[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019000264A1 - Process for manufacture of ethylene glycol - Google Patents

Process for manufacture of ethylene glycol Download PDF

Info

Publication number
WO2019000264A1
WO2019000264A1 PCT/CN2017/090500 CN2017090500W WO2019000264A1 WO 2019000264 A1 WO2019000264 A1 WO 2019000264A1 CN 2017090500 W CN2017090500 W CN 2017090500W WO 2019000264 A1 WO2019000264 A1 WO 2019000264A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
catalyst
reaction mixture
water
ethylene glycol
Prior art date
Application number
PCT/CN2017/090500
Other languages
French (fr)
Inventor
Peng Wu
Xinqing LU
Wenjuan ZHOU
Original Assignee
Solvay Sa
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay Sa, East China Normal University filed Critical Solvay Sa
Priority to EP17915315.0A priority Critical patent/EP3645489A4/en
Priority to PCT/CN2017/090500 priority patent/WO2019000264A1/en
Publication of WO2019000264A1 publication Critical patent/WO2019000264A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/10Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes
    • C07C29/103Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers
    • C07C29/106Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers of oxiranes

Definitions

  • the present invention relates to a process for the manufacture of ethylene glycol starting from ethylene oxide (EO) .
  • EO ethylene oxide
  • Ethylene Glycol (Mono-Ethylene Glycol or MEG) is an important organic chemical raw material mainly used in the production of polyester (more precisely of PET or poly-ethylene-terephthalate) and as antifreeze agent.
  • ethylene glycol production is generally made using a non-catalytic direct hydration method wherein ethylene oxide (EO) and water are reacted generally in a molar ratio of about 1: 20-22 (molar ratio) resulting in an ethylene glycol aqueous solution containing only about 10% (mass fraction) of MEG, the rest being water and by-products like diethylene glycol (DEG) and triethylene glycol (TEG) .
  • EO ethylene oxide
  • DEG diethylene glycol
  • TEG triethylene glycol
  • Increasing the amount of water used for this method can reduce the by-product formation and improve the conversion rate of ethylene oxide.
  • Zeolites of the Ti-MWW type are known to be catalysts active in epoxidation reactions: see for instance US6759540 and US7323154.
  • this kind of catalysts zeolite of the Ti-MWW type
  • this type of catalyst also allows reducing the amount of water used (typically decreasing the water/EO ratio to about 5: 1) in said synthesis hence rendering it more economical and environmentally friendly.
  • the present invention relates to a process for the manufacture of ethylene glycol starting from ethylene oxide (EO) , said process using a reaction mixture comprising EO, a Ti-MWW zeolite and water.
  • EO ethylene oxide
  • Preferred embodiments are those according to which:
  • the zeolite is modified with an organic amine, preferably with piperidine or hexamethyleneimine as disclosed in CN101003376;
  • the catalyst concentration in the reaction mixture is in the range of from 0.5 to 5 wt. %;
  • the process is performed at a temperature from 20°C to 150°C;
  • the molar ratio of water to EO is in the range of from 1 to 50.
  • the molar ratio of hydrogen peroxide to EO is preferably in the range of from 0.01 to 10;
  • the molar ratio of water to hydrogen peroxide is preferably in the range of from 5 to 50.
  • said mixture when using hydrogen peroxide in the reaction mixture, also comprises a hydrogen peroxide stabilizer like a mineral acid, preferably nitric acid, and/or HEDP (1-hydroxy ethylidene-1, 1-diphosphonic acid) .
  • a hydrogen peroxide stabilizer like a mineral acid, preferably nitric acid, and/or HEDP (1-hydroxy ethylidene-1, 1-diphosphonic acid
  • the catalyst is preferably used as a slurry catalyst or a fixed bed catalyst.
  • the zeolite is preferably mixed with a binder like silica, alumina or a mixture thereof and then shaped for instance by extrusion.
  • a hydration reaction (HR) for producing ethylene glycol is carried out under vigorous stirring in an autoclave reactor equipped with a 45 mL Telfon-inner.
  • the TS-1 catalyst was prepared according to the procedure described in U.S. Pat. No. 4,410,501.
  • the reaction mixture is immediately immersed in a pre-heated oil bath to start the reaction.
  • the reaction mixture is stirred at 40°C for 4 h, and then immediately cooled down in an ice bath to stop the reaction.
  • Both the gas and the liquid phase samples are collected and analyzed by gas chromatography (GC) using isopropanol as an internal standard.
  • GC gas chromatography
  • the gases are vented into an acetonitrile solvent for GC analysis.
  • the catalyst is removed from the reaction mixture by centrifugation and the supernatant is analyzed by GC for organic products.
  • the hydration reaction is run according to the same procedure as Comparative Example 1 except that a Ti-MWW (0.1 g) is used as a catalyst instead of a TS-1 catalyst.
  • the Ti-MWW was prepared according to a known literature procedure (Chemistry Letters, 2000: 774) .
  • the hydration reaction is run according to the same procedure as Example 2 except that the Ti-MWW catalyst was chemically treated in an aqueous solution of piperidine according to a known literature procedure (Journal of Physical Chemistry C, 2008, 112, 6132) .
  • the hydration reaction is run according to the same procedure as Example 2 except that the Ti-MWW catalyst was chemically treated in an aqueous solution of hexamethyleneimine according to a known literature procedure (Journal of Physical Chemistry C, 2008, 112, 6132) .
  • the hydration reaction is run according to the same procedure as Example 2 except that the amount of Ti-MWW is 0.2 g.
  • the hydration reaction is run according to the same procedure as Example 2 except that the amount of water is 2 g.
  • the hydration reaction is run according to the same procedure as Example 3 except that the amount of water is 2.7 g.
  • the hydration reaction is run according to the same procedure as Example 3 except that the amount of water is 2 g.
  • the hydration reaction is run according to the same procedure as Example 2 except that the reaction temperature is at 60°C.
  • the hydration reaction is run according to the same procedure as Example 2 except that 10 mmol of H2O2 is added into the reaction.
  • the hydration reaction is run according to the same procedure as Example 3 except that the amount of catalyst and the reaction time are 0.05 g and 1 h, respectively.
  • the hydration reaction is run according to the same procedure as Example 11 except that the reaction temperature is at 60°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Provided are process for the manufacture of ethylene glycol starting from ethylene oxide (EO) and said process using a reaction mixture comprising EO, a Ti-MWW zeolite and water.

