WO2019017535A1 - 비파괴 검사를 위한 와전류 검사 장치 - Google Patents
비파괴 검사를 위한 와전류 검사 장치 Download PDFInfo
- Publication number
- WO2019017535A1 WO2019017535A1 PCT/KR2017/013697 KR2017013697W WO2019017535A1 WO 2019017535 A1 WO2019017535 A1 WO 2019017535A1 KR 2017013697 W KR2017013697 W KR 2017013697W WO 2019017535 A1 WO2019017535 A1 WO 2019017535A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- test piece
- signal
- phase difference
- defect
- eddy current
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/904—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/9006—Details, e.g. in the structure or functioning of sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/9013—Arrangements for scanning
- G01N27/902—Arrangements for scanning by moving the sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/9046—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/9073—Recording measured data
Definitions
- This disclosure relates to an eddy current testing apparatus for non-destructive testing.
- the heat exchanger installed in the power plant performs the function of heating, cooling, and condensing by causing the heat of the fluid to transfer heat through the heat transfer surface of the heat transfer tube.
- Heat exchanger tubes that have been used for a long time under high temperature, high pressure, vibration and hydrochemical environment are used for corrosion, denting, erosion, formulation, wear, thinning, fatigue cracking, stress corrosion cracking (SCC) and irradiation assisted stress corrosion cracking It can be damaged. Failure to perform the function of the heat exchanger due to such damage may interfere with normal operation of the power plant. Therefore, non-destructive testing for the integrity of the heat exchanger tube is periodically performed during the planning, prevention and maintenance of the power plant. For this purpose, a probe for an eddy current test can be inserted into the heat transfer tube and a non-destructive inspection can be performed.
- nondestructive inspection was performed using a bobbin type probe, an annular array probe, and a rotary type probe.
- the inspection speed, the defect inspection capability and the durability are further improved as compared with the prior art, and the nondestructive inspection device performing the quantitative evaluation function is required.
- the present invention has been made to solve the above-mentioned problems, and an embodiment of the present invention proposes an eddy current testing apparatus for measuring the amplitude and phase difference distribution of an eddy current in real time.
- an eddy current inspection apparatus for non-destructive inspection includes: a bobbin type coil inserted into a test piece to be inspected of the nondestructive inspection and applying an induced current to the inner wall of the test piece; A reference coil inserted into the defect-free test piece, which is a reference of the test piece, for applying an induced current to the inner wall of the defect-free test piece; A cylindrical passive sensor array disposed within the bobbin type coil and including rows and columns; And a control unit for controlling the bipolar coil and the reference coil to apply an AC power to the bobbin type coil and the reference coil to generate a square wave signal having a different phase difference and to control the applied signal and the square wave signal to be first multiplied Wherein the control module switches and applies driving power so that arrays in the arcuate direction are successively selected from a plurality of columns of the cylindrical passive sensor array, and a square wave having a different phase difference generated in the applied signal And a defect of the test
- an eddy current inspecting apparatus for non-destructive inspection, comprising: a bobbin type coil inserted in a test specimen to be inspected for the nondestructive inspection to apply an induction current to the inner wall of the specimen; A cylindrical passive sensor array disposed within the bobbin type coil and including rows and columns; And a control module for selecting one or more frequencies among multiple frequencies and applying AC power to the bobbin type coil, generating a square wave signal having a different phase difference, and controlling the applied signal and the square wave signal to be first multiplied Wherein the control module switches and applies driving power so that rows in the circumferential direction are successively selected from a plurality of columns of the cylindrical passive sensor array so that the square wave having the different phase difference generated in the applied signal is multiplied by a second time And a defect of the test piece can be detected based on the first multiplied signal and the second multiplied signal using a distribution of the amplitude and phase difference of the signal.
- an eddy current inspecting apparatus for non-destructive inspection, comprising: a bobbin type coil inserted in a test specimen to be inspected for the nondestructive inspection to apply an induction current to the inner wall of the specimen; A reference coil inserted into the defect-free test piece, which is a reference of the test piece, for applying an induced current to the inner wall of the defect-free test piece; An annular passive sensor array disposed within said bobbin type coil and consisting of one row; And a control unit for controlling the bipolar coil and the reference coil to apply an AC power to the bobbin type coil and the reference coil to generate a square wave signal having a different phase difference and to control the applied signal and the square wave signal to be first multiplied Wherein the control module applies driving power to the annular passive sensor array and controls the applied signal to be a second multiplication of a square wave having a different phase difference generated by the applied signal,
- the defect of the test piece can be detected using the distribution of the amplitude
- the above eddy current inspection apparatus further includes an encoder device, wherein the encoder device includes: a support temporarily joined to a tube adjacent to the test piece to be inspected of the nondestructive inspection; A brake for controlling a moving speed of the probe when a probe of the eddy current testing apparatus is inserted or drawn into the test piece and a predetermined condition is satisfied; And an encoder for outputting a signal corresponding to the position of the probe inside the test piece when the probe is inserted or extracted into the test piece.
- the encoder device may decelerate the speed of movement of the probe through the brake when the probe is inserted or withdrawn into the test piece faster than a predetermined speed.
- phase difference of the rectangular wave having the different phase difference may be 90 degrees.
- the eddy current inspection apparatus described above further includes a display, wherein the control module can quantitatively display, on the display, the amplitude and phase difference of the signal for each defective portion based on the selected one or more frequencies.
- control module determines the amplification ratio of the AC amplification circuit and the DC amplification circuit, switches the driving power to the rows and columns included in the cylindrical passive sensor arrangement, applies the analog signal to the digital signal, Can be driven.
- an eddy current inspecting apparatus which is not a rotating body structure but which is simple and mechanically excellent in durability can be provided.
- the eddy current inspecting apparatus it is possible to visually display the amplitude and phase difference distribution of the eddy current in real time which is not realized in the conventional equipment.
- defects in the small diameter heat exchanger heat transfer pipe can be automatically detected.
- the position, shape, size, etc. of defects can be automatically evaluated.
- the distortion distribution of the electromagnetic field due to the presence of defects can be quantitatively measured as compared with the conventional bobbin eddy current probe, and corrosion, wear and cracks can be discriminated and quantitatively evaluated .
- the eddy current inspecting apparatus it is possible to quantitatively measure the distortion distribution of the electromagnetic field at a high speed, despite the structure not including the rotating body, as compared with the conventional rotary eddy current transducer, and the corrosion, Can be discriminated, quantitatively evaluated and excellent durability can be provided.
- the eddy current inspecting apparatus it is possible to quantitatively measure the distortion distribution of the electromagnetic field at a high speed and to detect corrosion, wear and cracks at a high speed with a low heat generation and a high spatial resolution as compared with the conventional annular eddy current transducer , A quantitative evaluation can be performed.
- the eddy current inspecting apparatus it is possible to quantitatively evaluate the position of the defect, either internally or externally, as compared with the conventional annular magnetic sensor array transducer,
- the distortion distribution can be measured quantitatively, and it is easy to discriminate between corrosion, wear and cracks, and can be evaluated quantitatively.
- the eddy current inspecting apparatus it is possible to quantitatively evaluate the position of a defect, either internally or externally, as compared with a conventional cylindrical magnetic sensor array transducer, and the distortion distribution of the electromagnetic field according to the frequency can be quantitatively measured , Corrosion, wear and cracks can be easily identified and quantitatively evaluated.
- FIG. 1 shows a probe of an eddy current inspecting apparatus inserted into a test piece according to an embodiment of the present invention.
- FIG. 2 is a partially enlarged view of a part of the probe shown in FIG. 1.
- FIG. 2 is a partially enlarged view of a part of the probe shown in FIG. 1.
- Fig. 3 shows a reference coil corresponding to the bobbin type coil shown in Fig.
- FIG. 4 shows a multi-frequency AC power supply circuit according to an embodiment of the present invention.
- FIG. 5 shows a circuit for acquiring an eddy current signal using a bobbin type coil and a reference coil according to an embodiment of the present invention.
- FIG. 6 shows a circuit for acquiring an eddy current signal using a cylindrical Hall sensor arrangement according to an embodiment of the present invention.
- FIG. 7 is a block diagram showing the configuration of an eddy current testing apparatus according to an embodiment of the present invention.
- Figures 8 (a) and 8 (b) show test specimens comprising various defects according to an embodiment of the present invention.
- FIG. 13 is a graph of the RISAS diagram based on the output of the sensor passing the center of the defect in FIGS. 11 and 12 when a frequency of 50 kHz is applied.
- FIG. 14 shows an eddy current inspection apparatus equipped with an encoder device according to an embodiment of the present invention.
- FIG. 1 shows an example in which a transducer 30 of the present eddy current inspection apparatus (FIGS. 7 and 100) is inserted into a test piece 10 (test piece).
- a transducer 30 of the present eddy current inspection apparatus FIGS. 7 and 100
- test piece 10 test piece
- the nondestructive inspection can be performed without destroying the test piece 10 by using ultrasonic waves, eddy currents, etc., defects such as pores and cracks in the test piece 10.
- the eddy current is an induction current induced by an alternating magnetic field applied to the surface of a conductor.
- the eddy current testing apparatus measures the eddy current induced in the test piece 10 to perform a nondestructive inspection.
- a probe 30 called a probe corresponds to a search unit for performing a nondestructive inspection.
- a heat transfer tube for transferring heat of a fluid used in a heat exchanger of a nuclear power plant is described as an example of a test piece 10, but various objects that are objects of nondestructive inspection are used as a test piece 10 .
- the transducer 30 may be formed in a cylindrical shape and the transducer 30 may include a transducer mechanism 33, a bobbin type coil 110 wound around the transducer mechanism 33, a bobbin type coil 110 disposed inside the bobbin type coil 110 And may include a cylindrical type Hall sensor array 120 as shown in FIG.
- the probe mechanism 33 can be configured in various shapes. When the probe 30 is inserted into the test piece 10, the probe 30 senses an obstacle and transmits it to the control module 115 (FIG. 7).
- FIG. 2 is an enlarged view.
- the test piece 10 may include a defective portion 13.
- the defective portion 13 may be caused by corrosion, abrasion, cracks, or the like, and may be caused by a defective volume property.
- the eddy current testing apparatus 100 has been proposed in order to accurately detect the defective portion 13 and the eddy current testing apparatus 100 can be manufactured by using the bobbin type coil 110 and the cylindrical hole sensor array 120, The region 13 can be accurately detected.
