WO2019098339A1 - 抗癌剤の製造方法、抗癌剤及び医薬 - Google Patents
抗癌剤の製造方法、抗癌剤及び医薬 Download PDFInfo
- Publication number
- WO2019098339A1 WO2019098339A1 PCT/JP2018/042538 JP2018042538W WO2019098339A1 WO 2019098339 A1 WO2019098339 A1 WO 2019098339A1 JP 2018042538 W JP2018042538 W JP 2018042538W WO 2019098339 A1 WO2019098339 A1 WO 2019098339A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anticancer agent
- plasma
- aqueous solution
- producing
- anticancer
- Prior art date
Links
- 0 CCC(**(C*)C1*)*1=C Chemical compound CCC(**(C*)C1*)*1=C 0.000 description 1
- XZWYZXLIPXDOLR-UHFFFAOYSA-N CN(C)C(NC(N)=N)=N Chemical compound CN(C)C(NC(N)=N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/155—Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/337—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/64—Sulfonylureas, e.g. glibenclamide, tolbutamide, chlorpropamide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/706—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
- A61K31/7064—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
- A61K31/7068—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/08—Solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4166—1,3-Diazoles having oxo groups directly attached to the heterocyclic ring, e.g. phenytoin
Definitions
- the present invention relates to a method for producing an anticancer drug, an anticancer drug and a medicine.
- Plasma refers to a state in which gas molecules are ionized and divided into positive ions and electrons to move, and is also referred to as a fourth state of matter. Recently, a plasma generator that generates a plasma at room temperature and atmospheric pressure has also been developed, and the application field of plasma has expanded.
- Non-Patent Document 1 describes that plasma-irradiated cell culture medium induces apoptosis for glioblastoma but does not damage normal cells (astrocytes).
- Non-Patent Document 2 describes that when a cell culture medium irradiated with plasma is brought into contact with tumor cells, active oxygen is generated in tumor cells, and the sensitivity to active oxygen is higher in tumor cells than in normal cells. ing.
- Patent Document 1 describes a method for producing an anticancer drug, which comprises subjecting a cell culture medium to plasma irradiation not suitable for human administration, and subjecting a Ringer's infusion containing lactic acid etc. to plasma irradiation. .
- the Ringer's infusion described in Patent Document 1 is composed of lactic acid, salt and the like, and does not include a living energy source. Cancer patients can not take a normal diet depending on the site where the cancer arose, and there are many cases where the appetite declines due to the effects of anticancer drugs and radiation treatment. There is a need for anticancer agents that can exert an antitumor effect while supplying energy to cancer patients whose appetite has been diminished. Moreover, the method for producing an anticancer agent of Patent Document 1 still has room for improvement in terms of the anticancer effect. If an anticancer agent that can be easily manufactured and has few side effects while having the above-mentioned characteristics can be realized, it can be expected that it can greatly contribute to cancer treatment.
- the object of the present invention is to provide a method for producing an anticancer drug which can easily produce an anticancer drug which exerts an excellent antitumor action, and an anticancer drug and drug which can be conveniently produced and exert an excellent anticancer action. To provide.
- the present inventors can solve the said subject by carrying out plasma irradiation of the aqueous solution containing sodium ion and 1 or more types selected from glucose and a NO regulator, as a result of earnestly examining in order to solve the said subject.
- the present invention has been completed.
- Glucose is said to be a nutrient source for cancer cells, and it has been reported that glucose limitation is effective for cancer, and by irradiating plasma with an aqueous solution containing glucose, it has excellent anti-cancer effects.
- the discovery that an anticancer agent is obtained which does not damage normal cells is surprising.
- the present inventors are more effective by including an NO regulator in the aqueous solution or injecting air into the aqueous solution by bubbling when performing plasma irradiation on an aqueous solution containing glucose and / or sodium ions. It has been found that an anticancer drug having a high Furthermore, the present inventors have also found that plasma irradiation of an aqueous solution containing glucose and / or sodium ion exhibits synergy with drugs such as TRAIL, salinomycin, glibenclamide, metformin, paclitaxel, gemcitabine, and the present invention. Completed.
- the plasma irradiation liquid formed by plasma irradiation of an aqueous solution containing glucose or salt is an abnormal aggregation, fragmentation of the mitochondria of the cell, and an increase in autophagy.
- the cancer cells and tumor cells are killed by different routes, and therefore, the anticancer agent produced by the method for producing an anticancer agent of the present invention is considered to be effective for a tumor showing resistance to an apoptosis inducer.
- the present invention is the following [1] to [10].
- [1] A method for producing an anticancer agent, comprising the step of irradiating plasma with an aqueous solution containing one or more selected from glucose and an NO regulator.
- [2] The method for producing an anticancer agent according to [1], wherein the aqueous solution contains sodium hydrogen carbonate.
- [3] The method for producing an anticancer agent according to [1] or [2], wherein the aqueous solution contains L-glutamine.
- [4] The anticancer agent according to [1], wherein the aqueous solution is a human infusion preparation, a human infusion preparation mixed with one or more selected from glucose and an NO regulator, or a Dulbecco's medium containing no phenol red. Manufacturing method.
- [5] The method for producing an anticancer agent according to any one of [1] to [4], wherein the step of irradiating the plasma is a step of irradiating the aqueous solution with low temperature plasma at room temperature to 100 ° C. under atmospheric pressure.
- [6] The method for producing an anticancer agent according to any one of [1] to [5], wherein the anticancer agent is a tumor anticancer agent showing resistance to an apoptosis inducer.
- a drug for treating cancer which is combined with one or more drugs selected from the group consisting of [10]
- a medicine for treating cancer comprising a combination of (A) an anticancer agent obtained by irradiating plasma with water or sodium aqueous solution and (C) a NO regulator.
- a method for producing an anticancer drug comprising the step of performing plasma irradiation while bubbling air into water or an aqueous sodium solution.
- the method for producing an anticancer agent of the present invention can conveniently produce an anticancer agent that exerts an antitumor effect.
- the anticancer agent of the present invention exerts an excellent anticancer effect by using in combination with a specific anticancer agent.
- the medicament of the present invention exerts an excellent anticancer effect.
- the anticancer agent obtained by the method for producing an anticancer agent of the present invention does not affect normal cells.
- FIG. 6 is a graph showing the results of Example 1;
- FIG. 7 is a graph showing the results of Example 2;
- FIG. 7 is a graph showing the results of Example 3;
- FIG. 16 is a graph showing the results of Example 4;
- FIG. 16 is a graph showing the results of Example 5;
- FIG. 18 is a graph showing the results of Example 6.
- FIG. 18 is a graph showing the results of Example 7;
- FIG. 18 is a graph showing the results of Example 8.
- FIG. 18 is a graph showing the results of Example 9.
- FIG. 18 is a graph showing the results of Example 10;
- FIG. 18 is a graph showing the results of Example 10;
- FIG. 18 is a graph showing the results of Example 10.
- FIG. 24 is a graph showing the results of Example 12.
- FIG. 24 is a graph showing the results of Example 13.
- FIG. 16 is a photographic view showing the results of Example 14.
- FIG. 26 is a graph showing the results of Example 15.
- FIG. 16 is a photographic view showing the result of Example 16.