Description

[Title established by the ISA under Rule 37.2] PROCESS FOR MANUFACTURE OF ETHYLENE GLYCOL
The present invention relates to a process for the manufacture of ethylene glycol starting from ethylene oxide (EO) .
Ethylene Glycol (Mono-Ethylene Glycol or MEG) is an important organic chemical raw material mainly used in the production of polyester (more precisely of PET or poly-ethylene-terephthalate) and as antifreeze agent.
At present, large-scale ethylene glycol production is generally made using a non-catalytic direct hydration method wherein ethylene oxide (EO) and water are reacted generally in a molar ratio of about 1: 20-22 (molar ratio) resulting in an ethylene glycol aqueous solution containing only about 10% (mass fraction) of MEG, the rest being water and by-products like diethylene glycol (DEG) and triethylene glycol (TEG) . Increasing the amount of water used for this method can reduce the by-product formation and improve the conversion rate of ethylene oxide. However, it makes it necessary to set up multiple evaporators/distillation columns, increasing the equipment investment and energy consumption, which directly affects the production cost of ethylene glycol.
Zeolites of the Ti-MWW type are known to be catalysts active in epoxidation reactions: see for instance US6759540 and US7323154.
The inventors have now discovered that this kind of catalysts (zeolite of the Ti-MWW type) is also very active in the synthesis of MEG starting from EO and water (i.e. in the hydrolysis of EO to MEG) . Besides activating the reaction, this type of catalyst also allows reducing the amount of water used (typically decreasing the water/EO ratio to about 5: 1) in said synthesis hence rendering it more economical and environmentally friendly.
Therefore, the present invention relates to a process for the manufacture of ethylene glycol starting from ethylene oxide (EO) , said process using a reaction mixture comprising EO, a Ti-MWW zeolite and water.
Preferred embodiments are those according to which:
-the zeolite is modified with an organic amine, preferably with piperidine or hexamethyleneimine as disclosed in CN101003376;
-the catalyst concentration in the reaction mixture is in the range of from 0.5 to 5 wt. %;
-the process is performed at a temperature from 20℃ to 150℃;
-the molar ratio of water to EO is in the range of from 1 to 50.
The use of hydrogen peroxide in the reaction mixture is preferred. In that embodiment:
-the molar ratio of hydrogen peroxide to EO is preferably in the range of from 0.01 to 10; and/or
-the molar ratio of water to hydrogen peroxide is preferably in the range of from 5 to 50.
Considering the fact that EO is extremely flammable and explosive, care should be taken to work in conditions outside the explosion zone.
In a preferred sub-embodiment, when using hydrogen peroxide in the reaction mixture, said mixture also comprises a hydrogen peroxide stabilizer like a mineral acid, preferably nitric acid, and/or HEDP (1-hydroxy ethylidene-1, 1-diphosphonic acid) .
In the invention, the catalyst is preferably used as a slurry catalyst or a fixed bed catalyst. Hence, the zeolite is preferably mixed with a binder like silica, alumina or a mixture thereof and then shaped for instance by extrusion.
The following Examples illustrate some embodiments of the present invention.
COMPARATIVE EXAMPLE 1
A hydration reaction (HR) for producing ethylene glycol is carried out under vigorous stirring in an autoclave reactor equipped with a 45 mL Telfon-inner. A TS-1 catalyst (0.1 g, Si/Ti=50) , water (5 g) and ethylene oxide (0.44 g) are added into the reactor, and the pressure of the reactor is then raised to 1.5 MPa with nitrogen. The TS-1 catalyst was prepared according to the procedure described in U.S. Pat. No. 4,410,501. The reaction mixture is immediately immersed in a pre-heated oil bath to start the reaction. The reaction mixture is stirred at 40℃ for 4 h, and then immediately cooled down in an ice bath to stop the reaction.
Both the gas and the liquid phase samples are collected and analyzed by gas chromatography (GC) using isopropanol as an internal standard. The gases are vented into an acetonitrile solvent for GC analysis. The catalyst is removed from the reaction mixture by centrifugation and the supernatant is analyzed by GC for organic products.
