WO2019001464A1 - 一种超细晶粒宽厚管线钢板的生产工艺 - Google Patents
一种超细晶粒宽厚管线钢板的生产工艺 Download PDFInfo
- Publication number
- WO2019001464A1 WO2019001464A1 PCT/CN2018/093096 CN2018093096W WO2019001464A1 WO 2019001464 A1 WO2019001464 A1 WO 2019001464A1 CN 2018093096 W CN2018093096 W CN 2018093096W WO 2019001464 A1 WO2019001464 A1 WO 2019001464A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultra
- steel plate
- fine grain
- pipeline steel
- thickness
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the invention belongs to the field of steel metallurgy and relates to a production process of a pipeline steel plate, in particular to a production process for improving the grain size of a steel plate with a width of 3500-5000 mm and a thickness of 25-40 mm by a rolling control technology. .
- the technical problem to be solved by the present invention is how to eliminate the unfavorable factors of the band structure for the pipeline steel plate with a width of 3500-5000 mm and a thickness of 25-40 mm, how to obtain a dense bainite and needle shape at the quarter of the steel plate and the core.
- the ferrite structure which results in a tissue that is evenly organized and fine-grained, improves product performance.
- a production process of an ultra-fine grain wide and thick pipeline steel plate comprising the following steps:
- the weight percentage components of ultra-fine grain wide and thick pipeline steel plates are: C: 0.040-0.070%, Si: 0.15-0.30%, Mn: 1.30-1.80%, P ⁇ 0.015%, S ⁇ 0.005%, Nb: 0.030-0.07 %, Ti: 0.006 to 0.020%, Ca: 0.0005 to 0.0040%, Al: 0.015 to 0.050%, Ni: 0.10 to 0.30%, Cr: 0.10 to 0.30%, Mo: 0.08 to 0.18%, Cu: 0.1 to 0.2% The balance is Fe and inevitable impurities;
- the heating temperature of the slab is set to 1120 ⁇ 1140°C, the heating time is 10.3 ⁇ 13min/cm, and the soaking time is 45min; the surface temperature of the slab and the core are uniform, and the original grain size is effectively controlled by the low-temperature heating system. Dimensions provide a guarantee for enhanced tissue performance;
- the thickness of the blank to be warmed is set to 3.5 to 4.0 times of the finished product, and the reduction ratio of the rough rolling pass is 26%; the thickness of the blank to be warmed is increased, and the reduction between the finishing passes is improved, and further reduced by rolling means.
- the effective rolling load to cooling interval is reduced from 35 to 40s to 18 to 23s, effectively reducing the finishing temperature, and the roller speed is increased from 0.6 to 0.9 m/s to 1.3 to 1.5 m/s. Effectively reduce the cooling time, appropriately increase the roll speed, reduce the tissue transition time, and effectively refine the grain size of the tissue;
- the reddening temperature is 165 ⁇ 190°C; the applicant has found through research that the grain size is improved by the laminar cooling system. Because the difference between the surface temperature of the thick plate and the core temperature is large, when the reddening temperature is greater than 300 degrees, the steel plate After reaching the cooling bed, the temperature will rise by more than 100 degrees. During the cooling process of the cooling bed, the temperature rise will lead to the weakening of the dislocation of the tissue and the aggravation of the banded structure, which will affect the mechanical properties. By setting the red plate return temperature of 165-190 °C, it is ensured.
- the core structure forms fine acicular ferrite, and the structure is uniform, and there is no phenomenon that the temperature recovers in the cold bed, weakening the dislocation of the tissue, deteriorating the band structure, and refining the crystal
- the particle size is improved when the uniform fine crystals are obtained while the band structure is obtained.
- the invention proceeds from the viewpoint of the grain size of the tissue to solve the stability of the performance of the extremely thick and wide variety, and is suitable for the pipeline steel plate with the width of 3500-5000 mm and the thickness of 25-40 mm, and the design of the low carbon, low phosphorus and low sulfur is more Conducive to the core structure of the slab, effectively reducing the brittleness of the product; using high Nb design to achieve solid solution strengthening, effectively refining the microstructure of the grains in the form of carbides, oxides, can effectively increase tempering stability; Mo can improve Hardenability and tempering stability of thick gauge products; Ni can improve the strength and toughness of steel, effectively reduce the brittle temperature of steel, and reasonable composition design can improve the hardenability of thick slabs, which is conducive to uniform and refined microstructure.