- FIG. 24 is a graph showing the results of Example 17.
- FIG. 26 is a graph showing the results of Example 18.
- FIG. 19 is a photographic view showing the result of Example 19.
- the aqueous solution containing glucose used in the present invention contains 0.01 to 0.6 g / mL of glucose, preferably 0.03 to 0.6 g / mL, more preferably 0.03 to 0.5 g / mL. More preferably, it contains 0.03 to 0.1 g / mL. Any glucose can be used commercially.
- the NO regulator is a general term for a compound (NO donor) that produces free radical nitric oxide (NO) in cells and a compound (NO scavenger) that removes nitric oxide in cells.
- NO nitrogen monoxide
- NO scavenger a compound that removes nitric oxide in cells.
- Nitrogen monoxide (NO) is a kind of nitrogen oxide which is synthesized in vivo and has various functions, and is a colorless and odorless gas. Although it is a radical species with unpaired electrons, its reactivity as a radical is low.
- NO produced from vascular endothelial cells has a vasodilating action (hypertensive action) and has been called endothelium-derived relaxing factor (EDRF) of blood vessels.
- EDRF endothelium-derived relaxing factor
- a platelet aggregation inhibitory action antiatherogenic action
- an action of suppressing proliferation of vascular smooth muscle cells a signal transmission action by neurotransmission and the like
- a bactericidal action In vivo, it is synthesized from arginine by nitric oxide synthase (NOS).
- NOS nitric oxide synthase
- NO regulators include both NO donors and NO scavengers. According to the study of the present inventors, it was found that the antitumor effect of the anticancer agent obtained by plasma irradiation to water or aqueous sodium solution is further enhanced by the presence of the NO regulator.
- the NO regulator may be contained in the solution to be irradiated with plasma or may be used in combination with the plasma irradiation solution, but preferably, the NO regulator is prepared separately from the plasma irradiation solution and used in combination with the plasma irradiation solution To administer.
- the optimal nitric oxide level exists in cancer cells, and it is in contact with plasma irradiation solution (water) whether there is more or less nitric oxide than that. It is thought that cell damage that occurs when For example, according to the study of the present inventors, it has been found that the mitochondria in the cells are excessively divided when the cells are exposed to the NO donor, and excessively fused when the cells are exposed to the NO scavenger. . However, excessive division of mitochondria by NO donors and excessive fusion of mitochondria by NO scavenging agents are necessary for induction of cell death of cancer cells, but they are not enough and plasma irradiation of water or aqueous solution is performed there. It is considered that the anti-tumor effect of the anti-tumor agent will be dramatically enhanced by the addition of the anti-tumor effect of the anticancer agent.
- NOR-1 ( ⁇ )-(E) -4-Methyl-2-[(E) -hydroxyimino] -5-nitro-6-methoxy-3-hexenamide
- NOR-3 ( ⁇ )-(E) -4-Ethyl-2-[(E) -hydroxyimino] -5-nitro-3-hexenamide
- NOR-4 ( ⁇ ) -N-[(E) -4-Ethyl-2 -[(Z) -hydroxyimino] -5-nitro-3-hexene-1-yl] -3-pyridinecarboxamide
- NOR-5 ( ⁇ ) -N-[(E) -4-Ethyl-3-[(Z ) -Hydroxyimino] -6-methyl-5-nitro-3-heptenyl] -3-pyridinecarb xamide
- NOC-5 1-Hydroxy-2-oxo-3- (3-aminopropyl) -3-isoprop
- the potentiating effect of the anti-tumor effect by blending the NO regulator is seen not only for the aqueous solution containing glucose but also for the anticancer agent obtained by plasma irradiation of a glucose-free fluid such as Ringer's solution. That is, the anticancer agent obtained by irradiating the plasma obtained by adding the NO regulator to water or sodium aqueous solution is an anticancer agent obtained by irradiating the water or sodium aqueous solution not containing the NO regulator with plasma. It can be expected that the antitumor effect is higher than that.
- an antitumor effect higher than that of the plasma irradiation solution alone can be obtained by using an anticancer agent obtained by plasma irradiation to water or sodium aqueous solution and an NO regulator in combination.
- the form of the NO regulator is not particularly limited, but is preferably administered in the form of an aqueous solution.
- the concentration of the NO regulator in the aqueous solution is preferably 1 ⁇ M to 50 mM, more preferably 10 ⁇ M to 10 mM, and still more preferably 10 ⁇ M to 30 ⁇ M.
- bubbling in which air is fed into an aqueous solution at the time of plasma irradiation, can also be mentioned. Since nitrogen is contained in air, bubbling air is considered to have the same effect as the addition of NO regulator. It does not specifically limit as a specific method of bubbling, The general method of sending air to water or aqueous solution, such as a method using an air pump, can be adopted.
- the aqueous solution used in the method for producing an anticancer agent of the present invention preferably contains sodium ion.
- the sodium ion source may be any source that can be administered to humans.
- sodium chloride, sodium lactate, sodium acetate, sodium carbonate, sodium hydrogen carbonate can be blended into the aqueous solution of the present invention .
- the sodium ion concentration is 10 to 180 mEq / L, more preferably 12 to 150 mEq / l.
- the aqueous solution of the present invention preferably further contains potassium ion.
- Any potassium ion source can be used as long as it can be administered to humans.
- potassium chloride, potassium lactate, potassium acetate, potassium carbonate, potassium hydrogen carbonate can be blended into an aqueous solution containing glucose.
- the potassium ion concentration is 2-180 mEq / l, more preferably 3-160 mEq / L.
- the aqueous solution of the present invention may further contain lactate ion, carbonate ion, hydrogencarbonate ion, chloride ion, calcium ion, and magnesium ion.
- lactate ion for example, it is preferable to blend 0.0001 to 0.01 g / mL of sodium lactate.
- the bicarbonate ion is preferably contained in an aqueous solution at 0.1 to 50 mEq / L.
- the calcium ion is preferably contained in an aqueous solution at 0.1 to 50 mEq / L.
- the magnesium ion is preferably contained in an aqueous solution at 0.1 to 50 mEq / L.
- the aqueous solution of the present invention preferably contains sodium hydrogen carbonate.
- Sodium bicarbonate is an essential component of Dulbecco's medium.
- the content of sodium hydrogen carbonate is preferably 1 to 10000 mg / mL, more preferably 500 to 5000 mg / mL, and still more preferably 2000 to 4000 mg / mL in an aqueous solution.
- the aqueous solution of the present invention preferably contains L-glutamine.
- the NO content of L-glutamine is preferably 10 to 1000 mg / mL, more preferably 100 to 700 mg / mL, and still more preferably 500 to 700 mg / mL in an aqueous solution.
- the aqueous solution of the present invention may further contain one or more of the components used for Dulbecco's medium.
- Such components include calcium chloride, potassium chloride, magnesium sulfate, arginine, cystine, glycine, histidine, isoleucine, leucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine and valine
- the aqueous solution of the present invention is preferably Dulbecco's medium free of phenol red. Phenol red is preferably not included because it is harmful to the human body.
- the composition of Dulbecco's medium is as described in Oncotarget 7: 19910-19927, 2016.
