に接着してフェルト状にすることが望ましい。
本発明の防音構造体における吸音部材を構成する熱可塑性樹脂としては、ポリプロピレン樹脂、ポリエチレン樹脂、ポリエステル樹脂(ナイロン6-6等)、ポリスチレン樹脂などを用いることができる。熱可塑性樹脂を樹脂ペレットとして成形し、樹脂ペレットを加熱させ、射出成形、押出成形等の成形加工による吸音部材を作製することができる。
本発明の防音構造体における吸音部材を構成する熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、ポリウレタン、ポリウレア、ポリアミド及びポリアクリルアミドなどを用いることができる。熱硬化性樹脂を予熱し、金型に入れ、加圧し、金型温度を上げて、硬化させることで吸音部材を作製することができる。 The average particle diameter of the expandable resin particles constituting the sound absorbing member in the soundproof structure of the present invention is preferably 300 μm to 2400 μm, and more preferably 800 μm to 2000 μm.
The expansion ratio of the foamable resin particles constituting the sound absorbing member in the soundproof structure of the present invention is preferably 10 to 60 times.
By setting the expansion ratio to 10 to 60 times, the density of the resin can be easily adjusted to the range of 0.02 to 0.1 g / cm 3 .
On the other hand, if the expansion ratio is less than 10 times, the sound absorbing member may be too hard or too heavy. When the expansion ratio exceeds 60 times, the strength of the sound absorbing member may be insufficient.
Polyurethane etc. can be used as a foamed resin which has a bubble which comprises the sound absorption member in the soundproof structure of this invention. By mixing polyurethane, a foaming agent and the like as a main ingredient, foaming, and forming, a foamed resin having air bubbles can be obtained, whereby a sound absorbing member can be manufactured.
Organic fibers and inorganic fibers can be used as the fibrous material constituting the sound absorbing member in the soundproof structure of the present invention, and polyester, polyamide, acetate and the like can be used as the organic fibers. As the inorganic fibers, alumina, silica and mullite fibers are desirable. It is desirable to bond the fibers together with the binder into a felt.
As the thermoplastic resin constituting the sound absorbing member in the soundproof structure of the present invention, polypropylene resin, polyethylene resin, polyester resin (such as nylon 6-6), polystyrene resin, etc. can be used. A thermoplastic resin can be molded as a resin pellet, and the resin pellet can be heated to produce a sound absorbing member by molding such as injection molding and extrusion molding.
As a thermosetting resin which comprises the sound absorption member in the soundproof structure of this invention, an epoxy resin, a phenol resin, a melamine resin, a urea resin, polyurethane, polyurea, polyamide, a polyacrylamide, etc. can be used. The thermosetting resin can be preheated, placed in a mold, pressurized, raised in temperature, and cured to produce a sound absorbing member.
また、本発明の防音構造体における吸音部材の非貫通孔部分以外の部分は、樹脂製の他に、無機材、金属材等の材料であってもよい。
Moreover, parts other than resin-made may be materials, such as an inorganic material and a metal material, other than resin-made parts in the sound-insulation member in the soundproof structure of this invention.
本発明の防音構造体における吸音部材の厚さは、特に限定されないが、1.0cm以上であることが望ましい。
また、吸音部材の厚さが12cm以下であることが好ましい。吸音部材の厚さは、2~10cmであることがさらに望ましい。
吸音部材の厚さが1.0cm未満であると、非貫通孔の長さが短くなりすぎるために、透過損失が充分に大きい防音構造体を設計することが難しくなることがある。 Although the thickness of the sound absorbing member in the soundproof structure of the present invention is not particularly limited, it is desirable that the thickness is 1.0 cm or more.
Further, the thickness of the sound absorbing member is preferably 12 cm or less. More preferably, the thickness of the sound absorbing member is 2 to 10 cm.
If the thickness of the sound absorbing member is less than 1.0 cm, it may be difficult to design a soundproof structure having a sufficiently large transmission loss because the length of the non-through hole is too short.
また、吸音部材の厚さが12cm以下であることが好ましい。吸音部材の厚さは、2~10cmであることがさらに望ましい。
吸音部材の厚さが1.0cm未満であると、非貫通孔の長さが短くなりすぎるために、透過損失が充分に大きい防音構造体を設計することが難しくなることがある。 Although the thickness of the sound absorbing member in the soundproof structure of the present invention is not particularly limited, it is desirable that the thickness is 1.0 cm or more.
Further, the thickness of the sound absorbing member is preferably 12 cm or less. More preferably, the thickness of the sound absorbing member is 2 to 10 cm.
If the thickness of the sound absorbing member is less than 1.0 cm, it may be difficult to design a soundproof structure having a sufficiently large transmission loss because the length of the non-through hole is too short.
本発明の防音構造体における吸音部材に設けられた非貫通孔は、表面に開口する導入通路と上記導入通路を介して外部と接続される中空部からなるヘルムホルツ共鳴構造を有している。
また、吸音部材内に複数個設けられた非貫通孔の形状は、全て同じ形状であってもよく、異なる形状であってもよい。 The non-through hole provided in the sound absorbing member in the soundproof structure of the present invention has a Helmholtz resonance structure including an introduction passage opened on the surface and a hollow portion connected to the outside through the introduction passage.
In addition, the shapes of the non-through holes provided in plural in the sound absorbing member may be all the same shape or may be different shapes.
また、吸音部材内に複数個設けられた非貫通孔の形状は、全て同じ形状であってもよく、異なる形状であってもよい。 The non-through hole provided in the sound absorbing member in the soundproof structure of the present invention has a Helmholtz resonance structure including an introduction passage opened on the surface and a hollow portion connected to the outside through the introduction passage.
In addition, the shapes of the non-through holes provided in plural in the sound absorbing member may be all the same shape or may be different shapes.
本発明の防音構造体において、吸音部材に設けられた非貫通孔の配列パターンは、正方形を縦横に連続して配置した平面において正方形の頂点に非貫通孔を配置する正方配列であってもよく、正三角形を縦横に連続して配置した平面において三角形の頂点に導入通路を配置する千鳥配列であってもよい。
これらの中では、千鳥配列であることが望ましい。非貫通孔の配列パターンが千鳥配列であると、隣接する非貫通孔が全て等間隔となりやすいため、吸音効果が向上する。また、吸音部材としての強度が得られる。 In the soundproof structure according to the present invention, the arrangement pattern of non-through holes provided in the sound absorbing member may be a square arrangement in which non-through holes are disposed at the apexes of squares in a plane in which squares are continuously arranged vertically and horizontally. Alternatively, the introduction paths may be arranged at apexes of triangles in a plane in which regular triangles are arranged continuously in the vertical and horizontal directions.
Among these, a staggered arrangement is desirable. When the arrangement pattern of the non-through holes is a staggered arrangement, the adjacent non-through holes are likely to be equally spaced, so that the sound absorbing effect is improved. In addition, the strength as the sound absorbing member can be obtained.
これらの中では、千鳥配列であることが望ましい。非貫通孔の配列パターンが千鳥配列であると、隣接する非貫通孔が全て等間隔となりやすいため、吸音効果が向上する。また、吸音部材としての強度が得られる。 In the soundproof structure according to the present invention, the arrangement pattern of non-through holes provided in the sound absorbing member may be a square arrangement in which non-through holes are disposed at the apexes of squares in a plane in which squares are continuously arranged vertically and horizontally. Alternatively, the introduction paths may be arranged at apexes of triangles in a plane in which regular triangles are arranged continuously in the vertical and horizontal directions.
Among these, a staggered arrangement is desirable. When the arrangement pattern of the non-through holes is a staggered arrangement, the adjacent non-through holes are likely to be equally spaced, so that the sound absorbing effect is improved. In addition, the strength as the sound absorbing member can be obtained.
本発明の防音構造体では、導入通路はその形状が円柱状であることが望ましく、長さ方向に垂直な方向の断面形状が真円であることが望ましい。導入通路が円柱状であると、吸音特性に異方性がないため有利である。
本発明の防音構造体では、導入通路が円柱状である場合の底面の直径は、1~30mmであることが好ましい。
また、導入通路の形状が円柱状でない場合、導入通路の径は円相当径として定める。円相当径とは、導入通路を長さ方向に対して垂直な方向に切断した際の導入通路の断面積を、同面積の真円に置き換えた場合の直径である。導入通路の断面形状が真円の場合にはその直径をそのまま円相当径とすればよい。
また、導入通路の長さ(高さ)は1~20mmであることが好ましい。 In the soundproof structure of the present invention, the introduction passage preferably has a cylindrical shape, and the cross-sectional shape in the direction perpendicular to the longitudinal direction preferably is a perfect circle. It is advantageous that the introduction passage has a cylindrical shape because the sound absorption characteristics do not have anisotropy.
In the soundproof structure according to the present invention, the diameter of the bottom surface in the case where the introduction passage is cylindrical is preferably 1 to 30 mm.
When the shape of the introduction passage is not cylindrical, the diameter of the introduction passage is determined as the equivalent circle diameter. The equivalent circle diameter is the diameter when the cross-sectional area of the introduction passage when the introduction passage is cut in the direction perpendicular to the length direction is replaced by a true circle of the same area. When the cross-sectional shape of the introduction passage is a true circle, the diameter may be taken as the equivalent circle diameter.
Also, the length (height) of the introduction passage is preferably 1 to 20 mm.
本発明の防音構造体では、導入通路が円柱状である場合の底面の直径は、1~30mmであることが好ましい。
また、導入通路の形状が円柱状でない場合、導入通路の径は円相当径として定める。円相当径とは、導入通路を長さ方向に対して垂直な方向に切断した際の導入通路の断面積を、同面積の真円に置き換えた場合の直径である。導入通路の断面形状が真円の場合にはその直径をそのまま円相当径とすればよい。
また、導入通路の長さ(高さ)は1~20mmであることが好ましい。 In the soundproof structure of the present invention, the introduction passage preferably has a cylindrical shape, and the cross-sectional shape in the direction perpendicular to the longitudinal direction preferably is a perfect circle. It is advantageous that the introduction passage has a cylindrical shape because the sound absorption characteristics do not have anisotropy.
In the soundproof structure according to the present invention, the diameter of the bottom surface in the case where the introduction passage is cylindrical is preferably 1 to 30 mm.
When the shape of the introduction passage is not cylindrical, the diameter of the introduction passage is determined as the equivalent circle diameter. The equivalent circle diameter is the diameter when the cross-sectional area of the introduction passage when the introduction passage is cut in the direction perpendicular to the length direction is replaced by a true circle of the same area. When the cross-sectional shape of the introduction passage is a true circle, the diameter may be taken as the equivalent circle diameter.
Also, the length (height) of the introduction passage is preferably 1 to 20 mm.
導入通路の表面粗さRaは0.1~100μmである。また、導入通路の表面粗さRaは、0.16~98μmであることが望ましい。
本発明において、導入通路の表面粗さRaとは、JIS B 0601(2001)によって定義される算術平均粗さをいい、以下の方法により測定される値のことを意味する。
まず、導入通路の中空部側の端部から反対の端部の方向に、10%、30%、50%、70%、90%の部分を表面粗さ測定基準点とする。
次に、各表面粗さ測定基準点を中心として正方形の領域での表面粗さRaを、レーザー式表面粗さ測定装置(機種名:キーエンス社製 製品名:VX-9700)を用いて測定する。測定は次のように行う。最初に導入通路の断面に対して垂直方向に切断した測定片を用意する。次に測定片の導入通路の表面を上面にして、測定装置に固定し、レーザー式表面粗さ測定装置の顕微鏡の倍率50倍にして、測定基準点に対して、ピントを合わせて、波長400nmのレーザーによる測定を行う。このとき、測定基準点を中心として、縦:100μm 横:100μmでの正方形の領域で表面の面粗さ曲線を間隔10μmで計測、描画し(従って、10個の面粗さ曲線が描かれる)、各面粗さ曲線からRaを演算、これら10個のRaの値の平均を測定基準点の面粗さRaとする。同様の計測を各測定基準点で行い、5つの測定基準点の測定値の平均値を導入通路の表面粗さRaとする。
なお、導入通路の表面粗さRaは、導入通路の加工条件や研磨処理、サンドブラスト等の粗面化処理により調整することができる。 The surface roughness Ra of the introduction passage is 0.1 to 100 μm. Further, the surface roughness Ra of the introduction passage is desirably 0.16 to 98 μm.
In the present invention, the surface roughness Ra of the introduction passage refers to the arithmetic average roughness defined by JIS B 0601 (2001), and means a value measured by the following method.
First, 10%, 30%, 50%, 70%, and 90% portions are taken as surface roughness measurement reference points in the direction from the hollow portion side end of the introduction passage to the opposite end portion.
Next, the surface roughness Ra in a square area centering on each surface roughness measurement reference point is measured using a laser type surface roughness measuring device (model name: manufactured by Keyence Corporation product name: VX-9700). . The measurement is performed as follows. First, a measurement piece cut in the direction perpendicular to the cross section of the introduction passage is prepared. Next, with the surface of the introduction path of the measurement piece facing up, fix it to the measuring device, make it 50 times the magnification of the microscope of the laser type surface roughness measuring device, focus on the measurement reference point, 400 nm wavelength Make measurements with a laser. At this time, the surface roughness curve of the surface is measured and drawn at intervals of 10 μm in a square area with a height of 100 μm and a width of 100 μm with the measurement reference point as the center (therefore, 10 surface roughness curves are drawn) The Ra is calculated from each surface roughness curve, and the average of these ten Ra values is taken as the surface roughness Ra of the measurement reference point. The same measurement is performed at each measurement reference point, and the average value of the measurement values of five measurement reference points is taken as the surface roughness Ra of the introduction passage.
The surface roughness Ra of the introduction passage can be adjusted by the processing conditions of the introduction passage, polishing treatment, and roughening treatment such as sand blasting.
本発明において、導入通路の表面粗さRaとは、JIS B 0601(2001)によって定義される算術平均粗さをいい、以下の方法により測定される値のことを意味する。
まず、導入通路の中空部側の端部から反対の端部の方向に、10%、30%、50%、70%、90%の部分を表面粗さ測定基準点とする。
次に、各表面粗さ測定基準点を中心として正方形の領域での表面粗さRaを、レーザー式表面粗さ測定装置(機種名:キーエンス社製 製品名:VX-9700)を用いて測定する。測定は次のように行う。最初に導入通路の断面に対して垂直方向に切断した測定片を用意する。次に測定片の導入通路の表面を上面にして、測定装置に固定し、レーザー式表面粗さ測定装置の顕微鏡の倍率50倍にして、測定基準点に対して、ピントを合わせて、波長400nmのレーザーによる測定を行う。このとき、測定基準点を中心として、縦:100μm 横:100μmでの正方形の領域で表面の面粗さ曲線を間隔10μmで計測、描画し(従って、10個の面粗さ曲線が描かれる)、各面粗さ曲線からRaを演算、これら10個のRaの値の平均を測定基準点の面粗さRaとする。同様の計測を各測定基準点で行い、5つの測定基準点の測定値の平均値を導入通路の表面粗さRaとする。
なお、導入通路の表面粗さRaは、導入通路の加工条件や研磨処理、サンドブラスト等の粗面化処理により調整することができる。 The surface roughness Ra of the introduction passage is 0.1 to 100 μm. Further, the surface roughness Ra of the introduction passage is desirably 0.16 to 98 μm.
In the present invention, the surface roughness Ra of the introduction passage refers to the arithmetic average roughness defined by JIS B 0601 (2001), and means a value measured by the following method.
First, 10%, 30%, 50%, 70%, and 90% portions are taken as surface roughness measurement reference points in the direction from the hollow portion side end of the introduction passage to the opposite end portion.
Next, the surface roughness Ra in a square area centering on each surface roughness measurement reference point is measured using a laser type surface roughness measuring device (model name: manufactured by Keyence Corporation product name: VX-9700). . The measurement is performed as follows. First, a measurement piece cut in the direction perpendicular to the cross section of the introduction passage is prepared. Next, with the surface of the introduction path of the measurement piece facing up, fix it to the measuring device, make it 50 times the magnification of the microscope of the laser type surface roughness measuring device, focus on the measurement reference point, 400 nm wavelength Make measurements with a laser. At this time, the surface roughness curve of the surface is measured and drawn at intervals of 10 μm in a square area with a height of 100 μm and a width of 100 μm with the measurement reference point as the center (therefore, 10 surface roughness curves are drawn) The Ra is calculated from each surface roughness curve, and the average of these ten Ra values is taken as the surface roughness Ra of the measurement reference point. The same measurement is performed at each measurement reference point, and the average value of the measurement values of five measurement reference points is taken as the surface roughness Ra of the introduction passage.
The surface roughness Ra of the introduction passage can be adjusted by the processing conditions of the introduction passage, polishing treatment, and roughening treatment such as sand blasting.
本発明の防音構造体では、中空部はその形状が円柱状であることが望ましく、長さ方向に垂直な方向の断面形状が真円であることが望ましい。
本発明の防音構造体において中空部が円柱状である場合、その高さは、1~20mmであることが望ましく、3~15mmであることがさらに望ましい。
また、中空部の形状が円柱状でない場合、中空部の径は円相当径として定める。円相当径とは、中空部を長さ方向に対して垂直な方向に切断した際の中空部の断面積を、同面積の真円に置き換えた場合の直径である。中空部の断面形状が真円の場合にはその直径をそのまま円相当径とすればよい。
中空部と導入通路によりヘルムホルツ共鳴構造を形成するために、中空部の円相当径が導入通路の円相当径よりも大きくなっている。
中空部の径は4~171mmであることが好ましく、10mm以上であることが好ましく、150mm以下であることが好ましい。 In the soundproof structure of the present invention, the hollow portion preferably has a cylindrical shape, and the cross-sectional shape in the direction perpendicular to the longitudinal direction preferably is a perfect circle.
When the hollow portion is cylindrical in the soundproof structure of the present invention, the height is preferably 1 to 20 mm, and more preferably 3 to 15 mm.
Moreover, when the shape of the hollow portion is not cylindrical, the diameter of the hollow portion is determined as the equivalent circle diameter. The equivalent circle diameter is the diameter when the cross-sectional area of the hollow portion when the hollow portion is cut in the direction perpendicular to the length direction is replaced with a true circle of the same area. When the cross-sectional shape of the hollow portion is a perfect circle, the diameter may be used as the equivalent circle diameter.
In order to form a Helmholtz resonance structure by the hollow portion and the introduction passage, the circle equivalent diameter of the hollow portion is larger than the circle equivalent diameter of the introduction passage.
The diameter of the hollow portion is preferably 4 to 171 mm, preferably 10 mm or more, and more preferably 150 mm or less.
本発明の防音構造体において中空部が円柱状である場合、その高さは、1~20mmであることが望ましく、3~15mmであることがさらに望ましい。
また、中空部の形状が円柱状でない場合、中空部の径は円相当径として定める。円相当径とは、中空部を長さ方向に対して垂直な方向に切断した際の中空部の断面積を、同面積の真円に置き換えた場合の直径である。中空部の断面形状が真円の場合にはその直径をそのまま円相当径とすればよい。
中空部と導入通路によりヘルムホルツ共鳴構造を形成するために、中空部の円相当径が導入通路の円相当径よりも大きくなっている。
中空部の径は4~171mmであることが好ましく、10mm以上であることが好ましく、150mm以下であることが好ましい。 In the soundproof structure of the present invention, the hollow portion preferably has a cylindrical shape, and the cross-sectional shape in the direction perpendicular to the longitudinal direction preferably is a perfect circle.
When the hollow portion is cylindrical in the soundproof structure of the present invention, the height is preferably 1 to 20 mm, and more preferably 3 to 15 mm.
