[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019017032A1 - Computer system, method and program for accumulating asset having value which fluctuates over time - Google Patents

Computer system, method and program for accumulating asset having value which fluctuates over time Download PDF

Info

Publication number
WO2019017032A1
WO2019017032A1 PCT/JP2018/016279 JP2018016279W WO2019017032A1 WO 2019017032 A1 WO2019017032 A1 WO 2019017032A1 JP 2018016279 W JP2018016279 W JP 2018016279W WO 2019017032 A1 WO2019017032 A1 WO 2019017032A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
period
prediction
time
foreign currency
Prior art date
Application number
PCT/JP2018/016279
Other languages
French (fr)
Japanese (ja)
Inventor
一弥 榊原
Original Assignee
株式会社じぶん銀行
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社じぶん銀行 filed Critical 株式会社じぶん銀行
Priority to SG11202000540UA priority Critical patent/SG11202000540UA/en
Publication of WO2019017032A1 publication Critical patent/WO2019017032A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/02Banking, e.g. interest calculation or account maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/06Asset management; Financial planning or analysis

Definitions

  • the present invention relates to computer systems, methods, and programs for accumulating assets that change in value over time.
  • Periodically accumulated foreign exchange security trading system that periodically purchases various foreign currency denominated foreign currencies (hereinafter referred to as "foreign currency”), accumulates the purchased foreign currency, and transmits the profit and loss evaluation information of the accumulated foreign currency to the terminal are known (see, for example, Patent Document 1).
  • the present invention has been made in view of such problems, and the highest or lowest value (that is, the maximum value or the minimum value) of the value of an asset whose value fluctuates with time over a predetermined period
  • a specific value such as a specific ranking value (eg, second lowest value, tenth highest value etc)
  • a specific ranking value eg, second lowest value, tenth highest value etc
  • the present invention provides a computer system for accumulating foreign currency whose value changes as time passes, and the computer system predicts when the value of the foreign currency will be the lowest price in a specific rank within a predetermined period of time And purchasing the foreign currency at the predicted time.
  • the predicting includes dividing the predetermined period into a plurality of periods, and when the value of the foreign currency becomes a low price of a specific rank among the plurality of periods after the division. And determining a period of time to which it belongs.
  • the predicting further comprises: (1) further dividing into a plurality of periods the period in which it is determined that the time when the value of the foreign currency becomes a low in a specific rank belongs to; Among the multiple periods after division, determining the period to which the time when the value of the foreign currency becomes a specific low price belongs, and when the value when the value of the foreign currency becomes a low low in a specific order And (d) repeating the determined period until the value of the foreign currency is as long as the value of the specific low price.
  • the determining includes determining a period in which the average value of the value of the foreign currency is low among the plurality of divided periods.
  • the determining determines a period to which a time when the value of the foreign currency becomes a low price of a specific rank among a plurality of divided periods using each of a plurality of prediction models. And, of the plurality of periods after the division, a period determined to be a period to which a time when the value of the foreign currency becomes a low in a specific rank belongs to the foreign currency Determining that it is the period to which the value falls in a particular low position.
  • the determining determines a period to which a time when the value of the foreign currency becomes a low price of a specific rank among a plurality of divided periods using each of a plurality of prediction models. And for each of the first half of the plurality of divided periods, the number of prediction models determined to be the period to which the time when the value of the foreign currency is a specific low price belongs. And determining that a period in which the number of the prediction models is equal to or more than a predetermined number is a period in which the time when the value of the foreign currency is a specific low price belongs.
  • the determining further includes changing the predetermined number according to a relative position of the divided period with respect to the entire predetermined period.
  • the plurality of time periods is two time periods.
  • the predicting includes suppressing predicting a period within a predetermined suppression period from a start point of the predetermined period as a period when the value of the foreign currency becomes a specific rank low price.
  • the predicting and the purchasing are repeated.
  • the purchasing is performed automatically without a user's input operation for purchasing the foreign currency at a time when the predicted value of the foreign currency becomes a low in a specific rank. .
  • the specific low price is the lowest price.
  • the low price of the specific rank is the nth lowest value (n is an integer of 2 or more).
  • the present invention provides a method for accumulating foreign currency whose value changes as time passes, the method is executed in a computer system, and the method determines the value of the foreign currency within a predetermined time period.
  • the method may include predicting when the ranking will be low and purchasing the foreign currency at the predicted time.
  • the present invention provides a program for accumulating foreign currency whose value changes as time passes, and when the program is executed in a computer system, the value of the foreign currency is ranked in a specific order within a predetermined period. Allowing the computer system to perform processing including predicting when the price will be low and purchasing the foreign currency at the predicted time.
  • the present invention is configured to predict when the value of the foreign currency will be a specific rank value within a predetermined period of time based on past value fluctuations of the foreign currency whose value changes as time passes.
  • the computer system of the present invention is further configured to issue the foreign currency transaction request at the predicted time.
  • the present invention provides a program to be executed in a computer system, said program, when executed, said foreign country within a predetermined period of time based on past value fluctuations of foreign currency whose value fluctuates as time passes.
  • the computer system is caused to perform processing including predicting when the value of the currency will be a particular rank value.
  • the processing further comprises issuing the foreign currency transaction request at the predicted time.
  • the value of an asset whose value fluctuates with time over time is the highest or lowest (ie maximum or minimum) or value of a particular rank (eg 2)
  • a particular rank eg 2
  • Computer systems, methods, and programs can be provided that allow one to predict particular values, such as the second lowest value, the tenth highest value, etc.).
  • FIG. 8 is a view showing an example of the data configuration of information on accumulation of value fluctuation assets stored in the database unit 220.
  • 5 is a flowchart illustrating an example of a process 500 in the computer system 200 for realizing a new financial product.
  • the flowchart which shows one example of the processing which predicts the time when value of the value fluctuation asset becomes the lowest in the specified value prediction AI within the specified period with step S501.
  • FIG. 5 is a flowchart illustrating an example of processing in a case where the processing of step S602 is performed using a plurality of prediction models. Processing in the case of performing the process of step S602 using a plurality of prediction models, and limiting the prediction of the first half of a predetermined period as the time when the value of the value fluctuation asset becomes the lowest value in the predetermined period.
  • the flowchart which shows an example.
  • the graph which shows an example of the time change of a US dollar price (yen).
  • the graph which shows an example of the time change of a US dollar price (yen).
  • FIG. 7 shows an example of a computer system 200 'that is an alternative configuration of computer system 200 for implementing a new financial product.
  • AI foreign currency deposits use artificial intelligence (AI) to predict the day when the target foreign currency will be the lowest in a given period, and the day when the target foreign currency is predicted to be the lowest. It is an accumulated deposit that accumulates the target foreign currency every predetermined period by purchasing. According to AI foreign currency reserve, it is possible to purchase foreign currency at a favorable exchange rate than conventional foreign currency reserve. As a result, it is possible to further reduce the risk due to exchange rate fluctuations.
  • AI is an abbreviation of "Artificial Intelligence", a technology for artificially implementing human intelligence (or intelligence that surpasses human intelligence) on a computer system, or such technology Refers to a computer system implemented.
  • FIG. 1 shows an example of data flow between a user, a bank and a foreign exchange market in an AI foreign currency funded deposit.
  • the target foreign currency is accumulated monthly from April.
  • Step S101 The user 10 applies to the bank 20 for an AI foreign currency reserve deposit. This starts the data flow of AI foreign currency reserve deposits.
  • the application of the AI foreign currency savings deposit is made, for example, by the user 10 accessing the bank system of the bank 20 using a user device (for example, a smart phone) and operating the user device according to a predetermined application procedure. Alternatively, such an application may be made as the user 10 submits an application for an AI foreign currency reserve deposit to the window of the bank 20.
  • the user 10 sets, for example, a reserve currency, a reserve amount, a target amount, and the like. For example, in the application, the user 10 may set to accumulate the AUD for 10,000 yen and 1,000,000 yen. At this time, the user 10 can not set the timing of funding (for example, on what day every month the AUD is to be purchased).
  • the bank 20 receives an application for an AI foreign currency-funded deposit and processes for the application. When the procedure by the bank 20 is completed, the bank system of the bank 20 executes processing for AI foreign currency reserve deposits.
  • the banking system of the bank 20 predicts, for example, the first day of April when the target foreign currency will be lowest in April. Such prediction is performed using AI (Artificial Intelligence). For example, suppose that April 14 is predicted to be the day when the target foreign currency becomes the lowest price.
  • AI Artificial Intelligence
  • Step S102 On April 14, the bank 20 transmits a purchase request to the foreign exchange market 30 to purchase the target foreign currency using the Japanese yen of the amount set by the user 10.
  • Step S103 In response to the purchase request from the bank 20, the foreign exchange market 30 sells the target foreign currency to the bank 20 at the exchange rate of April 14. The bank 20 accumulates the target foreign currency purchased for April from the foreign exchange market 30 in the account of the user 10.
  • Step S104 The bank 20 reports to the user 10 that the foreign currency to be purchased for April is accumulated in the account of the user 10.
  • the banking system of the bank 20 predicts, for example, the first day of May when the target foreign currency will be lowest in May. Such prediction is performed using AI (Artificial Intelligence). For example, suppose that it is predicted that May 2nd will be the day when the target foreign currency becomes the lowest price.
  • AI Artificial Intelligence
  • Step S105 The bank 20 transmits a purchase request to the foreign exchange market 30 on the 2nd of May using the Japanese yen of the amount set by the user 10 to purchase the target foreign currency.
  • Step S106 In response to the purchase request from the bank 20, the foreign exchange market 30 sells the target foreign currency to the bank 20 at the exchange rate of May 2.
  • the bank 20 accumulates the target foreign currency purchased for May from the foreign exchange market 30 in the account of the user 10.
  • Step S107 The bank 20 reports to the user 10 that the target foreign currency purchased for May has been accumulated in the account of the user 10.
  • the banking system of the bank 20 predicts, for example, the first day of June when the target foreign currency becomes the lowest in June. Such prediction is performed using AI (Artificial Intelligence). For example, it is assumed that June 28 is predicted to be the day when the target foreign currency becomes the lowest price.
  • AI Artificial Intelligence
  • Step S108 The bank 20 transmits a purchase request to the foreign exchange market 30 on the 28th of June using the Japanese yen of the amount set by the user 10 to purchase the target foreign currency.
  • Step S109 In response to the purchase request from the bank 20, the foreign exchange market 30 sells the target foreign currency to the bank 20 at the exchange rate of June 28.
  • the bank 20 accumulates the target foreign currency purchased for June from the foreign exchange market 30 in the account of the user 10.
  • Step S110 The bank 20 reports to the user 10 that the target foreign currency purchased for June has been accumulated in the user 10 account.
  • AI foreign currency reserve deposits the day when the target foreign currency becomes the lowest in a predetermined period is predicted using AI (Artificial Intelligence), and the day when the target foreign currency is predicted to be the lowest. Target foreign currency is purchased. In this way, foreign currency is accumulated every predetermined period.
  • AI foreign currency reserve it is possible to purchase and accumulate foreign currency at a favorable exchange rate than a conventional foreign currency reserve which purchases foreign currency on a fixed date every month. As a result, it is possible to further reduce the risk due to exchange rate fluctuations. This allows mark-to-market valuation of foreign currency assets to be increased at the end of any foreign currency purchase cycle.
  • the timing of the prediction is not limited thereto.
  • the prediction may be made before reaching the trading period (e.g., the day before the trading month).
  • AI is used to predict the day when the target foreign currency becomes the lowest price in a predetermined period, but the present invention is not limited thereto.
  • AI it becomes the fifth lowest value on a day other than the day when the target foreign currency becomes the lowest price within the predetermined period, for example, the day when the target foreign currency becomes the second lowest value within the predetermined period
  • the day having the 10th lowest value, the day having the 14th lowest value, etc. may be predicted. This is a more effective method when accumulating foreign currency that has high randomness of value change and is difficult to predict.
  • foreign currency that has high randomness of value change and is difficult to predict by not aiming at the lowest price, it is possible to avoid the highest price without taking the lowest price, so the final expected value improves.
  • the bank 20 reports to the user 10 every time the target foreign currency is accumulated, but the necessity and timing of the report to the user 10 are arbitrary.
  • the bank 20 may not actively report to the user 10, or may report to the user after a certain number of accumulations have been completed.
  • the new financial product is not limited thereto.
  • trading is not limited to purchasing or funding.
  • the transaction may be a sale.
  • AI Artificial Intelligence
  • the day when the target foreign currency becomes the highest within a predetermined period is predicted, and the target foreign currency is sold on the day when the target foreign currency is predicted to become the highest.
  • the object of the transaction is not limited to foreign currency.
  • the object of the transaction may be any asset whose value changes as time passes (hereinafter, also referred to as “value fluctuation asset”).
  • value fluctuation asset examples include, but are not limited to, foreign currency, mutual funds, gold, commodities (crude oil, corn etc) etc.
  • new financial instruments use artificial intelligence (AI) to target value-changing assets within specified time periods (maximum value, minimum value, 14th lowest value, or 5th highest value, etc.) Forecasting the time (for example, seconds, minutes, hours, days, or weeks) to be a specific ranking value, and within the time when the target value fluctuation asset is predicted to be the lowest price or the specific ranking low
  • AI artificial intelligence
  • a portfolio of value change assets by purchasing the target value change asset or selling the target value change asset within the time the target value change asset is expected to be at a high or a specific high. It is a commodity that makes it possible to carry out the formation of With this new financial instrument, it is possible to buy or sell value-changing assets at a price that is more advantageous than conventional funded financial instruments. As a result, it is possible to further reduce the risk of value change and increase the value of the evaluation.
  • FIG. 2 shows an example of the configuration of a computer system 200 for realizing the above-mentioned new financial product.
  • the computer system 200 is, for example, a computer system used in the bank 20.
  • Computer system 200 is connected to asset trading computer system 300 via network 400.
  • the type of the network 400 does not matter.
  • the network 400 may be, for example, the Internet or a LAN.
  • the asset trading computer system 300 is a computer system that includes a server device and the like that can execute processing for trading of value fluctuation assets.
  • the asset trading computer system 300 is, for example, a computer system used in the foreign exchange market 30.
  • the asset trading computer system 300 may be, for example, a computer system managed by a trading brokerage company or trading party such as a short-listed company participating in the foreign exchange market 30.
  • the asset trading computer system 300 is configured to perform processing to sell value changing assets in response to a request to purchase value changing assets.
  • the asset trading computer system 300 is also configured to perform processing to purchase value changing assets in response to a request to sell the value changing assets.
  • the computer system 200 is able to trade value-varying assets by being connected to the asset trading computer system 300.
  • the computer system 200 includes a server device 210 and a database unit 220 connected to the server device 210.
  • the server device 210 includes an interface unit 211, a processor unit 212, and a memory unit 213.
  • the interface unit 211 is configured to control communication via the network 400.
  • the interface unit 211 can transmit information to the outside of the server device 210, and can receive information from the outside of the user device 210.
  • the interface unit 211 transmits a request for purchase of a value change asset to the asset transaction computer system 300 via the network 400.
  • the interface unit 211 transmits, to the asset trading computer system 300, a request for sale of value fluctuation assets via the network 400.
  • the interface unit 211 transmits information to the database unit 220 connected to the server device 210, and receives information from the database unit 220.
  • the processor unit 212 controls the overall operation of the server device 210.
  • the processor unit 212 reads a program stored in the memory unit 213 and executes the program. This enables the server device 210 to function as a device that executes a desired step.
  • the processor unit 212 can perform part or all of the process of accumulating value fluctuation assets.
  • the processor unit 212 may be implemented by a single processor or may be implemented by a plurality of processors.
  • the memory unit 213 stores a program for executing a process in the server apparatus 210, data required to execute the program, and the like.
  • a program for trading value-varying assets or a program for accumulating value-varying assets for example, a program for realizing the processing shown in FIGS. 5 and 6A to 6C described later
  • Part or all is stored.
  • the program may be pre-installed in the memory unit 213.
  • the program may be installed in the memory unit 213 by being downloaded via the network 400.
  • the memory unit 213 can be implemented by any storage means.
  • the database unit 220 stores, for each user, information on the accumulation of value fluctuation assets.
  • the information on the accumulation of the value change asset includes the information on the accumulation destination of the value change asset.
  • information on the value fluctuation asset accumulated in the value fluctuation asset accumulation destination for example, purchase time of the value fluctuation asset, purchase price of the value fluctuation asset, purchase amount of the value fluctuation asset
  • Accumulated amount of value fluctuation assets etc.
  • Information on where to deposit value change assets is information on value change assets sold from where value change assets are stored (for example, sale time of value change assets, sale price of value change assets, sale amount of value change assets, etc.) May also be included.
  • the information on the deposit destination of the value change asset is the information on the foreign currency reserve account, and information on the foreign currency set up in the foreign currency reserve account (for example, purchase date and time of foreign currency, purchase price of foreign currency This may include foreign currency purchases, foreign currency reserve totals, etc.) and information on foreign currencies sold from foreign currency funding accounts (eg, foreign currency sales date, foreign currency sales prices, foreign currency sales volumes, etc.).
  • the database unit 220 may store, for example, past value fluctuation data.
  • the past value change data can be used for learning of a specific value prediction AI described later to predict future value change.
  • the historical value change data used for learning is the value change data of the target asset with respect to the currency for purchase (for example, Japanese yen) (for example, when purchasing and accumulating the US dollar in Japanese yen, the value change of the US dollar relative to Japanese yen Data) can be included.
  • the historical value change data used for learning includes the value change data of the target asset relative to the currency for purchase as well as the change in value of the target asset relative to other currencies (eg, US dollar, Australian dollar, euro, NZ dollar, etc.) Data or data such as S & P 500 index, Nikkei Stock Average, German stock index, or WTI crude oil price may be included.
  • the database unit 220 can also store, for example, learned value fluctuation tendencies. When a specific value prediction AI to be described later uses a multilayer perceptron, the database unit 220 may store a weight vector of each node established by learning.
  • FIG. 3 shows an example of a data configuration of information on accumulation of value fluctuation assets stored in the database unit 220. As shown in FIG.
  • the database unit 220 stores, for each user, information on a foreign currency funding account.
  • the database unit 220 includes a database 221 for storing information on a first user's foreign currency accumulation account and a database 222 for storing information on a second user's foreign currency accumulation account.
  • the database 221 for storing the information of the first user's foreign currency funding account is, for example, the foreign currency funding account number of the first user who started the dollar-denominated financial deposit from April 2017, the foreign currency purchase date, Includes foreign currency purchase price and foreign currency reserve capital.
  • the database 221 stores information that the first user purchased $ 113 on April 14, 2017, and the accumulated total amount became $ 113, and the first user is stored on May 2, 2017.
  • the database 222 for storing the information of the second user's foreign currency funding account is, for example, the foreign currency funding account number of the second user who started the euro-denominated financial deposit from July 2016, the date and time of purchase of the foreign currency, Includes foreign currency purchase price and foreign currency reserve capital.
  • the database 221 may store information that the second user purchased 520 euros on July 12, 2016, and the accumulated total amount is 520 euros.
  • An AI capable of predicting hour, minute, hour, day, or week
  • the specific value prediction AI uses the multilayer perceptron 450 as a prediction model.
  • FIG. 4 shows an example of a multilayer perceptron 450 used by the specific value prediction AI.
  • the multilayer perceptron 450 has an input layer, a hidden layer, and an output layer.
  • the multilayer perceptron 450 is shown to have two hidden layers, but the number of hidden layers is not limited thereto.
  • the multilayer perceptron 450 can comprise one or more hidden layers.
  • each layer of the input layer, hidden layer, and output layer of multilayer perceptron 450 can include any number of nodes.
  • each layer may include nodes, and each hidden layer may include the same number of nodes so that the nodes decrease as going from the input layer to the output layer.
  • the specific value prediction AI can predict future changes in the value of value change assets by learning past value change data using the multi-layer perceptron 450.
  • the past value change data to be learned includes, for example, value change data of the asset to be predicted relative to the currency for purchase (for example, Japanese yen).
  • historical value change data to be learned may include value change data of the asset being forecasted for a currency other than the currency for purchase (e.g., USD, AUD, EUR, NZD, etc.), or , Asset price data other than the asset to be forecasted, such as the S & P 500 index, Nikkei Stock Average, the German stock index, or WTI crude oil prices.
  • the specific value prediction AI can establish the weight vector of each node of the multilayer perceptron 450 by learning past value variation data as training data. For example, the specific value prediction AI performs learning using data of a fixed period of at least one kind of value fluctuation data as teacher input data, and value fluctuation data of an asset to be predicted after the predetermined period as teacher output data. be able to.
  • the teacher output data may be, for example, an average value of a predetermined period of the asset to be predicted after a predetermined period.
  • the multilayer perceptron 450 having a weight vector of each node established by learning with such teacher output data outputs prediction of an average value of a future predetermined period, when value fluctuation data of the immediately preceding period is input. Will be able to
  • the output data for teachers is, for example, whether the asset to be predicted has the lowest price in the first half of a certain period after a certain period (for example, January, 10 business days, 6 business days, 2 business days, etc.) It may be a binary value (0 or 1) indicating whether it is the lowest price.
  • the multilayer perceptron 450 having a weight vector of each node established by learning based on such teacher output data may receive a certain period of time (for example, January, 10) when value fluctuation data of the immediately preceding period is input. It is possible to output a forecast as to whether the price will be the lowest in the first half of the business day, 6 business days, 2 business days, etc.).
  • the output data for teacher is, for example, a period in which an asset to be predicted is divided into a plurality of periods after a certain period (for example, January, 10 business days, 6 business days, 2 business days, etc.) It may be a value indicating which period of the period the lowest price will be.
  • the multilayer perceptron 450 having a weight vector of each node established by learning based on such teacher output data may receive a certain period of time (for example, January, 10) when value fluctuation data of the immediately preceding period is input. It is possible to output a forecast of which period of the business day, 8 business days, 4 business days, etc.) is divided into a plurality of periods.
  • Specific value prediction AI using multi-layer perceptron 450, from the past value fluctuation data, for example, "The month of the big uptrend is likely to be the lowest in the first half of the month, the second half of the month is likely to be the highest "The big downtrend month is likely to have the lowest price in the second half of the month, and the first half of the month is likely to have the highest price.”
  • the specific value prediction AI is based on the amount of fluctuation such as “always falls after a day rising above a certain threshold” or “always rises after a day falling above a certain threshold” from past value fluctuation data, for example. Value change tendency can be learned.
  • the learning result is stored in the database unit 220 together with past fluctuation data.
  • the specific value prediction AI utilizes the multi-layer perceptron 450, and based on the learning result, the value of the value fluctuation asset has a specific value (for example, the lowest price, the highest value, the 14th lowest value, or Predict a time (for example, seconds, minutes, hours, days, or weeks) to be a specific rank value such as the fifth highest value.
  • the input to the multilayer perceptron 450 for processing of the prediction may be value change data of a period immediately prior to the predetermined period to be predicted.
  • the input to the multi-layer perceptron 450 for processing the forecast may be value change data of the forecasted asset relative to the buying currency (e.g. Japanese yen), but a currency other than the buying currency (e.g.
  • the asset price data of the target asset against the Euro, NZ Dollar, etc.) or asset price data other than the asset to be forecasted such as the S & P 500 Index, Nikkei Stock Average, German Stock Price Index, or WTI crude oil price It may be input in the process of prediction.
  • the input to the multi-layer perceptron 450 may be, for example, value change data for 16 days immediately before a predetermined period to be predicted, value change data for immediately preceding 32 days, or value change data for immediately preceding 64 days. It should be noted that the more data that is input to the multilayer perceptron 450, the better the prediction accuracy, but the more computational complexity increases as the data increases.
  • the prediction accuracy improves as the amount of past value fluctuation data learned increases, but also the calculation amount for learning increases as the data increases. Furthermore, as the number of types of historical value fluctuation data learned increases, the prediction accuracy improves more, but when unrelated data is learned for prediction, the specific value prediction AI becomes confused and the prediction accuracy decreases. It should be noted that there is a risk of
  • the multilayer perceptron 450 is an example of a prediction model, and the specific value prediction AI can predict when the value of the value fluctuation asset becomes a specific value using any other prediction model.
  • the specific value prediction AI can use CNN (Convolutional Neural Network), recurrent neural network (RNN) or the like as a prediction model to predict when the value of the value fluctuation asset becomes a specific value.
  • CNN Convolutional Neural Network
  • RNN recurrent neural network
  • CNN has better prediction accuracy than multilayer perceptron 450.
  • the specific value prediction AI can use a plurality of prediction models to predict when the value of the value fluctuation asset becomes a specific rank value.
  • the plurality of prediction models may be, for example, a plurality of prediction models that differ in the type or amount of past value fluctuation data used for learning.
  • the plurality of prediction models may be, for example, a plurality of prediction models that differ in type or amount of value fluctuation data of an immediately preceding period input for prediction.
  • the plurality of prediction models may be, for example, a plurality of prediction models having different types of neural networks to be used, such as a prediction model using the multilayer perceptron 450, a prediction model using a CNN, and a prediction model using an RNN.
  • the specific value prediction AI improves prediction accuracy by using each of a plurality of prediction models, taking majority of the prediction results, and predicting when the value of the value fluctuation asset becomes a specific rank value. It is possible.
  • each component of the server device 210 is provided in the server device 210, but the present invention is not limited to this. It is also possible that any one of the components of the server device 210 is provided outside the server device 210.
  • each hardware component may be connected via an arbitrary network. At this time, the type of network does not matter.
  • Each hardware component may be connected via, for example, a LAN, may be wirelessly connected, or may be wired.
  • the database unit 220 is provided outside the server device 210, but the present invention is not limited to this. It is also possible to provide the database unit 220 inside the server apparatus 210. At this time, the database unit 220 may be implemented by the same storage unit as the storage unit that implements the memory unit 213, or may be implemented by a storage unit different from the storage unit that implements the memory unit 213. In any case, the database unit 220 is configured as a storage unit for the server device 210.
  • the configuration of the database unit 220 is not limited to a specific hardware configuration.
  • the database unit 220 may be configured by a single hardware component or may be configured by a plurality of hardware components.
  • the database unit 220 may be configured as an external hard disk drive of the server device 210 or may be configured as storage on a cloud connected via the network 400.
  • FIG. 5 shows an example of a process 500 in a computer system 200 for realizing a new financial product.
  • a process 500 for accumulating assets whose value changes as time passes will be described as an example.
  • the specific value prediction AI implemented by the computer system 200 predicts when the value of the value fluctuation asset will be the lowest value in a predetermined period.
  • the specific value prediction AI predicts, for example, when the value of the value fluctuation asset will be the lowest value in a predetermined period, by the process described later with reference to FIG.
  • the predetermined period may be an interval for accumulating value fluctuation assets.
  • the predetermined period may be January (or 23 business days).
  • the predetermined period may be one week (or five business days).
  • the predetermined period may be one day (or nine hours).
  • the time when the value of the value fluctuation asset becomes the lowest value in a predetermined period may be, for example, any time unit such as seconds, minutes, hours, days, or weeks.
  • the processor unit 212 of the server apparatus 210 executes a process of purchasing the value fluctuation asset. Specifically, the processor unit 212 transmits a purchase request for value fluctuation asset to the asset transaction computer system 300 via the interface unit 211, and executes processing for purchasing a desired value fluctuation asset from the asset transaction computer system. .
  • the processor unit 212 may store information of the purchased value fluctuation asset in the database unit 220.
  • step S501 and S502 value fluctuation assets are accumulated for each predetermined period.
  • the information on the accumulated value fluctuation asset is stored in the database unit 220.
  • step S501 prior to step S502, the user inputs in order to confirm with the user about purchasing the value change asset when the value of the value change asset predicted in step S501 is the lowest price.
  • An operation may be performed.
  • step S502 is preferably performed automatically without input operation by the user. The need for the user to confirm each time a value change asset is purchased is annoying for the user and impairs convenience.
  • the user's consent may be obtained at the time of application for value change asset accumulation by the user.
  • step S501 a time when the value of the value fluctuation asset becomes the lowest value in a predetermined period is predicted, but in step S501 'instead of step S501, the value of the value fluctuation asset in the predetermined period
  • a specific rank low for example, the second lowest value, the fifth lowest value, the 10th lowest value, the 14th lowest value, ie, the nth lowest value (n is an integer of 2 or more)
  • n is an integer of 2 or more
  • the process in computer system 200 may be a process for selling an asset whose value changes as time passes.
  • the specific value prediction AI predicts when the value of the value fluctuation asset becomes the highest value within a predetermined period, and reaches the time when the value of the predicted value fluctuation asset becomes the highest value.
  • the processor unit 212 of the server apparatus 210 may execute a process of selling the value change asset.
  • the value of the value fluctuation asset within a predetermined period is high at a specific rank (for example, the second highest value, the fifth highest value, the tenth highest)
  • the value, the 14th highest value, that is, the n-th highest value may be predicted, which has high randomness of the value change of the value change asset, This is a more effective method when it is difficult to predict, and by not aiming for the highest price, the lowest price can be avoided even if the highest price is not taken, thus improving the final expected value. Can achieve stable asset sales.
  • the specific value prediction AI determines that the value of the value fluctuation asset has a specific value (highest value, lowest value, nth lowest value, or nth value) within a predetermined period.
  • the server device 210 is predicted in step S 502 when it is predicted that the time to become a high value (n is an integer of 2 or more) and a time when the value of the predicted value fluctuation asset becomes a specific value.
  • the processor unit 212 of may be a process of executing a process of trading (buying or selling) value change assets.
  • predicting when it will be a value of a specific rank may be switched for each target value change asset. For example, if you analyze historical value fluctuation data in a certain value fluctuation asset and it is judged that there is no trend in more than 9/12 months in a year, when targeting that value fluctuation asset Instead of predicting when the lowest price / highest price will be reached, it is also possible to predict when the value of a specific ranking will be reached.
  • the specific ranking may be set by the specific value prediction AI or may be set manually, in consideration of price fluctuations of value fluctuation assets.
  • the specific order may be set individually for each of the target value change assets. For example, a back test may be used to verify the optimum order in which order the specific order should be.
  • FIG. 6A shows an example of a process of predicting in step S501 when the value of the value fluctuation asset is the lowest value in the predetermined value prediction AI within a predetermined period.
  • the specific value prediction AI predicts when the value of the value fluctuation asset will be the lowest value in a predetermined period by binary search, as described below.
  • binary search since an appropriate prediction model can be used according to the width of the search, prediction can be performed with high accuracy. For example, if the search width is long-term, a prediction model for predicting long-term fluctuation can be used, and as the search width becomes short, a prediction model for predicting short-term fluctuation can be used. In general, a model that predicts short-term fluctuations has better prediction accuracy than a prediction model that predicts long-term fluctuations.
  • the specific value prediction AI divides a predetermined period into two periods. For example, if the predetermined period is February (46 business days), the specific value prediction AI may have 46 business days, the first period including the first business day to the 23rd business day, and the 24th business day to It may be divided into a second period including the 46th business day. For example, in the case where the predetermined period is January (23 business days), the specific value prediction AI includes 23 business days, the first period including the first business day to the twelfth business day, and the thirteenth business day to It may be divided into a second period including the 23rd business day.
  • the two periods after division may be the same length or different lengths.
  • the two time periods after division may each include a time period of any length.
  • step S602 the specific value prediction AI determines, of the two periods after the division in step S601, the period to which the time when the value of the value fluctuation asset becomes the lowest value belongs.
  • the period in which the time when the value of the value fluctuation asset becomes the lowest value belongs can be determined, for example, using a prediction model that predicts the fluctuation of the prediction target period.
  • the specific value prediction AI determines, for example, a period in which the average value of the value of the value fluctuation asset is low among two periods after division. Do.
  • the specific value prediction AI learns past value fluctuation data as teacher data so that prediction of an average value in a predetermined future period can be output.
  • step S602 the specific value prediction AI determines a period to which the time when the value of the value fluctuation asset becomes the lowest price belongs, out of the two periods after the division in step S601, using a plurality of prediction models. You may At this time, for example, the process shown in FIG. 6B may be performed.
  • FIG. 6B shows an example of processing in the case where the processing of step S602 is performed using a plurality of prediction models.
  • the specific value prediction AI uses, for each of the plurality of prediction models, a period to which the time when the value of the value fluctuation asset becomes the lowest price belongs, out of the two periods after the division in step S601. judge.
  • the specific value prediction AI uses five prediction models
  • the first prediction model is used to determine when the value of the value fluctuation asset is the lowest value in the two periods after the division in step S601.
  • the period to which it belongs is determined, and the period to which the time when the value of the value fluctuation asset becomes the lowest belongs is determined using the second prediction model, of the two periods after the division in step S601, ...
  • the prediction model of No the prediction model of No.
  • the 5 is used to determine the period to which the time when the value of the value fluctuation asset becomes the lowest value belongs.
  • the past value fluctuation data is learned as teacher data so that the prediction of the average value of the predetermined period in the future can be output.
  • it may be performed by determining a period in which the average value of the value of the value fluctuation asset is low among the two periods after the division.
  • the determination of the period to which the time when the value of the value fluctuation asset is the lowest falls belongs, for example, so that it can output a prediction as to whether it will be the lowest in the first half of the future or the second half in the second half It may be performed by a specific value prediction AI that is learning past value fluctuation data as teacher data.
  • the specific value prediction AI is a period to which the time when the value of the value fluctuation asset becomes the lowest price by more prediction models belongs to the two periods after the division in step S601.
  • the prediction accuracy can be improved by using a plurality of prediction models to determine the period in which the time when the value of the value fluctuation asset is the lowest falls. For example, according to the first prediction model, it is determined that the first half of the two periods after the division in step S601 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs.
  • the prediction model determines that the first half of the two periods after the division in step S601 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, and the third prediction model It is determined that the second half of the two periods after the division in S601 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, and the fourth prediction model determines that the division in step S601
  • the first half of the two periods is determined to be the period to which the value of the value fluctuation asset becomes the lowest
  • the fifth forecasting model If it is determined that the second half of the two periods after the division at 601 belongs to a period to which the value of the value fluctuation asset becomes the lowest value, the two periods after the division at step S601.
  • the number of forecast models determined that the first half period is the period to which the time when the value of the value-changing asset is the lowest belongs is the second half period of the two periods after the division in step S601. Since there are more than the number of prediction models determined to be the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, the specific value prediction AI is a majority vote and among the two periods after the division in step S601. Determine the first half period as the period to which the value of the value fluctuation asset becomes the lowest.
  • the predetermined period may be determined as the period to which the time when the value of the value fluctuation asset becomes the lowest belongs. It is preferable to determine the period of as the period in which the value of the value fluctuation asset has the lowest value. As described later, this is because the potential risk is greater in the first half period.
  • step S603 the specific value prediction AI determines that the value of the value fluctuation asset has the lowest value during the period when it is determined that the time when the value of the value fluctuation asset has the lowest value belongs in step S602. It is determined whether it is the same length as the time. If it is determined that the period in which it is determined in step S602 that the time when the value of the value fluctuation asset becomes the lowest is not the same length as the time when the value of the value fluctuation asset becomes the lowest (in the case of No) The process proceeds to step S604.
  • step S606 When it is determined that the period in which it is determined in step S602 that the day when the value of the value fluctuation asset is the lowest is included is the same length as the time when the value of the value fluctuation asset is the lowest (in the case of Yes) , S606 and the process ends. This is because it is possible to determine that the period in which it is determined in step S602 that the time when the value of the value fluctuation asset becomes the lowest is the time when the value of the value fluctuation asset becomes the lowest.
  • the specific value prediction AI further divides the period in which it is determined that the time when the value of the value fluctuation asset is the lowest falls into two more periods. For example, when it is determined that the period when the value of the value fluctuation asset becomes the lowest value belongs to 11 business days, the specific value prediction AI includes 11 business days and the first business day to the sixth business day. It may be divided into a first period and a second period including the seventh business day to the eleventh business day. For example, when it is determined that the period when the value of the value fluctuation asset becomes the lowest value belongs to 6 business days, the specific value prediction AI includes 6 business days, and includes the first business day to the third business day. It may be divided into a first period and a second period including a fourth business day to a sixth business day. Thus, the two periods after division may be the same length or different lengths. The two time periods after division may each include a time period of any length.
  • step S605 the specific value prediction AI determines, of the two periods after the division in step S604, the period to which the time when the value of the value fluctuation asset becomes the lowest value belongs.
  • the period in which the time when the value of the value fluctuation asset becomes the lowest value belongs can be determined, for example, using a prediction model that predicts the fluctuation of the prediction target period.
  • the specific value prediction AI determines, for example, a period in which the average value of the value of the value fluctuation asset is low among two periods after division. Do.
  • the specific value prediction AI learns past value fluctuation data as teacher data so that prediction of an average value in a predetermined future period can be output.
  • step S605 the specific value prediction AI determines a period to which the time when the value of the value fluctuation asset becomes the lowest price belongs, out of the two periods after the division in step S604, using a plurality of prediction models. You may At this time, for example, processing similar to the processing shown in FIG. 6B may be performed.
  • step S605-1 the specific value prediction AI uses, for each of a plurality of prediction models, a period to which the time when the value of the value fluctuation asset becomes the lowest value belongs, out of the two periods after the division in step S604. judge.
  • the specific value prediction AI uses five prediction models
  • the first prediction model is used to determine when the value of the value fluctuation asset is the lowest value in the two periods after the division in step S604.
  • the period to which it belongs is determined, and the period to which the time when the value of the value fluctuation asset becomes the lowest belongs is determined using the second prediction model, of the two periods after the division in step S604,.
  • the prediction model of 5 it is determined, of the two periods after the division in step S604, the period in which the time when the value of the value fluctuation asset is the lowest value belongs.
  • the past value fluctuation data is learned as teacher data so that the prediction of the average value of the predetermined period in the future can be output.
  • it may be performed by determining a period in which the average value of the value of the value fluctuation asset is low among the two periods after the division.
  • the determination of the period to which the time when the value of the value fluctuation asset is the lowest falls belongs, for example, so that it can output a prediction as to whether it will be the lowest in the first half of the future or the second half in the second half It may be performed by a specific value prediction AI that is learning past value fluctuation data as teacher data.
  • the specific value prediction AI is a period to which, among the two periods after the division in step S604, the time at which the value of the value fluctuation asset becomes the lowest according to more prediction models belongs.
  • the prediction model determines that the first half of the two periods after the division in step S604 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, and the third prediction model It is determined that the second half of the two periods after the division in S604 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, and the fourth prediction model determines that the division in step S604 The first half of the two periods is determined to be the period to which the value of the value fluctuation asset becomes the lowest, and the fifth forecasting model If it is determined that the second half of the two periods after the division at 604 belongs to the period in which the value of the value-changing asset becomes the lowest value, the two periods after the division at step S 604 The number of prediction models determined that the latter half of the period is the period to which the time when the value of the value-changing asset is the lowest belongs is the first half of the two periods after the division in step S604.
  • the specific value prediction AI is a majority vote among two periods after the division in step S604.
  • the second half period is determined as the period to which the value of the value fluctuation asset becomes the lowest.
  • the predetermined period may be determined as the period to which the time when the value of the value fluctuation asset becomes the lowest belongs. It is preferable to determine the period of as the period in which the value of the value fluctuation asset has the lowest value. As described later, this is because the potential risk is greater in the first half period.
  • step S605 the process proceeds to step S603 again.
  • the specific value prediction AI has the same length as the period in which the value fluctuation asset has the lowest value when it is determined that the time when the value fluctuation asset has the lowest value belongs in step S605. It is determined whether or not. When it is determined that the period in which it is determined in step S605 that the time when the value of the value fluctuation asset becomes the lowest is not the same length as the time when the value of the value fluctuation asset becomes the lowest (in the case of No) Proceed to step S604 again.
  • step S605 determines that the period in which it is determined in step S605 that the time when the value of the value fluctuation asset becomes the lowest belongs. Steps S605 are repeated. When it is determined that the period in which it is determined in step S605 that the time when the value of the value fluctuation asset is the lowest belongs is the same length as the time when the value of the value fluctuation asset is the lowest (in the case of Yes) , S606 and the process ends. This is because it is possible to determine that the period in which it is determined that the time when the value of the value fluctuation asset becomes the lowest is the time when the value of the value fluctuation asset becomes the lowest.
  • the time predicted by the specific value prediction AI in step S501 is the first half of the predetermined period, in particular, the beginning of the predetermined period (for example, the beginning of the month), and the prediction is made in step S502. If the process of purchasing value change assets is executed at the same time, the risk of value change during the remaining period of a predetermined period will be incurred. That is, if you purchase value change assets in the first half of a given period, especially at the beginning of the given period (for example, the beginning of the month), the uncertainty of the value change in the remaining period of the given period is large, There is a possibility that the return is not appropriate. This is particularly noticeable for assets that are highly random in value change.
  • the result may be the highest price.
  • the prediction result by the specific value prediction AI becomes unstable, and eventually, the accumulation result of the value fluctuation asset also becomes unstable.
  • the specific value prediction AI in step S501 is in the first half of the predetermined period, in particular, at the beginning of the predetermined period, within the predetermined period.
  • the confidence of the forecasting model is high. If the degree of confidence in the forecasting model is high, it can be said that the risk that the trend of the value fluctuation asset changes in the middle of the month and the maximum value is eventually grasped is extremely low. As a result, even if the asset has a high degree of randomness in value change, it is possible to avoid a case where the risk and the return do not match, and to obtain a stable forecast result.
  • the predetermined number or more of the plurality of prediction models may perform the same prediction. This is because when more prediction models make the same prediction, the accuracy is high.
  • step S602 when the first half of the predetermined period is predicted as the time when the value of the value-changing asset becomes the lowest value within the predetermined period, the case is limited to a case where the confidence by the prediction model is high. The process shown in FIG.
  • FIG. 6C performs the process of step S602 using a plurality of prediction models, and limits the time when the first half of the predetermined period is predicted as the time when the value of the value fluctuation asset becomes the lowest value in the predetermined period. An example of processing in the case is shown.
  • Step S602-1 is the same process as step S602-1 shown in FIG. 6B.
  • the specific value prediction AI determines, using each of the plurality of prediction models, a period to which the time when the value of the value fluctuation asset becomes the lowest price belongs, out of the two periods after the division in step S601.
  • step S602-2 ′ it is determined that the specific value prediction AI is a period in which the first half of the two periods after the division in step S601 is a period to which the time when the value of the value fluctuation asset becomes the lowest price belongs.
  • the second half of the two periods after the division in step S601 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs.
  • the prediction model it is determined that the first half of the two periods after the division in step S601 is the period to which the time when the value of the value fluctuation asset is the lowest belongs. If it is determined by the fifth prediction model that the second half of the two periods after the division in step S601 belongs to the period in which the value of the value fluctuation asset has the lowest value, The number of prediction models determined to be the period to which the first half period of the two periods after the division in S601 belongs is the period to which the value of the value fluctuation asset becomes the lowest price is determined to be three.
  • step S602-3 the specific value prediction AI determines whether the number of prediction models determined in step S602-2 'is equal to or greater than a predetermined number. If the number of prediction models is equal to or greater than the predetermined number, the process proceeds to step S602-4. If the number of prediction models is less than the predetermined number, the process proceeds to step S602-5.
  • the predetermined number may be any number larger than half of the total number of prediction models used. The predetermined number may be, for example, the total number of prediction models used, or 80% of the total number.
  • step S602-4 the specific value prediction AI determines that the first half of the two periods after the division in step 601 is a period to which the time when the value of the value-changing asset is the lowest value belongs. This is because the degree of confidence of multiple prediction models is high and the risk of selecting the first half period is low.
  • step S602-5 the specific value prediction AI determines that the second half of the two periods after the division in step 601 is a period to which the time when the value of the value-changing asset is the lowest value belongs. This is because the degree of confidence of multiple prediction models is low, and it can be said that the risk of selecting the first half period is high.
  • step S605 the first half of the predetermined period is also predicted as the time when the value of the value-changing asset becomes the lowest value in the predetermined period, as shown in FIG.
  • the same process as the process to be performed may be performed.
  • Step S605-1 is the same process as step S605-1 described above.
  • the specific value prediction AI uses each of the plurality of prediction models to determine the period to which the time when the value of the value fluctuation asset becomes the lowest price belongs, out of the two periods after the division in step S604.
  • step S605-2 ′ it is determined that the specific value prediction AI is a period in which the first half of the two periods after the division in step S604 is a period to which the time when the value of the value-changing asset is the lowest value belongs.
  • the second half of the two periods after the division in step S604 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs.
  • the prediction model it is determined that the first half of the two periods after the division in step S604 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs. If it is determined by the fifth prediction model that the first half of the two periods after the division in step S604 is a period to which the time when the value of the value fluctuation asset is the lowest belongs. It is determined that the number of prediction models determined to be the period to which the first half period of the two periods after the division in S604 belongs is the period in which the value of the value-changing asset is the lowest value belongs.
  • step S605-3 the specific value prediction AI determines whether the number of prediction models determined in step S605-2 'is equal to or greater than a predetermined number. If the number of prediction models is equal to or greater than the predetermined number, the process proceeds to step S605-4. If the number of prediction models is less than the predetermined number, the process proceeds to step S605-5.
  • the predetermined number may be any number larger than half of the total number of prediction models used. The predetermined number may be, for example, the total number of prediction models used, or 80% of the total number.
  • the predetermined number may be changed, for example, according to the position of the divided period with respect to the entire predetermined period.
  • two periods after the division in step S604 may be any one of the first half of the predetermined period (for example, the predetermined period is 23 working days, and the two periods after the division in step S604 may be In the case of the first period including one business day to the sixth business day and the second period including the seventh business day to the eleventh business day), the predetermined number may be high.
  • the period after division is closer to the start point of the predetermined period, it is preferable to increase the predetermined number. This is because the closer the divided period is to the start of the predetermined period, the greater the risk to be incurred.
  • the predetermined number is a maximum.
  • the predetermined number may be maximized in consideration of the risk.
  • two periods after the division in step S604 are any one of the second half of the predetermined period (for example, the predetermined period is 23 business days, and the two periods after the division in step S604 are the first In the case of the first period including 13 business days to 15 business days and the second period including 16th business day to 18th business days, the predetermined number may be low. If the predetermined number is the minimum value, the processing is equivalent to that of step S602-2.
  • the predetermined number may be set by the specific value prediction AI, or may be set manually, in consideration of price fluctuations of the value fluctuation asset. Also, the predetermined number may be set individually for each of the target value fluctuation assets.
  • step S605-4 the specific value prediction AI determines that the first half of the two periods after the division in step 604 is a period to which the time when the value of the value-changing asset is the lowest value belongs. This is because the degree of confidence of multiple prediction models is high and the risk of selecting the first half period is low.
  • step S605-5 the specific value prediction AI determines that the second half of the two periods after the division in step 604 is a period to which the value of the value fluctuation asset has the lowest value. This is because the degree of confidence of multiple prediction models is low, and it can be said that the risk of selecting the first half period is high.
  • step S501 additionally or alternatively, the specific value prediction AI is used for the first half of the predetermined period, in particular, the beginning of the predetermined period.
  • the prediction of the time when the value of the value fluctuation asset becomes the lowest price within a predetermined period may be suppressed. This is achieved, for example, by providing a predetermined suppression period and suppressing prediction of the time within the predetermined suppression period as the time when the value of the value fluctuation asset is the lowest price within the predetermined period.
  • the predetermined suppression period is a period starting from the start of the predetermined period, and the length of the period may be any length.
  • the length of the predetermined suppression period may be changed, for example, according to the target asset. For example, in the case of an asset in which the trend is easy to read (for example, when purchasing the euro in Japanese yen), the length of the predetermined suppression period can be shortened. For example, in the case of an asset where the trend is difficult to read (e.g., when purchasing the NZD for Japanese Yen), the length of the predetermined suppression period can be increased.
  • the following table is an example of the length of the predetermined suppression period when the predetermined period is January.
  • the length of the predetermined suppression period may be set by the specific value prediction AI or may be set manually, in consideration of the price fluctuation of the value fluctuation asset.
  • step S501 in the computer system 200 in the case of accumulating the US dollar every month will be described with reference to FIGS. 7A to 7D.
  • the predetermined period is January (23 business days).
  • the period when the value of the value fluctuation asset is the lowest is on a daily basis.
  • 7A to 7D are graphs showing an example of the time variation of the US dollar price (yen).
  • the solid line indicates the actual fluctuation value
  • the broken line indicates the fluctuation value predicted using a prediction model that predicts the fluctuation of the prediction target period.
  • the specific value prediction AI divides a predetermined period (23 business days) into two periods on the first day of the month. As shown in FIG. 7A, the specific value prediction AI includes a predetermined period (23 business days), a first period 701 consisting of the first business day to the 12th business day, and a 13th business day to the 23rd business day. It is divided into a second period 702 consisting of days.
  • the specific value prediction AI determines, of the first period 701 and the second period 702, the period to which the day when the US dollar price is the lowest falls.
  • the specific value prediction AI determines a period in which the average value of the US dollar price is low in the first period 701 and the second period 702 using a prediction model that predicts fluctuations in 23 days, and calculates the average of the US dollar prices A period with a low value is determined to be a period to which a day when the US dollar price becomes the lowest value belongs.
  • the specific value prediction AI uses an average value 710 of the first period 701 predicted using a prediction model that predicts fluctuations in 23 days, and a prediction model that predicts fluctuations in 23 days
  • the average value 720 of the predicted second period 702 is compared, and it is determined that the second period 702 is a period to which a day when the US dollar price becomes the lowest value belongs.
  • a multilayer perceptron comprising an input layer, three hidden layers, and an output layer, wherein the number of nodes is 31, 16, 8, 4, 1 and decreases from the input layer toward the output layer
  • the specific value prediction AI that uses the multilayer perceptron as a prediction model that predicts fluctuations in 23 days.
  • the value change data used for learning the specific value prediction AI is only the value change data of the US dollar relative to the Japanese yen.
  • the term "random" is a model that predicts the day when the lowest price is randomly obtained, and was used as a comparison target. Also from this result, it can be seen that the prediction accuracy is further improved as more data are input to the multilayer perceptron.
  • a specific value prediction AI using CNN as a prediction model determines a period in which the average value of the US dollar price is low among the first period 701 and the second period 702, and the average value of the US dollar price is low.
  • the following maximum prediction accuracy can be obtained by changing the value fluctuation data used for learning.
  • the prediction model used and the value fluctuation data to be learned are closely related to the prediction accuracy.
  • value variation data to learn forecasting accuracy of over 70% can be achieved.
  • step S603 the specific value prediction AI determines whether the second period 702 is one day. Since the second period 702 is a period of 11 days consisting of the thirteenth business day to the twenty-third business day, the process proceeds to step S604.
  • step S604 the specific value prediction AI divides the second period 702 into two periods on the first day of the second period 702. As shown in FIG. 7B, the specific value prediction AI comprises the second period 702, the third period 703 consisting of the thirteenth business day to the seventeenth business day, and the eighteenth business day to the twenty-third business day. It is divided into a fourth period 704.
  • step S604 is performed on the first day of the second period 702
  • the timing at which each step of the process of step S501 is performed is arbitrary.
  • the process of step S501 (the process of predicting the day when the value of the value fluctuation asset is the lowest value in a predetermined period) may be completely completed, or the value of the value fluctuation asset is
  • processing to predict the date when the value of the value fluctuation asset becomes the lowest value in a predetermined period is performed each time the date when the lowest price day is determined to belong. It is also good.
  • the specific value prediction AI determines, of the third period 703 and the fourth period 704, the period to which the day when the US dollar price is the lowest falls.
  • the specific value prediction AI determines a period in which the average value of the US dollar price is low in the third period 703 and the fourth period 704 using a prediction model that predicts 13-day fluctuation, and calculates the average of the US dollar price A period with a low value is determined to be a period to which a day when the US dollar price becomes the lowest value belongs.
  • the specific value prediction AI uses an average value 730 of the third period 703 predicted using a prediction model that predicts 13-day fluctuation, and a prediction model that predicts 13-day fluctuation.
  • the average value 740 of the fourth predicted period 704 is compared, and it is determined that the third period 703 is a period to which a day when the US dollar price is the lowest is included.
  • step S603 the specific value prediction AI determines whether the third period 703 is one day. Since the third period 703 is a five-day period consisting of the thirteenth business day to the seventeenth business day, the process proceeds to step S604 again.
  • step S604 the specific value prediction AI divides the third period 703 into two periods. As shown in FIG. 7C, the specific value prediction AI comprises the third period 703, the fifth period 705 consisting of the thirteenth business day to the fourteenth business day, and the fifteenth business day to the seventeenth business day. It is divided into a sixth period 706.
  • step S605 the specific value prediction AI determines, of the fifth period 705 and the sixth period 706, the period to which the day when the US dollar price is the lowest falls.
  • the specific value prediction AI determines a period in which the average value of the US dollar price is low in the fifth period 705 and the sixth period 706 using a prediction model that predicts 5-day fluctuation, and calculates the average of the US dollar prices A period with a low value is determined to be a period to which a day when the US dollar price becomes the lowest value belongs.
  • the specific value prediction AI uses an average value 750 of the fifth period 705 predicted using a prediction model that predicts fluctuations in five days, and a prediction model that predicts fluctuations in five days.
  • the average value 760 of the predicted sixth period 706 is compared, and it is determined that the fifth period 705 is a period to which a day when the US dollar price becomes the lowest value belongs.
  • step S603 the specific value prediction AI determines whether or not the fifth period 705 is one day. Since the fifth period 705 is a two-day period consisting of the thirteenth business day to the fourteenth business day, the process proceeds again to step S604.
  • step S604 the specific value prediction AI divides the fifth period 705 into two periods. As shown in FIG. 7D, the specific value prediction AI divides the fifth period 705 into a seventh period 707 consisting of a thirteenth business day and an eighth period 708 consisting of a fourteenth business day.
  • step S605 the specific value prediction AI determines, of the seventh period 707 and the eighth period 708, the period to which the day when the US dollar price is the lowest falls.
  • the specific value prediction AI determines a period in which the average value of the US dollar price is low in the seventh period 707 and the eighth period 708 using a prediction model that predicts fluctuations of two days, and the average of the US dollar prices A period with a low value is determined to be a period to which a day when the US dollar price becomes the lowest value belongs.
  • the specific value prediction AI uses an average value 770 of the seventh period 707 predicted using a prediction model that predicts fluctuations for two days, and a prediction model that predicts fluctuations for two days
  • the average value 780 of the predicted eighth period 708 is compared, and it is determined that the eighth period 708 is a period to which a day when the US dollar price becomes the lowest value belongs.
  • step S603 the specific value prediction AI determines whether the eighth period 708 is one day. Since the eighth period 708 is a one-day period consisting of the fourteenth business day, the process proceeds to step S606 and ends.
  • step S502 the processor unit 212 purchases the US dollar and accumulates it.
  • step S501 in the computer system 200 in the case of accumulating the AUD every month will be described with reference to FIGS. 8A to 8D.
  • 8A to 8D are graphs showing an example of the time change of the Australian dollar price (yen).
  • the solid line indicates the actual fluctuation value
  • the broken line indicates the fluctuation value predicted using a prediction model that predicts the fluctuation of the prediction target period. It is assumed that the predetermined period is January (23 business days). The period when the value of the value fluctuation asset is the lowest is on a daily basis. The length of the predetermined suppression period is 4 days.
  • the specific value prediction AI uses five prediction models to perform prediction. The prescribed number shall be varied as follows.
  • the specific value prediction AI divides a predetermined period (23 business days) into two periods on the first day of the month. As shown in FIG. 8A, the specific value prediction AI includes a predetermined period (23 business days), a first period 801 consisting of the first business day to the 12th business day, and a 13th business day to the 23rd business day. And a second period 802 consisting of days.
  • the specific value prediction AI determines, of each of the first period 801 and the second period 802, the period to which the day when the AUD price is the lowest falls, using each of the five prediction models. Do.
  • the specific value prediction AI uses, for each of five prediction models that predict fluctuations in 23 days, a period in which the day when the AUD price becomes the lowest among the first period 801 and the second period 802 belongs.
  • Determine The prediction model may be, for example, a plurality of prediction models that differ in the type or amount of past value fluctuation data used for learning, for example, the type or amount of past value fluctuation data input for prediction is A plurality of different prediction models may be used.
  • each prediction model predicts as follows.
  • the specific value prediction AI is a period to which the first low price of the first period 801, which is the first half of the first period 801 and the second period 802, belongs. Determine the number of prediction models determined to be From the results in Table 5, the number of prediction models is determined to be three.
  • step S602-3 the specific value prediction AI determines whether the number of prediction models determined in step S602-2 'is equal to or greater than a predetermined number. Since the predetermined number of the first business day to the twelfth business day is 3 and the number of prediction models determined in step S602-2 'is 3 or more, the process proceeds to step S602-4.
  • step S602-4 the specific value prediction AI determines that the first period 801 is a period to which a day when the AUD price becomes the lowest value belongs.
  • step S603 the specific value prediction AI determines whether the first period 801 is one day. Since the first period 801 is a 12-day period consisting of the first business day to the twelfth business day, the process proceeds to step S604.
  • the specific value prediction AI divides the first period 801 into two periods. As shown in FIG. 8B, the specific value prediction AI comprises a first period 801, a third period 803 consisting of a first business day to a sixth business day, and a seventh business day to a twelfth business day. And the fourth period 804.
  • step S604 is performed on the first day of the third period 803
  • the timing at which each step of the process of step S501 is performed is arbitrary.
  • the process of step S501 (the process of predicting the day when the value of the value fluctuation asset is the lowest value in a predetermined period) may be completely completed, or the value of the value fluctuation asset is
  • the processing in step S501 processing to predict the date when the value of the value fluctuation asset becomes the lowest value in a predetermined period
  • step S501 processing to predict the date when the value of the value fluctuation asset becomes the lowest value in a predetermined period
  • step S605 the specific value prediction AI determines a period to which a day in which the AUD price is the lowest falls in the third period 803 and the fourth period 804.
  • the specific value prediction AI uses five prediction models that predict 13-day fluctuation to determine the period to which the Australian dollar price becomes lowest in the third period 803 and the fourth period 804. Do. In this example, it is assumed that each prediction model predicts as follows.
  • the specific value prediction AI is a period in which the third day of the third period 803, which is the first half period of the third period 803 and the fourth period 804, belongs to the day when the AUD price becomes the lowest.
  • step S605-3 the specific value prediction AI determines whether the number of prediction models determined in step S605-2 'is equal to or greater than a predetermined number. Since the predetermined number of the first business day to the sixth business day is five and the number of prediction models determined in step S605-2 'is not five or more, the process proceeds to step S605-5.
  • step S605-5 the specific value prediction AI determines that the fourth period 804, which is the second half period, is a period to which a day when the AUD price is the lowest falls.
  • step S603 the specific value prediction AI determines whether or not the fourth period 804 is one day. Since the fourth period 804 is a six-day period consisting of the seventh business day to the twelfth business day, the process proceeds again to step S604.
  • step S604 the specific value prediction AI divides the fourth period 804 into two periods. As shown in FIG. 8C, the specific value prediction AI comprises a fourth period 804, a fifth period 805 consisting of the seventh business day to the ninth business day, and a tenth business day to the twelfth business day. And the sixth period 806.
  • step S605 the specific value prediction AI determines the period to which the day in which the AUD price is the lowest falls in the fifth period 805 and the sixth period 806.
  • the specific value prediction AI uses five prediction models that predict 5-day fluctuation to determine the period to which the Australian dollar price becomes lowest among the fifth period 805 and the sixth period 806. Do. In this example, it is assumed that each prediction model predicts as follows.
  • the specific value prediction AI is a period in which the fifth day of the fifth period 805 which is the first half period of the fifth period 805 and the sixth period 806 belongs to the day when the AUD price becomes the lowest.
  • step S605-3 the specific value prediction AI determines whether the number of prediction models determined in step S605-2 'is equal to or greater than a predetermined number. Since the predetermined number of the seventh business day to the ninth business day is 4 and the number of prediction models determined in step S605-2 'is 4 or more, the process proceeds to step S605-4.
  • step S605-4 the specific value prediction AI determines that the fifth period 805 is a period to which a day when the AUD price becomes the lowest value belongs.
  • step S603 the specific value prediction AI determines whether the fifth period 805 is one day. Since the fifth period 805 is a three-day period consisting of the seventh business day to the ninth business day, the process proceeds to step S604 again.
  • step S604 the specific value prediction AI divides the fifth period 805 into two periods. As shown in FIG. 8D, the specific value prediction AI includes a fifth period 805, a seventh period 807 consisting of the seventh business day, and an eighth period 808 consisting of the eighth business day to the ninth business day. Divide into and.
  • step S605 the specific value prediction AI determines the period to which the day in which the AUD price is the lowest falls in the seventh period 807 and the eighth period 808.
  • the specific value prediction AI uses five prediction models that predict two-day fluctuation to determine the period to which the low Australian price day belongs in the seventh period 807 and the eighth period 808. Do. In this example, it is assumed that each prediction model predicts as follows.
  • the specific value prediction AI is a period in which the seventh day of the seventh period 807, which is the first half period of the seventh period 807 and the eighth period 808, belongs to the day when the AUD price becomes the lowest.
  • step S605-3 the specific value prediction AI determines whether the number of prediction models determined in step S605-2 'is equal to or greater than a predetermined number. Since the predetermined number of the seventh business day is 4 and the number of prediction models determined in step S605-2 'is 4 or more, the process proceeds to step S605-4.
  • step S605-4 the specific value prediction AI determines that the seventh period 807 is a period to which a day when the AUD price becomes the lowest value belongs.
  • step S603 the specific value prediction AI determines whether the seventh period 807 is one day. Since the seventh period 807 is a one-day period consisting of the seventh business day, the process proceeds to step S606 and ends.
  • step S502 the processor unit 212 purchases AUD and accumulates it.
  • step S602 and step S605 a period of time when the value of an asset becomes a specific rank is determined It is also good. For example, a case will be described in which a period of time in which the value of an asset becomes the 14th lowest value belongs to the 23 working days will be described.
  • step S602 After 23 working days are divided into two periods in step S601, in step S602, one of the two divided periods is selected which has the lowest price. That is because 14> 23/2.
  • step S603 11 or 12 business days are divided into two periods in step S604, and then in step S605, the period in which the low price (minimum value) exists among the two periods after division select. This is because (14-23 / 2) ⁇ 23/4.
  • step S603 5 or 6 business days are divided into two periods in step S604, and in step S605, the period in which the low price (local minimum) exists in the two periods after division is select. This is because (14-23 / 2) ⁇ 23/8.
  • step S603 2 or 3 business days are divided into two periods in step S604, and in step S605, one of the two periods after division does not have a low price (minimum value). select. (14-23 / 2)> 23/16.
  • the binary search which divides the target period into two periods predicts the time when the value of the value fluctuation asset becomes the value of the specific rank within the predetermined period, but the present invention It is not limited to binary search. It is also within the scope of the present invention to divide the period of interest into more than two periods to predict when the value of the value-changing asset will be the value of a particular rank within a given period of time.
  • the specific value prediction AI divides the predetermined period into m periods instead of dividing it into two periods (m is an integer larger than 2), and in step S602, the specific value prediction AI Is the period to which the value of the value fluctuation asset belongs to a specific rank value (for example, lowest price, highest value, n lowest value, n highest value) of m periods after division May be determined.
  • a specific rank value for example, lowest price, highest value, n lowest value, n highest value
  • this judgment may, for example, teach past value fluctuation data so that the prediction of the average value of the predetermined period in the future can be output.
  • the specific value prediction AI learned as data may be performed by determining a period in which the average value of the value of the value fluctuation asset has the lowest value among the m periods after division. In the determination of the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, for example, output the prediction of which of the periods obtained by dividing a future period into a plurality of periods. It may be performed by specific value prediction AI which is learning past value fluctuation data as teacher data so that it can be done. When determining the period to which the time when the value of the value fluctuation asset reaches the highest value belongs, this judgment is, for example, teaching past value fluctuation data so that the prediction of the average value of the predetermined period in the future can be output.
  • the specific value prediction AI learned as data may be performed by determining, out of m divided periods, a period in which the average value of the value of the value fluctuation asset is the highest.
  • the determination of the period to which the time when the value of the value fluctuation asset becomes the highest belongs is to output a prediction of which of the periods obtained by dividing a future period into a plurality of periods. It may be performed by specific value prediction AI which is learning past value fluctuation data as teacher data so that it can be done.
  • this judgment may, for example, be the past value fluctuation so that the prediction of the average value of the future predetermined period can be output.
  • It may be performed by determining the period in which the average value of the value of the value fluctuation asset is in a specific order among the m periods after division by the specific value prediction AI learning data as teacher data . For example, in the period in which a certain future period is divided into a plurality of time periods, the determination of the period to which the time when the value of the value fluctuation asset becomes the value of the specific order falls within the specific order value It may be performed by specific value prediction AI which is learning past value fluctuation data as teacher data so that the prediction of can be output.
  • the specific value prediction AI further divides the period in which it is determined that the time when the value of the value fluctuation asset has a specific rank value belongs to m periods, and in step S605, the specific value prediction AI The AI belongs to the m periods after the division when the value of the value fluctuation asset has a specific rank value (for example, the lowest price, the highest value, the nth lowest value, the nth highest value).
  • the period may be determined.
  • this judgment may, for example, teach past value fluctuation data so that the prediction of the average value of the predetermined period in the future can be output.
  • the specific value prediction AI learned as data may be performed by determining a period in which the average value of the value of the value fluctuation asset has the lowest value among the m periods after division. In the determination of the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, for example, output the prediction of which of the periods obtained by dividing a future period into a plurality of periods. It may be performed by specific value prediction AI which is learning past value fluctuation data as teacher data so that it can be done. When determining the period to which the time when the value of the value fluctuation asset reaches the highest value belongs, this judgment is, for example, teaching past value fluctuation data so that the prediction of the average value of the predetermined period in the future can be output.
  • the specific value prediction AI learned as data may be performed by determining, out of m divided periods, a period in which the average value of the value of the value fluctuation asset is the highest.
  • the determination of the period to which the time when the value of the value fluctuation asset becomes the highest belongs is to output a prediction of which of the periods obtained by dividing a future period into a plurality of periods. It may be performed by specific value prediction AI which is learning past value fluctuation data as teacher data so that it can be done.
  • this judgment may, for example, be the past value fluctuation so that the prediction of the average value of the future predetermined period can be output.
  • It may be performed by determining the period in which the average value of the value of the value fluctuation asset is in a specific order among the m periods after division by the specific value prediction AI learning data as teacher data . For example, in the period in which a certain future period is divided into a plurality of time periods, the determination of the period to which the time when the value of the value fluctuation asset becomes the value of the specific order falls within the specific order value It may be performed by specific value prediction AI which is learning past value fluctuation data as teacher data so that the prediction of can be output.
  • the specific value prediction AI determines that the value of the value fluctuation asset has a specific rank value according to more prediction models in m periods after division.
  • the period determined to be the period to which the time of day belongs is determined to be the period of time to which the value of the asset becomes the value of the specific rank.
  • step S602-2 for each of the first half of the m periods after division, the specific value prediction AI ranks such that the value of the value fluctuation asset has a specific value in each of the first half periods.
  • the number of prediction models determined to be the period to which the time having the value of 1 belongs is determined, and then in step S602-3 or step S605-3, the specific value prediction AI is determined for each of the first half period. It is determined whether the number of predicted models is equal to or greater than a predetermined number. If it is more than a predetermined number, it is determined that the period is a period to which the value of the value fluctuation asset has a value of a specific rank.
  • the specific value prediction AI has a value fluctuation asset value period for each of the first three periods of the six divided periods. Determine the number of forecasting models that have been determined to be the period to which the time when value becomes a particular rank value belongs.
  • the specific value prediction AI determines whether or not the number of the determined prediction models is a predetermined number for each of the first three periods, and the predetermined number or more is determined. If so, the period is determined to be a period to which the value of the value fluctuation asset has a value of a specific rank.
  • each of the number of prediction models determined for the first one of the first three periods and the number of prediction models determined for the third one of the first three periods is less than a predetermined number, If the number of forecasting models determined for the second one of the first three periods is greater than or equal to the predetermined number, the value of the value fluctuation asset is specified for the second one of the first three periods. It is determined that it is a period to which the timing of the ranking value belongs.
  • the entire second half period of the plurality of periods is a period to which the time when the value of the value change asset becomes a specific rank value It may be determined that the process proceeds to step S603, or the entire period excluding the first period among the plurality of periods is a period to which the time when the value of the value change asset becomes the value of the specific rank belongs You may decide and proceed to step S603. This makes it possible to avoid selecting the beginning of the predetermined period when the confidence degree by the prediction model is low, and as a result, it is possible to avoid the case where risk and return do not match. .
  • FIG. 9 shows an example of a computer system 200 'that is an alternative configuration of computer system 200 for implementing the above-described new financial product.
  • the computer system 200 'causes the user device 100 to predict when the value of the value change asset becomes a specific value within a predetermined period, and the value change occurs when the value of the predicted value change asset becomes a specific value.
  • the server apparatus 210 performs the transaction of the asset.
  • the computer system 200 ′ includes a server device 210, a database unit 220 connected to the server device 210, and the user device 100.
  • the server device 210, the user device 100, and the asset transaction computer system 300 are mutually connected via the network 400.
  • the type of the network 400 does not matter.
  • the network 400 may be, for example, the Internet or a LAN.
  • the user device 100 is a terminal used by the user 10 who uses the service of accumulating value change assets, and may be any terminal device such as a smartphone, a tablet, a personal computer and the like.
  • the user device 100 includes an interface unit 111, a processor unit 112, and a storage unit 113.
  • the interface unit 111 is configured to control communication via the network 400.
  • the interface unit 111 can transmit information to the outside of the user device 100, and can receive information from the outside of the user device 100.
  • the interface unit 111 transmits, via the network 400, to the server apparatus 210, a prediction of a date when the value of the value fluctuation asset is the lowest price in a predetermined period.
  • the processor unit 112 controls the overall operation of the user device 100.
  • the processor unit 112 reads a program stored in the storage unit 113 and executes the program. This enables the user device 100 to function as a device that performs a desired step.
  • the processor unit 112 can perform part of the process of accumulating value change assets.
  • the processor unit 112 may be implemented by a single processor or may be implemented by a plurality of processors.
  • the storage unit 113 stores a program for executing a process in the user device 100, data required to execute the program, and the like.
  • a program for trading value-varying assets, or a program for accumulating value-varying assets for example, a program for realizing the processing shown in FIGS. 5 and 6A to 6C described above) Part of
  • the program may be preinstalled in the storage unit 113.
  • the program may be installed in the storage unit 113 by being downloaded via the network 400.
  • the storage unit 113 may be implemented by any storage means.
  • the storage unit 113 may also store, for example, past value fluctuation data.
  • Historical value change data can be used to predict future value changes.
  • Historical value change data used for learning includes value change data for the asset in question against the currency for purchase (for example, Japanese yen), as well as against other currencies (for example, US dollar, Australian dollar, euro, NZ dollar, etc.) It may include value change data of the target asset, or data such as S & P 500 index, Nikkei Stock Average, German stock index or WTI crude oil price.
  • the database unit 220 can also store, for example, learned value fluctuation tendencies.
  • the database 220 may store the weight vector of each node of the multilayer perceptron 450 established by learning.
  • the specific value prediction AI may be realized by the user device 100 having the configuration described above.
  • the specific value prediction AI can predict when the value of the value fluctuation asset will be the lowest value using any prediction model, as described above.
  • each component of the user apparatus 100 is provided in one user apparatus 100, but the present invention is not limited to this. It is also possible that any of the components of the user device 100 is provided outside the user device 100.
  • each hardware component may be connected via an arbitrary network. At this time, the type of network does not matter.
  • Each hardware component may be connected via, for example, a LAN, may be wirelessly connected, or may be wired.
  • Processing in computer system 200 ′ is similar to processing 500 in computer system 200. However, the processing of step S501 is different from the processing 500 of the computer system 200 in that the specific value prediction AI realized by the user device 100 performs the processing of step S501 and the processor unit 212 of the server device 210 performs the processing of step S502. .
  • the present invention predicts a unit of time (e.g., hour, minute, second, etc.) shorter than "day”. It is also within the scope of the present invention to predict time units (eg, weeks, months etc.) longer than "days”.
  • the computer system 200 or 200 ′ performs processing similar to that described above with reference to FIG. 5 and FIGS. It is possible to predict when is the lowest price and to purchase value-changing assets when the value of the predicted value-changing asset becomes the lowest.
  • the value of the value fluctuation asset when the value of the value fluctuation asset is the lowest, it may be an arbitrary unit of time. When the value of the value fluctuation asset is the lowest price, it may be, for example, in seconds, minutes, or hours.
  • the present invention determines the value of an asset whose value fluctuates with time over time, such as the highest or lowest price (ie, maximum or minimum) or a particular rank value (eg, second)
  • the present invention is useful as providing a computer system, method, and program that make it possible to predict when to be a specific value such as a cheap value, a tenth highest value, etc.).
  • the present invention makes it possible to increase the evaluation value of an asset by periodically or continuously purchasing or accumulating the asset based on the prediction of when it becomes a specific value. And it is useful as what provides a program.
  • Reference Signs List 10 user 20 bank 30 forex market 100 user device 200, 200 'computer system 210 server device 220 database unit 300 asset trading computer system 400 network