- Organized grains mainly adopt low temperature heating system, 3.5 to 4.0 times the thickness of the blank to be warmed, suitable rolling schedule, reach the reddening temperature of less than 200 degrees by suitable roll speed and ultra-fast cooling technology, and eliminate by strong cold
- the unfavorable factor of the band structure is that the dense penticular and acicular ferrite structure is obtained at 1/4 of the steel plate and the core, thereby obtaining a uniform microstructure and fine crystal strengthening structure, thereby improving product performance.
- the invention adopts a low carbon design to increase the toughness of the product, and the alloy adopts Nb, Ti, Cr, Mo, Cu design to increase the precipitation strength during the rolling process, and the heating temperature of the billet adopts a low temperature heating system, and the odd pass rolling System, low water, less than 200 degrees red, the laminar cooling system effectively eliminates the band structure and meets the requirements of the fine grain structure of the core.
- the invention successfully solves the manufacturing difficulty of the uneven structure of the wide and thick pipeline steel, effectively refines the grain size of the structure, improves the mechanical properties of the product, and greatly improves the economic benefit.
- FIG. 1 is a metallographic structure diagram of a side portion of an embodiment of the present invention.
- Figure 2 is a metallographic structure diagram at 1/4 of the embodiment of the present invention.
- FIG. 3 is a metallographic structure diagram of a core portion of an embodiment of the present invention.
- This embodiment is a production process of an ultra-fine grain wide and thick pipeline steel plate, comprising the following steps:
- the weight percentage components of ultra-fine grain wide and thick pipeline steel sheets are: C: 0.04%, Si: 0.15%, Mn: 1.3%, P: 0.008%, S: 0.001%, Nb: 0.03%, Ti: 0.006%, Ca : 0.0005%, Al: 0.015%, Ni: 0.10%, Cr: 0.10%, Mo: 0.08%, Cu: 0.136%, the balance being Fe and unavoidable impurities;
- the heating temperature of the slab is set to 1120 ° C, the heating time is 10.3 min / cm, and the soaking time is 45 min;
- the thickness of the warm billet is set to 3.5 times of the finished product, and the reduction ratio of the rough rolling pass is 26%;
- the effective rolling load to cooling interval is reduced from 35-40s to 18s, effectively reducing the finishing temperature, and the roller speed is increased from 0.6-0.9m/s to 1.3m/s, effectively reducing the cooling time. , appropriately increase the roller speed, reduce the tissue transition time, and effectively refine the grain size of the tissue;
- the reddening temperature is 180 °C.
- This embodiment is a production process of an ultra-fine grain wide and thick pipeline steel plate, comprising the following steps:
- the weight percentage components of ultra-fine grain wide-thickness pipeline steel plates are: C: 0.048%, Si: 0.248%, Mn: 1.53%, P: 0.009%, S: 0.002%, Nb: 0.032%, Ti: 0.013%, Ca : 0.0013%, Al: 0.032%, Ni: 0.20%, Cr: 0.14%, Mo: 0.136%, Cu: 0.137%, the balance being Fe and unavoidable impurities;
- the heating temperature of the slab is set to 1130 ° C, the heating time is 12 min / cm, and the soaking time is 45 min;
- the effective rolling load to cooling time interval is reduced from 35-40s to 20s, effectively reducing the finishing temperature, and the roller speed is increased from 0.6-0.9m/s to 1.4m/s, effectively reducing the cooling time. , appropriately increase the roller speed, reduce the tissue transition time, and effectively refine the grain size of the tissue;
- the red return temperature is 169 °C.