Moreover, when the shape of the hollow portion is not cylindrical, the diameter of the hollow portion is determined as the equivalent circle diameter. The equivalent circle diameter is the diameter when the cross-sectional area of the hollow portion when the hollow portion is cut in the direction perpendicular to the length direction is replaced with a true circle of the same area. When the cross-sectional shape of the hollow portion is a perfect circle, the diameter may be used as the equivalent circle diameter.
In order to form a Helmholtz resonance structure by the hollow portion and the introduction passage, the circle equivalent diameter of the hollow portion is larger than the circle equivalent diameter of the introduction passage.
The diameter of the hollow portion is preferably 4 to 171 mm, preferably 10 mm or more, and more preferably 150 mm or less.
本発明の防音構造体において、導入通路と中空部の位置関係は、中空部が導入通路を介して外部と接続されていればよく、導入通路と中空部の中心(厚さ方向に垂直な方向に切断した際の断面形状における中心)は、一致していてもよく、一致していなくてもよい。
In the soundproof structure of the present invention, the positional relationship between the introduction passage and the hollow portion may be such that the hollow portion is connected to the outside via the introduction passage, and the center of the introduction passage and the hollow portion (direction perpendicular to the thickness direction The center in the cross-sectional shape when cut into two may or may not coincide.
本発明の防音構造体では、上記吸音部材の開口形成側の面に、さらに繊維層が形成され、上記繊維層には上記導入通路の開口に連通する開口が形成されてなることが好ましい。
吸音部材がヘルムホルツ共鳴構造を有すると、所定の周波数領域の音を吸音することができるが、吸音できる周波数領域の幅は広くなく、特に、2000Hz以上の高周波数領域の音を充分に吸収しにくい。
しかし、繊維層が形成されていると、2000Hz以上の高周波数領域の音を吸音することができる。 In the soundproof structure according to the present invention, it is preferable that a fiber layer is further formed on the surface on the opening formation side of the sound absorbing member, and the fiber layer is formed with an opening communicating with the opening of the introduction passage.
When the sound absorbing member has a Helmholtz resonance structure, it can absorb sound in a predetermined frequency range, but the width of the frequency range that can absorb sound is not wide, and in particular, it is difficult to sufficiently absorb sound in a high frequency range of 2000 Hz or more. .
However, when the fiber layer is formed, sound in a high frequency region of 2000 Hz or more can be absorbed.
吸音部材がヘルムホルツ共鳴構造を有すると、所定の周波数領域の音を吸音することができるが、吸音できる周波数領域の幅は広くなく、特に、2000Hz以上の高周波数領域の音を充分に吸収しにくい。
しかし、繊維層が形成されていると、2000Hz以上の高周波数領域の音を吸音することができる。 In the soundproof structure according to the present invention, it is preferable that a fiber layer is further formed on the surface on the opening formation side of the sound absorbing member, and the fiber layer is formed with an opening communicating with the opening of the introduction passage.
When the sound absorbing member has a Helmholtz resonance structure, it can absorb sound in a predetermined frequency range, but the width of the frequency range that can absorb sound is not wide, and in particular, it is difficult to sufficiently absorb sound in a high frequency range of 2000 Hz or more. .
However, when the fiber layer is formed, sound in a high frequency region of 2000 Hz or more can be absorbed.
繊維層を構成する材料としては、天然繊維、合成樹脂繊維、無機繊維から選ばれることが好ましい。天然繊維としては、植物繊維、動物繊維、鉱物繊維が挙げられる。合成樹脂繊維としては、ポリアミド系樹脂(ナイロン等)、ポリエステル樹脂(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等)、アクリル樹脂、ポリビニルアルコール系樹脂、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン等)等が挙げられる。無機繊維としては、アルミナ繊維、シリカ繊維、シリカーアルミナ繊維、ガラス繊維、炭素繊維、チタン酸カリウム繊維、ロックウール等が挙げられる。
繊維層はフェルト状や不織布として成形されていてもよい。
繊維層の厚さは1~20mmであることが好ましい。
なお、繊維層には、繊維と繊維との間に空隙が形成されているので、その空隙内において空気振動が生じ、高周波数領域の音を吸音することができる。 The material constituting the fiber layer is preferably selected from natural fibers, synthetic resin fibers, and inorganic fibers. Natural fibers include vegetable fibers, animal fibers and mineral fibers. Examples of synthetic resin fibers include polyamide resins (nylon etc.), polyester resins (polyethylene terephthalate (PET), polyethylene naphthalate (PEN) etc.), acrylic resins, polyvinyl alcohol resins, polyolefin resins (polyethylene, polypropylene etc.) etc. It can be mentioned. As the inorganic fibers, alumina fibers, silica fibers, silica-alumina fibers, glass fibers, carbon fibers, potassium titanate fibers, rock wool and the like can be mentioned.
The fiber layer may be formed as a felt or non-woven fabric.
The thickness of the fiber layer is preferably 1 to 20 mm.
In addition, since a space is formed between the fiber and the fiber in the fiber layer, air vibration occurs in the space, and sound in a high frequency region can be absorbed.
繊維層はフェルト状や不織布として成形されていてもよい。
繊維層の厚さは1~20mmであることが好ましい。
なお、繊維層には、繊維と繊維との間に空隙が形成されているので、その空隙内において空気振動が生じ、高周波数領域の音を吸音することができる。 The material constituting the fiber layer is preferably selected from natural fibers, synthetic resin fibers, and inorganic fibers. Natural fibers include vegetable fibers, animal fibers and mineral fibers. Examples of synthetic resin fibers include polyamide resins (nylon etc.), polyester resins (polyethylene terephthalate (PET), polyethylene naphthalate (PEN) etc.), acrylic resins, polyvinyl alcohol resins, polyolefin resins (polyethylene, polypropylene etc.) etc. It can be mentioned. As the inorganic fibers, alumina fibers, silica fibers, silica-alumina fibers, glass fibers, carbon fibers, potassium titanate fibers, rock wool and the like can be mentioned.
The fiber layer may be formed as a felt or non-woven fabric.
The thickness of the fiber layer is preferably 1 to 20 mm.
In addition, since a space is formed between the fiber and the fiber in the fiber layer, air vibration occurs in the space, and sound in a high frequency region can be absorbed.
吸音部材と繊維層とは接着剤層により接着されていてもよく、接着されていなくてもよい。
The sound absorbing member and the fiber layer may or may not be bonded by an adhesive layer.
本発明の防音構造体における吸音部材の構成として、吸音部材が1層の樹脂層からなり、樹脂層に、表面に開口する導入通路と導入通路を介して外部と接続される中空部からなるヘルムホルツ共鳴構造を有する非貫通孔を形成することで製造されたものが挙げられる。
樹脂層に非貫通孔を形成する方法は、特に限定されないが、例えば、樹脂層にカッター等の工具を用いて手作業で貫通孔を形成してもよい。 As a configuration of the sound absorbing member in the soundproof structure according to the present invention, the sound absorbing member is formed of a resin layer of one layer, and Helmholtz formed of a hollow portion connected to the outside through the introduction passage opened on the surface and the introduction passage What was manufactured by forming the non-penetrating hole which has a resonance structure is mentioned.
Although the method to form a non-penetrating hole in a resin layer is not specifically limited, For example, you may form a through-hole manually by using tools, such as a cutter, in a resin layer.
樹脂層に非貫通孔を形成する方法は、特に限定されないが、例えば、樹脂層にカッター等の工具を用いて手作業で貫通孔を形成してもよい。 As a configuration of the sound absorbing member in the soundproof structure according to the present invention, the sound absorbing member is formed of a resin layer of one layer, and Helmholtz formed of a hollow portion connected to the outside through the introduction passage opened on the surface and the introduction passage What was manufactured by forming the non-penetrating hole which has a resonance structure is mentioned.
Although the method to form a non-penetrating hole in a resin layer is not specifically limited, For example, you may form a through-hole manually by using tools, such as a cutter, in a resin layer.
また、本発明の防音構造体における吸音部材の他の構成として、導入通路を形成する第1の貫通孔を有する上層と、上層に積層された中空部を有する下層からなる構成が挙げられる。
吸音部材を上層と下層の積層構造によって構成する場合、上層には導入通路となる第1の貫通孔が存在し、下層には中空部が存在するので、上層と下層を積層することによりヘルムホルツ共鳴構造が形成される。
上層と下層は接着剤層により接着されていてもよく、接着されていなくてもよい。
接着剤層は、下層の表面のうち中空部以外の表面に設けられることが好ましい。
また、上層及び下層の接触部に雌部と雄部を設け、これらを嵌合させて上層及び下層を接続してもよい。 Moreover, the structure which consists of an upper layer which has a 1st through-hole which forms an introductory path, and a lower layer which has a hollow part laminated | stacked on the upper layer as another structure of the sound absorption member in the soundproof structure of this invention is mentioned.
When the sound absorbing member is constituted by the laminated structure of the upper layer and the lower layer, since the first through hole serving as the introduction passage is present in the upper layer and the hollow portion exists in the lower layer, Helmholtz resonance is obtained by laminating the upper layer and the lower layer. A structure is formed.
The upper and lower layers may or may not be adhered by an adhesive layer.
The adhesive layer is preferably provided on the surface of the lower layer other than the hollow portion.
Further, the upper and lower layers may be connected by providing a female portion and a male portion in the upper and lower layer contact portions and fitting them together.
吸音部材を上層と下層の積層構造によって構成する場合、上層には導入通路となる第1の貫通孔が存在し、下層には中空部が存在するので、上層と下層を積層することによりヘルムホルツ共鳴構造が形成される。
上層と下層は接着剤層により接着されていてもよく、接着されていなくてもよい。
接着剤層は、下層の表面のうち中空部以外の表面に設けられることが好ましい。
また、上層及び下層の接触部に雌部と雄部を設け、これらを嵌合させて上層及び下層を接続してもよい。 Moreover, the structure which consists of an upper layer which has a 1st through-hole which forms an introductory path, and a lower layer which has a hollow part laminated | stacked on the upper layer as another structure of the sound absorption member in the soundproof structure of this invention is mentioned.
When the sound absorbing member is constituted by the laminated structure of the upper layer and the lower layer, since the first through hole serving as the introduction passage is present in the upper layer and the hollow portion exists in the lower layer, Helmholtz resonance is obtained by laminating the upper layer and the lower layer. A structure is formed.
The upper and lower layers may or may not be adhered by an adhesive layer.
The adhesive layer is preferably provided on the surface of the lower layer other than the hollow portion.
Further, the upper and lower layers may be connected by providing a female portion and a male portion in the upper and lower layer contact portions and fitting them together.
上層における第1の貫通孔は柱状であり、空気のみで柱状の空間を有する部分であることが好ましい。板材の厚さ方向において入口側から出口側まで貫通孔の径が一定であることが好ましい。
すなわち、多孔質材料における連通気孔のような、厚さ方向にガスが通るが厚さ方向の上面視において向こう側が見えない(貫通していない)という形態は含まないことが好ましい。
第1の貫通孔は、貫通孔を有さない板材に対して機械加工により形成された貫通孔であることが好ましく、パンチング、ドリルやレーザー等による穴あけが好適に用いられる。 It is preferable that the first through holes in the upper layer have a columnar shape and be a portion having a columnar space only with air. It is preferable that the diameter of the through hole is constant from the inlet side to the outlet side in the thickness direction of the plate material.
That is, it is preferable not to include a form in which gas passes in the thickness direction but the other side can not be seen (does not penetrate) in top view in the thickness direction, such as communicating pores in a porous material.
The first through hole is preferably a through hole formed by machining a plate material having no through hole, and drilling using a punching, a drill, a laser or the like is suitably used.
すなわち、多孔質材料における連通気孔のような、厚さ方向にガスが通るが厚さ方向の上面視において向こう側が見えない(貫通していない)という形態は含まないことが好ましい。
第1の貫通孔は、貫通孔を有さない板材に対して機械加工により形成された貫通孔であることが好ましく、パンチング、ドリルやレーザー等による穴あけが好適に用いられる。 It is preferable that the first through holes in the upper layer have a columnar shape and be a portion having a columnar space only with air. It is preferable that the diameter of the through hole is constant from the inlet side to the outlet side in the thickness direction of the plate material.
That is, it is preferable not to include a form in which gas passes in the thickness direction but the other side can not be seen (does not penetrate) in top view in the thickness direction, such as communicating pores in a porous material.
The first through hole is preferably a through hole formed by machining a plate material having no through hole, and drilling using a punching, a drill, a laser or the like is suitably used.
中空部を有する下層は、1層であっても2層であってもよい。
下層が1層の場合の例として、下層を構成する1枚の板材のその厚さ方向の途中までに凹部が形成されて中空部となっている形態が挙げられる。
この場合、本発明の防音構造体における吸音部材を構成する層は、接着剤層が設けられている場合の接着剤層を除くと上層と下層の2層である。 The lower layer having the hollow portion may be a single layer or two layers.
As an example in the case where the lower layer is a single layer, there is a form in which a concave portion is formed midway in the thickness direction of one plate material constituting the lower layer to form a hollow portion.
In this case, the layers constituting the sound absorbing member in the soundproof structure of the present invention are two layers of the upper layer and the lower layer except for the adhesive layer in the case where the adhesive layer is provided.
下層が1層の場合の例として、下層を構成する1枚の板材のその厚さ方向の途中までに凹部が形成されて中空部となっている形態が挙げられる。
この場合、本発明の防音構造体における吸音部材を構成する層は、接着剤層が設けられている場合の接着剤層を除くと上層と下層の2層である。 The lower layer having the hollow portion may be a single layer or two layers.
As an example in the case where the lower layer is a single layer, there is a form in which a concave portion is formed midway in the thickness direction of one plate material constituting the lower layer to form a hollow portion.
In this case, the layers constituting the sound absorbing member in the soundproof structure of the present invention are two layers of the upper layer and the lower layer except for the adhesive layer in the case where the adhesive layer is provided.
下層が1層の場合、下層を構成する1枚の板材のその厚さ方向の途中までに凹部が形成されて中空部となる。凹部は板材を構成する材料を底面及び側面として、底面及び側面に囲まれて、上面が開いている柱状の空間となる部分である。凹部はその上面から底面までその径が一定であることが好ましい。また、上層を構成する第1の貫通孔の径よりも凹部の底面の径が大きいことが好ましい。
凹部(中空部)は、貫通孔を有さない板材に対して機械加工により形成されていることが好ましく、エンドミルによる切削加工や熱線による加工が好適に用いられる。
また、下層となる板材を製造する際に、射出成形やプレス成形によって凹部を有する板材を一体成形してもよい。
また、板材として発泡性樹脂粒子(ビーズ)からなる発泡樹脂を使用する場合、凹部の形状に対応する突起を有する金型の中で発泡成形を行うことによっても凹部を有する板材を作製することができる。 In the case where the lower layer is a single layer, a recess is formed up to the middle of the thickness direction of one plate material constituting the lower layer to form a hollow portion. The concave portion is a portion which is a columnar space having an open upper surface, surrounded by the bottom surface and the side surface, with the material constituting the plate material as the bottom surface and the side surface. The diameter of the recess is preferably constant from the top surface to the bottom surface. Moreover, it is preferable that the diameter of the bottom face of the recess is larger than the diameter of the first through hole that constitutes the upper layer.
The recess (hollow portion) is preferably formed by machining a plate having no through hole, and cutting with an end mill or processing with a hot wire is suitably used.
Moreover, when manufacturing the board | plate material used as a lower layer, you may integrally form the board | plate material which has a recessed part by injection molding or press molding.
In addition, when using a foamed resin comprising expandable resin particles (beads) as a plate material, it is possible to produce a plate material having a recess also by performing foam molding in a mold having a protrusion corresponding to the shape of the recess. it can.
凹部(中空部)は、貫通孔を有さない板材に対して機械加工により形成されていることが好ましく、エンドミルによる切削加工や熱線による加工が好適に用いられる。
また、下層となる板材を製造する際に、射出成形やプレス成形によって凹部を有する板材を一体成形してもよい。
また、板材として発泡性樹脂粒子(ビーズ)からなる発泡樹脂を使用する場合、凹部の形状に対応する突起を有する金型の中で発泡成形を行うことによっても凹部を有する板材を作製することができる。 In the case where the lower layer is a single layer, a recess is formed up to the middle of the thickness direction of one plate material constituting the lower layer to form a hollow portion. The concave portion is a portion which is a columnar space having an open upper surface, surrounded by the bottom surface and the side surface, with the material constituting the plate material as the bottom surface and the side surface. The diameter of the recess is preferably constant from the top surface to the bottom surface. Moreover, it is preferable that the diameter of the bottom face of the recess is larger than the diameter of the first through hole that constitutes the upper layer.
The recess (hollow portion) is preferably formed by machining a plate having no through hole, and cutting with an end mill or processing with a hot wire is suitably used.
Moreover, when manufacturing the board | plate material used as a lower layer, you may integrally form the board | plate material which has a recessed part by injection molding or press molding.
In addition, when using a foamed resin comprising expandable resin particles (beads) as a plate material, it is possible to produce a plate material having a recess also by performing foam molding in a mold having a protrusion corresponding to the shape of the recess. it can.
本発明の防音構造体において、吸音部材の下層が1層からなる場合、上層と下層は、接着剤層により接着されていてもよい。
接着剤層を構成する材料としては、ビニル樹脂系接着剤、スチレン樹脂系接着剤、エポキシ樹脂系接着剤、シアノアクリレート系接着剤等が挙げられる。
接着剤層としては、シート状の接着剤を中空部の形状及び位置に合わせてくり抜いたものを使用してもよく、下層の表面に対して中空部が設けられていない部分に接着剤が塗布されたものであってもよい。 In the soundproof structure of the present invention, when the lower layer of the sound absorbing member is formed of one layer, the upper layer and the lower layer may be bonded by an adhesive layer.
As a material which comprises an adhesive bond layer, a vinyl resin adhesive, a styrene resin adhesive, an epoxy resin adhesive, a cyanoacrylate adhesive etc. are mentioned.
As the adhesive layer, one obtained by hollowing out a sheet-like adhesive according to the shape and position of the hollow portion may be used, and the adhesive is applied to a portion where the hollow portion is not provided to the surface of the lower layer. It may be done.
接着剤層を構成する材料としては、ビニル樹脂系接着剤、スチレン樹脂系接着剤、エポキシ樹脂系接着剤、シアノアクリレート系接着剤等が挙げられる。
接着剤層としては、シート状の接着剤を中空部の形状及び位置に合わせてくり抜いたものを使用してもよく、下層の表面に対して中空部が設けられていない部分に接着剤が塗布されたものであってもよい。 In the soundproof structure of the present invention, when the lower layer of the sound absorbing member is formed of one layer, the upper layer and the lower layer may be bonded by an adhesive layer.
As a material which comprises an adhesive bond layer, a vinyl resin adhesive, a styrene resin adhesive, an epoxy resin adhesive, a cyanoacrylate adhesive etc. are mentioned.
As the adhesive layer, one obtained by hollowing out a sheet-like adhesive according to the shape and position of the hollow portion may be used, and the adhesive is applied to a portion where the hollow portion is not provided to the surface of the lower layer. It may be done.
また、本発明の防音構造体において、吸音部材の下層が1層からなる場合、上層と、下層の表面のうち中空部以外の表面と、の間には空間が形成されていてもよい。
この場合、上層と、下層の表面のうち中空部以外の表面と、の間の大部分が空間になっていて、上層と下層の一部が接着、嵌合等によりその位置が固定されていればよい。 In the soundproof structure of the present invention, when the lower layer of the sound absorbing member is formed of a single layer, a space may be formed between the upper layer and the surface of the lower layer other than the hollow portion.
