[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019017462A1 - 満足度推定モデル学習装置、満足度推定装置、満足度推定モデル学習方法、満足度推定方法、およびプログラム - Google Patents

満足度推定モデル学習装置、満足度推定装置、満足度推定モデル学習方法、満足度推定方法、およびプログラム Download PDF

Info

Publication number
WO2019017462A1
WO2019017462A1 PCT/JP2018/027211 JP2018027211W WO2019017462A1 WO 2019017462 A1 WO2019017462 A1 WO 2019017462A1 JP 2018027211 W JP2018027211 W JP 2018027211W WO 2019017462 A1 WO2019017462 A1 WO 2019017462A1
Authority
WO
WIPO (PCT)
Prior art keywords
satisfaction
utterance
dialogue
speech
estimation model
Prior art date
Application number
PCT/JP2018/027211
Other languages
English (en)
French (fr)
Inventor
厚志 安藤
歩相名 神山
哲 小橋川
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US16/630,896 priority Critical patent/US11557311B2/en
Priority to JP2019530606A priority patent/JP6852161B2/ja
Publication of WO2019017462A1 publication Critical patent/WO2019017462A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/02Feature extraction for speech recognition; Selection of recognition unit
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/06Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
    • G10L15/063Training
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/10Speech classification or search using distance or distortion measures between unknown speech and reference templates
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
    • G10L25/63Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for estimating an emotional state
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/16Speech classification or search using artificial neural networks
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/26Speech to text systems