- the bobbin type coil 110 is a wide bobbin type coil having a radius r and can be inserted into a small-diameter pipe test piece 10 made of a metal. Although the test piece 10 is described as a small-diameter small-diameter test piece, the test piece 10 may have a large diameter and a medium diameter.
- the AC voltage of the following formula (1) may be applied to the bobbin type coil 110.
- the eddy current testing apparatus (FIGS. 7 and 100) can apply the alternating voltage of multiple frequencies to the bobbin type coil 110.
- the eddy current testing apparatus 100 can apply a frequency of 30 KHz to the bobbin type coil 110, apply a frequency of 50 KHz to the bobbin type coil 110, but the embodiment is not limited thereto.
- a separate multi-frequency ac power application circuit may be included to apply multiple frequencies. When multiple frequencies are applied, the defect detection accuracy can be increased.
- an induction current may flow in the inner diameter of the test piece 10. If the resistance and inductance of the bobbin type coil 110 are R and L, respectively, in the radial direction r, the circular direction?, And the axial direction z as the cylindrical coordinate system, the exciting current is derived as shown in the following equation .
- the excitation current of the bobbin type coil 110 generates a magnetic flux in the z-axis direction as shown in Equation (3).
- Equation (4) If there is no defect in the test piece 10, an induction current of Equation (4) occurs along the direction of the ⁇ of the test piece 10 in the direction opposite to the bobbin type coil 110. In addition, such an induced current generates a magnetic flux as shown in Equation (5) in the -z direction. Where d is the thickness of the specimen (10, specimen).
- the magnetic flux of Equation (6) can be applied to the bobbin type coil 110.
- the cylindrical Hall sensor array 120 may be disposed inside the bobbin type coil 110.
- a plurality of Hall sensors can be arranged in a row and a column along a cylindrical shape. Further, when the heat exchanger heat transfer tube has a shape of a curved tube portion and the total length of the sensor is to be shortened, the heat exchanger tube can be arranged in a single row and arranged in an annular shape.
- the cylindrical hall sensor array 120 is fixed without rotating, and the durability of the eddy current testing apparatus is improved.
- a plurality of Hall sensors can be used to measure the distortion of a time-varying magnetic field with a semiconductor-based passive magnetic sensor configured in an annular or cylinder shape. Accordingly, the plurality of Hall sensors can measure the intensity of the time-varying magnetic field as well as the presence of defects in the test piece 10. [ This is smaller than the case of using an active type coil sensor, and there is no interference between the sensors, so that spatial resolution is high and there is no need to drive the sensor at an intersection. Also, in implementation, the plurality of hall sensors may be replaced by giant magnetoresistance (GMR) sensors.
- GMR giant magnetoresistance
- FIG. 3 shows a reference coil 110r corresponding to the bobbin type coil 110 shown in FIG.
- the test piece 20 shown in Fig. 3 is a defect-free test piece 20.
- the defect-free test piece 20 is the same material as the test piece 10 and is a reference of the test piece 10 and is free from defects.
- the reference coil 110r may be disposed inside the defect-free test piece 20. [ The magnetic flux according to Equation (7) can be applied to the reference coil 110r.
- FIG. 4 shows a multi-frequency AC power supply circuit according to an embodiment of the present invention.
- the output of the reference coil 110r interpolated into the bobbin type coil 110 and the defectless test piece 20 interpolated in the measurement test piece 10 can be differentially connected as shown in Fig. Specifically, the bobbin type coil 110 is disposed at one end of the bridge circuit of the multi-frequency AC power source application unit 107, and the reference coil 110r is disposed at the other end thereof.
- the multi-frequency AC power applying unit 107 can be applied with AC power at a selected frequency among a plurality of frequencies under the control of a control module 115, which will be described later.
- the output signal can be expressed as shown in the following equation (8) using the following equations (6) have.
- reference represents a reference coil 110r
- specimen represents a bobbin type coil 110.
- Equation 8 If there is no defect in the test piece 10, the output current according to? In [Equation 8] is zero. However, when there is a defect in the test piece 10,? Is not 0, and the impedance and the phase difference expressed by Equations (9) and (10) change depending on the position and size of the defect.
- the output current may be derived using Equation (9) and Equation (10) as Equation (11) below.
- crack indicates a defect.
- FIG. 5 shows a circuit for acquiring an eddy current signal using the bobbin type coil 110 and the reference coil 110r according to an embodiment of the present invention.
- the reference coil 110r may be omitted from the circuit, and the defect-free test piece 20 may be omitted.
- the eddy current testing apparatus 100 may amplify the differential signal line between the bobbin type coil 110 and the reference coil 110r to a sufficient signal level by connecting the differential signal line to the coil amplifier output AC amplifying circuit 130.
- the eddy current inspection apparatus 100 can branch the amplified signal level by the coil sensor output branch circuit 135.
- the eddy current testing apparatus 100 multiplies each of the branch signals by the signal 105a of the phase delay square wave circuit 105 by using the coil sensor output multiplying circuit 140, Can be derived from the following equations (12) and (13).
- the phase-delayed square wave circuit 105 can provide a signal having a phase difference of 90 degrees to the coil sensor output multiplication circuit 140.
- the eddy current testing apparatus 100 can integrate each of the multiplied signals by an integration circuit 145 for coil sensor output.
- the eddy current testing apparatus 100 may express a signal as a real part and an imaginary part of a complex plane in performing a signal operation of the bobbin type coil 110 using the control module 115.
- Equation (12) and (13) are squared and then the square root operation is performed, a difference in impedance as shown in the following Equation (14) can be derived. If there is a defect in the test piece 10, the impedance of the induced current is increased.
- the phase difference as shown in the following equation (15) can be derived. It can be detected based on the phase difference whether a defect has occurred in the inner diameter (ID), outer diameter (OD) or outer diameter (OD) of the test piece 10.
- the eddy current testing apparatus 100 can detect the position of the test piece 10 where the defect is generated based on the difference in impedance and the phase difference.
- FIG. 6 shows a circuit for acquiring an eddy current signal using the cylindrical Hall sensor array 120 according to an embodiment of the present invention.
- the eddy current testing apparatus 100 can acquire a signal using the cylindrical hall sensor array 120.
- an alternating magnetic field refers to a magnetic field whose intensity increases or decreases in positive or negative direction with time and does not change its direction.
- the eddy current testing apparatus 100 operates the magnetic sensor driving power supply switching circuit 190 so that one row 120-1 to 120-4 (in the? Direction) of the cylindrical hall sensor array 120 Respectively.
- the cylindrical hall sensor array 120 may include more columns than the four columns 120-1 to 120-4 shown in FIG. 6, and when the total length of the sensor is to be shortened, And can be arranged in an annular shape.
- the eddy current testing apparatus 100 connects the signal lines of the respective sensor arrays in the z direction to the parallel AC amplifier circuit 160 for magnetic sensor output, amplifies the signals to a sufficient signal level, 165).
- the eddy current testing apparatus 100 may multiply the square wave signal 105a and the branch signal of the phase delay square wave circuit 105 by using the respective branch signals by the magnetic sensor output multiplying circuit 170. [ Accordingly, the eddy current testing apparatus 100 can measure the amplitude and the phase difference of the alternating magnetic field in the r direction due to the presence of defects as in the above-described [Expressions 12 to 15]. At this time, the respective amplitudes and phase differences can be calculated in software by the annular array magnetic sensor signal arithmetic operation unit 115b2, and can also be calculated in hardware at the time of implementation.
- Fig. 6 it can be evaluated whether the defects of the test piece 10 are defective or defective, so that the risk of leakage due to rupture of the heat transfer pipe during the normal output operation of the power plant can be solved.
- the cylindrical hall sensor array 120 is inserted and stopped, the distribution of the time-varying magnetic field can be measured without mechanical rotation, thereby preventing deterioration of the equipment.
- defect detection and evaluation speed can be accelerated by electronic scanning.
- the cylindrical hole sensor array 120 is formed of a plurality of columns and each column is annular, only one column is selected, and the defect is scanned in the axial direction, so that it can be used for the determination of defect existence and quantitative evaluation at a high speed.
- the hall sensor itself is not an active coil sensor and is small in size, mutual interference of sensors is not a problem, cost can be reduced, and spatial resolution is excellent.
- the scan can be performed only in a part of the axial direction of the test piece 10, and if the observer's magnetic field due to the defect is distorted, the presence or absence of the defect, the shape and size of the defect, etc. can be quantitatively accurately evaluated. Further, since it is possible to detect defects using multiple frequencies, an excellent effect can be obtained in quantitative evaluation of defects.
- the eddy current inspection apparatus 100 can provide both defect detection based on the coils 110 and 110r sensing and defect detection using the cylindrical hole sensor array 120.
- the eddy current testing apparatus 100 may include a multi-frequency AC power applying unit 107 for applying multiple frequencies.
- the control module 115 of the eddy current testing apparatus 100 may control the multiple frequency AC power applying unit 107 to apply a plurality of frequencies.
- the eddy current testing apparatus 100 applies a signal output from the coil sensor output AC amplifier circuit 130 and the coil sensor output branch circuit 135 to the applied AC current and a square wave signal having a phase difference of 90 degrees from the phase delay square wave circuit 105 May be multiplied by the coil sensor output multiplication circuit (140).
- the multiplied signal can be converted into a digital signal by the AD conversion circuit 155 via the coil sensor output integration circuit 145 and the coil sensor output DC amplification circuit 150.
- the bobbin type coil sensor signal operating unit 115b1 of the control module 115 can calculate the amplitude and the phase difference according to the presence / absence of the defect and the position by combining the two signals output from the coil amplifier sensor output DC amplification circuit 150.
- the eddy current testing apparatus 100 includes a magnetic sensor driving power source switching unit 120 for selectively applying driving power to the columns 120-1, 120-2, 120-3, and 120-4 of the cylindrical Hall sensor array 120, Power can be sequentially applied in the axial direction through the circuit 190. [ In the implementation, it is not limited to the axial direction, but power may be sequentially applied back and forth with respect to a defect detection region.
- the eddy current inspection apparatus 100 can control so that the applied signal is outputted through the AC amplifier circuit 160 for magnetic sensor output and the parallel type branch circuit 165 for magnetic sensor output.
- the signal output from the branch circuit 165 can be multiplied by the square wave signal of the phase delay square wave circuit 105 and the multiplier circuit 170 for magnetic sensor output.