- This embodiment is a production process of an ultra-fine grain wide and thick pipeline steel plate, comprising the following steps:
- the weight percentage components of ultra-fine grain wide and thick pipeline steel plates are: C: 0.045%, Si: 0.253%, Mn: 1.54%, P: 0.007%, S: 0.002%, Nb: 0.036%, Ti: 0.015%, Ca : 0.0025%, Al: 0.05%, Ni: 0.30%, Cr: 0.15%, Mo: 0.138%, Cu: 0.138%, the balance being Fe and unavoidable impurities;
- the heating temperature of the slab is set to 1130 ° C, the heating time is 12.3 min / cm, and the soaking time is 45 min;
- the effective rolling load to cooling interval is reduced from 35-40s to 21s, effectively reducing the finishing temperature, and the roller speed is increased from 0.6-0.9m/s to 1.3m/s, effectively reducing the cooling time. , appropriately increase the roller speed, reduce the tissue transition time, and effectively refine the grain size of the tissue;
- the red return temperature is 186 °C.
- This embodiment is a production process of an ultra-fine grain wide and thick pipeline steel plate, comprising the following steps:
- the weight percentage components of ultra-fine grain wide and thick pipeline steel plates are: C: 0.070%, Si: 0.30%, Mn: 1.8%, P: 0.005%, S: 0.001%, Nb: 0.07%, Ti: 0.02%, Ca : 0.0040%, Al: 0.036%, Ni: 0.15%, Cr: 0.30%, Mo: 0.18%, Cu: 0.131%, the balance being Fe and unavoidable impurities;
- the heating temperature of the slab is set to 1140 ° C, the heating time is 13 min / cm, and the soaking time is 45 min;
- the thickness of the warm billet is set to 4.0 times of the finished product, and the pass reduction rate of the rough rolling pass is 26%;
- the effective rolling load to cooling interval is reduced from 35 to 40s to 23s, effectively reducing the finishing temperature, and the roller speed is increased from 0.6-0.9m/s to 1.5m/s, effectively reducing the cooling time. , appropriately increase the roller speed, reduce the tissue transition time, and effectively refine the grain size of the tissue;
- the reddening temperature is 175 °C.