Definitions

  • the present invention relates to a technique for estimating the degree of satisfaction of the entire dialogue consisting of a plurality of utterances and the degree of satisfaction of each utterance during the dialogue.
  • the degree of customer satisfaction can be expressed as a graded category indicating whether the customer has expressed satisfaction or dissatisfaction during the dialogue, and can be expressed, for example, in three stages such as satisfaction / normal / dissatisfaction.
  • customer satisfaction in an entire dialogue is referred to as "dialogue satisfaction" in a call
  • customer satisfaction in the customer's speech part of the dialogue is referred to as "utterance satisfaction”.
  • the operator evaluation can be automated by aggregating the rates of “satisfaction” and “dissatisfaction” in the dialog satisfaction level for each operator.
  • the speech satisfaction level can be estimated for each utterance during a call, for example, the customer's request is investigated by speech recognition and text analysis of only a section where the speech satisfaction level is "satisfying" Application is possible.
  • the dialog has been described as a dialog during a call in a call center, the same can be said for the overall dialog performed by a plurality of speakers in a face-to-face / non-face-to-face manner.
  • Non-Patent Document 1 proposes a technology to estimate conversation satisfaction for each call using features of the speaking style such as the customer's speech speed, and linguistic features such as the presence or absence of a competitor's product name. ing. It is also conceivable to estimate the speech satisfaction degree in consideration of the time-series relevance of the speech satisfaction degree, in addition to the feature quantity such as the voice level of the customer and the frequency of the reciprocity.
  • An object of the present invention is, in view of the above-mentioned point, to improve the estimation accuracy of each by utilizing the relationship between the dialogue satisfaction and the speech satisfaction.
  • the satisfaction level estimation model learning device includes a dialog voice including a dialog consisting of a plurality of utterances, a correct value of dialog satisfaction with the dialog, and Learning data storage unit that stores learning data consisting of the correct value of the speech satisfaction level for each utterance included in the dialog, the correct value of the feature amount for each speech and the speech satisfaction level extracted from the dialog speech and the correct answer of the speech satisfaction level
  • a speech satisfaction degree estimation model part that estimates speech satisfaction level for each speech using feature values for each speech as input and a dialog satisfaction degree for speech estimation that inputs at least speech satisfaction degree for each speech
  • a model learning unit that learns a satisfaction degree estimation model connected with the estimation model portion.
  • the satisfaction level estimation apparatus of the second aspect of the present invention includes a model storage unit that stores a satisfaction level estimation model learned by the satisfaction level estimation model learning apparatus of the first aspect; And a satisfaction level estimation unit for inputting into the satisfaction level estimation model a feature amount for each utterance extracted from the dialogue voice including the dialogue consisting of the utterances and estimating the speech satisfaction level for each utterance and the dialog satisfaction level for the dialogue .
  • the estimation accuracy of the dialog satisfaction and the speech satisfaction is improved.
  • FIG. 1 is a diagram for explaining a satisfaction degree estimation model.
  • FIG. 2 is a diagram for explaining the estimation of satisfaction by the satisfaction estimation model.
  • FIG. 3 is a diagram for explaining propagation of an estimation error when learning a satisfaction level estimation model.
  • FIG. 4 is a diagram illustrating a functional configuration of the satisfaction level estimation model learning device.
  • FIG. 5 is a diagram illustrating the processing procedure of the satisfaction level estimation model learning method.
  • FIG. 6 is a diagram illustrating a functional configuration of the satisfaction degree estimation apparatus.
  • FIG. 7 is a diagram illustrating the processing procedure of the satisfaction level estimation method.
  • the point of the present invention is to hierarchically connect a model for estimating the degree of dialogue satisfaction and a model for estimating the degree of speech satisfaction, and simultaneously and integrally learn the degree of satisfaction estimation model for simultaneously estimating them as a single model It is to be.
  • An example of such a single model is shown in FIG.
  • the model shown in FIG. 1 includes an utterance satisfaction level estimation model portion that estimates satisfaction level of each utterance included in the estimation target dialog, and a dialog satisfaction level estimation model portion that estimates satisfaction level of the entire estimation target dialog. It is configured hierarchically linked.
  • the utterance satisfaction degree estimation model part constitutes one utterance satisfaction degree estimator for one utterance.
  • the speech satisfaction degree estimator uses the feature amount of each speech as an input, and estimates the speech satisfaction degree of the speech using information on the past speech of the speech or the speech of the past and the future, and the speech satisfaction degree of the speech Output an estimate of At the same time, information (for example, the length of each utterance, etc.) contributing to the estimation of the dialogue satisfaction is output along with the utterance satisfaction.
  • the speech satisfaction degree estimator is specifically, for example, a Recurrent Neural Network (RNN).
  • RNN Recurrent Neural Network
  • the information that contributes to the estimation of the dialog satisfaction level output by the speech satisfaction level estimator is all information calculated in the process of estimating the speech satisfaction level by the recurrent neural network from the input feature amounts for each utterance. That is, the speech satisfaction degree estimator receives the feature amount for each speech, outputs an estimated value of the speech satisfaction degree of the speech and all information used to estimate it, and the dialogue satisfaction degree estimator , All information output from the speech satisfaction degree estimator is input.
  • the dialogue satisfaction degree estimation model part constitutes one dialogue satisfaction degree estimator for one speech satisfaction degree estimator.
  • the dialogue satisfaction degree estimator receives the estimated value of the speech satisfaction degree output by the speech satisfaction degree estimator and the information accompanying the speech satisfaction degree and contributing to the estimation of the dialogue satisfaction degree, and the past utterance of the speech Using the information on, and outputs an estimate of the degree of satisfaction of dialogue from the first utterance included in the dialogue to the utterance.
  • An example of a dialog satisfaction estimator is a recurrent neural network, similar to a speech satisfaction estimator.
  • the relationship between the dialogue satisfaction and the speech satisfaction is considered to be hierarchical. That is, in a human-to-human dialogue, when a certain utterance is presented, the listener may estimate the speech satisfaction for the speech and then estimate the dialogue satisfaction based on the estimated value of the speech satisfaction. is expected. From this, for the input speech, a hierarchical model in which the degree of speech satisfaction is estimated first, and then the degree of dialogue satisfaction is estimated from the estimated value of the degree of speech satisfaction and the information accompanying the degree of speech satisfaction It agrees with human perception and is considered to be excellent in estimation accuracy.
  • FIG. 2 is a diagram showing an operation when the model shown in FIG. 1 estimates speech satisfaction and dialogue satisfaction.
  • the feature amount of each utterance included in the dialogue is input to the utterance satisfaction degree estimation model part for each utterance, and the utterance satisfaction degree for each utterance is estimated.
  • the speech satisfaction degree estimated in the speech satisfaction degree estimation model portion is input to the dialogue satisfaction degree estimation model portion. Repeat this until the end of the dialogue.
  • the dialogue satisfaction degree of the dialogue consisting of a series of utterances is estimated based on the series of the speech satisfaction degree in the dialogue satisfaction degree estimation model part.
  • FIG. 3 shows the flow of propagation of the estimation error of the degree of dialogue satisfaction and the estimation error of the degree of speech satisfaction in the model shown in FIG. This represents learning which feature quantity affects the degree of dialogue satisfaction.
  • a framework for learning a model to solve multiple estimation problems at the same time is called multitask learning, and many examples with improved accuracy compared to solving individual estimation problems have been reported.
  • multitask learning A framework for learning a model to solve multiple estimation problems at the same time
  • the present invention can be regarded as a type of multitask learning, it is characterized in that it hierarchically learns a plurality of tasks instead of learning a plurality of tasks in parallel like general multitask learning. .
  • Reference 1 R. Caruana, "Multitask Learning,” Machine Learning, vol. 28, no. 1, pp. 41-75, 1997.
  • the satisfaction level estimation model learning device 1 includes a learning data storage unit 10, a voice section detection unit 11, a feature quantity extraction unit 12, a model learning unit 13, and a satisfaction level estimation model storage unit 20. including.
  • the satisfaction degree estimation model learning device 1 learns the satisfaction degree estimation model using the learning data stored in the learning data storage unit 10, and stores the learned satisfaction degree estimation model in the satisfaction degree estimation model storage unit 20.
  • the satisfaction level estimation model learning method of the embodiment is realized by the satisfaction level estimation model learning device 1 performing the processing of each step shown in FIG. 5.
  • the satisfaction degree estimation model learning device 1 is configured by reading a special program into a known or dedicated computer having, for example, a central processing unit (CPU: Central Processing Unit), a main storage device (RAM: Random Access Memory), etc. Is a special device.
  • the satisfaction level estimation model learning device 1 executes each process, for example, under the control of the central processing unit.
  • the data input to the satisfaction level estimation model learning device 1 and the data obtained by each process are stored, for example, in the main storage device, and the data stored in the main storage device is read to the central processing unit as necessary. It is issued and used for other processing.
  • At least a part of each processing unit of the satisfaction level estimation model learning device 1 may be configured by hardware such as an integrated circuit.
  • Each storage unit included in the satisfaction degree estimation model learning device 1 is, for example, an auxiliary storage configured by a main storage device such as a random access memory (RAM), a semiconductor memory device such as a hard disk, an optical disk, or a flash memory. It can be configured by a device or middleware such as a relational database or key value store. Each storage unit included in the satisfaction level estimation model learning device 1 may be logically divided, and may be stored in one physical storage device.
  • a main storage device such as a random access memory (RAM), a semiconductor memory device such as a hard disk, an optical disk, or a flash memory. It can be configured by a device or middleware such as a relational database or key value store.
  • Each storage unit included in the satisfaction level estimation model learning device 1 may be logically divided, and may be stored in one physical storage device.
  • the learning data storage unit 10 stores learning data used for learning the satisfaction degree estimation model.
  • the learning data includes a dialog voice including a dialog including the utterance of at least one target speaker and the utterance of at least one other speaker, and a label indicating the correct value of the dialog satisfaction with the dialog (hereinafter referred to as “ And a label (hereinafter referred to as "speech satisfaction label") indicating the correct value of the speech satisfaction for each utterance included in the dialogue.
  • the target speaker represents a speaker whose satisfaction level is to be estimated, and for example, in a call center call, a customer.
  • the opposite speaker represents a speaker other than the target speaker among the speakers participating in the dialogue, and for example, in the call center call, indicates an operator.
  • the dialogue satisfaction label and the speech satisfaction label may be manually attached.
  • the call satisfaction degree and the speech satisfaction degree represent, for example, one of three levels of satisfaction / normal / dissatisfaction.