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Technology Law (AREA)
  • Human Resources & Organizations (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Provided are a computer system, a method and a program which make it possible to predict a particular value, such as the highest value or lowest value (i.e. maximum value or minimum value) during a prescribed period, of the value of an asset for which the value fluctuates irregularly over time. A computer system 200 for accumulating foreign currency that has a value which fluctuates over time is configured to: predict a time, within a prescribed period, when the value of the foreign currency will be the lowest (Step S501); and purchase the foreign currency at the predicted time when the value of the foreign currency is to be the lowest.

Description

時間の経過につれて価値が変動するアセットを積み立てるためのコンピュータシステム、方法、および、プログラムComputer system, method and program for accumulating assets whose value changes as time passes
 本発明は、時間の経過につれて価値が変動するアセットを積み立てるためのコンピュータシステム、方法、および、プログラムに関する。 The present invention relates to computer systems, methods, and programs for accumulating assets that change in value over time.
 多様な通貨建ての外国通貨(以下、「外貨」ともいう)を定期的に購入し、購入した外貨を積み立て、積み立てられた外貨の損益評価情報を端末に送信する定期積立型外国為替保証金取引システムが知られている(例えば、特許文献1を参照)。 Periodically accumulated foreign exchange security trading system that periodically purchases various foreign currency denominated foreign currencies (hereinafter referred to as "foreign currency"), accumulates the purchased foreign currency, and transmits the profit and loss evaluation information of the accumulated foreign currency to the terminal Are known (see, for example, Patent Document 1).
特開2004-192587号公報JP, 2004-192587, A
 しかし、従来のシステムでは、外貨を定期的に購入する場合に、購入する外貨の価値が購入時において最適な価格であるかどうか、または購入時期が最適であるかどうかまでは分析されず、外貨の購入者にとって購買の最適化が図られていないという課題があった。 However, in the conventional system, when foreign currency is regularly purchased, it is not analyzed whether the value of the foreign currency to be purchased is the optimal price at the time of purchase or whether or not the purchase time is optimal. There is a problem that the purchaser of the is not optimized for purchasing.
 本発明は、このような課題に鑑みてなされたものであり、時間の経過につれて価値が不規則に変動するアセットの価値の、所定の期間における最高値もしくは最安値(つまり、極大値もしくは極小値)または特定の順位の値(例えば、2番目に安い値、10番目に高い値等)等の特定値となる時期を予測することを可能にするコンピュータシステム、方法、およびプログラムを提供することを目的とする。 The present invention has been made in view of such problems, and the highest or lowest value (that is, the maximum value or the minimum value) of the value of an asset whose value fluctuates with time over a predetermined period To provide a computer system, method, and program that make it possible to predict when to be a specific value, such as a specific ranking value (eg, second lowest value, tenth highest value etc) To aim.
 本発明は、時間の経過につれて価値が変動する外国通貨を積み立てるためのコンピュータシステムを提供し、前記コンピュータシステムは、所定の期間内で前記外国通貨の価値が特定の順位の安値となる時期を予測することと、前記予測された時期に前記外国通貨を購入することとを行うように構成されている。 The present invention provides a computer system for accumulating foreign currency whose value changes as time passes, and the computer system predicts when the value of the foreign currency will be the lowest price in a specific rank within a predetermined period of time And purchasing the foreign currency at the predicted time.
 一実施形態において、前記予測することは、前記所定の期間を複数の期間に分割することと、前記分割後の複数の期間のうち、前記外国通貨の価値が特定の順位の安値となる時期が属する期間を判定することとを含む。 In one embodiment, the predicting includes dividing the predetermined period into a plurality of periods, and when the value of the foreign currency becomes a low price of a specific rank among the plurality of periods after the division. And determining a period of time to which it belongs.
 一実施形態において、前記予測することは、(1)前記外国通貨の価値が特定の順位の安値となる時期が属すると判定された期間をさらに複数の期間に分割することと、(2)前記分割後の複数の期間のうち、前記外国通貨の価値が特定の順位の安値となる時期が属する期間を判定することとを、前記外国通貨の価値が特定の順位の安値となる時期が属すると判定された期間が、前記外国通貨の価値が特定の順位の安値となる時期と同じ長さとなるまで繰り返すこととをさらに含む。 In one embodiment, the predicting further comprises: (1) further dividing into a plurality of periods the period in which it is determined that the time when the value of the foreign currency becomes a low in a specific rank belongs to; Among the multiple periods after division, determining the period to which the time when the value of the foreign currency becomes a specific low price belongs, and when the value when the value of the foreign currency becomes a low low in a specific order And (d) repeating the determined period until the value of the foreign currency is as long as the value of the specific low price.
 一実施形態において、前記判定することは、前記分割された複数の期間のうち、前記外国通貨の価値の平均値が低い期間を判定することを含む。 In one embodiment, the determining includes determining a period in which the average value of the value of the foreign currency is low among the plurality of divided periods.
 一実施形態において、前記判定することは、複数の予測モデルのそれぞれを用いて、前記分割後の複数の期間のうち、前記外国通貨の価値が特定の順位の安値となる時期が属する期間を判定することと、前記分割後の複数の期間のうち、より多くの予測モデルによって前記外国通貨の価値が特定の順位の安値となる時期が属する期間であると判定された期間を、前記外国通貨の価値が特定の順位の安値となる時期が属する期間であると決定することとを含む。 In one embodiment, the determining determines a period to which a time when the value of the foreign currency becomes a low price of a specific rank among a plurality of divided periods using each of a plurality of prediction models. And, of the plurality of periods after the division, a period determined to be a period to which a time when the value of the foreign currency becomes a low in a specific rank belongs to the foreign currency Determining that it is the period to which the value falls in a particular low position.
 一実施形態において、前記判定することは、複数の予測モデルのそれぞれを用いて、前記分割後の複数の期間のうち、前記外国通貨の価値が特定の順位の安値となる時期が属する期間を判定することと、前記分割後の複数の期間のうちの前半の期間のそれぞれについて、その期間が前記外国通貨の価値が特定の順位の安値となる時期が属する期間であると判定した予測モデルの数を決定することと、前記予測モデルの数が所定数以上である期間を前記外国通貨の価値が特定の順位の安値となる時期が属する期間であると決定することとを含む。 In one embodiment, the determining determines a period to which a time when the value of the foreign currency becomes a low price of a specific rank among a plurality of divided periods using each of a plurality of prediction models. And for each of the first half of the plurality of divided periods, the number of prediction models determined to be the period to which the time when the value of the foreign currency is a specific low price belongs. And determining that a period in which the number of the prediction models is equal to or more than a predetermined number is a period in which the time when the value of the foreign currency is a specific low price belongs.
 一実施形態において、前記判定することは、前記所定の期間全体に対する前記分割後の期間の相対位置に応じて、前記所定数を変化させることをさらに含む。 In one embodiment, the determining further includes changing the predetermined number according to a relative position of the divided period with respect to the entire predetermined period.
 一実施形態において、前記複数の期間は、2つの期間である。 In one embodiment, the plurality of time periods is two time periods.
 一実施形態において、前記予測することは、前記所定の期間の始点から所定の抑制期間内の時期を前記外国通貨の価値が特定の順位の安値となる時期として予測することを抑制することを含む。 In one embodiment, the predicting includes suppressing predicting a period within a predetermined suppression period from a start point of the predetermined period as a period when the value of the foreign currency becomes a specific rank low price. .
 一実施形態において、前記予測することと、前記購入することとは、繰り返し行われる。 In one embodiment, the predicting and the purchasing are repeated.
 一実施形態において、前記購入することは、前記予測された前記外国通貨の価値が特定の順位の安値となる時期に前記外国通貨を購入することに対するユーザの入力操作なしに、自動的に行われる。 In one embodiment, the purchasing is performed automatically without a user's input operation for purchasing the foreign currency at a time when the predicted value of the foreign currency becomes a low in a specific rank. .
 一実施形態において、前記特定の順位の安値は、最安値である。 In one embodiment, the specific low price is the lowest price.
 一実施形態において、前記特定の順位の安値は、n番目に安い値である(nは2以上の整数)。 In one embodiment, the low price of the specific rank is the nth lowest value (n is an integer of 2 or more).
 本発明は、時間の経過につれて価値が変動する外国通貨を積み立てるための方法を提供し、前記方法は、コンピュータシステムにおいて実行され、前記方法は、所定の期間内で前記外国通貨の価値が特定の順位の安値となる時期を予測することと、前記予測された時期に前記外国通貨を購入することとを行うことを含む。 The present invention provides a method for accumulating foreign currency whose value changes as time passes, the method is executed in a computer system, and the method determines the value of the foreign currency within a predetermined time period. The method may include predicting when the ranking will be low and purchasing the foreign currency at the predicted time.
 本発明は、時間の経過につれて価値が変動する外国通貨を積み立てるためのプログラムを提供し、前記プログラムは、コンピュータシステムにおいて実行されると、所定の期間内で前記外国通貨の価値が特定の順位の安値となる時期を予測することと、前記予測された時期に前記外国通貨を購入することとを行うことを含む処理を前記コンピュータシステムに行わせる。 The present invention provides a program for accumulating foreign currency whose value changes as time passes, and when the program is executed in a computer system, the value of the foreign currency is ranked in a specific order within a predetermined period. Allowing the computer system to perform processing including predicting when the price will be low and purchasing the foreign currency at the predicted time.
 本発明は、時間の経過につれて価値が変動する外国通貨の過去の価値変動に基づいて、所定の期間内で前記外国通貨の価値が特定の順位の値となる時期を予測するように構成されているコンピュータシステムを提供する。 The present invention is configured to predict when the value of the foreign currency will be a specific rank value within a predetermined period of time based on past value fluctuations of the foreign currency whose value changes as time passes. Provide a computer system.
 一実施形態において、本発明のコンピュータシステムは、前記予測された時期に前記外国通貨の取引リクエストを発行することをさらに行うように構成されている。 In one embodiment, the computer system of the present invention is further configured to issue the foreign currency transaction request at the predicted time.
 本発明は、コンピュータシステムにおいて実行されるプログラムを提供し、前記プログラムは、実行されると、時間の経過につれて価値が変動する外国通貨の過去の価値変動に基づいて、所定の期間内で前記外国通貨の価値が特定の順位の値となる時期を予測することを含む処理を前記コンピュータシステムに行わせる。 The present invention provides a program to be executed in a computer system, said program, when executed, said foreign country within a predetermined period of time based on past value fluctuations of foreign currency whose value fluctuates as time passes. The computer system is caused to perform processing including predicting when the value of the currency will be a particular rank value.
 一実施形態において、前記処理は、前記予測された時期に前記外国通貨の取引リクエストを発行することをさらに含む。 In one embodiment, the processing further comprises issuing the foreign currency transaction request at the predicted time.
 本発明によれば、時間の経過につれて価値が不規則に変動するアセットの価値の、所定の期間における最高値もしくは最安値(つまり、極大値もしくは極小値)または特定の順位の値(例えば、2番目に安い値、10番目に高い値等)等の特定値を予測することを可能にするコンピュータシステム、方法、およびプログラムを提供することができる。 In accordance with the present invention, the value of an asset whose value fluctuates with time over time is the highest or lowest (ie maximum or minimum) or value of a particular rank (eg 2) Computer systems, methods, and programs can be provided that allow one to predict particular values, such as the second lowest value, the tenth highest value, etc.).
 さらに、本発明によれば、特定値となる時期の予測に基づいて、当該アセットを周期的または継続的に購入または積み立てることによって、当該アセットの評価額を大きくすることを可能にするコンピュータシステム、方法、および、プログラムを提供することができる。 Furthermore, according to the present invention, it is possible to increase the evaluation value of the asset by periodically or continuously purchasing or accumulating the asset based on the prediction of the time when the value becomes a specific value. Methods and programs can be provided.
AI外貨積立預金におけるユーザと銀行と外国為替市場との間のデータフローの一例を示す図。The figure which shows an example of the data flow between the user, a bank, and a foreign exchange market in AI foreign currency reserve deposit. 新しい金融商品を実現するためのコンピュータシステム200の構成の一例を示す図。A figure showing an example of composition of computer system 200 for realizing a new financial product. データベース部220に格納される価値変動アセットの積立に関する情報のデータ構成の一例を示す図。FIG. 8 is a view showing an example of the data configuration of information on accumulation of value fluctuation assets stored in the database unit 220. 特定値予測AIが利用する多層パーセプトロン450の一例を示す図。The figure which shows an example of the multilayer perceptron 450 which specific value prediction AI utilizes. 新しい金融商品を実現するためのコンピュータシステム200における処理500の一例を示すフローチャート。5 is a flowchart illustrating an example of a process 500 in the computer system 200 for realizing a new financial product. ステップS501で特定値予測AIが所定の期間内で価値変動アセットの価値が最安値となる時期を予測する処理の一例を示すフローチャート。The flowchart which shows one example of the processing which predicts the time when value of the value fluctuation asset becomes the lowest in the specified value prediction AI within the specified period with step S501. ステップS602の処理を複数の予測モデルを利用して行う場合の処理の一例を示すフローチャート。5 is a flowchart illustrating an example of processing in a case where the processing of step S602 is performed using a plurality of prediction models. ステップS602の処理を複数の予測モデルを利用して行い、かつ、所定の期間の前半を所定の期間内で価値変動アセットの価値が最安値となる時期として予測するときを制限する場合の処理の一例を示すフローチャート。Processing in the case of performing the process of step S602 using a plurality of prediction models, and limiting the prediction of the first half of a predetermined period as the time when the value of the value fluctuation asset becomes the lowest value in the predetermined period The flowchart which shows an example. 米ドル価格(円)の時間変動の一例を示すグラフ。The graph which shows an example of the time change of a US dollar price (yen). 米ドル価格(円)の時間変動の一例を示すグラフ。The graph which shows an example of the time change of a US dollar price (yen). 米ドル価格(円)の時間変動の一例を示すグラフ。The graph which shows an example of the time change of a US dollar price (yen). 米ドル価格(円)の時間変動の一例を示すグラフ。The graph which shows an example of the time change of a US dollar price (yen). 豪ドル価格(円)の時間変動の一例を示すグラフ。The graph which shows an example of the time change of an Australian dollar price (yen). 豪ドル価格(円)の時間変動の一例を示すグラフ。The graph which shows an example of the time change of an Australian dollar price (yen). 豪ドル価格(円)の時間変動の一例を示すグラフ。The graph which shows an example of the time change of an Australian dollar price (yen). 豪ドル価格(円)の時間変動の一例を示すグラフ。The graph which shows an example of the time change of an Australian dollar price (yen). 新しい金融商品を実現するためのコンピュータシステム200の代替構成であるコンピュータシステム200’の一例を示す図。FIG. 7 shows an example of a computer system 200 'that is an alternative configuration of computer system 200 for implementing a new financial product.
 以下、図面を参照しながら、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 1.AI外貨積立預金
 本発明の発明者は、「AI外貨積立預金」という新しい金融商品を開発した。AI外貨積立預金とは、人工知能(AI)を用いて所定の期間内で対象の外貨が最安値となる日を予測し、対象の外貨が最安値となると予測された日に対象の外貨を購入することにより、その所定の期間ごとに対象の外貨を積み立てる積立預金である。AI外貨積立預金によれば、従来の外貨積立預金よりも有利な為替レートで外貨を購入することが可能である。その結果、為替レートの変動によるリスクをさらに低く抑えることが可能である。ここで、AIとは、“Artificial Intelligence”の略語であり、人間の知能(もしくは、人間の知能を凌駕する知能)を人工的にコンピュータシステム上に実装するための技術、または、そのような技術が実装されたコンピュータシステムをいう。
1. AI Foreign Currency Deposits The inventor of the present invention has developed a new financial instrument called "AI foreign currency deposits". AI foreign currency reserve deposits use artificial intelligence (AI) to predict the day when the target foreign currency will be the lowest in a given period, and the day when the target foreign currency is predicted to be the lowest. It is an accumulated deposit that accumulates the target foreign currency every predetermined period by purchasing. According to AI foreign currency reserve, it is possible to purchase foreign currency at a favorable exchange rate than conventional foreign currency reserve. As a result, it is possible to further reduce the risk due to exchange rate fluctuations. Here, AI is an abbreviation of "Artificial Intelligence", a technology for artificially implementing human intelligence (or intelligence that surpasses human intelligence) on a computer system, or such technology Refers to a computer system implemented.
 図1は、AI外貨積立預金におけるユーザと銀行と外国為替市場との間のデータフローの一例を示す。図1に示される例では、4月から毎月対象の外貨が積み立てられるものとする。以下、図1に示される各ステップを説明する。 FIG. 1 shows an example of data flow between a user, a bank and a foreign exchange market in an AI foreign currency funded deposit. In the example shown in FIG. 1, it is assumed that the target foreign currency is accumulated monthly from April. Each step shown in FIG. 1 will be described below.
 ステップS101:ユーザ10は、AI外貨積立預金の申し込みを銀行20に対して行う。これにより、AI外貨積立預金のデータフローが開始する。AI外貨積立預金の申し込みは、例えば、ユーザ10がユーザ装置(例えば、スマートフォン)を用いて銀行20の銀行システムにアクセスし、所定の申し込み手順に従ってユーザがユーザ装置を操作することによって行われる。あるいは、このような申し込みは、ユーザ10がAI外貨積立預金の申込書を銀行20の窓口に提出することによって行われてもよい。ユーザ10は、申し込みにおいて、例えば、積立通貨、積立金額、目標金額等を設定する。例えば、ユーザ10は、申し込みにおいて、豪ドルを、1万円分、100万円分貯まるまで積み立てることを設定し得る。このとき、ユーザ10は、積立のタイミング(例えば、毎月どの日に豪ドルを購入するか)を設定することができない。 Step S101: The user 10 applies to the bank 20 for an AI foreign currency reserve deposit. This starts the data flow of AI foreign currency reserve deposits. The application of the AI foreign currency savings deposit is made, for example, by the user 10 accessing the bank system of the bank 20 using a user device (for example, a smart phone) and operating the user device according to a predetermined application procedure. Alternatively, such an application may be made as the user 10 submits an application for an AI foreign currency reserve deposit to the window of the bank 20. In the application, the user 10 sets, for example, a reserve currency, a reserve amount, a target amount, and the like. For example, in the application, the user 10 may set to accumulate the AUD for 10,000 yen and 1,000,000 yen. At this time, the user 10 can not set the timing of funding (for example, on what day every month the AUD is to be purchased).
 銀行20は、AI外貨積立預金の申し込みを受け、その申し込みに対する手続きを行う。銀行20による手続きが完了すると、銀行20の銀行システムがAI外貨積立預金のための処理を実行する。 The bank 20 receives an application for an AI foreign currency-funded deposit and processes for the application. When the procedure by the bank 20 is completed, the bank system of the bank 20 executes processing for AI foreign currency reserve deposits.
 銀行20の銀行システムは、例えば、4月の初日に、4月中で対象の外貨が最安値となる日を予測する。このような予測は、AI(人工知能)を用いて行われる。例えば、4月14日が対象の外貨が最安値となる日であると予測されたとする。 The banking system of the bank 20 predicts, for example, the first day of April when the target foreign currency will be lowest in April. Such prediction is performed using AI (Artificial Intelligence). For example, suppose that April 14 is predicted to be the day when the target foreign currency becomes the lowest price.
 ステップS102:銀行20は、4月14日に、ユーザ10が設定した金額の日本円を用いて対象の外貨を購入する旨の購入リクエストを外国為替市場30に送信する。 Step S102: On April 14, the bank 20 transmits a purchase request to the foreign exchange market 30 to purchase the target foreign currency using the Japanese yen of the amount set by the user 10.
 ステップS103:外国為替市場30は、銀行20からの購入リクエストに応答して、4月14日の為替レートで対象の外貨を銀行20に販売する。銀行20は、外国為替市場30から4月分として購入した対象の外貨をユーザ10の口座に積み立てる。 Step S103: In response to the purchase request from the bank 20, the foreign exchange market 30 sells the target foreign currency to the bank 20 at the exchange rate of April 14. The bank 20 accumulates the target foreign currency purchased for April from the foreign exchange market 30 in the account of the user 10.
 ステップS104:銀行20は、4月分として購入した対象の外貨をユーザ10の口座に積み立てた旨をユーザ10に報告する。 Step S104: The bank 20 reports to the user 10 that the foreign currency to be purchased for April is accumulated in the account of the user 10.
 銀行20の銀行システムは、例えば、5月の初日に、5月中で対象の外貨が最安値となる日を予測する。このような予測は、AI(人工知能)を用いて行われる。例えば、5月2日が対象の外貨が最安値となる日であると予測されたとする。 The banking system of the bank 20 predicts, for example, the first day of May when the target foreign currency will be lowest in May. Such prediction is performed using AI (Artificial Intelligence). For example, suppose that it is predicted that May 2nd will be the day when the target foreign currency becomes the lowest price.
 ステップS105:銀行20は、5月2日に、ユーザ10が設定した金額の日本円を用いて対象の外貨を購入する旨の購入リクエストを外国為替市場30に送信する。 Step S105: The bank 20 transmits a purchase request to the foreign exchange market 30 on the 2nd of May using the Japanese yen of the amount set by the user 10 to purchase the target foreign currency.
 ステップS106:外国為替市場30は、銀行20からの購入リクエストに応答して、5月2日の為替レートで対象の外貨を銀行20に販売する。銀行20は、外国為替市場30から5月分として購入した対象の外貨をユーザ10の口座に積み立てる。 Step S106: In response to the purchase request from the bank 20, the foreign exchange market 30 sells the target foreign currency to the bank 20 at the exchange rate of May 2. The bank 20 accumulates the target foreign currency purchased for May from the foreign exchange market 30 in the account of the user 10.
 ステップS107:銀行20は、5月分として購入した対象の外貨をユーザ10の口座に積み立てた旨をユーザ10に報告する。 Step S107: The bank 20 reports to the user 10 that the target foreign currency purchased for May has been accumulated in the account of the user 10.
 銀行20の銀行システムは、例えば、6月の初日に、6月中で対象の外貨が最安値となる日を予測する。このような予測は、AI(人工知能)を用いて行われる。例えば、6月28日が対象の外貨が最安値となる日であると予測されたとする。 The banking system of the bank 20 predicts, for example, the first day of June when the target foreign currency becomes the lowest in June. Such prediction is performed using AI (Artificial Intelligence). For example, it is assumed that June 28 is predicted to be the day when the target foreign currency becomes the lowest price.
 ステップS108:銀行20は、6月28日に、ユーザ10が設定した金額の日本円を用いて対象の外貨を購入する旨の購入リクエストを外国為替市場30に送信する。 Step S108: The bank 20 transmits a purchase request to the foreign exchange market 30 on the 28th of June using the Japanese yen of the amount set by the user 10 to purchase the target foreign currency.
 ステップS109:外国為替市場30は、銀行20からの購入リクエストに応答して、6月28日の為替レートで対象の外貨を銀行20に販売する。銀行20は、外国為替市場30から6月分として購入した対象の外貨をユーザ10の口座に積み立てる。 Step S109: In response to the purchase request from the bank 20, the foreign exchange market 30 sells the target foreign currency to the bank 20 at the exchange rate of June 28. The bank 20 accumulates the target foreign currency purchased for June from the foreign exchange market 30 in the account of the user 10.
 ステップS110:銀行20は、6月分として購入した対象の外貨をユーザ10の口座に積み立てた旨をユーザ10に報告する。 Step S110: The bank 20 reports to the user 10 that the target foreign currency purchased for June has been accumulated in the user 10 account.
 このようにして、AI外貨積立預金では、AI(人工知能)を用いて所定の期間内で対象の外貨が最安値となる日が予測され、対象の外貨が最安値となると予測された日に対象の外貨が購入される。このようにして、所定の期間ごとに外貨が積み立てられていく。これにより、AI外貨積立預金によれば、毎月一定の期日に外貨を購入する従来の外貨積立預金よりも有利な為替レートで外貨を購入して積み立てることが可能である。その結果、為替レートの変動によるリスクをさらに低く抑えることが可能である。これにより、任意の外貨購入周期末の時点における、マーク・トゥ・マーケットによる外貨資産の評価額を大きくすることができる。 Thus, in AI foreign currency reserve deposits, the day when the target foreign currency becomes the lowest in a predetermined period is predicted using AI (Artificial Intelligence), and the day when the target foreign currency is predicted to be the lowest. Target foreign currency is purchased. In this way, foreign currency is accumulated every predetermined period. Thus, according to the AI foreign currency reserve, it is possible to purchase and accumulate foreign currency at a favorable exchange rate than a conventional foreign currency reserve which purchases foreign currency on a fixed date every month. As a result, it is possible to further reduce the risk due to exchange rate fluctuations. This allows mark-to-market valuation of foreign currency assets to be increased at the end of any foreign currency purchase cycle.
 なお、AIによる対象の外貨が最安値となる日の予測は、あくまでも予測であり、その日に最安値となることを保証するものではない。しかしながら、AIによる予測精度を向上させることにより、より確実に、より有利な為替レートで積み立てを実行することが可能である。 Note that the forecast of the day when the target foreign currency will be the lowest price by AI is just a prediction, and it is not a guarantee that the lowest price will be reached on that day. However, by improving the prediction accuracy of the AI, it is possible to execute the accumulation at a more favorable exchange rate more reliably.
 図1を参照して上述した実施形態では、AIによる対象の外貨が最安値となる日の予測が取引月の初日に行われる例を説明したが、その予測が行われるタイミングはこれに限定されない。例えば、取引期間に至る前(例えば、取引月の前日)に、その予測が行われるようにしてもよい。 Although the embodiment described above with reference to FIG. 1 illustrates an example in which the prediction of the day when the target foreign currency is the lowest according to the AI is performed on the first day of the transaction month, the timing of the prediction is not limited thereto. . For example, the prediction may be made before reaching the trading period (e.g., the day before the trading month).
 図1を参照して上述した実施形態では、AIを用いて、所定の期間内で対象の外貨が最安値となる日を予測したが、本発明はこれに限定されない。AIを用いて、所定の期間内で対象の外貨が最安値となる日以外の日、例えば、所定の期間内で対象の外貨が2番目に安い値となる日、5番目に安い値となる日、10番目に安い値となる日、14番目に安い値となる日等を予測するようにしてもよい。これは、価値変動のランダム性が高く、予測が難しい外貨を積み立てる場合に、より有効な手法である。価値変動のランダム性が高く、予測が難しい外貨では、最安値を敢えて狙わないことで、最安値を取らないにしても最高値を回避することができるため、最終的な期待値が向上する。 In the embodiment described above with reference to FIG. 1, AI is used to predict the day when the target foreign currency becomes the lowest price in a predetermined period, but the present invention is not limited thereto. Using AI, it becomes the fifth lowest value on a day other than the day when the target foreign currency becomes the lowest price within the predetermined period, for example, the day when the target foreign currency becomes the second lowest value within the predetermined period The day having the 10th lowest value, the day having the 14th lowest value, etc. may be predicted. This is a more effective method when accumulating foreign currency that has high randomness of value change and is difficult to predict. In the case of foreign currency that has high randomness of value change and is difficult to predict, by not aiming at the lowest price, it is possible to avoid the highest price without taking the lowest price, so the final expected value improves.
 図1を参照して上述した実施形態では、銀行20が対象の外貨を積み立てるごとにユーザ10に報告したが、ユーザ10への報告の要否およびタイミングは任意である。例えば、銀行20からユーザ10に対して能動的に報告しなくてもよいし、一定の回数の積立が終了した後にユーザに報告してもよい。 In the embodiment described above with reference to FIG. 1, the bank 20 reports to the user 10 every time the target foreign currency is accumulated, but the necessity and timing of the report to the user 10 are arbitrary. For example, the bank 20 may not actively report to the user 10, or may report to the user after a certain number of accumulations have been completed.
 図1を参照して上述した実施形態では、新しい金融商品の一例としてAI外貨積立預金を説明したが、新しい金融商品はこれに限定されない。例えば、取引は、購入または積立に限定されない。取引は、売却であってもよい。このとき、AI(人工知能)を用いて所定の期間内で対象の外貨が最高値となる日が予測され、対象の外貨が最高値となると予測された日に対象の外貨が売却される。例えば、取引の対象は、外貨に限定されない。取引の対象は、時間の経過につれて価値が変動する任意のアセット(以下、「価値変動アセット」ともいう)であり得る。価値変動アセットの一例は、外貨、投資信託、金、コモディティ(原油、とうもろこし等)などであるが、これらには限定されない。すなわち、新しい金融商品は、人工知能(AI)を用いて所定の期間内で対象の価値変動アセットが特定値(最高値、最安値、14番目に安い値、または、5番目に高い値等の特定の順位の値)となる時期(例えば、秒、分、時、日、または週等)を予測し、対象の価値変動アセットが最安値または特定の順位の安値となると予測された時期内に対象の価値変動アセットを購入するか、または、対象の価値変動アセットが最高値または特定の順位の高値となると予測された時期内に対象の価値変動アセットを売却することにより、価値変動アセットのポートフォリオの形成を行うことを可能にする商品である。この新しい金融商品によれば、従来の積立型金融商品よりも有利な価格で価値変動アセットを購入または売却することが可能である。その結果、価値変動によるリスクをさらに低く抑えるとともに、その評価額を大きくすることが可能である。 Although the embodiment described above with reference to FIG. 1 describes AI foreign currency-funded deposits as an example of the new financial product, the new financial product is not limited thereto. For example, trading is not limited to purchasing or funding. The transaction may be a sale. At this time, using AI (Artificial Intelligence), the day when the target foreign currency becomes the highest within a predetermined period is predicted, and the target foreign currency is sold on the day when the target foreign currency is predicted to become the highest. For example, the object of the transaction is not limited to foreign currency. The object of the transaction may be any asset whose value changes as time passes (hereinafter, also referred to as “value fluctuation asset”). Examples of variable value assets include, but are not limited to, foreign currency, mutual funds, gold, commodities (crude oil, corn etc) etc. In other words, new financial instruments use artificial intelligence (AI) to target value-changing assets within specified time periods (maximum value, minimum value, 14th lowest value, or 5th highest value, etc.) Forecasting the time (for example, seconds, minutes, hours, days, or weeks) to be a specific ranking value, and within the time when the target value fluctuation asset is predicted to be the lowest price or the specific ranking low A portfolio of value change assets by purchasing the target value change asset or selling the target value change asset within the time the target value change asset is expected to be at a high or a specific high. It is a commodity that makes it possible to carry out the formation of With this new financial instrument, it is possible to buy or sell value-changing assets at a price that is more advantageous than conventional funded financial instruments. As a result, it is possible to further reduce the risk of value change and increase the value of the evaluation.
 2.新しい金融商品を実現するためのコンピュータシステムの構成
 図2は、上述した新しい金融商品を実現するためのコンピュータシステム200の構成の一例を示す。
2. Configuration of Computer System for Realizing a New Financial Product FIG. 2 shows an example of the configuration of a computer system 200 for realizing the above-mentioned new financial product.
 コンピュータシステム200は、例えば、銀行20において用いられるコンピュータシステムである。 The computer system 200 is, for example, a computer system used in the bank 20.
 コンピュータシステム200は、ネットワーク400を介して、アセット取引コンピュータシステム300と接続される。ここで、ネットワーク400の種類は問わない。ネットワーク400は、例えば、インターネットであってもよいし、LANであってもよい。 Computer system 200 is connected to asset trading computer system 300 via network 400. Here, the type of the network 400 does not matter. The network 400 may be, for example, the Internet or a LAN.
 アセット取引コンピュータシステム300は、価値変動アセットの取引のための処理を実行することができるサーバ装置等を含むコンピュータシステムである。アセット取引コンピュータシステム300は、例えば、外国為替市場30において用いられるコンピュータシステムである。アセット取引コンピュータシステム300は、例えば、外国為替市場30に参加している短資会社等の売買仲介事業者または売買当事者の所管するコンピュータシステムであってもよい。アセット取引コンピュータシステム300は、価値変動アセットの購入のリクエストに応答して、価値変動アセットを販売する処理を行うように構成されている。また、アセット取引コンピュータシステム300は、価値変動アセットの売却のリクエストに応答して、価値変動アセットを購入する処理を行うように構成されている。コンピュータシステム200は、アセット取引コンピュータシステム300と接続されていることにより、価値変動アセットの取引を行うことが可能である。 The asset trading computer system 300 is a computer system that includes a server device and the like that can execute processing for trading of value fluctuation assets. The asset trading computer system 300 is, for example, a computer system used in the foreign exchange market 30. The asset trading computer system 300 may be, for example, a computer system managed by a trading brokerage company or trading party such as a short-listed company participating in the foreign exchange market 30. The asset trading computer system 300 is configured to perform processing to sell value changing assets in response to a request to purchase value changing assets. The asset trading computer system 300 is also configured to perform processing to purchase value changing assets in response to a request to sell the value changing assets. The computer system 200 is able to trade value-varying assets by being connected to the asset trading computer system 300.
 コンピュータシステム200は、サーバ装置210と、サーバ装置210に接続されるデータベース部220とを備える。サーバ装置210は、インターフェース部211と、プロセッサ部212と、メモリ部213とを備える。 The computer system 200 includes a server device 210 and a database unit 220 connected to the server device 210. The server device 210 includes an interface unit 211, a processor unit 212, and a memory unit 213.
 インターフェース部211は、ネットワーク400を介した通信を制御するように構成されている。インターフェース部211は、サーバ装置210の外部に情報を送信することが可能であり、ユーザ装置210の外部から情報を受信することが可能である。例えば、インターフェース部211は、ネットワーク400を介して、価値変動アセットの購入のリクエストをアセット取引コンピュータシステム300に送信する。例えば、インターフェース部211は、ネットワーク400を介して、価値変動アセットの売却のリクエストをアセット取引コンピュータシステム300に送信する。例えば、インターフェース部211は、サーバ装置210に接続されているデータベース部220に情報を送信し、データベース部220から情報を受信する。 The interface unit 211 is configured to control communication via the network 400. The interface unit 211 can transmit information to the outside of the server device 210, and can receive information from the outside of the user device 210. For example, the interface unit 211 transmits a request for purchase of a value change asset to the asset transaction computer system 300 via the network 400. For example, the interface unit 211 transmits, to the asset trading computer system 300, a request for sale of value fluctuation assets via the network 400. For example, the interface unit 211 transmits information to the database unit 220 connected to the server device 210, and receives information from the database unit 220.
 プロセッサ部212は、サーバ装置210全体の動作を制御する。プロセッサ部212は、メモリ部213に格納されているプログラムを読み出し、そのプログラムを実行する。これにより、サーバ装置210を所望のステップを実行する装置として機能させることが可能である。例えば、プロセッサ部212は、価値変動アセットを積み立てる処理の一部または全部を行うことができる。プロセッサ部212は、単一のプロセッサによって実装されてもよいし、複数のプロセッサによって実装されてもよい。 The processor unit 212 controls the overall operation of the server device 210. The processor unit 212 reads a program stored in the memory unit 213 and executes the program. This enables the server device 210 to function as a device that executes a desired step. For example, the processor unit 212 can perform part or all of the process of accumulating value fluctuation assets. The processor unit 212 may be implemented by a single processor or may be implemented by a plurality of processors.
