[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019012699A1 - Work machine and control method for work machine - Google Patents

Work machine and control method for work machine Download PDF

Info

Publication number
WO2019012699A1
WO2019012699A1 PCT/JP2017/025778 JP2017025778W WO2019012699A1 WO 2019012699 A1 WO2019012699 A1 WO 2019012699A1 JP 2017025778 W JP2017025778 W JP 2017025778W WO 2019012699 A1 WO2019012699 A1 WO 2019012699A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
speed
target
work machine
control
Prior art date
Application number
PCT/JP2017/025778
Other languages
French (fr)
Japanese (ja)
Inventor
徹 松山
歩 大熊
健夫 山田
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to KR1020187004640A priority Critical patent/KR102088784B1/en
Priority to DE112017000085.8T priority patent/DE112017000085T5/en
Priority to PCT/JP2017/025778 priority patent/WO2019012699A1/en
Priority to US15/756,656 priority patent/US20190078289A1/en
Priority to JP2017560641A priority patent/JP6901406B2/en
Priority to CN201780002863.4A priority patent/CN109511268A/en
Publication of WO2019012699A1 publication Critical patent/WO2019012699A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2037Coordinating the movements of the implement and of the frame
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes

Definitions

  • the present invention relates to a working machine provided with a working machine and a control method of the working machine.
  • control for moving a bucket along a boundary surface indicating a target shape to be constructed has been proposed (see, for example, Patent Document 1). Such control is called intervention control.
  • intervention control for example, when there is no target shape to be constructed, or when the work machine does not erode the target shape by the operation of the operator, it is not necessary to execute the intervention control. It is not necessary to carry out the control for raising the working machine so that the working machine does not erode the target shape.
  • the present disclosure has been made to solve the above-described problems, and it is an object of the present disclosure to provide a work machine and a control method of the work machine capable of suppressing the discomfort of the operator's operation of the operation device. .
  • a work machine includes a work machine, an operating device that operates the work machine, and a controller that controls the work machine.
  • the controller executes intervention control to raise the working machine based on the operation command from the operation device, determines switching from the intervention control to control of the work machine according to the operation command of the operation device, and operates in switching based on the determination result It is determined whether the operation command of the device is the lifting of the work machine or the neutral command, and if the operation command of the operating device is the lifting of the work machine or the neutral command based on the determination result, intervention control is performed.
  • the controller switches the intervention control unit that executes intervention control to raise the working machine based on the operation command from the operation device, and switching to determine switching from the intervention control to control of the work machine according to the operation command of the operation device
  • a determination unit an operation command determination unit that determines whether or not an operation command of the operation device is the lifting of the work machine or a neutral command in switching based on the determination result of the switching determination unit, and a determination result of the operation command determination unit
  • the speed difference between the target speed of the work machine as a target for the intervention control and the target speed according to the operation command of the operation device If the speed difference is equal to or greater than the predetermined value based on the judgment result of the judgment unit and the speed difference judgment unit, the rising target speed of the working machine gradually changes to the target speed according to the operation command of the operating device.
  • a and a speed adjustment unit configured to adjust.
  • the controller switches the elevation target speed of the work implement to the target speed according to the operation command of the operating device.
  • a control method of a working machine is a control method of a working machine including a working machine and an operating device for operating the working machine, wherein the intervention control raises the working machine based on an operation command from the operating device.
  • the step of executing the step, the step of determining the switching from the intervention control to the control of the working machine according to the operating command of the operating device, and the switching of the operating device in the switching based on the determination result is the lifting of the working machine or the neutral command
  • the operation command of the operating device based on the determination result is the lifting of the work machine or the neutral command
  • the target target speed of increase of the working machine by the intervention control and the operation command of the operating device In the step of determining the speed difference from the target speed according to the above, if the speed difference is greater than or equal to the predetermined value, the rising target speed of the working machine is gradually changed to the target speed according to the operation command And a step of adjusting to.
  • the work machine and the control method of the work machine can suppress the sense of discomfort of the operation of the operating device by the operator.
  • FIG. 1 is a block diagram showing a configuration of a control system 200 and a hydraulic system 300 of a hydraulic shovel 100 based on an embodiment. It is a figure showing an example of hydraulic circuit 301 of boom cylinder 10 based on an embodiment. It is a block diagram of work machine controller 26 based on an embodiment. It is a figure showing target excavation topography data U and bucket 8 based on an embodiment. It is a figure for explaining boom limit speed Vcy_bm based on an embodiment. It is a figure for demonstrating speed limit Vc_lmt based on an embodiment. It is a figure which shows the relationship between the bucket 8 based on embodiment, and the target excavation landform 43I. It is a figure which shows the relationship between the boom target speed Vbm which is the speed in which the boom 6 based on embodiment operates, and the time t. It is a figure explaining the flow which shows the control method of the working machine based on an embodiment.
  • FIG. 1 is a perspective view of a working machine based on the embodiment.
  • FIG. 2 is a block diagram showing configurations of a control system 200 and a hydraulic system 300 of the hydraulic shovel 100 based on the embodiment.
  • a hydraulic shovel 100 which is a working machine has a vehicle body 1 and a working machine 2.
  • the vehicle body 1 has an upper revolving unit 3 which is a revolving unit and a traveling device 5 as a traveling unit.
  • the upper revolving superstructure 3 accommodates devices such as an internal combustion engine and a hydraulic pump as a power generation device inside the engine chamber 3EG.
  • the engine room 3EG is disposed on one end side of the upper swing body 3.
  • the hydraulic shovel 100 uses, for example, a diesel engine or the like for an internal combustion engine as a power generation device, the power generation device is not limited to this.
  • the power generation device of the hydraulic shovel 100 may be, for example, a hybrid device in which an internal combustion engine, a generator motor and a storage device are combined.
  • the power generation device of the hydraulic shovel 100 may not have an internal combustion engine, and may combine a power storage device and a generator motor.
  • the upper swing body 3 has a driver's cab 4.
  • the operator's cab 4 is installed on the other end side of the upper swing body 3.
  • the operator's cab 4 is installed on the opposite side to the side where the engine room 3EG is disposed.
  • a display unit 29 and an operating device 25 shown in FIG. 2 are arranged.
  • the traveling device 5 supports the upper swing body 3.
  • the traveling device 5 has crawler belts 5a and 5b.
  • the traveling device 5 causes the hydraulic shovel 100 to travel by causing one or both of the traveling motors 5c provided on the left and right to drive and rotate the crawler belts 5a and 5b.
  • the work implement 2 is attached to the side of the cab 4 of the upper swing body 3.
  • the hydraulic shovel 100 may include a tire instead of the crawler belts 5a and 5b, and may include a traveling device capable of traveling by transmitting the driving force of the engine to the tire via a transmission.
  • a hydraulic shovel 100 of such a form there exists a wheel type hydraulic shovel, for example.
  • the hydraulic shovel 100 may be, for example, a backhoe loader.
  • the side where the working machine 2 and the cab 4 are disposed is the front, and the side where the engine room 3EG is disposed is the rear.
  • the left side toward the front is the left of the upper swing body 3, and the right side toward the front is the right of the upper swing body 3.
  • the left and right direction of the upper swing body 3 is also referred to as a width direction.
  • the traveling device 5 side of the hydraulic shovel 100 or the vehicle body 1 is below with reference to the upper swing body 3, and the upper swing body 3 is above with respect to the traveling device 5.
  • the longitudinal direction of the hydraulic shovel 100 is the x direction, the width direction is the y direction, and the vertical direction is the z direction.
  • the lower side is the action direction side of gravity which is the vertical direction
  • the upper side is the opposite side to the vertical direction.
  • the work machine 2 has a boom 6, an arm 7, a bucket 8 which is a work tool, a boom cylinder 10, an arm cylinder 11 and a bucket cylinder 12.
  • the base end of the boom 6 is attached to the front of the vehicle body 1 via a boom pin 13.
  • the proximal end of the arm 7 is attached to the distal end of the boom 6 via an arm pin 14.
  • the bucket 8 is attached to the tip of the arm 7 via a bucket pin 15.
  • the bucket 8 moves around the bucket pin 15.
  • the bucket 8 has a plurality of blades 8 B attached to the side opposite to the bucket pin 15.
  • the blade tip 8T is the tip of the blade 8B.
  • that the work implement 2 is raised means an operation in which the work implement 2 moves in a direction from the ground contact surface of the hydraulic shovel 100 toward the upper swing body 3.
  • the descent of the work implement 2 means an operation of the work implement 2 moving in a direction from the upper swing body 3 of the hydraulic shovel 100 toward the ground contact surface.
  • the ground contact surface of the hydraulic shovel 100 is a plane defined by at least three points in the contact portion of the crawler belts 5a and 5b.
  • raising of the working machine 2 means an operation of moving the working machine 2 in a direction away from the ground contact surface of the working machine.
  • the descent of the work implement 2 means an operation of moving the work implement 2 in a direction approaching the ground contact surface of the work machine.
  • the ground plane is the plane defined by the part where at least three wheels touch.
  • the bucket 8 may not have a plurality of blades 8B. It may be a bucket which does not have a blade 8B as shown in FIG. 1 and whose cutting edge is formed in a straight shape by a steel plate.
  • the work implement 2 may include, for example, a tilt bucket having a single blade.
  • a tilt bucket is equipped with a bucket tilt cylinder. By tilting the bucket to the left and right, even if the hydraulic shovel is on a slope, the slope and flat ground can be shaped and ground freely, and the bottom plate turns It is a bucket that can be pressed.
  • the working machine 2 may be provided with a drilling bucket attachment or the like provided with a slope bucket or a rock drilling tip as a working tool.
  • the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 shown in FIG. 1 are hydraulic cylinders driven by the pressure of the hydraulic fluid (hereinafter referred to as "hydraulic" as appropriate).
  • the boom cylinder 10 drives the boom 6 to raise and lower it.
  • the arm cylinder 11 drives the arm 7 to move around the arm pin 14.
  • the bucket cylinder 12 drives the bucket 8 to operate around the bucket pin 15.
  • a direction control valve 64 shown in FIG. 2 is provided between the hydraulic cylinders such as the boom cylinder 10, the arm cylinder 11 and the bucket cylinder 12 and the hydraulic pumps 36 and 37 shown in FIG.
  • the direction control valve 64 controls the flow rate of the hydraulic oil supplied from the hydraulic pumps 36 and 37 to the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12 and the like, and switches the flow direction of the hydraulic oil.
  • the direction control valve 64 is a traveling direction control valve for driving the traveling motor 5c, and a working machine for controlling the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12, and the swing motor for swinging the upper swing body 3. And a directional control valve.
  • the work implement controller 26 shown in FIG. 2 controls the control valve 27 shown in FIG. 2 to control the pilot pressure of the hydraulic fluid supplied from the operating device 25 to the direction control valve 64.
  • the control valve 27 is provided in the hydraulic system of the boom cylinder 10, the arm cylinder 11 and the bucket cylinder 12.
  • the work machine controller 26 can control the operation of the boom cylinder 10, the arm cylinder 11 and the bucket cylinder 12 by controlling the control valve 27 provided in the pilot oil passage 450.
  • the work implement controller 26 can control the speed of the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 to be reduced by closing the control valve 27.
  • the antennas 21 and 22 are attached to the upper portion of the upper swing body 3.
  • the antennas 21 and 22 are used to detect the current position of the hydraulic shovel 100.
  • the antennas 21 and 22 are electrically connected to a position detection device 19 shown in FIG. 2 which is a position detection unit for detecting the current position of the hydraulic shovel 100.
  • the position detection device 19 detects the current position of the hydraulic shovel 100 using RTK-GNSS (Real Time Kinematic-Global Navigation Satellite Systems, GNSS means Global Navigation Satellite System).
  • RTK-GNSS Real Time Kinematic-Global Navigation Satellite Systems
  • GNSS Global Navigation Satellite System
  • the antennas 21 and 22 will be appropriately referred to as GNSS antennas 21 and 22, respectively.
  • a signal corresponding to the GNSS radio wave received by the GNSS antennas 21 and 22 is input to the position detection device 19.
  • the position detection device 19 detects the installation positions of the GNSS antennas 21 and 22.
  • the position detection device 19 includes, for example, a three-dimensional position sensor.
  • the hydraulic system 300 of the hydraulic shovel 100 includes an internal combustion engine 35 and hydraulic pumps 36 and 37 as power generation sources.
  • the hydraulic pumps 36 and 37 are driven by the internal combustion engine 35 and discharge hydraulic fluid.
  • the hydraulic fluid discharged from the hydraulic pumps 36 and 37 is supplied to the boom cylinder 10, the arm cylinder 11 and the bucket cylinder 12.
  • the hydraulic shovel 100 is provided with a swing motor 38.
  • the swing motor 38 is a hydraulic motor, and is driven by hydraulic fluid discharged from the hydraulic pumps 36 and 37.
  • the swing motor 38 swings the upper swing body 3. Although two hydraulic pumps 36 and 37 are illustrated in FIG. 2, only one hydraulic pump may be provided.
  • the swing motor 38 is not limited to a hydraulic motor, and may be an electric motor.
  • a control system 200 which is a control system of a work machine is a work which is a control device of a work machine according to an embodiment, a position detection device 19, a global coordinate operation unit 23, an operation device 25.
  • a machine controller 26, a sensor controller 39, a display controller 28, and a display unit 29 are included.
  • the operating device 25 is a device for operating the work implement 2 and the upper swing body 3 shown in FIG.
  • the operating device 25 is a device for operating the work machine 2.
  • Operation device 25 receives an operation by an operator for driving work machine 2 and outputs a pilot hydraulic pressure according to the amount of operation.
  • the pilot hydraulic pressure corresponding to the operation amount is an operation command.
  • the operation command is a command for operating the work machine 2.
  • the operation command is generated by the operating device 25. Since the operation device 25 is operated by the operator, the operation command is a command for operating the work machine 2 by the operation of the operator which is a manual operation.
  • Control of the working machine 2 by manual operation is control of the working machine 2 in accordance with an operation command from the operating device 25. It is control of the working machine 2 by operating the operating device 25 of the working machine 2.
  • the operating device 25 has a left operating lever 25L installed on the left side of the operator and a right operating lever 25R located on the right side of the operator.
  • the left control lever 25L and the right control lever 25R correspond to the operation of the arm 7 and the two axes of turning in the front, rear, left and right operation.
  • the operation in the front-rear direction of the right control lever 25R corresponds to the operation of the boom 6.
  • the boom 6 is lowered, and when operated rightward, the boom 6 is raised.
  • the operation of raising and lowering the boom 6 is executed according to the operation of the right control lever 25R in the front-rear direction.
  • the operation of the right control lever 25R in the left-right direction corresponds to the operation of the bucket 8.
  • the bucket 8 When the right control lever 25R is operated to the left, the bucket 8 is excavated, and when operated to the right, the bucket 8 is dumped.
  • the digging or dumping operation of the bucket 8 is performed according to the operation of the right control lever 25R in the left-right direction.
  • the operation of the left control lever 25L in the front-rear direction corresponds to the operation of the arm 7.
  • the arm 7 dumps, and when operated rearward, the arm 7 excavates.
  • the operation in the left-right direction of the left operation lever 25L corresponds to the operation of turning the upper swing body 3.
  • the left control lever 25L When the left control lever 25L is operated to the left, it turns left, and when it is operated right, it turns right.
  • a pilot hydraulic system is used for the operating device 25.
  • a hydraulic oil whose pressure is reduced to a predetermined pilot pressure by the pressure reducing valve 25V is supplied from the hydraulic pump 36 to the controller 25 based on the boom operation, the bucket operation, the arm operation, and the turning operation.
  • the pilot hydraulic pressure can be supplied to the pilot oil passage 450 according to the operation of the right control lever 25R in the front-rear direction, and the operator's operation of the boom 6 is accepted.
  • the valve device provided in the right control lever 25R is opened in accordance with the amount of operation of the right control lever 25R, and the hydraulic oil is supplied to the pilot oil passage 450.
  • the pressure sensor 66 detects the pressure of the hydraulic oil in the pilot oil passage 450 as a pilot pressure.
  • the pressure sensor 66 transmits the detected pilot pressure to the work machine controller 26 as the boom operation amount MB.
  • the operation amount of the right control lever 25R in the front-rear direction is appropriately referred to as a boom operation amount MB.
  • the pilot oil passage 50 is provided with a control valve (hereinafter appropriately referred to as an intervention valve) 27C and a shuttle valve 51.
  • the intervention valve 27C and the shuttle valve 51 will be described later.
  • the pilot oil pressure can be supplied to the pilot oil passage 450, and the operation of the bucket 8 by the operator is accepted.
  • the valve device provided in the right control lever 25R is opened in accordance with the amount of operation of the right control lever 25R, and the hydraulic oil is supplied to the pilot oil passage 450.
  • the pressure sensor 66 detects the pressure of the hydraulic oil in the pilot oil passage 450 as a pilot pressure.
  • the pressure sensor 66 transmits the detected pilot pressure to the work unit controller 26 as a bucket operation amount MT.
  • the operation amount of the right control lever 25R in the left-right direction is appropriately referred to as a bucket operation amount MT.
  • the pilot hydraulic pressure can be supplied to the pilot oil passage 450 according to the operation of the left control lever 25L in the front-rear direction, and the operation of the arm 7 by the operator is accepted.
  • the valve device provided in the left control lever 25L is opened according to the amount of operation of the left control lever 25L, and the hydraulic oil is supplied to the pilot oil passage 450.
  • the pressure sensor 66 detects the pressure of the hydraulic oil in the pilot oil passage 450 as a pilot pressure.
  • the pressure sensor 66 transmits the detected pilot pressure to the work unit controller 26 as an arm operation amount MA.
  • the operation amount of the left control lever 25L in the front-rear direction is appropriately referred to as an arm operation amount MA.
  • the operating device 25 supplies a pilot hydraulic pressure having a magnitude corresponding to the amount of operation of the right operating lever 25R to the direction control valve 64 by operating the right operating lever 25R.
  • the operating device 25 supplies a pilot hydraulic pressure having a magnitude corresponding to the amount of operation of the left operating lever 25L to the direction control valve 64 by operating the left operating lever 25L.
  • the pilot control hydraulic pressure supplied from the controller 25 to the directional control valve 64 operates the directional control valve 64.
  • the control system 200 includes a first stroke sensor 16, a second stroke sensor 17, and a third stroke sensor 18.
  • the first stroke sensor 16 is provided to the boom cylinder 10
  • the second stroke sensor 17 is provided to the arm cylinder 11
  • the third stroke sensor 18 is provided to the bucket cylinder 12.
  • the sensor controller 39 has a storage unit such as a random access memory (RAM) and a read only memory (ROM), and a processing unit such as a central processing unit (CPU).
  • a storage unit such as a random access memory (RAM) and a read only memory (ROM)
  • ROM read only memory
  • CPU central processing unit
  • the sensor controller 39 is a direction (z-axis) orthogonal to a horizontal coordinate system (xy plane) in the local coordinate system of the hydraulic shovel 100, more specifically, in the local coordinate system of the vehicle body 1, from the boom cylinder length LS1 detected by the first stroke sensor 16.
  • the tilt angle ⁇ 1 of the boom 6 with respect to the direction is calculated and output to the work machine controller 26 and the display controller 28.
  • the sensor controller 39 calculates an inclination angle ⁇ 2 of the arm 7 with respect to the boom 6 from the arm cylinder length LS2 detected by the second stroke sensor 17 and outputs the inclination angle ⁇ 2 to the work machine controller 26 and the display controller 28.
  • the sensor controller 39 calculates the inclination angle ⁇ 3 of the cutting edge 8T of the blade 8 of the bucket 8 with respect to the arm 7 from the bucket cylinder length LS3 detected by the third stroke sensor 18, and outputs it to the work machine controller 26 and the display controller 28. Do.
  • the detection of the inclination angles ⁇ 1, ⁇ 2, ⁇ 3 can be performed by means other than the first stroke sensor 16, the second stroke sensor 17, and the third stroke sensor 18.
  • an angle sensor such as a potentiometer can also detect the inclination angles ⁇ 1, ⁇ 2, and ⁇ 3.
  • the sensor controller 39 is connected to an IMU (Inertial Measurement Unit: inertial measurement device) 24.
  • the IMU 24 acquires inclination information of the vehicle body such as a pitch around the y axis, a roll around the x axis, etc., of the hydraulic shovel 100 shown in FIG.
  • the work machine controller 26 includes a storage unit 26Q such as a RAM and a ROM (Read Only Memory), and a processing unit 26P such as a CPU.
  • a storage unit 26Q such as a RAM and a ROM (Read Only Memory)
  • a processing unit 26P such as a CPU.
  • the work machine controller 26 controls the intervention valve 27C and the control valve 27 based on the boom operation amount MB, the bucket operation amount MT, and the arm operation amount MA shown in FIG.
  • the direction control valve 64 shown in FIG. 2 is, for example, a proportional control valve, and is controlled by the hydraulic oil supplied from the controller 25.
  • the direction control valve 64 is disposed between the hydraulic pumps 36 and 37 and hydraulic actuators such as the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12 and the swing motor 38.
  • the direction control valve 64 controls the flow rate and direction of hydraulic fluid supplied from the hydraulic pumps 36 and 37 to the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12 and the swing motor 38.
  • the position detection device 19 included in the control system 200 includes the GNSS antennas 21 and 22 described above.
  • a signal corresponding to the GNSS radio wave received by the GNSS antennas 21 and 22 is input to the global coordinate operation unit 23.
  • the GNSS antenna 21 receives reference position data P1 indicating its position from the positioning satellites.
  • the GNSS antenna 22 receives reference position data P2 indicating its position from the positioning satellites.
  • the GNSS antennas 21 and 22 receive the reference position data P1 and P2 at a predetermined cycle.
  • the reference position data P1 and P2 are information on the position where the GNSS antenna is installed.
  • the GNSS antennas 21 and 22 output the reference position data P1 and P2 to the global coordinate calculator 23 each time they are received.
  • the global coordinate calculation unit 23 includes storage units such as a RAM and a ROM, and processing units such as a CPU.
  • the global coordinate calculation unit 23 generates revolving unit arrangement data indicating the arrangement of the upper revolving unit 3 based on the two reference position data P1 and P2.
  • the swing body arrangement data includes one reference position data P of two reference position data P1, P2 and a swing body orientation data Q generated based on the two reference position data P1, P2.
  • the swinging body orientation data Q indicates the direction in which the work implement 2 which is the upper swinging body 3 is facing.
  • the global coordinate operation unit 23 updates the reference position data P and the rotating body orientation data Q which are the rotating body arrangement data each time the two reference position data P1 and P2 are obtained from the GNSS antennas 21 and 22 at a predetermined cycle. And output to the display controller 28.
  • the display controller 28 includes storage units such as a RAM and a ROM, and processing units such as a CPU.
  • the display controller 28 acquires reference position data P and revolving unit orientation data Q, which are revolving unit arrangement data, from the global coordinate operation unit 23.
  • the display controller 28 generates bucket blade tip position data S indicating the three-dimensional position of the blade tip 8T of the bucket 8 as work machine position data.
  • the display controller 28 generates the target excavation landform data U using the bucket blade tip position data S and the target construction information T.
  • the target construction information T is information to be a target of the work target of the work machine 2 provided in the hydraulic shovel 100, and in the embodiment, the finish of the target to be excavated.
  • the target construction information T includes, for example, design information of a construction target of the hydraulic shovel 100.
  • the work target of the work machine 2 is, for example, the ground. Examples of the work of the work machine 2 include, but are not limited to, excavating work and leveling work on the ground.
  • the display controller 28 derives target excavated landform data Ua for display based on the target excavated landform data U, and based on the target excavated landform data Ua for display, the display unit 29 becomes the target of the work object of the working machine 2 Display the shape, eg terrain.
  • the display unit 29 is, for example, a liquid crystal display device that receives an input by a touch panel, but is not limited to this.
  • the switch 29S is disposed adjacent to the display unit 29.
  • the switch 29S is an input device for executing intervention control to be described later or stopping intervention control in progress.
  • the work machine controller 26 acquires the boom operation amount MB, the bucket operation amount MT, and the arm operation amount MA from the pressure sensor 66.
  • the work machine controller 26 acquires the tilt angle ⁇ 1 of the boom 6, the tilt angle ⁇ 2 of the arm 7, and the tilt angle ⁇ 3 of the bucket 8 from the sensor controller 39.
  • the work machine controller 26 acquires target excavation landform data U from the display controller 28.