In this case, most of the space between the upper layer and the surface of the lower layer other than the hollow portion is a space, and the upper layer and the lower layer are partially fixed by adhesion, fitting or the like. Just do it.
この場合、上層と、下層の表面のうち中空部以外の表面と、の間の大部分が空間になっていて、上層と下層の一部が接着、嵌合等によりその位置が固定されていればよい。 In the soundproof structure of the present invention, when the lower layer of the sound absorbing member is formed of a single layer, a space may be formed between the upper layer and the surface of the lower layer other than the hollow portion.
In this case, most of the space between the upper layer and the surface of the lower layer other than the hollow portion is a space, and the upper layer and the lower layer are partially fixed by adhesion, fitting or the like. Just do it.
本発明の防音構造体における吸音部材が上層と下層の2層からなる場合、上層の厚さが1~20mmであることが好ましく、下層の厚さが10~120mmであることが好ましい。また、下層の厚さが20~100mmであることがさらに望ましい。
When the sound absorbing member in the soundproof structure of the present invention comprises two layers, the upper layer and the lower layer, the thickness of the upper layer is preferably 1 to 20 mm, and the thickness of the lower layer is preferably 10 to 120 mm. In addition, it is more preferable that the thickness of the lower layer is 20 to 100 mm.
下層が2層の場合の例として、板材に第1の貫通孔よりも開口径が大きい柱状の第2の貫通孔が設けられてなる側面層と、板材からなり貫通孔が設けられていない底面層とが順に積層されてなり、第2の貫通孔と底面層とにより中空部が形成されている形態が挙げられる。
この場合、本発明の防音構造体における吸音部材を構成する層は、接着剤層が設けられている場合の接着剤層を除くと上層と側面層と底面層の3層である。 As an example in the case where the lower layer is two layers, a side surface layer in which a columnar second through hole having an opening diameter larger than that of the first through hole is provided in the plate, and a bottom surface made of the plate and not provided with the through hole There is a mode in which the layers are sequentially laminated and the hollow portion is formed by the second through hole and the bottom layer.
In this case, the layers constituting the sound absorbing member in the soundproof structure of the present invention are three layers of the upper layer, the side layer, and the bottom layer except for the adhesive layer in the case where the adhesive layer is provided.
この場合、本発明の防音構造体における吸音部材を構成する層は、接着剤層が設けられている場合の接着剤層を除くと上層と側面層と底面層の3層である。 As an example in the case where the lower layer is two layers, a side surface layer in which a columnar second through hole having an opening diameter larger than that of the first through hole is provided in the plate, and a bottom surface made of the plate and not provided with the through hole There is a mode in which the layers are sequentially laminated and the hollow portion is formed by the second through hole and the bottom layer.
In this case, the layers constituting the sound absorbing member in the soundproof structure of the present invention are three layers of the upper layer, the side layer, and the bottom layer except for the adhesive layer in the case where the adhesive layer is provided.
側面層は板材からなり、板材に第2の貫通孔が設けられてなる。
第2の貫通孔は柱状であり、空気のみで柱状の空間を有する部分である。板材の厚さ方向において入口側から出口側まで貫通孔の径が一定であることが好ましい。
すなわち、多孔質材料における連通気孔のような、厚さ方向にガスが通るが厚さ方向の上面視において向こう側が見えない(貫通していない)という形態は含まないことが好ましい。
第2の貫通孔は、貫通孔を有さない板材に対して機械加工により形成された貫通孔であることが好ましく、パンチング、ドリル、レーザー等による穴あけが好適に用いられる。 The side layer is made of a plate material, and the plate material is provided with a second through hole.
The second through hole is in a columnar shape, and is a portion having a columnar space only with air. It is preferable that the diameter of the through hole is constant from the inlet side to the outlet side in the thickness direction of the plate material.
That is, it is preferable not to include a form in which gas passes in the thickness direction but the other side can not be seen (does not penetrate) in top view in the thickness direction, such as communicating pores in a porous material.
The second through hole is preferably a through hole formed by machining a plate material having no through hole, and drilling using a punching, a drill, a laser or the like is suitably used.
第2の貫通孔は柱状であり、空気のみで柱状の空間を有する部分である。板材の厚さ方向において入口側から出口側まで貫通孔の径が一定であることが好ましい。
すなわち、多孔質材料における連通気孔のような、厚さ方向にガスが通るが厚さ方向の上面視において向こう側が見えない(貫通していない)という形態は含まないことが好ましい。
第2の貫通孔は、貫通孔を有さない板材に対して機械加工により形成された貫通孔であることが好ましく、パンチング、ドリル、レーザー等による穴あけが好適に用いられる。 The side layer is made of a plate material, and the plate material is provided with a second through hole.
The second through hole is in a columnar shape, and is a portion having a columnar space only with air. It is preferable that the diameter of the through hole is constant from the inlet side to the outlet side in the thickness direction of the plate material.
That is, it is preferable not to include a form in which gas passes in the thickness direction but the other side can not be seen (does not penetrate) in top view in the thickness direction, such as communicating pores in a porous material.
The second through hole is preferably a through hole formed by machining a plate material having no through hole, and drilling using a punching, a drill, a laser or the like is suitably used.
底面層は板材からなり、貫通孔が設けられていない。
側面層と底面層を重ねることにより、側面層の第2の貫通孔と底面層とにより中空部が形成される。 The bottom layer is made of a plate material and no through hole is provided.
By overlapping the side surface layer and the bottom surface layer, a hollow portion is formed by the second through holes of the side surface layer and the bottom surface layer.
側面層と底面層を重ねることにより、側面層の第2の貫通孔と底面層とにより中空部が形成される。 The bottom layer is made of a plate material and no through hole is provided.
By overlapping the side surface layer and the bottom surface layer, a hollow portion is formed by the second through holes of the side surface layer and the bottom surface layer.
本発明の防音構造体において、吸音部材の下層が側面層と底面層の2層からなる場合、上層と側面層は、接着剤層により接着されていてもよい。
また、本発明の防音構造体において、吸音部材の下層が側面層と底面層の2層からなる場合、側面層と底面層は、接着剤層により接着されていてもよい。
接着剤層を構成する材料としては、ビニル樹脂系接着剤、スチレン樹脂系接着剤、エポキシ樹脂系接着剤、シアノアクリレート系接着剤等が挙げられる。
接着剤層としては、シート状の接着剤を中空部の形状及び位置に合わせてくり抜いたものを使用してもよく、側面層の表面に対して中空部が設けられていない部分に接着剤が塗布されたものであってもよい。
また、上層及び側面層の接触部に雌部と雄部を設け、これらを嵌合させて上層及び側面層を接続してもよい。
また、側面層及び底面層の接触部に雌部と雄部を設け、これらを嵌合させて側面層及び底面層を接続してもよい。 In the soundproof structure of the present invention, when the lower layer of the sound absorbing member is composed of two layers of a side layer and a bottom layer, the upper layer and the side layer may be adhered by an adhesive layer.
Further, in the soundproof structure of the present invention, when the lower layer of the sound absorbing member is composed of two layers of a side layer and a bottom layer, the side layer and the bottom layer may be bonded by an adhesive layer.
As a material which comprises an adhesive bond layer, a vinyl resin adhesive, a styrene resin adhesive, an epoxy resin adhesive, a cyanoacrylate adhesive etc. are mentioned.
As the adhesive layer, one obtained by hollowing out a sheet-like adhesive in accordance with the shape and position of the hollow portion may be used, and the adhesive is applied to the surface of the side layer where the hollow portion is not provided. It may be applied.
In addition, a female part and a male part may be provided at the contact part of the upper layer and the side layer, and these may be fitted to connect the upper layer and the side layer.
Alternatively, a female portion and a male portion may be provided at the contact portion of the side surface layer and the bottom surface layer, and these may be fitted to connect the side surface layer and the bottom surface layer.
また、本発明の防音構造体において、吸音部材の下層が側面層と底面層の2層からなる場合、側面層と底面層は、接着剤層により接着されていてもよい。
接着剤層を構成する材料としては、ビニル樹脂系接着剤、スチレン樹脂系接着剤、エポキシ樹脂系接着剤、シアノアクリレート系接着剤等が挙げられる。
接着剤層としては、シート状の接着剤を中空部の形状及び位置に合わせてくり抜いたものを使用してもよく、側面層の表面に対して中空部が設けられていない部分に接着剤が塗布されたものであってもよい。
また、上層及び側面層の接触部に雌部と雄部を設け、これらを嵌合させて上層及び側面層を接続してもよい。
また、側面層及び底面層の接触部に雌部と雄部を設け、これらを嵌合させて側面層及び底面層を接続してもよい。 In the soundproof structure of the present invention, when the lower layer of the sound absorbing member is composed of two layers of a side layer and a bottom layer, the upper layer and the side layer may be adhered by an adhesive layer.
Further, in the soundproof structure of the present invention, when the lower layer of the sound absorbing member is composed of two layers of a side layer and a bottom layer, the side layer and the bottom layer may be bonded by an adhesive layer.
As a material which comprises an adhesive bond layer, a vinyl resin adhesive, a styrene resin adhesive, an epoxy resin adhesive, a cyanoacrylate adhesive etc. are mentioned.
As the adhesive layer, one obtained by hollowing out a sheet-like adhesive in accordance with the shape and position of the hollow portion may be used, and the adhesive is applied to the surface of the side layer where the hollow portion is not provided. It may be applied.
In addition, a female part and a male part may be provided at the contact part of the upper layer and the side layer, and these may be fitted to connect the upper layer and the side layer.
Alternatively, a female portion and a male portion may be provided at the contact portion of the side surface layer and the bottom surface layer, and these may be fitted to connect the side surface layer and the bottom surface layer.
本発明の防音構造体において、吸音部材の下層が側面層と底面層の2層からなる場合、上層と、側面層の表面のうち第2の貫通孔以外の表面と、の間には空間が形成されていてもよい。
この場合、上層と、側面層の表面のうち第2の貫通孔以外の表面と、の間の大部分が空間になっていて、上層と側面層の一部が接着、嵌合等によりその位置が固定されていればよい。 In the soundproof structure of the present invention, when the lower layer of the sound absorbing member comprises two layers of the side layer and the bottom layer, there is a space between the upper layer and the surface of the side layer other than the second through hole. It may be formed.
In this case, most of the space between the upper layer and the surface other than the second through hole in the surface of the side layer is a space, and the upper layer and a part of the side layer are bonded, fitted, etc. Should be fixed.
この場合、上層と、側面層の表面のうち第2の貫通孔以外の表面と、の間の大部分が空間になっていて、上層と側面層の一部が接着、嵌合等によりその位置が固定されていればよい。 In the soundproof structure of the present invention, when the lower layer of the sound absorbing member comprises two layers of the side layer and the bottom layer, there is a space between the upper layer and the surface of the side layer other than the second through hole. It may be formed.
In this case, most of the space between the upper layer and the surface other than the second through hole in the surface of the side layer is a space, and the upper layer and a part of the side layer are bonded, fitted, etc. Should be fixed.
本発明の防音構造体において、吸音部材の下層が側面層と底面層の2層からなる場合、側面層の表面のうち第2の貫通孔以外の表面と、底面層の間には空間が形成されていてもよい。
この場合、側面層の表面のうち第2の貫通孔以外の表面と、底面層の間の大部分が空間になっていて、側面層と底面層の一部が接着、嵌合等によりその位置が固定されていればよい。 In the soundproof structure of the present invention, when the lower layer of the sound absorbing member is composed of two layers of a side layer and a bottom layer, a space is formed between the bottom layer and the surface other than the second through holes in the surface of the side layer. It may be done.
In this case, most of the surface between the bottom surface layer and the surface other than the second through hole in the surface of the side surface layer is a space, and a part of the side surface layer and the bottom surface layer is bonded or fitted. Should be fixed.
この場合、側面層の表面のうち第2の貫通孔以外の表面と、底面層の間の大部分が空間になっていて、側面層と底面層の一部が接着、嵌合等によりその位置が固定されていればよい。 In the soundproof structure of the present invention, when the lower layer of the sound absorbing member is composed of two layers of a side layer and a bottom layer, a space is formed between the bottom layer and the surface other than the second through holes in the surface of the side layer. It may be done.
In this case, most of the surface between the bottom surface layer and the surface other than the second through hole in the surface of the side surface layer is a space, and a part of the side surface layer and the bottom surface layer is bonded or fitted. Should be fixed.
本発明の防音構造体における吸音部材が上層と側面層と底面層の3層からなる場合、上層の厚さが1~20mmであることが好ましく、側面層を構成する板材の厚さは、1~20mmであることが望ましく、3~15mmであることがさらに望ましい。側面層を構成する板材の厚さは第2の貫通孔の長さとなり、中空部の高さとなる。すなわち、第2の貫通孔の長さは1~20mmであることが好ましい。
また、底面層を構成する板材の厚さは、1~20mmであることが好ましい。 When the sound absorbing member in the soundproof structure of the present invention comprises three layers, the upper layer, the side layer and the bottom layer, the upper layer preferably has a thickness of 1 to 20 mm, and the thickness of the plate constituting the side layer is 1 It is desirable that the distance be about 20 mm, and more preferably 3 to 15 mm. The thickness of the plate material constituting the side layer is the length of the second through hole, and the height of the hollow portion. That is, the length of the second through hole is preferably 1 to 20 mm.
In addition, the thickness of the plate constituting the bottom layer is preferably 1 to 20 mm.
また、底面層を構成する板材の厚さは、1~20mmであることが好ましい。 When the sound absorbing member in the soundproof structure of the present invention comprises three layers, the upper layer, the side layer and the bottom layer, the upper layer preferably has a thickness of 1 to 20 mm, and the thickness of the plate constituting the side layer is 1 It is desirable that the distance be about 20 mm, and more preferably 3 to 15 mm. The thickness of the plate material constituting the side layer is the length of the second through hole, and the height of the hollow portion. That is, the length of the second through hole is preferably 1 to 20 mm.
In addition, the thickness of the plate constituting the bottom layer is preferably 1 to 20 mm.
本発明の防音構造体における吸音部材において、上層、下層、側面層及び底面層を構成する板材の材料としては、本発明の防音構造体を構成する吸音部材の非貫通孔部分以外の部分を構成する材料として説明した樹脂又は繊維質材料を好ましく使用することができる。
なお、上層、下層、側面層及び底面層を構成する板材は、同じ材料であることが好ましいが、異なる材料であってもよい。 In the sound absorbing member in the soundproof structure according to the present invention, as the material of the plate material constituting the upper layer, the lower layer, the side surface layer and the bottom layer, parts other than the non-through hole portion of the sound absorbing member constituting the soundproof structure according to the present invention The resin or fibrous material described as the material to be used can be preferably used.
In addition, although it is preferable that the board | plate material which comprises an upper layer, a lower layer, a side layer, and a bottom layer is the same material, different materials may be sufficient as it.
なお、上層、下層、側面層及び底面層を構成する板材は、同じ材料であることが好ましいが、異なる材料であってもよい。 In the sound absorbing member in the soundproof structure according to the present invention, as the material of the plate material constituting the upper layer, the lower layer, the side surface layer and the bottom layer, parts other than the non-through hole portion of the sound absorbing member constituting the soundproof structure according to the present invention The resin or fibrous material described as the material to be used can be preferably used.
In addition, although it is preferable that the board | plate material which comprises an upper layer, a lower layer, a side layer, and a bottom layer is the same material, different materials may be sufficient as it.
本発明の防音構造体における遮音材について説明する。
本発明の防音構造体における遮音材は、吸音部材の非貫通孔が開口した面に対向して、空気層を隔てて所定距離離間して設けられた部材である。吸音部材と遮音材の間に、空気層を設けるための接続部材が別途設けられていてもよく、本発明の防音構造体を設置する場所に吸音部材と遮音材をそれぞれ固定することによって、遮音材と吸音部材の間に空気層が設けられていてもよい。 The sound insulation material in the soundproof structure of the present invention will be described.
The sound insulation member in the soundproof structure according to the present invention is a member provided opposite to the surface of the sound absorption member where the non-through holes are opened, and separated by a predetermined distance from the air layer. A connecting member for providing an air layer may be separately provided between the sound absorbing member and the sound insulating member, and the sound insulating member and the sound insulating member are respectively fixed to the place where the soundproof structure of the present invention is installed. An air layer may be provided between the material and the sound absorbing member.
本発明の防音構造体における遮音材は、吸音部材の非貫通孔が開口した面に対向して、空気層を隔てて所定距離離間して設けられた部材である。吸音部材と遮音材の間に、空気層を設けるための接続部材が別途設けられていてもよく、本発明の防音構造体を設置する場所に吸音部材と遮音材をそれぞれ固定することによって、遮音材と吸音部材の間に空気層が設けられていてもよい。 The sound insulation material in the soundproof structure of the present invention will be described.
The sound insulation member in the soundproof structure according to the present invention is a member provided opposite to the surface of the sound absorption member where the non-through holes are opened, and separated by a predetermined distance from the air layer. A connecting member for providing an air layer may be separately provided between the sound absorbing member and the sound insulating member, and the sound insulating member and the sound insulating member are respectively fixed to the place where the soundproof structure of the present invention is installed. An air layer may be provided between the material and the sound absorbing member.
本発明の防音構造体における遮音材は、板状部材であることが好ましく、鋼板であることが好ましい。
本発明の防音構造体を設置する場所が車内である場合、車体を構成する鋼板の一部を遮音材とみなすこともできる。
本発明の防音構造体における遮音材はその厚さが0.1~20cmであることが好ましい。また、吸音部材の非貫通孔が開口した面の面積よりも大きな面積を有することが好ましく、吸音部材の非貫通孔が開口した面に対向して遮音材を配置した際に、非貫通孔の開口に対して遮音材が存在するようにすることが好ましい。 It is preferable that the sound insulation material in the soundproof structure of this invention is a plate-shaped member, and it is preferable that it is a steel plate.
When the place where the soundproof structure of the present invention is to be installed is in a car, a part of the steel plate constituting the vehicle body can also be regarded as a sound insulator.
The sound insulation material in the soundproof structure of the present invention preferably has a thickness of 0.1 to 20 cm. In addition, it is preferable to have an area larger than the area of the surface where the non-through hole of the sound absorbing member is opened, and when the sound insulating material is disposed to face the surface where the non-through hole of the sound absorbing member is opened, Preferably, a sound insulation is present for the opening.
本発明の防音構造体を設置する場所が車内である場合、車体を構成する鋼板の一部を遮音材とみなすこともできる。
本発明の防音構造体における遮音材はその厚さが0.1~20cmであることが好ましい。また、吸音部材の非貫通孔が開口した面の面積よりも大きな面積を有することが好ましく、吸音部材の非貫通孔が開口した面に対向して遮音材を配置した際に、非貫通孔の開口に対して遮音材が存在するようにすることが好ましい。 It is preferable that the sound insulation material in the soundproof structure of this invention is a plate-shaped member, and it is preferable that it is a steel plate.
When the place where the soundproof structure of the present invention is to be installed is in a car, a part of the steel plate constituting the vehicle body can also be regarded as a sound insulator.
The sound insulation material in the soundproof structure of the present invention preferably has a thickness of 0.1 to 20 cm. In addition, it is preferable to have an area larger than the area of the surface where the non-through hole of the sound absorbing member is opened, and when the sound insulating material is disposed to face the surface where the non-through hole of the sound absorbing member is opened, Preferably, a sound insulation is present for the opening.