EXAMPLE 2
The hydration reaction is run according to the same procedure as Comparative Example 1 except that a Ti-MWW (0.1 g) is used as a catalyst instead of a TS-1  catalyst. The Ti-MWW was prepared according to a known literature procedure (Chemistry Letters, 2000: 774) .
EXAMPLE 3
The hydration reaction is run according to the same procedure as Example 2 except that the Ti-MWW catalyst was chemically treated in an aqueous solution of piperidine according to a known literature procedure (Journal of Physical Chemistry C, 2008, 112, 6132) .
EXAMPLE 4
The hydration reaction is run according to the same procedure as Example 2 except that the Ti-MWW catalyst was chemically treated in an aqueous solution of hexamethyleneimine according to a known literature procedure (Journal of Physical Chemistry C, 2008, 112, 6132) .
EXAMPLE 5
The hydration reaction is run according to the same procedure as Example 2 except that the amount of Ti-MWW is 0.2 g.
EXAMPLE 6
The hydration reaction is run according to the same procedure as Example 2 except that the amount of water is 2 g.
EXAMPLE 7
The hydration reaction is run according to the same procedure as Example 3 except that the amount of water is 2.7 g.
EXAMPLE 8
The hydration reaction is run according to the same procedure as Example 3 except that the amount of water is 2 g.
EXAMPLE 9
The hydration reaction is run according to the same procedure as Example 2 except that the reaction temperature is at 60℃.
EXAMPLE 10
The hydration reaction is run according to the same procedure as Example 2 except that 10 mmol of H2O2 is added into the reaction.
EXAMPLE 11
The hydration reaction is run according to the same procedure as Example 3 except that the amount of catalyst and the reaction time are 0.05 g and 1 h, respectively.
EXAMPLE 12
The hydration reaction is run according to the same procedure as Example 11 except that the reaction temperature is at 60℃.
The results obtained in all these Examples are shown in Table 1 below.
Figure PCTCN2017090500-appb-000001

Claims (10)

  1. A process for the manufacture of ethylene glycol starting from ethylene oxide (EO) , said process using a reaction mixture comprising EO, a Ti-MWW zeolite and water.
  2. The process according to claim 1, wherein the zeolite is modified with an organic amine, preferably with piperidine or hexamethyleneimine.
  3. The process according to any of the preceding claims, wherein the catalyst concentration in the reaction mixture is in the range of from 0.5 to 5 wt. %
  4. The process according to any of the preceding claims, wherein the process is performed at a temperature from 20℃ to 150℃.
  5. The process according to any of the preceding claims, wherein the molar ratio of water to EO is in the range of from 1 to 50.
  6. The process according to any of the preceding claims, wherein hydrogen peroxide in also present in the reaction mixture.
  7. The process according to the preceding claim, wherein the molar ratio of hydrogen peroxide to EO is preferably in the range of from 0.01 to 10.
  8. The process according to claim 6 or 7, wherein the reaction mixture also comprises a hydrogen peroxide stabilizer like a mineral acid, preferably nitric acid, and/or HEDP (1-hydroxy ethylidene-1, 1-diphosphonic acid) .
  9. The process according to any of the preceding claims, wherein the catalyst is a slurry catalyst or a fixed bed catalyst.
  10. The process according to the preceding claim, wherein the zeolite is mixed with a binder like silica, alumina or a mixture thereof and shaped by extrusion.
PCT/CN2017/090500 2017-06-28 2017-06-28 Process for manufacture of ethylene glycol WO2019000264A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17915315.0A EP3645489A4 (en) 2017-06-28 2017-06-28 PROCESS FOR PRODUCING ETHYLENE GLYCOL
PCT/CN2017/090500 WO2019000264A1 (en) 2017-06-28 2017-06-28 Process for manufacture of ethylene glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/090500 WO2019000264A1 (en) 2017-06-28 2017-06-28 Process for manufacture of ethylene glycol