  • the target excavation landform data U is information of a range in which the hydraulic shovel 100 is to work from now on among the target construction information T.
  • the target excavation topography data U is a part of the target construction information T.
  • the target excavation landform data U similarly to the target construction information T, represents a shape that is a target of the finish of the work object of the work machine 2.
  • the target shape of the finish is hereinafter referred to as a target excavation topography as appropriate.
  • the work machine controller 26 calculates the position of the cutting edge 8T of the bucket 8 (hereinafter referred to as a cutting edge position as appropriate) from the angle of the work machine 2 acquired from the sensor controller 39.
  • the working machine controller 26 operates the working machine based on the distance between the target excavation landform data U and the cutting edge 8T of the bucket 8 and the speed of the work machine 2 so that the cutting edge 8T of the bucket 8 moves along the target excavation landform data U Control the operation of 2.
  • the speed in the direction in which the work machine 2 approaches the construction target is Control to be below the speed limit. This control is appropriately referred to as intervention control.
  • the intervention control is executed, for example, when the operator of the hydraulic shovel 100 selects to execute the intervention control using the switch 29S shown in FIG.
  • the position serving as the reference of the bucket 8 is not limited to the blade edge 8T, and may be any place.
  • the work machine controller 26 In intervention control, the work machine controller 26 generates a boom command signal CBI to control the work machine 2 to move the cutting edge 8T of the bucket 8 along the target excavation landform data U, as shown in FIG. It outputs to the intervention valve 27C.
  • Boom 6 operates in accordance with boom command signal CBI.
  • the movement of the boom 6 in response to the boom command signal CBI controls the speed of the work implement 2, more specifically, the bucket 8.
  • the speed at which the bucket 8 approaches the target excavation landform data U is limited.
  • FIG. 3 is a diagram showing an example of a hydraulic circuit 301 of the boom cylinder 10 based on the embodiment.
  • the hydraulic circuit 301 is provided with a pilot oil passage 450 between the operating device 25 and the direction control valve 64.
  • the direction control valve 64 is a valve that controls the direction in which the hydraulic oil supplied to the boom cylinder 10 flows.
  • the direction control valve 64 is a spool type valve that switches the flow direction of the hydraulic oil by moving the rod-like spool 64S.
  • the spool 64S is moved by the hydraulic oil (hereinafter appropriately referred to as pilot oil) supplied from the operating device 25 shown in FIG.
  • the direction control valve 64 supplies hydraulic fluid to the boom cylinder 10 by the movement of the spool 64S to operate the boom cylinder 10.
  • the pilot oil passage 50 and the pilot oil passage 450 B are connected to the shuttle valve 51.
  • One of the shuttle valve 51 and the direction control valve 64 is connected by an oil passage 452B.
  • the other of the direction control valve 64 and the operating device 25 are connected by a pilot oil passage 450A and a pilot oil passage 452A.
  • the pilot oil passage 50 is provided with an intervention valve 27C.
  • the intervention valve 27C adjusts the pilot pressure of the pilot oil passage 50.
  • the pilot oil passage 450B is provided with a pressure sensor 66B and a control valve 27B.
  • the pilot oil passage 450A is provided with a pressure sensor 66A between the control valve 27A and the operating device 25.
  • the detection value of the pressure sensor 66 is acquired by the work machine controller 26 shown in FIG. 2 and used to control the boom cylinder 10.
  • the pressure sensor 66A and the pressure sensor 66B correspond to the pressure sensor 66 shown in FIG.
  • the control valve 27A and the control valve 27B correspond to the control valve 27 shown in FIG.
  • the hydraulic oil supplied from the hydraulic pumps 36 and 37 is supplied to the boom cylinder 10 via the direction control valve 64.
  • the spool 64S moves in the axial direction, the supply of the hydraulic fluid to the cap side oil chamber 48R of the boom cylinder 10 and the supply of the hydraulic fluid to the rod side oil chamber 47R are switched.
  • the axial movement of the spool 64S adjusts the flow rate, which is the amount supplied of hydraulic fluid to the boom cylinder 10 per unit time. By adjusting the flow rate of hydraulic fluid to the boom cylinder 10, the operating speed of the boom cylinder 10 is adjusted.
  • the movement amount of the spool 64S of the direction control valve 64 is adjusted to change the flow rate of the hydraulic oil supplied to the boom cylinder 10 and returned from the boom cylinder 10 to the direction control valve 64.
  • the moving speeds of the piston 10P and the rod 10L, which are speeds, are changed.
  • the operation of the directional control valve 64 is controlled by the operating device 25.
  • the hydraulic oil discharged from the hydraulic pump 36 shown in FIG. 2 and reduced in pressure by the pressure reducing valve 25V is supplied to the operating device 25 as a pilot oil.
  • the operating device 25 adjusts the pilot hydraulic pressure based on the operation of each operating lever.
  • the direction control valve 64 is driven by the adjusted pilot pressure.
  • the magnitude of the pilot hydraulic pressure and the direction of the pilot hydraulic pressure by the operation device 25 the amount and direction of movement of the spool 64S in the axial direction are adjusted. As a result, the operating speed and direction of the boom cylinder 10 are changed.
  • the work machine controller 26 determines the target excavation landform (target excavation landform data U) indicating the design topography which is the target shape to be excavated and the inclination angles ⁇ 1 and ⁇ 2 for determining the position of the bucket 8 , ⁇ 3, the speed of the boom 6 is limited so that the speed at which the bucket 8 approaches the target excavation land shape 43I becomes smaller according to the distance between the target excavation land shape 43I and the bucket 8.
  • the work machine controller 26 when the work machine 2 operates based on the operation of the operation device 25, the work machine controller 26 generates the boom command signal CBI so that the cutting edge 8T of the bucket 8 does not intrude into the target excavation landform 43I. To control the operation of the boom 6.
  • the work machine controller 26 raises the boom 6 so that the cutting edge 8T does not intrude into the target excavation land shape 43I in the intervention control.
  • Control for raising the boom 6 executed in the intervention control is appropriately referred to as boom intervention control.
  • work implement controller 26 in order for work implement controller 26 to implement boom intervention control, work implement controller 26 generates boom command signal CBI for boom intervention control and outputs it to intervention valve 27C.
  • the intervention valve 27C can adjust the pilot oil pressure of the pilot oil passage 50.
  • Shuttle valve 51 has two inlets 51Ia and 51Ib and one outlet 51E. One inlet 51Ia is connected to the intervention valve 27C. The other inlet 51b is connected to the control valve 27B. The outlet 51E is connected to an oil passage 452B connected to the direction control valve 64.
  • the shuttle valve 51 connects the oil passage 452B to one of the two inlets 51Ia and 51Ib, which has the higher pilot hydraulic pressure.
  • the shuttle valve 51 connects the intervention valve 27C to the oil path 452B.
  • the pilot oil that has passed the intervention valve 27C is supplied to the oil passage 452B via the shuttle valve 51.
  • the shuttle valve 51 connects the control valve 27B to the oil path 452B.
  • the pilot oil that has passed through the control valve 27B is supplied to the oil passage 452B via the shuttle valve 51.
  • the directional control valve 64 is driven based on the pilot hydraulic pressure adjusted by the operation of the operating device 25.
  • the work implement controller 26 opens (fully opens) the pilot oil passage 450B by the control valve 27B so that the directional control valve 64 is driven based on the pilot hydraulic pressure adjusted by the operation of the operating device 25.
  • the intervention valve 27C is controlled to close the pilot oil passage 50.
  • the work implement controller 26 controls the control valve 27 such that the directional control valve 64 is driven based on the pilot hydraulic pressure adjusted by the intervention valve 27C.
  • the work implement controller 26 controls the pilot oil pressure of the pilot oil passage 50 adjusted by the intervention valve 27C
  • the intervention valve 27C is controlled to be higher than the pilot oil pressure of the pilot oil passage 450B adjusted by 25. By doing this, the pilot oil from the intervention valve 27C is supplied to the directional control valve 64 via the shuttle valve 51.
  • the work implement controller 26 When executing the boom intervention control, the work implement controller 26 generates a boom command signal CBI, which is a speed command for raising the boom 6, for example, and controls the intervention valve 27C. By doing this, the direction control valve 64 of the boom cylinder 10 supplies hydraulic fluid to the boom cylinder 10 so that the boom 6 is lifted at a speed corresponding to the boom command signal CBI. Raise
  • the hydraulic circuit 301 of the boom cylinder 10 has been described, the hydraulic circuit of the arm cylinder 11 and the hydraulic circuit of the bucket cylinder 12 exclude the intervention valve 27 C, the shuttle valve 51 and the pilot oil passage 50 from the hydraulic circuit 301 of the boom cylinder 10 It is a structure.
  • the boom intervention control is control for raising the boom 6 executed in the intervention control, but in the intervention control, the work machine controller 26 controls the arm 7 and the arm 6 in addition to or instead of raising the boom 6. At least one of the buckets 8 may be raised.
  • the work implement controller 26 lifts at least one of the boom 6, the arm 7 and the bucket 8 constituting the work implement 2 to obtain the target shape of the work target of the work implement 2, in the embodiment, the target excavation topography Move work implement 2 in the direction away from 43I.
  • intervention control is performed to control at least one of the boom 6, the arm 7, and the bucket 8 that the work machine controller 26 configures the work machine 2. It is called.
  • the intervention control is control in which the work implement controller 26 operates the work implement 2 when the work implement 2 operates based on the manual operation which is the operation of the operation device 25.
  • the boom intervention control described above is an aspect of the intervention control.
  • FIG. 4 is a block diagram of work implement controller 26 based on the embodiment.
  • FIG. 5 is a diagram showing the target excavation landform data U and the bucket 8 based on the embodiment.
  • FIG. 6 is a diagram for explaining the boom speed limit Vcy_bm based on the embodiment.
  • FIG. 7 is a diagram for explaining the speed limit Vc_lmt based on the embodiment.
  • the work implement controller 26 includes a determination unit 26J and a control unit 26CNT.
  • Control unit 26CNT includes relative position calculation unit 26A, distance calculation unit 26B, target speed calculation unit 26C, intervention speed calculation unit 26D, intervention command calculation unit 26E, and intervention speed correction unit 26F.
  • the functions of the determination unit 26J, the relative position calculation unit 26A, the distance calculation unit 26B, the target speed calculation unit 26C, the intervention speed calculation unit 26D, the intervention command calculation unit 26E, and the intervention speed correction unit 26F are shown in FIG.
  • the processing unit 26P of the controller 26 implements this.
  • the work machine controller 26 When the intervention control is executed, the work machine controller 26 includes the boom operation amount MB, the arm operation amount MA, the bucket operation amount MT, the target excavation landform data U acquired from the display controller 28, the bucket blade tip position data S and the sensor controller 39.
  • the boom command signal CBI required for intervention control is generated using the inclination angles ⁇ 1, ⁇ 2 and ⁇ 3 obtained from the above, the arm command signal and the bucket command signal are generated as necessary, and the control valve 27 and the intervention valve 27C are It drives and controls the work machine 2.
  • the relative position calculation unit 26A acquires bucket blade tip position data S from the display controller 28, and acquires inclination angles ⁇ 1, ⁇ 2, and ⁇ 3 from the sensor controller 39.
  • the relative position calculation unit 26A obtains a blade edge position Pb which is a position of the blade edge 8T of the bucket 8 from the acquired inclination angles ⁇ 1, ⁇ 2, ⁇ 3.
  • the distance calculation unit 26B is a part of the cutting edge 8T of the bucket 8 and a part of the target construction information T from the cutting edge position Pb obtained by the relative position calculating unit 26A and the target excavation landform data U acquired from the display controller 28.
  • a shortest distance d between the target excavation landform 431 represented by the target excavation landform data U is calculated.
  • the distance d is a distance between the cutting edge position Pb, and a position Pu at which a straight line passing through the cutting edge position Pb is orthogonal to the target excavation topography 43I and the target excavation topography data U intersects.
  • the target excavation landform 43I is determined from the intersection line between the plane of the working machine 2 defined in the front-rear direction of the upper revolving superstructure 3 and passing through the drilling target position Pdg and the target construction information T represented by a plurality of target construction surfaces.
  • one or more inflection points before and after the digging target position Pdg of the target construction information T and lines before and after that are the target excavation landforms 43I among the intersection lines described above.
  • the target excavation landform 43I is a part of the target construction information T.
  • the target excavation landform 431 is generated by the display controller 28 shown in FIG.
  • the target speed calculation unit 26C determines the boom target speed Vc_bm, the arm target speed Vc_am, and the bucket target speed Vc_bkt.
  • the boom target speed Vc_bm is the speed of the cutting edge 8T when the boom cylinder 10 is driven.
  • the arm target speed Vc_am is the speed of the cutting edge 8T when the arm cylinder 11 is driven.
  • the bucket target speed Vc_bkt is the speed of the cutting edge 8T when the bucket cylinder 12 is driven.
  • the boom target speed Vc_bm is calculated according to the boom operation amount MB.
  • the arm target speed Vc_am is calculated according to the arm operation amount MA.
  • the bucket target speed Vc_bkt is calculated according to the bucket operation amount MT.
  • the intervention speed calculation unit 26D obtains the speed limit Vc_bm of the boom 6 (boom speed limit) based on the distance d between the blade tip 8T of the bucket 8 and the target excavation land shape 43I.
  • the intervention speed calculation unit 26D subtracts the arm target speed Vc_am and the bucket target speed Vc_bkt from the speed limit Vc_lmt of the entire work machine 2 shown in FIG. 1 to obtain the boom speed limit Vcy_bm. Ask.
  • the speed limit Vc_lmt is a movement speed of the cutting edge 8T that can be tolerated in the direction in which the cutting edge 8T of the bucket 8 approaches the target excavation land shape 43I.
  • the speed limit Vc_lmt is a negative value when the distance d is positive is a negative value when the work implement 2 descends, and is a positive value when the distance d is negative. It is a rising speed when the work implement 2 rises.
  • the negative value of the distance d means that the bucket 8 has eroded the target excavation topography 43I.
  • the speed limit Vc_lmt decreases, the absolute value of the speed decreases as the distance d decreases, and when the distance d becomes a negative value, the absolute value of the speed increases as the absolute value of the distance d increases.
  • the determination unit 26J determines whether to correct the boom speed limit Vcy_bm. When the determination unit 26J determines to correct the boom speed limit Vcy_bm, the intervention speed correction unit 26F corrects and outputs the boom speed limit Vcy_bm.
  • the boom speed limit after correction is represented by Vcy_bm '.
  • the intervention speed correction unit 26F When the determination unit 26J determines that the boom speed limit Vcy_bm is not corrected, the intervention speed correction unit 26F outputs the boom speed limit Vcy_bm without correction.
  • the intervention command calculation unit 26E generates a boom command signal CBI from the boom speed limit Vcy_bm obtained by the intervention speed correction unit 26F.
  • the boom command signal CBI is a command for setting the degree of opening of the intervention valve 27C to a level necessary for applying a pilot pressure necessary for the boom 6 to rise at the boom speed limit Vcy_bm to the shuttle valve 51.
  • the boom command signal CBI is an electric current value according to the boom command speed in the embodiment.
  • Determination unit 26J includes a switching determination unit 26K, an operation command determination unit 26L, and a speed difference determination unit 26M.
  • the switching determination unit 26K determines whether or not the intervention control becomes unnecessary.
  • the operation command determination unit 26L determines whether the operator performs an operation to raise the boom 6 or the neutral operation with respect to the right control lever 25R.
  • the neutral operation is a state in which the operation to raise or lower is not performed.
  • the right control lever 25R is in the middle position.
  • the speed difference determination unit 26M determines the speed difference between the boom speed limit Vcy_bm and the boom target speed Vc_bm according to the operation by the operator to raise the boom 6 with respect to the right control lever 25R. Alternatively, the speed difference determination unit 26M determines the speed difference between the boom speed limit Vcy_bm and the boom target speed 0 according to the neutral operation of the right control lever 25R by the operator. Specifically, it is determined whether the speed difference is equal to or greater than a threshold value Dr.
  • the boom speed limit Vcy_bm and the right control lever 25R by the operator are operated when the operator performs an operation to raise the boom 6 with respect to the right control lever 25R. If the speed difference from the boom target speed Vc_bm according to the operation to raise the boom 6 with respect to is larger than the threshold value Dr, the boom speed limit Vcy_bm is corrected.
  • the determination unit 26J is a boom target according to the boom speed limit Vcy_bm and the neutral operation of the right control lever 25R by the operator. If the speed difference from the speed 0 is equal to or more than the threshold value Dr, the boom speed limit Vcy_bm is corrected.
  • FIG. 8 is a diagram showing the relationship between the bucket 8 and the target excavation landform 43I based on the embodiment.
  • the intervention control is control for moving the bucket 8 so that the bucket 8 does not erode the target excavation land shape 43I.
  • the work implement controller 26 executes boom intervention control when the bucket 8 tries to erode the target excavation land form 43I.
  • the intervention control is executed when the working machine tries to erode the target excavation land shape 43I by the operator operation as shown in FIG.
  • the intervention control is not executed when the bucket 8 moves in the direction of the arrow Y shown in FIG. 8 and the operator's operation causes the work machine not to erode the target excavation land form 43I.
  • Intervention control becomes unnecessary when the operator's operation causes the work machine not to erode the target excavation landform 43I.
  • the operator of the hydraulic shovel 100 may execute an operation of moving the work machine 2 and the bucket 8 upward.
  • the intervention control when the intervention control is released when the bucket 8 deviates from the area where the target excavation landform 431 exists, the intervention control is switched to the control of the work machine 2 by the manual operation.
  • FIG. 9 is a view showing a relationship between a boom target speed Vbm, which is a speed at which the boom 6 operates based on the embodiment, and time t.
  • the vertical axis is the boom target speed Vbm
  • the horizontal axis is the time t.
  • the boom target speed Vbm represents a rising speed which is a speed at which the boom 6 moves up when taking a positive value, and a lowering speed which shows a moving down speed of the boom 6 when taking a negative value.
  • the boom target speed Vbm is the speed of the work machine 2.
  • the rising speed of the boom 6 corresponds to the rising speed of the working machine 2
  • the lowering speed of the boom 6 corresponds to the falling speed of the working machine 2.
  • the rising speed and the falling speed of the work implement 2 are referred to as the movement speed of the work implement 2.
  • the moving speed of the work implement 2 takes a positive value when the work implement 2 rises, and takes a negative value when the work implement 2 descends.
  • the work implement controller 26 determines the boom target speed Vbm by the operation of the operator of the hydraulic shovel 100 when the boom intervention control becomes unnecessary when the bucket 8 is out of the area where the target excavation landform 431 exists. Target boom speed Vbop.
  • the work machine controller 26 sets the boom target speed Vbm to a boom target speed Vbop by decreasing the boom target speed Vbm from the boom speed limit Vcy_bm1 before the boom intervention control becomes unnecessary at a constant rate of change VRC under a predetermined condition.
  • the control is switched from the intervention control to the work machine 2 to the control of the work machine 2 based on the operation command from the operating device 25.
  • the work machine controller 26 controls the boom speed limit according to the boom intervention control when the operation command from the operating device 25 is the boom 6 elevation command or the neutral command.
  • Vcy_bm1 is compared with the boom target speed Vbop or 0 determined by the operation of the operator. Then, the difference D between the boom speed limit Vcy_bm1 and the boom target speed Vbop or 0 is calculated. The larger the difference D between the boom speed limit Vcy_bm1 and the boom target speed Vbop or 0, the larger the speed change.
  • the work implement controller 26 sets the boom speed limit Vcy_bm1 and the boom target speed Vbop or 0 when the operation command from the operation device 25 is the boom 6 uplift command or the neutral command. If the difference D is smaller than the threshold value Dr, the boom target speed Vbm before the boom intervention control becomes unnecessary is decreased at a constant rate of change VRC and changed to the boom target speed Vbop instructed by the operator.
  • the impact due to the rapid deceleration of the boom 6 can be reduced, and the influence on the soil loaded on the bucket 8 can be alleviated.
  • the intervention speed calculation unit 26D of the work machine controller shown in FIG. 4 obtains the boom speed limit Vcy_bm.
  • the switching determination unit 26K determines whether or not the boom intervention control becomes unnecessary.
  • the operation command determination unit 26L determines whether the operator performs an operation to raise the boom 6 or the neutral operation with respect to the right control lever 25R when the boom intervention control is not required.
  • the speed difference determination unit 26M controls the boom speed limit Vcy_bm and the boom by the operator when the operator performs an operation to raise the boom 6 or the neutral operation with respect to the right control lever 25R when the boom intervention control is not necessary.
  • the speed difference with the boom target speed Vc_bm according to the operation of raising 6 or the boom target speed 0 according to the neutral operation is determined.
  • the determination unit 26J determines that the boom speed limit Vcy_bm is to be corrected and corrects the boom speed limit Vcy_bm in the intervention speed correction unit 26F. Instruct
  • the intervention speed correction unit 26F of the control unit 26CNT obtains the corrected boom speed limit Vcy_bm ', and outputs it to the intervention command calculation unit 26E of the control unit 26CNT.
  • the intervention command calculation unit 26E of the control unit 26CNT generates a boom command signal CBI using the corrected boom speed limit Vcy_bm 'to control the intervention valve 27C. By such processing, the work machine controller 26 changes the rising speed of the boom 6.
  • the intervention speed correction unit 26F controls the boom speed limit Vcy_bm to change to the boom target speed Vbop according to the change rate VRC.
  • the rate of change VRC is set in a range in which the change to the boom target speed Vbop does not become too rapid.
  • the rate of change VRC is determined by, for example, sensory evaluation of the operator, but the method of determining the rate of change VRC is not limited to such a method.
  • FIG. 10 is a diagram for explaining the flow showing the control method of the working machine based on the embodiment.
  • control method of the working machine according to the embodiment is realized by the working machine controller 26.
  • step S2 the switching determination unit 26K of the working unit controller 26 illustrated in FIG. 4 determines whether or not boom intervention control is unnecessary. If the switching determination unit 26K determines that the boom intervention control is unnecessary (YES in step S2), the operation command determination unit 26L performs an operation to raise the boom 6 or a neutral operation in step S4. It is determined whether or not it is (step S4).
  • step S4 when the operation command determination unit 26L determines that the operator performs the operation of raising the boom 6 or performs the neutral operation (YES in step S4), the speed difference determination unit 26M controls the boom speed limit Vcy_bm. And, the speed difference between the boom target speed Vc_bm or the boom target speed 0 according to the operation of raising the boom 6 by the operator is determined (step S5).
  • the speed difference determination unit 26M determines whether the speed difference is equal to or greater than the threshold value Dr (step S6).
  • step S6 when the speed difference determination unit 26M determines that the speed difference is equal to or greater than the threshold value Dr (YES in step S6), the intervention command calculation unit 26E of the work machine controller 26 determines the intervention speed in step S8.
  • a boom command signal CBI is generated from the corrected boom speed limit Vcy_bm 'obtained by the correction unit 26F, and the intervention valve 27C is controlled based on the boom command signal.
  • the process ends (end).
  • the switch determination unit 26K determines that the boom intervention control is not unnecessary in step S2 (YNO in step S2)
  • the intervention command calculation unit 26E of the work machine controller 26 does not correct the boom in step S16.
  • the intervention valve 27C is controlled based on the boom command signal CBI using the speed limit Vcy_bm.
  • step S4 determines whether the operator has not performed the operation for raising boom 6 or the neutral operation (NO in step S4), or if it is determined in step S6 that the speed difference is less than threshold value Dr.
  • work implement controller 26 At (NO in step S6), work implement controller 26 generates boom command signal CBI using the target speed according to the command of the operating lever, and controls intervention valve 27C based on the boom command signal (step S12).
  • the operating device 25 has the pilot hydraulic control lever, but may have the electric left control lever 25La and the right control lever 25Ra.
  • the respective operation amounts are detected by the potentiometers.
  • the operation amount of the left control lever 25La and the right control lever 25Ra detected by the potentiometer is acquired by the work implement controller 26.
  • the work machine controller 26 that has detected the operation signal of the control lever of the electrical system executes the same control as the pilot hydraulic system.
  • the boom speed limit Vcy_bm and the boom 6 are raised when the operator performs an operation to raise the boom 6 or the neutral operation with respect to the right control lever 25R when the intervention control becomes unnecessary. If the boom target speed Vc_bm according to the operation to be made or the speed difference with the boom target speed 0 according to the neutral operation is equal to or more than the threshold value Dr, the boom speed limit Vcy_bm is corrected. The boom speed limit Vcy_bm is decreased at a constant rate of change VRC and changed to the boom target speed Vbop or 0 instructed by the operator.
  • work implement 2 has boom 6, arm 7, and bucket 8
  • the attachment with which work implement 2 is attached is not restricted to this, and it is not limited to bucket 8.
  • the work machine may have a work machine, and is not limited to the hydraulic shovel 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