- the square wave signal may be a rectangular wave signal used in the coil sensors 110 and 110r and has a phase difference of 90 degrees. Only the signal required by the phase difference can be easily extracted.
- the multiplied signal can be converted into a digital signal by the AD conversion circuit 155 via the magnetic sensor output integration circuit 175, the magnetic sensor output DC amplification circuit 180, and the like.
- the annular array type magnetic sensor signal calculator 115b2 of the control module 115 combines signals corresponding to twice the number of column direction sensors output from the magnetic sensor output DC amplifier circuit 180, The distribution of the amplitude and the phase difference can be calculated.
- the bobbin type coil sensor signal computing unit 115b1 and the annular array type magnetic sensor signal computing unit 115b2 are respectively connected to a coil sensor output integrating circuit 145 for amplifying two integral signals, A DC amplifier circuit 180 for magnetic sensor output for amplifying two integrated signals per sensor output through the circuit 150 and the integration circuit 175 for magnetic sensor output, 180 and the analog signal output from the coil amplifier sensor output DC amplifying circuit 150 to an AD conversion circuit 155 for converting the analog signal into a digital signal.
- the cylinder array type magnetic sensor signal calculator 115b3 sequentially selects each column of the cylindrical Hall sensor array 120 in the arcuate direction while selecting a specific frequency of the multiple frequency AC power source 107, A signal corresponding to twice the number of the column direction sensors output from the magnetic sensor output DC amplifying circuit 180 may be combined to calculate the distribution of amplitudes and phase differences depending on the presence or absence of the defect and the position.
- the control module 115 controls the frequency selection of the multi-frequency ac power application unit 107, the amplification ratio conversion of the coil amplification circuit 130 for the coil sensor output and the amplification circuit 150 for the coil sensor output, Conversion of the magnetic sensor output AC amplification circuit 160 and the DC amplification circuit 180, the drive of the AD conversion circuit 155, the bobbin type coil sensor signal calculation unit 115b1, the annular array type magnetic sensor The signal calculation unit 115b2, and the cylinder arrangement type magnetic sensor signal calculation unit 115b3.
- Figures 8 (a) and 8 (b) show test specimens comprising various defects according to an embodiment of the present invention.
- the total length of the test piece 10 is 500 mm, and various defects are exhibited. In addition, there is no defect of the test piece 10 in the case of the defect-free test piece 20 apart from the test piece 10.
- the outer wall (OD) is 15.87
- the circumferential inner diameter (ID) is 13.33
- the thickness is 1.27
- the material is SS304.
- the TSP tube support plate
- the TSP may be made of carbon steel, but the dimensions of the test piece 10 may vary in various ways during implementation.
- FIG. 8 (b) A table corresponding to the defect for each point in Fig. 8 (a) is shown in Fig. 8 (b).
- a flat bottomed hole is a flat bottom hole, and a through wall hole (TWH) is a through hole.
- TSP tube support plate
- FBH 40 ⁇ 100% shows defects whose diameters and depths are different from each other.
- the eight three-dimensional graphs in total, eight in total, four in the top and bottom, show the distribution of the amplitude of the time-varying magnetic field that can be obtained when the cylindrical Hall sensor array 120 is placed at the central position of the defect, . That is, it is possible to measure the amplitude distribution in a specific region without the mechanical driving necessarily accompanied by the conventional technique.
- Fig. 10 shows the distribution of the phase difference of the time-varying magnetic field measured under the same conditions as those in Fig. 9, but the results of FBH 20% -4 are clearly different. That is, the sensor probe does not maintain a constant lift-off (distance between the sensor and the measurement surface) on the inner wall of the pipe, and when the sensor probe is shifted to one side, the intensity of the amplitude changes as shown in FIG. 9, It is difficult to distinguish whether the off is large. However, as shown in Fig. 10, since the phase difference distribution is not largely affected by the lift-off, it exhibits the same phase difference distribution in defects of the same size.
- the frequency is high, penetration depth of the eddy current becomes shallow. That is, the defect near the sensor is easy to measure, but the output from the defect at the position far from the sensor is small.
- This principle can distinguish TSP signals.
- the TSP signal is very large, indicating a larger signal than a defect of ID groove 10% and OD groove 20%.
- a high frequency such as 50 kHz
- the induced current is concentrated only on the surface of the test piece 110 and does not reach the TSP located outside the test piece. That is, when using multiple frequencies such as a method of simultaneously comparing signals of 30 kHz and 50 kHz, it is possible to distinguish between TSP and groove.
- the conventional technique in order to measure the distribution of the time-varying magnetic field while inputting a plurality of frequencies, a first method of scanning multiple times while changing frequencies, and a first method of alternately performing multiple scans
- the second method must be used.
- the inspection time increases to the number of times of the frequency, so that it takes twice or more time to input two frequencies and eight times or more to input eight frequencies.
- the second method complicates the signal processing circuit and becomes expensive.
- a time-varying magnetic field distribution can be observed in real time in the corresponding region. That is, it is only necessary to change the input frequency.
- FIG. 13 is a graph of the RISAS diagram based on the output of the sensor passing the center of the defect in FIGS. 11 and 12 when a frequency of 50 kHz is applied.
- the lithography is used to identify the presence and location of defects, and the curved pattern represents each defect. And, the curved pattern rotates counterclockwise as the depth of the coordinate defect deepens from 20% to 100%. The position and magnitude of the defect can be determined through this rotational direction and degree. That is, it can be determined whether the defect is inside or outside the test piece 10.
- FIG 14 shows an eddy current testing apparatus 100 equipped with an encoder device 200 according to an embodiment of the present invention.
- the encoder device 200 can penetrate the probe 30.
- the encoder device 200 is provided with an openable and closable area 225 so that the probe 30 can be easily inserted and inserted.
- the encoder device 200 may include a plurality of supports 210a and 210b. Each of the plurality of supports 210a and 210b may be coupled to a pipe (tube) adjacent to the test piece 10, respectively. Accordingly, the non-destructive inspection can be performed more stably.
- the encoder device 200 may include a display unit 240 indicating the presence / absence, position, and size of defects.
- the encoder 220 can calculate the position and velocity in the test piece 10 when the probe 30 (probe) is inserted into and withdrawn from the test piece 10.
- the brake (not shown) of the encoder device 200 can control the speed of the probe 30 when the probe 30 is inserted or withdrawn from the test piece 10. Specifically, the encoder device 200 can reduce the speed of the probe 30 when the probe 30 is moved in the test piece 10 faster than a predetermined speed. Accordingly, when defect detection is performed manually, the operating speed of the eddy current testing apparatus 100 can be kept constant.
- the encoder device 200 can collect a signal corresponding to the position of the probe 30 through the encoder.
- the encoder device 200 can transmit the collected position information to the eddy current testing device 100 and display it on the display 117 by the eddy current testing device 100.
- the eddy-current testing apparatus 100 may further include a signal transmission cable so as to apply power and transmit an output signal.
- the present invention can be applied to a system in which a computer- It is possible to implement it as a code.
- the computer readable medium includes all kinds of recording devices in which data that can be read by a computer system is stored. Examples of the computer readable medium include a hard disk drive (HDD), a solid state disk (SSD), a silicon disk drive (SDD), a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk, , And may also be implemented in the form of a carrier wave (e.g., transmission over the Internet).
- the computer may also include a control module 400 of the system 1000 for providing content.
Landscapes
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
비파괴 검사를 위한 와전류 검사 장치가 개시된다. 본 장치는 비파괴 검사의 검사 대상인 시험편의 내부에 삽입되어 시험편의 내벽에 유도전류를 인가하기 위한 보빈형 코일, 시험편의 레퍼런스인 무결함 시험편의 내부에 삽입되어 무결함 시험편의 내벽에 유도 전류를 인가하기 위한 참조 코일, 보빈형 코일의 내부에 배치되되, 행과 열을 포함하는 원통형 수동 센서 배열 및 다중 주파수 중 하나 이상의 주파수를 선택하여 보빈형 코일 및 참조 코일에 교류 전원을 인가하고, 위상차를 달리하는 구형파 신호를 생성하며, 인가된 신호 및 상기 구형파 신호가 제1 승산되도록 제어하는 제어 모듈을 포함한다. 이에 따라 결함 검출이 정확하게 수행될 수 있다.
Description
본 개시는 비파괴 검사를 위한 와전류 검사 장치에 관한 것이다.
발전소에 구비된 열교환기는 유체의 열을 전열관(heat trasfer tube)의 전열면을 통해 열전달을 일으켜 가열, 냉각, 응축 등의 기능을 수행한다. 고온, 고압, 진동, 수화학 환경 하에서 장시간 활용한 열교환기 전열관 튜브는 부식, 점식, 침식, 공식, 마모, 감육, 피로균열, SCC(stress corrosion cracking), IASCC(irradiation assisted stress corrosion cracking) 등의 손상을 입을 수 있다. 이러한 손상에 기인하여 열교환기 본연의 기능을 수행하지 못할 경우, 발전소 정상운전에 지장을 초래할 수 있다. 따라서, 열교환기 전열관의 건전성 확인을 위한 비파괴검사가 발전소 계획, 예방, 및 정비 기간 동안 주기적으로 수행되고 있다. 이를 위한 와전류검사용 탐촉자(probe)가 전열관 내부에 삽입되어 비파괴검사가 수행될 수 있다.
다만, 종래기술의 경우 보빈형 탐촉자, 환형배열 탐촉자, 회전형 탐촉자 등을 이용하여 비파괴 검사가 수행되었다. 그러나, 종래기술에 비해 검사속도, 결함탐상능력 및 내구성이 보다 향상되고, 정량평가 기능을 수행하는 비파괴검사 기기의 대두가 요청된다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 일 실시 예는 와전류의 진폭과 위상차의 분포를 실시간으로 측정하는 와전류 검사 장치를 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기한 과제를 실현하기 위한 본 발명의 일 실시 예와 관련된 비파괴 검사를 위한 와전류 검사 장치는 상기 비파괴 검사의 검사 대상인 시험편의 내부에 삽입되어 상기 시험편의 내벽에 유도전류를 인가하기 위한 보빈형 코일; 상기 시험편의 레퍼런스인 무결함 시험편의 내부에 삽입되어 상기 무결함 시험편의 내벽에 유도 전류를 인가하기 위한 참조 코일; 상기 보빈형 코일의 내부에 배치되되, 행과 열을 포함하는 원통형 수동 센서 배열; 및 다중 주파수 중 하나 이상의 주파수를 선택하여 상기 보빈형 코일 및 상기 참조 코일에 교류 전원을 인가하고, 위상차를 달리하는 구형파 신호를 생성하며, 인가된 신호 및 상기 구형파 신호가 제1 승산되도록 제어하는 제어 모듈;을 포함하며, 상기 제어 모듈은 상기 원통형 수동 센서 배열의 복수의 열 중에서 원호 방향의 열이 순차적으로 선택되도록 구동 전원을 스위칭하여 인가하고, 인가된 신호에 생성된 상기 위상차를 달리하는 구형파가 제2 승산되도록 제어하며, 상기 제1 승산된 신호 및 상기 제2 승산된 신호에 기초하되, 신호의 진폭 및 위상차의 분포를 이용하여 상기 시험편의 결함을 검출할 수 있다.