- the aqueous solution of the present invention is preferably an electrolyte solution, and is preferably a human infusion preparation.
- Infusion preparations are frequently used for human fluid and electrolyte replenishment, and are preferable from the viewpoint of safety.
- the infusion preparation is not particularly limited as long as it is used at a medical site, and, for example, an initiator solution (No. 1 solution), a dehydrated replacement solution (No. 2 solution), a maintenance solution (No. 3 solution) Examples thereof include hypotonic electrolytes such as recovery solution (solution 4) and those to which glucose is added.
- the method for producing an anticancer agent of the present invention comprises the step of irradiating the aqueous solution with plasma. Any known method can be adopted as a method of irradiating plasma to an aqueous solution.
- a plasma processing apparatus shown in FIG. 12 of WO 2014/167626 can be used as an apparatus for plasma irradiation.
- the plasma processing conditions can be appropriately selected and implemented within the range of known processing conditions of the existing plasma processing apparatus.
- the step of irradiating the plasma is preferably a step of irradiating the aqueous solution with a low temperature plasma at room temperature (25 ° C.) to 100 ° C. under atmospheric pressure.
- the gas type is not particularly limited, and any of argon, helium, oxygen, nitrogen and the like can be used.
- the method for producing an anticancer agent of the present invention is preferably a method for producing an anticancer agent for a tumor which exhibits resistance to an apoptosis inducer.
- the anticancer agent obtained by plasma treatment of water or sodium aqueous solution causes abnormal aggregation, fragmentation of the mitochondria of the cell, and enhancement of autophagy, thereby causing cancer by a different route from apoptosis.
- the cells or tumor cells are killed, and therefore, the anticancer agent produced by the method of producing an anticancer agent of the present invention is considered to be effective for a tumor showing resistance to an apoptosis inducer.
- the apoptosis inducer includes, for example, TRAIL (TNF related apoptosis-inducing ligand), an agonist or agonist antibody of a death receptor (Death receptor, DR), a topoisomerase inhibitor, doxorubicin, anisomycin and the like.
- TRAIL TNF related apoptosis-inducing ligand
- Death receptor DR
- doxorubicin doxorubicin
- tumors showing resistance to apoptosis inducers cancer types include malignant melanoma (melanoma), osteosarcoma, neuroblastoma, glioma (glioma) and the like.
- the anticancer agent obtained by the method for producing an anticancer agent of the present invention can be used as it is in an aqueous solution irradiated with plasma, it can also be used after dilution.
- the dilution factor in the case of dilution and use is preferably 1.5 to 8 times, more preferably 2 to 8 times, more preferably 2 to 6 times.
- the anticancer agent of the present invention is preferably used in combination with one or more drugs selected from the group consisting of a cell death receptor agonist, salinomycin, glibenclamide, metformin, paclitaxel and gemcitabine.
- the present inventors have found it advantageous to use in combination the one in which water or sodium aqueous solution is irradiated with plasma, and one or more drugs selected from the group consisting of cell death receptor agonist, salinomycin, glibenclamide, metformin, paclitaxel and gemcitabine. It has been found that an anti-cancer effect is exerted.
- Cell death receptor agonists are also referred to as pro-apoptotic receptor agonists (PARAs). Apoptosis is initiated through two signaling pathways. One is a pathway operating through intracellular Bcl-2 protein, and the other is a pathway operating through a cell death receptor (also referred to as a pro-apoptotic receptor) present on the cell surface. And, in recent years, development of cell death receptor agonist (PARA) as an anticancer agent is in progress. This is because cell death receptor agonists are expected to be effective in inducing apoptosis of cancer cells and killing cancer cells. However, as mentioned above, some carcinomas have been found to be resistant to apoptosis inducers.
- apoptosis-inducing ligand 2 / TNF related apoptosis-inducing ligand of human recombinant protein Apo2L / TRAIL
- a monoclonal antibody acting as an agonist for pro-apoptotic receptor such as anti-DR4 antibody or anti-DR5 Antibodies (DS-8273, conatumumab etc)
- TRAIL TNF related apoptosis-inducing ligand
- TNF Tumor Necrosis Factor
- TRAIL binds to TRAIL receptor 1 / DR4 or TRAIL-R2 / DR5 to activate the extrinsic, endogenous pathway to induce apoptosis. It is known that, while inducing apoptosis in cancer cells and causing them to die, they have no effect on normal cells.
- TRAIL include Human Tumor Necrosis Factor Ligand Super Family Member 10 (TNFSF10). Multiple splice variants are known to exist in TRAIL, but any splice variant is included in TRAIL. In addition, KillerTRAIL sold by Enzo, mutant TRAIL such as SuperKillerTRAIL, and modified TRAIL are also included in TRAIL.
- TRAIL is preferably human TRAIL, but may be other mammalian TRAIL such as mouse TRAIL.
- the method for producing TRAIL is not particularly limited, and may be derived from human cells, or may be derived from a mammal such as a mouse, or may be synthesized in vitro.
- the dose of TRAIL is not particularly limited. The usual dose of TRAIL may be used, and although the anticancer agent of the present invention may be used as a stock solution or diluted, it is preferably used diluted 2 to 8 times.
- the content of TRAIL is, for example, preferably 1 to 100 ng / mL, more preferably 25 to 100 ng / mL, and the anticancer agent of the present invention may be diluted even in the stock solution although it may be used as it is, it is preferable to use it diluted 2 to 8 times, more preferably 2 to 6 times.
- salinomycin includes salinomycin as well as pharmaceutically acceptable salts of salinomycin such as salinomycin sodium.
- Salinomycin is a drug used as an antiprotozoal drug and an anticoccidiosis drug.
- Salinomycin is represented, for example, by the following formula.
- any commercially available one can be used.
- the dose of salinomycin is not particularly limited.
- the usual dose of salinomycin may be used, and the anticancer agent of the present invention may be used as a stock solution or diluted, but it is preferable to use it diluted 2 to 8 times.
- the content of salinomycin is, for example, preferably 1 to 5 ⁇ M, more preferably 1 to 3 ⁇ M, and the anticancer agent of the present invention may be diluted with a stock solution
- glibenclamide includes, in addition to glibenclamide, pharmaceutically acceptable salts of glibenclamide.
- Glibenclamide is a sulfonylurea-type hypoglycemic agent used for the treatment of type 2 diabetes.
- Glibenclamide is represented, for example, by the following formula.
- any commercially available one can be used.
- the dosage of glibenclamide is not particularly limited.
- the usual dosage of the glibenclamide may be used, and the anticancer agent of the present invention may be used as a stock solution or diluted, but it is preferable to use it diluted 2 to 8 times.
- the content of glibenclamide is, for example, preferably 1 to 100 ⁇ M, more preferably 30 to 100 ⁇ M, and the anticancer agent of the present invention may be diluted with a stock solution Although it is preferable, it is preferable to use it diluted by 2 to 8 times, more preferably 2 to 6 times.
- metformin includes metformin as well as pharmaceutically acceptable salts of metformin.
- Metformin is one of the therapeutic agents for type 2 diabetes classified into biguanides.
- the target of biguanides including metformin is believed to be mitochondrial respiratory chain complex I, and by inhibiting its activity, the intracellular AMP / ATP ratio is consequently increased to increase intracellular energy. It is thought to change the balance.