本発明の防音構造体における空気層の厚さは吸音部材と遮音材の間の所定距離であり、空気層の厚さは0cm以上であり、0.1~20cmであることが好ましい。
本発明の防音構造体においては、吸音部材と遮音材はその面が平行になるように配置することが好ましいので、この場合は空気層の厚さは一定である。吸音部材又は遮音材の表面に段差がある場合や、吸音部材と遮音材の面が平行にならないように配置されている場合は空気層の厚さは吸音部材と遮音材の間の距離の平均値(9点での平均値)として定めることが好ましい。 The thickness of the air layer in the soundproof structure of the present invention is a predetermined distance between the sound absorbing member and the sound insulating material, and the thickness of the air layer is 0 cm or more, preferably 0.1 to 20 cm.
In the soundproof structure of the present invention, it is preferable to arrange the sound absorbing member and the sound insulating material so that their surfaces are parallel to each other. In this case, the thickness of the air layer is constant. The thickness of the air layer is the average of the distance between the sound absorbing member and the sound insulating member when there is a level difference on the surface of the sound absorbing member or the sound insulating member, or when the surfaces of the sound absorbing member and the sound insulating member are not parallel. It is preferable to set it as a value (average value at 9 points).
本発明の防音構造体においては、吸音部材と遮音材はその面が平行になるように配置することが好ましいので、この場合は空気層の厚さは一定である。吸音部材又は遮音材の表面に段差がある場合や、吸音部材と遮音材の面が平行にならないように配置されている場合は空気層の厚さは吸音部材と遮音材の間の距離の平均値(9点での平均値)として定めることが好ましい。 The thickness of the air layer in the soundproof structure of the present invention is a predetermined distance between the sound absorbing member and the sound insulating material, and the thickness of the air layer is 0 cm or more, preferably 0.1 to 20 cm.
In the soundproof structure of the present invention, it is preferable to arrange the sound absorbing member and the sound insulating material so that their surfaces are parallel to each other. In this case, the thickness of the air layer is constant. The thickness of the air layer is the average of the distance between the sound absorbing member and the sound insulating member when there is a level difference on the surface of the sound absorbing member or the sound insulating member, or when the surfaces of the sound absorbing member and the sound insulating member are not parallel. It is preferable to set it as a value (average value at 9 points).
このような本発明の防音構造体の例について以下に図面を用いて説明する。
図1は、本発明の防音構造体の一例を模式的に示す断面図である。
図1に示す防音構造体1は、吸音部材100と遮音材70からなる。
吸音部材100は、下層が1層である吸音部材である。
図1に示す吸音部材100は、上層10と下層20と接着剤層30を有しており、上層10と下層20が接着剤層30により接着されている。
上層10には導入通路110を形成する第1の貫通孔110が設けられており、下層20には中空部120が設けられている。導入通路110と中空部120によりヘルムホルツ共鳴構造が形成される。
吸音部材100において、導入通路110及び中空部120は円柱状である。 An example of such a soundproof structure of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing an example of the soundproof structure of the present invention.
Thesoundproofing structure 1 shown in FIG. 1 is composed of a sound absorbing member 100 and a sound insulating material 70.
Thesound absorbing member 100 is a sound absorbing member in which the lower layer is a single layer.
Thesound absorbing member 100 shown in FIG. 1 has an upper layer 10, a lower layer 20, and an adhesive layer 30, and the upper layer 10 and the lower layer 20 are bonded by the adhesive layer 30.
Theupper layer 10 is provided with a first through hole 110 forming the introduction passage 110, and the lower layer 20 is provided with a hollow portion 120. The introduction passage 110 and the hollow portion 120 form a Helmholtz resonance structure.
In thesound absorbing member 100, the introduction passage 110 and the hollow portion 120 are cylindrical.
図1は、本発明の防音構造体の一例を模式的に示す断面図である。
図1に示す防音構造体1は、吸音部材100と遮音材70からなる。
吸音部材100は、下層が1層である吸音部材である。
図1に示す吸音部材100は、上層10と下層20と接着剤層30を有しており、上層10と下層20が接着剤層30により接着されている。
上層10には導入通路110を形成する第1の貫通孔110が設けられており、下層20には中空部120が設けられている。導入通路110と中空部120によりヘルムホルツ共鳴構造が形成される。
吸音部材100において、導入通路110及び中空部120は円柱状である。 An example of such a soundproof structure of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing an example of the soundproof structure of the present invention.
The
The
The
The
In the
上層10は板材であり、板材に円柱状の第1の貫通孔110が設けられてなる。
下層20も板材であり、1枚の板材のその厚さ方向の途中までに凹部が形成されて中空部120が設けられてなる。 Theupper layer 10 is a plate material, and a plate-like first through hole 110 is provided in the plate material.
Thelower layer 20 is also a plate material, and a hollow portion 120 is provided by forming a concave portion halfway in the thickness direction of one plate material.
下層20も板材であり、1枚の板材のその厚さ方向の途中までに凹部が形成されて中空部120が設けられてなる。 The
The
吸音部材100において、導入通路10の表面粗さRaは、0.1~100μmである。
In the sound absorbing member 100, the surface roughness Ra of the introduction passage 10 is 0.1 to 100 μm.
遮音材70は、吸音部材100に対向して、空気層を隔てて所定距離離間して設けられている。
図1に示す遮音材70は、板状部材であり、吸音部材100の非貫通孔が開口した面の面積よりも大きな面積を有している。そのため、非貫通孔の開口に対向して遮音材が存在するようになっている。 Thesound insulating material 70 is provided opposite to the sound absorbing member 100, spaced apart from the air layer, and separated by a predetermined distance.
Thesound insulation member 70 shown in FIG. 1 is a plate-like member, and has an area larger than the area of the surface of the sound absorption member 100 where the non-through holes are opened. Therefore, the sound insulating material is present opposite to the opening of the non-through hole.
図1に示す遮音材70は、板状部材であり、吸音部材100の非貫通孔が開口した面の面積よりも大きな面積を有している。そのため、非貫通孔の開口に対向して遮音材が存在するようになっている。 The
The
図2は、本発明の防音構造体の別の一例を模式的に示す断面図である。
図2に示す防音構造体2は、吸音部材200と遮音材70からなる。
吸音部材200は、下層が1層である吸音部材である。
図2に示す吸音部材200は、上層10と下層20とを有している。
上層10には導入通路110を形成する第1の貫通孔110が設けられており、下層20には中空部120が設けられている。導入通路110と中空部120によりヘルムホルツ共鳴構造が形成される。
吸音部材200において、導入通路110及び中空部120は円柱状である。 FIG. 2 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
Thesoundproofing structure 2 shown in FIG. 2 is composed of a sound absorbing member 200 and a sound insulating material 70.
Thesound absorbing member 200 is a sound absorbing member in which the lower layer is a single layer.
Thesound absorbing member 200 shown in FIG. 2 has an upper layer 10 and a lower layer 20.
Theupper layer 10 is provided with a first through hole 110 forming the introduction passage 110, and the lower layer 20 is provided with a hollow portion 120. The introduction passage 110 and the hollow portion 120 form a Helmholtz resonance structure.
In thesound absorbing member 200, the introduction passage 110 and the hollow portion 120 are cylindrical.
図2に示す防音構造体2は、吸音部材200と遮音材70からなる。
吸音部材200は、下層が1層である吸音部材である。
図2に示す吸音部材200は、上層10と下層20とを有している。
上層10には導入通路110を形成する第1の貫通孔110が設けられており、下層20には中空部120が設けられている。導入通路110と中空部120によりヘルムホルツ共鳴構造が形成される。
吸音部材200において、導入通路110及び中空部120は円柱状である。 FIG. 2 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
The
The
The
The
In the
上層10は板材であり、板材に円柱状の第1の貫通孔110が設けられてなる。
下層20も板材であり、1枚の板材のその厚さ方向の途中までに凹部が形成されて中空部120が設けられてなる。 Theupper layer 10 is a plate material, and a plate-like first through hole 110 is provided in the plate material.
Thelower layer 20 is also a plate material, and a hollow portion 120 is provided by forming a concave portion halfway in the thickness direction of one plate material.
下層20も板材であり、1枚の板材のその厚さ方向の途中までに凹部が形成されて中空部120が設けられてなる。 The
The
また、上層10と下層20との接触部の上層10には雄部10aが形成されており、下層20には雌部20aが形成されている。そして、雄部10aと雌部20aとが嵌合されて上層10及び下層20が接続されている。
A male portion 10 a is formed on the upper layer 10 of the contact portion between the upper layer 10 and the lower layer 20, and a female portion 20 a is formed on the lower layer 20. And male part 10a and female part 20a are fitted, and upper layer 10 and lower layer 20 are connected.
吸音部材200において、導入通路110の表面粗さRaは、0.1~100μmである。
In the sound absorbing member 200, the surface roughness Ra of the introduction passage 110 is 0.1 to 100 μm.
遮音材70は、吸音部材200に対向して、空気層を隔てて所定距離離間して設けられている。
図2に示す遮音材70は、板状部材であり、吸音部材200の非貫通孔が開口した面の面積よりも大きな面積を有している。そのため、非貫通孔の開口に対向して遮音材が存在するようになっている。 Thesound insulating material 70 is provided opposite to the sound absorbing member 200 and spaced apart by a predetermined distance from the air layer.
Thesound insulation member 70 shown in FIG. 2 is a plate-like member, and has an area larger than the area of the surface of the sound absorption member 200 where the non-through holes are opened. Therefore, the sound insulating material is present opposite to the opening of the non-through hole.
図2に示す遮音材70は、板状部材であり、吸音部材200の非貫通孔が開口した面の面積よりも大きな面積を有している。そのため、非貫通孔の開口に対向して遮音材が存在するようになっている。 The
The
図3は、本発明の防音構造体の別の一例を模式的に示す断面図である。
図3に示す防音構造体3は、吸音部材300と遮音材70からなる。
吸音部材300は、下層が1層である吸音部材である。
図3に示す吸音部材300は、上層10と下層20とを有している。
上層10には導入通路110を形成する第1の貫通孔110が設けられており、下層20には中空部120が設けられている。導入通路110と中空部120によりヘルムホルツ共鳴構造が形成される。
吸音部材300において、導入通路110及び中空部120は円柱状である。 FIG. 3 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
The soundproofing structure 3 shown in FIG. 3 is composed of asound absorbing member 300 and a sound insulating material 70.
Thesound absorbing member 300 is a sound absorbing member in which the lower layer is a single layer.
Thesound absorbing member 300 shown in FIG. 3 has an upper layer 10 and a lower layer 20.
Theupper layer 10 is provided with a first through hole 110 forming the introduction passage 110, and the lower layer 20 is provided with a hollow portion 120. The introduction passage 110 and the hollow portion 120 form a Helmholtz resonance structure.
In thesound absorbing member 300, the introduction passage 110 and the hollow portion 120 are cylindrical.
図3に示す防音構造体3は、吸音部材300と遮音材70からなる。
吸音部材300は、下層が1層である吸音部材である。
図3に示す吸音部材300は、上層10と下層20とを有している。
上層10には導入通路110を形成する第1の貫通孔110が設けられており、下層20には中空部120が設けられている。導入通路110と中空部120によりヘルムホルツ共鳴構造が形成される。
吸音部材300において、導入通路110及び中空部120は円柱状である。 FIG. 3 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
The soundproofing structure 3 shown in FIG. 3 is composed of a
The
The
The
In the
上層10は板材であり、板材に円柱状の第1の貫通孔110が設けられてなる。
下層20も板材であり、1枚の板材のその厚さ方向の途中までに凹部が形成されて中空部120が設けられてなる。 Theupper layer 10 is a plate material, and a plate-like first through hole 110 is provided in the plate material.
Thelower layer 20 is also a plate material, and a hollow portion 120 is provided by forming a concave portion halfway in the thickness direction of one plate material.
下層20も板材であり、1枚の板材のその厚さ方向の途中までに凹部が形成されて中空部120が設けられてなる。 The
The
上層10と下層20の表面のうち中空部120以外の表面の間には空間50が形成されている。また、上層10と下層20の位置を固定し、上層10と下層20の間に空間50を形成するためのスペーサー51が周囲に設けられている。
吸音部材300において、導入通路110の表面粗さRaは、0.1~100μmである。 Aspace 50 is formed between the surfaces of the upper layer 10 and the lower layer 20 other than the hollow portion 120. Further, a spacer 51 for fixing the positions of the upper layer 10 and the lower layer 20 and forming a space 50 between the upper layer 10 and the lower layer 20 is provided around the periphery.
In thesound absorbing member 300, the surface roughness Ra of the introduction passage 110 is 0.1 to 100 μm.
吸音部材300において、導入通路110の表面粗さRaは、0.1~100μmである。 A
In the
遮音材70は、吸音部材300に対向して、空気層を隔てて所定距離離間して設けられている。
図3に示す遮音材70は、板状部材であり、吸音部材300の非貫通孔が開口した面の面積よりも大きな面積を有している。そのため、非貫通孔の開口に対向して遮音材が存在するようになっている。 Thesound insulation member 70 is provided opposite to the sound absorbing member 300 and spaced apart from the air layer by a predetermined distance.
Thesound insulation member 70 shown in FIG. 3 is a plate-like member, and has a larger area than the area of the surface of the sound absorption member 300 where the non-through holes are opened. Therefore, the sound insulating material is present opposite to the opening of the non-through hole.
図3に示す遮音材70は、板状部材であり、吸音部材300の非貫通孔が開口した面の面積よりも大きな面積を有している。そのため、非貫通孔の開口に対向して遮音材が存在するようになっている。 The
The
図4は、本発明の防音構造体の別の一例を模式的に示す断面図である。
図4に示す防音構造体4は、吸音部材400と遮音材70からなる。
吸音部材400は、下層が2層である吸音部材である。
図4に示す吸音部材400は、下層20が側面層21と底面層22の2層からなる。側面層21には第2の貫通孔120が設けられており、第2の貫通孔120が中空部120となっている。
また、側面層21の一部である壁面121が中空部120の側面となり、底面層22の一部である底面層22の表面122が中空部120の底面となる。 FIG. 4 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
The soundproofing structure 4 shown in FIG. 4 is composed of asound absorbing member 400 and a sound insulating material 70.
Thesound absorbing member 400 is a sound absorbing member having two lower layers.
In thesound absorbing member 400 shown in FIG. 4, the lower layer 20 is composed of two layers of a side layer 21 and a bottom layer 22. The side layer 21 is provided with a second through hole 120, and the second through hole 120 is a hollow portion 120.
Awall surface 121 which is a part of the side layer 21 is a side surface of the hollow portion 120, and a surface 122 of the bottom layer 22 which is a part of the bottom layer 22 is a bottom surface of the hollow portion 120.
図4に示す防音構造体4は、吸音部材400と遮音材70からなる。
吸音部材400は、下層が2層である吸音部材である。
図4に示す吸音部材400は、下層20が側面層21と底面層22の2層からなる。側面層21には第2の貫通孔120が設けられており、第2の貫通孔120が中空部120となっている。
また、側面層21の一部である壁面121が中空部120の側面となり、底面層22の一部である底面層22の表面122が中空部120の底面となる。 FIG. 4 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
The soundproofing structure 4 shown in FIG. 4 is composed of a
The
In the
A
上層10と下層20は接着剤層30により接着されている。下層20を構成する層のうち上層10と接着されるのは側面層21である。
側面層21と底面層22の間にも接着剤層40が設けられていて、側面層21と底面層22も接着されている。
上層10には導入通路110を形成する第1の貫通孔110が設けられており、下層20には中空部120が設けられている。導入通路110と中空部120によりヘルムホルツ共鳴構造が形成される。
吸音部材400において、導入通路110及び中空部120は円柱状である。 Theupper layer 10 and the lower layer 20 are bonded by an adhesive layer 30. Of the layers constituting the lower layer 20, the side layer 21 is adhered to the upper layer 10.
Anadhesive layer 40 is also provided between the side layer 21 and the bottom layer 22, and the side layer 21 and the bottom layer 22 are also adhered.
Theupper layer 10 is provided with a first through hole 110 forming the introduction passage 110, and the lower layer 20 is provided with a hollow portion 120. The introduction passage 110 and the hollow portion 120 form a Helmholtz resonance structure.
In thesound absorbing member 400, the introduction passage 110 and the hollow portion 120 are cylindrical.
側面層21と底面層22の間にも接着剤層40が設けられていて、側面層21と底面層22も接着されている。
上層10には導入通路110を形成する第1の貫通孔110が設けられており、下層20には中空部120が設けられている。導入通路110と中空部120によりヘルムホルツ共鳴構造が形成される。
吸音部材400において、導入通路110及び中空部120は円柱状である。 The
An
The
In the
上層10は板材であり、板材に円柱状の第1の貫通孔110が設けられてなる。
下層20を構成する側面層21及び底面層22も板材である。
側面層21を構成する板材に円柱状の第2の貫通孔120が設けられてなる。
底面層22を構成する板材には貫通孔が設けられていない。 Theupper layer 10 is a plate material, and a plate-like first through hole 110 is provided in the plate material.
Theside layer 21 and the bottom layer 22 constituting the lower layer 20 are also plate members.
A cylindrical second throughhole 120 is provided in the plate member that constitutes the side layer 21.
The through holes are not provided in the plate material constituting thebottom layer 22.
下層20を構成する側面層21及び底面層22も板材である。
側面層21を構成する板材に円柱状の第2の貫通孔120が設けられてなる。
底面層22を構成する板材には貫通孔が設けられていない。 The
The
A cylindrical second through
The through holes are not provided in the plate material constituting the
吸音部材400において、導入通路110の表面粗さRaは、0.1~100μmである。
In the sound absorbing member 400, the surface roughness Ra of the introduction passage 110 is 0.1 to 100 μm.
遮音材70は、吸音部材400に対向して、空気層を隔てて所定距離離間して設けられている。
図4に示す遮音材70は、板状部材であり、吸音部材400の非貫通孔が開口した面の面積よりも大きな面積を有している。そのため、非貫通孔の開口に対向して遮音材が存在するようになっている。 Thesound insulation member 70 is provided opposite to the sound absorbing member 400 and spaced apart from the air layer by a predetermined distance.
Thesound insulation member 70 shown in FIG. 4 is a plate-like member, and has a larger area than the area of the surface of the sound absorption member 400 where the non-through holes are opened. Therefore, the sound insulating material is present opposite to the opening of the non-through hole.
図4に示す遮音材70は、板状部材であり、吸音部材400の非貫通孔が開口した面の面積よりも大きな面積を有している。そのため、非貫通孔の開口に対向して遮音材が存在するようになっている。 The
The
図5は、本発明の防音構造体の別の一例を模式的に示す断面図である。
図5に示す防音構造体5は、吸音部材500と遮音材70からなる。
吸音部材500は、下層が2層である吸音部材である。
図5に示す吸音部材500は、下層20が側面層21と底面層22の2層からなる。側面層21には第2の貫通孔120が設けられており、第2の貫通孔120が中空部120となっている。
また、側面層21の一部である壁面121が中空部120の側面となり、底面層22の一部である底面層22の表面122が中空部120の底面となる。 FIG. 5 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
The soundproofing structure 5 shown in FIG. 5 is composed of asound absorbing member 500 and a sound insulating material 70.
Thesound absorbing member 500 is a sound absorbing member having two lower layers.
In thesound absorbing member 500 shown in FIG. 5, the lower layer 20 is composed of two layers of a side layer 21 and a bottom layer 22. The side layer 21 is provided with a second through hole 120, and the second through hole 120 is a hollow portion 120.
Awall surface 121 which is a part of the side layer 21 is a side surface of the hollow portion 120, and a surface 122 of the bottom layer 22 which is a part of the bottom layer 22 is a bottom surface of the hollow portion 120.