상기한 과제를 실현하기 위한 본 발명의 다른 실시 예와 관련된 비파괴 검사를 위한 와전류 검사 장치는 상기 비파괴 검사의 검사 대상인 시험편의 내부에 삽입되어 상기 시험편의 내벽에 유도전류를 인가하기 위한 보빈형 코일; 상기 보빈형 코일의 내부에 배치되되, 행과 열을 포함하는 원통형 수동 센서 배열; 및 다중 주파수 중 하나 이상의 주파수를 선택하여 상기 보빈형 코일에 교류 전원을 인가하고, 위상차를 달리하는 구형파 신호를 생성하며, 인가된 신호 및 상기 구형파 신호가 제1 승산되도록 제어하는 제어 모듈;을 포함하며, 상기 제어 모듈은 상기 원통형 수동 센서 배열의 복수의 열 중에서 원호 방향의 열이 순차적으로 선택되도록 구동 전원을 스위칭하여 인가하고, 인가된 신호에 생성된 상기 위상차를 달리하는 구형파가 제2 승산되도록 제어하며, 상기 제1 승산된 신호 및 상기 제2 승산된 신호에 기초하되, 신호의 진폭 및 위상차의 분포를 이용하여 상기 시험편의 결함을 검출할 수 있다.
상기한 과제를 실현하기 위한 본 발명의 다른 실시 예와 관련된 비파괴 검사를 위한 와전류 검사 장치는 상기 비파괴 검사의 검사 대상인 시험편의 내부에 삽입되어 상기 시험편의 내벽에 유도전류를 인가하기 위한 보빈형 코일; 상기 시험편의 레퍼런스인 무결함 시험편의 내부에 삽입되어 상기 무결함 시험편의 내벽에 유도 전류를 인가하기 위한 참조 코일; 상기 보빈형 코일의 내부에 배치되되, 하나의 열로 구성되는 환형 수동 센서 배열; 및 다중 주파수 중 하나 이상의 주파수를 선택하여 상기 보빈형 코일 및 상기 참조 코일에 교류 전원을 인가하고, 위상차를 달리하는 구형파 신호를 생성하며, 인가된 신호 및 상기 구형파 신호가 제1 승산되도록 제어하는 제어 모듈;을 포함하며, 상기 제어 모듈은 상기 환형 수동 센서 배열에 구동 전원을 인가하고, 인가된 신호에 생성된 상기 위상차를 달리하는 구형파가 제2 승산되도록 제어하며, 상기 제1 승산된 신호 및 상기 제2 승산된 신호에 기초하되, 신호의 진폭 및 위상차의 분포를 이용하여 상기 시험편의 결함을 검출할 수 있다.
상술한 와전류 검사 장치는 엔코더 장치를 더 포함하며, 상기 엔코더 장치는, 상기 비파괴 검사의 검사 대상인 시험편과 인접한 튜브에 임시로 결합되는 지지부; 상기 와전류 검사 장치의 프루브(probe)가 상기 시험편에 삽입 또는 인출되는 경우, 소정의 조건이 만족되는 경우 상기 프루브의 이동 속도를 제어하는 브레이크; 및 상기 프루브가 상기 시험편에 삽입 또는 인출되는 경우, 상기 시험편 내부의 상기 탐침부의 위치에 대응되는 신호를 출력하는 엔코더를 포함할 수 있다.
보다 구체적으로, 상기 엔코더 장치는 상기 프루브가 기 설정된 속도보다 더 빠르게 상기 시험편에 삽입 또는 인출되는 경우, 상기 프루브의 이동 속도를 상기 브레이크를 통해 감속시킬 수 있다.
보다 구체적으로, 상기 위상차를 달리하는 구형파의 위상차는 90도일 수 있다.
보다 구체적으로, 상술한 와전류 검사 장치는 디스플레이;를 더 포함하며, 상기 제어 모듈은, 선택된 하나 이상의 주파수에 기초하여 결함 부위 별로 상기 신호의 진폭 및 위상차를 상기 디스플레이에 정량적으로 표시할 수 있다.
보다 구체적으로, 상기 제어 모듈은 교류증폭회로 및 직류증폭회로의 증폭비를 결정하고, 원통형 수동 센서 배열에 포함된 행과 열에 구동 전원을 스위칭하여 인가하며, 아날로그 신호를 디지털 신호로 변환하는 회로를 구동할 수 있다.
본 발명의 다양한 실시예에 따르면 아래와 같은 효과가 도출될 수 있다.
우선, 회전체 구조가 아니라서 간단하면서, 기계적으로 내구성이 우수한 와전류 검사 장치가 제공될 수 있다.
또한, 상기 와전류 검사 장치가 제공됨으로써, 종래의 장비에서는 구현되지 못하였던 실시간으로 와전류의 진폭 및 위상차의 분포를 시각적으로 표시할 수 있다.
또한, 상기 와전류 검사 장치가 제공됨으로써, 보빈형 탐촉자, 회전형 탐촉자, 환형배열 탐촉자 등의 장점들이 모두 구현될 수 있다.
또한, 상기 와전류 검사 장치가 제공됨으로써, 소구경 열교환기 전열관의 결함이 자동으로 검출될 수 있다.
또한, 상기 와전류 검사 장치가 제공됨으로써, 결함의 위치, 형상, 크기 등이 자동으로 평가될 수 있다.
또한, 상기 와전류 검사 장치가 제공됨으로써, 종래의 보빈형 와전류 탐촉자에 비하여, 결함의 존재에 기인한 전자기장의 왜곡 분포가 정량적으로 측정될 수 있으며, 부식, 마모, 균열이 판별될 수 있으며 정량적으로 평가될 수 있다.
또한, 상기 와전류 검사 장치가 제공됨으로써, 종래의 회전형 와전류 탐촉자에 비하여, 회전체를 포함하지 않는 구조임에도 불구하고, 고속으로 전자기장의 왜곡 분포가 정량적으로 측정될 수 있으며, 부식, 마모, 균열이 판별될 수 있고, 정량적으로 평가될 수 있으며 우수한 내구성이 제공될 수 있다.
또한, 상기 와전류 검사 장치가 제공됨으로써 종래의 환형배열 와전류 탐촉자에 비하여 발열이 적으면서 공간분해능이 높으며, 고속으로 전자기장의 왜곡 분포가 정량적으로 측정될 수 있으며, 부식, 마모, 균열의 판별이 용이하며, 정량 평가가 수행될 수 있다.
또한, 상기 와전류 검사 장치가 제공됨으로써, 종래의 환형 자기센서배열 탐촉자에 비하여, 결함의 위치가 내부인지 외부인지 정량적으로 평가될 수 있고, 축방향으로 상기 장치가 이동하지 않은 상태에서도 고속으로 전자기장의 왜곡 분포가 정량적으로 측정될 수 있으며, 부식, 마모, 균열의 판별이 용이하며, 정량적으로 평가될 수 있다.
마지막으로, 상기 와전류 검사 장치가 제공됨으로써 종래의 실린더형 자기센서배열 탐촉자에 비하여, 결함의 위치가 내부인지 외부인지 정량적으로 평가될 수 있고, 주파수에 따른 전자기장의 왜곡 분포가 정량적으로 측정될 수 있으며, 부식, 마모, 균열의 판별이 용이하고, 정량적으로 평가될 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시 예에 따른 시험편에 삽입된 와전류 검사 장치의 탐촉자를 나타낸다.
도 2는 도 1에 도시된 탐촉자의 일부분을 구체적으로 확대한 도면이다.
도 3은 도 2에 도시된 보빈형 코일에 대응되는 참조 코일을 나타낸다.
도 4는 본 발명의 일 실시 예에 따른 다중 주파수 교류전원 인가회로를 나타낸다.
도 5는 본 발명의 일 실시 예에 따른 보빈형 코일 및 참조 코일을 이용하여 와전류의 신호를 취득하기 위한 회로를 나타낸다.
도 6은 본 발명의 일 실시 예에 따른 원통형 홀센서 배열을 이용하여 와전류의 신호를 취득하기 위한 회로를 나타낸다.
도 7은 본 발명의 일 실시 예에 따른 와전류 검사 장치의 구성을 나타낸는 블록도이다.
도 8(a) 및 도 8(b)는 본 발명의 일 실시 예에 따른 다양한 결함을 포함한 시험편을 나타낸다.
도 9 내지 도 12는 도 8에 도시된 시험편을 이용하여, 다중 주파수에 따른 진폭 분포 및 위상차 분포를 나타낸다.
도 13은 50kHz의 주파수를 인가하였을 때, 도 11과 도 12에서 결함의 중심을 지나는 센서의 출력을 바탕으로 도시한 리사주선도이다.
도 14는 본 발명의 일 실시 예에 따른 엔코더 장치를 탑재한 와전류 검사 장치를 나타낸다.
이상에서 살펴본 바와 같이 본 발명은 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
이하 첨부된 도면들을 참조하여 본 발명의 다양한 실시 예를 보다 상세하게 설명한다. 다만, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 상세한 설명은 생략한다.
도 1은 본 와전류 검사 장치(도 7, 100)의 탐촉자(30)가 시험편(10, test piece)에 삽입된 예를 나타낸다. 이하의 설명시 도 7의 도면부호를 함께 차용하기로 한다.