- AMPK AMP activated protein kinase
- Metformin is represented, for example, by the following formula. As metformin, any commercially available one can be used.
- metformin and the anticancer agent produced by the method for producing the anticancer agent of the present invention are used in combination, when metformin and the anticancer agent of the present invention are separately administered, the dosage of metformin is not particularly limited.
- the usual dose of metformin may be used, and the anticancer agent of the present invention may be used as a stock solution or diluted, but is preferably used diluted 2 to 8 times.
- metformin When metformin is used as a mixture with the anticancer agent of the present invention, the content of metformin is, for example, preferably 1 to 30 mM, more preferably 3 to 30 mM, and the anticancer agent of the present invention may be diluted with a stock solution Although it is preferable, it is preferable to use it diluted by 2 to 8 times, more preferably 2 to 6 times.
- Paclitaxel includes paclitaxel as well as pharmaceutically acceptable salts of paclitaxel.
- Paclitaxel is a taxane anticancer agent.
- Paclitaxel is used in the treatment of various cancers such as non-small cell lung cancer, pancreatic cancer, biliary cancer, bladder cancer, ovarian cancer, breast cancer, gastric cancer, head and neck cancer, angiosarcoma and the like.
- the synergistic effect of the anticancer agent of the present invention and paclitaxel can be expected not only to improve the therapeutic effect of these cancers, but also to reduce the side effects of paclitaxel.
- the dosage of paclitaxel is not particularly limited.
- the usual dose of paclitaxel may be used, and although the anticancer agent of the present invention may be used as a stock solution or diluted, it is preferably used diluted 2 to 8 times.
- the content of paclitaxel is, for example, preferably 10 to 100 nM, more preferably 3 to 30 nM, and the anticancer agent of the present invention may be used by diluting it with a stock solution.
- it is preferable it is preferable to use it diluted by 2 to 8 times, more preferably 2 to 6 times.
- Gemcitabine includes gemcitabine as well as pharmaceutically acceptable salts of gemcitabine.
- Gemcitabine is a fluorine-containing nucleoside used as an anticancer agent.
- Gemcitabine is used in the treatment of various cancers such as non-small cell lung cancer, pancreatic cancer, biliary cancer, bladder cancer, ovarian cancer, breast cancer, gastric cancer, head and neck cancer, angiosarcoma and the like.
- the synergistic effect of the anticancer agent of the present invention and gemcitabine not only improves the therapeutic effect of these cancers, but can also be expected to reduce the side effects of gemcitabine.
- the dose of gemcitabine is not particularly limited.
- the usual dose of the gemcitabine may be used, and the anticancer agent of the present invention may be used as a stock solution or diluted, but it is preferable to use it diluted 2 to 8 times.
- the content of gemcitabine is, for example, preferably 0.1 to 3 ⁇ M, more preferably 0.3 to 1 ⁇ M, and the anticancer agent of the present invention may be diluted even in the stock solution although it may be used as it is, it is preferable to use it diluted 2 to 8 times, more preferably 2 to 6 times.
- GHS-based safety data sheet which classifies the hazards of chemicals according to a uniform standard globally
- 0.1% (w / v) phenol red used as a pH indicator is an eye Damage to eyes and eye irritation: Category 2A, Germ cell mutagenicity: Category 1B, Reproductive toxicity: Category 1A, Specific target organ, systemic toxicity (repeated exposure) Category 1 (liver), Category 2 (nerve) is there. Therefore, PAM can not be directly administered to the human body.
- DMEM Dulbecco's modified Eagle's medium
- MEM-1 Dulbecco's modified Eagle's medium
- FCS 50% FCS
- the plasma irradiation liquid As the plasma irradiation liquid, as described in each example, the plasma (CAP-1 / CAP-2) irradiation liquid stock solution or the plasma irradiation liquid is doubled, quadrupled or 8-fold by a medium (MEM) or Soldem 3A infusion.
- the plasma (CAP-1 / CAP-2) irradiation liquid stock solution or the plasma irradiation liquid is doubled, quadrupled or 8-fold by a medium (MEM) or Soldem 3A infusion.
- anti-DR4 antibody agonistic anti-human TRAIL-R1 / TNFRSF10A antibody clone 69036 # MAB347-SP
- anti-DR5 antibody agonistic anti-human manufactured by R & D Systems
- TRAIL-R2 / TNFRSF10B antibody clone 71903 # MAB631-100
- TRAIL Enzo Life Sciences made KillerTRAIL TM (soluble) (h man), (recombinant) # ALX-201-073-3020
- salinomycin Sigma-Aldrich # S4526-5MG
- glibenclamide Sigma-Aldrich # PHR1287-1G
- metformin Abcam #ab 120847
- FCS / DMEM was added to adjust the total volume to 200 ⁇ L, and then cultured under the same conditions as described above.
- the concentration of each drug in each of the following examples is the concentration in the plasma irradiation liquid after adjusting the total amount with FCS / DMEM.
- the NO regulator was used in combination with the plasma irradiation solution by adding the drug to the final concentration described in each example.
- This method is a method of measuring this activity which is correlated with cell proliferation utilizing the fact that water-soluble tetrazolium salt is reduced to water-soluble formazan by mitochondrial oxidoreductase activity.
- the bubbling was carried out by sterilizing a commercially available small air pump tube for an aquarium fish tank, inserting the tip thereof into a falcon tube containing an aqueous solution before plasma irradiation, and sending air. Then, CAP-2 was irradiated in water while air was sent to the aqueous sodium solution. Hereinafter, it is referred to as "PC-2”. Or CAP-2 in water without air delivery. Hereinafter, it is referred to as "PC-3". )
- Example 1 The anticancer effect on MG63 cells by combination of plasma (CAP-1) irradiation solution (4-fold dilution or 8-fold dilution) and anti-DR4 antibody, anti-DR5 antibody or salinomycin was examined. The results are shown in FIG. In FIG. 1, PASS ⁇ 4 is a 4-fold dilution of the plasma irradiation solution prepared by the above method, PASS ⁇ 8 is a 8-fold dilution of the plasma irradiation solution prepared by the above method, and PASS ⁇ 16 is A 16 times dilution of the plasma irradiation solution prepared by the above method, ⁇ DR-4 represents an anti-DR4 antibody, and ⁇ DR-5 represents an anti-DR5 antibody.
- the cell viability of MG63 cells was reduced to about 70% by the administration of anti-DR4 antibody and anti-DR5 antibody alone.
- the cell viability did not decrease.
- the anti-DR5 antibody and the plasma irradiation solution were used in combination, the anti-DR5 antibody showed a significant anticancer effect depending on the concentration.
- the single administration of salinomycin or the single dilution of the plasma-irradiated solution was diluted by 8 times or more, the HOS cells were hardly killed. Cell viability exceeding 100% is due to cell proliferation.
- a 4-fold dilution of the plasma irradiation solution reduced the survival rate by 70%. Salinomycin further enhanced this antitumor effect. Even when the plasma irradiation solution was diluted by 8 times, the survival rate was reduced by 30% when used in combination with salinomycin, but when the plasma irradiation solution was diluted by 16 times, the antitumor effect was not seen. From this, it is clear that the plasma irradiation solution exerts a synergetic effect with salinomycin, and the effect of the plasma irradiation solution is weakened when diluted to 8 times or more.