 メモリ部213には、サーバ装置210における処理を実行するためのプログラムやそのプログラムの実行に必要とされるデータ等が格納されている。メモリ部213には、例えば、価値変動アセットの取引を行うためのプログラム、または、価値変動アセットを積み立てるためのプログラム(例えば、後述する図5および図6A~図6Cに示される処理を実現するプログラム)の一部または全部が格納されている。ここで、プログラムをどのようにしてメモリ部213に格納するかは問わない。例えば、プログラムは、メモリ部213にプリインストールされていてもよい。あるいは、プログラムは、ネットワーク400を経由してダウンロードされることによってメモリ部213にインストールされるようにしてもよい。メモリ部213は、任意の記憶手段によって実装され得る。 The memory unit 213 stores a program for executing a process in the server apparatus 210, data required to execute the program, and the like. In the memory unit 213, for example, a program for trading value-varying assets or a program for accumulating value-varying assets (for example, a program for realizing the processing shown in FIGS. 5 and 6A to 6C described later) Part or all is stored. Here, it does not matter how the program is stored in the memory unit 213. For example, the program may be pre-installed in the memory unit 213. Alternatively, the program may be installed in the memory unit 213 by being downloaded via the network 400. The memory unit 213 can be implemented by any storage means.
 データベース部220には、ユーザ毎に価値変動アセットの積立に関する情報が格納される。価値変動アセットの積立に関する情報は、価値変動アセットの積立先の情報を含む。価値変動アセットの積立先の情報は、例えば、価値変動アセットの積立先に積み立てられた価値変動アセットに関する情報(例えば、価値変動アセットの購入時間、価値変動アセットの購入価格、価値変動アセットの購入量、価値変動アセットの積立量等)を含んでもよい。価値変動アセットの積立先の情報は、価値変動アセットの積立先から売却された価値変動アセットに関する情報(例えば、価値変動アセットの売却時間、価値変動アセットの売却価格、価値変動アセットの売却量等)も含み得る。価値変動アセットが外貨の場合、価値変動アセットの積立先の情報は、外貨積立用口座の情報であり、外貨積立用口座に積み立てられた外貨に関する情報(例えば、外貨の購入日時、外貨の購入価格、外貨の購入量、外貨の積立総額等)および外貨積立用口座から売却された外貨に関する情報(例えば、外貨の売却日時、外貨の売却価格、外貨の売却量等)を含み得る。 The database unit 220 stores, for each user, information on the accumulation of value fluctuation assets. The information on the accumulation of the value change asset includes the information on the accumulation destination of the value change asset. For example, information on the value fluctuation asset accumulated in the value fluctuation asset accumulation destination (for example, purchase time of the value fluctuation asset, purchase price of the value fluctuation asset, purchase amount of the value fluctuation asset) , Accumulated amount of value fluctuation assets, etc.). Information on where to deposit value change assets is information on value change assets sold from where value change assets are stored (for example, sale time of value change assets, sale price of value change assets, sale amount of value change assets, etc.) May also be included. If the value change asset is a foreign currency, the information on the deposit destination of the value change asset is the information on the foreign currency reserve account, and information on the foreign currency set up in the foreign currency reserve account (for example, purchase date and time of foreign currency, purchase price of foreign currency This may include foreign currency purchases, foreign currency reserve totals, etc.) and information on foreign currencies sold from foreign currency funding accounts (eg, foreign currency sales date, foreign currency sales prices, foreign currency sales volumes, etc.).
 データベース部220には、例えば、過去の価値変動データも格納され得る。過去の価値変動データは、将来の価値変動を予測するために、後述する特定値予測AIの学習のために用いられ得る。学習に用いられる過去の価値変動データは、購入用通貨(例えば、日本円)に対する対象のアセットの価値変動データ(例えば、日本円で米ドルを購入して積み立てる場合は、日本円に対する米ドルの価値変動データ)を含み得る。学習に用いられる過去の価値変動データは、購入用通貨に対する対象のアセットの価値変動データに加えて、他の通貨(例えば、米ドル、豪ドル、ユーロ、NZドル等)に対する対象のアセットの価値変動データ、または、S&P500指数、日経平均株価、ドイツ株価指数、あるいは、WTI原油価格等のデータを含んでもよい。データベース部220には、例えば、学習した価値変動傾向も格納され得る。後述する特定値予測AIが多層パーセプトロンを利用する場合、データベース部220には、学習によって確立された各ノードの重みベクトルが格納されるようにしてもよい。 The database unit 220 may store, for example, past value fluctuation data. The past value change data can be used for learning of a specific value prediction AI described later to predict future value change. The historical value change data used for learning is the value change data of the target asset with respect to the currency for purchase (for example, Japanese yen) (for example, when purchasing and accumulating the US dollar in Japanese yen, the value change of the US dollar relative to Japanese yen Data) can be included. The historical value change data used for learning includes the value change data of the target asset relative to the currency for purchase as well as the change in value of the target asset relative to other currencies (eg, US dollar, Australian dollar, euro, NZ dollar, etc.) Data or data such as S & P 500 index, Nikkei Stock Average, German stock index, or WTI crude oil price may be included. The database unit 220 can also store, for example, learned value fluctuation tendencies. When a specific value prediction AI to be described later uses a multilayer perceptron, the database unit 220 may store a weight vector of each node established by learning.
 図3は、データベース部220に格納される価値変動アセットの積立に関する情報のデータ構成の一例を示す。 FIG. 3 shows an example of a data configuration of information on accumulation of value fluctuation assets stored in the database unit 220. As shown in FIG.
 図3に示される例では、価値変動アセットが外貨の場合に、データベース部220に格納される情報のデータ構成の一例が示されている。 In the example shown in FIG. 3, when the value change asset is a foreign currency, an example of the data configuration of the information stored in the database unit 220 is shown.
 データベース部220は、ユーザ毎に、外貨積立用口座の情報を格納している。データベース部220は、第1のユーザの外貨積立用口座の情報を格納するためのデータベース221と、第2のユーザの外貨積立用口座の情報を格納するためのデータベース222とを含む。第1のユーザの外貨積立用口座の情報を格納するためのデータベース221は、例えば、2017年4月からドル建て積立預金を開始した第1のユーザの外貨積立用口座番号、外貨の購入日時、外貨の購入価格、外貨の積立総額を含む。例えば、データベース221は、第1のユーザが2017年4月14日に113ドルを購入し、積立総額が113ドルとなったという情報を格納し、第1のユーザが2017年5月2日に119ドルを購入し、積立総額が232ドルとなったという情報を格納し、第1のユーザが2017年6月28日に125ドルを購入し、積立総額が357ドルとなったという情報を格納し、第1のユーザが2017年7月10日に110ドルを購入し、積立総額が467ドルとなったという情報を格納し得る。第2のユーザの外貨積立用口座の情報を格納するためのデータベース222は、例えば、2016年7月からユーロ建て積立預金を開始した第2のユーザの外貨積立用口座番号、外貨の購入日時、外貨の購入価格、外貨の積立総額を含む。例えば、データベース221は、第2のユーザが2016年7月12日に520ユーロを購入し、積立総額が520ユーロとなったという情報を格納し得る。 The database unit 220 stores, for each user, information on a foreign currency funding account. The database unit 220 includes a database 221 for storing information on a first user's foreign currency accumulation account and a database 222 for storing information on a second user's foreign currency accumulation account. The database 221 for storing the information of the first user's foreign currency funding account is, for example, the foreign currency funding account number of the first user who started the dollar-denominated financial deposit from April 2017, the foreign currency purchase date, Includes foreign currency purchase price and foreign currency reserve capital. For example, the database 221 stores information that the first user purchased $ 113 on April 14, 2017, and the accumulated total amount became $ 113, and the first user is stored on May 2, 2017. Stores $ 119 and stores information that the accumulated amount has reached $ 232, and stores information that the first user purchased $ 125 on June 28, 2017 and the accumulated amount has reached $ 357 Then, the first user may purchase $ 110 on July 10, 2017, and store information that the accumulated total amount is $ 467. The database 222 for storing the information of the second user's foreign currency funding account is, for example, the foreign currency funding account number of the second user who started the euro-denominated financial deposit from July 2016, the date and time of purchase of the foreign currency, Includes foreign currency purchase price and foreign currency reserve capital. For example, the database 221 may store information that the second user purchased 520 euros on July 12, 2016, and the accumulated total amount is 520 euros.
 所定の期間内で価値変動アセットの価値が特定値(例えば、最安値、最高値、14番目に安い値、または、5番目に高い値等の特定の順位の値)となる時期(例えば、秒、分、時、日、または週等)を予測することが可能なAI(以下、「特定値予測AI」ともいう)は、上述した構成を有するコンピュータシステム200によって実現される。特定値予測AIは、予測モデルとして多層パーセプトロン450を利用する。 Within a given time period (eg, seconds) when the value of the value-changing asset is at a specific value (for example, a specific ranking value such as the lowest price, the highest price, the 14th lowest value, or the 5th highest value) An AI (hereinafter, also referred to as “specific value prediction AI”) capable of predicting hour, minute, hour, day, or week) is realized by the computer system 200 having the configuration described above. The specific value prediction AI uses the multilayer perceptron 450 as a prediction model.
 図4は、特定値予測AIが利用する多層パーセプトロン450の一例を示す。 FIG. 4 shows an example of a multilayer perceptron 450 used by the specific value prediction AI.
 多層パーセプトロン450は、入力層と、隠れ層と、出力層とを有する。図4に示される例では、多層パーセプトロン450が2層の隠れ層を有するように示されているが、隠れ層の数はこれに限定されない。多層パーセプトロン450は、1以上の隠れ層を備えることができる。また、多層パーセプトロン450の入力層、隠れ層、および出力層の各層は、任意の数のノードを含むことができる。例えば、入力層から出力層に向かうにつれてノードが減少していくように、各層がノードを含むようにしてもよいし、各隠れ層が同数のノードを含むようにしてもよい。 The multilayer perceptron 450 has an input layer, a hidden layer, and an output layer. In the example shown in FIG. 4, the multilayer perceptron 450 is shown to have two hidden layers, but the number of hidden layers is not limited thereto. The multilayer perceptron 450 can comprise one or more hidden layers. Also, each layer of the input layer, hidden layer, and output layer of multilayer perceptron 450 can include any number of nodes. For example, each layer may include nodes, and each hidden layer may include the same number of nodes so that the nodes decrease as going from the input layer to the output layer.
 特定値予測AIは、多層パーセプトロン450を利用して過去の価値変動データを学習することにより、価値変動アセットの価値の将来の変動を予測することができる。学習される過去の価値変動データは、例えば、購入用通貨(例えば、日本円)に対する予測対象のアセットの価値変動データを含む。これに加えて、学習される過去の価値変動データは、購入用通貨以外の通貨(例えば、米ドル、豪ドル、ユーロ、NZドル等)に対する予測対象のアセットの価値変動データを含んでもよく、または、S&P500指数、日経平均株価、ドイツ株価指数、あるいは、WTI原油価格等の予測対象のアセット以外のアセット価格データを含んでもよい。特定値予測AIは、過去の価値変動データを教師データとして学習することにより、多層パーセプトロン450の各ノードの重みベクトルを確立することができる。例えば、特定値予測AIは、少なくとも1種類の価値変動データの一定期間のデータを教師用入力データとし、その一定期間後の予測対象のアセットの価値変動データを教師用出力データとして、学習を行うことができる。 The specific value prediction AI can predict future changes in the value of value change assets by learning past value change data using the multi-layer perceptron 450. The past value change data to be learned includes, for example, value change data of the asset to be predicted relative to the currency for purchase (for example, Japanese yen). Additionally, historical value change data to be learned may include value change data of the asset being forecasted for a currency other than the currency for purchase (e.g., USD, AUD, EUR, NZD, etc.), or , Asset price data other than the asset to be forecasted, such as the S & P 500 index, Nikkei Stock Average, the German stock index, or WTI crude oil prices. The specific value prediction AI can establish the weight vector of each node of the multilayer perceptron 450 by learning past value variation data as training data. For example, the specific value prediction AI performs learning using data of a fixed period of at least one kind of value fluctuation data as teacher input data, and value fluctuation data of an asset to be predicted after the predetermined period as teacher output data. be able to.
 教師用出力データは、例えば、一定期間後の予測対象のアセットの所定期間の平均値であってもよい。このような教師用出力データによる学習によって確立された各ノードの重みベクトルを有する多層パーセプトロン450は、直前の期間の価値変動データを入力されると、将来の所定期間の平均値の予測を出力することができるようになる。 The teacher output data may be, for example, an average value of a predetermined period of the asset to be predicted after a predetermined period. The multilayer perceptron 450 having a weight vector of each node established by learning with such teacher output data outputs prediction of an average value of a future predetermined period, when value fluctuation data of the immediately preceding period is input. Will be able to
 教師用出力データは、例えば、予測対象のアセットが、一定期間後の或る期間(例えば、1月、10営業日、6営業日、2営業日等)の前半に最安値となるか後半に最安値となるかを示す2値(0または1)であってもよい。このような教師用出力データによる学習によって確立された各ノードの重みベクトルを有する多層パーセプトロン450は、直前の期間の価値変動データを入力されると、将来の或る期間(例えば、1月、10営業日、6営業日、2営業日等)の前半に最安値となるか後半に最安値となるかの予測を出力することができるようになる。 The output data for teachers is, for example, whether the asset to be predicted has the lowest price in the first half of a certain period after a certain period (for example, January, 10 business days, 6 business days, 2 business days, etc.) It may be a binary value (0 or 1) indicating whether it is the lowest price. The multilayer perceptron 450 having a weight vector of each node established by learning based on such teacher output data may receive a certain period of time (for example, January, 10) when value fluctuation data of the immediately preceding period is input. It is possible to output a forecast as to whether the price will be the lowest in the first half of the business day, 6 business days, 2 business days, etc.).
 教師用出力データは、例えば、予測対象のアセットが、一定期間後の或る期間(例えば、1月、10営業日、6営業日、2営業日等)を複数の期間に分割した期間のうちのどの期間に最安値となるかを示す値であってもよい。このような教師用出力データによる学習によって確立された各ノードの重みベクトルを有する多層パーセプトロン450は、直前の期間の価値変動データを入力されると、将来の或る期間(例えば、1月、10営業日、8営業日、4営業日等)を複数の期間に分割した期間のうちのどの期間に最安値となるかの予測を出力することができるようになる。 The output data for teacher is, for example, a period in which an asset to be predicted is divided into a plurality of periods after a certain period (for example, January, 10 business days, 6 business days, 2 business days, etc.) It may be a value indicating which period of the period the lowest price will be. The multilayer perceptron 450 having a weight vector of each node established by learning based on such teacher output data may receive a certain period of time (for example, January, 10) when value fluctuation data of the immediately preceding period is input. It is possible to output a forecast of which period of the business day, 8 business days, 4 business days, etc.) is divided into a plurality of periods.
 特定値予測AIは、多層パーセプトロン450を利用して、過去の価値変動データから、例えば、「大きな上げトレンドの月は、月の前半が最安値になりやすく、月の後半が最高値になりやすい」、「大きな下げトレンドの月は、月の後半が最安値になりやすく、月の前半が最高値になりやすい」、「下げトレンドのときは週末よりも週明けのほうが最安値になりやすい」、「上げトレンドのときは週明けよりも週末のほうが最安値になりやすい」等のトレンドに基づいた価値変動傾向を学習することができる。特定値予測AIは、過去の価値変動データから、例えば、「ある閾値以上上昇した日の後は必ず下降する」、「ある閾値以上下降した日の後は必ず上昇する」等の変動量に基づいた価値変動傾向を学習することができる。学習結果は、過去の変動データとともにデータベース部220に格納される。 Specific value prediction AI, using multi-layer perceptron 450, from the past value fluctuation data, for example, "The month of the big uptrend is likely to be the lowest in the first half of the month, the second half of the month is likely to be the highest "The big downtrend month is likely to have the lowest price in the second half of the month, and the first half of the month is likely to have the highest price." , You can learn the value fluctuation trend based on the trend such as "If the trend is up, it is easier to get the lowest price on the weekend than at the end of the week". The specific value prediction AI is based on the amount of fluctuation such as “always falls after a day rising above a certain threshold” or “always rises after a day falling above a certain threshold” from past value fluctuation data, for example. Value change tendency can be learned. The learning result is stored in the database unit 220 together with past fluctuation data.
 特定値予測AIは、多層パーセプトロン450を利用して、学習結果に基づいて、所定の期間内で価値変動アセットの価値が特定値(例えば、最安値、最高値、14番目に安い値、または、5番目に高い値等の特定の順位の値)となる時期(例えば、秒、分、時、日、または週等)を予測する。予測の処理のための多層パーセプトロン450への入力は、予測対象の所定の期間の直前の期間の価値変動データであり得る。予測の処理のための多層パーセプトロン450への入力は購入用通貨(例えば、日本円)に対する予測対象のアセットの価値変動データであり得るが、購入用通貨以外の通貨(例えば、米ドル、豪ドル、ユーロ、NZドル等)に対する対象のアセットの価値変動データであってもよく、あるいは、S&P500指数、日経平均株価、ドイツ株価指数、または、WTI原油価格等の予測対象のアセット以外のアセット価格データを予測の処理における入力としてもよい。多層パーセプトロン450への入力は、例えば、予測対象の所定の期間の直前16日間の価値変動データ、直前32日間の価値変動データ、または、直前64日間の価値変動データであり得る。多層パーセプトロン450へ入力されるデータが多いほど、予測精度はより向上するが、データの増加に伴い計算量が増加する点に留意すべきである。また、学習した過去の価値変動データが多いほど、予測精度はより向上するが、これもまた、データの増加に伴い学習のための計算量が増加する点に留意すべきである。さらに、学習した過去の価値変動データの種類が多いほど、予測精度はより向上するが、予測のために関連のないデータを学習させてしまうと、特定値予測AIが混乱し、予測精度が下がってしまうおそれがある点に留意すべきである。 The specific value prediction AI utilizes the multi-layer perceptron 450, and based on the learning result, the value of the value fluctuation asset has a specific value (for example, the lowest price, the highest value, the 14th lowest value, or Predict a time (for example, seconds, minutes, hours, days, or weeks) to be a specific rank value such as the fifth highest value. The input to the multilayer perceptron 450 for processing of the prediction may be value change data of a period immediately prior to the predetermined period to be predicted. The input to the multi-layer perceptron 450 for processing the forecast may be value change data of the forecasted asset relative to the buying currency (e.g. Japanese yen), but a currency other than the buying currency (e.g. The asset price data of the target asset against the Euro, NZ Dollar, etc.) or asset price data other than the asset to be forecasted such as the S & P 500 Index, Nikkei Stock Average, German Stock Price Index, or WTI crude oil price It may be input in the process of prediction. The input to the multi-layer perceptron 450 may be, for example, value change data for 16 days immediately before a predetermined period to be predicted, value change data for immediately preceding 32 days, or value change data for immediately preceding 64 days. It should be noted that the more data that is input to the multilayer perceptron 450, the better the prediction accuracy, but the more computational complexity increases as the data increases. In addition, it should be noted that the prediction accuracy improves as the amount of past value fluctuation data learned increases, but also the calculation amount for learning increases as the data increases. Furthermore, as the number of types of historical value fluctuation data learned increases, the prediction accuracy improves more, but when unrelated data is learned for prediction, the specific value prediction AI becomes confused and the prediction accuracy decreases. It should be noted that there is a risk of
 多層パーセプトロン450は、予測モデルの一例であり、特定値予測AIは、他の任意の予測モデルを利用して価値変動アセットの価値が特定値となる時期を予測することができる。例えば、特定値予測AIは、CNN(畳み込みニューラルネットワーク)、リカレントニューラルネットワーク(RNN)等を予測モデルとして利用して価値変動アセットの価値が特定値となる時期を予測することができる。概して、多層パーセプトロン450よりも、CNNのほうが予測精度が良い。 The multilayer perceptron 450 is an example of a prediction model, and the specific value prediction AI can predict when the value of the value fluctuation asset becomes a specific value using any other prediction model. For example, the specific value prediction AI can use CNN (Convolutional Neural Network), recurrent neural network (RNN) or the like as a prediction model to predict when the value of the value fluctuation asset becomes a specific value. In general, CNN has better prediction accuracy than multilayer perceptron 450.
 特定値予測AIは、複数の予測モデルを利用して、価値変動アセットの価値が特定の順位の値となる時期を予測することができる。複数の予測モデルは、例えば、学習に用いられる過去の価値変動データの種類または量が異なる複数の予測モデルであり得る。複数の予測モデルは、例えば、予測のために入力される直前の期間の価値変動データの種類または量が異なる複数の予測モデルであり得る。複数の予測モデルは、例えば、多層パーセプトロン450を利用する予測モデル、CNNを利用する予測モデル、RNNを利用する予測モデル等の利用するニューラルネットワークの種類がそれぞれ異なる複数の予測モデルであり得る。特定値予測AIは、複数の予測モデルのそれぞれを用い、それぞれの予測結果の多数決をとって、価値変動アセットの価値が特定の順位の値となる時期を予測することにより、予測精度を向上させることが可能である。 The specific value prediction AI can use a plurality of prediction models to predict when the value of the value fluctuation asset becomes a specific rank value. The plurality of prediction models may be, for example, a plurality of prediction models that differ in the type or amount of past value fluctuation data used for learning. The plurality of prediction models may be, for example, a plurality of prediction models that differ in type or amount of value fluctuation data of an immediately preceding period input for prediction. The plurality of prediction models may be, for example, a plurality of prediction models having different types of neural networks to be used, such as a prediction model using the multilayer perceptron 450, a prediction model using a CNN, and a prediction model using an RNN. The specific value prediction AI improves prediction accuracy by using each of a plurality of prediction models, taking majority of the prediction results, and predicting when the value of the value fluctuation asset becomes a specific rank value. It is possible.
 図2に示される例では、サーバ装置210の各構成要素がサーバ装置210内に設けられているが、本発明はこれに限定されない。サーバ装置210の各構成要素のいずれかがサーバ装置210の外部に設けられることも可能である。例えば、プロセッサ部212、メモリ部213のそれぞれが別々のハードウェア部品で構成されている場合には、各ハードウェア部品が任意のネットワークを介して接続されてもよい。このとき、ネットワークの種類は問わない。各ハードウェア部品は、例えば、LANを介して接続されてもよいし、無線接続されてもよいし、有線接続されてもよい。 In the example shown in FIG. 2, each component of the server device 210 is provided in the server device 210, but the present invention is not limited to this. It is also possible that any one of the components of the server device 210 is provided outside the server device 210. For example, when each of the processor unit 212 and the memory unit 213 is configured by separate hardware components, each hardware component may be connected via an arbitrary network. At this time, the type of network does not matter. Each hardware component may be connected via, for example, a LAN, may be wirelessly connected, or may be wired.
 図2に示される例では、データベース部220は、サーバ装置210の外部に設けられているが、本発明はこれに限定されない。データベース部220をサーバ装置210の内部に設けることも可能である。このとき、データベース部220は、メモリ部213を実装する記憶手段と同一の記憶手段によって実装されてもよいし、メモリ部213を実装する記憶手段とは別の記憶手段によって実装されてもよい。いずれにせよ、データベース部220は、サーバ装置210のための記憶部として構成される。データベース部220の構成は、特定のハードウェア構成に限定されない。例えば、データベース部220は、単一のハードウェア部品で構成されてもよいし、複数のハードウェア部品で構成されてもよい。例えば、データベース部220は、サーバ装置210の外付けハードディスク装置として構成されてもよいし、ネットワーク400を介して接続されるクラウド上のストレージとして構成されてもよい。 In the example shown in FIG. 2, the database unit 220 is provided outside the server device 210, but the present invention is not limited to this. It is also possible to provide the database unit 220 inside the server apparatus 210. At this time, the database unit 220 may be implemented by the same storage unit as the storage unit that implements the memory unit 213, or may be implemented by a storage unit different from the storage unit that implements the memory unit 213. In any case, the database unit 220 is configured as a storage unit for the server device 210. The configuration of the database unit 220 is not limited to a specific hardware configuration. For example, the database unit 220 may be configured by a single hardware component or may be configured by a plurality of hardware components. For example, the database unit 220 may be configured as an external hard disk drive of the server device 210 or may be configured as storage on a cloud connected via the network 400.
 3.新しい金融商品を実現するためのコンピュータシステムにおける処理
 図5は、新しい金融商品を実現するためのコンピュータシステム200における処理500の一例を示す。ここでは、時間の経過につれて価値が変動するアセットを積み立てるための処理500を例に説明する。
3. Process in a Computer System for Realizing a New Financial Product FIG. 5 shows an example of a process 500 in a computer system 200 for realizing a new financial product. Here, a process 500 for accumulating assets whose value changes as time passes will be described as an example.
 ステップS501において、コンピュータシステム200によって実現される特定値予測AIが、所定の期間内で価値変動アセットの価値が最安値となる時期を予測する。特定値予測AIは、例えば、図5を参照して後述する処理によって、所定の期間内で価値変動アセットの価値が最安値となる時期を予測する。ここで、所定の期間は、価値変動アセットを積み立てる間隔であり得る。例えば、毎月価値変動アセットを積み立てる場合、所定の期間は1月(または23営業日)であり得る。例えば、毎週価値変動アセットを積み立てる場合、所定の期間は1週間(または5営業日)であり得る。例えば、毎日価値変動アセットを積み立てる場合、所定の期間は1日(または9時間)であり得る。所定の期間内で価値変動アセットの価値が最安値となる時期は、例えば、秒、分、時、日、または週等の任意の時間単位であり得る。 In step S501, the specific value prediction AI implemented by the computer system 200 predicts when the value of the value fluctuation asset will be the lowest value in a predetermined period. The specific value prediction AI predicts, for example, when the value of the value fluctuation asset will be the lowest value in a predetermined period, by the process described later with reference to FIG. Here, the predetermined period may be an interval for accumulating value fluctuation assets. For example, when accumulating value changing assets monthly, the predetermined period may be January (or 23 business days). For example, when accumulating value change assets weekly, the predetermined period may be one week (or five business days). For example, when accumulating value change assets daily, the predetermined period may be one day (or nine hours). The time when the value of the value fluctuation asset becomes the lowest value in a predetermined period may be, for example, any time unit such as seconds, minutes, hours, days, or weeks.
 ステップS501で予測された価値変動アセットの価値が最安値となる時期に至ると、ステップS502において、サーバ装置210のプロセッサ部212が、価値変動アセットを購入する処理を実行する。具体的には、プロセッサ部212は、インターフェース部211を介して、アセット取引コンピュータシステム300に価値変動アセットの購入リクエストを送信し、アセット取引コンピュータシステムから所望の価値変動アセットを購入する処理を実行する。プロセッサ部212は、購入した価値変動アセットの情報をデータベース部220に格納し得る。 At the time when the value of the value fluctuation asset predicted in step S501 reaches the lowest price, in step S502, the processor unit 212 of the server apparatus 210 executes a process of purchasing the value fluctuation asset. Specifically, the processor unit 212 transmits a purchase request for value fluctuation asset to the asset transaction computer system 300 via the interface unit 211, and executes processing for purchasing a desired value fluctuation asset from the asset transaction computer system. . The processor unit 212 may store information of the purchased value fluctuation asset in the database unit 220.
 ステップS501およびステップS502を繰り返すことにより、所定の期間ごとに価値変動アセットが積み立てられる。積み立てられた価値変動アセットの情報はデータベース部220に格納される。 By repeating steps S501 and S502, value fluctuation assets are accumulated for each predetermined period. The information on the accumulated value fluctuation asset is stored in the database unit 220.
 なお、ステップS501の後、ステップS502の前に、ステップS501で予測された価値変動アセットの価値が最安値となる時期に価値変動アセットを購入することについてユーザに確認をとるために、ユーザに入力操作を行わせるようにしてもよい。しかし、ステップS502は、ユーザによる入力操作なしに、自動的に行われるのが好ましい。価値変動アセットを購入する度にユーザが確認する必要があることは、ユーザにとって煩わしく、利便性を損なうからである。ステップS502を自動的に行うことについては、例えば、ユーザによる価値変動アセット積立の申し込み時に、ユーザの同意を得ておいてもよい。 It should be noted that after step S501, prior to step S502, the user inputs in order to confirm with the user about purchasing the value change asset when the value of the value change asset predicted in step S501 is the lowest price. An operation may be performed. However, step S502 is preferably performed automatically without input operation by the user. The need for the user to confirm each time a value change asset is purchased is annoying for the user and impairs convenience. Regarding performing step S 502 automatically, for example, the user's consent may be obtained at the time of application for value change asset accumulation by the user.
 上述した例では、ステップS501で、所定の期間内で価値変動アセットの価値が最安値となる時期を予測したが、ステップS501の代わりのステップS501’で、所定の期間内で価値変動アセットの価値が特定の順位の安値(例えば、2番目に安い値、5番目に安い値、10番目に安い値、14番目に安い値、すなわち、n番目に安い値(nは2以上の整数))となる時期を予測するようにしてもよい。これは、価値変動アセットの価値変動のランダム性が高く、予測が難しい場合に、より有効な手法である。最安値を敢えて狙わないことで、最安値を取らないにしても最高値を回避することができるため、最終的な期待値が向上する。これにより安定したアセット購入を達成することができる。 In the above-described example, in step S501, a time when the value of the value fluctuation asset becomes the lowest value in a predetermined period is predicted, but in step S501 'instead of step S501, the value of the value fluctuation asset in the predetermined period There is a specific rank low (for example, the second lowest value, the fifth lowest value, the 10th lowest value, the 14th lowest value, ie, the nth lowest value (n is an integer of 2 or more)) It may be possible to predict when it will be. This is a more effective approach when the value fluctuations of value fluctuation assets are highly random and difficult to predict. By not aiming for the lowest price, you can avoid the highest price without taking the lowest price, which will improve the final expected value. This makes it possible to achieve stable asset purchases.
 なお、コンピュータシステム200における処理は、時間の経過につれて価値が変動するアセットを売却するための処理であってもよい。この場合、ステップS501において、特定値予測AIが、所定の期間内で価値変動アセットの価値が最高値となる時期を予測し、予測された価値変動アセットの価値が最高値となる時期に至ると、ステップS502において、サーバ装置210のプロセッサ部212が、価値変動アセットを売却する処理を実行するようにしてもよい。この場合でも、上述したステップS501’の場合と同様に、所定の期間内で価値変動アセットの価値が特定の順位の高値(例えば、2番目に高い値、5番目に高い値、10番目に高い値、14番目に高い値、すなわち、n番目に高い値(nは2以上の整数)となる時期を予測するようにしてもよい。これは、価値変動アセットの価値変動のランダム性が高く、予測が難しい場合に、より有効な手法である。最高値を敢えて狙わないことで、最高値を取らないにしても最安値を回避することができるため、最終的な期待値が向上する。これにより安定したアセット売却を達成することができる。 The process in computer system 200 may be a process for selling an asset whose value changes as time passes. In this case, in step S501, the specific value prediction AI predicts when the value of the value fluctuation asset becomes the highest value within a predetermined period, and reaches the time when the value of the predicted value fluctuation asset becomes the highest value. In step S502, the processor unit 212 of the server apparatus 210 may execute a process of selling the value change asset. Even in this case, as in the case of step S501 'described above, the value of the value fluctuation asset within a predetermined period is high at a specific rank (for example, the second highest value, the fifth highest value, the tenth highest) The value, the 14th highest value, that is, the n-th highest value (n is an integer of 2 or more) may be predicted, which has high randomness of the value change of the value change asset, This is a more effective method when it is difficult to predict, and by not aiming for the highest price, the lowest price can be avoided even if the highest price is not taken, thus improving the final expected value. Can achieve stable asset sales.
 すなわち、コンピュータシステム200における処理は、ステップS501において、特定値予測AIが、所定の期間内で価値変動アセットの価値が特定値(最高値、最安値、n番目に安い値、または、n番目に高い値(nは2以上の整数)等の特定の順位の値)となる時期を予測し、予測された価値変動アセットの価値が特定値となる時期に至ると、ステップS502において、サーバ装置210のプロセッサ部212が、価値変動アセットを取引する(購入または売却する)処理を実行する処理であり得る。 That is, in the processing in the computer system 200, in step S501, the specific value prediction AI determines that the value of the value fluctuation asset has a specific value (highest value, lowest value, nth lowest value, or nth value) within a predetermined period. The server device 210 is predicted in step S 502 when it is predicted that the time to become a high value (n is an integer of 2 or more) and a time when the value of the predicted value fluctuation asset becomes a specific value. The processor unit 212 of may be a process of executing a process of trading (buying or selling) value change assets.
 最安値/最高値となる時期を予測する代わりに、特定の順位の値となる時期を予測するようにすることは、例えば、所定の期間毎に切り替えてもよい。例えば、或る月に、トレンドが強く出る(価値変動が直線的である)ことが予測されるときは、最安値/最高値となる時期を予測するようにしてもよいし、別の月に、トレンドが出ない(価値変動が曲線的に上下する)ことが予測されるときは、最安値/最高値となる時期を予測する代わりに、特定の順位の値となる時期を予測するようにしてもよい。この予測は、例えば、任意のトレンド予測手法および/またはボラティリティ予測手法を用いて行われてもよい。 It may be possible to switch, for example, at predetermined intervals, to predict the time when the value of the specific ranking is reached instead of predicting the time when the lowest price / highest price is reached. For example, when it is predicted that the trend will be strong (value change is linear) in a certain month, it may be possible to predict when the lowest price / highest price will be obtained, or in another month. When there is no trend (the value fluctuation curves up and down), instead of predicting when it will be the lowest price / maximum value, it will be forecast time when it will be a specific ranking value. May be This prediction may be performed, for example, using any trend and / or volatility prediction techniques.
 最安値/最高値となる時期を予測する代わりに、特定の順位の値となる時期を予測するようにすることは、対象の価値変動アセット毎に切り替えてもよい。例えば、或る価値変動アセットにおいて、過去の価値変動データを分析し、1年間で12分の9以上の月でトレンドが出ないと判断されたときは、その価値変動アセットを対象とする際は、最安値/最高値となる時期を予測する代わりに、特定の順位の値となる時期を予測するようにしてもよい。 Instead of predicting when the lowest price / highest price will be reached, predicting when it will be a value of a specific rank may be switched for each target value change asset. For example, if you analyze historical value fluctuation data in a certain value fluctuation asset and it is judged that there is no trend in more than 9/12 months in a year, when targeting that value fluctuation asset Instead of predicting when the lowest price / highest price will be reached, it is also possible to predict when the value of a specific ranking will be reached.
 特定の順位の値となる時期を予測するとき、特定の順位は、価値変動アセットの価格変動を考慮して、特定値予測AIによって設定させられてもよいし、手動で設定されてもよい。また、特定の順位は、対象の価値変動アセット毎に個別に設定されてもよい。特定の順位を何位にするかは、例えば、バックテストを用いて最適な順位を検証するようにしてもよい。 When predicting the time to become a specific ranking value, the specific ranking may be set by the specific value prediction AI or may be set manually, in consideration of price fluctuations of value fluctuation assets. In addition, the specific order may be set individually for each of the target value change assets. For example, a back test may be used to verify the optimum order in which order the specific order should be.
 図6Aは、ステップS501で特定値予測AIが所定の期間内で価値変動アセットの価値が最安値となる時期を予測する処理の一例を示す。特定値予測AIは、下記に説明されるように、二分探索により、所定の期間内で価値変動アセットの価値が最安値となる時期を予測する。二分探索では、探索の幅に応じて適切な予測モデルを利用することができるため、精度よく予測を行うことができる。例えば、探索の幅が長期にわたる場合は長期の変動を予測するための予測モデルを利用し、探索の幅が短期になるにつれて、短期の変動を予測するための予測モデルを利用することができる。概して、長期の変動を予測する予測モデルよりも短期の変動を予測するモデルの方が予測精度は良い。 FIG. 6A shows an example of a process of predicting in step S501 when the value of the value fluctuation asset is the lowest value in the predetermined value prediction AI within a predetermined period. The specific value prediction AI predicts when the value of the value fluctuation asset will be the lowest value in a predetermined period by binary search, as described below. In binary search, since an appropriate prediction model can be used according to the width of the search, prediction can be performed with high accuracy. For example, if the search width is long-term, a prediction model for predicting long-term fluctuation can be used, and as the search width becomes short, a prediction model for predicting short-term fluctuation can be used. In general, a model that predicts short-term fluctuations has better prediction accuracy than a prediction model that predicts long-term fluctuations.