- Figs. 1, 2 and 3 The metallographic structure of Figs. 1, 2 and 3 was obtained by the above examples. It can be seen from the figure that 1/4, the core structure is uniform and fine, and the microstructure is mainly composed of bainite and acicular ferrite, and the grain size of the tissue is observed. Rating 12th level.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
一种超细晶粒宽厚管线钢板及其生产工艺,钢板的重百分比成份为:C:0.040~0.070%、Si:0.15~0.30%、Mn:1.30~1.80%、P≤0.015%、S≤0.005%、Nb:0.030~0.07%、Ti:0.006~0.020%、Ca:0.0005~0.0040%、Al:0.015~0.050%、Ni:0.10~0.30%、Cr:0.10~0.30%、Mo:0.08~0.18%、Cu:0.1~0.20%,余量为Fe和不可避免的杂质;通过改善坯料加热工艺,优选轧制规程,完善层流冷却工艺,得到组织均匀的贝氏体、针状铁素体,确保了组织与性能的稳定,满足了宽厚高钢级管线钢性能要求。
Description
本发明属于钢铁冶金领域,涉及一种管线钢板的生产工艺,具体的说是一种通过轧制控制技术改善轧件宽度3500~5000mm、厚度25~40mm宽厚壁管线钢板组织晶粒度的生产工艺。
由于钢铁市场的过度饱和,企业竞争力越趋于白热化,常规品种毛利越来越低,开发极薄极宽、极厚极宽品种产品成了企业生存与发展的关键,极厚极宽品种性能的稳定性与组织晶粒度存在密切关系。现有技术中,针对宽度3500~5000mm、厚度25~40mm管线钢板,如何消除带状组织的不利因素,如何使钢板1/4处与芯部得到致密的贝氏体、针状铁素体组织,从而得到组织均匀、细晶强化的组织,都是有待解决的技术问题。
发明内容
本发明所要解决的技术问题是,对于宽度3500~5000mm、厚度25~40mm管线钢板,如何消除带状组织的不利因素,如何使钢板1/4处与芯部得到致密的贝氏体、针状铁素体组织,从而得到组织均匀、细晶强化的组织,提升了产品性能。
本发明解决以上技术问题的技术方案是:
一种超细晶粒宽厚管线钢板的生产工艺,包括以下步骤:
㈠超细晶粒宽厚管线钢板的重百分比成份为:C:0.040~0.070%、Si:0.15~0.30%、Mn:1.30~1.80%、P≤0.015%、S≤0.005%、Nb:0.030~0.07%、Ti:0.006~0.020%、Ca:0.0005~0.0040%、Al:0.015~0.050%、Ni:0.10~0.30%、Cr:0.10~0.30%、Mo:0.08~0.18%、Cu:0.1~0.2%,余量为Fe和不可避免的杂质;
㈡铸坯加热温度设定为1120~1140℃,加热时间10.3~13min/cm,均热时间45min;确保了铸坯表面、芯部温度均匀,通过低温加热制度,有效控制了原始晶粒度的尺寸,为强化组织性能提供了保证;
㈢待温坯厚度设定为成品的3.5~4.0倍,粗轧末道次压下率26%;提高待温坯厚度,提高了精轧道次间的压下量,通过轧制手段进一步细化组织晶粒度;
㈣采用奇道次轧制,有效轧制载荷到冷却时间间隔由35~40s减少到18~23s,有效降低精轧温度,辊速由0.6~0.9m/s提高到1.3~1.5m/s,有效减少冷却时间,适当提高辊速,减少组织转变时间,有效细化组织晶粒度;
㈤返红温度165~190℃;申请人通过研究发现,通过层流冷却系统改善组织晶粒度,由于厚板表面温度与芯部温度差值较大,当返红温度大于300度时,钢板到达冷床后温度会上升100度以上,在冷床冷却过程种温度上升导致了组织位错减弱、带状组织加重,影响了力学性能,通过设定厚板返红温度165~190℃,确保了1/4、芯部组织形成细小的针状铁素体,并且组织均匀,更不会出现在冷床上温度回复的现象,弱化组织位错、恶化带状组织被抑制,细化了组织晶粒度,在得到均匀细晶的同时带状组织也得到了改善。
本发明从组织晶粒度的角度出发去,去解决极厚极宽品种性能的稳定性,适用于宽度3500~5000mm、厚度25~40mm管线钢板,采用低碳、低磷、低硫设计更有利于铸坯芯部组织,有效降低了产品脆性;采用高Nb的设计起到固溶强化作用,以碳化物、氧化物形式有效细化组织晶粒,可以有效增加回火稳定性;Mo可以提高厚规格产品的淬透性及回火稳定性;Ni可以提高钢的强度、韧性,有效降低钢的脆变温度,合理的成份设计利于提高厚板坯的淬透性能,利于组织均匀、细化组织晶粒;主要采用低温加热制度、3.5~4.0倍的待温坯厚度,合适的轧制规程,通过合适的辊速与超快冷技术达到低于200度的返红温度,通过强冷消除带状组织的不利因素,钢板1/4处与芯部得到致密的贝氏体、针状铁素体组织,从而得到组织均匀、细晶强化的组织,提升了产品性能。由此可见,本发明采用低碳设计,增加产品的韧性,合金采用Nb、Ti、Cr、Mo、Cu设计,增加轧制过程中的析出强度,坯料加热温度采用低温加热制度,奇道次轧制、低入水、低于200度返红,层流冷却制度有效消除了带状组织,达到芯部细晶组织的要求。本发明成功解决了宽厚管线钢组织不均匀的制造难点,有效的细化了组织晶粒度,提高了产品力学性能,大幅度提高经济效益。