비파괴 검사는 초음파, 와전류 등을 이용하여 시험편(10) 내부의 기공이나 균열 등의 결함 등을 시험편(10)을 파괴하지 않고 검사할 수 있다. 와전류(Eddy Current)란 도체표면에 가해지는 교류 자기장에 의한 유도전류이며, 와전류 검사 장치는 시험편(10)에 유도된 와전류를 측정하여 비파괴검사를 수행하는 장치이다. 또한, 프루브(probe)라고 불리는 탐촉자(30)는 비파괴검사를 수행하기 위한 검색 유닛(search unit)에 해당된다.
본 명세서에서는 원자력 발전소의 열교환기에 사용되는 유체의 열을 전달하는 전열관(heat trasfer tube)을 시험편(10)의 예로 들어 설명하나, 구현시에는 비파괴 검사의 대상인 다양한 오브젝트가 시험편(10)으로 이용될 수 있다.
탐촉자(30)는 원통형으로 구성될 수 있으며, 상기 탐촉자(30)는 탐촉자 기구(33), 상기 탐촉자 기구(33)에 감긴 보빈형 코일(110), 상기 보빈형 코일(110)의 내부에 배치된 실린더형 홀센서 배열(120)을 포함할 수 있다. 탐촉자 기구(33)는 다양한 모양으로 구성될 수 있다. 탐촉자(30)는 시험편(10)에 삽입될 때 장애물이 있는 경우 이를 감지하여 제어 모듈(도 7의 115)에 전달할 수 있다.
이하에서는 도 1에 도시된 탐촉자(30)의 특정 부분(u)을 확대한 도 2를 참고하여 보다 구체적으로 설명하기로 한다.
도 2에 따르면, 시험편(10)은 결함부위(13)를 포함할 수 있다. 결함부위(13)는 부식, 마모, 균열 등에 의해 생길 수 있고, 체적성 결함에 의해 발생될 수 있다.
상기 결함부위(13)를 정확하게 탐지하기 위해 상술한 와전류 검사 장치(100)가 제안된 것이고, 상기 와전류 검사 장치(100)는 보빈형 코일(110) 및 원통형 홀센서 배열(120)을 이용하여 결함부위(13)를 정확하게 검출할 수 있다.
보빈형 코일(110)은 반지름 r인 광폭 보빈형 코일로 금속재질의 소구경 배관 시험편(10)의 내부에 삽입될 수 있다. 시험편(10)을 구경이 작은 소구경으로 설명하나, 구현시에는 시험편(10)이 대구경, 중구경을 가질 수 있다.
보빈형 코일(110)에는 아래 [수학식 1]의 교류 전압이 인가될 수 있다.
[수학식 1]
여기서, 주파수는 식 ω=2πf에 의해 도출될 수 있으며, 와전류 검사 장치(도 7, 100)는 다중 주파수의 교류 전압을 보빈형 코일(110)에 인가할 수 있다. 가령, 와전류 검사 장치(100)는 30 KHz의 주파수를 보빈형 코일(110)에 인가할 수 있고, 50 KHz의 주파수를 보빈형 코일(110)에 인가할 수 있으며, 이들의 복합된 주파수를 인가할 수 있으나, 실시 예는 이에 국한되지 않는다. 다중 주파수를 인가하기 위해 별도의 다중 주파수 교류 전원 인가 회로가 포함될 수 있다. 다중 주파수가 인가되는 경우, 결함 검출 정확성이 높아질 수 있다.
이때, 보빈형 코일(110)에 교류전압이 인가되는 경우, 시험편(10) 내벽(inner diameter)에 유도전류의 흐름이 나타날 수 있다. 원통좌표계로서 반지름방향 r, 원호 방향 Φ, 축방향 z라 하고, 보빈형 코일(110)의 저항과 인덕턴스를 각각 R과 L이라고 하면 여자전류(exciting current)는 아래 [수학식 2]와 같이 도출될 수 있다. 또한, 이러한 보빈형 코일(110)의 여자전류는 z축 방향으로 [수학식 3]과 같은 자속을 발생시킨다.
[수학식 2]
[수학식 3]
만약, 시험편(10)에 결함이 없을 때에는 상기 보빈형 코일(110)의 반대방향이면서 시험편(10)의 Φ 방향을 따라 [수학식 4]의 유도전류가 발생한다. 또한, 이러한 유도전류는 -z 방향으로 [수학식 5]와 같은 자속을 발생시킨다. 이때, d는 시험편(10, specimen)의 두께를 나타낸다.
[수학식 4]
[수학식 5]
따라서, 보빈형 코일(110)에는 [수학식 6]의 자속이 인가될 수 있다.
[수학식 6]
한편, 보빈형 코일(110)의 내부에는 원통형 홀센서 배열(120)이 배치될 수 있다. 복수의 홀센서가 원통형 모양을 따라 행과 열을 구성하여 배치될 수 있다. 또한, 열교환기 전열관이 곡관부의 형태를 가져서 센서의 전체 길이가 짧아져야 하는 경우에는 한 개의 열로 구성되어 환형으로 배치될 있다. 상기 원통형 홀센서 배열(120)은 회전하지 않고 고정되어 와전류 검사 장치의 내구성이 우수하게 된다.
시험편(10)의 유도전류가 왜곡되는 경우, 시간적으로 변화하는 자계(시변자계)도 왜곡되게 된다. 복수의 홀센서는 환형 또는 실린더 형태로 구성된 반도체 기반의 수동형 자기센서로 시변자계의 왜곡을 측정할 수 있다. 이에 따라, 복수의 홀센서는 시험편(10)의 결함의 존재 뿐만 아니라 시변자계의 세기를 측정할 수 있다. 이는 능동형 코일센서를 이용하는 경우보다 크기가 작고, 센서 간의 간섭이 없어 공간 분해능을 높을 뿐 아니라, 센서를 교차로 구동시킬 필요가 없다. 또한, 구현시에 상기 복수의 홀센서는 GMR(giant magnetoresistance) 센서로 대체될 수도 있다.
도 3은 도 2에 도시된 보빈형 코일(110)에 대응되는 참조 코일(110r)을 나타낸다.
도 3에 도시된 시험편(20)은 무결함 시험편(20)이다. 무결함 시험편(20)은 시험편(10)과 동일 소재이고 시험편(10)의 레퍼런스이며 결함이 없는 것이 특징이다. 무결함 시험편(20) 내부에 상기 참조 코일(110r)이 배치될 수 있다. 참조코일(110r)에는 아래 수학식 7에 따른 자속이 인가될 수 있다.
[수학식 7]
도 4는 본 발명의 일 실시 예에 따른 다중 주파수 교류전원 인가회로를 나타낸다.
도 4와 같이, 측정 시험편(10)에 내삽된 보빈형 코일(110) 및 무결함 시험편(20)에 내삽된 참조코일(110r)의 출력이 차동으로 연결될 수 있다. 구체적으로, 다중 주파수 교류전원 인가부(107)의 브릿지 회로의 일단에 보빈형 코일(110)이 배치되고, 다른 일단에 참조 코일(110r)이 배치되며 두 개의 저항이 각각 배치될 수 있다.
다중 주파수 교류전원 인가부(107)는 후술할 제어 모듈(115)의 제어에 따라 복수의 주파수 중 선택된 주파수로 교류전원이 인가될 수 있다. 이때, 보빈형 코일(110) 및 참조 코일(110r)의 출력이 차동으로 연결되면, 출력신호는 [수학식 6] 및 [수학식 7]을 이용하여 아래 [수학식 8]과 같이 표현될 수 있다. 여기서, reference는 참조 코일(110r), specimen은 보빈형 코일(110)을 나타낸다.
[수학식 8]
만약, 시험편(10)에 결함이 존재하지 않는 경우에는 [수학식 8]의 Ψ에 의한 출력전류는 0 이다. 하지만, 시험편(10)에 결함이 존재하는 경우에는 Ψ가 0이 아니며, 결함의 위치 및 크기에 따라 [수학식 9]와 [수학식 10]으로 표현되는 임피던스 및 위상차가 변화한다.
[수학식 9]
[수학식 10]
편의상 결함이 있는 경우에 출력되는 전류를 [수학식 9]와 [수학식 10]을 이용하여 아래 [수학식 11]과 같이 도출될 수 있다. 여기서, crack은 결함을 나타낸다.
[수학식 11]
도 5는 본 발명의 일 실시 예에 따른 보빈형 코일(110) 및 참조 코일(110r)을 이용하여 와전류의 신호를 취득하기 위한 회로를 나타낸다. 다만, 구현시에는 상기 참조코일(110r)이 회로에서 생략될 수 있으며, 상기 무결함 시험편(20)도 생략될 수 있다.
와전류 검사 장치(100)는 보빈형 코일(110)과 참조코일(110r)의 차동 신호선을 코일센서 출력용 교류증폭회로(130)에 연결하여 충분한 신호레벨로 증폭할 수 있다. 와전류 검사 장치(100)는 증폭된 신호레벨을 코일센서 출력용 분기회로(135)에 의하여 분기할 수 있다. 또한, 와전류 검사 장치(100)는 각각의 분기신호를 코일센서 출력용 승산회로(140)를 이용하여 위상지연 구형파 회로(105)의 신호(105a)와 승산하는 경우, 상기 [수학식 11]을 아래의 [수학식 12] 및 [수학식 13]으로 도출할 수 있다. 여기서, 위상지연 구형파 회로(105)는 90도의 위상차를 가지는 신호를 코일센서 출력용 승산회로(140)에 제공할 수 있다.
[수학식 12]
[수학식 13]
와전류 검사 장치(100)는 승산된 신호 각각을 코일센서 출력용 적분회로(145)에 의하여 적분할 수 있다. 와전류 검사 장치(100)는 제어 모듈(115)을 이용하여 보빈형 코일(110)의 신호연산을 수행하는데 있어 신호를 복소수 평면의 실수부와 허수부로 표현할 수 있다.
즉, 상기 [수학식 12] 및 [수학식 13]의 각 변을 제곱하여 더한 후 제곱근 연산을 수행한 경우, 아래 [수학식 14]와 같은 임피던스의 차이가 도출될 수 있다. 시험편(10)에 결함이 존재하는 경우, 유도전류의 임피던스가 증가하게 된다.
[수학식 14]
또한, 나눗셈 연산을 수행하는 경우, 아래 [수학식 15]와 같은 위상차가 도출될 수 있다. 상기 위상차에 기초하여 시험편(10)의 내벽(ID, inner diameter) 또는 외벽(OD, outer diameter)에 결함이 발생되었는지 검출될 수 있다.