 ステップS601において、特定値予測AIは、所定の期間を2つの期間に分割する。例えば、所定の期間が2月(46営業日)である場合、特定値予測AIは、46営業日を、第1営業日~第23営業日を含む第1の期間と、第24営業日~第46営業日を含む第2の期間とに分割し得る。例えば、所定の期間が1月(23営業日)である場合、特定値予測AIは、23営業日を、第1営業日~第12営業日を含む第1の期間と、第13営業日~第23営業日を含む第2の期間とに分割し得る。例えば、所定の期間が1週間(5営業日)である場合、第1営業日~第3営業日を含む第1の期間と、第4営業日~第5営業日を含む第2の期間とに分割し得る。このように分割後の2つの期間は、同一の長さであってもよく、異なる長さであってもよい。分割後の2つの期間は、それぞれ、任意の長さの期間を含み得る。 In step S601, the specific value prediction AI divides a predetermined period into two periods. For example, if the predetermined period is February (46 business days), the specific value prediction AI may have 46 business days, the first period including the first business day to the 23rd business day, and the 24th business day to It may be divided into a second period including the 46th business day. For example, in the case where the predetermined period is January (23 business days), the specific value prediction AI includes 23 business days, the first period including the first business day to the twelfth business day, and the thirteenth business day to It may be divided into a second period including the 23rd business day. For example, if the predetermined period is one week (5 business days), the first period including the first business day to the third business day, and the second period including the fourth business day to the fifth business day Can be divided into Thus, the two periods after division may be the same length or different lengths. The two time periods after division may each include a time period of any length.
 ステップS602において、特定値予測AIは、ステップS601での分割後の2つの期間のうち、価値変動アセットの価値が最安値となる時期が属する期間を判定する。価値変動アセットの価値が最安値となる時期が属する期間は、例えば、予測対象期間の変動を予測する予測モデルを利用して判定され得る。価値変動アセットの価値が最安値となる時期が属する期間を判定するために、特定値予測AIは、例えば、分割後の2つの期間のうち、価値変動アセットの価値の平均値が低い期間を判定する。これは、統計的には、価値変動アセットの価値が最安値となる時期が、価値変動アセットの価値の平均値が低い期間の方に属する可能性が高いという事実に基づいている。このとき特定値予測AIは、将来の所定期間の平均値の予測を出力することができるように、過去の価値変動データを教師データとして学習している。 In step S602, the specific value prediction AI determines, of the two periods after the division in step S601, the period to which the time when the value of the value fluctuation asset becomes the lowest value belongs. The period in which the time when the value of the value fluctuation asset becomes the lowest value belongs can be determined, for example, using a prediction model that predicts the fluctuation of the prediction target period. In order to determine the period in which the time when the value of the value fluctuation asset becomes the lowest falls, the specific value prediction AI determines, for example, a period in which the average value of the value of the value fluctuation asset is low among two periods after division. Do. This is statistically based on the fact that the time when the value of the value change asset is the lowest is likely to be in the period when the average value of the value change asset is lower. At this time, the specific value prediction AI learns past value fluctuation data as teacher data so that prediction of an average value in a predetermined future period can be output.
 ステップS602で、特定値予測AIは、複数の予測モデルを利用して、ステップS601での分割後の2つの期間のうち、価値変動アセットの価値が最安値となる時期が属する期間を判定するようにしてもよい。このとき、例えば、図6Bに示される処理を行ってもよい。 In step S602, the specific value prediction AI determines a period to which the time when the value of the value fluctuation asset becomes the lowest price belongs, out of the two periods after the division in step S601, using a plurality of prediction models. You may At this time, for example, the process shown in FIG. 6B may be performed.
 図6Bは、ステップS602の処理を複数の予測モデルを利用して行う場合の処理の一例を示す。 FIG. 6B shows an example of processing in the case where the processing of step S602 is performed using a plurality of prediction models.
 ステップS602-1で、特定値予測AIは、複数の予測モデルのそれぞれを用いて、ステップS601での分割後の2つの期間のうち、価値変動アセットの価値が最安値となる時期が属する期間を判定する。例えば、特定値予測AIが5つの予測モデルを利用する場合、第1の予測モデルを用いて、ステップS601での分割後の2つの期間のうち、価値変動アセットの価値が最安値となる時期が属する期間を判定し、第2の予測モデルを用いて、ステップS601での分割後の2つの期間のうち、価値変動アセットの価値が最安値となる時期が属する期間を判定し、・・・第5の予測モデルを用いて、ステップS601での分割後の2つの期間のうち、価値変動アセットの価値が最安値となる時期が属する期間を判定する。価値変動アセットの価値が最安値となる時期が属する期間の判定は、例えば、将来の所定期間の平均値の予測を出力することができるように、過去の価値変動データを教師データとして学習している特定値予測AIによって、分割後の2つの期間のうち、価値変動アセットの価値の平均値が低い期間を判定することによって行われてもよい。価値変動アセットの価値が最安値となる時期が属する期間の判定は、例えば、将来の或る期間の前半に最安値となるか後半に最安値となるかの予測を出力することができるように過去の価値変動データを教師データとして学習している特定値予測AIによって、行われてもよい。 In step S602-1, the specific value prediction AI uses, for each of the plurality of prediction models, a period to which the time when the value of the value fluctuation asset becomes the lowest price belongs, out of the two periods after the division in step S601. judge. For example, when the specific value prediction AI uses five prediction models, the first prediction model is used to determine when the value of the value fluctuation asset is the lowest value in the two periods after the division in step S601. The period to which it belongs is determined, and the period to which the time when the value of the value fluctuation asset becomes the lowest belongs is determined using the second prediction model, of the two periods after the division in step S601, ... Of the two periods after the division in step S601, the prediction model of No. 5 is used to determine the period to which the time when the value of the value fluctuation asset becomes the lowest value belongs. In the determination of the period to which the time when the value of the value fluctuation asset becomes the lowest price belongs, for example, the past value fluctuation data is learned as teacher data so that the prediction of the average value of the predetermined period in the future can be output. Depending on the specific value prediction AI, it may be performed by determining a period in which the average value of the value of the value fluctuation asset is low among the two periods after the division. The determination of the period to which the time when the value of the value fluctuation asset is the lowest falls belongs, for example, so that it can output a prediction as to whether it will be the lowest in the first half of the future or the second half in the second half It may be performed by a specific value prediction AI that is learning past value fluctuation data as teacher data.
 次に、ステップS602-2で、特定値予測AIは、ステップS601での分割後の2つの期間のうち、より多くの予測モデルによって価値変動アセットの価値が最安値となる時期が属する期間であると判定された期間を、価値変動アセットの価値が最安値となる時期が属する期間であると決定する。複数の予測モデルを利用して価値変動アセットの価値が最安値となる時期が属する期間を判定することで、予測精度を向上させることができる。例えば、第1の予測モデルによって、ステップS601での分割後の2つの期間のうちの前半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第2の予測モデルによって、ステップS601での分割後の2つの期間のうちの前半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第3の予測モデルによって、ステップS601での分割後の2つの期間のうちの後半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第4の予測モデルによって、ステップS601での分割後の2つの期間のうちの前半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第5の予測モデルによって、ステップS601での分割後の2つの期間のうちの後半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定された場合、ステップS601での分割後の2つの期間のうちの前半の期間が価値変動アセットの価値が最安値となる時期が属する期間であると判定した予測モデルの数の方が、ステップS601での分割後の2つの期間のうちの後半の期間が価値変動アセットの価値が最安値となる時期が属する期間であると判定した予測モデルの数よりも多いため、特定値予測AIは、多数決で、ステップS601での分割後の2つの期間のうちの前半の期間を、価値変動アセットの価値が最安値となる時期が属する期間であると決定する。 Next, in step S602-2, the specific value prediction AI is a period to which the time when the value of the value fluctuation asset becomes the lowest price by more prediction models belongs to the two periods after the division in step S601. The period determined to be determined as the period to which the value of the value fluctuation asset becomes the lowest value belongs. The prediction accuracy can be improved by using a plurality of prediction models to determine the period in which the time when the value of the value fluctuation asset is the lowest falls. For example, according to the first prediction model, it is determined that the first half of the two periods after the division in step S601 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs. The prediction model determines that the first half of the two periods after the division in step S601 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, and the third prediction model It is determined that the second half of the two periods after the division in S601 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, and the fourth prediction model determines that the division in step S601 The first half of the two periods is determined to be the period to which the value of the value fluctuation asset becomes the lowest, and the fifth forecasting model If it is determined that the second half of the two periods after the division at 601 belongs to a period to which the value of the value fluctuation asset becomes the lowest value, the two periods after the division at step S601. The number of forecast models determined that the first half period is the period to which the time when the value of the value-changing asset is the lowest belongs is the second half period of the two periods after the division in step S601. Since there are more than the number of prediction models determined to be the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, the specific value prediction AI is a majority vote and among the two periods after the division in step S601. Determine the first half period as the period to which the value of the value fluctuation asset becomes the lowest.
 例えば、価値変動アセットの価値が最安値となる時期が属する期間が前半の期間であると判定した予測モデルの数と、価値変動アセットの価値が最安値となる時期が属する期間が後半の期間であると判定した予測モデルの数とが同一である場合、予め定めた方の期間を、価値変動アセットの価値が最安値となる時期が属する期間であると決定するようにしてもよいが、後半の期間を価値変動アセットの価値が最安値となる時期が属する期間であると決定するようにすることが好ましい。後述するように、前半の期間の方が潜在的なリスクが大きいからである。 For example, the number of forecast models judged that the period in which the value of the value fluctuation asset becomes the lowest belongs to the first half period, and the period in which the period when the value of the value fluctuation asset becomes the lowest belongs in the second period. If the number of prediction models determined to be present is the same, the predetermined period may be determined as the period to which the time when the value of the value fluctuation asset becomes the lowest belongs. It is preferable to determine the period of as the period in which the value of the value fluctuation asset has the lowest value. As described later, this is because the potential risk is greater in the first half period.
 再び図6Aに戻って、ステップS603において、特定値予測AIは、ステップS602で価値変動アセットの価値が最安値となる時期が属すると判定された期間が、価値変動アセットの価値が最安値となる時期と同じ長さであるか否かを判定する。ステップS602で価値変動アセットの価値が最安値となる時期が属すると判定された期間が、価値変動アセットの価値が最安値となる時期と同じ長さでないと判定された場合(Noの場合)、ステップS604に進む。ステップS602で価値変動アセットの価値が最安値となる日が属すると判定された期間が、価値変動アセットの価値が最安値となる時期と同じ長さであると判定された場合(Yesの場合)、S606に進み、処理が終了する。ステップS602で価値変動アセットの価値が最安値となる時期が属すると判定された期間が、価値変動アセットの価値が最安値となる時期であると決定することができるからである。 Referring back to FIG. 6A again, in step S603, the specific value prediction AI determines that the value of the value fluctuation asset has the lowest value during the period when it is determined that the time when the value of the value fluctuation asset has the lowest value belongs in step S602. It is determined whether it is the same length as the time. If it is determined that the period in which it is determined in step S602 that the time when the value of the value fluctuation asset becomes the lowest is not the same length as the time when the value of the value fluctuation asset becomes the lowest (in the case of No) The process proceeds to step S604. When it is determined that the period in which it is determined in step S602 that the day when the value of the value fluctuation asset is the lowest is included is the same length as the time when the value of the value fluctuation asset is the lowest (in the case of Yes) , S606 and the process ends. This is because it is possible to determine that the period in which it is determined in step S602 that the time when the value of the value fluctuation asset becomes the lowest is the time when the value of the value fluctuation asset becomes the lowest.
 ステップS604において、特定値予測AIは、価値変動アセットの価値が最安値となる時期が属すると判定された期間をさらに2つの期間に分割する。例えば、価値変動アセットの価値が最安値となる時期が属すると判定された期間が11営業日である場合、特定値予測AIは、11営業日を、第1営業日~第6営業日を含む第1の期間と、第7営業日~第11営業日を含む第2の期間とに分割し得る。例えば、価値変動アセットの価値が最安値となる時期が属すると判定された期間が6営業日である場合、特定値予測AIは、6営業日を、第1営業日~第3営業日を含む第1の期間と、第4営業日~第6営業日を含む第2の期間とに分割し得る。このように分割後の2つの期間は、同一の長さであってもよく、異なる長さであってもよい。分割後の2つの期間は、それぞれ、任意の長さの期間を含み得る。 In step S604, the specific value prediction AI further divides the period in which it is determined that the time when the value of the value fluctuation asset is the lowest falls into two more periods. For example, when it is determined that the period when the value of the value fluctuation asset becomes the lowest value belongs to 11 business days, the specific value prediction AI includes 11 business days and the first business day to the sixth business day. It may be divided into a first period and a second period including the seventh business day to the eleventh business day. For example, when it is determined that the period when the value of the value fluctuation asset becomes the lowest value belongs to 6 business days, the specific value prediction AI includes 6 business days, and includes the first business day to the third business day. It may be divided into a first period and a second period including a fourth business day to a sixth business day. Thus, the two periods after division may be the same length or different lengths. The two time periods after division may each include a time period of any length.
 ステップS605において、特定値予測AIは、ステップS604での分割後の2つの期間のうち、価値変動アセットの価値が最安値となる時期が属する期間を判定する。価値変動アセットの価値が最安値となる時期が属する期間は、例えば、予測対象期間の変動を予測する予測モデルを利用して判定され得る。価値変動アセットの価値が最安値となる時期が属する期間を判定するために、特定値予測AIは、例えば、分割後の2つの期間のうち、価値変動アセットの価値の平均値が低い期間を判定する。これは、統計的には、価値変動アセットの価値が最安値となる時期が、価値変動アセットの価値の平均値が低い期間の方に属する可能性が高いという事実に基づいている。このとき特定値予測AIは、将来の所定期間の平均値の予測を出力することができるように、過去の価値変動データを教師データとして学習している。 In step S605, the specific value prediction AI determines, of the two periods after the division in step S604, the period to which the time when the value of the value fluctuation asset becomes the lowest value belongs. The period in which the time when the value of the value fluctuation asset becomes the lowest value belongs can be determined, for example, using a prediction model that predicts the fluctuation of the prediction target period. In order to determine the period in which the time when the value of the value fluctuation asset becomes the lowest falls, the specific value prediction AI determines, for example, a period in which the average value of the value of the value fluctuation asset is low among two periods after division. Do. This is statistically based on the fact that the time when the value of the value change asset is the lowest is likely to be in the period when the average value of the value change asset is lower. At this time, the specific value prediction AI learns past value fluctuation data as teacher data so that prediction of an average value in a predetermined future period can be output.
 ステップS605で、特定値予測AIは、複数の予測モデルを利用して、ステップS604での分割後の2つの期間のうち、価値変動アセットの価値が最安値となる時期が属する期間を判定するようにしてもよい。このとき、例えば、図6Bに示される処理と同様の処理を行うようにしてもよい。 In step S605, the specific value prediction AI determines a period to which the time when the value of the value fluctuation asset becomes the lowest price belongs, out of the two periods after the division in step S604, using a plurality of prediction models. You may At this time, for example, processing similar to the processing shown in FIG. 6B may be performed.
 ステップS605-1で、特定値予測AIは、複数の予測モデルのそれぞれを用いて、ステップS604での分割後の2つの期間のうち、価値変動アセットの価値が最安値となる時期が属する期間を判定する。例えば、特定値予測AIが5つの予測モデルを利用する場合、第1の予測モデルを用いて、ステップS604での分割後の2つの期間のうち、価値変動アセットの価値が最安値となる時期が属する期間を判定し、第2の予測モデルを用いて、ステップS604での分割後の2つの期間のうち、価値変動アセットの価値が最安値となる時期が属する期間を判定し、・・・第5の予測モデルを用いて、ステップS604での分割後の2つの期間のうち、価値変動アセットの価値が最安値となる時期が属する期間を判定する。価値変動アセットの価値が最安値となる時期が属する期間の判定は、例えば、将来の所定期間の平均値の予測を出力することができるように、過去の価値変動データを教師データとして学習している特定値予測AIによって、分割後の2つの期間のうち、価値変動アセットの価値の平均値が低い期間を判定することによって行われてもよい。価値変動アセットの価値が最安値となる時期が属する期間の判定は、例えば、将来の或る期間の前半に最安値となるか後半に最安値となるかの予測を出力することができるように過去の価値変動データを教師データとして学習している特定値予測AIによって、行われてもよい。 In step S605-1, the specific value prediction AI uses, for each of a plurality of prediction models, a period to which the time when the value of the value fluctuation asset becomes the lowest value belongs, out of the two periods after the division in step S604. judge. For example, when the specific value prediction AI uses five prediction models, the first prediction model is used to determine when the value of the value fluctuation asset is the lowest value in the two periods after the division in step S604. The period to which it belongs is determined, and the period to which the time when the value of the value fluctuation asset becomes the lowest belongs is determined using the second prediction model, of the two periods after the division in step S604,. By using the prediction model of 5, it is determined, of the two periods after the division in step S604, the period in which the time when the value of the value fluctuation asset is the lowest value belongs. In the determination of the period to which the time when the value of the value fluctuation asset becomes the lowest price belongs, for example, the past value fluctuation data is learned as teacher data so that the prediction of the average value of the predetermined period in the future can be output. Depending on the specific value prediction AI, it may be performed by determining a period in which the average value of the value of the value fluctuation asset is low among the two periods after the division. The determination of the period to which the time when the value of the value fluctuation asset is the lowest falls belongs, for example, so that it can output a prediction as to whether it will be the lowest in the first half of the future or the second half in the second half It may be performed by a specific value prediction AI that is learning past value fluctuation data as teacher data.
 次に、ステップS605-2で、特定値予測AIは、ステップS604での分割後の2つの期間のうち、より多くの予測モデルによって価値変動アセットの価値が最安値となる時期が属する期間であると判定された期間を、価値変動アセットの価値が最安値となる時期が属する期間であると決定する。例えば、第1の予測モデルによって、ステップS604での分割後の2つの期間のうちの後半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第2の予測モデルによって、ステップS604での分割後の2つの期間のうちの前半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第3の予測モデルによって、ステップS604での分割後の2つの期間のうちの後半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第4の予測モデルによって、ステップS604での分割後の2つの期間のうちの前半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第5の予測モデルによって、ステップS604での分割後の2つの期間のうちの後半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定された場合、ステップS604での分割後の2つの期間のうちの後半の期間が価値変動アセットの価値が最安値となる時期が属する期間であると判定した予測モデルの数の方が、ステップS604での分割後の2つの期間のうちの前半の期間が価値変動アセットの価値が最安値となる時期が属する期間であると判定した予測モデルの数よりも多いため、特定値予測AIは、多数決で、ステップS604での分割後の2つの期間のうちの後半の期間を、価値変動アセットの価値が最安値となる時期が属する期間であると決定する。 Next, in step S605-2, the specific value prediction AI is a period to which, among the two periods after the division in step S604, the time at which the value of the value fluctuation asset becomes the lowest according to more prediction models belongs. The period determined to be determined as the period to which the value of the value fluctuation asset becomes the lowest value belongs. For example, according to the first prediction model, it is determined that the second half of the two periods after the division in step S604 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs. The prediction model determines that the first half of the two periods after the division in step S604 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, and the third prediction model It is determined that the second half of the two periods after the division in S604 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, and the fourth prediction model determines that the division in step S604 The first half of the two periods is determined to be the period to which the value of the value fluctuation asset becomes the lowest, and the fifth forecasting model If it is determined that the second half of the two periods after the division at 604 belongs to the period in which the value of the value-changing asset becomes the lowest value, the two periods after the division at step S 604 The number of prediction models determined that the latter half of the period is the period to which the time when the value of the value-changing asset is the lowest belongs is the first half of the two periods after the division in step S604. Since the value fluctuation asset value is greater than the number of prediction models determined to be the period to which the low price period belongs, the specific value prediction AI is a majority vote among two periods after the division in step S604. The second half period is determined as the period to which the value of the value fluctuation asset becomes the lowest.
 例えば、価値変動アセットの価値が最安値となる時期が属する期間が前半の期間であると判定した予測モデルの数と、価値変動アセットの価値が最安値となる時期が属する期間が後半の期間であると判定した予測モデルの数とが同一である場合、予め定めた方の期間を、価値変動アセットの価値が最安値となる時期が属する期間であると決定するようにしてもよいが、後半の期間を価値変動アセットの価値が最安値となる時期が属する期間であると決定するようにすることが好ましい。後述するように、前半の期間の方が潜在的なリスクが大きいからである。 For example, the number of forecast models judged that the period in which the value of the value fluctuation asset becomes the lowest belongs to the first half period, and the period in which the period when the value of the value fluctuation asset becomes the lowest belongs in the second period. If the number of prediction models determined to be present is the same, the predetermined period may be determined as the period to which the time when the value of the value fluctuation asset becomes the lowest belongs. It is preferable to determine the period of as the period in which the value of the value fluctuation asset has the lowest value. As described later, this is because the potential risk is greater in the first half period.
 ステップS605の後、再びステップS603に進む。ステップS603において、特定値予測AIは、ステップS605で価値変動アセットの価値が最安値となる時期が属すると判定された期間が、価値変動アセットの価値が最安値となる時期と同じ長さであるか否かを判定する。ステップS605で価値変動アセットの価値が最安値となる時期が属すると判定された期間が、価値変動アセットの価値が最安値となる時期と同じ長さでないと判定された場合(Noの場合)、ステップS604に再び進む。そして、ステップS605で価値変動アセットの価値が最安値となる時期が属すると判定された期間が、価値変動アセットの価値が最安値となる時期と同じ長さであると判定されるまで、ステップS603~ステップS605を繰り返す。ステップS605で価値変動アセットの価値が最安値となる時期が属すると判定された期間が、価値変動アセットの価値が最安値となる時期と同じ長さであると判定された場合(Yesの場合)、S606に進み、処理が終了する。価値変動アセットの価値が最安値となる時期が属すると判定された期間が、価値変動アセットの価値が最安値となる時期であると決定することができるからである。 After step S605, the process proceeds to step S603 again. In step S603, the specific value prediction AI has the same length as the period in which the value fluctuation asset has the lowest value when it is determined that the time when the value fluctuation asset has the lowest value belongs in step S605. It is determined whether or not. When it is determined that the period in which it is determined in step S605 that the time when the value of the value fluctuation asset becomes the lowest is not the same length as the time when the value of the value fluctuation asset becomes the lowest (in the case of No) Proceed to step S604 again. Then, until it is determined that the period in which it is determined in step S605 that the time when the value of the value fluctuation asset becomes the lowest belongs is the same length as the time when the value of the value fluctuation asset becomes the lowest. Steps S605 are repeated. When it is determined that the period in which it is determined in step S605 that the time when the value of the value fluctuation asset is the lowest belongs is the same length as the time when the value of the value fluctuation asset is the lowest (in the case of Yes) , S606 and the process ends. This is because it is possible to determine that the period in which it is determined that the time when the value of the value fluctuation asset becomes the lowest is the time when the value of the value fluctuation asset becomes the lowest.
 ステップS501(ステップS601~ステップS605)で特定値予測AIが予測した時期が、所定の期間の前半、特に、所定の期間の始めの方の時期(例えば月初)であり、ステップS502でその予測された時期に価値変動アセットを購入する処理を実行する場合は、所定の期間の残りの期間に価値が変動してしまうリスクを負うことになる。すなわち、所定の期間の前半、特に、所定の期間の始めの方の時期(例えば月初)に価値変動アセットを購入すると、所定の期間の残りの期間の価値変動の不確実性が大きく、リスクとリターンとが見合わない可能性がある。これは、価値変動のランダム性が強いアセットで特に顕著である。例えば、月初に最安値となると予測され、月初に価値変動アセットを購入した場合、月の途中で価値変動アセットのトレンドが変化してしまうと、最安値と予測して購入した価値変動アセットの価値が、結果的に最高値となってしまいかねない。これでは、特定値予測AIによる予測成果が不安定なものとなってしまい、ひいては、価値変動アセットの積立成果も不安定なものとなってしまう。 The time predicted by the specific value prediction AI in step S501 (steps S601 to S605) is the first half of the predetermined period, in particular, the beginning of the predetermined period (for example, the beginning of the month), and the prediction is made in step S502. If the process of purchasing value change assets is executed at the same time, the risk of value change during the remaining period of a predetermined period will be incurred. That is, if you purchase value change assets in the first half of a given period, especially at the beginning of the given period (for example, the beginning of the month), the uncertainty of the value change in the remaining period of the given period is large, There is a possibility that the return is not appropriate. This is particularly noticeable for assets that are highly random in value change. For example, if it is predicted that the price will be the lowest at the beginning of the month and you purchase value change assets at the beginning of the month, if the trend of value change assets changes in the middle of the month, the value of value change assets purchased with the lowest price forecasted However, the result may be the highest price. In this case, the prediction result by the specific value prediction AI becomes unstable, and eventually, the accumulation result of the value fluctuation asset also becomes unstable.
 このようなリスクとリターンとが見合わない場合を回避するために、ステップS501で特定値予測AIが、所定の期間の前半、特に、所定の期間の始めの方の時期を、所定の期間内で価値変動アセットの価値が最安値となる時期として予測するときは、予測モデルによる自信度が高い場合に制限することが好ましい。予測モデルによる自信度が高い場合であれば、月の途中で価値変動アセットのトレンドが変化してしまい結果的に最高値を掴んでしまうリスクが極めて低いといえるからである。これにより、価値変動のランダム性が強いアセットであっても、リスクとリターンとが見合わない場合を回避し、安定した予測成果を得ることができる。 In order to avoid the case where such a risk and return are not appropriate, the specific value prediction AI in step S501 is in the first half of the predetermined period, in particular, at the beginning of the predetermined period, within the predetermined period. When forecasting when the value of a value fluctuation asset will be the lowest price, it is preferable to limit it to cases where the confidence of the forecasting model is high. If the degree of confidence in the forecasting model is high, it can be said that the risk that the trend of the value fluctuation asset changes in the middle of the month and the maximum value is eventually grasped is extremely low. As a result, even if the asset has a high degree of randomness in value change, it is possible to avoid a case where the risk and the return do not match, and to obtain a stable forecast result.
 予測モデルによる自信度が高い場合は、例えば、複数の予測モデルのうちの所定数以上が同じ予測をする場合である。より多くの予測モデルが同じ予測をする場合にはその確度が高いといえるからである。例えば、ステップS602で、所定の期間の前半を所定の期間内で価値変動アセットの価値が最安値となる時期として予測するときを予測モデルによる自信度が高い場合に制限する場合には、図6Cに示される処理を行ってもよい。 In the case where the degree of confidence of the prediction model is high, for example, the predetermined number or more of the plurality of prediction models may perform the same prediction. This is because when more prediction models make the same prediction, the accuracy is high. For example, in step S602, when the first half of the predetermined period is predicted as the time when the value of the value-changing asset becomes the lowest value within the predetermined period, the case is limited to a case where the confidence by the prediction model is high. The process shown in FIG.
 図6Cは、ステップS602の処理を複数の予測モデルを利用して行い、かつ、所定の期間の前半を所定の期間内で価値変動アセットの価値が最安値となる時期として予測するときを制限する場合の処理の一例を示す。 FIG. 6C performs the process of step S602 using a plurality of prediction models, and limits the time when the first half of the predetermined period is predicted as the time when the value of the value fluctuation asset becomes the lowest value in the predetermined period. An example of processing in the case is shown.
 ステップS602-1は、図6Bに示されるステップS602-1と同じ処理である。特定値予測AIが、複数の予測モデルのそれぞれを用いて、ステップS601での分割後の2つの期間のうち、価値変動アセットの価値が最安値となる時期が属する期間を判定する。 Step S602-1 is the same process as step S602-1 shown in FIG. 6B. The specific value prediction AI determines, using each of the plurality of prediction models, a period to which the time when the value of the value fluctuation asset becomes the lowest price belongs, out of the two periods after the division in step S601.
 ステップS602-2’において、特定値予測AIは、ステップS601での分割後の2つの期間のうちの前半の期間が価値変動アセットの価値が最安値となる時期が属する期間であると判定した予測モデルの数を決定する。例えば、5つの予測モデルのそれぞれを用いるとき、第1の予測モデルによって、ステップS601での分割後の2つの期間のうちの前半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第2の予測モデルによって、ステップS601での分割後の2つの期間のうちの前半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第3の予測モデルによって、ステップS601での分割後の2つの期間のうちの後半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第4の予測モデルによって、ステップS601での分割後の2つの期間のうちの前半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第5の予測モデルによって、ステップS601での分割後の2つの期間のうちの後半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定された場合、ステップS601での分割後の2つの期間のうちの前半の期間が価値変動アセットの価値が最安値となる時期が属する期間であると判定した予測モデルの数は、3であると決定される。 In step S602-2 ′, it is determined that the specific value prediction AI is a period in which the first half of the two periods after the division in step S601 is a period to which the time when the value of the value fluctuation asset becomes the lowest price belongs. Determine the number of models. For example, when each of the five prediction models is used, the first prediction model allows the first half of the two periods after the division in step S601 to have a time when the value of the value fluctuation asset becomes the lowest value. It is determined that the period is the period, and it is determined by the second prediction model that the first half of the two periods after the division in step S601 is the period to which the time when the value of the value fluctuation asset becomes the lowest price belongs. It is determined by the third prediction model that the second half of the two periods after the division in step S601 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs. According to the prediction model, it is determined that the first half of the two periods after the division in step S601 is the period to which the time when the value of the value fluctuation asset is the lowest belongs. If it is determined by the fifth prediction model that the second half of the two periods after the division in step S601 belongs to the period in which the value of the value fluctuation asset has the lowest value, The number of prediction models determined to be the period to which the first half period of the two periods after the division in S601 belongs is the period to which the value of the value fluctuation asset becomes the lowest price is determined to be three.
 次に、ステップS602-3において、特定値予測AIは、ステップS602-2’で決定された予測モデルの数が、所定数以上であるか否かを判定する。予測モデルの数が所定数以上である場合、ステップS602-4に進む。予測モデルの数が所定数未満である場合、ステップS602-5に進む。ここで、所定数は、用いられる予測モデルの総数の半分より大きい任意の数であり得る。所定数は、例えば、用いられる予測モデルの総数であってもよいし、総数の80%等であってもよい。 Next, in step S602-3, the specific value prediction AI determines whether the number of prediction models determined in step S602-2 'is equal to or greater than a predetermined number. If the number of prediction models is equal to or greater than the predetermined number, the process proceeds to step S602-4. If the number of prediction models is less than the predetermined number, the process proceeds to step S602-5. Here, the predetermined number may be any number larger than half of the total number of prediction models used. The predetermined number may be, for example, the total number of prediction models used, or 80% of the total number.
 ステップS602-4では、特定値予測AIは、ステップ601での分割後の2つの期間のうちの前半の期間を価値変動アセットの価値が最安値となる時期が属する期間であると決定する。複数の予測モデルによる自信度が高く、前半の期間を選択することのリスクが低いといえるからである。 In step S602-4, the specific value prediction AI determines that the first half of the two periods after the division in step 601 is a period to which the time when the value of the value-changing asset is the lowest value belongs. This is because the degree of confidence of multiple prediction models is high and the risk of selecting the first half period is low.
 ステップS602-5では、特定値予測AIは、ステップ601での分割後の2つの期間のうちの後半の期間を価値変動アセットの価値が最安値となる時期が属する期間であると決定する。複数の予測モデルによる自信度が低く、前半の期間を選択することのリスクが高いといえるからである。 In step S602-5, the specific value prediction AI determines that the second half of the two periods after the division in step 601 is a period to which the time when the value of the value-changing asset is the lowest value belongs. This is because the degree of confidence of multiple prediction models is low, and it can be said that the risk of selecting the first half period is high.