图1为本发明实施例边部的金相组织图。
图2为本发明实施例1/4处的金相组织图。
图3为本发明实施例芯部的金相组织图。
实施例1
本实施例是一种超细晶粒宽厚管线钢板的生产工艺,包括以下步骤:
㈠超细晶粒宽厚管线钢板的重百分比成份为:C:0.04%、Si:0.15%、Mn:1.3%、P:0.008%、S:0.001%、Nb:0.03%、Ti:0.006%、Ca:0.0005%、Al:0.015%、Ni:0.10%、Cr:0.10%、Mo:0.08%、Cu:0.136%,余量为Fe和不可避免的杂质;
㈡铸坯加热温度设定为1120℃,加热时间10.3min/cm,均热时间45min;
㈢待温坯厚度设定为成品的3.5倍,粗轧末道次压下率26%;
㈣采用奇道次轧制,有效轧制载荷到冷却时间间隔由35~40s减少到18s,有效降低精轧温度,辊速由0.6~0.9m/s提高到1.3m/s,有效减少冷却时间,适当提高辊速,减少组织转变时间,有效细化组织晶粒度;
㈤返红温度180℃。
实施例2
本实施例是一种超细晶粒宽厚管线钢板的生产工艺,包括以下步骤:
㈠超细晶粒宽厚管线钢板的重百分比成份为:C:0.048%、Si:0.248%、Mn:1.53%、P:0.009%、S:0.002%、Nb:0.032%、Ti:0.013%、Ca:0.0013%、Al:0.032%、Ni:0.20%、Cr:0.14%、Mo:0.136%、Cu:0.137%,余量为Fe和不可避免的杂质;
㈡铸坯加热温度设定为1130℃,加热时间12min/cm,均热时间45min;
㈢待温坯厚度设定为成品的3.8倍,粗轧末道次压下率26%;
㈣采用奇道次轧制,有效轧制载荷到冷却时间间隔由35~40s减少到20s,有效降低精轧温度,辊速由0.6~0.9m/s提高到1.4m/s,有效减少冷却时间,适当提高辊速,减少组织转变时间,有效细化组织晶粒度;
㈤返红温度169℃。
实施例3
本实施例是一种超细晶粒宽厚管线钢板的生产工艺,包括以下步骤:
㈠超细晶粒宽厚管线钢板的重百分比成份为:C:0.045%、Si:0.253%、Mn:1.54%、P:0.007%、S:0.002%、Nb:0.036%、Ti:0.015%、Ca:0.0025%、Al:0.05%、Ni:0.30%、Cr:0.15%、Mo:0.138%、Cu:0.138%,余量为Fe和不可避免的杂质;
㈡铸坯加热温度设定为1130℃,加热时间12.3min/cm,均热时间45min;
㈢待温坯厚度设定为成品的3.8倍,粗轧末道次压下率26%;
㈣采用奇道次轧制,有效轧制载荷到冷却时间间隔由35~40s减少到21s,有效降低精轧温度,辊速由0.6~0.9m/s提高到1.3m/s,有效减少冷却时间,适当提高辊速,减少组织 转变时间,有效细化组织晶粒度;
㈤返红温度186℃。
实施例4
本实施例是一种超细晶粒宽厚管线钢板的生产工艺,包括以下步骤:
㈠超细晶粒宽厚管线钢板的重百分比成份为:C:0.070%、Si:0.30%、Mn:1.8%、P:0.005%、S:0.001%、Nb:0.07%、Ti:0.02%、Ca:0.0040%、Al:0.036%、Ni:0.15%、Cr:0.30%、Mo:0.18%、Cu:0.131%,余量为Fe和不可避免的杂质;
㈡铸坯加热温度设定为1140℃,加热时间13min/cm,均热时间45min;
㈢待温坯厚度设定为成品的4.0倍,粗轧末道次压下率26%;
㈣采用奇道次轧制,有效轧制载荷到冷却时间间隔由35~40s减少到23s,有效降低精轧温度,辊速由0.6~0.9m/s提高到1.5m/s,有效减少冷却时间,适当提高辊速,减少组织转变时间,有效细化组织晶粒度;
㈤返红温度175℃。
采用以上实施例得到图1、2和3的金相组织,由图可知,1/4、芯部组织均匀细小,组织主要以贝氏体、针状铁素体组织为主,组织晶粒度评级12级。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。
Claims (6)
- 一种超细晶粒宽厚管线钢板的生产工艺,其特征在于:包括以下步骤:㈠所述超细晶粒宽厚管线钢板的重百分比成份为:C:0.040~0.070%、Si:0.15~0.30%、Mn:1.30~1.80%、P≤0.015%、S≤0.005%、Nb:0.030~0.07%、Ti:0.006~0.020%、Ca:0.0005~0.0040%、Al:0.015~0.050%、Ni:0.10~0.30%、Cr:0.10~0.30%、Mo:0.08~0.18%、Cu:0.10~0.20%,余量为Fe和不可避免的杂质;㈡铸坯加热温度设定为1120~1140℃,加热时间10.3~13min/cm,均热时间45min;㈢待温坯厚度设定为成品的3.5~4.0倍,粗轧末道次压下率26%;㈣采用奇道次轧制,有效轧制载荷到冷却时间间隔由35~40s减少到18~23s,辊速由0.6~0.9m/s提高到1.3~1.5m/s;㈤返红温度165~190℃。