  • the voice section detection unit 11 detects a voice section from the dialogue voice stored in the learning data storage unit 10, and acquires the utterance of one or more target speakers. For example, a method based on power thresholding may be used to detect the speech segment. Also, other speech segment detection methods such as a method based on the likelihood ratio of speech / non-speech models may be used. The voice section detection unit 11 outputs the acquired utterance of the target speaker to the feature amount extraction unit 12.
  • the feature quantity extraction unit 12 receives the utterance of the target speaker from the speech segment detection unit 11, and extracts the feature quantity for each utterance.
  • the feature quantity extraction unit 12 outputs the extracted feature quantity for each utterance to the model learning unit 13.
  • the feature quantity to be extracted uses at least one or more of prosodic features, dialogue features, and linguistic features listed below.
  • the prosody feature uses at least one or more of an average, standard deviation, maximum value, minimum value of fundamental frequency and power in speech, speech speed in speech, and duration of the final phoneme in speech.
  • the fundamental frequency and the power are obtained by dividing the speech into frames and obtaining each frame.
  • speech recognition is used to estimate the phoneme sequence in the speech.
  • the dialogue feature includes the time from the immediately preceding utterance of the target speaker, the time from the utterance of the opposite speaker to the utterance of the target speaker, the time from the utterance of the target speaker to the next utterance of the opposite speaker, the target speaker
  • the length of the utterance, the length of the utterance of the other speaker before and after, the number of the subject speaker's compliments included in the preceding and following speaker's utterance, and the number of the other speaker's compliment included in the utterance of the target speaker Use at least one or more.
  • the language feature uses at least one of the number of words in the utterance, the number of fillers in the utterance, and the number of occurrences of the words of thanks in the utterance.
  • speech recognition is used to estimate the words appearing in the utterance, and the results are used.
  • words of thanks shall be pre-registered, and for example, the number of occurrences of “thank you” or “too many” should be sought.
  • step S13 the model learning unit 13 receives the feature amount for each utterance from the feature amount extracting unit 12, and the dialog satisfaction degree label corresponding to the dialog voice stored in the learning data storage unit 10 and the utterance corresponding to each utterance
  • the satisfaction degree label is read, and a satisfaction degree estimation model is learned which simultaneously estimates and outputs the speech satisfaction degree and the dialogue satisfaction degree using the feature amount of each utterance as an input.
  • the model learning unit 13 stores the learned satisfaction degree estimation model in the satisfaction degree estimation model storage unit 20.
  • the structure of the satisfaction degree estimation model is as described above with reference to FIG. 1, and a recurrent neural network (RNN) is used as the speech satisfaction degree estimator and the dialogue satisfaction degree estimator.
  • a recurrent neural network for example, a long short-term memory recurrent neural network (LSTM-RNN) is used. Since the recurrent neural network is a model that performs estimation based on time-series information, it is possible to estimate speech satisfaction and dialogue satisfaction based on temporal changes in input information, and high estimation accuracy can be expected.
  • the input of the dialog satisfaction degree estimation model part uses both an estimated value of the speech satisfaction degree for each utterance and an output value of the speech satisfaction degree estimation model part (output of LSTM-RNN).
  • the output value of the speech satisfaction degree estimation model portion includes information that is not included in the speech satisfaction degree but is included in the speech satisfaction degree and contributes to the estimation of the dialogue satisfaction degree. Use for input.
  • the learning of the satisfaction level estimation model uses, for example, a Back Propagation Through Time (BPTT), which is a learning method of the existing LSTM-RNN.
  • BPTT Back Propagation Through Time
  • an RNN other than the LSTM-RNN may be used, and for example, a gated recurrent unit (GRU) may be used.
  • the LST M-RNN is configured using an input gate and an output gate, or an input gate and an output gate, and an forgetting gate, and the GRU is configured using a reset gate and an update gate.
  • the LSTM-RNN may use a bidirectional LSTM-RNN or a unidirectional LSTM-RNN.
  • an estimation error of the dialog satisfaction level and an estimation error of the speech satisfaction level are propagated.
  • the above is realized by expressing the loss function of the entire satisfaction level estimation model by weighting the loss function of the dialog satisfaction level estimation model part and the loss function of the speech satisfaction level estimation model part.
  • the loss function L of the satisfaction degree estimation model is expressed by the following equation.
  • is a predetermined weight for the loss function of the model
  • L t is a loss function of the speech satisfaction degree estimation model portion
  • L c is a loss function of the dialogue satisfaction degree estimation model portion.
  • the satisfaction degree estimation apparatus 2 includes a satisfaction degree estimation model storage unit 20, a voice section detection unit 21, a feature quantity extraction unit 22, and a satisfaction degree estimation unit 23, as shown in FIG.
  • the satisfaction level estimation device 2 receives as an input a dialog speech containing the speech of the dialog for which the satisfaction level is to be estimated, and is included in the dialog using the satisfaction level estimation model stored in the satisfaction level estimation model storage unit 20.
  • the speech satisfaction of each utterance and the dialogue satisfaction of the dialogue are estimated, and a sequence of estimated values of the speech satisfaction and an estimated value of the dialogue satisfaction are output.
  • the satisfaction level estimation method of the embodiment is realized by the satisfaction level estimation device 2 performing the processing of each step shown in FIG. 7.
  • the satisfaction level estimation device 2 is configured by reading a special program into a known or dedicated computer having, for example, a central processing unit (CPU: Central Processing Unit), a main storage device (RAM: Random Access Memory), etc. It is a special device.
  • the satisfaction level estimation device 2 executes each process, for example, under the control of the central processing unit.
  • the data input to the satisfaction level estimation device 2 and the data obtained by each process are stored, for example, in the main storage device, and the data stored in the main storage device is read out to the central processing unit as necessary. Is used for other processing.
  • At least a part of each processing unit of the satisfaction degree estimation apparatus 2 may be configured by hardware such as an integrated circuit.
  • Each storage unit included in the satisfaction degree estimation apparatus 2 is, for example, a main storage device such as a RAM (Random Access Memory), an auxiliary storage device configured by a semiconductor memory element such as a hard disk, an optical disk, or a flash memory. Alternatively, it can be configured by middleware such as a relational database or key value store.
  • a main storage device such as a RAM (Random Access Memory)
  • auxiliary storage device configured by a semiconductor memory element such as a hard disk, an optical disk, or a flash memory.
  • middleware such as a relational database or key value store.
  • the satisfaction degree estimation model storage unit 20 stores a learned satisfaction degree estimation model generated by the satisfaction degree estimation model learning device 1.
  • step S ⁇ b> 21 the voice section detection unit 21 detects a voice section from the dialogue voice input to the satisfaction level estimation apparatus 2, and acquires the utterance of one or more target speakers.
  • This dialogue speech includes the speech of at least one target speaker and the speech of at least one other speaker, as well as the dialogue speech of the learning data.
  • the same method as the voice section detection unit 11 of the satisfaction degree estimation model learning device 1 may be used.
  • the voice section detection unit 21 outputs the acquired utterance of the target speaker to the feature amount extraction unit 22.
  • the feature quantity extraction unit 22 receives the utterance of the target speaker from the speech segment detection unit 21, and extracts the feature quantity for each utterance.
  • the feature quantity to be extracted may be the same as the feature quantity extraction unit 12 of the satisfaction level estimation model learning device 1.
  • the feature quantity extraction unit 22 outputs the extracted feature quantity for each utterance to the satisfaction degree estimation unit 23.
  • the satisfaction level estimation unit 23 receives the feature quantity for each utterance from the feature quantity extraction unit 22, and inputs the feature quantity to the satisfaction level estimation model stored in the satisfaction level estimation model storage unit 20 for interaction Speech satisfaction with speech and speech satisfaction with each utterance contained in the speech are simultaneously estimated.
  • the satisfaction level estimation model can obtain simultaneously a series of estimated values of the speech satisfaction level for each utterance and an estimated value of the dialog satisfaction level by using the feature quantity for each utterance of the target speaker as input and performing forward propagation .
  • the degree-of-satisfaction estimation unit 23 outputs, from the degree-of-satisfaction estimation device 2, a sequence based on an estimated value of the degree of speech satisfaction for each utterance and an estimated value of the degree of dialogue satisfaction.
  • the satisfaction level estimation model learning device 1 and the satisfaction level estimation device 2 are configured as separate devices, but the function of learning the satisfaction level estimation model and the learned satisfaction level estimation model are used It is also possible to construct a single satisfaction level estimation device having the function of estimating the degree of satisfaction. That is, the satisfaction degree estimation apparatus of the modification includes learning data storage unit 10, speech segment detection unit 11, feature quantity extraction unit 12, model learning unit 13, satisfaction degree estimation model storage unit 20, and satisfaction degree estimation unit 23. .
  • the satisfaction level estimation model learning device and the satisfaction level estimation device are hierarchically connected to a model for estimating dialogue satisfaction level and a model for estimating speech satisfaction level, and to simultaneously estimate these.
  • the degree estimation model is configured to simultaneously and integrally learn as a single model. This makes it possible to use the relationship between the dialog satisfaction level and the speech satisfaction level, thereby improving the estimation accuracy of the dialog satisfaction level and the speech satisfaction level.
  • the program describing the processing content can be recorded in a computer readable recording medium.
  • a computer readable recording medium any medium such as a magnetic recording device, an optical disc, a magneto-optical recording medium, a semiconductor memory, etc. may be used.
  • this program is carried out, for example, by selling, transferring, lending, etc. a portable recording medium such as a DVD, a CD-ROM, etc. in which the program is recorded.
  • this program may be stored in a storage device of a server computer, and the program may be distributed by transferring the program from the server computer to another computer via a network.
  • a computer that executes such a program first temporarily stores a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. Then, at the time of execution of the process, this computer reads the program stored in its own storage device and executes the process according to the read program. Further, as another execution form of this program, the computer may read the program directly from the portable recording medium and execute processing according to the program, and further, the program is transferred from the server computer to this computer Each time, processing according to the received program may be executed sequentially.
  • ASP Application Service Provider
  • the program in the present embodiment includes information provided for processing by a computer that conforms to the program (such as data that is not a direct command to the computer but has a property that defines the processing of the computer).
  • the present apparatus is configured by executing a predetermined program on a computer, at least a part of the processing contents may be realized as hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Theoretical Computer Science (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Machine Translation (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Medical Informatics (AREA)
  • Telephonic Communication Services (AREA)