 ステップS605で、所定の期間の前半を所定の期間内で価値変動アセットの価値が最安値となる時期として予測するときを予測モデルによる自信度が高い場合に制限する場合にも、図6Cに示される処理と同様の処理を行うようにしてもよい。 In step S605, the first half of the predetermined period is also predicted as the time when the value of the value-changing asset becomes the lowest value in the predetermined period, as shown in FIG. The same process as the process to be performed may be performed.
 ステップS605-1は、上述したステップS605-1と同じ処理である。特定値予測AIが、複数の予測モデルのそれぞれを用いて、ステップS604での分割後の2つの期間のうち、価値変動アセットの価値が最安値となる時期が属する期間を判定する。 Step S605-1 is the same process as step S605-1 described above. The specific value prediction AI uses each of the plurality of prediction models to determine the period to which the time when the value of the value fluctuation asset becomes the lowest price belongs, out of the two periods after the division in step S604.
 ステップS605-2’において、特定値予測AIは、ステップS604での分割後の2つの期間のうちの前半の期間が価値変動アセットの価値が最安値となる時期が属する期間であると判定した予測モデルの数を決定する。例えば、5つの予測モデルのそれぞれを用いるとき、第1の予測モデルによって、ステップS604での分割後の2つの期間のうちの前半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第2の予測モデルによって、ステップS604での分割後の2つの期間のうちの前半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第3の予測モデルによって、ステップS604での分割後の2つの期間のうちの後半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第4の予測モデルによって、ステップS604での分割後の2つの期間のうちの前半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定され、第5の予測モデルによって、ステップS604での分割後の2つの期間のうちの前半の期間が、価値変動アセットの価値が最安値となる時期が属する期間であると判定された場合、ステップS604での分割後の2つの期間のうちの前半の期間が価値変動アセットの価値が最安値となる時期が属する期間であると判定した予測モデルの数は、4であると決定される。 In step S605-2 ′, it is determined that the specific value prediction AI is a period in which the first half of the two periods after the division in step S604 is a period to which the time when the value of the value-changing asset is the lowest value belongs. Determine the number of models. For example, when each of the five prediction models is used, the first prediction model allows the first half of the two periods after the division in step S604 to have a time when the value of the value fluctuation asset becomes the lowest value. It is determined that the period is the period, and it is determined by the second prediction model that the first half of the two periods after the division in step S604 is the period to which the time when the value of the value fluctuation asset becomes the lowest price belongs. It is determined by the third prediction model that the second half of the two periods after the division in step S604 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs. According to the prediction model, it is determined that the first half of the two periods after the division in step S604 is the period to which the time when the value of the value fluctuation asset becomes the lowest belongs. If it is determined by the fifth prediction model that the first half of the two periods after the division in step S604 is a period to which the time when the value of the value fluctuation asset is the lowest belongs. It is determined that the number of prediction models determined to be the period to which the first half period of the two periods after the division in S604 belongs is the period in which the value of the value-changing asset is the lowest value belongs.
 次に、ステップS605-3において、特定値予測AIは、ステップS605-2’で決定された予測モデルの数が、所定数以上であるか否かを判定する。予測モデルの数が所定数以上である場合、ステップS605-4に進む。予測モデルの数が所定数未満である場合、ステップS605-5に進む。ここで、所定数は、用いられる予測モデルの総数の半分より大きい任意の数であり得る。所定数は、例えば、用いられる予測モデルの総数であってもよいし、総数の80%等であってもよい。 Next, in step S605-3, the specific value prediction AI determines whether the number of prediction models determined in step S605-2 'is equal to or greater than a predetermined number. If the number of prediction models is equal to or greater than the predetermined number, the process proceeds to step S605-4. If the number of prediction models is less than the predetermined number, the process proceeds to step S605-5. Here, the predetermined number may be any number larger than half of the total number of prediction models used. The predetermined number may be, for example, the total number of prediction models used, or 80% of the total number.
 所定数は、例えば、所定の期間全体に対する分割後の期間の位置に応じて、変化させられるようにしてもよい。例えば、ステップS604での分割後の2つの期間が、所定の期間の前半のいずれかの期間(例えば、所定の期間が23営業日であり、ステップS604での分割後の2つの期間が、第1営業日~第6営業日を含む第1の期間と、第7営業日~第11営業日を含む第2の期間)である場合、所定数は、高くあり得る。特に、分割後の期間が所定の期間の始点に近ければ近いほど、所定数を高くすることが好ましい。分割後の期間が所定の期間の始点に近ければ近いほど、負うべきリスクが大きくなるからである。例えば、所定の期間が23営業日であり、ステップS604での分割後の2つの期間が、第1営業日を含む第1の期間と、第2営業日を含む第2の期間である場合、所定数は最大であることが好ましい。例えば、分割後の期間が所定の期間の始点から幾分か離れている場合(例えば、所定の期間が23営業日であり、ステップS604での分割後の2つの期間が、第3営業日~第4営業日を含む第1の期間と、第5営業日~第6営業日を含む第2の期間)であっても、リスクを考慮して、所定数を最大としてもよい。例えば、ステップS604での分割後の2つの期間が、所定の期間の後半のいずれかの期間(例えば、所定の期間が23営業日であり、ステップS604での分割後の2つの期間が、第13営業日~15営業日を含む第1の期間と、第16営業日~第18営業日を含む第2の期間)である場合、所定数は、低くあり得る。所定数が最小値である場合、処理は、ステップS602-2と同等の処理となる。 The predetermined number may be changed, for example, according to the position of the divided period with respect to the entire predetermined period. For example, two periods after the division in step S604 may be any one of the first half of the predetermined period (for example, the predetermined period is 23 working days, and the two periods after the division in step S604 may be In the case of the first period including one business day to the sixth business day and the second period including the seventh business day to the eleventh business day), the predetermined number may be high. In particular, as the period after division is closer to the start point of the predetermined period, it is preferable to increase the predetermined number. This is because the closer the divided period is to the start of the predetermined period, the greater the risk to be incurred. For example, if the predetermined period is 23 business days, and the two periods after the division in step S604 are the first period including the first business day and the second period including the second business day, Preferably, the predetermined number is a maximum. For example, when the period after division is somewhat away from the start point of the predetermined period (for example, the predetermined period is 23 business days, and the two periods after the division in step S604 are the third business day ... Even in the first period including the fourth business day and the second period including the fifth business day to the sixth business day), the predetermined number may be maximized in consideration of the risk. For example, two periods after the division in step S604 are any one of the second half of the predetermined period (for example, the predetermined period is 23 business days, and the two periods after the division in step S604 are the first In the case of the first period including 13 business days to 15 business days and the second period including 16th business day to 18th business days, the predetermined number may be low. If the predetermined number is the minimum value, the processing is equivalent to that of step S602-2.
 所定数は、価値変動アセットの価格変動を考慮して、特定値予測AIによって設定させられてもよいし、手動で設定されてもよい。また、所定数は、対象の価値変動アセット毎に個別に設定されてもよい。 The predetermined number may be set by the specific value prediction AI, or may be set manually, in consideration of price fluctuations of the value fluctuation asset. Also, the predetermined number may be set individually for each of the target value fluctuation assets.
 ステップS605-4では、特定値予測AIは、ステップ604での分割後の2つの期間のうちの前半の期間を価値変動アセットの価値が最安値となる時期が属する期間であると決定する。複数の予測モデルによる自信度が高く、前半の期間を選択することのリスクが低いといえるからである。 In step S605-4, the specific value prediction AI determines that the first half of the two periods after the division in step 604 is a period to which the time when the value of the value-changing asset is the lowest value belongs. This is because the degree of confidence of multiple prediction models is high and the risk of selecting the first half period is low.
 ステップS605-5では、特定値予測AIは、ステップ604での分割後の2つの期間のうちの後半の期間を価値変動アセットの価値が最安値となる時期が属する期間であると決定する。複数の予測モデルによる自信度が低く、前半の期間を選択することのリスクが高いといえるからである。 In step S605-5, the specific value prediction AI determines that the second half of the two periods after the division in step 604 is a period to which the value of the value fluctuation asset has the lowest value. This is because the degree of confidence of multiple prediction models is low, and it can be said that the risk of selecting the first half period is high.
 リスクとリターンとが見合わない場合を回避するために、ステップS501で、追加的または代替的に、特定値予測AIが、所定の期間の前半、特に、所定の期間の始めの方の時期を、所定の期間内で価値変動アセットの価値が最安値となる時期として予測することを抑制するようにしてもよい。これは、例えば、所定の抑制期間を設け、所定の抑制期間内の時期を所定の期間内で価値変動アセットの価値が最安値となる時期として予測することを抑制することによって達成される。 In order to avoid the case in which the risk and the return do not match, in step S501, additionally or alternatively, the specific value prediction AI is used for the first half of the predetermined period, in particular, the beginning of the predetermined period. The prediction of the time when the value of the value fluctuation asset becomes the lowest price within a predetermined period may be suppressed. This is achieved, for example, by providing a predetermined suppression period and suppressing prediction of the time within the predetermined suppression period as the time when the value of the value fluctuation asset is the lowest price within the predetermined period.
 所定の抑制期間は、所定の期間の始点から開始する期間であり、期間の長さは、任意の長さであり得る。所定の抑制期間の長さは、例えば、対象のアセットに応じて変更するようにしてもよい。例えば、トレンドが読みやすいアセットの場合(例えば、日本円でユーロを購入する場合)、所定の抑制期間の長さを短くすることができる。例えば、トレンドが読みにくいアセットの場合(例えば、日本円でNZドルを購入する場合)、所定の抑制期間の長さを長くすることができる。 The predetermined suppression period is a period starting from the start of the predetermined period, and the length of the period may be any length. The length of the predetermined suppression period may be changed, for example, according to the target asset. For example, in the case of an asset in which the trend is easy to read (for example, when purchasing the euro in Japanese yen), the length of the predetermined suppression period can be shortened. For example, in the case of an asset where the trend is difficult to read (e.g., when purchasing the NZD for Japanese Yen), the length of the predetermined suppression period can be increased.
 以下の表は、所定の期間が1月である場合の、所定の抑制期間の長さの一例である。
Figure JPOXMLDOC01-appb-T000001
The following table is an example of the length of the predetermined suppression period when the predetermined period is January.
Figure JPOXMLDOC01-appb-T000001
 所定の抑制期間の長さは、価値変動アセットの価格変動を考慮して、特定値予測AIによって設定させられてもよいし、手動で設定されてもよい。 The length of the predetermined suppression period may be set by the specific value prediction AI or may be set manually, in consideration of the price fluctuation of the value fluctuation asset.
 ここで、一例として、図7A~図7Dを参照しながら、毎月米ドルを積み立てる場合のコンピュータシステム200におけるステップS501の処理を説明する。所定の期間は1月(23営業日)であるとする。価値変動アセットの価値が最安値となる時期は、日単位とする。図7A~図7Dは、米ドル価格(円)の時間変動の一例を示すグラフである。実線は、実際の変動値を示し、破線は、予測対象期間の変動を予測する予測モデルを利用して予測される変動値を示す。 Here, as an example, the process of step S501 in the computer system 200 in the case of accumulating the US dollar every month will be described with reference to FIGS. 7A to 7D. It is assumed that the predetermined period is January (23 business days). The period when the value of the value fluctuation asset is the lowest is on a daily basis. 7A to 7D are graphs showing an example of the time variation of the US dollar price (yen). The solid line indicates the actual fluctuation value, and the broken line indicates the fluctuation value predicted using a prediction model that predicts the fluctuation of the prediction target period.
 ステップ601において、特定値予測AIは、月の初日に、所定の期間(23営業日)を2つの期間に分割する。図7Aに示されるように、特定値予測AIは、所定の期間(23営業日)を、第1営業日~第12営業日から成る第1の期間701と、第13営業日~第23営業日から成る第2の期間702とに分割する。 In step 601, the specific value prediction AI divides a predetermined period (23 business days) into two periods on the first day of the month. As shown in FIG. 7A, the specific value prediction AI includes a predetermined period (23 business days), a first period 701 consisting of the first business day to the 12th business day, and a 13th business day to the 23rd business day. It is divided into a second period 702 consisting of days.
 ステップS602において、特定値予測AIは、第1の期間701および第2の期間702のうち、米ドル価格が最安値となる日が属する期間を判定する。特定値予測AIは、23日間の変動を予測する予測モデルを利用して、第1の期間701および第2の期間702のうち、米ドル価格の平均値が低い期間を判定し、米ドル価格の平均値が低い期間を米ドル価格が最安値となる日が属する期間であると判定する。本例では、特定値予測AIは、23日間の変動を予測する予測モデルを利用して予測される第1の期間701の平均値710と、23日間の変動を予測する予測モデルを利用して予測される第2の期間702の平均値720とを比較し、第2の期間702が米ドル価格が最安値となる日が属する期間であると判定する。 In step S602, the specific value prediction AI determines, of the first period 701 and the second period 702, the period to which the day when the US dollar price is the lowest falls. The specific value prediction AI determines a period in which the average value of the US dollar price is low in the first period 701 and the second period 702 using a prediction model that predicts fluctuations in 23 days, and calculates the average of the US dollar prices A period with a low value is determined to be a period to which a day when the US dollar price becomes the lowest value belongs. In this example, the specific value prediction AI uses an average value 710 of the first period 701 predicted using a prediction model that predicts fluctuations in 23 days, and a prediction model that predicts fluctuations in 23 days The average value 720 of the predicted second period 702 is compared, and it is determined that the second period 702 is a period to which a day when the US dollar price becomes the lowest value belongs.
 一例として、入力層と、3層の隠れ層と、出力層とを備える多層パーセプトロンであって、各ノード数が31、16、8、4、1と入力層から出力層に向かうにつれて減少していく、多層パーセプトロンを23日間の変動を予測する予測モデルとして利用する特定値予測AIによって、第1の期間701および第2の期間702のうち、米ドル価格の平均値が低い期間を判定し、米ドル価格の平均値が低い期間を米ドル価格が最安値となる日が属する期間であると判定する処理を行った場合、以下のような最大予測精度が得られた。なお、特定値予測AIの学習に用いた価値変動データは、日本円に対する米ドルの価値変動データのみである。 As an example, it is a multilayer perceptron comprising an input layer, three hidden layers, and an output layer, wherein the number of nodes is 31, 16, 8, 4, 1 and decreases from the input layer toward the output layer In the first period 701 and the second period 702, a period in which the average value of the US dollar value is low is determined by the specific value prediction AI that uses the multilayer perceptron as a prediction model that predicts fluctuations in 23 days. When processing was performed to determine that the period in which the average price value is low is the period to which the day when the US dollar price is the lowest falls, the following maximum prediction accuracy was obtained. The value change data used for learning the specific value prediction AI is only the value change data of the US dollar relative to the Japanese yen.
Figure JPOXMLDOC01-appb-T000002
 ここで、ランダムとは、ランダムに最安値となる日を予測するモデルであり、比較対象として用いた。この結果からも、多層パーセプトロンへ入力されるデータが多いほど、予測精度はより向上することがわかる。
Figure JPOXMLDOC01-appb-T000002
Here, the term "random" is a model that predicts the day when the lowest price is randomly obtained, and was used as a comparison target. Also from this result, it can be seen that the prediction accuracy is further improved as more data are input to the multilayer perceptron.
 さらに一例として、CNNを予測モデルとして利用する特定値予測AIによって、第1の期間701および第2の期間702のうち、米ドル価格の平均値が低い期間を判定し、米ドル価格の平均値が低い期間を米ドル価格が最安値となる日が属する期間であると判定する処理を行った場合に、学習に用いる価値変動データを変動させると、以下のような最大予測精度が得られた。 Further, as one example, a specific value prediction AI using CNN as a prediction model determines a period in which the average value of the US dollar price is low among the first period 701 and the second period 702, and the average value of the US dollar price is low. When it is determined that the term belongs to the term to which the day when the US dollar price is the lowest falls, the following maximum prediction accuracy can be obtained by changing the value fluctuation data used for learning.
Figure JPOXMLDOC01-appb-T000003
 このように、使用する予測モデル、学習する価値変動データが予測精度に密接に関連している。適切な予測モデル、学習する価値変動データを選択することにより、70%を超える予測精度を達成することができる。
Figure JPOXMLDOC01-appb-T000003
Thus, the prediction model used and the value fluctuation data to be learned are closely related to the prediction accuracy. By selecting an appropriate forecasting model, value variation data to learn, forecasting accuracy of over 70% can be achieved.
 ステップS603において、特定値予測AIは、第2の期間702が、1日間であるか否かを判定する。第2の期間702は、第13営業日~第23営業日から成る11日間の期間であるため、処理はステップS604に進む。 In step S603, the specific value prediction AI determines whether the second period 702 is one day. Since the second period 702 is a period of 11 days consisting of the thirteenth business day to the twenty-third business day, the process proceeds to step S604.
 ステップS604において、特定値予測AIは、第2の期間702の初日に、第2の期間702を2つの期間に分割する。図7Bに示されるように、特定値予測AIは、第2の期間702を、第13営業日~第17営業日から成る第3の期間703と、第18営業日~第23営業日から成る第4の期間704とに分割する。 In step S604, the specific value prediction AI divides the second period 702 into two periods on the first day of the second period 702. As shown in FIG. 7B, the specific value prediction AI comprises the second period 702, the third period 703 consisting of the thirteenth business day to the seventeenth business day, and the eighteenth business day to the twenty-third business day. It is divided into a fourth period 704.
 なお、図7Bに示される例では、第2の期間702の初日にステップS604が実行されることを示しているが、ステップS501の処理の各ステップが行われるタイミングは任意である。例えば、月の初日に、ステップS501の処理(所定の期間内で価値変動アセットの価値が最安値となる日を予測する処理)を全て完了するようにしてもよいし、価値変動アセットの価値が最安値となる日が属すると判定された期間になるごとにステップS501の処理(所定の期間内で価値変動アセットの価値が最安値となる日を予測する処理)の一部を行うようにしてもよい。 Although the example illustrated in FIG. 7B indicates that step S604 is performed on the first day of the second period 702, the timing at which each step of the process of step S501 is performed is arbitrary. For example, on the first day of the month, the process of step S501 (the process of predicting the day when the value of the value fluctuation asset is the lowest value in a predetermined period) may be completely completed, or the value of the value fluctuation asset is As part of the processing in step S501 (processing to predict the date when the value of the value fluctuation asset becomes the lowest value in a predetermined period) is performed each time the date when the lowest price day is determined to belong. It is also good.
 ステップS605において、特定値予測AIは、第3の期間703および第4の期間704のうち、米ドル価格が最安値となる日が属する期間を判定する。特定値予測AIは、13日間の変動を予測する予測モデルを利用して、第3の期間703および第4の期間704のうち、米ドル価格の平均値が低い期間を判定し、米ドル価格の平均値が低い期間を米ドル価格が最安値となる日が属する期間であると判定する。本例では、特定値予測AIは、13日間の変動を予測する予測モデルを利用して予測される第3の期間703の平均値730と、13日間の変動を予測する予測モデルを利用して予測される第4の期間704の平均値740とを比較し、第3の期間703が米ドル価格が最安値となる日が属する期間であると判定する。 In step S605, the specific value prediction AI determines, of the third period 703 and the fourth period 704, the period to which the day when the US dollar price is the lowest falls. The specific value prediction AI determines a period in which the average value of the US dollar price is low in the third period 703 and the fourth period 704 using a prediction model that predicts 13-day fluctuation, and calculates the average of the US dollar price A period with a low value is determined to be a period to which a day when the US dollar price becomes the lowest value belongs. In this example, the specific value prediction AI uses an average value 730 of the third period 703 predicted using a prediction model that predicts 13-day fluctuation, and a prediction model that predicts 13-day fluctuation. The average value 740 of the fourth predicted period 704 is compared, and it is determined that the third period 703 is a period to which a day when the US dollar price is the lowest is included.
 ステップS603に戻り、特定値予測AIは、第3の期間703が、1日間であるか否かを判定する。第3の期間703は、第13営業日~第17営業日から成る5日間の期間であるため、処理は再びステップS604に進む。 Returning to step S603, the specific value prediction AI determines whether the third period 703 is one day. Since the third period 703 is a five-day period consisting of the thirteenth business day to the seventeenth business day, the process proceeds to step S604 again.
 ステップS604において、特定値予測AIは、第3の期間703を2つの期間に分割する。図7Cに示されるように、特定値予測AIは、第3の期間703を、第13営業日~第14営業日から成る第5の期間705と、第15営業日~第17営業日から成る第6の期間706とに分割する。 In step S604, the specific value prediction AI divides the third period 703 into two periods. As shown in FIG. 7C, the specific value prediction AI comprises the third period 703, the fifth period 705 consisting of the thirteenth business day to the fourteenth business day, and the fifteenth business day to the seventeenth business day. It is divided into a sixth period 706.
 ステップS605において、特定値予測AIは、第5の期間705および第6の期間706のうち、米ドル価格が最安値となる日が属する期間を判定する。特定値予測AIは、5日間の変動を予測する予測モデルを利用して、第5の期間705および第6の期間706のうち、米ドル価格の平均値が低い期間を判定し、米ドル価格の平均値が低い期間を米ドル価格が最安値となる日が属する期間であると判定する。本例では、特定値予測AIは、5日間の変動を予測する予測モデルを利用して予測される第5の期間705の平均値750と、5日間の変動を予測する予測モデルを利用して予測される第6の期間706の平均値760とを比較し、第5の期間705が米ドル価格が最安値となる日が属する期間であると判定する。 In step S605, the specific value prediction AI determines, of the fifth period 705 and the sixth period 706, the period to which the day when the US dollar price is the lowest falls. The specific value prediction AI determines a period in which the average value of the US dollar price is low in the fifth period 705 and the sixth period 706 using a prediction model that predicts 5-day fluctuation, and calculates the average of the US dollar prices A period with a low value is determined to be a period to which a day when the US dollar price becomes the lowest value belongs. In this example, the specific value prediction AI uses an average value 750 of the fifth period 705 predicted using a prediction model that predicts fluctuations in five days, and a prediction model that predicts fluctuations in five days. The average value 760 of the predicted sixth period 706 is compared, and it is determined that the fifth period 705 is a period to which a day when the US dollar price becomes the lowest value belongs.
 ステップS603に戻り、特定値予測AIは、第5の期間705が、1日間であるか否かを判定する。第5の期間705は、第13営業日~第14営業日から成る2日間の期間であるため、処理は再びステップS604に進む。 Returning to step S603, the specific value prediction AI determines whether or not the fifth period 705 is one day. Since the fifth period 705 is a two-day period consisting of the thirteenth business day to the fourteenth business day, the process proceeds again to step S604.
 ステップS604において、特定値予測AIは、第5の期間705を2つの期間に分割する。図7Dに示されるように、特定値予測AIは、第5の期間705を、第13営業日から成る第7の期間707と、第14営業日から成る第8の期間708とに分割する。 In step S604, the specific value prediction AI divides the fifth period 705 into two periods. As shown in FIG. 7D, the specific value prediction AI divides the fifth period 705 into a seventh period 707 consisting of a thirteenth business day and an eighth period 708 consisting of a fourteenth business day.
 ステップS605において、特定値予測AIは、第7の期間707および第8の期間708のうち、米ドル価格が最安値となる日が属する期間を判定する。特定値予測AIは、2日間の変動を予測する予測モデルを利用して、第7の期間707および第8の期間708のうち、米ドル価格の平均値が低い期間を判定し、米ドル価格の平均値が低い期間を米ドル価格が最安値となる日が属する期間であると判定する。本例では、特定値予測AIは、2日間の変動を予測する予測モデルを利用して予測される第7の期間707の平均値770と、2日間の変動を予測する予測モデルを利用して予測される第8の期間708の平均値780とを比較し、第8の期間708が米ドル価格が最安値となる日が属する期間であると判定する。 In step S605, the specific value prediction AI determines, of the seventh period 707 and the eighth period 708, the period to which the day when the US dollar price is the lowest falls. The specific value prediction AI determines a period in which the average value of the US dollar price is low in the seventh period 707 and the eighth period 708 using a prediction model that predicts fluctuations of two days, and the average of the US dollar prices A period with a low value is determined to be a period to which a day when the US dollar price becomes the lowest value belongs. In this example, the specific value prediction AI uses an average value 770 of the seventh period 707 predicted using a prediction model that predicts fluctuations for two days, and a prediction model that predicts fluctuations for two days The average value 780 of the predicted eighth period 708 is compared, and it is determined that the eighth period 708 is a period to which a day when the US dollar price becomes the lowest value belongs.
 ステップS603に戻り、特定値予測AIは、第8の期間708が、1日間であるか否かを判定する。第8の期間708は、第14営業日から成る1日間の期間であるため、処理はステップS606に進み、終了する。 Returning to step S603, the specific value prediction AI determines whether the eighth period 708 is one day. Since the eighth period 708 is a one-day period consisting of the fourteenth business day, the process proceeds to step S606 and ends.
 以上の処理により、この月に米ドルが最安値となる日が、第14営業日であることが予測される。第14営業日に至ると、ステップS502において、プロセッサ部212が、米ドルを購入し、これを積み立てる。 As a result of the above processing, it is predicted that the day the US dollar will be the lowest in this month is the 14th business day. At the 14th business day, in step S502, the processor unit 212 purchases the US dollar and accumulates it.
 ここで、さらなる例として、図8A~図8Dを参照しながら、毎月豪ドルを積み立てる場合のコンピュータシステム200におけるステップS501の処理を説明する。 Here, as a further example, the processing of step S501 in the computer system 200 in the case of accumulating the AUD every month will be described with reference to FIGS. 8A to 8D.
 図8A~図8Dは、豪ドル価格(円)の時間変動の一例を示すグラフである。実線は、実際の変動値を示し、破線は、予測対象期間の変動を予測する予測モデルを利用して予測される変動値を示す。所定の期間は1月(23営業日)であるとする。価値変動アセットの価値が最安値となる時期は、日単位とする。所定の抑制期間の長さを4日とする。特定値予測AIは、5つの予測モデルを利用して予測を行うものとする。所定数を以下のとおり変動させるものとする。
Figure JPOXMLDOC01-appb-T000004
8A to 8D are graphs showing an example of the time change of the Australian dollar price (yen). The solid line indicates the actual fluctuation value, and the broken line indicates the fluctuation value predicted using a prediction model that predicts the fluctuation of the prediction target period. It is assumed that the predetermined period is January (23 business days). The period when the value of the value fluctuation asset is the lowest is on a daily basis. The length of the predetermined suppression period is 4 days. The specific value prediction AI uses five prediction models to perform prediction. The prescribed number shall be varied as follows.
Figure JPOXMLDOC01-appb-T000004
 ステップ601において、特定値予測AIは、月の初日に、所定の期間(23営業日)を2つの期間に分割する。図8Aに示されるように、特定値予測AIは、所定の期間(23営業日)を、第1営業日~第12営業日から成る第1の期間801と、第13営業日~第23営業日から成る第2の期間802とに分割する。 In step 601, the specific value prediction AI divides a predetermined period (23 business days) into two periods on the first day of the month. As shown in FIG. 8A, the specific value prediction AI includes a predetermined period (23 business days), a first period 801 consisting of the first business day to the 12th business day, and a 13th business day to the 23rd business day. And a second period 802 consisting of days.
 ステップS602-1において、特定値予測AIは、5つの予測モデルのそれぞれを用いて、第1の期間801および第2の期間802のうち、豪ドル価格が最安値となる日が属する期間を判定する。特定値予測AIは、23日間の変動を予測する5つの予測モデルのそれぞれを利用して、第1の期間801および第2の期間802のうち、豪ドル価格が最安値となる日が属する期間を判定する。予測モデルは、例えば、学習に用いられる過去の価値変動データの種類または量が異なる複数の予測モデルであってもよく、例えば、予測のために入力される過去の価値変動データの種類または量が異なる複数の予測モデルであってもよく、例えば、多層パーセプトロン450を利用する予測モデル、CNNを利用する予測モデル、RNNを利用する予測モデル等の利用するニューラルネットワークの種類がそれぞれ異なる複数の予測モデルであってもよい。本例では、以下のとおり、各予測モデルが予測したとする。
Figure JPOXMLDOC01-appb-T000005
In step S602-1, the specific value prediction AI determines, of each of the first period 801 and the second period 802, the period to which the day when the AUD price is the lowest falls, using each of the five prediction models. Do. The specific value prediction AI uses, for each of five prediction models that predict fluctuations in 23 days, a period in which the day when the AUD price becomes the lowest among the first period 801 and the second period 802 belongs. Determine The prediction model may be, for example, a plurality of prediction models that differ in the type or amount of past value fluctuation data used for learning, for example, the type or amount of past value fluctuation data input for prediction is A plurality of different prediction models may be used. For example, a plurality of prediction models having different types of neural networks, such as a prediction model using multilayer perceptron 450, a prediction model using CNN, and a prediction model using RNN It may be In this example, it is assumed that each prediction model predicts as follows.
Figure JPOXMLDOC01-appb-T000005
 ステップS602-2’において、特定値予測AIは、第1の期間801および第2の期間802のうちの前半の期間である第1の期間801が豪ドル価格が最安値となる日が属する期間であると判定した予測モデルの数を決定する。表5の結果から、予測モデルの数が、3であると決定される。 In step S602-2 ', the specific value prediction AI is a period to which the first low price of the first period 801, which is the first half of the first period 801 and the second period 802, belongs. Determine the number of prediction models determined to be From the results in Table 5, the number of prediction models is determined to be three.
 ステップS602-3において、特定値予測AIは、ステップS602-2’で決定された予測モデルの数が、所定数以上であるか否かを判定する。第1営業日~第12営業日の所定数は3であり、ステップS602-2’で決定された予測モデルの数は3以上であるため、ステップS602-4に進む。 In step S602-3, the specific value prediction AI determines whether the number of prediction models determined in step S602-2 'is equal to or greater than a predetermined number. Since the predetermined number of the first business day to the twelfth business day is 3 and the number of prediction models determined in step S602-2 'is 3 or more, the process proceeds to step S602-4.
 ステップS602-4において、特定値予測AIは、第1の期間801を豪ドル価格が最安値となる日が属する期間であると決定する。 In step S602-4, the specific value prediction AI determines that the first period 801 is a period to which a day when the AUD price becomes the lowest value belongs.
 ステップS603において、特定値予測AIは、第1の期間801が、1日間であるか否かを判定する。第1の期間801は、第1営業日~第12営業日から成る12日間の期間であるため、処理はステップS604に進む。 In step S603, the specific value prediction AI determines whether the first period 801 is one day. Since the first period 801 is a 12-day period consisting of the first business day to the twelfth business day, the process proceeds to step S604.
 ステップS604において、特定値予測AIは、第1の期間801を2つの期間に分割する。図8Bに示されるように、特定値予測AIは、第1の期間801を、第1営業日~第6営業日から成る第3の期間803と、第7営業日~第12営業日から成る第4の期間804とに分割する。 In step S604, the specific value prediction AI divides the first period 801 into two periods. As shown in FIG. 8B, the specific value prediction AI comprises a first period 801, a third period 803 consisting of a first business day to a sixth business day, and a seventh business day to a twelfth business day. And the fourth period 804.
 なお、図8Bに示される例では、第3の期間803の初日にステップS604が実行されることを示しているが、ステップS501の処理の各ステップが行われるタイミングは任意である。例えば、月の初日に、ステップS501の処理(所定の期間内で価値変動アセットの価値が最安値となる日を予測する処理)を全て完了するようにしてもよいし、価値変動アセットの価値が最安値となる日が属すると判定された期間になるごとにステップS501の処理(所定の期間内で価値変動アセットの価値が最安値となる日を予測する処理)の一部を行うようにしてもよい。 Although the example illustrated in FIG. 8B indicates that step S604 is performed on the first day of the third period 803, the timing at which each step of the process of step S501 is performed is arbitrary. For example, on the first day of the month, the process of step S501 (the process of predicting the day when the value of the value fluctuation asset is the lowest value in a predetermined period) may be completely completed, or the value of the value fluctuation asset is As part of the processing in step S501 (processing to predict the date when the value of the value fluctuation asset becomes the lowest value in a predetermined period) is performed each time the date when the lowest price day is determined to belong. It is also good.
 ステップS605において、特定値予測AIは、第3の期間803および第4の期間804のうち、豪ドル価格が最安値となる日が属する期間を判定する。特定値予測AIは、13日間の変動を予測する5つの予測モデルを利用して、第3の期間803および第4の期間804のうち、豪ドル価格が最安値となる日が属する期間を判定する。本例では、以下のとおり、各予測モデルが予測したとする。
Figure JPOXMLDOC01-appb-T000006
In step S605, the specific value prediction AI determines a period to which a day in which the AUD price is the lowest falls in the third period 803 and the fourth period 804. The specific value prediction AI uses five prediction models that predict 13-day fluctuation to determine the period to which the Australian dollar price becomes lowest in the third period 803 and the fourth period 804. Do. In this example, it is assumed that each prediction model predicts as follows.
Figure JPOXMLDOC01-appb-T000006
 ステップS605-2’において、特定値予測AIは、第3の期間803および第4の期間804のうちの前半の期間である第3の期間803が豪ドル価格が最安値となる日が属する期間であると判定した予測モデルの数を決定する。表6の結果から、予測モデルの数が、4であると決定される。 In step S605-2 ′, the specific value prediction AI is a period in which the third day of the third period 803, which is the first half period of the third period 803 and the fourth period 804, belongs to the day when the AUD price becomes the lowest. Determine the number of prediction models determined to be From the results in Table 6, the number of prediction models is determined to be four.
 ステップS605-3において、特定値予測AIは、ステップS605-2’で決定された予測モデルの数が、所定数以上であるか否かを判定する。第1営業日~第6営業日の所定数は5であり、ステップS605-2’で決定された予測モデルの数は5以上ではないため、ステップS605-5に進む。 In step S605-3, the specific value prediction AI determines whether the number of prediction models determined in step S605-2 'is equal to or greater than a predetermined number. Since the predetermined number of the first business day to the sixth business day is five and the number of prediction models determined in step S605-2 'is not five or more, the process proceeds to step S605-5.
 ステップS605-5において、特定値予測AIは、後半の期間である第4の期間804を豪ドル価格が最安値となる日が属する期間であると決定する。 In step S605-5, the specific value prediction AI determines that the fourth period 804, which is the second half period, is a period to which a day when the AUD price is the lowest falls.