- 如权利要求1所述的超细晶粒宽厚管线钢板的生产工艺,其特征在于:所述超细晶粒宽厚管线钢板的宽度3500~5000mm,厚度25~40mm。
- 如权利要求1或2所述的超细晶粒宽厚管线钢板的生产工艺,其特征在于:包括以下步骤:㈠所述超细晶粒宽厚管线钢板的重百分比成份为:C:0.04%、Si:0.15%、Mn:1.3%、P:0.008%、S:0.001%、Nb:0.03%、Ti:0.006%、Ca:0.0005%、Al:0.015%、Ni:0.10%、Cr:0.10%、Mo:0.08%、Cu:0.136%,余量为Fe和不可避免的杂质;㈡铸坯加热温度设定为1120℃,加热时间10.3min/cm,均热时间45min;㈢待温坯厚度设定为成品的3.5倍,粗轧末道次压下率26%;㈣采用奇道次轧制,有效轧制载荷到冷却时间间隔为18s,辊速为1.3m/s;㈤返红温度180℃。
- 如权利要求1或2所述的超细晶粒宽厚管线钢板的生产工艺,其特征在于:包括以下步骤:㈠所述超细晶粒宽厚管线钢板的重百分比成份为:C:0.048%、Si:0.248%、Mn:1.53%、P:0.009%、S:0.002%、Nb:0.032%、Ti:0.013%、Ca:0.0013%、Al:0.032%、Ni:0.20%、Cr:0.14%、Mo:0.136%、Cu:0.137%,余量为Fe和不可避免的杂质;㈡铸坯加热温度设定为1130℃,加热时间12min/cm,均热时间45min;㈢待温坯厚度设定为成品的3.8倍,粗轧末道次压下率26%;㈣采用奇道次轧制,有效轧制载荷到冷却时间间隔20s,辊速1.4m/s;㈤返红温度169℃。
- 如权利要求1或2所述的超细晶粒宽厚管线钢板的生产工艺,其特征在于:包括以下步骤:㈠所述超细晶粒宽厚管线钢板的重百分比成份为:C:0.045%、Si:0.253%、Mn:1.54%、P:0.007%、S:0.002%、Nb:0.036%、Ti:0.015%、Ca:0.0025%、Al:0.05%、Ni:0.30%、Cr:0.15%、Mo:0.138%、Cu:0.138%,余量为Fe和不可避免的杂质;㈡铸坯加热温度设定为1130℃,加热时间12.3min/cm,均热时间45min;㈢待温坯厚度设定为成品的3.8倍,粗轧末道次压下率26%;㈣采用奇道次轧制,有效轧制载荷到冷却时间间隔21s,辊速1.3m/s;㈤返红温度186℃。
- 如权利要求1或2所述的超细晶粒宽厚管线钢板的生产工艺,其特征在于:包括以下步骤:㈠所述超细晶粒宽厚管线钢板的重百分比成份为:C:0.070%、Si:0.30%、Mn:1.8%、P:0.005%、S:0.001%、Nb:0.07%、Ti:0.02%、Ca:0.0040%、Al:0.036%、Ni:0.15%、Cr:0.30%、Mo:0.18%、Cu:0.131%,余量为Fe和不可避免的杂质;㈡铸坯加热温度设定为1140℃,加热时间13min/cm,均热时间45min;㈢待温坯厚度设定为成品的4.0倍,粗轧末道次压下率26%;㈣采用奇道次轧制,有效轧制载荷到冷却时间间隔23s,辊速1.5m/s;㈤返红温度175℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019135632A RU2734901C1 (ru) | 2017-06-27 | 2018-06-27 | Способ производства ультрамелкозернистой толстолистовой трубопроводной стали |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710499699.4 | 2017-06-27 | ||
CN201710499699.4A CN107385326B (zh) | 2017-06-27 | 2017-06-27 | 一种超细晶粒宽厚管线钢板的生产工艺 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019001464A1 true WO2019001464A1 (zh) | 2019-01-03 |
Family
ID=60332586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/093096 WO2019001464A1 (zh) | 2017-06-27 | 2018-06-27 | 一种超细晶粒宽厚管线钢板的生产工艺 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN107385326B (zh) |