[수학식 15]
이와 같이 와전류 검사 장치(100)는 시험편(10)의 어떤 위치에 결함이 발생되었는지 임피던스의 차이 및 위상차에 기초하여 검출할 수 있다.
한편, 도 6은 본 발명의 일 실시 예에 따른 원통형 홀센서 배열(120)을 이용하여 와전류의 신호를 취득하기 위한 회로를 나타낸다.
와전류 검사 장치(100)는 원통형 홀센서배열(120)를 이용하여 신호를 취득할 수 있다. 와전류 검사 장치는 반지름 r인 광폭 보빈형 코일(110)이 금속재질의 소구경 배관 시험편(10)에 내삽되고, 식 ω=2πf에 의해 도출되는 주파수로 교류전압이 인가되었을 때, 시험편 내벽에 발생되는 유도전류는 결함 근방에서 왜곡된다. 따라서, z방향의 교번자계와 함께 r 방향의 교번자계가 발생된다. 여기서, 교번자계는 세기가 시간과 더불어 양 또는 음의 방향으로 증감하고 방향을 바꾸지 않는 자계를 말한다.
이러한 교번자계를 측정하기 위하여 와전류 검사 장치(100)는 자기센서 구동전원 스위칭회로(190)를 동작시켜, 실린더형 홀센서배열(120)의 Φ 방향의 1개 열(120-1 내지 120-4 각각)에 전원을 공급한다. 실린더형 홀센서배열(120)은 도 6에 도시된 4개의 열(120-1 내지 120-4)보다 더 많은 열을 포함될 수 있으며, 센서의 전체 길이가 짧아져야 할 경우에는 한 개의 열로 구성되어 환형으로 배치될 수 있다.
또한, 상기 와전류 검사 장치(100)는 z 방향의 각각의 센서 배열의 신호선을 자기센서 출력용 병렬형 교류증폭회로(160)에 연결하여 충분한 신호레벨로 증폭한 후, 자기센서 출력용 병렬형 분기회로(165)에 의하여 분기할 수 있다.
또한, 상기 와전류 검사 장치(100)는 각각의 분기신호를 자기센서 출력용 승산회로(170)를 이용하여 위상지연 구형파 회로(105)의 구형파 신호(105a) 및 분기신호가 승산될 수 있다. 이에 따라, 와전류 검사 장치(100)는 상술한 [수학식 12 내지 15] 와 같이 결함의 존재에 기인한 r 방향 교번자계의 진폭 및 위상차를 측정할 수 있다. 이때 각각의 진폭 및 위상차는 환형배열형 자기센서 신호연산 부(115b2)에 의하여 소프트웨어적으로 계산될 수 있고, 구현시에는 하드웨어적으로도 계산될 수 있다.
도 6에 따르면, 시험편(10)의 결함이 체적성 결함인지 균열성 결함인지 평가될 수 있어, 발전소 정상 출력운전 중 전열관 파열에 의한 누설발생의 위험성이 해소될 수 있다. 또한, 원통형 홀센서배열(120)이 삽입되어 멈춰 있더라도, 기계적 회전을 하지 않은 상태에서 시변자계의 분포를 측정할 수 있으므로 장비의 열화를 방지할 수 있다. 또한, 전자식 스캔에 의하여 결함 검출 및 평가 속도가 빠르게 될 수 있다. 또한 원통형 홀센서배열(120)이 복수의 열로 구성되고 각 열이 환형 모양인 바, 하나의 열만 선택힌 후 축방향으로 결함을 스캔하여 빠른 속도로 결함유무 판별 및 정량 평가에 사용될 수 있다. 또한, 홀센서 자체가 능동형 코일 센서가 아니고 크기가 작으므로, 센서의 상호 간섭이 문제되지 않으며, 비용이 저렴하게 될 수 있고, 공간 분해 능력이 우수하게 된다. 또한, 시험편(10)의 축방향으로 일부 영역만큼만 스캔이 수행될 수 있으며, 결함으로 인한 사변 자계가 왜곡되는 경우 결함 유무, 결함의 형상 및 크기 등이 모두 정량적으로 정확하게 평가될 수 있다. 또한, 다중 주파수를 이용하여 결함 검출이 가능하여 결함의 정량 평가에 탁월한 효과가 발생될 수 있다.
이하에서는 도 7을 참고하여 본 발명의 일 실시 예에 따른 와전류 검사 장치(100)의 구성을 나타내는 블록도이다. 와전류 검사 장치(100)는 코일(110, 110r) 센싱에 기반한 결함 검출 및 원통형 홀센서 배열(120)을 이용한 결함 검출을 모두 제공할 수 있다.
우선 코일(110, 110r) 센싱을 먼저 기술하기로 한다.
와전류 검사 장치(100)는 다중 주파수를 인가하는 다중 주파수 교류 전원 인가부(107)를 포함할 수 있다. 와전류 검사 장치(100)의 제어 모듈(115)은 상기 다중 주파수 교류 전원 인가부(107)에 복수의 주파수가 인가될 수 있도록 제어할 수 있다.
와전류 검사 장치(100)는 인가된 교류 전류에 코일센서 출력용 교류증폭 회로(130), 코일센서 출력용 분기회로(135)에서 출력된 신호와 위상지연 구형파 회로(105)에서 90도 위상차를 두는 구형파 신호를 코일센서 출력용 승산회로(140)에서 승산할 수 있다.
승산된 신호는 코일센서 출력용 적분회로(145) 및 코일센서 출력용 직류 증폭 회로(150)를 거쳐 AD 변환회로(155)에 의해 아날로그 신호가 디지털신호로 변환될 수 있다.
이때, 제어 모듈(115)의 보빈형 코일센서 신호 연산부(115b1)는 코일센서 출력용 직류증폭회로(150)로부터 출력된 2개의 신호를 조합하여 결함 유무와 위치에 따른 진폭과 위상차를 계산할 수 있다.
그 다음, 코일(110, 110r) 센싱에 이어 원통형 홀센서 배열(120)을 이용한 결함 검출을 설명하기로 한다.
먼저, 와전류 검사 장치(100)는 원통형 홀센서 배열(120)의 각 열(120-1, 120-2, 120-3, 120-4 등)에 구동전원을 선택적으로 인가하는 자기센서 구동전원 스위칭 회로(190)를 통해 축방향으로 순차적으로 전원을 인가할 수 있다. 구현시에는 축방향에만 국한되지는 않고, 결함을 발견하는 부위를 기준으로 앞뒤로 전원이 순차적으로 인가될 수도 있다.
와전류 검사 장치(100)는 인가된 신호가 자기센서 출력용 교류증폭회로(160), 자기센서 출력용 병렬형 분기회로(165)을 통해 출력되도록 제어할 수 있다.
이때, 분기회로(165)에서 출력된 신호는 위상지연 구형파 회로(105)의 구형파 신호와 자기센서 출력용 승산회로(170)를 통해 승산될 수 있다. 상기 구형파 신호는 코일센서(110, 110r)에서 사용한 구형파 신호일 수 있으며, 90도의 위상차를 가지게 되나, 구현시에는 다른 각도의 위상차도 가능하다. 위상차에 의해 필요로 하는 신호만 용이하게 추출될 수 있다.
승산된 신호는 자기센서 출력용 적분회로(175), 자기센서 출력용 직류증폭회로(180)를 거쳐 AD 변환회로(155)에 의해 아날로그 신호가 디지털 신호로 바뀔 수 있다.
이때, 제어 모듈(115)의 환형 배열형 자기센서 신호 연산부(115b2)는 자기센서 출력용 직류증폭회로(180)로부터 출력된 열방향 센서수의 2배에 해당되는 신호를 조합하여 결함 유무와 위치에 따른 진폭과 위상차의 분포를 계산할 수 있다.
그리고, 상기 보빈형 코일센서 신호연산부(115b1)와 환형 배열형 자기센서 신호연산부(115b2)는 각각 코일센서 출력용 적분회로(145)를 거쳐서 출력된 2개의 적분신호를 증폭하기 위한 코일센서 출력용 직류증폭회로(150)와, 자기센서 출력용 적분회로(175)를 통과하여 출력된 센서 1개당 2개씩의 적분신호를 증폭하기 위한 자기센서 출력용 직류증폭회로(180)와, 상기 자기센서 출력용 직류증폭회로(180)와 코일센서 출력용 직류증폭회로(150)에서 출력된 아날로그 신호를 디지털신호로 변환하기 위한 AD변환회로(155)를 거쳐서 연산장치에 입력된 후에 구동될 수 있다.
또한, 실린더 배열형 자기센서 신호 연산부(115b3)는 다중 주파수 교류전원 인가부(107)의 특정주파수를 선택한 상태에서, 상기 원통형 홀센서 배열(120)의 원호방향의 각 열을 순차적으로 선택하면서, 상기 자기센서 출력용 직류증폭회로(180)로부터 출력된 열방향 센서수의 2배에 해당하는 신호를 조합하여 결함 유무와 위치에 따른 진폭과 위상차의 분포를 계산할 수 있다.
제어 모듈(115)은 다중주파수 교류전원 인가부(107)의 주파수 선택, 코일센서 출력용 교류증폭회로(130) 및 코일센서 출력용 직류증폭회로(150)의 증폭비 변환, 자기센서 구동전원 스위칭 회로(190)의 가동, 자기센서 출력용 교류증폭회로(160) 및 직류증폭회로(180)의 증폭비 변환, AD변환회로(155)의 구동, 보빈형 코일 센서 신호연산부(115b1), 환형 배열형 자기센서 신호연산부(115b2), 실린더 배열형 자기센서 신호 연산부(115b3)를 제어할 수 있다.
도 8(a) 및 도 8(b)는 본 발명의 일 실시 예에 따른 다양한 결함을 포함한 시험편을 나타낸다.
도 8(a)에 따르면, 시험편(10)의 총 길이는 500 mm 이고, 각종 결함이 나타난다. 또한 시험편(10)과 별개로 결함이 없는 시험편(20)의 경우 시험편(10)의 결함이 존재하지 않는다.
외벽(OD)은 15.87 이고, 원주 내경(ID)은 13.33 이며, 두께는 1.27 이고 소재는 SS304 로 이뤄진다. TSP(tube support plate)는 카본 스틸로 구성될 수 있으나, 구현시에 시험편(10)의 규격은 다양하게 바뀔 수 있다.
도 8(a)의 각각의 지점에 대해 결함에 대응되는 표는 도 8(b)에 나타난다.