- Example 2 Plasma (CAP-1) irradiation solution (PLAST 2-fold dilution or 4-fold dilution), CAP-2 irradiation solution (2-fold dilution or 4-fold dilution), and irradiation by plasma (CAP-1) irradiation to a conventional medium
- the anticancer effect of the fluid (designated PAM) on malignant melanoma (A2058) was compared. The results are shown in FIG.
- PLAST showed a remarkable anti-cancer effect, and even at 4-fold dilution, cell viability decreased to less than 20%.
- PAM-1 showed a strong effect only at 2-fold dilution.
- PAM-2 and PAM-3 had small anti-cancer effects even at 2-fold dilution. This result indicates that the anticancer effect of PAM is phenol red dependent.
- MEM-3 significantly reduced the survival rate, presumably due to the absence of FCS. It was suggested that air (N 2 ) was necessary for the effect that PC-2 irradiated with air bubbling had higher anticancer effect than PC-1 in CAP-2 irradiation liquid.
- PLAST and PC-1 / PC-2 have high anti-cancer effects, it can be seen that the anti-cancer effect of the plasma irradiation solution derived from an aqueous sodium solution does not require phenol red unlike PAM.
- PLAST has a stronger anti-cancer effect than PC-1 and PC-2, compared with PLAST irradiating a small volume (1 mL) of fluid for a long time (5 minutes) with plasma (CAP-1) It is considered that PC-1 and PC-2 are irradiated with plasma (CAP-2) for a short time (1 minute) to a large volume (30 mL) of infusion.
- the flow rate of helium gas is 300 mL / min for CAP-1, and 30 L / min for CAP-1.
- Example 3 Plasma (CAP-1) irradiation solution (PLAST 2-fold dilution or 4-fold dilution), CAP-2 irradiation solution (PC-1, PC-2 2-fold dilution or 4-fold dilution) CAP-1)
- PAM irradiated liquid
- HOS osteosarcoma
- PLAST showed a remarkable anti-cancer effect, and even at 4-fold dilution, cell viability decreased to less than 30%.
- PAM-1 showed strong effects at both 2-fold and 4-fold dilutions (over 30% survival rate).
- PAM-2 and PAM-3 showed no anticancer effect even at 2-fold dilution.
- air bubbling PC-2 had a higher anti-cancer effect than PC-1.
- Example 4 Plasma (CAP-1) irradiation solution (PLAST 2-fold dilution or 4-fold dilution), CAP-2 irradiation solution (PC-1, PC-2 2-fold dilution or 4-fold dilution) CAP-1)
- PAM irradiated liquid
- SAOS-2 osteosarcoma
- PLAST showed a remarkable anti-cancer effect, and even at 4-fold dilution, cell viability decreased to less than 10%.
- PAM-1 showed a moderate effect with only 2-fold dilution (40% survival rate).
- PAM-2 and PAM-3 showed no anticancer effect even at 2-fold dilution.
- air bubbling PC-2 had a higher anti-cancer effect than PC-1.
- Example 5 Plasma (CAP-1) irradiation solution (PLAST 2-fold dilution or 4-fold dilution), CAP-2 irradiation solution (PC-1, PC-2 2-fold dilution or 4-fold dilution) CAP-1)
- PAM irradiated liquid
- NB-1 neuroblastoma
- PLAST showed a remarkable anti-cancer effect, and even at 4-fold dilution, cell viability decreased to less than 10%.
- PAM-1 showed a moderate effect with only 2-fold dilution (40% survival rate).
- PAM-2 and PAM-3 showed no anticancer effect even at 2-fold dilution.
- air bubbling PC-2 had a higher anti-cancer effect than PC-1.
- Example 6 Plasma (CAP-1) irradiation solution (PLAST 2-fold dilution or 4-fold dilution), CAP-2 irradiation solution (PC-1, PC-2, PC-3 2-fold dilution or 4-fold dilution) and prior art
- PAM irradiation solution
- HOS osteosarcoma
- PLAST showed a significant anticancer effect.
- PAM-1 showed a strong anti-cancer effect only at 2-fold dilution (viability 20%), but PAM-2 showed no anti-cancer effect even at 2-fold dilution.
- air bubbling PC-2 with CAP-2 irradiation solution had a higher anticancer effect than PC-1 and PC-3 without air bubbling.
- Example 7 Plasma (CAP-1) irradiation solution (PLAST 2-fold dilution or 4-fold dilution), CAP-2 irradiation solution (PC-1, PC-2, PC-3 2-fold dilution or 4-fold dilution) and prior art
- PAM irradiation solution
- PLAST showed a significant anticancer effect.
- PAM-1 showed moderate anti-cancer effect (40% survival rate) only at 2-fold dilution, but PAM-2 showed no anti-cancer effect even at 2-fold dilution.
- PC-2 showed no anti-cancer effect even at 2-fold dilution.
- PC-2 with air bubbling was clearly more effective than PC-1 and PC-3 without air bubbling.
- Example 8 Examine changes in weight gain and changes in tumor size when plasma irradiation solution (3-fold dilution or 6-fold dilution) is administered to mouse osteosarcoma LM8 cells C3H mice (mouse transplanted with mouse cancer cells LM8) The The results are shown in FIG.
- mice treated with plasma CAP-1 irradiation (PASS)
- tumor growth was significantly suppressed as compared with that in control mice after 21 and 28 days, tumor growth was remarkable.
- the body weight of the mice was not changed at all even after four weeks of continuous administration as compared with that of the control, indicating that there was no deterioration in general condition such as anorexia.
- Example 9 The anticancer effect of atmospheric pressure low temperature plasma irradiation solution on malignant melanoma (A2058) when used in combination with NO regulators was investigated. The results are shown in FIG.
- NOR-3 and carboxy-PTIO alone reduced the cell viability up to 50% in a concentration-dependent manner, but NaNO 2 alone did not affect cell survival.
- NOR-3, carboxy-PTIO and NaNO 2 all significantly enhanced the anti-cancer effect of PASS even at concentrations that do not reduce the survival rate by itself.
- Example 10 Similar to Example 9, the anticancer effect of the atmospheric pressure low temperature plasma irradiation solution on neuroblastoma (NB-1) and osteosarcoma (HOS) when used in combination with an NO regulator was examined. The results are shown in FIG. 10, FIG. 11 and FIG.
- FIG. 10 (top) PC-1 which was air-irradiated with CAP-2 without air bubbling showed an anti-cancer effect at a 2-fold dilution. Although carboxy-PTIO, NOR-3, and NaNO 2 alone did not affect cell survival, they all enhanced the anti-cancer effect of PC-1, and NOR-3 was the most effective. (Bottom) PC-2 irradiated in water with CAP-2 while bubbling air showed a remarkable anticancer effect. NOR-3, carboxy-PTIO, NaNO 2 is alone did not affect cell viability, both to enhance the anticancer effects of PC-2, the effect is NOR-3 was the highest.