 ステップS603に戻り、特定値予測AIは、第4の期間804が、1日間であるか否かを判定する。第4の期間804は、第7営業日~第12営業日から成る6日間の期間であるため、処理は再びステップS604に進む。 Returning to step S603, the specific value prediction AI determines whether or not the fourth period 804 is one day. Since the fourth period 804 is a six-day period consisting of the seventh business day to the twelfth business day, the process proceeds again to step S604.
 ステップS604において、特定値予測AIは、第4の期間804を2つの期間に分割する。図8Cに示されるように、特定値予測AIは、第4の期間804を、第7営業日~第9営業日から成る第5の期間805と、第10営業日~第12営業日から成る第6の期間806とに分割する。 In step S604, the specific value prediction AI divides the fourth period 804 into two periods. As shown in FIG. 8C, the specific value prediction AI comprises a fourth period 804, a fifth period 805 consisting of the seventh business day to the ninth business day, and a tenth business day to the twelfth business day. And the sixth period 806.
 ステップS605において、特定値予測AIは、第5の期間805および第6の期間806のうち、豪ドル価格が最安値となる日が属する期間を判定する。特定値予測AIは、5日間の変動を予測する5つの予測モデルを利用して、第5の期間805および第6の期間806のうち、豪ドル価格が最安値となる日が属する期間を判定する。本例では、以下のとおり、各予測モデルが予測したとする。
Figure JPOXMLDOC01-appb-T000007
In step S605, the specific value prediction AI determines the period to which the day in which the AUD price is the lowest falls in the fifth period 805 and the sixth period 806. The specific value prediction AI uses five prediction models that predict 5-day fluctuation to determine the period to which the Australian dollar price becomes lowest among the fifth period 805 and the sixth period 806. Do. In this example, it is assumed that each prediction model predicts as follows.
Figure JPOXMLDOC01-appb-T000007
 ステップS605-2’において、特定値予測AIは、第5の期間805および第6の期間806のうちの前半の期間である第5の期間805が豪ドル価格が最安値となる日が属する期間であると判定した予測モデルの数を決定する。表7の結果から、予測モデルの数が、5であると決定される。 In step S605-2 ', the specific value prediction AI is a period in which the fifth day of the fifth period 805 which is the first half period of the fifth period 805 and the sixth period 806 belongs to the day when the AUD price becomes the lowest. Determine the number of prediction models determined to be From the results in Table 7, the number of prediction models is determined to be five.
 ステップS605-3において、特定値予測AIは、ステップS605-2’で決定された予測モデルの数が、所定数以上であるか否かを判定する。第7営業日~第9営業日の所定数は4であり、ステップS605-2’で決定された予測モデルの数は4以上であるため、ステップS605-4に進む。 In step S605-3, the specific value prediction AI determines whether the number of prediction models determined in step S605-2 'is equal to or greater than a predetermined number. Since the predetermined number of the seventh business day to the ninth business day is 4 and the number of prediction models determined in step S605-2 'is 4 or more, the process proceeds to step S605-4.
 ステップS605-4において、特定値予測AIは、第5の期間805を豪ドル価格が最安値となる日が属する期間であると決定する。 In step S605-4, the specific value prediction AI determines that the fifth period 805 is a period to which a day when the AUD price becomes the lowest value belongs.
 ステップS603に戻り、特定値予測AIは、第5の期間805が、1日間であるか否かを判定する。第5の期間805は、第7営業日~第9営業日から成る3日間の期間であるため、処理は再びステップS604に進む。 Returning to step S603, the specific value prediction AI determines whether the fifth period 805 is one day. Since the fifth period 805 is a three-day period consisting of the seventh business day to the ninth business day, the process proceeds to step S604 again.
 ステップS604において、特定値予測AIは、第5の期間805を2つの期間に分割する。図8Dに示されるように、特定値予測AIは、第5の期間805を、第7営業日から成る第7の期間807と、第8営業日~第9営業日から成る第8の期間808とに分割する。 In step S604, the specific value prediction AI divides the fifth period 805 into two periods. As shown in FIG. 8D, the specific value prediction AI includes a fifth period 805, a seventh period 807 consisting of the seventh business day, and an eighth period 808 consisting of the eighth business day to the ninth business day. Divide into and.
 ステップS605において、特定値予測AIは、第7の期間807および第8の期間808のうち、豪ドル価格が最安値となる日が属する期間を判定する。特定値予測AIは、2日間の変動を予測する5つの予測モデルを利用して、第7の期間807および第8の期間808のうち、豪ドル価格が最安値となる日が属する期間を判定する。本例では、以下のとおり、各予測モデルが予測したとする。
Figure JPOXMLDOC01-appb-T000008
In step S605, the specific value prediction AI determines the period to which the day in which the AUD price is the lowest falls in the seventh period 807 and the eighth period 808. The specific value prediction AI uses five prediction models that predict two-day fluctuation to determine the period to which the low Australian price day belongs in the seventh period 807 and the eighth period 808. Do. In this example, it is assumed that each prediction model predicts as follows.
Figure JPOXMLDOC01-appb-T000008
 ステップS605-2’において、特定値予測AIは、第7の期間807および第8の期間808のうちの前半の期間である第7の期間807が豪ドル価格が最安値となる日が属する期間であると判定した予測モデルの数を決定する。表8の結果から、予測モデルの数が、4であると決定される。 In step S605-2 ', the specific value prediction AI is a period in which the seventh day of the seventh period 807, which is the first half period of the seventh period 807 and the eighth period 808, belongs to the day when the AUD price becomes the lowest. Determine the number of prediction models determined to be From the results in Table 8, the number of prediction models is determined to be four.
 ステップS605-3において、特定値予測AIは、ステップS605-2’で決定された予測モデルの数が、所定数以上であるか否かを判定する。第7営業日の所定数は4であり、ステップS605-2’で決定された予測モデルの数は4以上であるため、ステップS605-4に進む。 In step S605-3, the specific value prediction AI determines whether the number of prediction models determined in step S605-2 'is equal to or greater than a predetermined number. Since the predetermined number of the seventh business day is 4 and the number of prediction models determined in step S605-2 'is 4 or more, the process proceeds to step S605-4.
 ステップS605-4において、特定値予測AIは、第7の期間807を豪ドル価格が最安値となる日が属する期間であると決定する。 In step S605-4, the specific value prediction AI determines that the seventh period 807 is a period to which a day when the AUD price becomes the lowest value belongs.
 ステップS603に戻り、特定値予測AIは、第7の期間807が、1日間であるか否かを判定する。第7の期間807は、第7営業日から成る1日間の期間であるため、処理はステップS606に進み、終了する。 Returning to step S603, the specific value prediction AI determines whether the seventh period 807 is one day. Since the seventh period 807 is a one-day period consisting of the seventh business day, the process proceeds to step S606 and ends.
 以上の処理により、この月に豪ドルが最安値となる日が、第7営業日であることが予測される。第7営業日に至ると、ステップS502において、プロセッサ部212が、豪ドルを購入し、これを積み立てる。 By the above processing, it is predicted that the day the Australian dollar will be the lowest in this month is the seventh business day. At the seventh business day, in step S502, the processor unit 212 purchases AUD and accumulates it.
 最安値となる時期を予測する代わりに、特定の順位の値となる時期を予測する場合、ステップS602、ステップS605では、アセットの価値が特定の順位となる時期が属する期間を判定するようにしてもよい。例えば、23営業日のうちで、アセットの価値が14番目に安い値となる時期が属する期間を判定する場合を説明する。 When predicting the time of becoming a value of a specific rank instead of predicting the time of becoming the lowest price, in step S602 and step S605, a period of time when the value of an asset becomes a specific rank is determined It is also good. For example, a case will be described in which a period of time in which the value of an asset becomes the 14th lowest value belongs to the 23 working days will be described.
 ステップS601で、23営業日が2つの期間に分割された後、ステップS602で、分割後の2つの期間のうち最安値が存在しない方の期間を選択する。14>23/2だからである。 After 23 working days are divided into two periods in step S601, in step S602, one of the two divided periods is selected which has the lowest price. That is because 14> 23/2.
 次に、ステップS603の後、ステップS604で11または12営業日が2つの期間に分割された後、ステップS605で、分割後の2つの期間のうち安値(極小値)が存在する方の期間を選択する。(14-23/2)<23/4だからである。 Next, after step S603, 11 or 12 business days are divided into two periods in step S604, and then in step S605, the period in which the low price (minimum value) exists among the two periods after division select. This is because (14-23 / 2) <23/4.
 次に、ステップS603の後、ステップS604で5または6営業日が2つの期間に分割された後、ステップS605で、分割後の2つの期間のうち安値(極小値)が存在する方の期間を選択する。(14-23/2)<23/8だからである。 Next, after step S603, 5 or 6 business days are divided into two periods in step S604, and in step S605, the period in which the low price (local minimum) exists in the two periods after division is select. This is because (14-23 / 2) <23/8.
 次に、ステップS603の後、ステップS604で2または3営業日が2つの期間に分割された後、ステップS605で、分割後の2つの期間のうち安値(極小値)が存在しない方の期間を選択する。(14-23/2)>23/16だからである。 Next, after step S603, 2 or 3 business days are divided into two periods in step S604, and in step S605, one of the two periods after division does not have a low price (minimum value). select. (14-23 / 2)> 23/16.
 これをステップS603でYesと判定されるまで繰り返す。 This is repeated until it is determined as Yes in step S603.
 このようにして上述した二分探索と同じ要領で、アセットの価値が特定の順位となる時期が属する期間を判定することができる。 Thus, in the same manner as the binary search described above, it is possible to determine the period to which the time when the asset value becomes a specific rank belongs.
 上述した例では、対象の期間を2つの期間に分割する二分探索により、所定の期間内で価値変動アセットの価値が特定の順位の値となる時期を予測することを説明したが、本発明は二分探索に限定されない。対象の期間を2よりも多い数の期間に分割して、所定の期間内で価値変動アセットの価値が特定の順位の値となる時期を予測することも本発明の範囲内である。 In the example described above, it has been described that the binary search which divides the target period into two periods predicts the time when the value of the value fluctuation asset becomes the value of the specific rank within the predetermined period, but the present invention It is not limited to binary search. It is also within the scope of the present invention to divide the period of interest into more than two periods to predict when the value of the value-changing asset will be the value of a particular rank within a given period of time.
 例えば、ステップS601で、特定値予測AIは、所定の期間を2つの期間に分割する代わりに、m個の期間に分割し(mは2よりも大きい整数)、ステップS602で、特定値予測AIは、分割後のm個の期間のうち、価値変動アセットの価値が特定の順位の値(例えば、最安値、最高値、n番目に安い値、n番目に高い値)となる時期が属する期間を判定するようにしてもよい。価値変動アセットの価値が最安値となる時期が属する期間を判定する場合、この判定は、例えば、将来の所定期間の平均値の予測を出力することができるように、過去の価値変動データを教師データとして学習している特定値予測AIによって、分割後のm個の期間のうち、価値変動アセットの価値の平均値が最も低い期間を判定することによって行われてもよい。価値変動アセットの価値が最安値となる時期が属する期間の判定は、例えば、将来の或る期間を複数の期間に分割した期間のうちのどの期間に最安値となるかの予測を出力することができるように過去の価値変動データを教師データとして学習している特定値予測AIによって、行われてもよい。価値変動アセットの価値が最高値となる時期が属する期間を判定する場合、この判定は、例えば、将来の所定期間の平均値の予測を出力することができるように、過去の価値変動データを教師データとして学習している特定値予測AIによって、分割後のm個の期間のうち、価値変動アセットの価値の平均値が最も高い期間を判定することによって行われてもよい。価値変動アセットの価値が最高値となる時期が属する期間の判定は、例えば、将来の或る期間を複数の期間に分割した期間のうちのどの期間に最高値となるかの予測を出力することができるように過去の価値変動データを教師データとして学習している特定値予測AIによって、行われてもよい。価値変動アセットの価値が特定の順位の値となる時期が属する期間を判定する場合、この判定は、例えば、将来の所定期間の平均値の予測を出力することができるように、過去の価値変動データを教師データとして学習している特定値予測AIによって、分割後のm個の期間のうち、価値変動アセットの価値の平均値が特定の順位となる期間を判定することによって行われてもよい。価値変動アセットの価値が特定の順位の値となる時期が属する期間の判定は、例えば、将来の或る期間を複数の期間に分割した期間のうちのどの期間に特定の順位の値となるかの予測を出力することができるように過去の価値変動データを教師データとして学習している特定値予測AIによって、行われてもよい。 For example, in step S601, the specific value prediction AI divides the predetermined period into m periods instead of dividing it into two periods (m is an integer larger than 2), and in step S602, the specific value prediction AI Is the period to which the value of the value fluctuation asset belongs to a specific rank value (for example, lowest price, highest value, n lowest value, n highest value) of m periods after division May be determined. When determining the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, this judgment may, for example, teach past value fluctuation data so that the prediction of the average value of the predetermined period in the future can be output. The specific value prediction AI learned as data may be performed by determining a period in which the average value of the value of the value fluctuation asset has the lowest value among the m periods after division. In the determination of the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, for example, output the prediction of which of the periods obtained by dividing a future period into a plurality of periods. It may be performed by specific value prediction AI which is learning past value fluctuation data as teacher data so that it can be done. When determining the period to which the time when the value of the value fluctuation asset reaches the highest value belongs, this judgment is, for example, teaching past value fluctuation data so that the prediction of the average value of the predetermined period in the future can be output. The specific value prediction AI learned as data may be performed by determining, out of m divided periods, a period in which the average value of the value of the value fluctuation asset is the highest. The determination of the period to which the time when the value of the value fluctuation asset becomes the highest belongs, for example, is to output a prediction of which of the periods obtained by dividing a future period into a plurality of periods. It may be performed by specific value prediction AI which is learning past value fluctuation data as teacher data so that it can be done. When determining the period in which the time when the value of the value fluctuation asset becomes the value of the specific rank belongs, this judgment may, for example, be the past value fluctuation so that the prediction of the average value of the future predetermined period can be output. It may be performed by determining the period in which the average value of the value of the value fluctuation asset is in a specific order among the m periods after division by the specific value prediction AI learning data as teacher data . For example, in the period in which a certain future period is divided into a plurality of time periods, the determination of the period to which the time when the value of the value fluctuation asset becomes the value of the specific order falls within the specific order value It may be performed by specific value prediction AI which is learning past value fluctuation data as teacher data so that the prediction of can be output.
 例えば、ステップS604で、特定値予測AIは、価値変動アセットの価値が特定の順位の値となる時期が属すると判定された期間をさらにm個の期間に分割し、ステップS605で、特定値予測AIは、分割後のm個の期間のうち、価値変動アセットの価値が特定の順位の値(例えば、最安値、最高値、n番目に安い値、n番目に高い値)となる時期が属する期間を判定するようにしてもよい。価値変動アセットの価値が最安値となる時期が属する期間を判定する場合、この判定は、例えば、将来の所定期間の平均値の予測を出力することができるように、過去の価値変動データを教師データとして学習している特定値予測AIによって、分割後のm個の期間のうち、価値変動アセットの価値の平均値が最も低い期間を判定することによって行われてもよい。価値変動アセットの価値が最安値となる時期が属する期間の判定は、例えば、将来の或る期間を複数の期間に分割した期間のうちのどの期間に最安値となるかの予測を出力することができるように過去の価値変動データを教師データとして学習している特定値予測AIによって、行われてもよい。価値変動アセットの価値が最高値となる時期が属する期間を判定する場合、この判定は、例えば、将来の所定期間の平均値の予測を出力することができるように、過去の価値変動データを教師データとして学習している特定値予測AIによって、分割後のm個の期間のうち、価値変動アセットの価値の平均値が最も高い期間を判定することによって行われてもよい。価値変動アセットの価値が最高値となる時期が属する期間の判定は、例えば、将来の或る期間を複数の期間に分割した期間のうちのどの期間に最高値となるかの予測を出力することができるように過去の価値変動データを教師データとして学習している特定値予測AIによって、行われてもよい。価値変動アセットの価値が特定の順位の値となる時期が属する期間を判定する場合、この判定は、例えば、将来の所定期間の平均値の予測を出力することができるように、過去の価値変動データを教師データとして学習している特定値予測AIによって、分割後のm個の期間のうち、価値変動アセットの価値の平均値が特定の順位となる期間を判定することによって行われてもよい。価値変動アセットの価値が特定の順位の値となる時期が属する期間の判定は、例えば、将来の或る期間を複数の期間に分割した期間のうちのどの期間に特定の順位の値となるかの予測を出力することができるように過去の価値変動データを教師データとして学習している特定値予測AIによって、行われてもよい。 For example, in step S604, the specific value prediction AI further divides the period in which it is determined that the time when the value of the value fluctuation asset has a specific rank value belongs to m periods, and in step S605, the specific value prediction AI The AI belongs to the m periods after the division when the value of the value fluctuation asset has a specific rank value (for example, the lowest price, the highest value, the nth lowest value, the nth highest value). The period may be determined. When determining the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, this judgment may, for example, teach past value fluctuation data so that the prediction of the average value of the predetermined period in the future can be output. The specific value prediction AI learned as data may be performed by determining a period in which the average value of the value of the value fluctuation asset has the lowest value among the m periods after division. In the determination of the period to which the time when the value of the value fluctuation asset becomes the lowest belongs, for example, output the prediction of which of the periods obtained by dividing a future period into a plurality of periods. It may be performed by specific value prediction AI which is learning past value fluctuation data as teacher data so that it can be done. When determining the period to which the time when the value of the value fluctuation asset reaches the highest value belongs, this judgment is, for example, teaching past value fluctuation data so that the prediction of the average value of the predetermined period in the future can be output. The specific value prediction AI learned as data may be performed by determining, out of m divided periods, a period in which the average value of the value of the value fluctuation asset is the highest. The determination of the period to which the time when the value of the value fluctuation asset becomes the highest belongs, for example, is to output a prediction of which of the periods obtained by dividing a future period into a plurality of periods. It may be performed by specific value prediction AI which is learning past value fluctuation data as teacher data so that it can be done. When determining the period in which the time when the value of the value fluctuation asset becomes the value of the specific rank belongs, this judgment may, for example, be the past value fluctuation so that the prediction of the average value of the future predetermined period can be output. It may be performed by determining the period in which the average value of the value of the value fluctuation asset is in a specific order among the m periods after division by the specific value prediction AI learning data as teacher data . For example, in the period in which a certain future period is divided into a plurality of time periods, the determination of the period to which the time when the value of the value fluctuation asset becomes the value of the specific order falls within the specific order value It may be performed by specific value prediction AI which is learning past value fluctuation data as teacher data so that the prediction of can be output.
 このとき、例えば、ステップS602-2またはステップS605-2では、特定値予測AIは、分割後のm個の期間のうち、より多くの予測モデルによって価値変動アセットの価値が特定の順位の値となる時期が属する期間であると判定された期間を、アセットの価値が特定の順位の値となる時期が属する期間であると決定する。 At this time, for example, in step S602-2 or step S605-2, the specific value prediction AI determines that the value of the value fluctuation asset has a specific rank value according to more prediction models in m periods after division. The period determined to be the period to which the time of day belongs is determined to be the period of time to which the value of the asset becomes the value of the specific rank.
 例えば、ステップS602-2’またはステップS605-2’では、特定値予測AIは、分割後のm個の期間のうちの前半の期間のそれぞれについて、その期間が価値変動アセットの価値が特定の順位の値となる時期が属する期間であると判定した予測モデルの数を決定し、次に、ステップS602-3またはステップS605-3では、特定値予測AIは、前半の期間のそれぞれについて、決定された予測モデルの数が所定数以上であるか否かを判定する。所定数以上である場合は、その期間を価値変動アセットの価値が特定の順位の値となる時期が属する期間であると決定する。 For example, in step S602-2 'or step S605-2', for each of the first half of the m periods after division, the specific value prediction AI ranks such that the value of the value fluctuation asset has a specific value in each of the first half periods. The number of prediction models determined to be the period to which the time having the value of 1 belongs is determined, and then in step S602-3 or step S605-3, the specific value prediction AI is determined for each of the first half period. It is determined whether the number of predicted models is equal to or greater than a predetermined number. If it is more than a predetermined number, it is determined that the period is a period to which the value of the value fluctuation asset has a value of a specific rank.
 例えば、m=6の場合、ステップS602-2’またはステップS605-2’では、特定値予測AIは、6分割された期間のうちの前半3つの期間のそれぞれについて、その期間が価値変動アセットの価値が特定の順位の値となる時期が属する期間であると判定した予測モデルの数を決定する。次に、ステップS602-3またはステップS605-3では、特定値予測AIは、前半3つの期間のそれぞれについて、決定された予測モデルの数が所定数であるか否かを決定し、所定数以上である場合は、その期間を価値変動アセットの価値が特定の順位の値となる時期が属する期間であると決定する。例えば、前半3つの期間のうちの第1の期間について決定された予測モデルの数および前半3つの期間のうちの第3の期間について決定された予測モデルの数のそれぞれが所定数未満であるが、前半3つの期間のうちの第2の期間について決定された予測モデルの数が所定数以上である場合には、前半3つの期間のうちの第2の期間を価値変動アセットの価値が特定の順位の値となる時期が属する期間であると決定する。 For example, in the case of m = 6, in step S602-2 ′ or step S605-2 ′, the specific value prediction AI has a value fluctuation asset value period for each of the first three periods of the six divided periods. Determine the number of forecasting models that have been determined to be the period to which the time when value becomes a particular rank value belongs. Next, in step S602-3 or step S605-3, the specific value prediction AI determines whether or not the number of the determined prediction models is a predetermined number for each of the first three periods, and the predetermined number or more is determined. If so, the period is determined to be a period to which the value of the value fluctuation asset has a value of a specific rank. For example, each of the number of prediction models determined for the first one of the first three periods and the number of prediction models determined for the third one of the first three periods is less than a predetermined number, If the number of forecasting models determined for the second one of the first three periods is greater than or equal to the predetermined number, the value of the value fluctuation asset is specified for the second one of the first three periods. It is determined that it is a period to which the timing of the ranking value belongs.
 このとき、予測モデルの数が所定数以上である期間が存在しない場合、例えば、複数の期間のうちの後半の期間全体を価値変動アセットの価値が特定の順位の値となる時期が属する期間であると決定して、ステップS603に進むようにしてもよいし、複数の期間のうちの最先の期間を除く期間全体を価値変動アセットの価値が特定の順位の値となる時期が属する期間であると決定して、ステップS603に進むようにしてもよい。これにより、予測モデルによる自信度が低い場合に所定の期間の始めの方の時期を選択することを回避することができ、結果として、リスクとリターンとが見合わない場合を回避することができる。 At this time, when there is no period in which the number of prediction models is equal to or more than a predetermined number, for example, the entire second half period of the plurality of periods is a period to which the time when the value of the value change asset becomes a specific rank value It may be determined that the process proceeds to step S603, or the entire period excluding the first period among the plurality of periods is a period to which the time when the value of the value change asset becomes the value of the specific rank belongs You may decide and proceed to step S603. This makes it possible to avoid selecting the beginning of the predetermined period when the confidence degree by the prediction model is low, and as a result, it is possible to avoid the case where risk and return do not match. .
 4.新しい金融商品を実現するためのコンピュータシステムの代替構成
 図9は、上述した新しい金融商品を実現するためのコンピュータシステム200の代替構成であるコンピュータシステム200’の一例を示す。図9では、図2に示される要素と同一の要素に同じ参照番号を付し、ここでは説明を省略する。コンピュータシステム200’は、所定の期間内で価値変動アセットの価値が特定値となる時期を予測することをユーザ装置100が行い、予測された価値変動アセットの価値が特定値となる時期に価値変動アセットを取引することをサーバ装置210が行う構成である。
4. Alternative Configuration of Computer System for Implementing a New Financial Product FIG. 9 shows an example of a computer system 200 'that is an alternative configuration of computer system 200 for implementing the above-described new financial product. In FIG. 9, the same elements as the elements shown in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted here. The computer system 200 'causes the user device 100 to predict when the value of the value change asset becomes a specific value within a predetermined period, and the value change occurs when the value of the predicted value change asset becomes a specific value. The server apparatus 210 performs the transaction of the asset.
 コンピュータシステム200’は、サーバ装置210と、サーバ装置210に接続されるデータベース部220と、ユーザ装置100とを備える。サーバ装置210と、ユーザ装置100と、アセット取引コンピュータシステム300とは、ネットワーク400を介して、相互に接続される。ここで、ネットワーク400の種類は問わない。ネットワーク400は、例えば、インターネットであってもよいし、LANであってもよい。 The computer system 200 ′ includes a server device 210, a database unit 220 connected to the server device 210, and the user device 100. The server device 210, the user device 100, and the asset transaction computer system 300 are mutually connected via the network 400. Here, the type of the network 400 does not matter. The network 400 may be, for example, the Internet or a LAN.
 ユーザ装置100は、価値変動アセットを積み立てるサービスを利用するユーザ10が使用する端末であり、スマートフォン、タブレット、パーソナルコンピュータ等の任意の端末装置であり得る。ユーザ装置100は、インターフェース部111と、プロセッサ部112と、記憶部113とを備える。 The user device 100 is a terminal used by the user 10 who uses the service of accumulating value change assets, and may be any terminal device such as a smartphone, a tablet, a personal computer and the like. The user device 100 includes an interface unit 111, a processor unit 112, and a storage unit 113.
 インターフェース部111は、ネットワーク400を介した通信を制御するように構成されている。インターフェース部111は、ユーザ装置100の外部に情報を送信することが可能であり、ユーザ装置100の外部から情報を受信することが可能である。例えば、インターフェース部111は、ネットワーク400を介して、所定の期間内で価値変動アセットの価値が最安値となる日の予測をサーバ装置210に送信する。 The interface unit 111 is configured to control communication via the network 400. The interface unit 111 can transmit information to the outside of the user device 100, and can receive information from the outside of the user device 100. For example, the interface unit 111 transmits, via the network 400, to the server apparatus 210, a prediction of a date when the value of the value fluctuation asset is the lowest price in a predetermined period.
 プロセッサ部112は、ユーザ装置100全体の動作を制御する。プロセッサ部112は、記憶部113に格納されているプログラムを読み出し、そのプログラムを実行する。これにより、ユーザ装置100を所望のステップを実行する装置として機能させることが可能である。例えば、プロセッサ部112は、価値変動アセットを積み立てる処理の一部を行うことができる。プロセッサ部112は、単一のプロセッサによって実装されてもよいし、複数のプロセッサによって実装されてもよい。 The processor unit 112 controls the overall operation of the user device 100. The processor unit 112 reads a program stored in the storage unit 113 and executes the program. This enables the user device 100 to function as a device that performs a desired step. For example, the processor unit 112 can perform part of the process of accumulating value change assets. The processor unit 112 may be implemented by a single processor or may be implemented by a plurality of processors.
 記憶部113には、ユーザ装置100における処理を実行するためのプログラムやそのプログラムの実行に必要とされるデータ等が格納されている。記憶部113には、例えば、価値変動アセットの取引を行うためのプログラム、または、価値変動アセットを積み立てるためのプログラム(例えば、前述した図5および図6A~図6Cに示される処理を実現するプログラム)の一部が格納されている。ここで、プログラムをどのようにして記憶部113に格納するかは問わない。例えば、プログラムは、記憶部113にプリインストールされていてもよい。あるいは、プログラムは、ネットワーク400を経由してダウンロードされることによって記憶部113にインストールされるようにしてもよい。記憶部113は、任意の記憶手段によって実装され得る。 The storage unit 113 stores a program for executing a process in the user device 100, data required to execute the program, and the like. In the storage unit 113, for example, a program for trading value-varying assets, or a program for accumulating value-varying assets (for example, a program for realizing the processing shown in FIGS. 5 and 6A to 6C described above) Part of) is stored. Here, it does not matter how the program is stored in the storage unit 113. For example, the program may be preinstalled in the storage unit 113. Alternatively, the program may be installed in the storage unit 113 by being downloaded via the network 400. The storage unit 113 may be implemented by any storage means.
 記憶部113には、例えば、過去の価値変動データも格納され得る。過去の価値変動データは、将来の価値変動を予測するために使用され得る。学習に用いられる過去の価値変動データは、購入用通貨(例えば、日本円)に対する対象のアセットの価値変動データに加えて、他の通貨(例えば、米ドル、豪ドル、ユーロ、NZドル等)に対する対象のアセットの価値変動データ、または、S&P500指数、日経平均株価、ドイツ株価指数、あるいは、WTI原油価格等のデータを含んでもよい。データベース部220には、例えば、学習した価値変動傾向も格納され得る。データベース部220には、学習によって確立された多層パーセプトロン450の各ノードの重みベクトルが格納されるようにしてもよい。 The storage unit 113 may also store, for example, past value fluctuation data. Historical value change data can be used to predict future value changes. Historical value change data used for learning includes value change data for the asset in question against the currency for purchase (for example, Japanese yen), as well as against other currencies (for example, US dollar, Australian dollar, euro, NZ dollar, etc.) It may include value change data of the target asset, or data such as S & P 500 index, Nikkei Stock Average, German stock index or WTI crude oil price. The database unit 220 can also store, for example, learned value fluctuation tendencies. The database 220 may store the weight vector of each node of the multilayer perceptron 450 established by learning.
 特定値予測AIは、上述した構成を有するユーザ装置100によって実現され得る。特定値予測AIは、上述したように、任意の予測モデルを利用して価値変動アセットの価値が最安値となる時期を予測することができる。 The specific value prediction AI may be realized by the user device 100 having the configuration described above. The specific value prediction AI can predict when the value of the value fluctuation asset will be the lowest value using any prediction model, as described above.
 図9に示される例では、ユーザ装置100の各構成要素が1つのユーザ装置100内に設けられているが、本発明はこれに限定されない。ユーザ装置100の各構成要素のいずれかがユーザ装置100の外部に設けられることも可能である。例えば、プロセッサ部112、記憶部113のそれぞれが別々のハードウェア部品で構成されている場合には、各ハードウェア部品が任意のネットワークを介して接続されてもよい。このとき、ネットワークの種類は問わない。各ハードウェア部品は、例えば、LANを介して接続されてもよいし、無線接続されてもよいし、有線接続されてもよい。 In the example shown in FIG. 9, each component of the user apparatus 100 is provided in one user apparatus 100, but the present invention is not limited to this. It is also possible that any of the components of the user device 100 is provided outside the user device 100. For example, when each of the processor unit 112 and the storage unit 113 is configured by different hardware components, each hardware component may be connected via an arbitrary network. At this time, the type of network does not matter. Each hardware component may be connected via, for example, a LAN, may be wirelessly connected, or may be wired.
 コンピュータシステム200’における処理は、コンピュータシステム200における処理500と同様である。ただし、ステップS501の処理を、ユーザ装置100によって実現される特定値予測AIが行い、ステップS502の処理を、サーバ装置210のプロセッサ部212が行う点で、コンピュータシステム200における処理500と異なっている。 Processing in computer system 200 ′ is similar to processing 500 in computer system 200. However, the processing of step S501 is different from the processing 500 of the computer system 200 in that the specific value prediction AI realized by the user device 100 performs the processing of step S501 and the processor unit 212 of the server device 210 performs the processing of step S502. .
 上述した例では、価値変動アセットの価値が最安値となる日を予測することを説明したが、本発明は、「日」よりも短い時間単位(例えば、時、分、秒等)を予測すること、または「日」よりも長い時間単位(例えば、週、月等)を予測することも本発明の範囲内である。例えば、毎日価値変動アセットを積み立てる場合に、コンピュータシステム200または200’は、図5および図6A~図6Cを参照して上述した処理と同様の処理によって、1日のうちで価値変動アセットの価値が最安値となる時を予測し、予測された価値変動アセットの価値が最安値となる時に価値変動アセットを購入することを行うことができる。ここで、価値変動アセットの価値が最安値となる時は、任意の時間の単位であり得る。価値変動アセットの価値が最安値となる時は、例えば、秒単位であってもよいし、分単位であってもよいし、時間単位であってもよい。 Although the example described above describes predicting the day when the value of the value fluctuation asset is the lowest, the present invention predicts a unit of time (e.g., hour, minute, second, etc.) shorter than "day". It is also within the scope of the present invention to predict time units (eg, weeks, months etc.) longer than "days". For example, when accumulating value change assets daily, the computer system 200 or 200 ′ performs processing similar to that described above with reference to FIG. 5 and FIGS. It is possible to predict when is the lowest price and to purchase value-changing assets when the value of the predicted value-changing asset becomes the lowest. Here, when the value of the value fluctuation asset is the lowest, it may be an arbitrary unit of time. When the value of the value fluctuation asset is the lowest price, it may be, for example, in seconds, minutes, or hours.
 本発明は、上述した実施形態に限定されるものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。 The present invention is not limited to the embodiments described above. It is understood that the scope of the present invention should be interpreted only by the claims. It is understood that those skilled in the art can implement the equivalent scope based on the description of the present invention and common technical knowledge, from the description of the specific preferred embodiments of the present invention.
 本発明は、時間の経過につれて価値が不規則に変動するアセットの価値の、所定の期間における最高値もしくは最安値(つまり、極大値もしくは極小値)または特定の順位の値(例えば、2番目に安い値、10番目に高い値等)等の特定値となる時期を予測することを可能にするコンピュータシステム、方法、およびプログラムを提供するものとして有用である。さらに、本発明は、特定値となる時期の予測に基づいて、当該アセットを周期的または継続的に購入または積み立てることによって、当該アセットの評価額を大きくすることを可能にするコンピュータシステム、方法、および、プログラムを提供するものとして有用である。 The present invention determines the value of an asset whose value fluctuates with time over time, such as the highest or lowest price (ie, maximum or minimum) or a particular rank value (eg, second) The present invention is useful as providing a computer system, method, and program that make it possible to predict when to be a specific value such as a cheap value, a tenth highest value, etc.). Furthermore, the present invention makes it possible to increase the evaluation value of an asset by periodically or continuously purchasing or accumulating the asset based on the prediction of when it becomes a specific value. And it is useful as what provides a program.
 10 ユーザ
 20 銀行
 30 外国為替市場
 100 ユーザ装置
 200、200’ コンピュータシステム
 210 サーバ装置
 220 データベース部
 300 アセット取引コンピュータシステム
 400 ネットワーク
Reference Signs List 10 user 20 bank 30 forex market 100 user device 200, 200 'computer system 210 server device 220 database unit 300 asset trading computer system 400 network