Abstract

対話満足度と発話満足度の推定精度を向上する。学習データ記憶部(10)は、複数の発話からなる対話を収録した対話音声と、その対話に対する対話満足度の正解値と、その対話に含まれる各発話に対する発話満足度の正解値とからなる学習データを記憶する。モデル学習部(13)は、対話音声から抽出した発話ごとの特徴量と発話満足度の正解値と対話満足度の正解値とを用いて、発話ごとの特徴量を入力として発話ごとの発話満足度を推定する発話満足度推定モデル部分と、少なくとも発話ごとの発話満足度を入力として対話満足度を推定する対話満足度推定モデル部分とを連結した満足度推定モデルを学習する。

Description

満足度推定モデル学習装置、満足度推定装置、満足度推定モデル学習方法、満足度推定方法、およびプログラム
 この発明は、複数の発話からなる対話全体の満足度および対話中の発話ごとの満足度を推定する技術に関する。
 例えば、コールセンタの運営において、通話中の対話から顧客の満足度を推定する技術が求められている。顧客の満足度は、顧客が対話中に満足や不満を表出させたかどうかを示す段階的カテゴリとし、例えば、満足/普通/不満などの3段階で表すことができる。本明細書では、ある通話において、対話全体での顧客の満足度を「対話満足度」と呼び、対話のうち顧客の発話部分における顧客の満足度を「発話満足度」と呼ぶ。コールセンタの各通話に対して対話満足度を推定できた場合、例えば、対話満足度が“満足”や“不満”の割合をオペレータごとに集計することでオペレータ評価の自動化が可能となる。また、通話中の各発話に対して発話満足度を推定できた場合、例えば、発話満足度が“満足”である区間のみを音声認識してテキスト解析することで顧客の要望を調査するなどの応用が可能である。なお、ここでは対話をコールセンタにおける通話中の対話として説明したが、複数話者により対面/非対面で行われる対話全般についても同様のことが言える。
 上記の類似技術として、顧客の話速などの話し方の特徴や、競合他社の製品名の有無などの言語的特徴を用いて通話ごとの対話満足度を推定する技術が非特許文献1で提案されている。また、顧客の声の高さや相槌の頻度などの特徴量に加え、発話満足度の時系列的な関連性を考慮して、発話満足度を推定することも考えられる。
Youngja Park, Stephen C. Gates, "Towards Real-Time Measurement of Customer Satisfaction Using Automatically Generated Call Transcripts," in Proceedings of the 18th ACM conference on Information and knowledge management, pp. 1387-1396, 2009.
 従来技術では、通話ごとの対話満足度の推定と通話中の発話ごとの発話満足度の推定を別々に行っている。一方、ある通話中の対話満足度と発話満足度とは強い関連性がある。例えば、発話満足度に“不満”が多く表れる通話は、対話満足度も“不満”となることが予想できる。逆に、対話満足度が“満足”の場合、顧客はお礼を述べてから通話を切断することが多いため、通話の終端付近などで発話満足度が“満足”となる可能性が高い。このように、ある通話中の対話満足度と発話満足度とは、一方の情報から他方の情報を推定することが可能であるという関係性がある。しかしながら、従来技術では対話満足度の推定と発話満足度の推定を別々に行っているため、これらの関係性を推定に利用できていない。その結果、対話満足度と発話満足度は共に推定精度が低下している可能性がある。また、このことは通話における顧客の満足度を推定する場合のみならず、会話における発話者の満足度を推定する場合に一般化できる。
 この発明の目的は、上記のような点に鑑みて、対話満足度と発話満足度の関係性を利用し、それぞれの推定精度を向上することである。
 上記の課題を解決するために、この発明の第一の態様の満足度推定モデル学習装置は、複数の発話からなる対話を収録した対話音声と、その対話に対する対話満足度の正解値と、その対話に含まれる各発話に対する発話満足度の正解値とからなる学習データを記憶する学習データ記憶部と、対話音声から抽出した発話ごとの特徴量と発話満足度の正解値と対話満足度の正解値とを用いて、発話ごとの特徴量を入力として発話ごとの発話満足度を推定する発話満足度推定モデル部分と、少なくとも発話ごとの発話満足度を入力として対話満足度を推定する対話満足度推定モデル部分とを連結した満足度推定モデルを学習するモデル学習部と、を含む。
 上記の課題を解決するために、この発明の第二の態様の満足度推定装置は、第一の態様の満足度推定モデル学習装置により学習した満足度推定モデルを記憶するモデル記憶部と、複数の発話からなる対話を収録した対話音声から抽出した発話ごとの特徴量を満足度推定モデルに入力して各発話に対する発話満足度および対話に対する対話満足度を推定する満足度推定部と、を含む。
 この発明によれば、対話満足度と発話満足度の推定精度が向上する。
図1は、満足度推定モデルを説明するための図である。 図2は、満足度推定モデルによる満足度の推定を説明するための図である。 図3は、満足度推定モデルを学習する際の推定誤りの伝播について説明するための図である。 図4は、満足度推定モデル学習装置の機能構成を例示する図である。 図5は、満足度推定モデル学習方法の処理手続きを例示する図である。 図6は、満足度推定装置の機能構成を例示する図である。 図7は、満足度推定方法の処理手続きを例示する図である。
 本発明のポイントは、対話満足度を推定するモデルと発話満足度を推定するモデルとを階層的に連結し、これらを同時に推定する満足度推定モデルを単一のモデルとして同時かつ一体的に学習することである。このような単一のモデルの例を図1に示す。図1のモデルは、推定対象とする対話に含まれる発話ごとの満足度を推定する発話満足度推定モデル部分と、推定対象とする対話全体の満足度を推定する対話満足度推定モデル部分とが階層的に連結して構成されている。
 発話満足度推定モデル部分は、1個の発話に対して1個の発話満足度推定器を構成している。発話満足度推定器は、発話ごとの特徴量を入力とし、その発話の過去の発話または過去と未来の発話に関する情報を用いて、その発話の発話満足度を推定し、その発話の発話満足度の推定値を出力する。また、同時に、対話満足度の推定に寄与する情報(例えば、各発話の長さなど)を発話満足度に付随して出力する。発話満足度推定器は、具体的には、例えば、リカレントニューラルネットワーク(RNN: Recurrent Neural Network)である。
 発話満足度推定器が出力する対話満足度の推定に寄与する情報とは、入力された発話ごとの特徴量からリカレントニューラルネットワークが発話満足度を推定する過程で計算されたすべての情報である。すなわち、発話満足度推定器は、発話ごとの特徴量を入力とし、その発話の発話満足度の推定値とそれを推定するために用いたすべての情報を出力し、対話満足度推定器には、発話満足度推定器が出力するすべての情報が入力される。
 対話満足度推定モデル部分は、1個の発話満足度推定器に対して1個の対話満足度推定器を構成している。対話満足度推定器は、発話満足度推定器が出力する発話満足度の推定値と、その発話満足度に付随し対話満足度の推定に寄与する情報とを入力とし、その発話の過去の発話に関する情報を用いて、対話に含まれる最初の発話から当該発話までの対話満足度の推定値を出力する。対話満足度推定器の具体例は、発話満足度推定器と同様に、リカレントニューラルネットワークである。
 対話満足度と発話満足度との関係は階層関係があると考えられる。すなわち、人間同士の対話では、ある発話が提示された際に、聴き手は、その発話について発話満足度を推定した後、その発話満足度の推定値を踏まえて対話満足度を推定することが予想される。このことから、入力された発話に対して、まず発話満足度を推定し、次に発話満足度の推定値と発話満足度に付随する情報から対話満足度を推定するような階層的なモデルが人間の知覚と一致しており、推定精度に優れると考えられる。図2は、図1に示したモデルが発話満足度および対話満足度を推定する際の動作を示す図である。まず、(1)対話に含まれる各発話の特徴量が発話ごとに発話満足度推定モデル部分に入力され、発話ごとの発話満足度が推定される。次に、(2)発話満足度推定モデル部分で推定された発話満足度が対話満足度推定モデル部分に入力される。これを対話が終了するまで繰り返す。そして、(3)対話満足度推定モデル部分で発話満足度の系列に基づいて一連の発話からなる対話の対話満足度が推定される。