- Example 11 The anticancer effect of atmospheric pressure low temperature plasma irradiation solution containing glibenclamide on malignant melanoma (A2058) was investigated. In addition, the mode of cell death induced by the plasma irradiation solution was examined. The results are shown in FIG.
- TRAIL caspase inhibitor zVAD-FMK
- NS-1 necroptosis Necrostatin-1
- TRAIL showed a moderate anticancer effect (50% survival rate), and the effect was almost completely suppressed by zVAD-FMK (ZVAD) but small by NS-1.
- Glibenclamide also strongly inhibited TRAIL's anti-cancer effect.
- Example 12 Similar to Example 11, the anticancer effect of atmospheric pressure low temperature plasma irradiation solution containing glibenclamide on malignant melanoma (A2058) and osteosarcoma (SAOS-2) was examined. The results are shown in FIG.
- Example 13 Similar to Example 11, the anticancer effect of atmospheric pressure cold plasma irradiation solution containing metformin on osteosarcoma (HOS) and malignant melanoma (A2058) was examined. The results are shown in FIG.
- PLAST which is an anticancer agent of the present invention
- Metformin alone had no anti-cancer effect up to 20 mM, but depending on the concentration, it significantly enhanced the anti-cancer effect of PLAST.
- a 4-fold dilution of PLAST showed an anti-cancer effect on A2058 cells. While high metformin concentration alone exhibits a weak anti-cancer effect, it significantly enhanced the anti-cancer effect of PLAST in a concentration-dependent manner even at a concentration at which itself does not show cytotoxicity.
- Example 14 We investigated the effect of plasma irradiation solution on autophagy and mitochondrial morphology.
- the autophagosome detection stain CYTO- induces autophagy after incubation with healthy (A) and overgrown A375 cells (B) diluted 2-fold with 100% PSM (50% final concentration) or 100 ng / mL TRAIL for 24 hours It investigated using ID.
- Example 15 In the same manner as in Example 1 above, CAP-2 was irradiated for 5 minutes against 30 mL of Soldem 3A manufactured by Terumo (hereinafter referred to as "PCF-O (5 min)” and “PCF-N (5 min)”). Although “PCF-O (5 min)” and “PCF-N (5 min)” are both irradiated with helium gas plasma, the plasma generator used is different. The former uses a plasma generator having a gas flow rate of 0.3 L / min, and the latter uses a plasma generator having a gas flow rate of ⁇ .
- Example 16 The PCF-N (5 min) 2-fold dilution prepared in Example 15 and gemcitabine (0.1 ⁇ M) alone or in combination are administered to human osteosarcoma cell HOS, and after 24 hours, cell nuclei, mitochondria and endoplasmic reticulum are Hoechst 33342 They were stained using MitoTracker Red, ERT Tracker Green, and their morphology was observed and photographed with a fluorescence microscope. Control is FCS / DMEM not administered with plasma irradiation solution. The results are shown in FIG.
- PCF-N 2-fold dilution fragmented and expanded filamentous mitochondria, but had a slight effect on the appearance of the endoplasmic reticulum.
- Gemcitabine on the other hand, strongly damaged the endoplasmic reticulum, and caused fragmentation and aggregation.
- both mitochondria and endoplasmic reticulum were deformed significantly, resulting in the separation of mitochondria and endoplasmic reticulum.
- the bar in a photograph is 10 micrometers.
- Example 17 Low-temperature atmospheric pressure oxygen plasma was irradiated for 5 minutes to Dulbecco's modified Eagle's medium (FCS / DMEM) (Sigma-Aldrich D5796) in the same manner as described above (hereinafter referred to as "PZ5w-NF").
- FCS / DMEM Dulbecco's modified Eagle's medium
- PZ5w-NF Melanoma cells A2058 were administered with PZ5w-NF alone or in combination with other drugs, and the survival rate after 72 hours was measured by the WST-8 method.
- PZ5w-NF ⁇ 2, ⁇ 4, ⁇ 8 is obtained by diluting PCF-O (5 min) by 2, 4 and 8 times, respectively.
- Control is FCS / DMEM not administered with plasma irradiation solution. The results are shown in FIG.
- PZ5w-NF reduced the survival rate of melanoma cells in a concentration dependent manner.
- the 8-fold dilution and the 16-fold dilution had almost no effect.
- PZ5w-NF was not suppressed at all by ZVAD or necrostatin, suggesting that the anticancer effect of PZ5w-NF does not depend on apoptosis or necrosis pathway.
- Example 18 In the same manner as in Example 17, osteosarcoma cell HOS was administered with PZ5w-NF alone or in combination with other drugs, and the survival rate after 72 hours was measured by the WST-8 method. The results are shown in FIG.
- PZ5w-NF reduced the survival rate of osteosarcoma cells in a concentration-dependent manner.
- the 8-fold dilution and the 16-fold dilution had almost no effect.
- PZ5w-NF was not suppressed at all by ZVAD or necrostatin, suggesting that the anticancer effect of PZ5w-NF does not depend on apoptosis or necrosis pathway.
- Example 19 A 2-fold diluted solution and a 4-fold diluted solution of PZ5w-NF prepared in the same manner as in Example 17 are respectively administered to human osteosarcoma cells HOS, and after 24 hours, cell nuclei and mitochondria are stained using Hoechst 33342, MitoTracker Red , Their morphology was observed and photographed with a fluorescence microscope. Control is FCS / DMEM not administered with plasma irradiation solution. The results are shown in FIG.