図5に示す防音構造体5は、吸音部材500と遮音材70からなる。
吸音部材500は、下層が2層である吸音部材である。
図5に示す吸音部材500は、下層20が側面層21と底面層22の2層からなる。側面層21には第2の貫通孔120が設けられており、第2の貫通孔120が中空部120となっている。
また、側面層21の一部である壁面121が中空部120の側面となり、底面層22の一部である底面層22の表面122が中空部120の底面となる。 FIG. 5 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
The soundproofing structure 5 shown in FIG. 5 is composed of a
The
In the
A
上層10と側面層21との接触面の上層10には雄部10aが形成されており、側面層21には雌部21aが形成されている。そして、雄部10aと雌部21aとが嵌合されて上層10及び側面層21が接続されている。
側面層21と底面層22との接触面の側面層21には、雌部21bが形成されており、底面層22には雄部22bが形成されている。そして、雌部21bと雄部22bとが嵌合されて側面層21及び底面層22が接続されている。 Amale portion 10 a is formed on the upper layer 10 of the contact surface between the upper layer 10 and the side layer 21, and a female portion 21 a is formed on the side layer 21. And male part 10a and female part 21a are fitted, and upper layer 10 and side layer 21 are connected.
Afemale portion 21 b is formed on the side surface layer 21 in the contact surface between the side surface layer 21 and the bottom surface layer 22, and a male portion 22 b is formed on the bottom surface layer 22. And the female part 21b and the male part 22b are fitted, and the side layer 21 and the bottom layer 22 are connected.
側面層21と底面層22との接触面の側面層21には、雌部21bが形成されており、底面層22には雄部22bが形成されている。そして、雌部21bと雄部22bとが嵌合されて側面層21及び底面層22が接続されている。 A
A
上層10には導入通路110を形成する第1の貫通孔110が設けられており、下層20には中空部120が設けられている。導入通路110と中空部120によりヘルムホルツ共鳴構造が形成される。
吸音部材500において、導入通路110及び中空部120は円柱状である。 Theupper layer 10 is provided with a first through hole 110 forming the introduction passage 110, and the lower layer 20 is provided with a hollow portion 120. The introduction passage 110 and the hollow portion 120 form a Helmholtz resonance structure.
In thesound absorbing member 500, the introduction passage 110 and the hollow portion 120 are cylindrical.
吸音部材500において、導入通路110及び中空部120は円柱状である。 The
In the
上層10は板材であり、板材に円柱状の第1の貫通孔110が設けられてなる。
下層20を構成する側面層21及び底面層22も板材である。
側面層21を構成する板材に円柱状の第2の貫通孔120が設けられてなる。
底面層22を構成する板材には貫通孔が設けられていない。 Theupper layer 10 is a plate material, and a plate-like first through hole 110 is provided in the plate material.
Theside layer 21 and the bottom layer 22 constituting the lower layer 20 are also plate members.
A cylindrical second throughhole 120 is provided in the plate member that constitutes the side layer 21.
The through holes are not provided in the plate material constituting thebottom layer 22.
下層20を構成する側面層21及び底面層22も板材である。
側面層21を構成する板材に円柱状の第2の貫通孔120が設けられてなる。
底面層22を構成する板材には貫通孔が設けられていない。 The
The
A cylindrical second through
The through holes are not provided in the plate material constituting the
吸音部材500において、導入通路110の表面粗さRaは、0.1~100μmである。
In the sound absorbing member 500, the surface roughness Ra of the introduction passage 110 is 0.1 to 100 μm.
遮音材70は、吸音部材500に対向して、空気層を隔てて所定距離離間して設けられている。
図5に示す遮音材70は、板状部材であり、吸音部材500の非貫通孔が開口した面の面積よりも大きな面積を有している。そのため、非貫通孔の開口に対向して遮音材が存在するようになっている。 Thesound insulation member 70 is provided opposite to the sound absorption member 500 and separated by a predetermined distance from the air layer.
Thesound insulation member 70 shown in FIG. 5 is a plate-like member, and has an area larger than the area of the surface of the sound absorption member 500 where the non-through holes are opened. Therefore, the sound insulating material is present opposite to the opening of the non-through hole.
図5に示す遮音材70は、板状部材であり、吸音部材500の非貫通孔が開口した面の面積よりも大きな面積を有している。そのため、非貫通孔の開口に対向して遮音材が存在するようになっている。 The
The
図6は、本発明の防音構造体の別の一例を模式的に示す断面図である。
図6に示す防音構造体6は、吸音部材600と遮音材70からなる。
吸音部材600は、下層が2層である吸音部材である。
図6に示す吸音部材600は、下層20が側面層21と底面層22の2層からなる。側面層21には第2の貫通孔120が設けられており、第2の貫通孔120が中空部120となっている。
また、側面層21の一部である壁面121が中空部120の側面となり、底面層22の一部である底面層22の表面122が中空部120の底面となる。 FIG. 6 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
The soundproof structure 6 shown in FIG. 6 includes asound absorbing member 600 and a sound insulating member 70.
Thesound absorbing member 600 is a sound absorbing member in which the lower layer is a double layer.
In thesound absorbing member 600 shown in FIG. 6, the lower layer 20 is composed of two layers of a side layer 21 and a bottom layer 22. The side layer 21 is provided with a second through hole 120, and the second through hole 120 is a hollow portion 120.
Awall surface 121 which is a part of the side layer 21 is a side surface of the hollow portion 120, and a surface 122 of the bottom layer 22 which is a part of the bottom layer 22 is a bottom surface of the hollow portion 120.
図6に示す防音構造体6は、吸音部材600と遮音材70からなる。
吸音部材600は、下層が2層である吸音部材である。
図6に示す吸音部材600は、下層20が側面層21と底面層22の2層からなる。側面層21には第2の貫通孔120が設けられており、第2の貫通孔120が中空部120となっている。
また、側面層21の一部である壁面121が中空部120の側面となり、底面層22の一部である底面層22の表面122が中空部120の底面となる。 FIG. 6 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
The soundproof structure 6 shown in FIG. 6 includes a
The
In the
A
上層10には導入通路110を形成する第1の貫通孔110が設けられており、下層20には中空部120が設けられている。導入通路110と中空部120によりヘルムホルツ共鳴構造が形成される。
吸音部材600において、導入通路110及び中空部120は円柱状である。 Theupper layer 10 is provided with a first through hole 110 forming the introduction passage 110, and the lower layer 20 is provided with a hollow portion 120. The introduction passage 110 and the hollow portion 120 form a Helmholtz resonance structure.
In thesound absorbing member 600, the introduction passage 110 and the hollow portion 120 are cylindrical.
吸音部材600において、導入通路110及び中空部120は円柱状である。 The
In the
上層10は板材であり、板材に円柱状の第1の貫通孔110が設けられてなる。
下層20を構成する側面層21及び底面層22も板材である。
側面層21を構成する板材に円柱状の第2の貫通孔120が設けられてなる。
底面層22を構成する板材には貫通孔が設けられていない。 Theupper layer 10 is a plate material, and a plate-like first through hole 110 is provided in the plate material.
Theside layer 21 and the bottom layer 22 constituting the lower layer 20 are also plate members.
A cylindrical second throughhole 120 is provided in the plate member that constitutes the side layer 21.
The through holes are not provided in the plate material constituting thebottom layer 22.
下層20を構成する側面層21及び底面層22も板材である。
側面層21を構成する板材に円柱状の第2の貫通孔120が設けられてなる。
底面層22を構成する板材には貫通孔が設けられていない。 The
The
A cylindrical second through
The through holes are not provided in the plate material constituting the
上層10と側面層21の表面のうち中空部120以外の表面の間には空間50が形成されている。また、上層10と側面層21の位置を固定し、上層10と側面層21の間に空間50を形成するためのスペーサー51が周囲に設けられている。
さらに、側面層21の表面のうち中空部120以外の表面と、底面層22の間には空間60が形成されている。また、側面層21と底面層22の位置を固定し、側面層21と底面層22の間に空間60を形成するためのスペーサー61が周囲に設けられている。
吸音部材600において、導入通路110の表面粗さRaは、0.1~100μmである。 Aspace 50 is formed between surfaces of the upper layer 10 and the side layer 21 except the hollow portion 120. Further, a spacer 51 for fixing the position of the upper layer 10 and the side layer 21 and forming a space 50 between the upper layer 10 and the side layer 21 is provided around the periphery.
Furthermore, aspace 60 is formed between the bottom layer 22 and the surface other than the hollow portion 120 in the surface of the side layer 21. In addition, a spacer 61 for fixing the position of the side layer 21 and the bottom layer 22 and forming a space 60 between the side layer 21 and the bottom layer 22 is provided on the periphery.
In thesound absorbing member 600, the surface roughness Ra of the introduction passage 110 is 0.1 to 100 μm.
さらに、側面層21の表面のうち中空部120以外の表面と、底面層22の間には空間60が形成されている。また、側面層21と底面層22の位置を固定し、側面層21と底面層22の間に空間60を形成するためのスペーサー61が周囲に設けられている。
吸音部材600において、導入通路110の表面粗さRaは、0.1~100μmである。 A
Furthermore, a
In the
遮音材70は、吸音部材600に対向して、空気層を隔てて所定距離離間して設けられている。
図6に示す遮音材70は、板状部材であり、吸音部材600の非貫通孔が開口した面の面積よりも大きな面積を有している。そのため、非貫通孔の開口に対向して遮音材が存在するようになっている。 Thesound insulation member 70 is provided opposite to the sound absorbing member 600 and spaced apart from the air layer by a predetermined distance.
Thesound insulation member 70 shown in FIG. 6 is a plate-like member, and has a larger area than the area of the surface of the sound absorption member 600 where the non-through holes are opened. Therefore, the sound insulating material is present opposite to the opening of the non-through hole.
図6に示す遮音材70は、板状部材であり、吸音部材600の非貫通孔が開口した面の面積よりも大きな面積を有している。そのため、非貫通孔の開口に対向して遮音材が存在するようになっている。 The
The
図7は、本発明の防音構造体の別の一例を模式的に示す断面図である。
図7に示す防音構造体7は、吸音部材700と遮音材70からなる。
吸音部材700は、全体が1層である吸音部材である。
吸音部材700には導入通路110と中空部120が設けられている。導入通路110と中空部120によりヘルムホルツ共鳴構造が形成される。
吸音部材700において、導入通路110及び中空部120は円柱状である。 FIG. 7 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
The soundproofing structure 7 shown in FIG. 7 includes asound absorbing member 700 and a sound insulating material 70.
Thesound absorbing member 700 is a sound absorbing member in which the whole is a single layer.
Thesound absorbing member 700 is provided with an introduction passage 110 and a hollow portion 120. The introduction passage 110 and the hollow portion 120 form a Helmholtz resonance structure.
In thesound absorbing member 700, the introduction passage 110 and the hollow portion 120 are cylindrical.
図7に示す防音構造体7は、吸音部材700と遮音材70からなる。
吸音部材700は、全体が1層である吸音部材である。
吸音部材700には導入通路110と中空部120が設けられている。導入通路110と中空部120によりヘルムホルツ共鳴構造が形成される。
吸音部材700において、導入通路110及び中空部120は円柱状である。 FIG. 7 is a cross-sectional view schematically showing another example of the soundproof structure of the present invention.
The soundproofing structure 7 shown in FIG. 7 includes a
The
The
In the
吸音部材700において、導入通路110の表面粗さRaは、0.1~100μmである。
In the sound absorbing member 700, the surface roughness Ra of the introduction passage 110 is 0.1 to 100 μm.
遮音材70は、吸音部材700に対向して、空気層を隔てて所定距離離間して設けられている。
図7に示す遮音材70は、板状部材であり、吸音部材700の非貫通孔が開口した面の面積よりも大きな面積を有している。そのため、非貫通孔の開口に対向して遮音材が存在するようになっている。 Thesound insulation member 70 is provided opposite to the sound absorbing member 700 and spaced apart from the air layer by a predetermined distance.
Thesound insulation member 70 shown in FIG. 7 is a plate-like member, and has an area larger than the area of the surface of the sound absorption member 700 where the non-through holes are opened. Therefore, the sound insulating material is present opposite to the opening of the non-through hole.
図7に示す遮音材70は、板状部材であり、吸音部材700の非貫通孔が開口した面の面積よりも大きな面積を有している。そのため、非貫通孔の開口に対向して遮音材が存在するようになっている。 The
The
本発明の車両用部品は、本発明の防音構造体を備えることを特徴とする。
本発明の防音構造体は防音性能に優れるため、車両用部品として優れる。
本発明の防音構造体を備える車両用部品としては、嵩上げ材、仕切り部材、ラゲッジボックス等が挙げられる。 The parts for vehicles of the present invention are characterized by including the soundproof structure of the present invention.
Since the soundproof structure of the present invention is excellent in soundproofing performance, it is excellent as a component for a vehicle.
As parts for vehicles provided with the soundproof structure of the present invention, a raising member, a partition member, a luggage box, etc. are mentioned.
本発明の防音構造体は防音性能に優れるため、車両用部品として優れる。
本発明の防音構造体を備える車両用部品としては、嵩上げ材、仕切り部材、ラゲッジボックス等が挙げられる。 The parts for vehicles of the present invention are characterized by including the soundproof structure of the present invention.
Since the soundproof structure of the present invention is excellent in soundproofing performance, it is excellent as a component for a vehicle.
As parts for vehicles provided with the soundproof structure of the present invention, a raising member, a partition member, a luggage box, etc. are mentioned.
本発明の自動車は、本発明の防音構造体を、上記遮音材を路面方向に向けて配置してなることを特徴とする。
本発明の防音構造体を、遮音材を路面方向に向けて配置することで、路面から伝わるタイヤパターンノイズの騒音が防音構造体を透過して車内に伝わることを防止することができる。 An automobile according to the present invention is characterized in that the soundproof structure according to the present invention is arranged with the above-mentioned sound insulation material directed to the road surface.
By arranging the sound insulation material of the soundproof structure of the present invention in the direction of the road surface, it is possible to prevent the noise of the tire pattern noise transmitted from the road surface from transmitting through the soundproof structure to the inside of the vehicle.
本発明の防音構造体を、遮音材を路面方向に向けて配置することで、路面から伝わるタイヤパターンノイズの騒音が防音構造体を透過して車内に伝わることを防止することができる。 An automobile according to the present invention is characterized in that the soundproof structure according to the present invention is arranged with the above-mentioned sound insulation material directed to the road surface.
By arranging the sound insulation material of the soundproof structure of the present invention in the direction of the road surface, it is possible to prevent the noise of the tire pattern noise transmitted from the road surface from transmitting through the soundproof structure to the inside of the vehicle.
本発明の吸音部材を車両用部品として用いた例、及び、本発明の吸音部材を配置してなる自動車の例について、図8(a)及び図8(b)を用いて説明する。
図8(a)は、本発明の防音構造体が配置される部位の一例を模式的に示す説明図であり、図8(b)は、図8(a)における破線部で示す領域の部分拡大図である。
図8(a)に示すように、自動車91は、後部座席92の後方にラゲッジルーム93を備える。図8(b)に示すように、ラゲッジルーム93の下部には、板状のフロア部材94が敷設されており、フロア部材94の下には床下空間95が存在する。
床下空間95の下に、自動車91のボディの一部である鋼板70が存在しており、この鋼板70が防音構造体1の遮音材70となる。この遮音材70の上に、非貫通孔の開口した面が対向するように吸音部材100が設けられて、遮音材70と吸音部材100からなる防音構造体1が自動車内に配置される。遮音材70と吸音部材100の間の空気層の厚さは、防音特性が高くなる(透過損失が大きくなる)ように調整される。 An example in which the sound absorbing member of the present invention is used as a component for a vehicle and an example of an automobile in which the sound absorbing member of the present invention is disposed will be described with reference to FIGS. 8 (a) and 8 (b).
Fig.8 (a) is explanatory drawing which shows typically an example of the site | part in which the sound-insulation structure of this invention is arrange | positioned, FIG.8 (b) is a part of the area | region shown by the broken line part in FIG. It is an enlarged view.
As shown in FIG. 8A, theautomobile 91 is provided with a luggage room 93 at the rear of the rear seat 92. As shown in FIG. 8 (b), a plate-like floor member 94 is laid under the luggage room 93, and an underfloor space 95 exists below the floor member 94.
Below theunderfloor space 95, a steel plate 70 which is a part of the body of the automobile 91 is present, and this steel plate 70 becomes the sound insulation 70 of the soundproof structure 1. The sound absorbing member 100 is provided on the sound insulating member 70 so that the open surfaces of the non-through holes face each other, and the soundproof structure 1 including the sound insulating member 70 and the sound absorbing member 100 is disposed in the automobile. The thickness of the air layer between the sound insulating member 70 and the sound absorbing member 100 is adjusted so as to enhance the soundproofing characteristics (increase the transmission loss).
図8(a)は、本発明の防音構造体が配置される部位の一例を模式的に示す説明図であり、図8(b)は、図8(a)における破線部で示す領域の部分拡大図である。
図8(a)に示すように、自動車91は、後部座席92の後方にラゲッジルーム93を備える。図8(b)に示すように、ラゲッジルーム93の下部には、板状のフロア部材94が敷設されており、フロア部材94の下には床下空間95が存在する。
床下空間95の下に、自動車91のボディの一部である鋼板70が存在しており、この鋼板70が防音構造体1の遮音材70となる。この遮音材70の上に、非貫通孔の開口した面が対向するように吸音部材100が設けられて、遮音材70と吸音部材100からなる防音構造体1が自動車内に配置される。遮音材70と吸音部材100の間の空気層の厚さは、防音特性が高くなる(透過損失が大きくなる)ように調整される。 An example in which the sound absorbing member of the present invention is used as a component for a vehicle and an example of an automobile in which the sound absorbing member of the present invention is disposed will be described with reference to FIGS. 8 (a) and 8 (b).
Fig.8 (a) is explanatory drawing which shows typically an example of the site | part in which the sound-insulation structure of this invention is arrange | positioned, FIG.8 (b) is a part of the area | region shown by the broken line part in FIG. It is an enlarged view.
As shown in FIG. 8A, the
Below the
続いて、本発明の吸音構造体における吸音部材を製造する方法について説明する。
本発明の吸音構造体における吸音部材は、例えば、板材に第1の貫通孔が設けられてなる上層と、中空部が設けられてなる下層を積層することによって製造することができる。 Then, the method to manufacture the sound absorption member in the sound absorption structure of this invention is demonstrated.
The sound absorbing member in the sound absorbing structure of the present invention can be manufactured, for example, by laminating an upper layer in which a first through hole is provided in a plate material and a lower layer in which a hollow portion is provided.
本発明の吸音構造体における吸音部材は、例えば、板材に第1の貫通孔が設けられてなる上層と、中空部が設けられてなる下層を積層することによって製造することができる。 Then, the method to manufacture the sound absorption member in the sound absorption structure of this invention is demonstrated.
The sound absorbing member in the sound absorbing structure of the present invention can be manufactured, for example, by laminating an upper layer in which a first through hole is provided in a plate material and a lower layer in which a hollow portion is provided.
下層が1層の吸音部材については、以下の工程により製造することができる。
第1の貫通孔を有する板材である上層を作製する工程と、
第1の貫通孔の表面粗さを調整する工程と、
中空部を有する板材である下層を作製する工程と、
上層と下層を積層する工程。 The sound absorbing member with one lower layer can be manufactured by the following process.
Producing an upper layer which is a plate material having a first through hole;
Adjusting the surface roughness of the first through hole;
Producing a lower layer which is a plate material having a hollow portion;
Step of laminating the upper layer and the lower layer.
第1の貫通孔を有する板材である上層を作製する工程と、
第1の貫通孔の表面粗さを調整する工程と、
中空部を有する板材である下層を作製する工程と、
上層と下層を積層する工程。 The sound absorbing member with one lower layer can be manufactured by the following process.