A work machine according to one aspect of the present invention is equipped with a work device, an operation device for operating the work device, and a controller for controlling the work device. The controller: executes intervention control to lift the work device on the basis of an operation command from the operation device; determines whether to switch from intervention control to control of the work device according to the operation command from the operation device; determines, when executing a switch based on the determination results, whether the operation command from the operation device is a command to lift the work device or is a neutral command; determines the speed difference between a target lifting speed for the work device from the intervention control and a target speed according to the operation command from the operation device when, on the basis of the determination results, the operation command from the operation device is a command to lift the work device or is a neutral command; and in cases in which the speed difference is a prescribed value or greater, makes adjustments such that the target lifting speed of the work device gradually changes to the target speed according to the operation command from the operation device.

Description

作業機械および作業機械の制御方法Work machine and control method of work machine
 本発明は、作業機を備えた作業機械および作業機械の制御方法に関する。 The present invention relates to a working machine provided with a working machine and a control method of the working machine.
 バケットを含むフロント装置を備える作業機械において、施工対象の目標形状を示す境界面に沿ってバケットを移動させる制御が提案されている(例えば、特許文献1参照)。このような制御を介入制御と称する。 In a working machine provided with a front device including a bucket, control for moving a bucket along a boundary surface indicating a target shape to be constructed has been proposed (see, for example, Patent Document 1). Such control is called intervention control.
 介入制御において、例えば施工対象の目標形状がなくなった場合や、オペレータの操作により作業機が目標形状を侵食しなくなった場合等には、介入制御を実行する必要がなくなる。作業機が目標形状を侵食しないように、作業機を上昇させる制御を実行する必要がなくなる。 In the intervention control, for example, when there is no target shape to be constructed, or when the work machine does not erode the target shape by the operation of the operator, it is not necessary to execute the intervention control. It is not necessary to carry out the control for raising the working machine so that the working machine does not erode the target shape.
国際公開第2016/111384号International Publication No. 2016/111384
 介入制御の実行が無くなった際、操作装置の操作指令に従う作業機の制御に切り替わる。 When the execution of the intervention control is lost, the control is switched to the control of the working machine according to the operation command of the operating device.
 介入制御による作業機を上昇させる速度と、操作装置の操作指令に従う作業機の上昇の速度との差によっては、制御の切り替わりの際に急激な速度変化が生じる可能性があり、オペレータに違和感を生じさせる可能性がある。 Depending on the difference between the speed at which the work machine is raised by the intervention control and the speed at which the work machine rises in accordance with the operation command of the operating device, a rapid speed change may occur at the time of control switching. There is a possibility of causing it.
 本開示は、上記の課題を解決するためになされたものであって、オペレータの操作装置の操作の違和感を抑制することが可能な作業機械および作業機械の制御方法を提供することを目的とする。 The present disclosure has been made to solve the above-described problems, and it is an object of the present disclosure to provide a work machine and a control method of the work machine capable of suppressing the discomfort of the operator's operation of the operation device. .
 ある局面に従う作業機械は、作業機と、作業機を操作する操作装置と、作業機を制御するコントローラとを備える。コントローラは、操作装置からの操作指令に基づいて作業機を上昇させる介入制御を実行し、介入制御から操作装置の操作指令に従う作業機の制御への切替を判定し、判定結果に基づく切替において操作装置の操作指令が作業機の上昇、もしくは中立指令であるか否かを判断し、判断結果に基づいて操作装置の操作指令が作業機の上昇、もしくは中立指令である場合には、介入制御による作業機の上昇目標速度と、操作装置の操作指令に従う目標速度との速度差を判断し、速度差が所定値以上である場合には、作業機の上昇目標速度が操作装置の操作指令に従う目標速度に徐々に変化するように調整する。 A work machine according to an aspect includes a work machine, an operating device that operates the work machine, and a controller that controls the work machine. The controller executes intervention control to raise the working machine based on the operation command from the operation device, determines switching from the intervention control to control of the work machine according to the operation command of the operation device, and operates in switching based on the determination result It is determined whether the operation command of the device is the lifting of the work machine or the neutral command, and if the operation command of the operating device is the lifting of the work machine or the neutral command based on the determination result, intervention control is performed. Determine the speed difference between the work target's elevated target speed and the target speed according to the operation command of the operating device, and if the speed difference is greater than or equal to the predetermined value, the target target rise speed of the work device follows the operation command of the operating device Adjust to gradually change in speed.
 好ましくは、コントローラは、操作装置からの操作指令に基づいて作業機を上昇させる介入制御を実行する介入制御部と、介入制御から操作装置の操作指令に従う作業機の制御への切替を判定する切替判定部と、切替判定部の判定結果に基づく切替において操作装置の操作指令が作業機の上昇、もしくは中立指令であるか否かを判断する操作指令判断部と、操作指令判断部の判断結果に基づいて操作装置の操作指令が作業機の上昇、もしくは中立指令である場合には、介入制御による作業機の上昇目標速度と、操作装置の操作指令に従う目標速度との速度差を判断する速度差判断部と、速度差判断部の判断結果に基づいて速度差が所定値以上である場合には、作業機の上昇目標速度が操作装置の操作指令に従う目標速度に徐々に変化するように調整する速度調整部とを含む。 Preferably, the controller switches the intervention control unit that executes intervention control to raise the working machine based on the operation command from the operation device, and switching to determine switching from the intervention control to control of the work machine according to the operation command of the operation device A determination unit, an operation command determination unit that determines whether or not an operation command of the operation device is the lifting of the work machine or a neutral command in switching based on the determination result of the switching determination unit, and a determination result of the operation command determination unit Based on the operation command of the operating device based on the elevation of the work machine or the neutral command, the speed difference between the target speed of the work machine as a target for the intervention control and the target speed according to the operation command of the operation device If the speed difference is equal to or greater than the predetermined value based on the judgment result of the judgment unit and the speed difference judgment unit, the rising target speed of the working machine gradually changes to the target speed according to the operation command of the operating device. A and a speed adjustment unit configured to adjust.
 好ましくは、コントローラは、速度差が所定値未満である場合には、作業機の上昇目標速度を操作装置の操作指令に従う目標速度に切り替える。 Preferably, when the speed difference is less than the predetermined value, the controller switches the elevation target speed of the work implement to the target speed according to the operation command of the operating device.
 ある局面に従う作業機械の制御方法は、作業機と、作業機を操作する操作装置とを備える、作業機械の制御方法であって、操作装置からの操作指令に基づいて作業機を上昇させる介入制御を実行するステップと、介入制御から操作装置の操作指令に従う作業機の制御への切替を判定するステップと、判定結果に基づく切替において操作装置の操作指令が作業機の上昇、もしくは中立指令であるか否かを判断するステップと、判断結果に基づいて操作装置の操作指令が作業機の上昇、もしくは中立指令である場合には、介入制御による作業機の上昇目標速度と、操作装置の操作指令に従う目標速度との速度差を判断するステップと、速度差が所定値以上である場合には、作業機の上昇目標速度が操作装置の操作指令に従う目標速度に徐々に変化するように調整するステップとを備える。 A control method of a working machine according to a certain aspect is a control method of a working machine including a working machine and an operating device for operating the working machine, wherein the intervention control raises the working machine based on an operation command from the operating device. The step of executing the step, the step of determining the switching from the intervention control to the control of the working machine according to the operating command of the operating device, and the switching of the operating device in the switching based on the determination result is the lifting of the working machine or the neutral command And, if the operation command of the operating device based on the determination result is the lifting of the work machine or the neutral command, the target target speed of increase of the working machine by the intervention control and the operation command of the operating device In the step of determining the speed difference from the target speed according to the above, if the speed difference is greater than or equal to the predetermined value, the rising target speed of the working machine is gradually changed to the target speed according to the operation command And a step of adjusting to.
 作業機械および作業機械の制御方法は、オペレータの操作装置の操作の違和感を抑制することが可能である。 The work machine and the control method of the work machine can suppress the sense of discomfort of the operation of the operating device by the operator.
実施形態に基づく作業機械の斜視図である。It is a perspective view of a work machine based on an embodiment. 実施形態に基づく油圧ショベル100の制御システム200および油圧システム300の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a control system 200 and a hydraulic system 300 of a hydraulic shovel 100 based on an embodiment. 実施形態に基づくブームシリンダ10の油圧回路301の一例を示す図である。It is a figure showing an example of hydraulic circuit 301 of boom cylinder 10 based on an embodiment. 実施形態に基づく作業機コントローラ26のブロック図である。It is a block diagram of work machine controller 26 based on an embodiment. 実施形態に基づく目標掘削地形データUおよびバケット8を示す図である。It is a figure showing target excavation topography data U and bucket 8 based on an embodiment. 実施形態に基づくブーム制限速度Vcy_bmを説明するための図である。It is a figure for explaining boom limit speed Vcy_bm based on an embodiment. 実施形態に基づく制限速度Vc_lmtを説明するための図である。It is a figure for demonstrating speed limit Vc_lmt based on an embodiment. 実施形態に基づくバケット8と目標掘削地形43Iとの関係を示す図である。It is a figure which shows the relationship between the bucket 8 based on embodiment, and the target excavation landform 43I. 実施形態に基づくブーム6が動作する速度であるブーム目標速度Vbmと、時間tとの関係を示す図である。It is a figure which shows the relationship between the boom target speed Vbm which is the speed in which the boom 6 based on embodiment operates, and the time t. 実施形態に基づく作業機械の制御方法を示すフローを説明する図である。It is a figure explaining the flow which shows the control method of the working machine based on an embodiment.
 以下、本発明の実施形態について図に基づいて説明する。なお、以下の説明では、同一部品には、同一の符号を付している。それらの名称および機能も同じであるためそれらについての詳細な説明は繰り返さない。なお、以下の説明において、「上」「下」「前」「後」「左」「右」とは、運転席に着座したオペレータを基準とする用語である。 Hereinafter, an embodiment of the present invention will be described based on the drawings. In the following description, the same components are denoted by the same reference numerals. Since their names and functions are also the same, detailed description about them will not be repeated. In the following description, “upper”, “lower”, “front”, “rear”, “left”, and “right” are terms based on the operator who is seated in the driver's seat.
 <作業機械の全体構成>
 図1は、実施形態に基づく作業機械の斜視図である。
<Overall configuration of working machine>
FIG. 1 is a perspective view of a working machine based on the embodiment.
 図2は、実施形態に基づく油圧ショベル100の制御システム200および油圧システム300の構成を示すブロック図である。 FIG. 2 is a block diagram showing configurations of a control system 200 and a hydraulic system 300 of the hydraulic shovel 100 based on the embodiment.
 図1に示されるように、作業機械である油圧ショベル100は、車両本体1と作業機2とを有する。 As shown in FIG. 1, a hydraulic shovel 100 which is a working machine has a vehicle body 1 and a working machine 2.
 車両本体1は、旋回体である上部旋回体3と走行体としての走行装置5とを有する。上部旋回体3は、機関室3EGの内部に、動力発生装置としての内燃機関および油圧ポンプ等の装置を収容している。機関室3EGは、上部旋回体3の一端側に配置されている。 The vehicle body 1 has an upper revolving unit 3 which is a revolving unit and a traveling device 5 as a traveling unit. The upper revolving superstructure 3 accommodates devices such as an internal combustion engine and a hydraulic pump as a power generation device inside the engine chamber 3EG. The engine room 3EG is disposed on one end side of the upper swing body 3.
 油圧ショベル100は、動力発生装置としての内燃機関に、例えばディーゼルエンジン等が用いられるが、動力発生装置はこれに限定されない。 Although the hydraulic shovel 100 uses, for example, a diesel engine or the like for an internal combustion engine as a power generation device, the power generation device is not limited to this.
 油圧ショベル100の動力発生装置は、例えば、内燃機関と発電電動機と蓄電装置とを組み合わせたハイブリッド方式の装置でもよい。 The power generation device of the hydraulic shovel 100 may be, for example, a hybrid device in which an internal combustion engine, a generator motor and a storage device are combined.
 油圧ショベル100の動力発生装置は、内燃機関を有さず、蓄電装置と発電電動機とを組み合わせてもよい。 The power generation device of the hydraulic shovel 100 may not have an internal combustion engine, and may combine a power storage device and a generator motor.
 上部旋回体3は、運転室4を有する。運転室4は、上部旋回体3の他端側に設置されている。運転室4は、機関室3EGが配置されている側とは反対側に設置されている。運転室4内には、図2に示される表示部29および操作装置25が配置される。 The upper swing body 3 has a driver's cab 4. The operator's cab 4 is installed on the other end side of the upper swing body 3. The operator's cab 4 is installed on the opposite side to the side where the engine room 3EG is disposed. In the operator's cab 4, a display unit 29 and an operating device 25 shown in FIG. 2 are arranged.
 走行装置5は、上部旋回体3を支持する。走行装置5は、履帯5a、5bを有する。走行装置5は、左右に設けられた走行モータ5cの一方又は両方が履帯5a、5bを駆動して回転させることにより、油圧ショベル100を走行させる。作業機2は、上部旋回体3の運転室4の側方に取り付けられる。 The traveling device 5 supports the upper swing body 3. The traveling device 5 has crawler belts 5a and 5b. The traveling device 5 causes the hydraulic shovel 100 to travel by causing one or both of the traveling motors 5c provided on the left and right to drive and rotate the crawler belts 5a and 5b. The work implement 2 is attached to the side of the cab 4 of the upper swing body 3.
 油圧ショベル100は、履帯5a、5bの代わりにタイヤを備え、エンジンの駆動力を、トランスミッションを介してタイヤへ伝達して走行が可能な走行装置を備えてもよい。このような形態の油圧ショベル100としては、例えば、ホイール式油圧ショベルがある。 The hydraulic shovel 100 may include a tire instead of the crawler belts 5a and 5b, and may include a traveling device capable of traveling by transmitting the driving force of the engine to the tire via a transmission. As a hydraulic shovel 100 of such a form, there exists a wheel type hydraulic shovel, for example.
 油圧ショベル100は、例えばバックホウローダでもよい。
 上部旋回体3は、作業機2および運転室4が配置されている側が前であり、機関室3EGが配置されている側が後である。前に向かって左側が上部旋回体3の左であり、前に向かって右側が上部旋回体3の右である。上部旋回体3の左右方向は、幅方向とも言う。油圧ショベル100又は車両本体1は、上部旋回体3を基準として走行装置5側が下であり、走行装置5を基準として上部旋回体3側が上である。油圧ショベル100の前後方向がx方向、幅方向がy方向、上下方向がz方向である。油圧ショベル100が水平面に設置されている場合、下は鉛直方向である重力の作用方向側であり、上は鉛直方向とは反対側である。
The hydraulic shovel 100 may be, for example, a backhoe loader.
As for the upper revolving superstructure 3, the side where the working machine 2 and the cab 4 are disposed is the front, and the side where the engine room 3EG is disposed is the rear. The left side toward the front is the left of the upper swing body 3, and the right side toward the front is the right of the upper swing body 3. The left and right direction of the upper swing body 3 is also referred to as a width direction. The traveling device 5 side of the hydraulic shovel 100 or the vehicle body 1 is below with reference to the upper swing body 3, and the upper swing body 3 is above with respect to the traveling device 5. The longitudinal direction of the hydraulic shovel 100 is the x direction, the width direction is the y direction, and the vertical direction is the z direction. When the hydraulic shovel 100 is installed on a horizontal surface, the lower side is the action direction side of gravity which is the vertical direction, and the upper side is the opposite side to the vertical direction.
 作業機2は、ブーム6とアーム7と作業具であるバケット8とブームシリンダ10とアームシリンダ11とバケットシリンダ12とを有する。ブーム6の基端部は、ブームピン13を介して車両本体1の前部に取り付けられる。アーム7の基端部は、アームピン14を介してブーム6の先端部に取り付けられる。アーム7の先端部には、バケットピン15を介してバケット8が取り付けられる。バケット8は、バケットピン15を中心として動く。バケット8は、バケットピン15とは反対側に複数の刃8Bが取り付けられる。刃先8Tは、刃8Bの先端である。 The work machine 2 has a boom 6, an arm 7, a bucket 8 which is a work tool, a boom cylinder 10, an arm cylinder 11 and a bucket cylinder 12. The base end of the boom 6 is attached to the front of the vehicle body 1 via a boom pin 13. The proximal end of the arm 7 is attached to the distal end of the boom 6 via an arm pin 14. The bucket 8 is attached to the tip of the arm 7 via a bucket pin 15. The bucket 8 moves around the bucket pin 15. The bucket 8 has a plurality of blades 8 B attached to the side opposite to the bucket pin 15. The blade tip 8T is the tip of the blade 8B.
 実施形態において、作業機2が上昇するとは、作業機2が油圧ショベル100の接地面から上部旋回体3に向かう方向に移動する動作を言う。作業機2が下降するとは、作業機2が油圧ショベル100の上部旋回体3から接地面に向かう方向に移動する動作を言う。油圧ショベル100の接地面は、履帯5a,5bの接地する部分における少なくとも3点で定義される平面である。 In the embodiment, that the work implement 2 is raised means an operation in which the work implement 2 moves in a direction from the ground contact surface of the hydraulic shovel 100 toward the upper swing body 3. The descent of the work implement 2 means an operation of the work implement 2 moving in a direction from the upper swing body 3 of the hydraulic shovel 100 toward the ground contact surface. The ground contact surface of the hydraulic shovel 100 is a plane defined by at least three points in the contact portion of the crawler belts 5a and 5b.
 上部旋回体3を有さない作業機械である場合、作業機2が上昇するとは、作業機2が作業機械の接地面から離れる方向に移動する動作を言う。作業機2が下降するとは、作業機2が作業機械の接地面に接近する方向に移動する動作を言う。作業機械が履帯ではなく車輪を備える場合、接地面は、少なくとも3個の車輪が接地する部分で定義される平面である。 In the case of a working machine that does not have the upper revolving superstructure 3, raising of the working machine 2 means an operation of moving the working machine 2 in a direction away from the ground contact surface of the working machine. The descent of the work implement 2 means an operation of moving the work implement 2 in a direction approaching the ground contact surface of the work machine. If the work machine comprises wheels rather than tracks, the ground plane is the plane defined by the part where at least three wheels touch.
 バケット8は、複数の刃8Bを有さなくてもよい。図1に示すような刃8Bを有しておらず、刃先が鋼板によってストレート形状に形成されたようなバケットでもよい。作業機2は、例えば、単数の刃を有するチルトバケットを備えてもよい。チルトバケットとは、バケットチルトシリンダを備え、バケットが左右にチルト傾斜することで油圧ショベルが傾斜地にあっても、斜面、平地を自由な形に成形、整地をすることができ、底板プレートによる転圧作業もできるバケットである。この他にも、作業機2は、バケット8の代わりに、法面バケット又は削岩用のチップを備えた削岩用のアタッチメント等を作業具として備えてもよい。 The bucket 8 may not have a plurality of blades 8B. It may be a bucket which does not have a blade 8B as shown in FIG. 1 and whose cutting edge is formed in a straight shape by a steel plate. The work implement 2 may include, for example, a tilt bucket having a single blade. A tilt bucket is equipped with a bucket tilt cylinder. By tilting the bucket to the left and right, even if the hydraulic shovel is on a slope, the slope and flat ground can be shaped and ground freely, and the bottom plate turns It is a bucket that can be pressed. In addition to this, instead of the bucket 8, the working machine 2 may be provided with a drilling bucket attachment or the like provided with a slope bucket or a rock drilling tip as a working tool.
 図1に示されるブームシリンダ10とアームシリンダ11とバケットシリンダ12とは、それぞれ作動油の圧力(以下、適宜、油圧という)によって駆動される油圧シリンダである。ブームシリンダ10は、ブーム6を駆動して、これを昇降させる。アームシリンダ11は、アーム7を駆動して、アームピン14の周りを動作させる。バケットシリンダ12は、バケット8を駆動して、バケットピン15の周りを動作させる。 The boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 shown in FIG. 1 are hydraulic cylinders driven by the pressure of the hydraulic fluid (hereinafter referred to as "hydraulic" as appropriate). The boom cylinder 10 drives the boom 6 to raise and lower it. The arm cylinder 11 drives the arm 7 to move around the arm pin 14. The bucket cylinder 12 drives the bucket 8 to operate around the bucket pin 15.
 ブームシリンダ10、アームシリンダ11およびバケットシリンダ12等の油圧シリンダと図2に示される油圧ポンプ36,37との間には、図2に示される方向制御弁64が設けられる。方向制御弁64は、油圧ポンプ36,37からブームシリンダ10、アームシリンダ11およびバケットシリンダ12等に供給される作動油の流量を制御するとともに、作動油が流れる方向を切り替える。方向制御弁64は、走行モータ5cを駆動するための走行用方向制御弁と、ブームシリンダ10、アームシリンダ11、バケットシリンダ12および上部旋回体3を旋回させる旋回モータを制御するための作業機用方向制御弁とを含む。 A direction control valve 64 shown in FIG. 2 is provided between the hydraulic cylinders such as the boom cylinder 10, the arm cylinder 11 and the bucket cylinder 12 and the hydraulic pumps 36 and 37 shown in FIG. The direction control valve 64 controls the flow rate of the hydraulic oil supplied from the hydraulic pumps 36 and 37 to the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12 and the like, and switches the flow direction of the hydraulic oil. The direction control valve 64 is a traveling direction control valve for driving the traveling motor 5c, and a working machine for controlling the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12, and the swing motor for swinging the upper swing body 3. And a directional control valve.
 図2に示される作業機コントローラ26が、図2に示される制御弁27を制御することにより、操作装置25から方向制御弁64に供給される作動油のパイロット圧が制御される。制御弁27は、ブームシリンダ10、アームシリンダ11およびバケットシリンダ12の油圧系に設けられる。作業機コントローラ26は、パイロット油路450に設けられた制御弁27を制御することにより、ブームシリンダ10、アームシリンダ11およびバケットシリンダ12の動作を制御することができる。実施形態においては、作業機コントローラ26は、制御弁27を閉じる制御により、ブームシリンダ10、アームシリンダ11およびバケットシリンダ12を減速させる制御が可能である。 The work implement controller 26 shown in FIG. 2 controls the control valve 27 shown in FIG. 2 to control the pilot pressure of the hydraulic fluid supplied from the operating device 25 to the direction control valve 64. The control valve 27 is provided in the hydraulic system of the boom cylinder 10, the arm cylinder 11 and the bucket cylinder 12. The work machine controller 26 can control the operation of the boom cylinder 10, the arm cylinder 11 and the bucket cylinder 12 by controlling the control valve 27 provided in the pilot oil passage 450. In the embodiment, the work implement controller 26 can control the speed of the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 to be reduced by closing the control valve 27.
 上部旋回体3の上部には、アンテナ21,22が取り付けられる。アンテナ21,22は、油圧ショベル100の現在位置を検出するために用いられる。アンテナ21,22は、図2に示される、油圧ショベル100の現在位置を検出するための位置検出部である位置検出装置19と電気的に接続されている。 The antennas 21 and 22 are attached to the upper portion of the upper swing body 3. The antennas 21 and 22 are used to detect the current position of the hydraulic shovel 100. The antennas 21 and 22 are electrically connected to a position detection device 19 shown in FIG. 2 which is a position detection unit for detecting the current position of the hydraulic shovel 100.
 位置検出装置19は、RTK-GNSS(Real Time Kinematic-Global Navigation Satellite Systems、GNSSは全地球航法衛星システムを言う)を利用して油圧ショベル100の現在位置を検出する。以下の説明において、アンテナ21,22を、適宜、GNSSアンテナ21,22という。GNSSアンテナ21,22が受信したGNSS電波に応じた信号は、位置検出装置19に入力される。位置検出装置19は、GNSSアンテナ21,22の設置位置を検出する。位置検出装置19は、例えば3次元位置センサを含む。 The position detection device 19 detects the current position of the hydraulic shovel 100 using RTK-GNSS (Real Time Kinematic-Global Navigation Satellite Systems, GNSS means Global Navigation Satellite System). In the following description, the antennas 21 and 22 will be appropriately referred to as GNSS antennas 21 and 22, respectively. A signal corresponding to the GNSS radio wave received by the GNSS antennas 21 and 22 is input to the position detection device 19. The position detection device 19 detects the installation positions of the GNSS antennas 21 and 22. The position detection device 19 includes, for example, a three-dimensional position sensor.
 <油圧システム300>
 図2に示されるように、油圧ショベル100の油圧システム300は、動力発生源としての内燃機関35と油圧ポンプ36,37とを備える。油圧ポンプ36,37は、内燃機関35によって駆動され、作動油を吐出する。油圧ポンプ36,37から吐出された作動油は、ブームシリンダ10とアームシリンダ11とバケットシリンダ12とに供給される。
<Hydraulic system 300>