 対話満足度と発話満足度を同時に推定するモデルを単一のモデルとして同時かつ一体的に学習することも推定精度の向上に寄与する。一体的に学習することにより、対話満足度と発話満足度との関係性のモデル化が可能となるだけでなく、対話満足度の推定誤りを発話満足度推定モデル部分に伝播させることが可能となる。図3は、図1に示したモデルにおいて、対話満足度の推定誤りと発話満足度の推定誤りとが伝播する流れを示したものである。このことは、どの特徴量が対話満足度に影響を与えるかを学習することを表している。これにより、発話満足度という部分的な観点と対話満足度という大局的な観点の両方を考慮して満足度を推定することが可能となり、対話満足度と発話満足度の推定精度が共に向上することが期待できる。
 このような複数の推定問題を同時解決するようにモデルを学習する枠組みはマルチタスク学習と呼ばれており、個々の推定問題を解決する場合に比べて精度が向上した例が多数報告されている(例えば、下記参考文献1)。本発明はマルチタスク学習の一種とみなすことができるが、一般的なマルチタスク学習のように複数のタスクを並列に学習するのではなく、複数のタスクを階層的に学習する点が特徴である。
 〔参考文献1〕R. Caruana, “Multitask Learning,” Machine Learning, vol. 28, no. 1, pp.41-75, 1997.
 以下、この発明の実施の形態について詳細に説明する。なお、図面中において同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。
 [満足度推定モデル学習装置]
 実施形態の満足度推定モデル学習装置1は、図4に示すように、学習データ記憶部10、音声区間検出部11、特徴量抽出部12、モデル学習部13、および満足度推定モデル記憶部20を含む。満足度推定モデル学習装置1は、学習データ記憶部10に記憶された学習データを用いて満足度推定モデルを学習し、学習済みの満足度推定モデルを満足度推定モデル記憶部20へ記憶する。満足度推定モデル学習装置1が図5に示す各ステップの処理を行うことにより実施形態の満足度推定モデル学習方法が実現される。
 満足度推定モデル学習装置1は、例えば、中央演算処理装置(CPU: Central Processing Unit)、主記憶装置(RAM: Random Access Memory)などを有する公知又は専用のコンピュータに特別なプログラムが読み込まれて構成された特別な装置である。満足度推定モデル学習装置1は、例えば、中央演算処理装置の制御のもとで各処理を実行する。満足度推定モデル学習装置1に入力されたデータや各処理で得られたデータは、例えば、主記憶装置に格納され、主記憶装置に格納されたデータは必要に応じて中央演算処理装置へ読み出されて他の処理に利用される。満足度推定モデル学習装置1の各処理部は、少なくとも一部が集積回路等のハードウェアによって構成されていてもよい。満足度推定モデル学習装置1が備える各記憶部は、例えば、RAM(Random Access Memory)などの主記憶装置、ハードディスクや光ディスクもしくはフラッシュメモリ(Flash Memory)のような半導体メモリ素子により構成される補助記憶装置、またはリレーショナルデータベースやキーバリューストアなどのミドルウェアにより構成することができる。満足度推定モデル学習装置1が備える各記憶部は、それぞれ論理的に分割されていればよく、一つの物理的な記憶装置に記憶されていてもよい。
 学習データ記憶部10には、満足度推定モデルの学習に用いる学習データが記憶されている。学習データは、少なくとも1個の対象話者の発話と少なくとも1個の相手話者の発話とを含む対話を収録した対話音声と、その対話に対する対話満足度の正解値を示すラベル(以下、「対話満足度ラベル」と呼ぶ)と、その対話に含まれる各発話に対する発話満足度の正解値を示すラベル(以下、「発話満足度ラベル」と呼ぶ)とからなる。対象話者とは、満足度を推定する対象となる話者を表し、例えば、コールセンタの通話では顧客を指す。相手話者とは、対話に参加している話者のうち対象話者以外の話者を表し、例えば、コールセンタの通話ではオペレータを指す。対話満足度ラベルと発話満足度ラベルは人手で付与すればよい。通話満足度および発話満足度は、例えば、満足/普通/不満の3段階のいずれかを表すものとする。
 以下、図5を参照して、実施形態の満足度推定モデル学習装置1が実行する満足度推定モデル学習方法について説明する。
 ステップS11において、音声区間検出部11は、学習データ記憶部10に記憶されている対話音声から音声区間を検出し、1個以上の対象話者の発話を取得する。音声区間を検出する方法は、例えば、パワーのしきい値処理に基づく手法を用いることができる。また、音声/非音声モデルの尤度比に基づく手法などの他の音声区間検出手法を用いてもよい。音声区間検出部11は、取得した対象話者の発話を特徴量抽出部12へ出力する。
 ステップS12において、特徴量抽出部12は、音声区間検出部11から対象話者の発話を受け取り、その発話ごとに特徴量を抽出する。特徴量抽出部12は、抽出した発話ごとの特徴量をモデル学習部13へ出力する。抽出する特徴量は、以下に挙げる韻律特徴、対話特徴、および言語特徴のうち少なくとも一つ以上を用いる。
 韻律特徴は、発話中の基本周波数とパワーの平均・標準偏差・最大値・最小値、発話中の話速、発話中の最終音素の継続長のうち少なくとも一つ以上を用いる。ここで、基本周波数およびパワーは発話をフレーム分割し、フレームごとに求めるものとする。話速および最終音素の継続長を用いる場合、音声認識を用いて発話中の音素系列を推定するものとする。
 対話特徴は、対象話者の直前の発話からの時間、相手話者の発話から対象話者の発話までの時間、対象話者の発話から次の相手話者の発話までの時間、対象話者の発話の長さ、前後の相手話者の発話の長さ、前後の相手話者の発話に含まれる対象話者の相槌数、対象話者の発話に含まれる相手話者の相槌数のうち少なくとも一つ以上を用いる。
 言語特徴は、発話中の単語数、発話中のフィラー数、発話中の感謝の言葉の出現数のうち少なくとも一つ以上を用いる。言語特徴を用いる場合、音声認識を用いて発話中の出現単語を推定し、その結果を用いる。また感謝の言葉は事前登録するものとし、例えば「ありがとう」または「どうも」の出現数を求めるものとする。
 ステップS13において、モデル学習部13は、特徴量抽出部12から発話ごとの特徴量を受け取り、学習データ記憶部10に記憶されている対話音声に対応する対話満足度ラベルと各発話に対応する発話満足度ラベルとを読み込み、発話ごとの特徴量を入力として発話満足度と対話満足度を同時に推定して出力する満足度推定モデルを学習する。モデル学習部13は、学習済みの満足度推定モデルを満足度推定モデル記憶部20へ記憶する。
 満足度推定モデルの構造は図1を用いて上述したとおりであり、発話満足度推定器および対話満足度推定器として、リカレントニューラルネットワーク(RNN)を用いる。ここでは、リカレントニューラルネットワークとして、例えば、長短期記憶リカレントニューラルネットワーク(LSTM-RNN: Long Short-Term Memory Recurrent Neural Network)を用いるものとする。リカレントニューラルネットワークは時系列情報に基づいて推定を行うモデルであるため、入力情報の時間的な変化に基づいて発話満足度や対話満足度を推定することができ、高い推定精度が期待できる。
 対話満足度推定モデル部分の入力は、図1に示すとおり、発話ごとの発話満足度の推定値と、発話満足度推定モデル部分の出力値(LSTM-RNNの出力)の両方を用いる。発話満足度推定モデル部分の出力値には、発話満足度に含まれないが、発話満足度に付随し対話満足度の推定に寄与する情報が含まれているため、対話満足度推定モデル部分の入力に利用する。