Producing an upper layer which is a plate material having a first through hole;
Adjusting the surface roughness of the first through hole;
Producing a lower layer which is a plate material having a hollow portion;
Step of laminating the upper layer and the lower layer.
(上層を作製する工程)
板材として使用することのできる樹脂等の材料からなる所定の厚さの板材を準備する。
貫通孔を有さない板材に対して、パンチング、ドリル、レーザー等の手段で第1の貫通孔を形成することにより上層を作製することができる。
また、板材として発泡性樹脂粒子(ビーズ)からなる発泡樹脂を使用する場合、金型内に第1の貫通孔を形成するための突起を設けて、発泡性樹脂粒子を発泡させる方法によっても、第1の貫通孔を有する板材である上層を作製することができる。
なお、後述する上層と下層を積層する工程において接着剤層を形成せずに上層と下層とを積層する場合には、上層に嵌合部(雄部又は雌部)を形成してもよい。 (Step of producing upper layer)
A plate material of a predetermined thickness made of a material such as a resin that can be used as a plate material is prepared.
The upper layer can be produced by forming the first through hole by means of punching, drilling, laser or the like for the plate material having no through hole.
Also, when using a foamed resin composed of expandable resin particles (beads) as a plate material, it is also possible to provide projections for forming the first through holes in the mold to foam the expandable resin particles. The upper layer which is a board material which has the 1st penetration hole can be produced.
When laminating the upper layer and the lower layer without forming the adhesive layer in the step of laminating the upper layer and the lower layer described later, the fitting portion (male part or female part) may be formed on the upper layer.
板材として使用することのできる樹脂等の材料からなる所定の厚さの板材を準備する。
貫通孔を有さない板材に対して、パンチング、ドリル、レーザー等の手段で第1の貫通孔を形成することにより上層を作製することができる。
また、板材として発泡性樹脂粒子(ビーズ)からなる発泡樹脂を使用する場合、金型内に第1の貫通孔を形成するための突起を設けて、発泡性樹脂粒子を発泡させる方法によっても、第1の貫通孔を有する板材である上層を作製することができる。
なお、後述する上層と下層を積層する工程において接着剤層を形成せずに上層と下層とを積層する場合には、上層に嵌合部(雄部又は雌部)を形成してもよい。 (Step of producing upper layer)
A plate material of a predetermined thickness made of a material such as a resin that can be used as a plate material is prepared.
The upper layer can be produced by forming the first through hole by means of punching, drilling, laser or the like for the plate material having no through hole.
Also, when using a foamed resin composed of expandable resin particles (beads) as a plate material, it is also possible to provide projections for forming the first through holes in the mold to foam the expandable resin particles. The upper layer which is a board material which has the 1st penetration hole can be produced.
When laminating the upper layer and the lower layer without forming the adhesive layer in the step of laminating the upper layer and the lower layer described later, the fitting portion (male part or female part) may be formed on the upper layer.
(第1の貫通孔の表面粗さを調整する工程)
次に、サンドブラスト等を用いて第1の貫通孔の表面粗さRaが、0.1~100μmとなるように第1の貫通孔の表面を粗化する。 (Step of adjusting the surface roughness of the first through hole)
Next, the surface of the first through hole is roughened using sand blast or the like so that the surface roughness Ra of the first through hole is 0.1 to 100 μm.
次に、サンドブラスト等を用いて第1の貫通孔の表面粗さRaが、0.1~100μmとなるように第1の貫通孔の表面を粗化する。 (Step of adjusting the surface roughness of the first through hole)
Next, the surface of the first through hole is roughened using sand blast or the like so that the surface roughness Ra of the first through hole is 0.1 to 100 μm.
(下層を作製する工程)
板材として使用することのできる樹脂等の材料からなる所定の厚さの板材を準備する。
貫通孔を有さない板材に対して、その厚さ方向の途中までに、中空部となる凹部を形成することにより下層を作製することができる。凹部の径が第1の貫通孔の径より大きくなるようにする。
凹部は機械加工により形成することが好ましく、エンドミルによる切削加工や熱線による加工が好適に用いられる。
また、板材を製造する際に、射出成形やプレス成形によって凹部を有する板材を一体成形してもよい。
また、板材として発泡性樹脂粒子(ビーズ)からなる発泡樹脂を使用する場合、凹部の形状に対応する突起を有する金型の中で発泡成形を行うことによっても凹部を有する板材を作製することができる。
なお、後述する上層と下層を積層する工程において接着剤層を形成せずに上層と下層とを積層する場合には、下層に嵌合部(雄部又は雌部)を形成してもよい。 (Step of producing lower layer)
A plate material of a predetermined thickness made of a material such as a resin that can be used as a plate material is prepared.
A lower layer can be produced by forming a concave portion to be a hollow portion by the middle in the thickness direction of a plate material having no through hole. The diameter of the recess is made larger than the diameter of the first through hole.
The recess is preferably formed by machining, and cutting with an end mill or processing with a hot wire is preferably used.
Moreover, when manufacturing a board | plate material, you may integrally mold the board | plate material which has a recessed part by injection molding or press molding.
In addition, when using a foamed resin comprising expandable resin particles (beads) as a plate material, it is possible to produce a plate material having a recess also by performing foam molding in a mold having a protrusion corresponding to the shape of the recess. it can.
When laminating the upper layer and the lower layer without forming the adhesive layer in the step of laminating the upper layer and the lower layer described later, the fitting portion (male portion or female portion) may be formed in the lower layer.
板材として使用することのできる樹脂等の材料からなる所定の厚さの板材を準備する。
貫通孔を有さない板材に対して、その厚さ方向の途中までに、中空部となる凹部を形成することにより下層を作製することができる。凹部の径が第1の貫通孔の径より大きくなるようにする。
凹部は機械加工により形成することが好ましく、エンドミルによる切削加工や熱線による加工が好適に用いられる。
また、板材を製造する際に、射出成形やプレス成形によって凹部を有する板材を一体成形してもよい。
また、板材として発泡性樹脂粒子(ビーズ)からなる発泡樹脂を使用する場合、凹部の形状に対応する突起を有する金型の中で発泡成形を行うことによっても凹部を有する板材を作製することができる。
なお、後述する上層と下層を積層する工程において接着剤層を形成せずに上層と下層とを積層する場合には、下層に嵌合部(雄部又は雌部)を形成してもよい。 (Step of producing lower layer)
A plate material of a predetermined thickness made of a material such as a resin that can be used as a plate material is prepared.
A lower layer can be produced by forming a concave portion to be a hollow portion by the middle in the thickness direction of a plate material having no through hole. The diameter of the recess is made larger than the diameter of the first through hole.
The recess is preferably formed by machining, and cutting with an end mill or processing with a hot wire is preferably used.
Moreover, when manufacturing a board | plate material, you may integrally mold the board | plate material which has a recessed part by injection molding or press molding.
In addition, when using a foamed resin comprising expandable resin particles (beads) as a plate material, it is possible to produce a plate material having a recess also by performing foam molding in a mold having a protrusion corresponding to the shape of the recess. it can.
When laminating the upper layer and the lower layer without forming the adhesive layer in the step of laminating the upper layer and the lower layer described later, the fitting portion (male portion or female portion) may be formed in the lower layer.
(上層と下層を積層する工程)
次に、接着剤により上層と下層とを接着する場合には、シート状の接着剤を下層の凹部(中空部)の形状及び位置に合わせてくり抜いたものを準備し、上層と下層の間に挟んで接着剤の接着力を発揮させることにより、上層と下層を接着剤層により接着することができる。
上層と接着剤層と下層を積層する際には、上層の第1の貫通孔と下層の中空部(凹部)の位置を合わせてヘルムホルツ共鳴構造が形成されるようにする。
下層の凹部(中空部)の形状及び位置に合わせて接着剤を塗布し、上層と下層を積層して接着剤の接着力を発揮させることにより、上層と下層を接着剤層により接着することができる。
接着剤の接着力を発揮させる条件としては、接着剤の接着特性に合わせた条件を使用すればよい。 (Step of laminating upper and lower layers)
Next, in the case of bonding the upper layer and the lower layer with an adhesive, prepare a sheet-like adhesive in accordance with the shape and position of the recess (hollow part) of the lower layer, and prepare a layer between the upper layer and the lower layer. The upper layer and the lower layer can be adhered by the adhesive layer by exerting the adhesive force of the adhesive between them.
When laminating the upper layer, the adhesive layer and the lower layer, the position of the first through hole of the upper layer and the hollow portion (concave portion) of the lower layer are aligned to form a Helmholtz resonance structure.
The upper layer and the lower layer are adhered by the adhesive layer by applying the adhesive according to the shape and position of the lower concave portion (hollow part), laminating the upper layer and the lower layer, and exerting the adhesive force of the adhesive. it can.
As the conditions for exerting the adhesive strength of the adhesive, conditions in accordance with the adhesive characteristics of the adhesive may be used.
次に、接着剤により上層と下層とを接着する場合には、シート状の接着剤を下層の凹部(中空部)の形状及び位置に合わせてくり抜いたものを準備し、上層と下層の間に挟んで接着剤の接着力を発揮させることにより、上層と下層を接着剤層により接着することができる。
上層と接着剤層と下層を積層する際には、上層の第1の貫通孔と下層の中空部(凹部)の位置を合わせてヘルムホルツ共鳴構造が形成されるようにする。
下層の凹部(中空部)の形状及び位置に合わせて接着剤を塗布し、上層と下層を積層して接着剤の接着力を発揮させることにより、上層と下層を接着剤層により接着することができる。
接着剤の接着力を発揮させる条件としては、接着剤の接着特性に合わせた条件を使用すればよい。 (Step of laminating upper and lower layers)
Next, in the case of bonding the upper layer and the lower layer with an adhesive, prepare a sheet-like adhesive in accordance with the shape and position of the recess (hollow part) of the lower layer, and prepare a layer between the upper layer and the lower layer. The upper layer and the lower layer can be adhered by the adhesive layer by exerting the adhesive force of the adhesive between them.
When laminating the upper layer, the adhesive layer and the lower layer, the position of the first through hole of the upper layer and the hollow portion (concave portion) of the lower layer are aligned to form a Helmholtz resonance structure.
The upper layer and the lower layer are adhered by the adhesive layer by applying the adhesive according to the shape and position of the lower concave portion (hollow part), laminating the upper layer and the lower layer, and exerting the adhesive force of the adhesive. it can.
As the conditions for exerting the adhesive strength of the adhesive, conditions in accordance with the adhesive characteristics of the adhesive may be used.
また、嵌合部により上層と下層とを接続する場合には、上層及び下層の嵌合部を嵌合させ上層及び下層を接続する。
Moreover, when connecting an upper layer and a lower layer by a fitting part, the upper layer and the lower layer are fitted and the upper layer and the lower layer are connected.
また、上層と下層の間に空間を形成する場合には、上層と下層の間にスペーサーを挟んで上層と下層を積層すればよい。
Further, in the case of forming a space between the upper layer and the lower layer, the upper layer and the lower layer may be stacked while sandwiching a spacer between the upper layer and the lower layer.
下層が2層の吸音部材については、以下の工程により製造することができる。
第1の貫通孔を有する板材である上層を作製する工程と、
第1の貫通孔の表面粗さを調整する工程と、
第2の貫通孔を有する板材である側面層を作製する工程と、
底面層となる板材を準備する工程と、
上層となる板材、側面層となる板材、底面層となる板材を積層して第2の貫通孔と底面層により中空部を形成するとともに側面層と底面層とからなる下層を形成することにより、上層と下層を積層する工程。 The sound absorbing member with two lower layers can be manufactured by the following process.
Producing an upper layer which is a plate material having a first through hole;
Adjusting the surface roughness of the first through hole;
Producing a side layer which is a plate material having a second through hole;
Preparing a plate material to be a bottom layer;
By laminating the plate material to be the upper layer, the plate material to be the side layer, and the plate material to be the bottom layer to form a hollow portion by the second through hole and the bottom layer and to form the lower layer consisting of the side layer and the bottom layer Step of laminating the upper layer and the lower layer.
第1の貫通孔を有する板材である上層を作製する工程と、
第1の貫通孔の表面粗さを調整する工程と、
第2の貫通孔を有する板材である側面層を作製する工程と、
底面層となる板材を準備する工程と、
上層となる板材、側面層となる板材、底面層となる板材を積層して第2の貫通孔と底面層により中空部を形成するとともに側面層と底面層とからなる下層を形成することにより、上層と下層を積層する工程。 The sound absorbing member with two lower layers can be manufactured by the following process.
Producing an upper layer which is a plate material having a first through hole;
Adjusting the surface roughness of the first through hole;
Producing a side layer which is a plate material having a second through hole;
Preparing a plate material to be a bottom layer;
By laminating the plate material to be the upper layer, the plate material to be the side layer, and the plate material to be the bottom layer to form a hollow portion by the second through hole and the bottom layer and to form the lower layer consisting of the side layer and the bottom layer Step of laminating the upper layer and the lower layer.
(上層を作製する工程)
上層については、下層が1層の吸音部材を製造する場合と同様に製造することができる。
板材として使用することのできる樹脂等の材料からなる所定の厚さの板材を準備する。
貫通孔を有さない板材に対して、パンチング、ドリル、レーザー等の手段で第1の貫通孔を形成することにより上層を作製することができる。
また、板材として発泡性樹脂粒子(ビーズ)からなる発泡樹脂を使用する場合、金型内に第1の貫通孔を形成するための突起を設けて、発泡性樹脂粒子を発泡させる方法によっても、板材に第1の貫通孔が設けられた上層を作製することができる。
なお、後述する上層と下層を積層する工程において接着剤層を形成せずに上層と下層とを積層する場合には、上層に嵌合部(雄部又は雌部)を形成してもよい。 (Step of producing upper layer)
The upper layer can be manufactured in the same manner as in the case where the lower layer is a single-layer sound absorbing member.
A plate material of a predetermined thickness made of a material such as a resin that can be used as a plate material is prepared.
The upper layer can be produced by forming the first through hole by means of punching, drilling, laser or the like for the plate material having no through hole.
Also, when using a foamed resin composed of expandable resin particles (beads) as a plate material, it is also possible to provide projections for forming the first through holes in the mold to foam the expandable resin particles. The upper layer in which the first through hole is provided in the plate material can be manufactured.
When laminating the upper layer and the lower layer without forming the adhesive layer in the step of laminating the upper layer and the lower layer described later, the fitting portion (male part or female part) may be formed on the upper layer.
上層については、下層が1層の吸音部材を製造する場合と同様に製造することができる。
板材として使用することのできる樹脂等の材料からなる所定の厚さの板材を準備する。
貫通孔を有さない板材に対して、パンチング、ドリル、レーザー等の手段で第1の貫通孔を形成することにより上層を作製することができる。
また、板材として発泡性樹脂粒子(ビーズ)からなる発泡樹脂を使用する場合、金型内に第1の貫通孔を形成するための突起を設けて、発泡性樹脂粒子を発泡させる方法によっても、板材に第1の貫通孔が設けられた上層を作製することができる。
なお、後述する上層と下層を積層する工程において接着剤層を形成せずに上層と下層とを積層する場合には、上層に嵌合部(雄部又は雌部)を形成してもよい。 (Step of producing upper layer)
The upper layer can be manufactured in the same manner as in the case where the lower layer is a single-layer sound absorbing member.
A plate material of a predetermined thickness made of a material such as a resin that can be used as a plate material is prepared.
The upper layer can be produced by forming the first through hole by means of punching, drilling, laser or the like for the plate material having no through hole.
Also, when using a foamed resin composed of expandable resin particles (beads) as a plate material, it is also possible to provide projections for forming the first through holes in the mold to foam the expandable resin particles. The upper layer in which the first through hole is provided in the plate material can be manufactured.
When laminating the upper layer and the lower layer without forming the adhesive layer in the step of laminating the upper layer and the lower layer described later, the fitting portion (male part or female part) may be formed on the upper layer.
(第1の貫通孔の表面粗さを調整する工程)
次に、サンドブラスト等を用いて第1の貫通孔の表面粗さRaが、0.1~100μmとなるように第1の貫通孔の表面を粗化する。 (Step of adjusting the surface roughness of the first through hole)
Next, the surface of the first through hole is roughened using sand blast or the like so that the surface roughness Ra of the first through hole is 0.1 to 100 μm.
次に、サンドブラスト等を用いて第1の貫通孔の表面粗さRaが、0.1~100μmとなるように第1の貫通孔の表面を粗化する。 (Step of adjusting the surface roughness of the first through hole)
Next, the surface of the first through hole is roughened using sand blast or the like so that the surface roughness Ra of the first through hole is 0.1 to 100 μm.
(側面層を作製する工程)
板材として使用することのできる樹脂等の材料からなる所定の厚さの板材を準備する。
貫通孔を有さない板材に対して、パンチング、ドリル、レーザー等の手段で第2の貫通孔を形成することにより側面層を作製することができる。第2の貫通孔の径が第1の貫通孔より大きくなるようにする。
また、板材として発泡性樹脂粒子(ビーズ)からなる発泡樹脂を使用する場合、金型内に第2の貫通孔を形成するための突起を設けて、発泡性樹脂粒子を発泡させる方法によっても、板材に第2の貫通孔が設けられた側面層を作製することができる。
なお、後述する上層と下層を積層する工程において接着剤層を使用しない場合には、側面層に嵌合部(雄部又は雌部)を形成してもよい。 (Step of producing side layer)
A plate material of a predetermined thickness made of a material such as a resin that can be used as a plate material is prepared.
A side layer can be produced by forming a second through hole by means of punching, drilling, laser or the like for a plate material having no through hole. The diameter of the second through hole is made larger than that of the first through hole.
Also, when using a foamed resin composed of expandable resin particles (beads) as a plate material, projections may be provided in the mold to form the second through holes, and the expandable resin particles may be foamed, too. A side layer in which the second through hole is provided in the plate material can be manufactured.
In addition, when not using an adhesive bond layer in the process of laminating | stacking the upper layer and lower layer mentioned later, you may form a fitting part (male part or female part) in a side layer.
板材として使用することのできる樹脂等の材料からなる所定の厚さの板材を準備する。
貫通孔を有さない板材に対して、パンチング、ドリル、レーザー等の手段で第2の貫通孔を形成することにより側面層を作製することができる。第2の貫通孔の径が第1の貫通孔より大きくなるようにする。
また、板材として発泡性樹脂粒子(ビーズ)からなる発泡樹脂を使用する場合、金型内に第2の貫通孔を形成するための突起を設けて、発泡性樹脂粒子を発泡させる方法によっても、板材に第2の貫通孔が設けられた側面層を作製することができる。
なお、後述する上層と下層を積層する工程において接着剤層を使用しない場合には、側面層に嵌合部(雄部又は雌部)を形成してもよい。 (Step of producing side layer)
A plate material of a predetermined thickness made of a material such as a resin that can be used as a plate material is prepared.
A side layer can be produced by forming a second through hole by means of punching, drilling, laser or the like for a plate material having no through hole. The diameter of the second through hole is made larger than that of the first through hole.
Also, when using a foamed resin composed of expandable resin particles (beads) as a plate material, projections may be provided in the mold to form the second through holes, and the expandable resin particles may be foamed, too. A side layer in which the second through hole is provided in the plate material can be manufactured.
In addition, when not using an adhesive bond layer in the process of laminating | stacking the upper layer and lower layer mentioned later, you may form a fitting part (male part or female part) in a side layer.