- the plasma irradiation liquid of this invention exhibited the anticancer effect with respect to various cancer types. Moreover, the plasma irradiation liquid of this invention exhibited the stable and synergistic anticancer effect by using it together with NO regulator, a diabetes drug, an anticancer agent, etc. Although it is not clear that this combination effect is exerted, one is that resistance to anticancer drugs may be caused by activation of several pathways associated with mitochondrial morphological homeostasis that suppress cell death By the way, it is considered that the anti-cancer effect is remarkably enhanced by suppressing the pathway associated with mitochondria by using in combination with an NO regulator, a diabetes drug, an anticancer drug and the like.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
優れた抗腫瘍作用を発揮する抗癌剤を簡便に製造することのできる抗癌剤の製造方法、及び、簡便に製造することができ、優れた抗癌作用を発揮する抗癌剤、医薬を提供する。本発明は、ブドウ糖及びNO調節剤から選択される1種以上を含有する水溶液にプラズマを照射する工程を備えることを特徴とする抗癌剤の製造方法である。前記水溶液が、ヒト用輸液製剤、又はヒト用輸液製剤にブドウ糖及びNO調節剤から選択される1種以上を配合したものであることが好ましい。
Description
本発明は、抗癌剤の製造方法、抗癌剤及び医薬に関する。
プラズマとは、気体分子が電離して陽イオンと電子に分かれて運動している状態をいい、物質の第4の状態とも言われている。最近では、室温かつ大気圧下でプラズマを生成するプラズマ発生装置も開発され、プラズマの応用分野が広がっている。
プラズマの応用分野の一つとして、近年、抗癌剤が注目されている。これは、ヒト細胞用の液体培地にプラズマを照射すると、液体培地が抗腫瘍活性を示すことが発見されたことが発端である。
例えば、非特許文献1には、プラズマ照射した細胞培地が、グリオブラストーマに対してアポトーシスを誘発するが、正常細胞(アストロサイト)は傷害しないことが記載されている。非特許文献2には、プラズマ照射した細胞培地を腫瘍細胞に接触させると腫瘍細胞に活性酸素が生じること、当該活性酸素への感受性は、正常細胞よりも腫瘍細胞の方が高いことが記載されている。
例えば、非特許文献1には、プラズマ照射した細胞培地が、グリオブラストーマに対してアポトーシスを誘発するが、正常細胞(アストロサイト)は傷害しないことが記載されている。非特許文献2には、プラズマ照射した細胞培地を腫瘍細胞に接触させると腫瘍細胞に活性酸素が生じること、当該活性酸素への感受性は、正常細胞よりも腫瘍細胞の方が高いことが記載されている。
また、特許文献1は、細胞培地にプラズマ照射したものは、ヒトへの投与に適さないとして、乳酸等を含有するリンゲル輸液にプラズマ照射することを特徴とする抗癌剤の製造方法を記載している。
Fridman et al., Plasma Chem. Plasma Process 27:163-176, 2007
Saito et al., Oncotarget 7: 19910-19927, 2016
しかしながら、特許文献1に記載されたリンゲル輸液は、乳酸や塩などから構成されるものであり、生体のエネルギー源を含んでいない。癌患者は、癌が生じた部位によっては通常の食事をとることができず、また、抗癌剤や放射線治療の影響で食欲が減退する例が多くみられる。そのような食欲が減退した癌患者にエネルギーを補給しつつ、抗腫瘍作用を発揮することのできる抗癌剤が求められている。また、特許文献1の抗癌剤の製造方法は、抗癌効果の点で未だ改善の余地があった。上記特性を有しつつ、簡便に製造することができ、副作用が少ない抗癌剤が実現できれば、癌治療に大きく貢献できることが期待できる。
そこで本発明の目的は、優れた抗腫瘍作用を発揮する抗癌剤を簡便に製造することのできる抗癌剤の製造方法、及び、簡便に製造することができ、優れた抗癌作用を発揮する抗癌剤、医薬を提供することである。
本発明者らは、上記課題を解決すべく鋭意検討した結果、ナトリウムイオンと、ブドウ糖及びNO調節剤から選択される1種以上とを含有する水溶液をプラズマ照射することにより上記課題を解決しうることを見出し、本発明を完成するに至った。
ブドウ糖は、癌細胞の栄養源になると言われており、糖質制限が癌に有効であることが報告されている中で、ブドウ糖を含む水溶液にプラズマを照射することにより、優れた抗癌効果を奏し、かつ、正常細胞は傷害しない抗癌剤が得られるという発見は意外なものであった。
また、本発明者らは、ブドウ糖及び/又はナトリウムイオンを含む水溶液にプラズマ照射をする際に、水溶液中にNO調節剤を含有させるか、あるいは、バブリングにより水溶液に空気を送り込むことによって、より効果の高い抗癌剤が得られることを見出した。
さらに、本発明者らは、ブドウ糖及び/又はナトリウムイオンを含む水溶液をプラズマ照射したものが、TRAIL、サリノマイシン、グリベンクラミド、メトホルミン、パクリタキセル、ゲムシタビンといった薬剤と相乗効果を示すことも併せて見出し、本発明を完成した。
本発明者らの検討によれば、ブドウ糖や塩を含む水溶液をプラズマ照射してなるプラズマ照射液は、細胞のミトコンドリアの異常凝集、断片化や、オートファジーの亢進をもたらすことで、アポトーシスとは異なる経路により癌細胞や腫瘍細胞を死に至らしめており、これが故に、本発明の抗癌剤の製造方法によって製造される抗癌剤は、アポトーシス誘発剤に対して抵抗性を示す腫瘍に有効であると考えられる。
ブドウ糖は、癌細胞の栄養源になると言われており、糖質制限が癌に有効であることが報告されている中で、ブドウ糖を含む水溶液にプラズマを照射することにより、優れた抗癌効果を奏し、かつ、正常細胞は傷害しない抗癌剤が得られるという発見は意外なものであった。
また、本発明者らは、ブドウ糖及び/又はナトリウムイオンを含む水溶液にプラズマ照射をする際に、水溶液中にNO調節剤を含有させるか、あるいは、バブリングにより水溶液に空気を送り込むことによって、より効果の高い抗癌剤が得られることを見出した。
さらに、本発明者らは、ブドウ糖及び/又はナトリウムイオンを含む水溶液をプラズマ照射したものが、TRAIL、サリノマイシン、グリベンクラミド、メトホルミン、パクリタキセル、ゲムシタビンといった薬剤と相乗効果を示すことも併せて見出し、本発明を完成した。
本発明者らの検討によれば、ブドウ糖や塩を含む水溶液をプラズマ照射してなるプラズマ照射液は、細胞のミトコンドリアの異常凝集、断片化や、オートファジーの亢進をもたらすことで、アポトーシスとは異なる経路により癌細胞や腫瘍細胞を死に至らしめており、これが故に、本発明の抗癌剤の製造方法によって製造される抗癌剤は、アポトーシス誘発剤に対して抵抗性を示す腫瘍に有効であると考えられる。
すなわち、本発明は以下の[1]~[10]である。
[1]ブドウ糖及びNO調節剤から選択される1種以上を含有する水溶液にプラズマを照射する工程を備えることを特徴とする抗癌剤の製造方法。
[2]前記水溶液が、炭酸水素ナトリウムを含有する[1]の抗癌剤の製造方法。