 満足度推定モデルの学習は、例えば、既存のLSTM-RNNの学習手法である通時的誤差逆伝播法(BPTT: Back Propagation Through Time)を用いる。ただし、LSTM-RNN以外のRNNを用いてもよく、例えばゲート付き再帰ユニット(GRU: Gated Recurrent Unit)などを用いてもよい。なお、LSTM-RNNは入力ゲートと出力ゲート、もしくは入力ゲートと出力ゲートと忘却ゲートを用いて構成され、GRUはリセットゲートと更新ゲートを用いて構成されることを特徴としている。LSTM-RNNは、双方向のLSTM-RNNを用いても、一方向のLSTM-RNNを用いてもよい。双方向のLSTM-RNNを用いる場合、過去の発話の情報に加えて未来の発話の情報を利用可能となるため、発話満足度および対話満足度の推定精度が向上する一方で、対話に含まれるすべての発話を一度に入力する必要がある。一方向のLSTM-RNNを用いる場合、過去の発話の情報のみを利用可能であるが、対話途中であっても発話満足度を推定することができるというメリットがある。前者は通話分析など、後者はリアルタイムでの顧客の満足度のモニタリングなどに応用可能である。
 満足度推定モデルの学習時には、図3に示したとおり、対話満足度の推定誤りと発話満足度の推定誤りが伝搬される。このとき、対話満足度の推定誤りと発話満足度の推定誤りのどちらを重視させるかを調整可能とすることで、より頑健なモデル学習が可能となる。ここでは、満足度推定モデル全体の損失関数を対話満足度推定モデル部分の損失関数と発話満足度推定モデル部分の損失関数の重み付けにより表現することで上記を実現する。具体的には、満足度推定モデルの損失関数Lを次式とする。
Figure JPOXMLDOC01-appb-M000001
 ただし、λをモデルの損失関数に対する所定の重み、Ltを発話満足度推定モデル部分の損失関数、Lcを対話満足度推定モデル部分の損失関数とする。λは任意に調整することが可能である。
 [満足度推定装置]
 満足度推定装置2は、図6に示すように、満足度推定モデル記憶部20、音声区間検出部21、特徴量抽出部22、および満足度推定部23を含む。満足度推定装置2は、満足度を推定する対象となる対話の音声を収録した対話音声を入力とし、満足度推定モデル記憶部20に記憶された満足度推定モデルを用いて、その対話に含まれる各発話の発話満足度とその対話の対話満足度を推定し、発話満足度の推定値による系列と対話満足度の推定値を出力する。満足度推定装置2が図7に示す各ステップの処理を行うことにより実施形態の満足度推定方法が実現される。
 満足度推定装置2は、例えば、中央演算処理装置(CPU: Central Processing Unit)、主記憶装置(RAM: Random Access Memory)などを有する公知又は専用のコンピュータに特別なプログラムが読み込まれて構成された特別な装置である。満足度推定装置2は、例えば、中央演算処理装置の制御のもとで各処理を実行する。満足度推定装置2に入力されたデータや各処理で得られたデータは、例えば、主記憶装置に格納され、主記憶装置に格納されたデータは必要に応じて中央演算処理装置へ読み出されて他の処理に利用される。満足度推定装置2の各処理部は、少なくとも一部が集積回路等のハードウェアによって構成されていてもよい。満足度推定装置2が備える各記憶部は、例えば、RAM(Random Access Memory)などの主記憶装置、ハードディスクや光ディスクもしくはフラッシュメモリ(Flash Memory)のような半導体メモリ素子により構成される補助記憶装置、またはリレーショナルデータベースやキーバリューストアなどのミドルウェアにより構成することができる。
 満足度推定モデル記憶部20には、満足度推定モデル学習装置1が生成した学習済みの満足度推定モデルが記憶されている。
 以下、図7を参照して、実施形態の満足度推定装置2が実行する満足度推定方法について説明する。
 ステップS21において、音声区間検出部21は、満足度推定装置2に入力された対話音声から音声区間を検出し、1個以上の対象話者の発話を取得する。この対話音声は、学習データの対話音声と同様に、少なくとも1個の対象話者の発話と少なくとも1個の相手話者の発話とを含む。音声区間を検出する方法は、満足度推定モデル学習装置1の音声区間検出部11と同様の方法を用いればよい。音声区間検出部21は、取得した対象話者の発話を特徴量抽出部22へ出力する。
 ステップS22において、特徴量抽出部22は、音声区間検出部21から対象話者の発話を受け取り、その発話ごとに特徴量を抽出する。抽出する特徴量は、満足度推定モデル学習装置1の特徴量抽出部12と同様のものを用いればよい。特徴量抽出部22は、抽出した発話ごとの特徴量を満足度推定部23へ出力する。
 ステップS23において、満足度推定部23は、特徴量抽出部22から発話ごとの特徴量を受け取り、その特徴量を満足度推定モデル記憶部20に記憶されている満足度推定モデルに入力して対話音声の対話満足度と対話音声に含まれる各発話の発話満足度を同時に推定する。満足度推定モデルは、対象話者の発話ごとの特徴量を入力とし、前向き伝播を行うことで、発話ごとの発話満足度の推定値による系列と対話満足度の推定値を同時に得ることができる。満足度推定部23は、発話ごとの発話満足度の推定値による系列と対話満足度の推定値を満足度推定装置2から出力する。
 [変形例]
 上述の実施形態では、満足度推定モデル学習装置1と満足度推定装置2を別個の装置として構成する例を説明したが、満足度推定モデルを学習する機能と学習済みの満足度推定モデルを用いて満足度を推定する機能とを兼ね備えた1台の満足度推定装置を構成することも可能である。すなわち、変形例の満足度推定装置は、学習データ記憶部10、音声区間検出部11、特徴量抽出部12、モデル学習部13、満足度推定モデル記憶部20、および満足度推定部23を含む。
 上述のように、本発明の満足度推定モデル学習装置および満足度推定装置は、対話満足度を推定するモデルと発話満足度を推定するモデルとを階層的に連結し、これらを同時に推定する満足度推定モデルを単一のモデルとして同時かつ一体的に学習するように構成されている。これにより、対話満足度と発話満足度の関係性を利用することができるため、対話満足度と発話満足度の推定精度を向上することができる。
 以上、この発明の実施の形態について説明したが、具体的な構成は、これらの実施の形態に限られるものではなく、この発明の趣旨を逸脱しない範囲で適宜設計の変更等があっても、この発明に含まれることはいうまでもない。実施の形態において説明した各種の処理は、記載の順に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。
 [プログラム、記録媒体]
 上記実施形態で説明した各装置における各種の処理機能をコンピュータによって実現する場合、各装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、上記各装置における各種の処理機能がコンピュータ上で実現される。
 この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。
 また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD-ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。
 このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記憶装置に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。
 また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、本装置を構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。