As shown in FIG. 2, the hydraulic system 300 of the hydraulic shovel 100 includes an internal combustion engine 35 and hydraulic pumps 36 and 37 as power generation sources. The hydraulic pumps 36 and 37 are driven by the internal combustion engine 35 and discharge hydraulic fluid. The hydraulic fluid discharged from the hydraulic pumps 36 and 37 is supplied to the boom cylinder 10, the arm cylinder 11 and the bucket cylinder 12.
 油圧ショベル100は、旋回モータ38を備える。旋回モータ38は油圧モータであり、油圧ポンプ36,37から吐出された作動油によって駆動される。旋回モータ38は、上部旋回体3を旋回させる。なお、図2では、2つの油圧ポンプ36,37が図示されているが、1つの油圧ポンプのみが設けられてもよい。旋回モータ38は、油圧モータに限らず、電気モータでもよい。 The hydraulic shovel 100 is provided with a swing motor 38. The swing motor 38 is a hydraulic motor, and is driven by hydraulic fluid discharged from the hydraulic pumps 36 and 37. The swing motor 38 swings the upper swing body 3. Although two hydraulic pumps 36 and 37 are illustrated in FIG. 2, only one hydraulic pump may be provided. The swing motor 38 is not limited to a hydraulic motor, and may be an electric motor.
 <制御システム200>
 図2に示されるように、作業機械の制御システムである制御システム200は、位置検出装置19と、グローバル座標演算部23と、操作装置25と、実施形態に係る作業機械の制御装置である作業機コントローラ26と、センサコントローラ39と、表示コントローラ28と、表示部29とを含む。
<Control system 200>
As shown in FIG. 2, a control system 200 which is a control system of a work machine is a work which is a control device of a work machine according to an embodiment, a position detection device 19, a global coordinate operation unit 23, an operation device 25. A machine controller 26, a sensor controller 39, a display controller 28, and a display unit 29 are included.
 操作装置25は、図1に示される作業機2および上部旋回体3を操作するための装置である。操作装置25は、作業機2を操作するための装置である。操作装置25は、作業機2を駆動するためのオペレータによる操作を受け付けて、操作量に応じたパイロット油圧を出力する。 The operating device 25 is a device for operating the work implement 2 and the upper swing body 3 shown in FIG. The operating device 25 is a device for operating the work machine 2. Operation device 25 receives an operation by an operator for driving work machine 2 and outputs a pilot hydraulic pressure according to the amount of operation.
 操作量に応じたパイロット油圧は、操作指令である。操作指令は、作業機2を動作させるための指令である。 The pilot hydraulic pressure corresponding to the operation amount is an operation command. The operation command is a command for operating the work machine 2.
 操作指令は、操作装置25によって生成される。操作装置25は、オペレータによって操作させるので、操作指令は、マニュアル操作であるオペレータの操作によって作業機2を動作させるための指令である。 The operation command is generated by the operating device 25. Since the operation device 25 is operated by the operator, the operation command is a command for operating the work machine 2 by the operation of the operator which is a manual operation.
 マニュアル操作による作業機2の制御は、操作装置25からの操作指令に従う作業機2の制御である。作業機2の操作装置25を操作することによる作業機2の制御である。 Control of the working machine 2 by manual operation is control of the working machine 2 in accordance with an operation command from the operating device 25. It is control of the working machine 2 by operating the operating device 25 of the working machine 2.
 実施形態において、操作装置25は、オペレータの左側に設置される左操作レバー25Lと、オペレータの右側に配置される右操作レバー25Rとを有する。左操作レバー25Lおよび右操作レバー25Rは、前後左右の動作がアーム7および旋回の2軸の動作に対応している。 In the embodiment, the operating device 25 has a left operating lever 25L installed on the left side of the operator and a right operating lever 25R located on the right side of the operator. The left control lever 25L and the right control lever 25R correspond to the operation of the arm 7 and the two axes of turning in the front, rear, left and right operation.
 例えば、右操作レバー25Rの前後方向の操作は、ブーム6の操作に対応している。右操作レバー25Rが前方へ操作されるとブーム6が下がり、後方へ操作されるとブーム6が上がる。右操作レバー25Rの前後方向の操作に応じてブーム6の下げ上げの動作が実行される。 For example, the operation in the front-rear direction of the right control lever 25R corresponds to the operation of the boom 6. When the right control lever 25R is operated forward, the boom 6 is lowered, and when operated rightward, the boom 6 is raised. The operation of raising and lowering the boom 6 is executed according to the operation of the right control lever 25R in the front-rear direction.
 右操作レバー25Rの左右方向の操作は、バケット8の操作に対応している。右操作レバー25Rが左側に操作されるとバケット8が掘削し、右側に操作されるとバケット8がダンプする。右操作レバー25Rの左右方向の操作に応じてバケット8の掘削又はダンプ動作が実行される。 The operation of the right control lever 25R in the left-right direction corresponds to the operation of the bucket 8. When the right control lever 25R is operated to the left, the bucket 8 is excavated, and when operated to the right, the bucket 8 is dumped. The digging or dumping operation of the bucket 8 is performed according to the operation of the right control lever 25R in the left-right direction.
 左操作レバー25Lの前後方向の操作は、アーム7の操作に対応している。左操作レバー25Lが前方に操作されるとアーム7がダンプし、後方に操作されるとアーム7が掘削する。 The operation of the left control lever 25L in the front-rear direction corresponds to the operation of the arm 7. When the left control lever 25L is operated forward, the arm 7 dumps, and when operated rearward, the arm 7 excavates.
 左操作レバー25Lの左右方向の操作は、上部旋回体3の旋回の操作に対応している。左操作レバー25Lが左側に操作されると左旋回し、右側に操作されると右旋回する。 The operation in the left-right direction of the left operation lever 25L corresponds to the operation of turning the upper swing body 3. When the left control lever 25L is operated to the left, it turns left, and when it is operated right, it turns right.
 実施形態において、操作装置25は、パイロット油圧方式が用いられる。操作装置25には、油圧ポンプ36から減圧弁25Vによって所定のパイロット圧力に減圧された作動油がブーム操作、バケット操作、アーム操作および旋回操作に基づいて供給される。 In the embodiment, a pilot hydraulic system is used for the operating device 25. A hydraulic oil whose pressure is reduced to a predetermined pilot pressure by the pressure reducing valve 25V is supplied from the hydraulic pump 36 to the controller 25 based on the boom operation, the bucket operation, the arm operation, and the turning operation.
 右操作レバー25Rの前後方向の操作に応じて、パイロット油路450へパイロット油圧が供給可能とされて、オペレータによるブーム6の操作が受け付けられる。右操作レバー25Rの操作量に応じて右操作レバー25Rが備える弁装置が開き、パイロット油路450に作動油が供給される。 The pilot hydraulic pressure can be supplied to the pilot oil passage 450 according to the operation of the right control lever 25R in the front-rear direction, and the operator's operation of the boom 6 is accepted. The valve device provided in the right control lever 25R is opened in accordance with the amount of operation of the right control lever 25R, and the hydraulic oil is supplied to the pilot oil passage 450.
 圧力センサ66は、パイロット油路450内における作動油の圧力をパイロット圧として検出する。 The pressure sensor 66 detects the pressure of the hydraulic oil in the pilot oil passage 450 as a pilot pressure.
 圧力センサ66は、検出したパイロット圧を、ブーム操作量MBとして作業機コントローラ26へ送信する。右操作レバー25Rの前後方向の操作量を、以下、適宜、ブーム操作量MBと称する。パイロット油路50には、制御弁(以下、適宜、介入弁と称する)27Cおよびシャトル弁51が設けられる。介入弁27Cおよびシャトル弁51については後述する。 The pressure sensor 66 transmits the detected pilot pressure to the work machine controller 26 as the boom operation amount MB. Hereinafter, the operation amount of the right control lever 25R in the front-rear direction is appropriately referred to as a boom operation amount MB. The pilot oil passage 50 is provided with a control valve (hereinafter appropriately referred to as an intervention valve) 27C and a shuttle valve 51. The intervention valve 27C and the shuttle valve 51 will be described later.
 右操作レバー25Rの左右方向の操作に応じて、パイロット油路450へパイロット油圧が供給可能とされて、オペレータによるバケット8の操作が受け付けられる。右操作レバー25Rの操作量に応じて右操作レバー25Rが備える弁装置が開き、パイロット油路450に作動油が供給される。 According to the operation of the right control lever 25R in the left-right direction, the pilot oil pressure can be supplied to the pilot oil passage 450, and the operation of the bucket 8 by the operator is accepted. The valve device provided in the right control lever 25R is opened in accordance with the amount of operation of the right control lever 25R, and the hydraulic oil is supplied to the pilot oil passage 450.
 圧力センサ66は、パイロット油路450内における作動油の圧力をパイロット圧として検出する。 The pressure sensor 66 detects the pressure of the hydraulic oil in the pilot oil passage 450 as a pilot pressure.
 圧力センサ66は、検出したパイロット圧を、バケット操作量MTとして作業機コントローラ26へ送信する。右操作レバー25Rの左右方向の操作量を、以下、適宜、バケット操作量MTと称する。 The pressure sensor 66 transmits the detected pilot pressure to the work unit controller 26 as a bucket operation amount MT. Hereinafter, the operation amount of the right control lever 25R in the left-right direction is appropriately referred to as a bucket operation amount MT.
 左操作レバー25Lの前後方向の操作に応じて、パイロット油路450へパイロット油圧が供給可能とされて、オペレータによるアーム7の操作が受け付けられる。左操作レバー25Lの操作量に応じて左操作レバー25Lが備える弁装置が開き、パイロット油路450に作動油が供給される。 The pilot hydraulic pressure can be supplied to the pilot oil passage 450 according to the operation of the left control lever 25L in the front-rear direction, and the operation of the arm 7 by the operator is accepted. The valve device provided in the left control lever 25L is opened according to the amount of operation of the left control lever 25L, and the hydraulic oil is supplied to the pilot oil passage 450.
 圧力センサ66は、パイロット油路450内における作動油の圧力をパイロット圧として検出する。 The pressure sensor 66 detects the pressure of the hydraulic oil in the pilot oil passage 450 as a pilot pressure.
 圧力センサ66は、検出したパイロット圧を、アーム操作量MAとして作業機コントローラ26へ送信する。左操作レバー25Lの前後方向の操作量を、以下、適宜、アーム操作量MAと称する。 The pressure sensor 66 transmits the detected pilot pressure to the work unit controller 26 as an arm operation amount MA. Hereinafter, the operation amount of the left control lever 25L in the front-rear direction is appropriately referred to as an arm operation amount MA.
 操作装置25は、右操作レバー25Rが操作されることにより、右操作レバー25Rの操作量に応じた大きさのパイロット油圧を方向制御弁64に供給する。 The operating device 25 supplies a pilot hydraulic pressure having a magnitude corresponding to the amount of operation of the right operating lever 25R to the direction control valve 64 by operating the right operating lever 25R.
 操作装置25は、左操作レバー25Lが操作されることにより、左操作レバー25Lの操作量に応じた大きさのパイロット油圧を方向制御弁64に供給する。操作装置25から方向制御弁64に供給されるパイロット油圧によって、方向制御弁64が動作する。 The operating device 25 supplies a pilot hydraulic pressure having a magnitude corresponding to the amount of operation of the left operating lever 25L to the direction control valve 64 by operating the left operating lever 25L. The pilot control hydraulic pressure supplied from the controller 25 to the directional control valve 64 operates the directional control valve 64.
 制御システム200は、第1ストロークセンサ16と第2ストロークセンサ17と第3ストロークセンサ18とを有する。例えば、第1ストロークセンサ16は、ブームシリンダ10に、第2ストロークセンサ17は、アームシリンダ11に、第3ストロークセンサ18は、バケットシリンダ12にそれぞれ設けられる。 The control system 200 includes a first stroke sensor 16, a second stroke sensor 17, and a third stroke sensor 18. For example, the first stroke sensor 16 is provided to the boom cylinder 10, the second stroke sensor 17 is provided to the arm cylinder 11, and the third stroke sensor 18 is provided to the bucket cylinder 12.
 センサコントローラ39は、RAM(Random Access Memory)およびROM(Read Only Memory)等の記憶部と、CPU(Central Processing Unit)等の処理部とを有する。 The sensor controller 39 has a storage unit such as a random access memory (RAM) and a read only memory (ROM), and a processing unit such as a central processing unit (CPU).
 センサコントローラ39は、第1ストロークセンサ16が検出したブームシリンダ長LS1から、油圧ショベル100のローカル座標系、詳細には車両本体1のローカル座標系における水平面(xy平面)と直交する方向(z軸方向)に対するブーム6の傾斜角度θ1を算出して、作業機コントローラ26および表示コントローラ28に出力する。 The sensor controller 39 is a direction (z-axis) orthogonal to a horizontal coordinate system (xy plane) in the local coordinate system of the hydraulic shovel 100, more specifically, in the local coordinate system of the vehicle body 1, from the boom cylinder length LS1 detected by the first stroke sensor 16. The tilt angle θ1 of the boom 6 with respect to the direction is calculated and output to the work machine controller 26 and the display controller 28.
 センサコントローラ39は、第2ストロークセンサ17が検出したアームシリンダ長LS2から、ブーム6に対するアーム7の傾斜角度θ2を算出して、作業機コントローラ26および表示コントローラ28に出力する。 The sensor controller 39 calculates an inclination angle θ2 of the arm 7 with respect to the boom 6 from the arm cylinder length LS2 detected by the second stroke sensor 17 and outputs the inclination angle θ2 to the work machine controller 26 and the display controller 28.
 センサコントローラ39は、第3ストロークセンサ18が検出したバケットシリンダ長LS3から、アーム7に対するバケット8が有するバケット8の刃先8Tの傾斜角度θ3を算出して、作業機コントローラ26および表示コントローラ28に出力する。 The sensor controller 39 calculates the inclination angle θ3 of the cutting edge 8T of the blade 8 of the bucket 8 with respect to the arm 7 from the bucket cylinder length LS3 detected by the third stroke sensor 18, and outputs it to the work machine controller 26 and the display controller 28. Do.
 傾斜角度θ1,θ2,θ3の検出は、第1ストロークセンサ16、第2ストロークセンサ17および第3ストロークセンサ18以外でも可能である。例えば、ポテンショメータ等の角度センサも、傾斜角度θ1,θ2,θ3を検出できる。 The detection of the inclination angles θ1, θ2, θ3 can be performed by means other than the first stroke sensor 16, the second stroke sensor 17, and the third stroke sensor 18. For example, an angle sensor such as a potentiometer can also detect the inclination angles θ1, θ2, and θ3.
 センサコントローラ39には、IMU(Inertial Measurement Unit:慣性計測装置)24が接続されている。IMU24は、図1に示される油圧ショベル100のy軸回りのピッチ、x軸回りのロール等といった車体の傾斜情報を取得し、センサコントローラ39に出力する。 The sensor controller 39 is connected to an IMU (Inertial Measurement Unit: inertial measurement device) 24. The IMU 24 acquires inclination information of the vehicle body such as a pitch around the y axis, a roll around the x axis, etc., of the hydraulic shovel 100 shown in FIG.
 作業機コントローラ26は、RAMおよびROM(Read Only Memory)等の記憶部26Qと、CPU等の処理部26Pとを有する。 The work machine controller 26 includes a storage unit 26Q such as a RAM and a ROM (Read Only Memory), and a processing unit 26P such as a CPU.
 作業機コントローラ26は、図2に示されるブーム操作量MB、バケット操作量MT、アーム操作量MAに基づいて、介入弁27Cおよび制御弁27を制御する。 The work machine controller 26 controls the intervention valve 27C and the control valve 27 based on the boom operation amount MB, the bucket operation amount MT, and the arm operation amount MA shown in FIG.
 図2に示される方向制御弁64は、例えば比例制御弁であり、操作装置25から供給される作動油によって制御される。 The direction control valve 64 shown in FIG. 2 is, for example, a proportional control valve, and is controlled by the hydraulic oil supplied from the controller 25.
 方向制御弁64は、ブームシリンダ10、アームシリンダ11、バケットシリンダ12および旋回モータ38等の油圧アクチュエータと、油圧ポンプ36,37との間に配置される。 The direction control valve 64 is disposed between the hydraulic pumps 36 and 37 and hydraulic actuators such as the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12 and the swing motor 38.
 方向制御弁64は、油圧ポンプ36,37からブームシリンダ10、アームシリンダ11、バケットシリンダ12および旋回モータ38に供給される作動油の流量および方向を制御する。 The direction control valve 64 controls the flow rate and direction of hydraulic fluid supplied from the hydraulic pumps 36 and 37 to the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12 and the swing motor 38.
 制御システム200が備える位置検出装置19は、前述したGNSSアンテナ21,22を含む。GNSSアンテナ21,22で受信されたGNSS電波に応じた信号がグローバル座標演算部23に入力される。 The position detection device 19 included in the control system 200 includes the GNSS antennas 21 and 22 described above. A signal corresponding to the GNSS radio wave received by the GNSS antennas 21 and 22 is input to the global coordinate operation unit 23.
 GNSSアンテナ21は、自身の位置を示す基準位置データP1を測位衛星から受信する。GNSSアンテナ22は、自身の位置を示す基準位置データP2を測位衛星から受信する。 The GNSS antenna 21 receives reference position data P1 indicating its position from the positioning satellites. The GNSS antenna 22 receives reference position data P2 indicating its position from the positioning satellites.
 GNSSアンテナ21,22は、所定の周期で基準位置データP1、P2を受信する。基準位置データP1,P2は、GNSSアンテナが設置されている位置の情報である。GNSSアンテナ21,22は、基準位置データP1、P2を受信する毎に、グローバル座標演算部23に出力する。 The GNSS antennas 21 and 22 receive the reference position data P1 and P2 at a predetermined cycle. The reference position data P1 and P2 are information on the position where the GNSS antenna is installed. The GNSS antennas 21 and 22 output the reference position data P1 and P2 to the global coordinate calculator 23 each time they are received.
 グローバル座標演算部23は、RAMおよびROM等の記憶部と、CPU等の処理部とを有する。グローバル座標演算部23は、2つの基準位置データP1、P2に基づいて、上部旋回体3の配置を示す旋回体配置データを生成する。 The global coordinate calculation unit 23 includes storage units such as a RAM and a ROM, and processing units such as a CPU. The global coordinate calculation unit 23 generates revolving unit arrangement data indicating the arrangement of the upper revolving unit 3 based on the two reference position data P1 and P2.
 実施形態において、旋回体配置データには、2つの基準位置データP1、P2の一方の基準位置データPと、2つの基準位置データP1、P2に基づいて生成された旋回体方位データQとが含まれる。旋回体方位データQは、上部旋回体3である作業機2が向いている方位を示している。 In the embodiment, the swing body arrangement data includes one reference position data P of two reference position data P1, P2 and a swing body orientation data Q generated based on the two reference position data P1, P2. Be The swinging body orientation data Q indicates the direction in which the work implement 2 which is the upper swinging body 3 is facing.
 グローバル座標演算部23は、所定の周期でGNSSアンテナ21,22から2つの基準位置データP1、P2を取得する毎に、旋回体配置データである基準位置データPと旋回体方位データQとを更新して、表示コントローラ28に出力する。 The global coordinate operation unit 23 updates the reference position data P and the rotating body orientation data Q which are the rotating body arrangement data each time the two reference position data P1 and P2 are obtained from the GNSS antennas 21 and 22 at a predetermined cycle. And output to the display controller 28.
 表示コントローラ28は、RAMおよびROM等の記憶部と、CPU等の処理部とを有する。表示コントローラ28は、グローバル座標演算部23から旋回体配置データである基準位置データPおよび旋回体方位データQを取得する。 The display controller 28 includes storage units such as a RAM and a ROM, and processing units such as a CPU. The display controller 28 acquires reference position data P and revolving unit orientation data Q, which are revolving unit arrangement data, from the global coordinate operation unit 23.
 実施形態において、表示コントローラ28は、作業機位置データとして、バケット8の刃先8Tの3次元位置を示すバケット刃先位置データSを生成する。表示コントローラ28は、バケット刃先位置データSと目標施工情報Tとを用いて、目標掘削地形データUを生成する。 In the embodiment, the display controller 28 generates bucket blade tip position data S indicating the three-dimensional position of the blade tip 8T of the bucket 8 as work machine position data. The display controller 28 generates the target excavation landform data U using the bucket blade tip position data S and the target construction information T.
 目標施工情報Tは、油圧ショベル100が備える作業機2の作業対象、実施形態では掘削対象の仕上がりの目標となる情報である。目標施工情報Tは、例えば、油圧ショベル100の施工対象の設計情報が挙げられる。作業機2の作業対象は、例えば、地面である。作業機2の作業としては、例えば、掘削作業および地面の均し作業が挙げられるが、これらに限定されない。 The target construction information T is information to be a target of the work target of the work machine 2 provided in the hydraulic shovel 100, and in the embodiment, the finish of the target to be excavated. The target construction information T includes, for example, design information of a construction target of the hydraulic shovel 100. The work target of the work machine 2 is, for example, the ground. Examples of the work of the work machine 2 include, but are not limited to, excavating work and leveling work on the ground.
 表示コントローラ28は、目標掘削地形データUに基づく表示用の目標掘削地形データUaを導出し、表示用の目標掘削地形データUaに基づいて、表示部29に作業機2の作業対象の目標となる形状、例えば地形を表示させる。 The display controller 28 derives target excavated landform data Ua for display based on the target excavated landform data U, and based on the target excavated landform data Ua for display, the display unit 29 becomes the target of the work object of the working machine 2 Display the shape, eg terrain.
 表示部29は、例えば、タッチパネルによる入力を受け付ける液晶表示装置であるが、これに限定されない。実施形態においては、表示部29に隣接してスイッチ29Sが設置されている。スイッチ29Sは、後述する介入制御を実行したり、実行中の介入制御を停止するための入力装置である。 The display unit 29 is, for example, a liquid crystal display device that receives an input by a touch panel, but is not limited to this. In the embodiment, the switch 29S is disposed adjacent to the display unit 29. The switch 29S is an input device for executing intervention control to be described later or stopping intervention control in progress.
 作業機コントローラ26は、圧力センサ66からブーム操作量MB、バケット操作量MTおよびアーム操作量MAを取得する。作業機コントローラ26は、センサコントローラ39からブーム6の傾斜角度θ1、アーム7の傾斜角度θ2、バケット8の傾斜角度θ3を取得する。 The work machine controller 26 acquires the boom operation amount MB, the bucket operation amount MT, and the arm operation amount MA from the pressure sensor 66. The work machine controller 26 acquires the tilt angle θ1 of the boom 6, the tilt angle θ2 of the arm 7, and the tilt angle θ3 of the bucket 8 from the sensor controller 39.
 作業機コントローラ26は、表示コントローラ28から、目標掘削地形データUを取得する。目標掘削地形データUは、目標施工情報Tのうち、油圧ショベル100がこれから作業する範囲の情報である。 The work machine controller 26 acquires target excavation landform data U from the display controller 28. The target excavation landform data U is information of a range in which the hydraulic shovel 100 is to work from now on among the target construction information T.
 目標掘削地形データUは、目標施工情報Tの一部である。目標掘削地形データUは、目標施工情報Tと同様に作業機2の作業対象の仕上がりの目標となる形状を表す。この仕上がりの目標となる形状を、以下においては適宜、目標掘削地形と称する。 The target excavation topography data U is a part of the target construction information T. The target excavation landform data U, similarly to the target construction information T, represents a shape that is a target of the finish of the work object of the work machine 2. The target shape of the finish is hereinafter referred to as a target excavation topography as appropriate.
 作業機コントローラ26は、センサコントローラ39から取得した作業機2の角度からバケット8の刃先8Tの位置(以下、適宜、刃先位置と称する)を算出する。 The work machine controller 26 calculates the position of the cutting edge 8T of the bucket 8 (hereinafter referred to as a cutting edge position as appropriate) from the angle of the work machine 2 acquired from the sensor controller 39.
 作業機コントローラ26は、目標掘削地形データUに沿ってバケット8の刃先8Tが移動するように、目標掘削地形データUとバケット8の刃先8Tとの距離および作業機2の速度に基づいて作業機2の動作を制御する。 The working machine controller 26 operates the working machine based on the distance between the target excavation landform data U and the cutting edge 8T of the bucket 8 and the speed of the work machine 2 so that the cutting edge 8T of the bucket 8 moves along the target excavation landform data U Control the operation of 2.
 作業機コントローラ26は、バケット8が目標掘削地形データUである作業機2の作業対象の目標とする形状を侵食することを抑制するために、作業機2が施工対象に接近する方向の速度が制限速度以下になるように制御する。この制御を、適宜、介入制御と称する。 In order for the work machine controller 26 to prevent the bucket 8 from eroding the target shape of the work target of the work machine 2 which is the target excavation landform data U, the speed in the direction in which the work machine 2 approaches the construction target is Control to be below the speed limit. This control is appropriately referred to as intervention control.
 介入制御は、例えば、油圧ショベル100のオペレータが、図2に示されるスイッチ29Sを用いて介入制御を実行することを選択した場合に実行される。後述する目標掘削地形とバケット8との距離を算出する場合、バケット8の基準となる位置は刃先8Tに限らず任意の場所でよい。 The intervention control is executed, for example, when the operator of the hydraulic shovel 100 selects to execute the intervention control using the switch 29S shown in FIG. When calculating the distance between the target excavation topography to be described later and the bucket 8, the position serving as the reference of the bucket 8 is not limited to the blade edge 8T, and may be any place.
 介入制御において、作業機コントローラ26は、目標掘削地形データUに沿ってバケット8の刃先8Tが移動するように作業機2を制御するためにブーム指令信号CBIを生成して、図2に示される介入弁27Cに出力する。 In intervention control, the work machine controller 26 generates a boom command signal CBI to control the work machine 2 to move the cutting edge 8T of the bucket 8 along the target excavation landform data U, as shown in FIG. It outputs to the intervention valve 27C.
 ブーム6は、ブーム指令信号CBIに応じて動作する。ブーム指令信号CBIに応じたブーム6の動作により、作業機2、より詳細にはバケット8の速度が制御される。バケット8と目標掘削地形データUとの距離に応じて、バケット8が目標掘削地形データUに近づく速度が制限される。 Boom 6 operates in accordance with boom command signal CBI. The movement of the boom 6 in response to the boom command signal CBI controls the speed of the work implement 2, more specifically, the bucket 8. Depending on the distance between the bucket 8 and the target excavation landform data U, the speed at which the bucket 8 approaches the target excavation landform data U is limited.