Publications (1)

Publication Number Publication Date
WO2019000264A1 true WO2019000264A1 (en) 2019-01-03

Family

ID=64740222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090500 WO2019000264A1 (en) 2017-06-28 2017-06-28 Process for manufacture of ethylene glycol

Country Status (2)

Country Link
EP (1) EP3645489A4 (en)
WO (1) WO2019000264A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020010378A1 (en) * 2000-05-08 2002-01-24 Yukihiko Kakimoto Method for production of ethylene oxide
CN101003376A (en) * 2006-09-30 2007-07-25 华东师范大学 Method for synthesizing alkali modified molecular sieve containing titanium
CN102219642A (en) * 2010-04-15 2011-10-19 中国石油化工股份有限公司 Method for producing glycol by virtue of hydration of ethylene oxide
CN102951998A (en) * 2011-08-24 2013-03-06 岳阳蓬诚科技发展有限公司 Method of preparing glycol by using one-step ethylene method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020010378A1 (en) * 2000-05-08 2002-01-24 Yukihiko Kakimoto Method for production of ethylene oxide
CN101003376A (en) * 2006-09-30 2007-07-25 华东师范大学 Method for synthesizing alkali modified molecular sieve containing titanium
CN102219642A (en) * 2010-04-15 2011-10-19 中国石油化工股份有限公司 Method for producing glycol by virtue of hydration of ethylene oxide
CN102951998A (en) * 2011-08-24 2013-03-06 岳阳蓬诚科技发展有限公司 Method of preparing glycol by using one-step ethylene method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU, XINQING ET AL.: "Selective synthesis of ethylene oxide through liquid-phase epoxidation of ethylene with titanosilicate/H202 catalytic systems", APPLIED CATALYSIS A: GENERAL, vol. 515, 4 February 2016 (2016-02-04), pages 51 - 59, XP029451504 *
See also references of EP3645489A4 *

Also Published As

Publication number Publication date
EP3645489A1 (en) 2020-05-06
EP3645489A4 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
JP6935399B2 (en) Method for producing isopropyl alcohol
ES2215934T3 (en) INTEGRATED PROCEDURE FOR THE PREPARATION OF OLEFIN OXIDES.
TW593298B (en) Preparation of oxirane compounds
JP2013079259A (en) Method for producing oxirane by using peroxide compound
KR20120109603A (en) Process for making titanium-mww zeolite
WO2009063487A3 (en) An improved process for manufacture of epoxides, particularly epichlorohydrin
WO2019000266A1 (en) Process for manufacture of ethylene glycol
KR101053812B1 (en) Epoxylation of Olefin
TWI466875B (en) Method for making epoxides
WO2019000264A1 (en) Process for manufacture of ethylene glycol
RU2354654C2 (en) Method of alkylen oxide production
JP2004292335A (en) Method for producing α-methylstyrene
US20160067694A1 (en) Highly active, selective, accessible, and robust zeolitic ti-epoxidation catalyst
JP6748205B2 (en) Propylene oxide production method
JP4301814B2 (en) Process for epoxidizing olefins
JP4471078B2 (en) Method for producing alkylbenzaldehydes
Ghanta Development of an economically viable H2O2-based, liquid-phase ethylene oxide technology: reactor engineering and catalyst development studies
WO2002088104A1 (en) Process for producing propylene oxide
JP2015504090A (en) Method for producing choline hydroxide from trimethylamine and ethylene oxide
WO2019000281A1 (en) Process for the manufacture of ethylene glycol
US6838572B2 (en) Process for the epoxidation of olefins
JP2003238546A (en) Method for recovering propylene oxide
CN115819201B (en) Green Synthesis of o-Chlorobenzaldehyde Catalyzed by Titanium Silica Molecular Sieve
JPH06211821A (en) Method for epoxidizing olefin compound
CN108069836B (en) Novel method for preparing tri (3, 6-dioxaheptyl) amine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017915315

Country of ref document: EP

Effective date: 20200128