Claims (8)

  1.  複数の発話からなる対話を収録した対話音声と、上記対話に対する対話満足度の正解値と、上記対話に含まれる各発話に対する発話満足度の正解値とからなる学習データを記憶する学習データ記憶部と、
     上記対話音声から抽出した発話ごとの特徴量と上記発話満足度の正解値と上記対話満足度の正解値とを用いて、発話ごとの特徴量を入力として発話ごとの発話満足度を推定する発話満足度推定モデル部分と、少なくとも発話ごとの発話満足度を入力として対話満足度を推定する対話満足度推定モデル部分とを連結した満足度推定モデルを学習するモデル学習部と、
     を含む満足度推定モデル学習装置。
  2.  請求項1に記載の満足度推定モデル学習装置であって、
     上記発話満足度推定モデル部分は、1個の発話に対して1個の発話満足度推定器を構成するものであり、
     上記発話満足度推定器は、上記発話ごとの特徴量を入力とし、当該発話の前の発話または前後の発話に関する情報を用いて、当該発話の発話満足度を推定して出力するものであり、
     上記対話満足度推定モデル部分は、1個の発話満足度推定器に対して1個の対話満足度推定器を構成するものであり、
     上記対話満足度推定器は、上記発話満足度推定器が出力する発話満足度と、当該発話満足度に付随し対話満足度の推定に寄与する情報とを入力とし、当該発話の前の発話に関する情報を用いて、上記対話に含まれる最初の発話から当該発話までの対話満足度を推定して出力するものである、
     満足度推定モデル学習装置。
  3.  請求項2に記載の満足度推定モデル学習装置であって、
     上記発話満足度推定器および上記対話満足度推定器は、入力ゲートと出力ゲート、入力ゲートと出力ゲートと忘却ゲート、リセットゲートと更新ゲート、のいずれかを備えることを特徴とする、
     満足度推定モデル学習装置。
  4.  請求項1から3のいずれかに記載の満足度推定モデル学習装置であって、
     上記満足度推定モデルの損失関数は、上記発話満足度推定モデル部分の損失関数と上記対話満足度推定モデル部分の損失関数との重み付き和であり、上記発話満足度推定モデル部分の損失関数と上記対話満足度推定モデル部分の損失関数との重みを調整可能としたものである、
     満足度推定モデル学習装置。
  5.  請求項1から4のいずれかに記載の満足度推定モデル学習装置により学習した満足度推定モデルを記憶するモデル記憶部と、
     複数の発話からなる対話を収録した対話音声から抽出した発話ごとの特徴量を上記満足度推定モデルに入力して各発話に対する発話満足度および上記対話に対する対話満足度を推定する満足度推定部と、
     を含む満足度推定装置。
  6.  学習データ記憶部に、複数の発話からなる対話を収録した対話音声と、上記対話に対する対話満足度の正解値と、上記対話に含まれる各発話に対する発話満足度の正解値とからなる学習データが記憶されており、
     モデル学習部が、上記対話音声から抽出した発話ごとの特徴量と上記発話満足度の正解値と上記対話満足度の正解値とを用いて、発話ごとの特徴量を入力として発話ごとの発話満足度を推定する発話満足度推定モデル部分と、少なくとも発話ごとの発話満足度を入力として対話満足度を推定する対話満足度推定モデル部分とを連結した満足度推定モデルを学習する、
     満足度推定モデル学習方法。
  7.  モデル記憶部に、請求項6に記載の満足度推定モデル学習方法により学習した満足度推定モデルが記憶されており、
     満足度推定部が、複数の発話からなる対話を収録した対話音声から抽出した発話ごとの特徴量を上記満足度推定モデルに入力して各発話に対する発話満足度および上記対話に対する対話満足度を推定する、
     満足度推定方法。
  8.  請求項1から4のいずれかに記載の満足度推定モデル学習装置または請求項5に記載の満足度推定装置としてコンピュータを機能させるためのプログラム。
PCT/JP2018/027211 2017-07-21 2018-07-20 満足度推定モデル学習装置、満足度推定装置、満足度推定モデル学習方法、満足度推定方法、およびプログラム WO2019017462A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/630,896 US11557311B2 (en) 2017-07-21 2018-07-20 Satisfaction estimation model learning apparatus, satisfaction estimating apparatus, satisfaction estimation model learning method, satisfaction estimation method, and program
JP2019530606A JP6852161B2 (ja) 2017-07-21 2018-07-20 満足度推定モデル学習装置、満足度推定装置、満足度推定モデル学習方法、満足度推定方法、およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017141790 2017-07-21
JP2017-141790 2017-07-21

Publications (1)

Publication Number Publication Date
WO2019017462A1 true WO2019017462A1 (ja) 2019-01-24

Family

ID=65015511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027211 WO2019017462A1 (ja) 2017-07-21 2018-07-20 満足度推定モデル学習装置、満足度推定装置、満足度推定モデル学習方法、満足度推定方法、およびプログラム

Country Status (3)