 <油圧回路301の構成>
 図3は、実施形態に基づくブームシリンダ10の油圧回路301の一例を示す図である。
<Configuration of Hydraulic Circuit 301>
FIG. 3 is a diagram showing an example of a hydraulic circuit 301 of the boom cylinder 10 based on the embodiment.
 図3に示されるように、油圧回路301は、操作装置25と方向制御弁64との間にパイロット油路450が設けられる。方向制御弁64は、ブームシリンダ10に供給される作動油が流れる方向を制御する弁である。 As shown in FIG. 3, the hydraulic circuit 301 is provided with a pilot oil passage 450 between the operating device 25 and the direction control valve 64. The direction control valve 64 is a valve that controls the direction in which the hydraulic oil supplied to the boom cylinder 10 flows.
 実施形態において、方向制御弁64は、ロッド状のスプール64Sを移動させることにより、作動油が流れる方向を切り替えるスプール方式の弁である。 In the embodiment, the direction control valve 64 is a spool type valve that switches the flow direction of the hydraulic oil by moving the rod-like spool 64S.
 スプール64Sは、図2に示される操作装置25から供給された作動油(以下、適宜、パイロット油と称する)により移動する。方向制御弁64は、スプール64Sの移動により、ブームシリンダ10に作動油を供給して、ブームシリンダ10を動作させる。 The spool 64S is moved by the hydraulic oil (hereinafter appropriately referred to as pilot oil) supplied from the operating device 25 shown in FIG. The direction control valve 64 supplies hydraulic fluid to the boom cylinder 10 by the movement of the spool 64S to operate the boom cylinder 10.
 パイロット油路50およびパイロット油路450Bは、シャトル弁51に接続している。 The pilot oil passage 50 and the pilot oil passage 450 B are connected to the shuttle valve 51.
 シャトル弁51と方向制御弁64の一方は、油路452Bによって接続される。方向制御弁64の他方と操作装置25とは、パイロット油路450Aとパイロット油路452Aによって接続される。パイロット油路50には、介入弁27Cが設けられる。介入弁27Cは、パイロット油路50のパイロット圧を調整する。 One of the shuttle valve 51 and the direction control valve 64 is connected by an oil passage 452B. The other of the direction control valve 64 and the operating device 25 are connected by a pilot oil passage 450A and a pilot oil passage 452A. The pilot oil passage 50 is provided with an intervention valve 27C. The intervention valve 27C adjusts the pilot pressure of the pilot oil passage 50.
 パイロット油路450Bには、圧力センサ66Bおよび制御弁27Bが設けられる。パイロット油路450Aには、制御弁27Aと操作装置25との間に圧力センサ66Aが設けられる。圧力センサ66の検出値は、図2に示される作業機コントローラ26に取得されて、ブームシリンダ10の制御に用いられる。 The pilot oil passage 450B is provided with a pressure sensor 66B and a control valve 27B. The pilot oil passage 450A is provided with a pressure sensor 66A between the control valve 27A and the operating device 25. The detection value of the pressure sensor 66 is acquired by the work machine controller 26 shown in FIG. 2 and used to control the boom cylinder 10.
 圧力センサ66Aおよび圧力センサ66Bは、図2に示される圧力センサ66に対応する。制御弁27Aおよび制御弁27Bは、図2に示される制御弁27に対応する。 The pressure sensor 66A and the pressure sensor 66B correspond to the pressure sensor 66 shown in FIG. The control valve 27A and the control valve 27B correspond to the control valve 27 shown in FIG.
 油圧ポンプ36,37から供給された作動油は、方向制御弁64を介してブームシリンダ10に供給される。スプール64Sが軸方向に移動することにより、ブームシリンダ10のキャップ側油室48Rに対する作動油の供給と、ロッド側油室47Rに対する作動油の供給とが切り替わる。 The hydraulic oil supplied from the hydraulic pumps 36 and 37 is supplied to the boom cylinder 10 via the direction control valve 64. As the spool 64S moves in the axial direction, the supply of the hydraulic fluid to the cap side oil chamber 48R of the boom cylinder 10 and the supply of the hydraulic fluid to the rod side oil chamber 47R are switched.
 スプール64Sが軸方向に移動することにより、ブームシリンダ10に対する作動油の単位時間当たりの供給量である流量が調整される。ブームシリンダ10に対する作動油の流量が調整されることにより、ブームシリンダ10の動作速度が調整される。 The axial movement of the spool 64S adjusts the flow rate, which is the amount supplied of hydraulic fluid to the boom cylinder 10 per unit time. By adjusting the flow rate of hydraulic fluid to the boom cylinder 10, the operating speed of the boom cylinder 10 is adjusted.
 方向制御弁64のスプール64Sが第1の方向に移動すると、方向制御弁64からキャップ側油室48Rに作動油が供給され、ロッド側油室47Rから方向制御弁64に作動油が戻されると、ブームシリンダ10のピストン10Pはキャップ側油室48Rからロッド側油室47Rに向かって移動する。その結果、ピストン10Pに接続されたロッド10Lがブームシリンダ10から伸長する。 When the spool 64S of the direction control valve 64 moves in the first direction, the working oil is supplied from the direction control valve 64 to the cap side oil chamber 48R, and when the working oil is returned from the rod side oil chamber 47R to the direction control valve 64 The piston 10P of the boom cylinder 10 moves from the cap side oil chamber 48R toward the rod side oil chamber 47R. As a result, the rod 10L connected to the piston 10P extends from the boom cylinder 10.
 方向制御弁64のスプール64Sが、操作装置25からの指令に基づき第1の方向とは反対方向である第2の方向に移動すると、キャップ側油室48Rから方向制御弁64に作動油が戻される。方向制御弁64からロッド側油室47Rに作動油が供給されると、ブームシリンダ10のピストン10Pは、ロッド側油室47Rからキャップ側油室48Rに向かって移動する。その結果、ピストン10Pに接続されたロッド10Lがブームシリンダ10に縮退する。このように、方向制御弁64のスプール64Sの移動方向が調整されることにより、ブームシリンダ10の動作方向が変更される。 When the spool 64S of the direction control valve 64 moves in the second direction opposite to the first direction based on the command from the operating device 25, the hydraulic oil is returned from the cap side oil chamber 48R to the direction control valve 64. Be When hydraulic fluid is supplied from the direction control valve 64 to the rod side oil chamber 47R, the piston 10P of the boom cylinder 10 moves from the rod side oil chamber 47R toward the cap side oil chamber 48R. As a result, the rod 10 </ b> L connected to the piston 10 </ b> P retracts to the boom cylinder 10. Thus, by adjusting the moving direction of the spool 64S of the direction control valve 64, the operating direction of the boom cylinder 10 is changed.
 方向制御弁64のスプール64Sの移動量が調整されることにより、ブームシリンダ10に供給され、ブームシリンダ10から方向制御弁64に戻される作動油の流量が変更されるので、ブームシリンダ10の動作速度であるピストン10Pおよびロッド10Lの移動速度が変更される。 The movement amount of the spool 64S of the direction control valve 64 is adjusted to change the flow rate of the hydraulic oil supplied to the boom cylinder 10 and returned from the boom cylinder 10 to the direction control valve 64. The moving speeds of the piston 10P and the rod 10L, which are speeds, are changed.
 前述したように、方向制御弁64の動作は、操作装置25によって制御される。図2に示される油圧ポンプ36から吐出され、減圧弁25Vによって減圧された作動油がパイロット油として操作装置25に供給される。 As described above, the operation of the directional control valve 64 is controlled by the operating device 25. The hydraulic oil discharged from the hydraulic pump 36 shown in FIG. 2 and reduced in pressure by the pressure reducing valve 25V is supplied to the operating device 25 as a pilot oil.
 操作装置25は、各操作レバーの操作に基づいて、パイロット油圧を調整する。調整されたパイロット油圧によって、方向制御弁64が駆動される。操作装置25によりパイロット油圧の大きさおよびパイロット油圧の方向が調整されることによって、軸方向に関するスプール64Sの移動量および移動方向が調整される。その結果、ブームシリンダ10の動作速度および動作方向が変更される。 The operating device 25 adjusts the pilot hydraulic pressure based on the operation of each operating lever. The direction control valve 64 is driven by the adjusted pilot pressure. By adjusting the magnitude of the pilot hydraulic pressure and the direction of the pilot hydraulic pressure by the operation device 25, the amount and direction of movement of the spool 64S in the axial direction are adjusted. As a result, the operating speed and direction of the boom cylinder 10 are changed.
 作業機コントローラ26は、介入制御において、前述したように、掘削対象の目標形状である設計地形を示す目標掘削地形(目標掘削地形データU)とバケット8の位置を求めるための傾斜角度θ1,θ2,θ3とに基づき、目標掘削地形43Iとバケット8との距離に応じてバケット8が目標掘削地形43Iに近づく速度が小さくなるように、ブーム6の速度を制限する。 In the intervention control, as described above, the work machine controller 26 determines the target excavation landform (target excavation landform data U) indicating the design topography which is the target shape to be excavated and the inclination angles θ1 and θ2 for determining the position of the bucket 8 , Θ 3, the speed of the boom 6 is limited so that the speed at which the bucket 8 approaches the target excavation land shape 43I becomes smaller according to the distance between the target excavation land shape 43I and the bucket 8.
 実施形態において、操作装置25の操作に基づいて作業機2が動作する場合、バケット8の刃先8Tが目標掘削地形43Iに侵入しないように、作業機コントローラ26はブーム指令信号CBIを生成し、これを用いてブーム6の動作を制御する。 In the embodiment, when the work machine 2 operates based on the operation of the operation device 25, the work machine controller 26 generates the boom command signal CBI so that the cutting edge 8T of the bucket 8 does not intrude into the target excavation landform 43I. To control the operation of the boom 6.
 詳細には、作業機コントローラ26は、介入制御において刃先8Tが目標掘削地形43Iに侵入しないように、ブーム6を上昇させる。介入制御において実行されるブーム6を上昇させる制御を、適宜、ブーム介入制御と称する。 In detail, the work machine controller 26 raises the boom 6 so that the cutting edge 8T does not intrude into the target excavation land shape 43I in the intervention control. Control for raising the boom 6 executed in the intervention control is appropriately referred to as boom intervention control.
 実施形態において、作業機コントローラ26がブーム介入制御を実現するために、作業機コントローラ26は、ブーム介入制御に関するブーム指令信号CBIを生成し、介入弁27Cに出力する。 In the embodiment, in order for work implement controller 26 to implement boom intervention control, work implement controller 26 generates boom command signal CBI for boom intervention control and outputs it to intervention valve 27C.
 介入弁27Cは、パイロット油路50のパイロット油圧を調整可能である。シャトル弁51は、2つの入口51Ia,51Ibと、1つの出口51Eとを有する。一方の入口51Iaは、介入弁27Cと接続される。他方の入口51Ibは、制御弁27Bと接続される。出口51Eは、方向制御弁64に接続される油路452Bと接続される。 The intervention valve 27C can adjust the pilot oil pressure of the pilot oil passage 50. Shuttle valve 51 has two inlets 51Ia and 51Ib and one outlet 51E. One inlet 51Ia is connected to the intervention valve 27C. The other inlet 51b is connected to the control valve 27B. The outlet 51E is connected to an oil passage 452B connected to the direction control valve 64.
 シャトル弁51は、2つの入口51Ia,51Ibのうち、パイロット油圧が高い方と、油路452Bとを接続する。 The shuttle valve 51 connects the oil passage 452B to one of the two inlets 51Ia and 51Ib, which has the higher pilot hydraulic pressure.
 例えば、入口51Iaのパイロット油圧が入口51Ibのパイロット油圧よりも高い場合、シャトル弁51は、介入弁27Cと油路452Bとを接続する。その結果、介入弁27Cを通過したパイロット油がシャトル弁51を介して油路452Bに供給される。入口51Ibのパイロット油圧が入口51Iaのパイロット油圧よりも高い場合、シャトル弁51は、制御弁27Bと油路452Bとを接続する。その結果、制御弁27Bを通過したパイロット油がシャトル弁51を介して油路452Bに供給される。 For example, when the pilot oil pressure at the inlet 51Ia is higher than the pilot oil pressure at the inlet 51Ib, the shuttle valve 51 connects the intervention valve 27C to the oil path 452B. As a result, the pilot oil that has passed the intervention valve 27C is supplied to the oil passage 452B via the shuttle valve 51. When the pilot oil pressure at the inlet 51Ib is higher than the pilot oil pressure at the inlet 51Ia, the shuttle valve 51 connects the control valve 27B to the oil path 452B. As a result, the pilot oil that has passed through the control valve 27B is supplied to the oil passage 452B via the shuttle valve 51.
 ブーム介入制御が実行されないとき、操作装置25の操作によって調整されたパイロット油圧に基づいて方向制御弁64が駆動されるようにする。例えば、作業機コントローラ26は、操作装置25の操作によって調整されたパイロット油圧に基づいて方向制御弁64が駆動されるように、制御弁27Bによりパイロット油路450Bを開ける(全開にする)とともに、介入弁27Cを制御してパイロット油路50を閉じる。 When the boom intervention control is not performed, the directional control valve 64 is driven based on the pilot hydraulic pressure adjusted by the operation of the operating device 25. For example, the work implement controller 26 opens (fully opens) the pilot oil passage 450B by the control valve 27B so that the directional control valve 64 is driven based on the pilot hydraulic pressure adjusted by the operation of the operating device 25. The intervention valve 27C is controlled to close the pilot oil passage 50.
 ブーム介入制御が実行されるとき、作業機コントローラ26は、介入弁27Cによって調整されたパイロット油圧に基づいて方向制御弁64が駆動されるように制御弁27を制御する。例えば、ブーム介入制御であるバケット8の目標掘削地形43Iへの移動を制限する制御を実行する場合、作業機コントローラ26は、介入弁27Cによって調整されたパイロット油路50のパイロット油圧が、操作装置25によって調整されるパイロット油路450Bのパイロット油圧よりも高くなるように、介入弁27Cを制御する。このようにすることで、介入弁27Cからのパイロット油がシャトル弁51を介して方向制御弁64に供給される。 When the boom intervention control is performed, the work implement controller 26 controls the control valve 27 such that the directional control valve 64 is driven based on the pilot hydraulic pressure adjusted by the intervention valve 27C. For example, when executing control to limit movement of the bucket 8 to the target excavation land 43I, which is boom intervention control, the work implement controller 26 controls the pilot oil pressure of the pilot oil passage 50 adjusted by the intervention valve 27C The intervention valve 27C is controlled to be higher than the pilot oil pressure of the pilot oil passage 450B adjusted by 25. By doing this, the pilot oil from the intervention valve 27C is supplied to the directional control valve 64 via the shuttle valve 51.
 作業機コントローラ26は、ブーム介入制御を実行する場合、例えばブーム6を上昇させるための速度指令であるブーム指令信号CBIを生成し、介入弁27Cを制御する。このようにすることで、ブームシリンダ10の方向制御弁64は、ブーム指令信号CBIに対応した速度でブーム6が上昇するように作動油をブームシリンダ10に供給するので、ブームシリンダ10はブーム6を上昇させる。 When executing the boom intervention control, the work implement controller 26 generates a boom command signal CBI, which is a speed command for raising the boom 6, for example, and controls the intervention valve 27C. By doing this, the direction control valve 64 of the boom cylinder 10 supplies hydraulic fluid to the boom cylinder 10 so that the boom 6 is lifted at a speed corresponding to the boom command signal CBI. Raise
 ブームシリンダ10の油圧回路301を説明したが、アームシリンダ11の油圧回路およびバケットシリンダ12の油圧回路は、ブームシリンダ10の油圧回路301から介入弁27C、シャトル弁51およびパイロット油路50を除いた構成である。 Although the hydraulic circuit 301 of the boom cylinder 10 has been described, the hydraulic circuit of the arm cylinder 11 and the hydraulic circuit of the bucket cylinder 12 exclude the intervention valve 27 C, the shuttle valve 51 and the pilot oil passage 50 from the hydraulic circuit 301 of the boom cylinder 10 It is a structure.
 ブーム介入制御は、介入制御において実行されるブーム6を上昇させる制御であるが、介入制御において、作業機コントローラ26は、ブーム6の上昇に加えて又はブーム6の上昇の代わりに、アーム7およびバケット8の少なくとも一方を上昇させてもよい。 The boom intervention control is control for raising the boom 6 executed in the intervention control, but in the intervention control, the work machine controller 26 controls the arm 7 and the arm 6 in addition to or instead of raising the boom 6. At least one of the buckets 8 may be raised.
 介入制御において、作業機コントローラ26は、作業機2を構成するブーム6、アーム7およびバケット8の少なくとも1つを上昇させることにより、作業機2の作業対象の目標形状、実施形態では目標掘削地形43Iから離れる方向に作業機2を移動させる。 In the intervention control, the work implement controller 26 lifts at least one of the boom 6, the arm 7 and the bucket 8 constituting the work implement 2 to obtain the target shape of the work target of the work implement 2, in the embodiment, the target excavation topography Move work implement 2 in the direction away from 43I.
 実施形態において、操作装置25の操作に基づいて作業機2が動作する場合、作業機コントローラ26が作業機2を構成するブーム6、アーム7およびバケット8の少なくとも1つを動作させる制御を介入制御と称する。 In the embodiment, when the work machine 2 operates based on the operation of the operation device 25, intervention control is performed to control at least one of the boom 6, the arm 7, and the bucket 8 that the work machine controller 26 configures the work machine 2. It is called.
 介入制御は、操作装置25の操作であるマニュアル操作に基づいて作業機2が動作する場合に、作業機コントローラ26が作業機を動作させる制御である。前述したブーム介入制御は、介入制御の一態様である。 The intervention control is control in which the work implement controller 26 operates the work implement 2 when the work implement 2 operates based on the manual operation which is the operation of the operation device 25. The boom intervention control described above is an aspect of the intervention control.
 図4は、実施形態に基づく作業機コントローラ26のブロック図である。
 図5は、実施形態に基づく目標掘削地形データUおよびバケット8を示す図である。
FIG. 4 is a block diagram of work implement controller 26 based on the embodiment.
FIG. 5 is a diagram showing the target excavation landform data U and the bucket 8 based on the embodiment.
 図6は、実施形態に基づくブーム制限速度Vcy_bmを説明するための図である。
 図7は、実施形態に基づく制限速度Vc_lmtを説明するための図である。
FIG. 6 is a diagram for explaining the boom speed limit Vcy_bm based on the embodiment.
FIG. 7 is a diagram for explaining the speed limit Vc_lmt based on the embodiment.
 作業機コントローラ26は、判定部26Jと制御部26CNTとを含む。制御部26CNTは、相対位置算出部26A、距離算出部26B、目標速度算出部26C、介入速度算出部26D、介入指令算出部26E、介入速度修正部26Fを含む。 The work implement controller 26 includes a determination unit 26J and a control unit 26CNT. Control unit 26CNT includes relative position calculation unit 26A, distance calculation unit 26B, target speed calculation unit 26C, intervention speed calculation unit 26D, intervention command calculation unit 26E, and intervention speed correction unit 26F.
 判定部26J、相対位置算出部26A、距離算出部26B、目標速度算出部26C、介入速度算出部26D、介入指令算出部26E、介入速度修正部26Fの機能は、図2に示される、作業機コントローラ26の処理部26Pが実現する。 The functions of the determination unit 26J, the relative position calculation unit 26A, the distance calculation unit 26B, the target speed calculation unit 26C, the intervention speed calculation unit 26D, the intervention command calculation unit 26E, and the intervention speed correction unit 26F are shown in FIG. The processing unit 26P of the controller 26 implements this.
 介入制御が実行されるにあたって、作業機コントローラ26は、ブーム操作量MB、アーム操作量MA、バケット操作量MT、表示コントローラ28から取得した目標掘削地形データU、バケット刃先位置データSおよびセンサコントローラ39から取得した傾斜角度θ1,θ2,θ3を用いて、介入制御に必要なブーム指令信号CBIを生成し、必要に応じてアーム指令信号およびバケット指令信号を生成し、制御弁27および介入弁27Cを駆動して作業機2を制御する。 When the intervention control is executed, the work machine controller 26 includes the boom operation amount MB, the arm operation amount MA, the bucket operation amount MT, the target excavation landform data U acquired from the display controller 28, the bucket blade tip position data S and the sensor controller 39. The boom command signal CBI required for intervention control is generated using the inclination angles θ1, θ2 and θ3 obtained from the above, the arm command signal and the bucket command signal are generated as necessary, and the control valve 27 and the intervention valve 27C are It drives and controls the work machine 2.
 相対位置算出部26Aは、表示コントローラ28からバケット刃先位置データSを取得し、センサコントローラ39から傾斜角度θ1,θ2,θ3を取得する。相対位置算出部26Aは、取得した傾斜角度θ1,θ2,θ3からバケット8の刃先8Tの位置である刃先位置Pbを求める。 The relative position calculation unit 26A acquires bucket blade tip position data S from the display controller 28, and acquires inclination angles θ1, θ2, and θ3 from the sensor controller 39. The relative position calculation unit 26A obtains a blade edge position Pb which is a position of the blade edge 8T of the bucket 8 from the acquired inclination angles θ1, θ2, θ3.
 距離算出部26Bは、相対位置算出部26Aによって求められた刃先位置Pbと、表示コントローラ28から取得した目標掘削地形データUとから、バケット8の刃先8Tと、目標施工情報Tの一部である目標掘削地形データUで表される目標掘削地形43Iとの間の最短となる距離dを算出する。距離dは、刃先位置Pbと、目標掘削地形43Iに直交し、かつ刃先位置Pbを通る直線と、目標掘削地形データUとが交差する位置Puとの距離である。 The distance calculation unit 26B is a part of the cutting edge 8T of the bucket 8 and a part of the target construction information T from the cutting edge position Pb obtained by the relative position calculating unit 26A and the target excavation landform data U acquired from the display controller 28. A shortest distance d between the target excavation landform 431 represented by the target excavation landform data U is calculated. The distance d is a distance between the cutting edge position Pb, and a position Pu at which a straight line passing through the cutting edge position Pb is orthogonal to the target excavation topography 43I and the target excavation topography data U intersects.
 目標掘削地形43Iは、上部旋回体3の前後方向で規定され、かつ掘削対象位置Pdgを通る作業機2の平面と、複数の目標施工面で表される目標施工情報Tとの交線から求められる。 The target excavation landform 43I is determined from the intersection line between the plane of the working machine 2 defined in the front-rear direction of the upper revolving superstructure 3 and passing through the drilling target position Pdg and the target construction information T represented by a plurality of target construction surfaces. Be
 より詳細には、前述した交線のうち、目標施工情報Tの掘削対象位置Pdgの前後における単数又は複数の変曲点とその前後の線が目標掘削地形43Iである。 More specifically, one or more inflection points before and after the digging target position Pdg of the target construction information T and lines before and after that are the target excavation landforms 43I among the intersection lines described above.
 図5に示される例では、2個の変曲点Pv1、Pv2とその前後の線とが目標掘削地形43Iである。掘削対象位置Pdgは、バケット8の刃先8Tの位置である刃先位置Pbの直下の点である。このように、目標掘削地形43Iは、目標施工情報Tの一部である。目標掘削地形43Iは、図2に示される表示コントローラ28が生成する。 In the example shown in FIG. 5, two inflection points Pv1 and Pv2 and lines before and after them are the target excavation landform 43I. The excavation target position Pdg is a point immediately below the cutting edge position Pb which is the position of the cutting edge 8T of the bucket 8. Thus, the target excavation landform 43I is a part of the target construction information T. The target excavation landform 431 is generated by the display controller 28 shown in FIG.
 目標速度算出部26Cは、ブーム目標速度Vc_bmと、アーム目標速度Vc_amと、バケット目標速度Vc_bktとを決定する。ブーム目標速度Vc_bmは、ブームシリンダ10が駆動されるときの刃先8Tの速度である。アーム目標速度Vc_amは、アームシリンダ11が駆動されるときの刃先8Tの速度である。バケット目標速度Vc_bktは、バケットシリンダ12が駆動されるときの刃先8Tの速度である。ブーム目標速度Vc_bmは、ブーム操作量MBに応じて算出される。アーム目標速度Vc_amは、アーム操作量MAに応じて算出される。バケット目標速度Vc_bktは、バケット操作量MTに応じて算出される。 The target speed calculation unit 26C determines the boom target speed Vc_bm, the arm target speed Vc_am, and the bucket target speed Vc_bkt. The boom target speed Vc_bm is the speed of the cutting edge 8T when the boom cylinder 10 is driven. The arm target speed Vc_am is the speed of the cutting edge 8T when the arm cylinder 11 is driven. The bucket target speed Vc_bkt is the speed of the cutting edge 8T when the bucket cylinder 12 is driven. The boom target speed Vc_bm is calculated according to the boom operation amount MB. The arm target speed Vc_am is calculated according to the arm operation amount MA. The bucket target speed Vc_bkt is calculated according to the bucket operation amount MT.
 介入速度算出部26Dは、バケット8の刃先8Tと目標掘削地形43Iとの間の距離dに基づいて、ブーム6の制限速度(ブーム制限速度)Vcy_bmを求める。 The intervention speed calculation unit 26D obtains the speed limit Vc_bm of the boom 6 (boom speed limit) based on the distance d between the blade tip 8T of the bucket 8 and the target excavation land shape 43I.
 図6に示されるように、介入速度算出部26Dは、図1に示される作業機2全体の制限速度Vc_lmtから、アーム目標速度Vc_amおよびバケット目標速度Vc_bktを減算することにより、ブーム制限速度Vcy_bmを求める。 As shown in FIG. 6, the intervention speed calculation unit 26D subtracts the arm target speed Vc_am and the bucket target speed Vc_bkt from the speed limit Vc_lmt of the entire work machine 2 shown in FIG. 1 to obtain the boom speed limit Vcy_bm. Ask.
 制限速度Vc_lmtは、バケット8の刃先8Tが目標掘削地形43Iに接近する方向において許容できる刃先8Tの移動速度である。 The speed limit Vc_lmt is a movement speed of the cutting edge 8T that can be tolerated in the direction in which the cutting edge 8T of the bucket 8 approaches the target excavation land shape 43I.
 制限速度Vc_lmtは、図7に示されるように、距離dが正の場合は負の値である作業機2が下降する場合の下降速度であり、距離dが負の場合は正の値である作業機2が上昇する場合の上昇速度である。 The speed limit Vc_lmt, as shown in FIG. 7, is a negative value when the distance d is positive is a negative value when the work implement 2 descends, and is a positive value when the distance d is negative. It is a rising speed when the work implement 2 rises.
 距離dが負の値とは、バケット8が目標掘削地形43Iを侵食した状態である。制限速度Vc_lmtは、距離dが小さくなるにしたがって、速度の絶対値が小さくなり、距離dが負の値になると、距離dの絶対値が大きくなるにしたがって速度の絶対値が大きくなる。 The negative value of the distance d means that the bucket 8 has eroded the target excavation topography 43I. As the speed limit Vc_lmt decreases, the absolute value of the speed decreases as the distance d decreases, and when the distance d becomes a negative value, the absolute value of the speed increases as the absolute value of the distance d increases.
 判定部26Jは、ブーム制限速度Vcy_bmを補正するか否かを判定する。
 判定部26Jがブーム制限速度Vcy_bmを補正すると判定した場合、介入速度修正部26Fはブーム制限速度Vcy_bmを補正して出力する。補正後のブーム制限速度は、Vcy_bm’で表される。
The determination unit 26J determines whether to correct the boom speed limit Vcy_bm.
When the determination unit 26J determines to correct the boom speed limit Vcy_bm, the intervention speed correction unit 26F corrects and outputs the boom speed limit Vcy_bm. The boom speed limit after correction is represented by Vcy_bm '.