RU (1) | RU2734901C1 (zh) |
WO (1) | WO2019001464A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115323265A (zh) * | 2022-07-15 | 2022-11-11 | 南京钢铁股份有限公司 | 一种超细晶钢板及其制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107385326B (zh) * | 2017-06-27 | 2019-06-04 | 南京钢铁股份有限公司 | 一种超细晶粒宽厚管线钢板的生产工艺 |
CN108070789B (zh) * | 2018-01-17 | 2020-04-03 | 山东钢铁集团日照有限公司 | 屈服强度不小于480MPa级超细晶特厚钢及制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007126707A (ja) * | 2005-11-02 | 2007-05-24 | Kobe Steel Ltd | 音響異方性が小さく母材靭性に優れた高張力鋼板とその製造方法 |
WO2011148755A1 (ja) * | 2010-05-27 | 2011-12-01 | 新日本製鐵株式会社 | 溶接構造用高強度鋼板の製造方法 |
CN102373387A (zh) * | 2011-11-02 | 2012-03-14 | 武汉钢铁(集团)公司 | 大应变冷弯管用钢板及其制造方法 |
CN103147022A (zh) * | 2013-03-29 | 2013-06-12 | 重庆钢铁(集团)有限责任公司 | 一种具有良好低温韧性的tmcp型e47钢板及其制造方法 |
CN107385326A (zh) * | 2017-06-27 | 2017-11-24 | 南京钢铁股份有限公司 | 一种超细晶粒宽厚管线钢板的生产工艺 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DZ2531A1 (fr) * | 1997-12-19 | 2003-02-08 | Exxon Production Research Co | Procédé de préparation d'une tôle d'acier double phase cette tôle et procédé pour renforcer la résistance à la propagation des fissures. |
CN101451217A (zh) * | 2007-11-30 | 2009-06-10 | 舞阳钢铁有限责任公司 | 一种管线用钢及其生产方法 |
CN102534377B (zh) * | 2012-02-29 | 2013-06-26 | 首钢总公司 | 韧性优良的x70级抗大变形管线钢板及其制备方法 |
RU2530078C1 (ru) * | 2013-07-23 | 2014-10-10 | Открытое акционерное общество "Северсталь" (ОАО "Северсталь") | Способ производства толстолистового проката для судостроения |
RU2544326C1 (ru) * | 2014-01-09 | 2015-03-20 | Публичное акционерное общество "Северсталь" (ПАО "Северсталь") | Способ производства толстых листов из низколегированной стали с повышенной коррозионной стойкостью |
CN105779724B (zh) * | 2014-12-22 | 2018-04-27 | 苏州苏信特钢有限公司 | 一种齿轮钢带状组织的控制方法以及齿轮钢 |
-
2017
- 2017-06-27 CN CN201710499699.4A patent/CN107385326B/zh active Active
-
2018
- 2018-06-27 RU RU2019135632A patent/RU2734901C1/ru active
- 2018-06-27 WO PCT/CN2018/093096 patent/WO2019001464A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007126707A (ja) * | 2005-11-02 | 2007-05-24 | Kobe Steel Ltd | 音響異方性が小さく母材靭性に優れた高張力鋼板とその製造方法 |