Country Link
US (1) US11557311B2 (ja)
JP (1) JP6852161B2 (ja)
WO (1) WO2019017462A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110728997A (zh) * 2019-11-29 2020-01-24 中国科学院深圳先进技术研究院 一种基于情景感知的多模态抑郁症检测方法和系统
JP2020173313A (ja) * 2019-04-09 2020-10-22 富士通株式会社 問題検出装置、問題検出方法および問題検出プログラム
WO2020211820A1 (zh) * 2019-04-16 2020-10-22 华为技术有限公司 语音情感识别方法和装置
CN113516304A (zh) * 2021-06-29 2021-10-19 上海师范大学 基于时空图网络的区域污染物时空联合预测方法及装置
JP7017822B1 (ja) 2021-08-27 2022-02-09 株式会社インタラクティブソリューションズ コンピュータを用いた会話支援方法
WO2022097204A1 (ja) * 2020-11-04 2022-05-12 日本電信電話株式会社 満足度推定モデル適応装置、満足度推定装置、それらの方法、およびプログラム
JP7231894B1 (ja) 2021-08-27 2023-03-02 株式会社インタラクティブソリューションズ コンピュータを用いた会話支援方法
WO2023119675A1 (ja) * 2021-12-24 2023-06-29 日本電信電話株式会社 推定方法、推定装置及び推定プログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11928611B2 (en) * 2019-11-18 2024-03-12 International Business Machines Corporation Conversational interchange optimization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286377A (ja) * 2006-04-18 2007-11-01 Nippon Telegr & Teleph Corp <Ntt> 応対評価装置、その方法、プログラムおよびその記録媒体
JP2011210133A (ja) * 2010-03-30 2011-10-20 Seiko Epson Corp 満足度算出方法、満足度算出装置およびプログラム
WO2014069076A1 (ja) * 2012-10-31 2014-05-08 日本電気株式会社 会話分析装置及び会話分析方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150286627A1 (en) * 2014-04-03 2015-10-08 Adobe Systems Incorporated Contextual sentiment text analysis
US10664661B2 (en) * 2014-09-12 2020-05-26 Nextiva, Inc. System and method for monitoring a sentiment score
US9786270B2 (en) * 2015-07-09 2017-10-10 Google Inc. Generating acoustic models
CA3206209A1 (en) * 2017-03-29 2018-10-04 Google Llc End-to-end text-to-speech conversion
US20190005421A1 (en) * 2017-06-28 2019-01-03 RankMiner Inc. Utilizing voice and metadata analytics for enhancing performance in a call center

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286377A (ja) * 2006-04-18 2007-11-01 Nippon Telegr & Teleph Corp <Ntt> 応対評価装置、その方法、プログラムおよびその記録媒体
JP2011210133A (ja) * 2010-03-30 2011-10-20 Seiko Epson Corp 満足度算出方法、満足度算出装置およびプログラム
WO2014069076A1 (ja) * 2012-10-31 2014-05-08 日本電気株式会社 会話分析装置及び会話分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANDO, ATSUSHI ET AL.: "Review on prediction of customer satisfaction during contact center communication", LECTURE PROCEEDINGS OF THE 2017 SPRING RESEARCH PRESENTATION OF THE ACOUSTICAL SOCIETY OF JAPAN, 1 March 2017 (2017-03-01), pages 145 - 146 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7293826B2 (ja) 2019-04-09 2023-06-20 富士通株式会社 問題検出装置、問題検出方法および問題検出プログラム
JP2020173313A (ja) * 2019-04-09 2020-10-22 富士通株式会社 問題検出装置、問題検出方法および問題検出プログラム
WO2020211820A1 (zh) * 2019-04-16 2020-10-22 华为技术有限公司 语音情感识别方法和装置
US11900959B2 (en) 2019-04-16 2024-02-13 Huawei Technologies Co., Ltd. Speech emotion recognition method and apparatus
CN110728997A (zh) * 2019-11-29 2020-01-24 中国科学院深圳先进技术研究院 一种基于情景感知的多模态抑郁症检测方法和系统
WO2022097204A1 (ja) * 2020-11-04 2022-05-12 日本電信電話株式会社 満足度推定モデル適応装置、満足度推定装置、それらの方法、およびプログラム
CN113516304A (zh) * 2021-06-29 2021-10-19 上海师范大学 基于时空图网络的区域污染物时空联合预测方法及装置
CN113516304B (zh) * 2021-06-29 2024-01-23 上海师范大学 基于时空图网络的区域污染物时空联合预测方法及装置
WO2023026545A1 (ja) * 2021-08-27 2023-03-02 株式会社インタラクティブソリューションズ コンピュータを用いた会話支援方法
JP2023033071A (ja) * 2021-08-27 2023-03-09 株式会社インタラクティブソリューションズ コンピュータを用いた会話支援方法
JP2023033001A (ja) * 2021-08-27 2023-03-09 株式会社インタラクティブソリューションズ コンピュータを用いた会話支援方法
JP7231894B1 (ja) 2021-08-27 2023-03-02 株式会社インタラクティブソリューションズ コンピュータを用いた会話支援方法
JP7017822B1 (ja) 2021-08-27 2022-02-09 株式会社インタラクティブソリューションズ コンピュータを用いた会話支援方法
WO2023119675A1 (ja) * 2021-12-24 2023-06-29 日本電信電話株式会社 推定方法、推定装置及び推定プログラム

Also Published As

Publication number Publication date
US20200152178A1 (en) 2020-05-14
JPWO2019017462A1 (ja) 2020-07-30
US11557311B2 (en) 2023-01-17
JP6852161B2 (ja) 2021-03-31

Similar Documents

Publication Publication Date Title
WO2019017462A1 (ja) 満足度推定モデル学習装置、満足度推定装置、満足度推定モデル学習方法、満足度推定方法、およびプログラム
US10460721B2 (en) Dialogue act estimation method, dialogue act estimation apparatus, and storage medium
JP6933264B2 (ja) ラベル生成装置、モデル学習装置、感情認識装置、それらの方法、プログラム、および記録媒体
US10789943B1 (en) Proxy for selective use of human and artificial intelligence in a natural language understanding system
JP5223673B2 (ja) 音声処理装置およびプログラム、並びに、音声処理方法
US10147418B2 (en) System and method of automated evaluation of transcription quality
CN109964270B (zh) 用于关键短语识别的系统和方法
US10135989B1 (en) Personalized support routing based on paralinguistic information
US20200395028A1 (en) Audio conversion learning device, audio conversion device, method, and program
CN104903954A (zh) 使用基于人工神经网络的亚语音单位区分的说话人验证及识别
JP6780033B2 (ja) モデル学習装置、推定装置、それらの方法、およびプログラム
EP3739583A1 (en) Dialog device, dialog method, and dialog computer program
JP6823809B2 (ja) 対話行為推定方法、対話行為推定装置およびプログラム
JP6553015B2 (ja) 話者属性推定システム、学習装置、推定装置、話者属性推定方法、およびプログラム
US11250860B2 (en) Speaker recognition based on signal segments weighted by quality
Hara et al. Estimation Method of User Satisfaction Using N-gram-based Dialog History Model for Spoken Dialog System.
US12136435B2 (en) Utterance section detection device, utterance section detection method, and program
Esmaili et al. An automatic prolongation detection approach in continuous speech with robustness against speaking rate variations
US11798578B2 (en) Paralinguistic information estimation apparatus, paralinguistic information estimation method, and program
US11538480B1 (en) Integration of speech processing functionality with organization systems
WO2022097204A1 (ja) 満足度推定モデル適応装置、満足度推定装置、それらの方法、およびプログラム
US20220122584A1 (en) Paralinguistic information estimation model learning apparatus, paralinguistic information estimation apparatus, and program
JP7216348B2 (ja) 音声処理装置、音声処理方法、および音声処理プログラム
US20240105206A1 (en) Seamless customization of machine learning models
Perez Dialog state tracking, a machine reading approach using a memory-enhanced neural network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530606

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835629

Country of ref document: EP

Kind code of ref document: A1