 判定部26Jがブーム制限速度Vcy_bmを補正しないと判定した場合、介入速度修正部26Fはブーム制限速度Vcy_bmを補正しないで出力する。介入指令算出部26Eは、介入速度修正部26Fによって求められたブーム制限速度Vcy_bmから、ブーム指令信号CBIを生成する。 When the determination unit 26J determines that the boom speed limit Vcy_bm is not corrected, the intervention speed correction unit 26F outputs the boom speed limit Vcy_bm without correction. The intervention command calculation unit 26E generates a boom command signal CBI from the boom speed limit Vcy_bm obtained by the intervention speed correction unit 26F.
 ブーム指令信号CBIは、介入弁27Cの開度を、ブーム6がブーム制限速度Vcy_bmで上昇するために必要なパイロット圧力をシャトル弁51に作用させるために必要な大きさとするための指令である。ブーム指令信号CBIは、実施形態において、ブーム指令速度に応じた電流値である。 The boom command signal CBI is a command for setting the degree of opening of the intervention valve 27C to a level necessary for applying a pilot pressure necessary for the boom 6 to rise at the boom speed limit Vcy_bm to the shuttle valve 51. The boom command signal CBI is an electric current value according to the boom command speed in the embodiment.
 判定部26Jは、切替判定部26Kと、操作指令判断部26Lと、速度差判断部26Mとを含む。 Determination unit 26J includes a switching determination unit 26K, an operation command determination unit 26L, and a speed difference determination unit 26M.
 切替判定部26Kは、介入制御が不要となるか否かを判定する。
 操作指令判断部26Lは、オペレータが右操作レバー25Rに対してブーム6を上昇させる操作あるいは中立操作をしているか否かを判断する。中立操作は、上昇あるいは下降させる操作をしていない状態である。右操作レバー25Rが中間位置にある状態である。
The switching determination unit 26K determines whether or not the intervention control becomes unnecessary.
The operation command determination unit 26L determines whether the operator performs an operation to raise the boom 6 or the neutral operation with respect to the right control lever 25R. The neutral operation is a state in which the operation to raise or lower is not performed. The right control lever 25R is in the middle position.
 速度差判断部26Mは、ブーム制限速度Vcy_bmと、オペレータによる右操作レバー25Rに対するブーム6を上昇させる操作に従うブーム目標速度Vc_bmとの速度差を判断する。あるいは、速度差判断部26Mは、ブーム制限速度Vcy_bmと、オペレータによる右操作レバー25Rに対する中立操作に従うブーム目標速度0との速度差を判断する。具体的には、当該速度差が閾値Dr以上か否かを判断する。 The speed difference determination unit 26M determines the speed difference between the boom speed limit Vcy_bm and the boom target speed Vc_bm according to the operation by the operator to raise the boom 6 with respect to the right control lever 25R. Alternatively, the speed difference determination unit 26M determines the speed difference between the boom speed limit Vcy_bm and the boom target speed 0 according to the neutral operation of the right control lever 25R by the operator. Specifically, it is determined whether the speed difference is equal to or greater than a threshold value Dr.
 実施例において、判定部26Jは、介入制御が不要となる場合において、オペレータが右操作レバー25Rに対するブーム6を上昇させる操作をしている場合に、ブーム制限速度Vcy_bmと、オペレータによる右操作レバー25Rに対するブーム6を上昇させる操作に従うブーム目標速度Vc_bmとの速度差が閾値Dr以上である場合には、ブーム制限速度Vcy_bmを補正する。また、判定部26Jは、介入制御が不要となる場合において、オペレータが右操作レバー25Rに対する中立操作をしている場合に、ブーム制限速度Vcy_bmと、オペレータによる右操作レバー25Rに対する中立操作に従うブーム目標速度0との速度差が閾値Dr以上である場合には、ブーム制限速度Vcy_bmを補正する。 In the embodiment, when the operator does not need to perform intervention control, the boom speed limit Vcy_bm and the right control lever 25R by the operator are operated when the operator performs an operation to raise the boom 6 with respect to the right control lever 25R. If the speed difference from the boom target speed Vc_bm according to the operation to raise the boom 6 with respect to is larger than the threshold value Dr, the boom speed limit Vcy_bm is corrected. In addition, when the operator does not perform the neutral operation on the right control lever 25R when the intervention control is not necessary, the determination unit 26J is a boom target according to the boom speed limit Vcy_bm and the neutral operation of the right control lever 25R by the operator. If the speed difference from the speed 0 is equal to or more than the threshold value Dr, the boom speed limit Vcy_bm is corrected.
 <ブーム介入制御の態様>
 図8は、実施形態に基づくバケット8と目標掘削地形43Iとの関係を示す図である。
<Aspect of boom intervention control>
FIG. 8 is a diagram showing the relationship between the bucket 8 and the target excavation landform 43I based on the embodiment.
 図8に示されるように、介入制御は、バケット8が目標掘削地形43Iを侵食しないようにバケット8を移動させる制御である。作業機コントローラ26が介入制御を実行している場合、バケット8が目標掘削地形43Iを侵食しようとすると、作業機コントローラ26はブーム介入制御を実行する。 As shown in FIG. 8, the intervention control is control for moving the bucket 8 so that the bucket 8 does not erode the target excavation land shape 43I. When the work implement controller 26 is executing intervention control, the work implement controller 26 executes boom intervention control when the bucket 8 tries to erode the target excavation land form 43I.
 介入制御は、図8に示されるように、オペレータ操作により作業機が目標掘削地形43Iを侵食しようとする場合に実行される。 The intervention control is executed when the working machine tries to erode the target excavation land shape 43I by the operator operation as shown in FIG.
 介入制御は、バケット8が、図8に示される矢印Yの方向に移動することによってオペレータ操作により作業機が目標掘削地形43Iを侵食しない状況になると実行されない。 The intervention control is not executed when the bucket 8 moves in the direction of the arrow Y shown in FIG. 8 and the operator's operation causes the work machine not to erode the target excavation land form 43I.
 オペレータ操作により作業機が目標掘削地形43Iを侵食しない状況になると介入制御は不要になる。 Intervention control becomes unnecessary when the operator's operation causes the work machine not to erode the target excavation landform 43I.
 作業機コントローラ26が介入制御を実行している場合に、油圧ショベル100のオペレータが作業機2およびバケット8を上向きに移動させる操作を実行していることがある。 When the work machine controller 26 is executing intervention control, the operator of the hydraulic shovel 100 may execute an operation of moving the work machine 2 and the bucket 8 upward.
 図8に示されるように目標掘削地形43Iが存在している領域からバケット8が外れた場合に介入制御が解除されると、介入制御からマニュアル操作による作業機2の制御に切り替わる。 As shown in FIG. 8, when the intervention control is released when the bucket 8 deviates from the area where the target excavation landform 431 exists, the intervention control is switched to the control of the work machine 2 by the manual operation.
 介入制御からマニュアル操作による作業機2の制御への切り替わりの際、急激な速度変化は結果として、オペレータに違和感を生じさせる。 When switching from the intervention control to the control of the work machine 2 by manual operation, the rapid speed change results in an uncomfortable feeling to the operator.
 図9は、実施形態に基づくブーム6が動作する速度であるブーム目標速度Vbmと、時間tとの関係を示す図である。 FIG. 9 is a view showing a relationship between a boom target speed Vbm, which is a speed at which the boom 6 operates based on the embodiment, and time t.
 図9に示されるように、縦軸がブーム目標速度Vbmであり、横軸が時間tである。ブーム目標速度Vbmは、正の値をとる場合にブーム6が上昇する速度である上昇速度を表し、負の値をとる場合にブーム6が下降する速度である下降速度を表す。 As shown in FIG. 9, the vertical axis is the boom target speed Vbm, and the horizontal axis is the time t. The boom target speed Vbm represents a rising speed which is a speed at which the boom 6 moves up when taking a positive value, and a lowering speed which shows a moving down speed of the boom 6 when taking a negative value.
 ブーム6は作業機2の一部であるため、ブーム目標速度Vbmは、作業機2の速度である。ブーム6の上昇速度は作業機2の上昇速度に対応し、ブーム6の下降速度は作業機2の下降速度に対応する。 Since the boom 6 is a part of the work machine 2, the boom target speed Vbm is the speed of the work machine 2. The rising speed of the boom 6 corresponds to the rising speed of the working machine 2, and the lowering speed of the boom 6 corresponds to the falling speed of the working machine 2.
 実施形態において、作業機2の上昇速度および下降速度を、作業機2の移動速度と称する。作業機2の移動速度は、作業機2が上昇するときは正の値をとり、下降するときは負の値をとる。 In the embodiment, the rising speed and the falling speed of the work implement 2 are referred to as the movement speed of the work implement 2. The moving speed of the work implement 2 takes a positive value when the work implement 2 rises, and takes a negative value when the work implement 2 descends.
 作業機コントローラ26は、目標掘削地形43Iが存在している領域からバケット8が外れた場合、ブーム介入制御が不要となる場合には、ブーム目標速度Vbmを油圧ショベル100のオペレータの操作によって決定されるブーム目標速度Vbopに設定する。 The work implement controller 26 determines the boom target speed Vbm by the operation of the operator of the hydraulic shovel 100 when the boom intervention control becomes unnecessary when the bucket 8 is out of the area where the target excavation landform 431 exists. Target boom speed Vbop.
 作業機コントローラ26は、所定条件の場合にブーム目標速度Vbmを、ブーム介入制御が不要となる前のブーム制限速度Vcy_bm1から一定の変化率VRCで減少させて、ブーム目標速度Vbopに設定する。 The work machine controller 26 sets the boom target speed Vbm to a boom target speed Vbop by decreasing the boom target speed Vbm from the boom speed limit Vcy_bm1 before the boom intervention control becomes unnecessary at a constant rate of change VRC under a predetermined condition.
 ブーム介入制御が不要となる場合には、作業機2に対する介入制御から操作装置25からの操作指令に基づく作業機2の制御に切り替える。 When the boom intervention control becomes unnecessary, the control is switched from the intervention control to the work machine 2 to the control of the work machine 2 based on the operation command from the operating device 25.
 実施形態において、作業機コントローラ26は、ブーム介入制御が不要になった場合に、操作装置25からの操作指令がブーム6の上昇指令あるいは中立指令である場合には、ブーム介入制御に従うブーム制限速度Vcy_bm1と、オペレータの操作によって決定されるブーム目標速度Vbopあるいは0とを比較する。そして、ブーム制限速度Vcy_bm1と、ブーム目標速度Vbopあるいは0との差分Dを算出する。ブーム制限速度Vcy_bm1とブーム目標速度Vbopあるいは0との差分Dが大きいほど速度変化が大きいことを意味する。 In the embodiment, when the boom intervention control becomes unnecessary, the work machine controller 26 controls the boom speed limit according to the boom intervention control when the operation command from the operating device 25 is the boom 6 elevation command or the neutral command. Vcy_bm1 is compared with the boom target speed Vbop or 0 determined by the operation of the operator. Then, the difference D between the boom speed limit Vcy_bm1 and the boom target speed Vbop or 0 is calculated. The larger the difference D between the boom speed limit Vcy_bm1 and the boom target speed Vbop or 0, the larger the speed change.
 実施形態においては、ブーム制限速度Vcy_bm1とブーム目標速度Vbopあるいは0との差分Dが閾値Dr以上であるか否かを判断する。 In the embodiment, it is determined whether the difference D between the boom speed limit Vcy_bm1 and the boom target speed Vbop or 0 is equal to or more than the threshold value Dr.
 作業機コントローラ26は、ブーム介入制御が不要になった場合に、操作装置25からの操作指令がブーム6の上昇指令あるいは中立指令である場合に、ブーム制限速度Vcy_bm1とブーム目標速度Vbopあるいは0との差分Dが閾値Dr以上である場合には、ブーム介入制御が不要となる前のブーム目標速度Vbmを一定の変化率VRCで減少させてオペレータが指示するブーム目標速度Vbopに変化させる。 When the boom intervention control becomes unnecessary, the work implement controller 26 sets the boom speed limit Vcy_bm1 and the boom target speed Vbop or 0 when the operation command from the operation device 25 is the boom 6 uplift command or the neutral command. If the difference D is smaller than the threshold value Dr, the boom target speed Vbm before the boom intervention control becomes unnecessary is decreased at a constant rate of change VRC and changed to the boom target speed Vbop instructed by the operator.
 ブーム6が上昇する場合であるブーム目標速度Vbmが正の場合、変化率VRCでブーム目標速度Vbmを変化させると上昇速度は減少するので、変化率VRCは上昇速度の減少率を表す。 When the boom target speed Vbm, which is a case where the boom 6 rises, is positive, changing the boom target speed Vbm at the change rate VRC decreases the increase speed, so the change rate VRC represents the decrease rate of the increase speed.
 操作装置25からの操作指令に基づく作業機2の制御に切り替わる結果、速度変化が大きい場合にはブーム6が急激に速度を減速するので、オペレータは違和感を覚える。 As a result of switching to the control of the work machine 2 based on the operation command from the operation device 25, when the change in speed is large, the boom 6 rapidly reduces the speed, so the operator feels unnatural.
 ブーム介入制御の実行中、かつオペレータがブーム6を上昇させる操作あるいは中立操作をしている場合に、目標掘削地形43Iが存在している領域からバケット8が外れてブーム介入制御が不要になると、ブーム目標速度Vbmは、ブーム制限速度Vcy_bm1から徐々にオペレータが指示するブーム目標速度Vbopあるいは0まで変化する。その結果、ブーム6の急激な減速が緩和されるので、オペレータの違和感が低減される。 During execution of the boom intervention control, and when the operator performs an operation of raising the boom 6 or performs a neutral operation, when the bucket 8 is removed from the area where the target excavation landform 431 exists and the boom intervention control becomes unnecessary. The boom target speed Vbm gradually changes from the boom speed limit Vcy_bm1 to the boom target speed Vbop instructed by the operator or 0. As a result, since the rapid deceleration of the boom 6 is alleviated, the sense of discomfort of the operator is reduced.
 また、ブーム6の急激な減速による衝撃も低減することが可能となり、バケット8に積載されている土砂への影響も緩和できる。 Further, the impact due to the rapid deceleration of the boom 6 can be reduced, and the influence on the soil loaded on the bucket 8 can be alleviated.
 詳細には、図4に示される作業機コントローラの介入速度算出部26Dは、ブーム制限速度Vcy_bmを求める。 In detail, the intervention speed calculation unit 26D of the work machine controller shown in FIG. 4 obtains the boom speed limit Vcy_bm.
 次に、図4に示される作業機コントローラ26の判定部26Jにおいて、切替判定部26Kは、ブーム介入制御が不要となるか否かを判定する。操作指令判断部26Lは、ブーム介入制御が不要となる場合においてオペレータが右操作レバー25Rに対してブーム6を上昇させる操作あるいは中立操作をしているか否かを判断する。速度差判断部26Mは、ブーム介入制御が不要となる場合においてオペレータが右操作レバー25Rに対してブーム6を上昇させる操作あるいは中立操作をしている場合に、ブーム制限速度Vcy_bmと、オペレータによるブーム6を上昇させる操作に従うブーム目標速度Vc_bmあるいは中立操作に従うブーム目標速度0との速度差を判断する。 Next, in the determination unit 26J of the work unit controller 26 shown in FIG. 4, the switching determination unit 26K determines whether or not the boom intervention control becomes unnecessary. The operation command determination unit 26L determines whether the operator performs an operation to raise the boom 6 or the neutral operation with respect to the right control lever 25R when the boom intervention control is not required. The speed difference determination unit 26M controls the boom speed limit Vcy_bm and the boom by the operator when the operator performs an operation to raise the boom 6 or the neutral operation with respect to the right control lever 25R when the boom intervention control is not necessary. The speed difference with the boom target speed Vc_bm according to the operation of raising 6 or the boom target speed 0 according to the neutral operation is determined.
 速度差判断部26Mは、速度差が閾値Dr以上であると判断した場合に、判定部26Jは、ブーム制限速度Vcy_bmを補正すると判定して介入速度修正部26Fにブーム制限速度Vcy_bmを補正するように指示する。 When the speed difference determination unit 26M determines that the speed difference is equal to or greater than the threshold value Dr, the determination unit 26J determines that the boom speed limit Vcy_bm is to be corrected and corrects the boom speed limit Vcy_bm in the intervention speed correction unit 26F. Instruct
 制御部26CNTの介入速度修正部26Fは、補正後のブーム制限速度Vcy_bm’を求め、制御部26CNTの介入指令算出部26Eに出力する。 The intervention speed correction unit 26F of the control unit 26CNT obtains the corrected boom speed limit Vcy_bm ', and outputs it to the intervention command calculation unit 26E of the control unit 26CNT.
 制御部26CNTの介入指令算出部26Eは、補正後のブーム制限速度Vcy_bm’を用いてブーム指令信号CBIを生成し、介入弁27Cを制御する。このような処理により、作業機コントローラ26は、ブーム6の上昇速度を変化させる。 The intervention command calculation unit 26E of the control unit 26CNT generates a boom command signal CBI using the corrected boom speed limit Vcy_bm 'to control the intervention valve 27C. By such processing, the work machine controller 26 changes the rising speed of the boom 6.
 具体的には、介入速度修正部26Fは、ブーム制限速度Vcy_bmから変化率VRCに従ってブーム目標速度Vbopに変化するように制御する。 Specifically, the intervention speed correction unit 26F controls the boom speed limit Vcy_bm to change to the boom target speed Vbop according to the change rate VRC.
 変化率VRCが大きいと、ブーム介入制御が不要になった場合においてブーム6の上昇は速やかに停止するがブーム目標速度Vbopの変化が急になるため、衝撃が発生したり、オペレータが違和感を覚えたりする。 If the rate of change VRC is large, the boom 6 will stop rising as soon as the boom intervention control is no longer needed, but the boom target speed Vbop will change rapidly, causing impacts or the operator to feel uncomfortable. To
 このため、変化率VRCは、ブーム目標速度Vbopへの変化が急になり過ぎない範囲に設定される。実施形態において、変化率VRCは、例えばオペレータの官能評価によって決定されるが、変化率VRCを決定する方法はこのような方法に限定されない。 For this reason, the rate of change VRC is set in a range in which the change to the boom target speed Vbop does not become too rapid. In the embodiment, the rate of change VRC is determined by, for example, sensory evaluation of the operator, but the method of determining the rate of change VRC is not limited to such a method.
 <実施形態に基づく作業機械の制御方法>
 図10は、実施形態に基づく作業機械の制御方法を示すフローを説明する図である。
<Control method of working machine based on the embodiment>
FIG. 10 is a diagram for explaining the flow showing the control method of the working machine based on the embodiment.
 図10に示されるように、実施形態に係る作業機械の制御方法は、作業機コントローラ26によって実現される。 As shown in FIG. 10, the control method of the working machine according to the embodiment is realized by the working machine controller 26.
 ステップS2において、図4に示される作業機コントローラ26の切替判定部26Kは、ブーム介入制御が不要であるか否かを判定する。切替判定部26Kが、ブーム介入制御が不要であると判定した場合(ステップS2においてYES)には、ステップS4において、操作指令判断部26Lは、オペレータがブーム6を上昇させる操作あるいは中立操作をしているか否かを判断する(ステップS4)。 In step S2, the switching determination unit 26K of the working unit controller 26 illustrated in FIG. 4 determines whether or not boom intervention control is unnecessary. If the switching determination unit 26K determines that the boom intervention control is unnecessary (YES in step S2), the operation command determination unit 26L performs an operation to raise the boom 6 or a neutral operation in step S4. It is determined whether or not it is (step S4).
 ステップS4において、操作指令判断部26Lは、オペレータがブーム6を上昇させる操作あるいは中立操作をしていると判断した場合(ステップS4においてYES)には、速度差判断部26Mは、ブーム制限速度Vcy_bmと、オペレータによるブーム6を上昇させる操作に従うブーム目標速度Vc_bmあるいはブーム目標速度0との速度差を判断する(ステップS5)。 In step S4, when the operation command determination unit 26L determines that the operator performs the operation of raising the boom 6 or performs the neutral operation (YES in step S4), the speed difference determination unit 26M controls the boom speed limit Vcy_bm. And, the speed difference between the boom target speed Vc_bm or the boom target speed 0 according to the operation of raising the boom 6 by the operator is determined (step S5).
 速度差判断部26Mは、当該速度差が閾値Dr以上か否かを判断する(ステップS6)。 The speed difference determination unit 26M determines whether the speed difference is equal to or greater than the threshold value Dr (step S6).
 ステップS6において、速度差判断部26Mは、速度差が閾値Dr以上であると判断した場合(ステップS6においてYES)には、ステップS8において、作業機コントローラ26の介入指令算出部26Eは、介入速度修正部26Fによって求められた補正後のブーム制限速度Vcy_bm’からブーム指令信号CBIを生成し、ブーム指令信号に基づき介入弁27Cを制御する。 In step S6, when the speed difference determination unit 26M determines that the speed difference is equal to or greater than the threshold value Dr (YES in step S6), the intervention command calculation unit 26E of the work machine controller 26 determines the intervention speed in step S8. A boom command signal CBI is generated from the corrected boom speed limit Vcy_bm 'obtained by the correction unit 26F, and the intervention valve 27C is controlled based on the boom command signal.
 そして、処理を終了する(エンド)。
 一方、ステップS2において、切替判定部26Kが、ブーム介入制御が不要でないと判定した場合(ステップS2においてYNO)には、ステップS16において、作業機コントローラ26の介入指令算出部26Eは、補正しないブーム制限速度Vcy_bmを用いてブーム指令信号CBIに基づき介入弁27Cを制御する。
Then, the process ends (end).
On the other hand, when the switch determination unit 26K determines that the boom intervention control is not unnecessary in step S2 (YNO in step S2), the intervention command calculation unit 26E of the work machine controller 26 does not correct the boom in step S16. The intervention valve 27C is controlled based on the boom command signal CBI using the speed limit Vcy_bm.
 一方、ステップS4において、オペレータがブーム6を上昇させる操作あるいは中立操作をしていないと判断した場合(ステップS4においてNO)、あるいは、ステップS6において、速度差が閾値Dr未満であると判断した場合(ステップS6においてNO)には、作業機コントローラ26は、操作レバーの指令に従う目標速度を用いて、ブーム指令信号CBIを生成し、ブーム指令信号に基づき介入弁27Cを制御する(ステップS12)。 On the other hand, if it is determined in step S4 that the operator has not performed the operation for raising boom 6 or the neutral operation (NO in step S4), or if it is determined in step S6 that the speed difference is less than threshold value Dr. At (NO in step S6), work implement controller 26 generates boom command signal CBI using the target speed according to the command of the operating lever, and controls intervention valve 27C based on the boom command signal (step S12).
 そして、処理を終了する(エンド)。 Then, the process ends (end).
 <電気方式の操作レバー>
 実施形態において、操作装置25はパイロット油圧方式の操作レバーを有するが、電気方式の左操作レバー25Laおよび右操作レバー25Raを有してもよい。
<Electric control lever>
In the embodiment, the operating device 25 has the pilot hydraulic control lever, but may have the electric left control lever 25La and the right control lever 25Ra.
 左操作レバー25Laおよび右操作レバー25Raが電気方式である場合、それぞれの操作量は、それぞれポテンショメータによって検出される。ポテンショメータによって検出された左操作レバー25Laおよび右操作レバー25Raの操作量は、作業機コントローラ26によって取得される。 When the left control lever 25La and the right control lever 25Ra are electrically operated, the respective operation amounts are detected by the potentiometers. The operation amount of the left control lever 25La and the right control lever 25Ra detected by the potentiometer is acquired by the work implement controller 26.
 電気方式の操作レバーの操作信号を検出した作業機コントローラ26は、パイロット油圧方式と同様の制御を実行する。 The work machine controller 26 that has detected the operation signal of the control lever of the electrical system executes the same control as the pilot hydraulic system.
 以上、実施形態は、介入制御が不要となる場合において、オペレータが右操作レバー25Rに対してブーム6を上昇させる操作あるいは中立操作をしている場合に、ブーム制限速度Vcy_bmと、ブーム6を上昇させる操作に従うブーム目標速度Vc_bmあるいは中立操作に従うブーム目標速度0との速度差が閾値Dr以上である場合には、ブーム制限速度Vcy_bmを補正する。ブーム制限速度Vcy_bmを一定の変化率VRCで減少させてオペレータが指示するブーム目標速度Vbopあるいは0に変化させる。 As described above, according to the embodiment, the boom speed limit Vcy_bm and the boom 6 are raised when the operator performs an operation to raise the boom 6 or the neutral operation with respect to the right control lever 25R when the intervention control becomes unnecessary. If the boom target speed Vc_bm according to the operation to be made or the speed difference with the boom target speed 0 according to the neutral operation is equal to or more than the threshold value Dr, the boom speed limit Vcy_bm is corrected. The boom speed limit Vcy_bm is decreased at a constant rate of change VRC and changed to the boom target speed Vbop or 0 instructed by the operator.
 作業機2は、ブーム6、アーム7、バケット8を有しているが、作業機2に装着されるアタッチメントはこれに限られず、バケット8には限定されない。作業機械は作業機を有していればよく、油圧ショベル100に限定されない。 Although work implement 2 has boom 6, arm 7, and bucket 8, the attachment with which work implement 2 is attached is not restricted to this, and it is not limited to bucket 8. The work machine may have a work machine, and is not limited to the hydraulic shovel 100.
 今回開示された実施の形態は例示であって、上記内容のみに制限されるものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time is an example, and the present invention is not limited to the above content. The scope of the present invention is indicated by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims.
 1 車両本体、2 作業機、3 上部旋回体、4 運転室、5 走行装置、6 ブーム、7 アーム、8 バケット、10 ブームシリンダ、11 アームシリンダ、12 バケットシリンダ、13 ブームピン、14 アームピン、15 バケットピン、16 第1ストロークセンサ、17 第2ストロークセンサ、18 第3ストロークセンサ、19 位置検出装置、26 作業機コントローラ、26A 相対位置算出部、26B 距離算出部、26C 目標速度算出部、26CNT 制御部、26D 介入速度算出部、26E 介入指令算出部、26F 介入速度修正部、26J 判定部、26K 切替判定部、26L 操作指令判断部、26M 速度差判断部、26P 処理部、26Q 記憶部。 DESCRIPTION OF SYMBOLS 1 vehicle body, 2 working machine, 3 upper revolving superstructure, 4 cabs, 5 traveling devices, 6 booms, 7 arms, 8 buckets, 10 boom cylinders, 11 arm cylinders, 12 bucket cylinders, 13 boom pins, 14 arm pins, 15 buckets Pin 16, 16 1st stroke sensor, 17 2nd stroke sensor, 18 3rd stroke sensor, 19 position detection device, 26 working machine controller, 26A relative position calculation unit, 26B distance calculation unit, 26C target speed calculation unit, 26CNT control unit , 26D intervention speed calculation unit, 26E intervention command calculation unit, 26F intervention speed correction unit, 26J determination unit, 26K switching determination unit, 26L operation instruction determination unit, 26M speed difference determination unit, 26P processing unit, 26Q storage unit.