WO2011148755A1 (ja) * | 2010-05-27 | 2011-12-01 | 新日本製鐵株式会社 | 溶接構造用高強度鋼板の製造方法 |
CN102373387A (zh) * | 2011-11-02 | 2012-03-14 | 武汉钢铁(集团)公司 | 大应变冷弯管用钢板及其制造方法 |
CN103147022A (zh) * | 2013-03-29 | 2013-06-12 | 重庆钢铁(集团)有限责任公司 | 一种具有良好低温韧性的tmcp型e47钢板及其制造方法 |
CN107385326A (zh) * | 2017-06-27 | 2017-11-24 | 南京钢铁股份有限公司 | 一种超细晶粒宽厚管线钢板的生产工艺 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115323265A (zh) * | 2022-07-15 | 2022-11-11 | 南京钢铁股份有限公司 | 一种超细晶钢板及其制备方法 |
CN115323265B (zh) * | 2022-07-15 | 2024-03-19 | 南京钢铁股份有限公司 | 一种超细晶钢板及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
RU2734901C1 (ru) | 2020-10-26 |
CN107385326B (zh) | 2019-06-04 |
CN107385326A (zh) | 2017-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2887082T3 (es) | Panel de acero de baja aleación, alta resistencia y alta tenacidad y método para fabricar el mismo | |
JP6285462B2 (ja) | 780MPa級冷間圧延二相帯鋼及びその製造方法 | |
CN102912244A (zh) | 一种抗拉强度780MPa级热轧双相钢板及其制造方法 | |
WO2018095258A1 (zh) | 一种高强耐蚀复合花纹钢及其制造方法 | |
WO2019029225A1 (zh) | 一种提高低温韧性的厚壁大口径高钢级管线钢及其制造方法 | |
CN107557673B (zh) | 一种高延伸率高强热轧酸洗钢板及其制造方法 | |
CN102888565A (zh) | 一种屈服强度690MPa级高强度钢板及其制造方法 | |
CN105256240B (zh) | 一种热轧卷板及其制造方法 | |
JP2023538680A (ja) | 超高降伏比を有するギガパスカル級ベイナイト鋼およびその製造方法 | |
WO2015143932A1 (zh) | 一种屈服强度890MPa级低焊接裂纹敏感性钢板及其制造方法 | |
CN109207695B (zh) | 一种降低x80m级管线钢硬度的生产方法 | |
CN112899579A (zh) | 一种耐腐蚀高强度轻质钢及制备方法 | |
CN101899611A (zh) | 一种结构用热轧钢板及其生产方法 | |
CN103103449A (zh) | 一种抗大变形的x80管线用钢及其生产方法 | |
WO2022001904A1 (zh) | 一种厚度≥20mm的X90级高强度管线钢板卷及其制造方法 | |
WO2019001464A1 (zh) | 一种超细晶粒宽厚管线钢板的生产工艺 | |
CN109136756B (zh) | NbC纳米颗粒强化X90塑性管用钢板及其制造方法 | |
WO2014114158A1 (zh) | 一种高强度钢板及其制造方法 | |
CN113564464A (zh) | 一种25.4mm热连轧极限规格管线钢板卷及其制造方法 | |
CN106232838A (zh) | 成型性和抗皱性得到提高的铁素体不锈钢及其制造方法 | |
CN103484764B (zh) | Ti析出强化型超高强热轧薄板及其生产方法 | |
CN103042039B (zh) | 含Cr经济型X70管线钢热轧板卷的控轧控冷工艺 | |
CN109957709A (zh) | 一种含v大变形x70m管线钢板及其制造方法 | |
CN110616301B (zh) | 在线提高Ti微合金化热轧高强钢析出强化效果的生产方法 | |
WO2019222988A1 (zh) | 一种屈服强度1100MPa级超细晶高强钢板及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18823971 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18823971 Country of ref document: EP Kind code of ref document: A1 |