(底面層となる板材を準備する工程)
板材として使用することのできる樹脂等の材料からなり、貫通孔が設けられていない所定の厚さの板材を準備する。
なお、後述する上層と下層を積層する工程において接着剤層を形成しない場合には、底面層に嵌合部(雄部又は雌部)を形成してもよい。 (Step of preparing plate material to be bottom layer)
A plate made of a material such as resin that can be used as a plate and having a predetermined thickness without a through hole is prepared.
In addition, when not forming an adhesive bond layer in the process of laminating | stacking the upper layer and lower layer mentioned later, you may form a fitting part (male part or female part) in a bottom face layer.
板材として使用することのできる樹脂等の材料からなり、貫通孔が設けられていない所定の厚さの板材を準備する。
なお、後述する上層と下層を積層する工程において接着剤層を形成しない場合には、底面層に嵌合部(雄部又は雌部)を形成してもよい。 (Step of preparing plate material to be bottom layer)
A plate made of a material such as resin that can be used as a plate and having a predetermined thickness without a through hole is prepared.
In addition, when not forming an adhesive bond layer in the process of laminating | stacking the upper layer and lower layer mentioned later, you may form a fitting part (male part or female part) in a bottom face layer.
(上層と下層を積層する工程)
接着剤により上層と下層(側面層及び底面層)を積層する場合には、シート状の接着剤を側面層の第2の貫通孔の形状及び位置に合わせてくり抜いたものを2枚準備し、上層と側面層との間、及び、側面層と底面層との間に挟んで接着剤の接着力を発揮させることにより、上層、側面層及び底面層を接着剤層により接着することができる。
この際、吸音部材にヘルムホルツ共鳴構造が形成されるようにする。
側面層の第2の貫通孔の形状及び位置に合わせて接着剤を塗布し、上層、側面層及び底面層を積層して接着剤の接着力を発揮させることにより、上層、側面層及び底面層を接着剤層により接着することができる。
接着剤の接着力を発揮させる条件としては、接着剤の接着特性に合わせた条件を使用すればよい。 (Step of laminating upper and lower layers)
When laminating the upper layer and the lower layer (side surface layer and bottom surface layer) with an adhesive, prepare two sheets of sheet-like adhesive cut out according to the shape and position of the second through holes of the side surface layer, The upper layer, the side layer, and the bottom layer can be bonded by the adhesive layer by exerting the adhesive strength of the adhesive between the upper layer and the side layer and between the side layer and the bottom layer.
At this time, the Helmholtz resonance structure is formed on the sound absorbing member.
An adhesive is applied according to the shape and position of the second through hole of the side layer, and the upper layer, the side layer and the bottom layer are laminated to exert the adhesive force of the adhesive, thereby the upper layer, the side layer and the bottom layer Can be adhered by an adhesive layer.
As the conditions for exerting the adhesive strength of the adhesive, conditions in accordance with the adhesive characteristics of the adhesive may be used.
接着剤により上層と下層(側面層及び底面層)を積層する場合には、シート状の接着剤を側面層の第2の貫通孔の形状及び位置に合わせてくり抜いたものを2枚準備し、上層と側面層との間、及び、側面層と底面層との間に挟んで接着剤の接着力を発揮させることにより、上層、側面層及び底面層を接着剤層により接着することができる。
この際、吸音部材にヘルムホルツ共鳴構造が形成されるようにする。
側面層の第2の貫通孔の形状及び位置に合わせて接着剤を塗布し、上層、側面層及び底面層を積層して接着剤の接着力を発揮させることにより、上層、側面層及び底面層を接着剤層により接着することができる。
接着剤の接着力を発揮させる条件としては、接着剤の接着特性に合わせた条件を使用すればよい。 (Step of laminating upper and lower layers)
When laminating the upper layer and the lower layer (side surface layer and bottom surface layer) with an adhesive, prepare two sheets of sheet-like adhesive cut out according to the shape and position of the second through holes of the side surface layer, The upper layer, the side layer, and the bottom layer can be bonded by the adhesive layer by exerting the adhesive strength of the adhesive between the upper layer and the side layer and between the side layer and the bottom layer.
At this time, the Helmholtz resonance structure is formed on the sound absorbing member.
An adhesive is applied according to the shape and position of the second through hole of the side layer, and the upper layer, the side layer and the bottom layer are laminated to exert the adhesive force of the adhesive, thereby the upper layer, the side layer and the bottom layer Can be adhered by an adhesive layer.
As the conditions for exerting the adhesive strength of the adhesive, conditions in accordance with the adhesive characteristics of the adhesive may be used.
また、嵌合部により上層、側面層及び底面層を接続する場合には、嵌合部を嵌合させ上層、側面層及び底面層を接続する。
When the upper layer, the side surface layer and the bottom surface layer are connected by the fitting portion, the upper layer, the side surface layer and the bottom surface layer are connected by fitting the fitting portion.
また、上層と側面層の間、及び、側面層と底面層の間に空間を形成する場合には、上層と側面層の間、及び、側面層と底面層の間にそれぞれスペーサーを挟んで積層を行えばよい。
When a space is formed between the upper layer and the side layer and between the side layer and the bottom layer, the spacer is interposed between the upper layer and the side layer and between the side layer and the bottom layer. You can do
ここまでは、上層と下層を積層して吸音部材を製造する方法について説明したが、全体が1層である吸音部材は、例えば、樹脂層に、表面に開口する導入通路と導入通路を介して外部と接続される中空部からなるヘルムホルツ共鳴構造を有する非貫通孔を形成することで製造することができる。
樹脂層に非貫通孔を形成する方法は、特に限定されないが、例えば、樹脂層にカッター等の工具を用いて手作業で貫通孔を形成してもよい。
また、工業的に大量生産する場合には、導入通路及び中空部となる形状の突起を金型内に配置し、金型内で樹脂層を成形した後、突起を抜き取る方法等が挙げられる。 So far, the method of manufacturing the sound absorbing member by laminating the upper layer and the lower layer has been described, but the sound absorbing member, which is a single layer as a whole, is, for example, a resin layer through the introduction passage and the introduction passage opened on the surface. It can manufacture by forming the non-penetrating hole which has a Helmholtz resonance structure which consists of a hollow part connected with the exterior.
Although the method to form a non-penetrating hole in a resin layer is not specifically limited, For example, you may form a through-hole manually by using tools, such as a cutter, in a resin layer.
In addition, in the case of industrial mass production, there may be mentioned a method of disposing projections in a shape to be an introduction passage and a hollow portion in a mold, molding a resin layer in the mold, and removing the projections.
樹脂層に非貫通孔を形成する方法は、特に限定されないが、例えば、樹脂層にカッター等の工具を用いて手作業で貫通孔を形成してもよい。
また、工業的に大量生産する場合には、導入通路及び中空部となる形状の突起を金型内に配置し、金型内で樹脂層を成形した後、突起を抜き取る方法等が挙げられる。 So far, the method of manufacturing the sound absorbing member by laminating the upper layer and the lower layer has been described, but the sound absorbing member, which is a single layer as a whole, is, for example, a resin layer through the introduction passage and the introduction passage opened on the surface. It can manufacture by forming the non-penetrating hole which has a Helmholtz resonance structure which consists of a hollow part connected with the exterior.
Although the method to form a non-penetrating hole in a resin layer is not specifically limited, For example, you may form a through-hole manually by using tools, such as a cutter, in a resin layer.
In addition, in the case of industrial mass production, there may be mentioned a method of disposing projections in a shape to be an introduction passage and a hollow portion in a mold, molding a resin layer in the mold, and removing the projections.
このようにして非貫通孔を形成した後に、サンドブラスト等を用いて第1の貫通孔の表面粗さRaが、0.1~100μmとなるように第1の貫通孔の表面を粗化すればよい。
After the non-through holes are formed in this manner, the surface of the first through holes is roughened by sand blasting or the like so that the surface roughness Ra of the first through holes is 0.1 to 100 μm. Good.
(防音構造体の製造方法)
このようにして得られた吸音部材の非貫通孔が開口した面に対向して、空気層を隔てて所定距離離間するようにして遮音材を設けることにより、本発明の防音構造体が得られる。
吸音部材と遮音材の間に空気層を設けるための接続部材を別途設けることにより遮音材を設けてもよく、本発明の防音構造体を設置する場所に吸音部材と遮音材をそれぞれ固定することによって、遮音材と吸音部材の間に空気層が設けられるようにしてもよい。
また、防音構造体を設置する場所が車内である場合、車体を構成する鋼板の一部を遮音材とみなし、鋼板に対して所定距離離間するように吸音部材を配置することによって、車内において防音構造体を得るようにしてもよい。 (Method of manufacturing soundproof structure)
The soundproof structure of the present invention can be obtained by providing the sound insulation material so as to separate the air layer and to separate the air layer by a predetermined distance so as to face the surface of the sound absorption member obtained in this way. .
The sound insulation material may be provided by separately providing a connecting member for providing an air layer between the sound absorption material and the sound insulation material, and the sound absorption material and the sound insulation material may be fixed to the place where the soundproof structure of the present invention is installed. The air layer may be provided between the sound insulation member and the sound absorbing member by the above.
In addition, when the place where the soundproof structure is installed is in the car, the soundproof member is regarded as a part of the steel plate that constitutes the vehicle body as a sound insulation member, and the sound absorbing member is arranged to be separated from the steel plate by a predetermined distance. A structure may be obtained.
このようにして得られた吸音部材の非貫通孔が開口した面に対向して、空気層を隔てて所定距離離間するようにして遮音材を設けることにより、本発明の防音構造体が得られる。
吸音部材と遮音材の間に空気層を設けるための接続部材を別途設けることにより遮音材を設けてもよく、本発明の防音構造体を設置する場所に吸音部材と遮音材をそれぞれ固定することによって、遮音材と吸音部材の間に空気層が設けられるようにしてもよい。
また、防音構造体を設置する場所が車内である場合、車体を構成する鋼板の一部を遮音材とみなし、鋼板に対して所定距離離間するように吸音部材を配置することによって、車内において防音構造体を得るようにしてもよい。 (Method of manufacturing soundproof structure)
The soundproof structure of the present invention can be obtained by providing the sound insulation material so as to separate the air layer and to separate the air layer by a predetermined distance so as to face the surface of the sound absorption member obtained in this way. .
The sound insulation material may be provided by separately providing a connecting member for providing an air layer between the sound absorption material and the sound insulation material, and the sound absorption material and the sound insulation material may be fixed to the place where the soundproof structure of the present invention is installed. The air layer may be provided between the sound insulation member and the sound absorbing member by the above.
In addition, when the place where the soundproof structure is installed is in the car, the soundproof member is regarded as a part of the steel plate that constitutes the vehicle body as a sound insulation member, and the sound absorbing member is arranged to be separated from the steel plate by a predetermined distance. A structure may be obtained.
(実施例)
以下に、本発明をより具体的に説明する具体例を示すが、本発明はこれらの実施例に限定されるものではない。 (Example)
Although the specific example which illustrates this invention more concretely below is shown, this invention is not limited to these Examples.
以下に、本発明をより具体的に説明する具体例を示すが、本発明はこれらの実施例に限定されるものではない。 (Example)
Although the specific example which illustrates this invention more concretely below is shown, this invention is not limited to these Examples.
(実施例1)
(1)板材の作製
発泡性樹脂粒子を予備発泡させた一次発泡粒子(ポリプロピレン製、平均粒径3.5mm、発泡剤:二酸化炭素)を金型に充填するとともに、加熱蒸気で発泡成形(143℃、10秒)し、金型から取り外した後、80℃で12時間乾燥させることにより、発泡樹脂からなる縦800mm×横800mm×厚さ10mmの板材3枚を作製した。このとき、発泡樹脂の発泡倍率は30倍であった。 Example 1
(1) Preparation of Plate Material Primary foam particles (made of polypropylene, average particle diameter: 3.5 mm, foaming agent: carbon dioxide) prepared by prefoaming foamable resin particles are filled in a mold and foam molding is performed by heating steam (143) C. for 10 seconds, removed from the mold, and dried at 80.degree. C. for 12 hours to produce three plate members of 800 mm long x 800 mm wide x 10 mm thick made of a foamed resin. At this time, the expansion ratio of the foamed resin was 30 times.
(1)板材の作製
発泡性樹脂粒子を予備発泡させた一次発泡粒子(ポリプロピレン製、平均粒径3.5mm、発泡剤:二酸化炭素)を金型に充填するとともに、加熱蒸気で発泡成形(143℃、10秒)し、金型から取り外した後、80℃で12時間乾燥させることにより、発泡樹脂からなる縦800mm×横800mm×厚さ10mmの板材3枚を作製した。このとき、発泡樹脂の発泡倍率は30倍であった。 Example 1
(1) Preparation of Plate Material Primary foam particles (made of polypropylene, average particle diameter: 3.5 mm, foaming agent: carbon dioxide) prepared by prefoaming foamable resin particles are filled in a mold and foam molding is performed by heating steam (143) C. for 10 seconds, removed from the mold, and dried at 80.degree. C. for 12 hours to produce three plate members of 800 mm long x 800 mm wide x 10 mm thick made of a foamed resin. At this time, the expansion ratio of the foamed resin was 30 times.
(2)貫通孔の形成
上記(1)で作製した厚さ10mmの板材のうちの1枚に、孔ピッチ10mmの千鳥配列となるよう、直径3mmの円形に貫通孔(第1の貫通孔)をドリルにより形成して、上層を作製した。
続いて、上記(1)で作製した厚さ10mmの板材の別の1枚に、孔ピッチ10mmの千鳥配列となるよう、直径10mmの円形に貫通孔(第2の貫通孔)をドリルにより形成して、側面層を作製した。
上記(1)で作製した厚さ10mmの板材別の1枚には加工を施さず、底面層とした。 (2) Formation of through holes A through hole (first through hole) having a diameter of 3 mm so as to form a staggered arrangement of the hole pitch of 10 mm in one of the plate members having a thickness of 10 mm manufactured in the above (1) Were drilled to produce the upper layer.
Subsequently, a circular through hole (second through hole) having a diameter of 10 mm is formed by drilling in another 10 mm thick plate material manufactured in the above (1) so as to form a staggered arrangement of thehole pitch 10 mm. Then, the side layer was made.
One plate having a thickness of 10 mm according to (1) above was not processed but was used as a bottom layer.
上記(1)で作製した厚さ10mmの板材のうちの1枚に、孔ピッチ10mmの千鳥配列となるよう、直径3mmの円形に貫通孔(第1の貫通孔)をドリルにより形成して、上層を作製した。
続いて、上記(1)で作製した厚さ10mmの板材の別の1枚に、孔ピッチ10mmの千鳥配列となるよう、直径10mmの円形に貫通孔(第2の貫通孔)をドリルにより形成して、側面層を作製した。
上記(1)で作製した厚さ10mmの板材別の1枚には加工を施さず、底面層とした。 (2) Formation of through holes A through hole (first through hole) having a diameter of 3 mm so as to form a staggered arrangement of the hole pitch of 10 mm in one of the plate members having a thickness of 10 mm manufactured in the above (1) Were drilled to produce the upper layer.
Subsequently, a circular through hole (second through hole) having a diameter of 10 mm is formed by drilling in another 10 mm thick plate material manufactured in the above (1) so as to form a staggered arrangement of the
One plate having a thickness of 10 mm according to (1) above was not processed but was used as a bottom layer.
(3)第1の貫通孔の表面粗さの調整
次に、第1の貫通孔の表面粗さRaが1.02μmとなるように、サンドブラスト(新東工業株式会社製 ショットブラスト装置)により第1の貫通孔の表面を粗面化した。 (3) Adjustment of the surface roughness of the first through holes Next, the surface roughness Ra of the first through holes is adjusted to 1.02 μm by sandblasting (shot blasting apparatus manufactured by Shinto Kogyo Co., Ltd.) The surface of the throughhole 1 was roughened.
次に、第1の貫通孔の表面粗さRaが1.02μmとなるように、サンドブラスト(新東工業株式会社製 ショットブラスト装置)により第1の貫通孔の表面を粗面化した。 (3) Adjustment of the surface roughness of the first through holes Next, the surface roughness Ra of the first through holes is adjusted to 1.02 μm by sandblasting (shot blasting apparatus manufactured by Shinto Kogyo Co., Ltd.) The surface of the through
(4)積層及び接着
側面層の一面に接着剤(コニシ社製 ホンドGクリアー、塗布厚さ:70μm)を塗布し、上層に形成された第1の貫通孔の中心位置と側面層に形成された第2の貫通孔の中心位置とが一致するように上層と側面層とを接着した。続いて、側面層のもう一面にも同じ接着剤を塗布し、底面層を接着することで、実施例1に係る吸音部材を得た。 (4) An adhesive (Konshi's Hondo G clear, coating thickness: 70 μm) is applied to one surface of the laminated and adhesive side layer, and the center position of the first through hole formed in the upper layer and the side layer are formed. The upper layer and the side layer were bonded so that the center position of the second through hole coincided. Subsequently, the same adhesive was applied to the other surface of the side layer, and the bottom layer was adhered to obtain a sound absorbing member according to Example 1.
側面層の一面に接着剤(コニシ社製 ホンドGクリアー、塗布厚さ:70μm)を塗布し、上層に形成された第1の貫通孔の中心位置と側面層に形成された第2の貫通孔の中心位置とが一致するように上層と側面層とを接着した。続いて、側面層のもう一面にも同じ接着剤を塗布し、底面層を接着することで、実施例1に係る吸音部材を得た。 (4) An adhesive (Konshi's Hondo G clear, coating thickness: 70 μm) is applied to one surface of the laminated and adhesive side layer, and the center position of the first through hole formed in the upper layer and the side layer are formed. The upper layer and the side layer were bonded so that the center position of the second through hole coincided. Subsequently, the same adhesive was applied to the other surface of the side layer, and the bottom layer was adhered to obtain a sound absorbing member according to Example 1.
(実施例2及び3、並びに、比較例1及び2)
第1の貫通孔の表面粗さRaを表1に示すように変更した以外は、実施例1と同様にして、実施例2及び3、並びに、比較例1及び2に係る吸音部材を得た。 (Examples 2 and 3 and Comparative Examples 1 and 2)
Sound absorbing members according to Examples 2 and 3 and Comparative Examples 1 and 2 were obtained in the same manner as Example 1 except that the surface roughness Ra of the first through holes was changed as shown in Table 1. .
第1の貫通孔の表面粗さRaを表1に示すように変更した以外は、実施例1と同様にして、実施例2及び3、並びに、比較例1及び2に係る吸音部材を得た。 (Examples 2 and 3 and Comparative Examples 1 and 2)
Sound absorbing members according to Examples 2 and 3 and Comparative Examples 1 and 2 were obtained in the same manner as Example 1 except that the surface roughness Ra of the first through holes was changed as shown in Table 1. .
[透過損失測定]
各実施例及び各比較例の防音構造体について、周波数を変化させながら透過損失を測定した。
透過損失測定は、音響透過損失試験により行った。測定はJIS A 1416「実験室における建築部材の空気音遮断性能の測定方法」に準じて行った。
図9は、防音構造体に対する音響透過損失試験の概要を模式的に示す説明図である。
図9には、音響透過損失測定装置80を示している。音響透過損失測定装置80は、スピーカー83から音を発生させる音源室81と、試験体である防音構造体1を通して音を受音する受音室82が設けられている。音源室81には音源室側マイクロホン84が、受音室82には受音室側マイクロホン85がそれぞれ設けられていて、音源室側マイクロホン84で測定した音圧レベルL1と受音室側マイクロホン85で測定した音圧レベルL2を測定装置86に取り込めるようになっている。
吸音率を測定する際には、各実施例及び各比較例に係る吸音部材及び遮音材(すなわち防音構造体)を図9に示す音源室-受音室の間にセットし、音源室においてスピーカーから音(100dB)を発生させ、音源室における音圧レベルL1および受音室の音圧レベルL2をそれぞれ測定した。周波数100~5000Hzの範囲で測定を行った。
(透過損失の算出)
透過率:r=L2/L1
透過損失(dB)=10Log10(1/r)より求めた。 [Transmission loss measurement]
The transmission loss of each of the soundproof structures of the examples and the comparative examples was measured while changing the frequency.