Claims (4)

  1.  作業機と、
     前記作業機を操作する操作装置と、
     前記作業機を制御するコントローラとを備え、
     前記コントローラは、
     前記操作装置からの操作指令に基づいて前記作業機を上昇させる介入制御を実行し、
     前記介入制御から前記操作装置の操作指令に従う前記作業機の制御への切替を判定し、
     判定結果に基づく前記切替において前記操作装置の操作指令が前記作業機の上昇、もしくは中立指令であるか否かを判断し、
     判断結果に基づいて前記操作装置の操作指令が前記作業機の上昇、もしくは中立指令である場合には、前記介入制御による前記作業機の上昇目標速度と、前記操作装置の操作指令に従う目標速度との速度差を判断し、
     前記速度差が所定値以上である場合には、前記作業機の上昇目標速度が前記操作装置の操作指令に従う目標速度に徐々に変化するように調整する、作業機械。
    Working machine,
    An operating device for operating the work machine;
    A controller for controlling the work machine;
    The controller
    Executing intervention control for raising the work machine based on an operation command from the operation device;
    Determining the switching from the intervention control to the control of the work machine according to the operation command of the operating device;
    In the switching based on the determination result, it is determined whether or not the operation command of the operating device is the lifting or neutral command of the work machine,
    When the operation command of the operating device is the elevation or neutral command of the working machine based on the determination result, the target target speed according to the operation command of the operating device according to the target target speed of elevation of the work machine by the intervention control To determine the speed difference of
    A working machine which adjusts so that the elevation target speed of the working machine gradually changes to a target speed according to an operation command of the operating device when the speed difference is equal to or greater than a predetermined value.
  2.  前記コントローラは、
     前記操作装置からの操作指令に基づいて前記作業機を上昇させる介入制御を実行する介入制御部と、
     前記介入制御から前記操作装置の操作指令に従う前記作業機の制御への切替を判定する切替判定部と、
     前記切替判定部の判定結果に基づく前記切替において前記操作装置の操作指令が前記作業機の上昇、もしくは中立指令であるか否かを判断する操作指令判断部と、
     前記操作指令判断部の判断結果に基づいて前記操作装置の操作指令が前記作業機の上昇、もしくは中立指令である場合には、前記介入制御による前記作業機の上昇目標速度と、前記操作装置の操作指令に従う目標速度との速度差を判断する速度差判断部と、
     前記速度差判断部の判断結果に基づいて前記速度差が所定値以上である場合には、前記作業機の上昇目標速度が前記操作装置の操作指令に従う目標速度に徐々に変化するように調整する速度調整部とを含む、請求項1記載の作業機械。
    The controller
    An intervention control unit that executes intervention control that raises the work machine based on an operation command from the operation device;
    A switching determination unit that determines switching from the intervention control to control of the work machine according to an operation command of the operating device;
    An operation command determination unit that determines whether or not the operation command of the operation device is the lifting or neutral command of the work machine in the switching based on the determination result of the switching determination unit;
    In the case where the operation command of the operating device is the lifting or neutral command of the working device based on the determination result of the operation command determining unit, an increase target speed of the working device by the intervention control and the operating device A speed difference determination unit that determines a speed difference from a target speed according to the operation command;
    If the speed difference is equal to or greater than a predetermined value based on the judgment result of the speed difference judging unit, the target speed to be increased by the working machine is adjusted to gradually change to the target speed according to the operation command of the operating device. The work machine according to claim 1, further comprising: a speed adjustment unit.
  3.  前記コントローラは、
     前記速度差が前記所定値未満である場合には、前記作業機の上昇目標速度を前記操作装置の操作指令に従う目標速度に切り替える、請求項1記載の作業機械。
    The controller
    The work machine according to claim 1, wherein, when the speed difference is less than the predetermined value, the work target lift target speed is switched to a target speed according to an operation command of the operating device.
  4.  作業機と、前記作業機を操作する操作装置とを備える、作業機械の制御方法であって、
     前記操作装置からの操作指令に基づいて前記作業機を上昇させる介入制御を実行するステップと、
     前記介入制御から前記操作装置の操作指令に従う前記作業機の制御への切替を判定するステップと、
     判定結果に基づく前記切替において前記操作装置の操作指令が前記作業機の上昇、もしくは中立指令であるか否かを判断するステップと、
     判断結果に基づいて前記操作装置の操作指令が前記作業機の上昇、もしくは中立指令である場合には、前記介入制御による前記作業機の上昇目標速度と、前記操作装置の操作指令に従う目標速度との速度差を判断するステップと、
     前記速度差が所定値以上である場合には、前記作業機の上昇目標速度が前記操作装置の操作指令に従う目標速度に徐々に変化するように調整するステップとを備える、作業機械の制御方法。
    A control method of a working machine, comprising a working machine and an operating device for operating the working machine,
    Executing intervention control for raising the work machine based on an operation command from the operation device;
    Determining switching from the intervention control to the control of the work machine according to the operation command of the operating device;
    Determining whether or not an operation command of the operating device in the switching based on the determination result is the lifting or neutral command of the work machine;
    When the operation command of the operating device is the elevation or neutral command of the working machine based on the determination result, the target target speed according to the operation command of the operating device according to the target target speed of elevation of the work machine by the intervention control Determining the speed difference of
    Adjusting the target target speed of the work machine to gradually change to a target speed according to the operation command of the operating device if the speed difference is equal to or greater than a predetermined value.
PCT/JP2017/025778 2017-07-14 2017-07-14 Work machine and control method for work machine WO2019012699A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187004640A KR102088784B1 (en) 2017-07-14 2017-07-14 Working machine and control method of working machine
DE112017000085.8T DE112017000085T5 (en) 2017-07-14 2017-07-14 WORK MACHINE AND CONTROL PROCESS FOR WORK MACHINE
PCT/JP2017/025778 WO2019012699A1 (en) 2017-07-14 2017-07-14 Work machine and control method for work machine
US15/756,656 US20190078289A1 (en) 2017-07-14 2017-07-14 Work machine and control method for work machine
JP2017560641A JP6901406B2 (en) 2017-07-14 2017-07-14 Work machine and control method of work machine
CN201780002863.4A CN109511268A (en) 2017-07-14 2017-07-14 The control method of Work machine and Work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/025778 WO2019012699A1 (en) 2017-07-14 2017-07-14 Work machine and control method for work machine