FBH(flat bottomed hole)은 평저공이고, TWH(through wall hole)은 관통홀을 나타낸다. TSP(tube support plate)도 관측된다.
도 9는 주파수 30 KHz가 인가된 경우의 각 결함의 진폭 분포를 나타낸다.
도 9에 따르면, 보빈형코일(110)에 주파수 30kHz가 인가되는 경우, 원통형 홀센서 배열(120) 중 선택된 하나의 환형열에서 측정한 시변자계 진폭의 분포가 나타난다. 횡축은 거리를 나타내며, 종축은 360도 방향으로 배열된 센서의 위치를 나타낸다. 연속된 그림에서 ID groove, OD groove, TSP와 같이 시험편의 원호방향으로 연속된 결함은 모든 센서에서 반응하므로, 종축으로 연속적으로 변화된 자계 분포를 나타낸다. FBH 20%-4는 4개의 FBH 결함이 환형으로 90도 간격으로 배열된 것으로, 진폭분포를 통해 결함이 90도 간격으로 배열된 것이 표시된다. 그리고, FBH 40~100%는 결함의 직경과 깊이가 서로 다른 결함을 나타낸다. 상하 4개씩 총 8개의 3차원 그래프는 상기 원통형 홀센서 배열(120)을 결함의 중심위치에 놓고, 환형으로 배열된 열을 순차적으로 선택하여 측정하였을 때 취득할 수 있는 시변자계의 진폭의 분포를 나타낸다. 즉, 종래의 기술에서 취득할 때 반드시 동반되어야 했던 기계적인 구동이 없이도 특정 영역에서의 진폭 분포를 측정할 수 있다.
도 10은 주파수 30 KHz가 인가된 경우의 각 결함의 위상차 분포를 나타낸다.
도 10은 상기 도 9와 동일한 조건에서 측정한 시변자계의 위상차의 분포를 나타낸다. 도 9와 유사한 분포이나, FBH 20%-4의 결과가 명확하게 상이하다. 즉, 센서프로브가 배관 내벽에서 일정한 리프트오프(센서와 측정면의 거리)를 유지하지 못하고, 한쪽으로 치우쳤을 때에는 도 9에 나타낸 바와 같이 진폭의 강도가 변화하므로, 결함의 크기가 작은 것인지 아니면 리프트오프가 큰 것인지 구분하기 곤란하다. 하지만, 도 10에 나타낸 바와 같이 위상차 분포는 리프트오프에 크게 영향을 받지 않기 때문에, 동일한 크기의 결함에서는 동일한 위상차 분포를 나타낸다.
도 11은 주파수 50 KHz가 인가하였을 때, 진폭의 분포를 나타낸다.
주파수가 높으면, 와전류의 침투깊이가 얕아진다. 즉, 센서에서 가까운 위치의 결함은 측정하기 쉽지만, 센서에서 먼 위치의 결함으로부터 출력은 작아진다. 이러한 원리에 의하여 TSP 신호를 구분할 수 있다. 도 9에서 TSP 신호는 매우 커서, ID groove 10%와 OD groove 20%의 결함에 비하여 큰 신호를 지시한다. 그러나, 50kHz와 같이 높은 주파수를 인가하면, 유도전류는 시험편(110) 표면에만 집중하고 시험편의 바깥쪽에 위치한 TSP에는 미치지 못한다. 즉, 30kHz와 50kHz의 신호를 동시에 비교하는 방식과 같이 다중 주파수를 사용하는 경우 TSP인지 groove인지를 구분할 수 있다. 하지만, 종래의 기술에 의하면 이렇게 여러 개의 주파수를 입력하면서 시변자계의 분포를 측정하기 위해서는 주파수를 바꿔가면서 여러 번 스캔하는 제1방법과, 다중 주파수를 동시에 또는 빠른 속도로 번갈아 가면서 주고, 천천히 스캔하는 제2방법을 사용해야만 한다. 제1방법은 검사시간이 주파수의 개수 배로 늘어나서, 2개의 주파수를 입력할 때에는 2배 이상, 8개의 주파수를 입력할 때에는 8배 이상의 시간이 소요된다. 제2방법은 신호처리회로가 복잡해지고 가격이 비싸진다. 하지만, 본 발명에 따르면, 센서프로브를 결함 부근에 위치시키고, 전자식 스캔을 작동시키면 해당 영역에서 시변자계 분포를 실시간으로 관찰할 수 있다. 즉, 입력 주파수를 바꿔 주기만 하면 된다.
도 12는 주파수 50 KHz가 인가된 경우의 각 결함의 위상차 분포를 나타낸다.
도 12는 상기 도 11과 동일한 조건에서 측정한 시변자계의 위상차 분포이다. 그래프 상으로 큰 차이가 나타나지 않을 수도 있으나, 아래 도 13을 참고하면, 차이점이 보다 명확하게 도출될 수 있다.
도 13은 50kHz의 주파수를 인가하였을 때, 도 11과 도 12에서 결함의 중심을 지나는 센서의 출력을 바탕으로 도시한 리사주선도이다.
와전류 탐상에서 리사주선도는 결함의 존재 및 위치를 판별하는데 활용되는 기법으로, 곡선 형태의 패턴은 각각의 결함을 나타낸다. 그리고, 곡선 형태의 패턴이 좌표결함의 깊이가 20%에서 100%로 깊어질수록 반시계 방향으로 회전한다. 이 회전 방향과 정도를 통하여 결함의 위치와 크기가 판정될 수 있다. 즉, 결함이 시험편(10)의 내부인지, 외부인지를 판별될 수 있다.
도 9 내지 도 13를 따르면, 시험편(10)의 각 결함에 대해 다중 주파수로 측정이 가능하여 정량 평가가 효과적으로 수행될 수 있다. 아울러, 먼저 특정 주파수로 시험편을 스캔한 후, 결함이 검출되면 검출된 시점에서 다양한 주파수의 전원을 인가하여 결함 검출의 정확도를 높힐 수 있다.
도 14는 본 발명의 일 실시 예에 따른 엔코더 장치(200)를 탑재한 와전류 검사 장치(100)를 나타낸다.
도 14에 따르면, 엔코더 장치(200)는 탐촉자(30)가 관통할 수 있다. 이를 위해 엔코더 장치(200)는 개폐 가능한 영역(225)을 구비하여 탐촉자(30)가 용이하게 관통하여 장착될 수 있게 한다.
엔코더 장치(200)는 복수의 지지부(210a, 210b)를 포함할 수 있다. 복수의 지지부(210a, 210b) 각각은 시험편(10)에 인접한 파이프(튜브)에 각각 결합될 수 있다. 이에 따라 보다 안정되게 비파괴검사가 수행될 수 있다.
엔코더 장치(200)는 결함의 유무, 위치, 크기를 나타내는 표시부(240)를 포함할 수 있다.
엔코더(220)는 탐촉자(30, 프루브)가 시험편(10)에 삽입 및 인출되는 경우, 시험편(10) 내에서의 위치 및 속도를 계산할 수 있다.
엔코더 장치(200)의 브레이크(미도시)는 탐촉자(30)가 시험편(10)에 삽입 또는 인출되는 경우 탐촉자(30)의 속도를 제어할 수 있다. 구체적으로, 엔코더 장치(200)는 탐촉자(30)가 기 설정된 속도보다 더 빠르게 시험편(10) 내에서 이동되는 경우, 탐촉자(30)의 속도를 저감시킬 수 있다. 이에 따라, 수동으로 결함 검출이 수행되는 경우, 와전류 검사 장치(100)의 동작 속도가 일정하게 유지될 수 있다.
엔코더 장치(200)는 탐촉자(30)의 위치에 대응되는 신호를 엔코더를 통해 수집할 수 있다. 엔코더 장치(200)는 수집된 위치 정보를 와전류 검사 장치(100)로 전송하여 와전류 검사 장치(100)가 디스플레이(117)에 표시할 수 있다.
한편, 상술한 와전류 검사 장치(100)는 신호 전송 케이블을 따로 구비하여 전원을 인가하고 출력되는 신호를 전송하는 것도 구현상 가능하다.전술한 본 발명은, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한, 상기 컴퓨터는 콘텐츠를 제공하는 시스템(1000)의 제어 모듈(400)을 포함할 수도 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
Claims (8)
- 비파괴 검사를 위한 와전류 검사 장치에 있어서,상기 비파괴 검사의 검사 대상인 시험편의 내부에 삽입되어 상기 시험편의 내벽에 유도전류를 인가하기 위한 보빈형 코일;상기 시험편의 레퍼런스인 무결함 시험편의 내부에 삽입되어 상기 무결함 시험편의 내벽에 유도 전류를 인가하기 위한 참조 코일;상기 보빈형 코일의 내부에 배치되되, 행과 열을 포함하는 원통형 수동 센서 배열; 및다중 주파수 중 하나 이상의 주파수를 선택하여 상기 보빈형 코일 및 상기 참조 코일에 교류 전원을 인가하고, 위상차를 달리하는 구형파 신호를 생성하며, 인가된 신호 및 상기 구형파 신호가 제1 승산되도록 제어하는 제어 모듈;을 포함하며,상기 제어 모듈은,상기 원통형 수동 센서 배열의 복수의 열 중에서 원호 방향의 열이 순차적으로 선택되도록 구동 전원을 스위칭하여 인가하고, 인가된 신호에 생성된 상기 위상차를 달리하는 구형파가 제2 승산되도록 제어하며,상기 제1 승산된 신호 및 상기 제2 승산된 신호에 기초하되, 신호의 진폭 및 위상차의 분포를 이용하여 상기 시험편의 결함을 검출하는, 비파괴 검사를 위한 와전류 검사 장치
- 비파괴 검사를 위한 와전류 검사 장치에 있어서,상기 비파괴 검사의 검사 대상인 시험편의 내부에 삽입되어 상기 시험편의 내벽에 유도전류를 인가하기 위한 보빈형 코일;상기 보빈형 코일의 내부에 배치되되, 행과 열을 포함하는 원통형 수동 센서 배열; 및다중 주파수 중 하나 이상의 주파수를 선택하여 상기 보빈형 코일에 교류 전원을 인가하고, 위상차를 달리하는 구형파 신호를 생성하며, 인가된 신호 및 상기 구형파 신호가 제1 승산되도록 제어하는 제어 모듈;을 포함하며,상기 제어 모듈은,상기 원통형 수동 센서 배열의 복수의 열 중에서 원호 방향의 열이 순차적으로 선택되도록 구동 전원을 스위칭하여 인가하고, 인가된 신호에 생성된 상기 위상차를 달리하는 구형파가 제2 승산되도록 제어하며,상기 제1 승산된 신호 및 상기 제2 승산된 신호에 기초하되, 신호의 진폭 및 위상차의 분포를 이용하여 상기 시험편의 결함을 검출하는, 비파괴 검사를 위한 와전류 검사 장치.