The transmission loss measurement was performed by the sound transmission loss test. The measurement was performed according to JIS A 1416 "Method of measuring air noise blocking performance of building members in a laboratory".
FIG. 9 is an explanatory view schematically showing an outline of a sound transmission loss test on the soundproof structure.
An acoustic transmissionloss measurement device 80 is shown in FIG. The sound transmission loss measuring apparatus 80 is provided with a sound source room 81 for generating a sound from the speaker 83 and a sound receiving room 82 for receiving a sound through the soundproof structure 1 as a test body. The sound source room side microphone 84 is provided in the sound source room 81, and the sound reception room side microphone 85 is provided in the sound reception room 82, and the sound pressure level L1 measured by the sound source room side microphone 84 and the sound reception room side microphone 85. The sound pressure level L2 measured by the above can be taken into the measuring device 86.
When measuring the sound absorption coefficient, the sound absorbing member and the sound insulating material (that is, the soundproof structure) according to each example and each comparative example are set between the sound source room and the sound receiving room shown in FIG. The sound pressure level L1 in the sound source room and the sound pressure level L2 in the sound receiving room were measured, respectively. The measurement was performed in the frequency range of 100 to 5000 Hz.
(Calculation of transmission loss)
Transmittance: r = L2 / L1
Transmission loss (dB) = 10 Log 10 (1 / r).
各実施例及び各比較例の防音構造体について、周波数を変化させながら透過損失を測定した。
透過損失測定は、音響透過損失試験により行った。測定はJIS A 1416「実験室における建築部材の空気音遮断性能の測定方法」に準じて行った。
図9は、防音構造体に対する音響透過損失試験の概要を模式的に示す説明図である。
図9には、音響透過損失測定装置80を示している。音響透過損失測定装置80は、スピーカー83から音を発生させる音源室81と、試験体である防音構造体1を通して音を受音する受音室82が設けられている。音源室81には音源室側マイクロホン84が、受音室82には受音室側マイクロホン85がそれぞれ設けられていて、音源室側マイクロホン84で測定した音圧レベルL1と受音室側マイクロホン85で測定した音圧レベルL2を測定装置86に取り込めるようになっている。
吸音率を測定する際には、各実施例及び各比較例に係る吸音部材及び遮音材(すなわち防音構造体)を図9に示す音源室-受音室の間にセットし、音源室においてスピーカーから音(100dB)を発生させ、音源室における音圧レベルL1および受音室の音圧レベルL2をそれぞれ測定した。周波数100~5000Hzの範囲で測定を行った。
(透過損失の算出)
透過率:r=L2/L1
透過損失(dB)=10Log10(1/r)より求めた。 [Transmission loss measurement]
The transmission loss of each of the soundproof structures of the examples and the comparative examples was measured while changing the frequency.
The transmission loss measurement was performed by the sound transmission loss test. The measurement was performed according to JIS A 1416 "Method of measuring air noise blocking performance of building members in a laboratory".
FIG. 9 is an explanatory view schematically showing an outline of a sound transmission loss test on the soundproof structure.
An acoustic transmission
When measuring the sound absorption coefficient, the sound absorbing member and the sound insulating material (that is, the soundproof structure) according to each example and each comparative example are set between the sound source room and the sound receiving room shown in FIG. The sound pressure level L1 in the sound source room and the sound pressure level L2 in the sound receiving room were measured, respectively. The measurement was performed in the frequency range of 100 to 5000 Hz.
(Calculation of transmission loss)
Transmittance: r = L2 / L1
Transmission loss (dB) = 10 Log 10 (1 / r).
図10(a)、図10(b)及び図10(c)は、それぞれ実施例1、2及び3における周波数と透過損失の関係を示すグラフである。
図11(a)及び図11(b)は、それぞれ比較例1及び2における周波数と透過損失の関係を示すグラフである。
各グラフにおいて、周波数1000Hz、1600Hzのプロットを白抜きで示しており、この値を表1にも示している。 FIGS. 10 (a), 10 (b) and 10 (c) are graphs showing the relationship between the frequency and the transmission loss in Examples 1, 2 and 3, respectively.
FIGS. 11A and 11B are graphs showing the relationship between the frequency and the transmission loss in Comparative Examples 1 and 2, respectively.
In each graph, plots of frequencies of 1000 Hz and 1600 Hz are shown in white, and these values are also shown in Table 1.
図11(a)及び図11(b)は、それぞれ比較例1及び2における周波数と透過損失の関係を示すグラフである。
各グラフにおいて、周波数1000Hz、1600Hzのプロットを白抜きで示しており、この値を表1にも示している。 FIGS. 10 (a), 10 (b) and 10 (c) are graphs showing the relationship between the frequency and the transmission loss in Examples 1, 2 and 3, respectively.
FIGS. 11A and 11B are graphs showing the relationship between the frequency and the transmission loss in Comparative Examples 1 and 2, respectively.
In each graph, plots of frequencies of 1000 Hz and 1600 Hz are shown in white, and these values are also shown in Table 1.
上記結果から、実施例1~3に係る防音構造体では、透過損失を充分に大きくすることが可能となることが確認された。さらに、実施例1~3に係る防音構造体では、1000Hz以上の高周波数帯域でのコインシデンス効果による透過損失の落ち込みが抑制され、音の抜けを防止することが可能となることも確認された。
それに対して、比較例1~2に係る防音構造体では、1000Hz以上の高周波数帯域でのコインシデンス効果による透過損失の落ち込みが抑制できないことが確認された。 From the above results, it was confirmed that in the soundproof structures according to Examples 1 to 3, the transmission loss can be sufficiently increased. Furthermore, in the soundproofing structures according to Examples 1 to 3, it was also confirmed that the drop of the transmission loss due to the coincidence effect in the high frequency band of 1000 Hz or more can be suppressed, and the omission of sound can be prevented.
On the other hand, it was confirmed that the soundproof structures according to Comparative Examples 1 and 2 can not suppress the drop of the transmission loss due to the coincidence effect in the high frequency band of 1000 Hz or more.
それに対して、比較例1~2に係る防音構造体では、1000Hz以上の高周波数帯域でのコインシデンス効果による透過損失の落ち込みが抑制できないことが確認された。 From the above results, it was confirmed that in the soundproof structures according to Examples 1 to 3, the transmission loss can be sufficiently increased. Furthermore, in the soundproofing structures according to Examples 1 to 3, it was also confirmed that the drop of the transmission loss due to the coincidence effect in the high frequency band of 1000 Hz or more can be suppressed, and the omission of sound can be prevented.
On the other hand, it was confirmed that the soundproof structures according to Comparative Examples 1 and 2 can not suppress the drop of the transmission loss due to the coincidence effect in the high frequency band of 1000 Hz or more.
1、2、3、4、5、6、7 防音構造体
10 上層
20 下層
21 側面層
22 底面層
30、40 接着剤層
50、60 空間
51、61 スペーサー
70 遮音材(鋼板)
80 音響透過損失測定装置
81 音源室
82 受音室
83 スピーカー
84 音源室側マイクロホン
85 受音室側マイクロホン
86 測定装置
91 自動車
92 後部座席
93 ラゲッジルーム
94 フロア部材
95 床下空間
100、200、300、400、500、600、700 吸音部材
110 導入通路(第1の貫通孔)
120 中空部(第2の貫通孔)
121 第2の貫通孔の壁面(中空部の側面)
122 底面層の表面(中空部の底面) 1, 2, 3, 4, 5, 6, 7Soundproof structure 10 Upper layer 20 Lower layer 21 Side layer 22 Bottom layer 30, 40 Adhesive layer 50, 60 Space 51, 61 Spacer 70 Sound insulation (steel plate)
80 sound transmissionloss measuring apparatus 81 sound source room 82 sound receiving room 83 speaker 84 sound source room side microphone 85 sound receiving room side microphone 86 measuring apparatus 91 car 92 rear seat 93 luggage room 94 floor member 95 underfloor space 100, 200, 300, 400 , 500, 600, 700 Sound absorption member 110 Introduction passage (first through hole)
120 Hollow part (second through hole)
121 Wall surface of second through hole (side surface of hollow portion)
122 Bottom layer surface (bottom of hollow)
10 上層
20 下層
21 側面層
22 底面層
30、40 接着剤層
50、60 空間
51、61 スペーサー
70 遮音材(鋼板)
80 音響透過損失測定装置
81 音源室
82 受音室
83 スピーカー
84 音源室側マイクロホン
85 受音室側マイクロホン
86 測定装置
91 自動車
92 後部座席
93 ラゲッジルーム
94 フロア部材
95 床下空間
100、200、300、400、500、600、700 吸音部材
110 導入通路(第1の貫通孔)
120 中空部(第2の貫通孔)
121 第2の貫通孔の壁面(中空部の側面)
122 底面層の表面(中空部の底面) 1, 2, 3, 4, 5, 6, 7
80 sound transmission
120 Hollow part (second through hole)
121 Wall surface of second through hole (side surface of hollow portion)
122 Bottom layer surface (bottom of hollow)
Claims (17)
- 非貫通孔を有する吸音部材と、
前記吸音部材の前記非貫通孔が開口した面に対向して、空気層を隔てて所定距離離間して設けられた遮音材と、からなる防音構造体であって、
前記吸音部材の前記非貫通孔は、表面に開口する導入通路と前記導入通路を介して外部と接続される中空部からなるヘルムホルツ共鳴構造を有しており、
前記導入通路の表面粗さRaは、0.1~100μmであることを特徴とする防音構造体。 A sound absorbing member having a non-through hole,
It is a soundproof structure which consists of a sound insulation material provided to be separated by a predetermined distance with an air layer opposed to the surface of the sound absorption member opened by the non-through holes.
The non-through hole of the sound absorbing member has a Helmholtz resonance structure including an introduction passage opened to the surface and a hollow portion connected to the outside through the introduction passage.
A soundproof structure, wherein a surface roughness Ra of the introduction passage is 0.1 to 100 μm. - 前記導入通路の表面粗さRaは、0.16~98μmである請求項1に記載の防音構造体。 The soundproof structure according to claim 1, wherein the surface roughness Ra of the introduction passage is 0.16 to 98 μm.
- 前記導入通路は円柱状である請求項1又は2に記載の防音構造体。 The soundproof structure according to claim 1, wherein the introduction passage is cylindrical.
- 前記吸音部材は、前記導入通路を形成する第1の貫通孔を有する上層と、前記上層に積層された前記中空部を有する下層からなる請求項1~3のいずれか1項に記載の防音構造体。 The soundproof structure according to any one of claims 1 to 3, wherein the sound absorbing member comprises an upper layer having a first through hole forming the introduction passage, and a lower layer having the hollow portion laminated on the upper layer. body.
- 前記吸音部材の前記下層は1層からなり、
前記上層と前記下層は、接着剤層により接着されている請求項4に記載の防音構造体。 The lower layer of the sound absorbing member consists of one layer,
The soundproof structure according to claim 4, wherein the upper layer and the lower layer are bonded by an adhesive layer. - 前記吸音部材の前記下層は1層からなり、
前記上層と、前記下層の表面のうち前記中空部以外の表面と、の間には空間が形成されている請求項4に記載の防音構造体。 The lower layer of the sound absorbing member consists of one layer,
The soundproof structure according to claim 4, wherein a space is formed between the upper layer and a surface of the lower layer other than the hollow portion. - 前記吸音部材の前記下層は、
前記第1の貫通孔よりも開口径が大きい第2の貫通孔を有する側面層と、
貫通孔が形成されていない底面層とが順に積層されてなり、前記第2の貫通孔と前記底面層とにより前記中空部が形成されている請求項4に記載の防音構造体。 The lower layer of the sound absorbing member is
A side layer having a second through hole whose opening diameter is larger than that of the first through hole;
The soundproof structure according to claim 4, wherein the bottom layer in which the through holes are not formed is sequentially stacked, and the hollow portion is formed by the second through holes and the bottom layer. - 前記上層と前記側面層は、接着剤層により接着されている請求項7に記載の防音構造体。 The soundproof structure according to claim 7, wherein the upper layer and the side layer are adhered by an adhesive layer.
- 前記上層と、前記側面層の表面のうち前記第2の貫通孔以外の表面と、の間には空間が形成されている請求項7に記載の防音構造体。 The soundproof structure according to claim 7, wherein a space is formed between the upper layer and a surface of the side surface layer other than the second through hole.
- 前記側面層と前記底面層は、接着剤層により接着されている請求項7~9のいずれか1項に記載の防音構造体。 The soundproof structure according to any one of claims 7 to 9, wherein the side layer and the bottom layer are bonded by an adhesive layer.
- 前記側面層の表面のうち前記第2の貫通孔以外の表面と、前記底面層と、の間には空間が形成されている請求項7~9のいずれか1項に記載の防音構造体。 The soundproof structure according to any one of claims 7 to 9, wherein a space is formed between the bottom layer and a surface other than the second through hole in the surface of the side layer.
- 前記吸音部材が樹脂又は繊維質材料からなる請求項1~11のいずれか1項に記載の防音構造体。 The soundproof structure according to any one of claims 1 to 11, wherein the sound absorbing member is made of a resin or a fibrous material.
- 前記樹脂は、発泡樹脂である請求項12に記載の防音構造体。 The soundproof structure according to claim 12, wherein the resin is a foamed resin.
- 前記吸音部材の開口形成側の面に、さらに繊維層が形成され、
前記繊維層には前記導入通路の開口に連通する開口が形成されてなる請求項1~13のいずれか1項に記載の防音構造体。 A fiber layer is further formed on the surface on the opening formation side of the sound absorbing member,
The soundproof structure according to any one of claims 1 to 13, wherein an opening communicating with the opening of the introduction passage is formed in the fiber layer. - 前記遮音材が鋼板である請求項1~14のいずれか1項に記載の防音構造体。 The soundproof structure according to any one of claims 1 to 14, wherein the sound insulation material is a steel plate.
- 請求項1~15のいずれか1項に記載の防音構造体を備えることを特徴とする車両用部品。 A vehicle component comprising the soundproof structure according to any one of claims 1 to 15.
- 請求項1~15のいずれか1項に記載の防音構造体を、前記遮音材を路面方向に向けて配置してなることを特徴とする自動車。
An automobile comprising the soundproof structure according to any one of claims 1 to 15, wherein the sound insulation member is oriented in the direction of the road surface.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019532340A JPWO2019021478A1 (en) | 2017-07-28 | 2017-07-28 | Soundproof structure, vehicle parts and automobile |
PCT/JP2017/027531 WO2019021478A1 (en) | 2017-07-28 | 2017-07-28 | Soundproof structure, vehicle component, and automobile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/027531 WO2019021478A1 (en) | 2017-07-28 | 2017-07-28 | Soundproof structure, vehicle component, and automobile |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019021478A1 true WO2019021478A1 (en) | 2019-01-31 |
Family
ID=65040128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/027531 WO2019021478A1 (en) | 2017-07-28 | 2017-07-28 | Soundproof structure, vehicle component, and automobile |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2019021478A1 (en) |
WO (1) | WO2019021478A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111688599A (en) * | 2019-03-14 | 2020-09-22 | 本田技研工业株式会社 | Sound insulation structure |
WO2020192160A1 (en) * | 2019-03-28 | 2020-10-01 | 苏州拓朴声学科技有限公司 | Standardized sound insulation and sound absorption integrated module and selection method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012013912A (en) * | 2010-06-30 | 2012-01-19 | Three M Innovative Properties Co | Sound absorption system and method of manufacturing the same |
JP2015151105A (en) * | 2014-02-19 | 2015-08-24 | 河西工業株式会社 | Vehicle body panel structure |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS515424A (en) * | 1974-07-04 | 1976-01-17 | Nissan Diesel Motor Co | Enjinruumuno kyuonsochi |
JP2000034937A (en) * | 1998-07-17 | 2000-02-02 | Mitsubishi Motors Corp | Sound absorbing device |
JP2006199276A (en) * | 2004-12-24 | 2006-08-03 | Kobe Steel Ltd | Sound absorbing structure |
JP5359167B2 (en) * | 2008-10-07 | 2013-12-04 | ヤマハ株式会社 | Car body structure and luggage compartment |
JP2011111103A (en) * | 2009-11-30 | 2011-06-09 | Iseki & Co Ltd | Vibration control cabin type working vehicle |
JP5541742B2 (en) * | 2011-06-10 | 2014-07-09 | アイシン化工株式会社 | Thermosetting soundproof coating composition |
JP6588324B2 (en) * | 2015-12-11 | 2019-10-09 | 小島プレス工業株式会社 | Resin exterior parts for vehicles |
-
2017
- 2017-07-28 JP JP2019532340A patent/JPWO2019021478A1/en active Pending
- 2017-07-28 WO PCT/JP2017/027531 patent/WO2019021478A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012013912A (en) * | 2010-06-30 | 2012-01-19 | Three M Innovative Properties Co | Sound absorption system and method of manufacturing the same |
JP2015151105A (en) * | 2014-02-19 | 2015-08-24 | 河西工業株式会社 | Vehicle body panel structure |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111688599A (en) * | 2019-03-14 | 2020-09-22 | 本田技研工业株式会社 | Sound insulation structure |
WO2020192160A1 (en) * | 2019-03-28 | 2020-10-01 | 苏州拓朴声学科技有限公司 | Standardized sound insulation and sound absorption integrated module and selection method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019021478A1 (en) | 2020-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11505137B2 (en) | Sound absorption member, vehicle component, and automobile | |
CN103069086B (en) | Multilayer acoustic panel | |
KR20140002610A (en) | Broadband sound absorber | |
US11881198B2 (en) | Noise insulation material for automobile | |
WO2019008774A1 (en) | Sound absorbing material, component for vehicle, and automobile | |
KR101874305B1 (en) | A vehicle floor carpet and a method of producing | |
WO2019021478A1 (en) | Soundproof structure, vehicle component, and automobile | |
JP2007161153A (en) | Molded laying interior material for automobile | |
JP2020007975A (en) | Soundproof material for compressor | |
KR20220148225A (en) | meta material sound insulation | |
JP2019152837A (en) | Sound absorbing member and vehicle component | |
WO2019026294A1 (en) | Sound absorbing member, vehicle component, and automobile | |
Jonza et al. | Acoustically Absorbing Lightweight Thermoplastic Honeycomb Panels | |
WO2019021477A1 (en) | Sound absorption member, vehicle component, and automobile | |
US20190147843A1 (en) | Method for the manufacture of vibration damping and/or sound attenuating materials | |
WO2019021480A1 (en) | Sound absorption member, vehicle component, automobile, and production method for sound absorption member | |
JP4079851B2 (en) | Soundproof material | |
JP6916879B2 (en) | Soundproof structures, vehicle parts and automobiles | |
JP2018158691A (en) | Vehicular sound absorbing material, vehicular component, automobile, and partition member for automobile | |
JP2020008684A (en) | Soundproof structure | |
JP7538719B2 (en) | Method for controlling the sound absorption properties of soundproofing materials | |
US20220410525A1 (en) | Layered sound-absorbing material | |
CN213199014U (en) | Sound-proof heat-insulation energy-absorbing shock pad for automobile door plate | |
JP2023154823A (en) | Manufacturing method of sound absorption material, sound absorption material and vehicle member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17918996 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019532340 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17918996 Country of ref document: EP Kind code of ref document: A1 |