Publications (1)

Publication Number Publication Date
WO2019012699A1 true WO2019012699A1 (en) 2019-01-17

Family

ID=65002558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025778 WO2019012699A1 (en) 2017-07-14 2017-07-14 Work machine and control method for work machine

Country Status (6)

Country Link
US (1) US20190078289A1 (en)
JP (1) JP6901406B2 (en)
KR (1) KR102088784B1 (en)
CN (1) CN109511268A (en)
DE (1) DE112017000085T5 (en)
WO (1) WO2019012699A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220037405A (en) * 2019-04-05 2022-03-24 볼보 컨스트럭션 이큅먼트 에이비 construction machinery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102295186B1 (en) 2019-09-24 2021-09-01 (주)세고스 Bearing assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3056254B2 (en) * 1994-04-28 2000-06-26 日立建機株式会社 Excavation control device for construction machinery
JP2007030610A (en) * 2005-07-25 2007-02-08 Toyota Motor Corp Brake control device
JP2015196968A (en) * 2014-03-31 2015-11-09 住友建機株式会社 Shovel
WO2015186180A1 (en) * 2014-06-02 2015-12-10 株式会社小松製作所 Construction machine control system, construction machine, and construction machine control method
WO2016111384A1 (en) * 2016-02-29 2016-07-14 株式会社小松製作所 Control device for work machine, work machine, and control method for work machine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119118A (en) * 1979-03-09 1980-09-12 Nisshin Steel Co Ltd Denitrification method for iron alloy containing chromium
GB2250108B (en) * 1990-10-31 1995-02-08 Samsung Heavy Ind Control system for automatically controlling actuators of an excavator
SE523988C2 (en) * 2002-04-22 2004-06-15 Volvo Constr Equip Holding Se Device and method for controlling a machine
DE10250694B3 (en) * 2002-10-31 2004-02-12 CNH Österreich GmbH Agricultural vehicle control method provides automatic travel and field end management by detection, storage and controlled alteration of vehicle operating parameters
CN101821457B (en) * 2007-08-09 2012-08-29 株式会社小松制作所 Working vehicle and amount controlling method of working oil thereof
US9328478B2 (en) * 2011-08-24 2016-05-03 Volvo Construction Equipment Ab Method for controlling a working machine
WO2015102058A1 (en) * 2014-05-30 2015-07-09 株式会社小松製作所 Method for controlling industrial vehicle, device for controlling industrial vehicle, and industrial vehicle
US20170121930A1 (en) * 2014-06-02 2017-05-04 Komatsu Ltd. Construction machine control system, construction machine, and method of controlling construction machine
DE112015000035B4 (en) * 2014-06-04 2019-01-10 Komatsu Ltd. Construction machine control system, construction machine and construction machine control method
KR101658326B1 (en) * 2014-09-10 2016-09-22 가부시키가이샤 고마쓰 세이사쿠쇼 Work vehicle and method of controlling work vehicle
JP5732598B1 (en) * 2014-09-10 2015-06-10 株式会社小松製作所 Work vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3056254B2 (en) * 1994-04-28 2000-06-26 日立建機株式会社 Excavation control device for construction machinery
JP2007030610A (en) * 2005-07-25 2007-02-08 Toyota Motor Corp Brake control device
JP2015196968A (en) * 2014-03-31 2015-11-09 住友建機株式会社 Shovel
WO2015186180A1 (en) * 2014-06-02 2015-12-10 株式会社小松製作所 Construction machine control system, construction machine, and construction machine control method
WO2016111384A1 (en) * 2016-02-29 2016-07-14 株式会社小松製作所 Control device for work machine, work machine, and control method for work machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220037405A (en) * 2019-04-05 2022-03-24 볼보 컨스트럭션 이큅먼트 에이비 construction machinery
KR102705219B1 (en) * 2019-04-05 2024-09-11 볼보 컨스트럭션 이큅먼트 에이비 Construction machinery

Also Published As

Publication number Publication date
US20190078289A1 (en) 2019-03-14
JPWO2019012699A1 (en) 2020-05-07
JP6901406B2 (en) 2021-07-14
CN109511268A (en) 2019-03-22
KR20190019037A (en) 2019-02-26
DE112017000085T5 (en) 2019-04-18
KR102088784B1 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
JP6096988B2 (en) Work machine control device, work machine, and work machine control method
JP6209276B2 (en) Work machine control device, work machine, and work machine control method
KR101737389B1 (en) Work machine control device, work machine, and work machine control method
JP6894847B2 (en) Work machine and control method of work machine
JP5864775B2 (en) Work vehicle
KR101839467B1 (en) Construction machinery control system, construction machinery, and construction machinery control method
US11591768B2 (en) Control system of work machine and method for controlling work machine
JP2017180079A (en) Control device of working machine, working machine and control method of working machine
JP6901406B2 (en) Work machine and control method of work machine
JP6876623B2 (en) Work machine and control method of work machine
WO2023276421A1 (en) Construction machine
US11608610B2 (en) Control of a hydraulic system
WO2020194559A1 (en) Hydraulic shovel

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017560641

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187004640

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917411

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17917411

Country of ref document: EP

Kind code of ref document: A1