- 비파괴 검사를 위한 와전류 검사 장치에 있어서,상기 비파괴 검사의 검사 대상인 시험편의 내부에 삽입되어 상기 시험편의 내벽에 유도전류를 인가하기 위한 보빈형 코일;상기 시험편의 레퍼런스인 무결함 시험편의 내부에 삽입되어 상기 무결함 시험편의 내벽에 유도 전류를 인가하기 위한 참조 코일;상기 보빈형 코일의 내부에 배치되되, 하나의 열로 구성되는 환형 수동 센서 배열; 및다중 주파수 중 하나 이상의 주파수를 선택하여 상기 보빈형 코일 및 상기 참조 코일에 교류 전원을 인가하고, 위상차를 달리하는 구형파 신호를 생성하며, 인가된 신호 및 상기 구형파 신호가 제1 승산되도록 제어하는 제어 모듈;을 포함하며,상기 제어 모듈은,상기 환형 수동 센서 배열에 구동 전원을 인가하고, 인가된 신호에 생성된 상기 위상차를 달리하는 구형파가 제2 승산되도록 제어하며,상기 제1 승산된 신호 및 상기 제2 승산된 신호에 기초하되, 신호의 진폭 및 위상차의 분포를 이용하여 상기 시험편의 결함을 검출하는, 비파괴 검사를 위한 와전류 검사 장치.
- 제1항 내지 제3항 중 어느 한 항에 있어서,엔코더 장치를 더 포함하며,상기 엔코더 장치는,상기 비파괴 검사의 검사 대상인 시험편과 인접한 튜브에 임시로 결합되는 지지부;상기 와전류 검사 장치의 프루브(probe)가 상기 시험편에 삽입 또는 인출되는 경우, 소정의 조건이 만족되는 경우 상기 프루브의 이동 속도를 제어하는 브레이크; 및상기 프루브가 상기 시험편에 삽입 또는 인출되는 경우, 상기 시험편 내부의 상기 탐침부의 위치에 대응되는 신호를 출력하는 엔코더를 포함하는, 비파괴 검사를 위한 와전류 검사 장치.
- 제1항 내지 제3항 중 어느 한 항에 있어서,상기 엔코더 장치는,상기 프루브가 기 설정된 속도보다 더 빠르게 상기 시험편에 삽입 또는 인출되는 경우, 상기 프루브의 이동 속도를 상기 브레이크를 통해 감속시키는, 비파괴 검사를 위한 와전류 검사 장치.
- 제1항 내지 제3항 중 어느 한 항에 있어서,상기 위상차를 달리하는 구형파의 위상차는 90도인, 비파괴 검사를 위한 와전류 검사 장치.
- 제1항 내지 제3항 중 어느 한 항에 있어서,디스플레이;를 더 포함하며,상기 제어 모듈은,선택된 하나 이상의 주파수에 기초하여 결함 부위 별로 상기 신호의 진폭 및 위상차를 상기 디스플레이에 정량적으로 표시하는, 비파괴 검사를 위한 와전류 검사 장치.
- 제1항 또는 제2항에 있어서,상기 제어 모듈은,교류증폭회로 및 직류증폭회로의 증폭비를 결정하고, 원통형 수동 센서 배열에 포함된 행과 열에 구동 전원을 스위칭하여 인가하며, 아날로그 신호를 디지털 신호로 변환하는 회로를 구동하는, 비파괴 검사를 위한 와전류 검사 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/748,728 US10788456B2 (en) | 2017-07-21 | 2017-11-28 | Eddy current inspection device for nondestructive testing |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170092885A KR101966168B1 (ko) | 2017-07-21 | 2017-07-21 | 비파괴 검사를 위한 와전류 검사 장치 |
KR10-2017-0092885 | 2017-07-21 | ||
KR10-2017-0103060 | 2017-08-14 | ||
KR1020170103060A KR101988886B1 (ko) | 2017-08-14 | 2017-08-14 | 감속과 결함 지시 기능을 구비하는 휴대형 엔코더 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019017535A1 true WO2019017535A1 (ko) | 2019-01-24 |
Family
ID=65016015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/013697 WO2019017535A1 (ko) | 2017-07-21 | 2017-11-28 | 비파괴 검사를 위한 와전류 검사 장치 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10788456B2 (ko) |
WO (1) | WO2019017535A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110146590A (zh) * | 2019-05-28 | 2019-08-20 | 杭州电子科技大学 | 基于阵列式传感器的涡流无损检测装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021102086A1 (de) | 2021-01-29 | 2022-08-04 | Benteler Steel/Tube Gmbh | Verfahren zur Herstellung und Prüfung eines hochfesten Rohrproduktes aus Stahl sowie Prüfsonde und Rohrprodukt |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10239282A (ja) * | 1997-02-27 | 1998-09-11 | Genshiryoku Eng:Kk | 渦電流探傷プローブ |
JP2006145296A (ja) * | 2004-11-17 | 2006-06-08 | Olympus Corp | 渦流探傷試験装置 |
US20110089937A1 (en) * | 2009-10-20 | 2011-04-21 | Westinghouse Electric Company, Llc | Eddy current inspection probe |
KR20120065243A (ko) * | 2010-12-10 | 2012-06-20 | 가부시키가이샤 에바라 세이사꾸쇼 | 와전류 센서 및 연마 방법 및 장치 |
KR20130130529A (ko) * | 2012-05-22 | 2013-12-02 | 조선대학교산학협력단 | 소구경 배관 결함 탐상 장치 및 방법 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5424640A (en) * | 1991-01-23 | 1995-06-13 | The United States Of America As Represented By The United States Department Of Energy | Method for removal of random noise in eddy-current testing system |
JPH0772570B2 (ja) | 1991-10-14 | 1995-08-02 | 稔 中川 | ダブル遠心カム式無動力時ブレーキ付低速装置 |
JP2006145295A (ja) | 2004-11-17 | 2006-06-08 | Varian Inc | 実時間ガスクロマトグラフィー質量分析極微量気体検出 |
-
2017
- 2017-11-28 WO PCT/KR2017/013697 patent/WO2019017535A1/ko active Application Filing
- 2017-11-28 US US15/748,728 patent/US10788456B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10239282A (ja) * | 1997-02-27 | 1998-09-11 | Genshiryoku Eng:Kk | 渦電流探傷プローブ |
JP2006145296A (ja) * | 2004-11-17 | 2006-06-08 | Olympus Corp | 渦流探傷試験装置 |
US20110089937A1 (en) * | 2009-10-20 | 2011-04-21 | Westinghouse Electric Company, Llc | Eddy current inspection probe |
KR20120065243A (ko) * | 2010-12-10 | 2012-06-20 | 가부시키가이샤 에바라 세이사꾸쇼 | 와전류 센서 및 연마 방법 및 장치 |
KR20130130529A (ko) * | 2012-05-22 | 2013-12-02 | 조선대학교산학협력단 | 소구경 배관 결함 탐상 장치 및 방법 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110146590A (zh) * | 2019-05-28 | 2019-08-20 | 杭州电子科技大学 | 基于阵列式传感器的涡流无损检测装置 |
Also Published As
Publication number | Publication date |
---|---|
US20200049661A1 (en) | 2020-02-13 |
US10788456B2 (en) | 2020-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100956164B1 (ko) | 자기 센서 어레이 | |
KR101085563B1 (ko) | 자기센서를 이용한 냉연강판의 개재물 탐상 장치 | |
US7038445B2 (en) | Method, system and apparatus for ferromagnetic wall monitoring | |
CN109765292B (zh) | 一种管道缺陷精准定位方法 | |
US20070222438A1 (en) | Electromagnetic flaw detection apparatus for inspection of a tubular | |
KR100696991B1 (ko) | 투자율 측정법을 이용하여 증기발생기 전열관의 와전류를탐상하는 장치 및 방법 | |
KR20130130529A (ko) | 소구경 배관 결함 탐상 장치 및 방법 | |
JPS5877653A (ja) | 非破壊検査装置 | |
KR20010023726A (ko) | 와전류 파이프라인 검사장치 및 검사방법 | |
CN110988144A (zh) | 一种混凝土构件结构性隐裂纹的探测方法及装置 | |
WO2019017535A1 (ko) | 비파괴 검사를 위한 와전류 검사 장치 | |
JP2010048624A (ja) | 低周波電磁誘導式の欠陥測定装置 | |
KR101966168B1 (ko) | 비파괴 검사를 위한 와전류 검사 장치 | |
WO2018182103A1 (ko) | 결함 검출 장치 및 이를 이용한 결함 검출 방법 | |
US4792755A (en) | Process and apparatus for the non-destructive examination of ferromagnetic bodies having sections of surface adjoining each other along edges and/or at corners | |
US11733207B2 (en) | Apparatus and method of detecting defects in boiler tubes | |
WO2012011631A1 (ko) | 차분 자기 센서 모듈을 구비한 자기장 검출 장치 | |
JP2008032508A (ja) | 配管検査装置および配管検査方法 | |
KR101988886B1 (ko) | 감속과 결함 지시 기능을 구비하는 휴대형 엔코더 장치 | |
JP3753499B2 (ja) | 磁気探傷装置及び方法 | |
WO2020111526A1 (ko) | 교차 경사형 유도전류를 이용한 비파괴 검사장치용 프로브 및 비파괴 검사장치용 유도코일 제조방법 | |
KR101977921B1 (ko) | 나선 방향 전류 유도 수단을 구비한 비파괴 검사 장치 | |
WO2021125828A1 (ko) | 강판 표면 재질 검사 장치 및 방법 | |
Goldfine et al. | MWM®-Array Electromagnetic Techniques for Crack Sizing, Weld Assessment, Wall Loss/Thickness Measurement and Mechanical Damage Profilometry | |
JP2007163263A (ja) | 渦電流探傷センサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17918144 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17918144 Country of ref document: EP Kind code of ref document: A1 |