Claims (19)

  1.  所定の期間内で前記外国通貨の価値が特定の順位の安値となる時期を予測することと、
     前記予測された時期に前記外国通貨を購入することと
     を行うように構成されているコンピュータシステム。
    Predicting when the value of the foreign currency will be a low in a particular rank within a predetermined time period;
    A computer system configured to: purchase the foreign currency at the predicted time.
  2.  前記予測することは、
     前記所定の期間を複数の期間に分割することと、
     前記分割後の複数の期間のうち、前記外国通貨の価値が特定の順位の安値となる時期が属する期間を判定することと
     を含む、請求項1に記載のコンピュータシステム。
    Said predicting is
    Dividing the predetermined period into a plurality of periods;
    The computer system according to claim 1, further comprising: determining a period to which a time when the value of the foreign currency is a specific low price belongs, out of the plurality of divided periods.
  3.  前記予測することは、
      (1)前記外国通貨の価値が特定の順位の安値となる時期が属すると判定された期間をさらに複数の期間に分割することと、
      (2)前記分割後の複数の期間のうち、前記外国通貨の価値が特定の順位の安値となる時期が属する期間を判定することと
     を、前記外国通貨の価値が特定の順位の安値となる時期が属すると判定された期間が、前記外国通貨の価値が特定の順位の安値となる時期と同じ長さとなるまで繰り返すことと
     をさらに含む、請求項2に記載のコンピュータシステム。
    Said predicting is
    (1) further dividing the period in which it is determined that the time when the value of the foreign currency is the low price of a specific rank belongs to a plurality of periods,
    (2) Of the plurality of periods after the division, determining the period to which the time when the value of the foreign currency is a specific low price belongs, and the value of the foreign currency is a low price of a specific order The computer system according to claim 2, further comprising: repeating a period in which it is determined that the period belongs to the same length as a period in which the value of the foreign currency becomes a specific rank low.
  4.  前記判定することは、前記分割された複数の期間のうち、前記外国通貨の価値の平均値が低い期間を判定することを含む、請求項2または請求項3に記載のコンピュータシステム。 The computer system according to claim 2 or 3, wherein the determination includes determining a period in which the average value of the value of the foreign currency is low among the plurality of divided periods.
  5.  前記判定することは、
      複数の予測モデルのそれぞれを用いて、前記分割後の複数の期間のうち、前記外国通貨の価値が特定の順位の安値となる時期が属する期間を判定することと、
      前記分割後の複数の期間のうち、より多くの予測モデルによって前記外国通貨の価値が特定の順位の安値となる時期が属する期間であると判定された期間を、前記外国通貨の価値が特定の順位の安値となる時期が属する期間であると決定することと
     を含む、請求項2~4のいずれか一項に記載のコンピュータシステム。
    The above determination is
    Determining, using each of a plurality of prediction models, a period to which a time when the value of the foreign currency becomes a low price of a specific rank among the plurality of periods after the division;
    Among the multiple periods after the division, the value of the foreign currency is determined by a period determined by more prediction models to be the period to which the time when the value of the foreign currency becomes a low in a specific rank belongs. The computer system according to any one of claims 2 to 4, comprising determining that the time when the ranking is low belongs to a period to which it belongs.
  6.  前記判定することは、
      複数の予測モデルのそれぞれを用いて、前記分割後の複数の期間のうち、前記外国通貨の価値が特定の順位の安値となる時期が属する期間を判定することと、
      前記分割後の複数の期間のうちの前半の期間のそれぞれについて、その期間が前記外国通貨の価値が特定の順位の安値となる時期が属する期間であると判定した予測モデルの数を決定することと、
      前記予測モデルの数が所定数以上である期間を前記外国通貨の価値が特定の順位の安値となる時期が属する期間であると決定することと
     を含む、請求項2~4のいずれか一項に記載のコンピュータシステム。
    The above determination is
    Determining, using each of a plurality of prediction models, a period to which a time when the value of the foreign currency becomes a low price of a specific rank among the plurality of periods after the division;
    Determining, for each of the first half of the plurality of divided periods, the number of prediction models that are determined to be periods to which the time when the value of the foreign currency is a specific low price belongs; When,
    The method according to any one of claims 2 to 4, comprising: determining a period in which the number of the prediction models is equal to or more than a predetermined number as a period to which a time when the value of the foreign currency becomes a specific low price belongs. Computer system as described in.
  7.  前記判定することは、前記所定の期間全体に対する前記分割後の期間の相対位置に応じて、前記所定数を変化させることをさらに含む、請求項6に記載のコンピュータシステム。 The computer system according to claim 6, wherein the determination further includes changing the predetermined number in accordance with a relative position of the divided period with respect to the entire predetermined period.
  8.  前記複数の期間は、2つの期間である、請求項2~7のいずれか一項に記載のコンピュータシステム。 The computer system according to any one of claims 2 to 7, wherein the plurality of time periods is two time periods.
  9.  前記予測することは、前記所定の期間の始点から所定の抑制期間内の時期を前記外国通貨の価値が特定の順位の安値となる時期として予測することを抑制することを含む、請求項1~8のいずれか一項に記載のコンピュータシステム。 4. The method according to claim 1, wherein the predicting includes suppressing prediction of a period within a predetermined suppression period from a start point of the predetermined period as a period when the value of the foreign currency is a low in a specific rank. 8. The computer system according to any one of 8.
  10.  前記予測することと、前記購入することとは、繰り返し行われる、請求項1~9のいずれか一項に記載のコンピュータシステム。 The computer system according to any one of claims 1 to 9, wherein the predicting and the purchasing are performed repeatedly.
  11.  前記購入することは、前記予測された前記外国通貨の価値が特定の順位の安値となる時期に前記外国通貨を購入することに対するユーザの入力操作なしに、自動的に行われる、請求項1~10のいずれか一項に記載のコンピュータシステム。 The method according to claim 1, wherein the purchasing is automatically performed without a user's input operation for purchasing the foreign currency at a time when the predicted value of the foreign currency becomes a low in a specific rank. 10. A computer system according to any one of 10.
  12.  前記特定の順位の安値は、最安値である、請求項1~11のいずれか一項に記載のコンピュータシステム。 The computer system according to any one of claims 1 to 11, wherein the low price in the specific rank is the lowest price.
  13.  前記特定の順位の安値は、n番目に安い値である(nは2以上の整数)、請求項1~11のいずれか一項に記載のコンピュータシステム。 The computer system according to any one of claims 1 to 11, wherein the low price of the specific rank is the n-th lowest value (n is an integer of 2 or more).
  14.  コンピュータシステムにおいて実行される方法であって、前記方法は、
     所定の期間内で前記外国通貨の価値が特定の順位の安値となる時期を予測することと、
     前記予測された時期に前記外国通貨を購入することと
     を行うことを含む、方法。
    A method implemented in a computer system, said method comprising
    Predicting when the value of the foreign currency will be a low in a particular rank within a predetermined time period;
    And C. purchasing the foreign currency at the predicted time.
  15.  コンピュータシステムにおいて実行されるプログラムであって、前記プログラムは、コンピュータシステムにおいて実行されると、
     所定の期間内で前記外国通貨の価値が特定の順位の安値となる時期を予測することと、
     前記予測された時期に前記外国通貨を購入することと
     を行うことを含む処理を前記コンピュータシステムに行わせる、プログラム。
    A program executed on a computer system, said program being executed on a computer system
    Predicting when the value of the foreign currency will be a low in a particular rank within a predetermined time period;
    A program for causing the computer system to perform processing including: purchasing the foreign currency at the predicted time.
  16.  時間の経過につれて価値が変動する外国通貨の過去の価値変動に基づいて、所定の期間内で前記外国通貨の価値が特定の順位の値となる時期を予測するように構成されているコンピュータシステム。 A computer system configured to predict when the value of the foreign currency will be a particular rank value within a predetermined period of time based on past value fluctuations of the foreign currency whose value changes as time passes.
  17.  前記予測された時期に前記外国通貨の取引リクエストを発行することをさらに行うように構成されている、請求項16に記載のコンピュータシステム。 The computer system according to claim 16, further configured to issue the foreign currency transaction request at the predicted time.
  18.  コンピュータシステムにおいて実行されるプログラムであって、前記プログラムは、実行されると、
     時間の経過につれて価値が変動する外国通貨の過去の価値変動に基づいて、所定の期間内で前記外国通貨の価値が特定の順位の値となる時期を予測すること
     を含む処理を前記コンピュータシステムに行わせる、プログラム。
    A program executed on a computer system, said program being executed when:
    Processing the computer system including processing of predicting when the value of the foreign currency will be a value of a specific rank within a predetermined period based on the past value change of the foreign currency whose value changes as time passes. The program to be done.
  19.  前記処理は、
     前記予測された時期に前記外国通貨の取引リクエストを発行すること
     をさらに含む、請求項18に記載のプログラム。
    The process is
    The program according to claim 18, further comprising: issuing the foreign currency transaction request at the predicted time.
PCT/JP2018/016279 2017-07-20 2018-04-20 Computer system, method and program for accumulating asset having value which fluctuates over time WO2019017032A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG11202000540UA SG11202000540UA (en) 2017-07-20 2018-04-20 Computer system, method and program for accumulating asset having value which fluctuates over time

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017141156 2017-07-20
JP2017-141156 2017-07-20
JP2018-075713 2018-04-10
JP2018075713A JP6381844B1 (en) 2017-07-20 2018-04-10 Computer system, method, and program for accumulating assets whose value varies over time

Publications (1)

Publication Number Publication Date
WO2019017032A1 true WO2019017032A1 (en) 2019-01-24

Family

ID=63354862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016279 WO2019017032A1 (en) 2017-07-20 2018-04-20 Computer system, method and program for accumulating asset having value which fluctuates over time

Country Status (3)

Country Link
JP (2) JP6381844B1 (en)
SG (1) SG11202000540UA (en)
WO (1) WO2019017032A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6997274B1 (en) 2020-09-29 2022-02-14 楽天グループ株式会社 Information processing equipment, methods and programs
JP7556909B2 (en) * 2022-03-18 2024-09-26 Lineヤフー株式会社 Providing device, providing method, and providing program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015084163A (en) * 2013-10-25 2015-04-30 ソニーフィナンシャルホールディングス株式会社 Reserve control device, reserve control method and program

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015084163A (en) * 2013-10-25 2015-04-30 ソニーフィナンシャルホールディングス株式会社 Reserve control device, reserve control method and program

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Document 1 : revolutionary products that will change your tomorrow.", IOT TOP TECH TRENDS 2017, vol. 417, 4 May 2017 (2017-05-04), pages 55 - 58 *
IEICE TECHNICAL REPORT, vol. 1 0 5, no. 4 18, 11 November 2005 (2005-11-11), pages 13 - 18 *
TAKAHASHI, T. ET AL.: "Evaluation of error prone prediction method by using majority rule", IEICE TECHNICAL REPORT, vol. 112, no. 164, 20 July 2012 (2012-07-20), pages 25 - 30 *

Also Published As

Publication number Publication date
JP6381844B1 (en) 2018-08-29
JP2019021320A (en) 2019-02-07
SG11202000540UA (en) 2020-02-27
JP2019021298A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
US20230214927A1 (en) System and method for processing composite trading orders
US20190156418A1 (en) System and method for processing composite trading orders at a client
Clegg et al. Pairs trading with partial cointegration
JP2023171598A (en) System for optimizing security trade execution
JP2011503675A (en) Method and apparatus for communication network shopping
US20140258175A1 (en) Generating Personalized Investment Recommendations
US20210182300A1 (en) Broker chat bot
KR20160028701A (en) System for selecting stock using buying and selling index
JP6381844B1 (en) Computer system, method, and program for accumulating assets whose value varies over time
Lescourret Cold Case File? Inventory Risk and Information Sharing during the pre‐1997 NASDAQ
AU2011221406B2 (en) System and method for processing composite trading orders at a client
Boer-Sorban et al. On the design of artificial stock markets
Kyriacou Foreign exchange market microstructure and forecasting
Staines Myopic and Dynamic Approaches to Portfolio Optimization
US20130262282A1 (en) Multi-level automated hedging process with volatility evaluation tool
AU2016266008A1 (en) System and method for processing composite trading orders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835971

Country of ref document: EP

Kind code of ref document: A1