[3]前記水溶液が、L-グルタミンを含有する[1]又は[2]の抗癌剤の製造方法。
[4]前記水溶液が、ヒト用輸液製剤、ヒト用輸液製剤にブドウ糖及びNO調節剤から選択される1種以上を配合したもの、又は、フェノールレッドを含まないダルベッコ培地である[1]の抗癌剤の製造方法。
[5]前記プラズマを照射する工程が、前記水溶液に対して、大気圧下、室温~100℃の低温プラズマを照射する工程である[1]~[4]のいずれかの抗癌剤の製造方法。
[6]前記抗癌剤が、アポトーシス誘発剤に対して抵抗性を示す腫瘍用の抗癌剤である[1]~[5]のいずれかの抗癌剤の製造方法。
[7]細胞死受容体アゴニスト、サリノマイシン、グリベンクラミド、メトホルミン及びそれらの薬学的に許容される塩からなる群から選ばれる1種以上の医薬と併用する、[1]~[6]のいずれかの抗癌剤の製造方法により得られた抗癌剤。
[8]NO調節剤と併用する、[1]~[7]のいずれかの抗癌剤の製造方法により得られた抗癌剤。
[9](A)水又はナトリウム水溶液にプラズマを照射することにより得られる抗癌剤と、(B)細胞死受容体アゴニスト、サリノマイシン、グリベンクラミド、メトホルミン、パクリタキセル、ゲムシタビン及びそれらの薬学的に許容される塩からなる群から選ばれる1種以上の医薬とを組み合わせてなる癌の治療用医薬。
[10](A)水又はナトリウム水溶液にプラズマを照射することにより得られる抗癌剤と、(C)NO調節剤とを組合せてなる癌の治療用医薬。
[11]水又はナトリウム水溶液に空気をバブリングしながらプラズマ照射する工程を備えることを特徴とする抗癌剤の製造方法。
[12][1]~[6]のいずれかの抗癌剤の製造方法により得られた抗癌剤で癌を治療する方法。
[1]ブドウ糖及びNO調節剤から選択される1種以上を含有する水溶液にプラズマを照射する工程を備えることを特徴とする抗癌剤の製造方法。
[2]前記水溶液が、炭酸水素ナトリウムを含有する[1]の抗癌剤の製造方法。
[3]前記水溶液が、L-グルタミンを含有する[1]又は[2]の抗癌剤の製造方法。
[4]前記水溶液が、ヒト用輸液製剤、ヒト用輸液製剤にブドウ糖及びNO調節剤から選択される1種以上を配合したもの、又は、フェノールレッドを含まないダルベッコ培地である[1]の抗癌剤の製造方法。
[5]前記プラズマを照射する工程が、前記水溶液に対して、大気圧下、室温~100℃の低温プラズマを照射する工程である[1]~[4]のいずれかの抗癌剤の製造方法。
[6]前記抗癌剤が、アポトーシス誘発剤に対して抵抗性を示す腫瘍用の抗癌剤である[1]~[5]のいずれかの抗癌剤の製造方法。
[7]細胞死受容体アゴニスト、サリノマイシン、グリベンクラミド、メトホルミン及びそれらの薬学的に許容される塩からなる群から選ばれる1種以上の医薬と併用する、[1]~[6]のいずれかの抗癌剤の製造方法により得られた抗癌剤。
[8]NO調節剤と併用する、[1]~[7]のいずれかの抗癌剤の製造方法により得られた抗癌剤。
[9](A)水又はナトリウム水溶液にプラズマを照射することにより得られる抗癌剤と、(B)細胞死受容体アゴニスト、サリノマイシン、グリベンクラミド、メトホルミン、パクリタキセル、ゲムシタビン及びそれらの薬学的に許容される塩からなる群から選ばれる1種以上の医薬とを組み合わせてなる癌の治療用医薬。
[10](A)水又はナトリウム水溶液にプラズマを照射することにより得られる抗癌剤と、(C)NO調節剤とを組合せてなる癌の治療用医薬。
[11]水又はナトリウム水溶液に空気をバブリングしながらプラズマ照射する工程を備えることを特徴とする抗癌剤の製造方法。
[12][1]~[6]のいずれかの抗癌剤の製造方法により得られた抗癌剤で癌を治療する方法。
本発明の抗癌剤の製造方法は、抗腫瘍作用を発揮する抗癌剤を簡便に製造することができる。また、本発明の抗癌剤は、特定の抗癌剤と併用することで、優れた抗癌効果を奏する。また、本発明の医薬は、優れた抗癌効果を奏する。さらに、本発明の抗癌剤の製造方法により得られる抗癌剤は、正常細胞には影響を与えない。
[ブドウ糖]
本発明で用いられるブドウ糖を含む水溶液は、ブドウ糖を0.01~0.6g/mL含有し、好ましくは、0.03~0.6g/mL、より好ましくは0.03~0.5g/mL、更に好ましくは、0.03~0.1g/mL含有する。ブドウ糖は市販のものをいずれも使用することができる。
本発明で用いられるブドウ糖を含む水溶液は、ブドウ糖を0.01~0.6g/mL含有し、好ましくは、0.03~0.6g/mL、より好ましくは0.03~0.5g/mL、更に好ましくは、0.03~0.1g/mL含有する。ブドウ糖は市販のものをいずれも使用することができる。
[NO調節剤]
NO調節剤は、細胞内にフリーラジカルである一酸化窒素(NO)を生じさせる化合物(NOドナー)及び細胞内の一酸化窒素を除去する化合物(NO消去剤)の総称である。一酸化窒素(NO)は、生体内で合成され様々な機能を持つ窒素酸化物の一種であり、無色、無臭の気体である。不対電子を持つラジカル種ではあるが、ラジカルとしての反応性は低い。血管内皮細胞から産生されるNOには、血管拡張作用(降圧作用)があり、血管の内皮由来弛緩因子(EDRF:endothelium-derived relaxing factor)と呼ばれていた。他に血小板凝集抑制作用(抗動脈硬化作用)、血管平滑筋細胞の増殖を抑制する作用、神経伝達などでの情報伝達作用、殺菌作用など多様な生理活性が報告されている。生体内では一酸化窒素合成酵素(NOS)によりアルギニンから合成されている。
NO調節剤は、細胞内にフリーラジカルである一酸化窒素(NO)を生じさせる化合物(NOドナー)及び細胞内の一酸化窒素を除去する化合物(NO消去剤)の総称である。一酸化窒素(NO)は、生体内で合成され様々な機能を持つ窒素酸化物の一種であり、無色、無臭の気体である。不対電子を持つラジカル種ではあるが、ラジカルとしての反応性は低い。血管内皮細胞から産生されるNOには、血管拡張作用(降圧作用)があり、血管の内皮由来弛緩因子(EDRF:endothelium-derived relaxing factor)と呼ばれていた。他に血小板凝集抑制作用(抗動脈硬化作用)、血管平滑筋細胞の増殖を抑制する作用、神経伝達などでの情報伝達作用、殺菌作用など多様な生理活性が報告されている。生体内では一酸化窒素合成酵素(NOS)によりアルギニンから合成されている。
本発明においてNO調節剤には、NOドナーとNO消去剤の双方が含まれる。本発明者らの検討により、水又はナトリウム水溶液にプラズマ照射することにより得られる抗癌剤の抗腫瘍効果は、NO調節剤が存在することによってさらに増強されることが見出された。NO調節剤は、プラズマ照射対象の液に含まれていてもよく、プラズマ照射液と併用することでもよいが、好ましくは、NO調節剤はプラズマ照射液とは別に用意し、プラズマ照射液と併用して投与する。詳細なメカニズムは定かではないが、癌細胞内には至適な一酸化窒素レベルが存在し、それよりも一酸化窒素が多すぎても、少なすぎても、プラズマ照射液(水)と接触した際に生じる細胞障害が促進されることが考えられる。例えば、本発明者らの検討によれば、細胞内のミトコンドリアは、細胞をNOドナーに曝すと過剰に分裂してしまい、細胞をNO消去剤に曝すと過剰に融合してしまうことが分かった。ただし、NOドナーによるミトコンドリアの過剰分裂やNO消去剤によるミトコンドリアの過剰融合は、癌細胞の細胞死の誘導に必要ではあるが、それだけでは不十分であり、そこに、水又は水溶液をプラズマ照射してなる抗癌剤の抗腫瘍効果が加わることで劇的に抗腫瘍効果が高まるのではないかと考えられる。
NO調節剤としては、例えば、NOR-1:(±)-(E)-4-Methyl-2-[(E)-hydroxyimino]-5-nitro-6-methoxy-3-hexenamide、NOR-3:(±)-(E)-4-Ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide、NOR-4:(±)-N-[(E)-4-Ethyl-2-[(Z)-hydroxyimino]-5-nitro-3-hexene-1-yl]-3-pyridinecarboxamide、NOR-5:(±)-N-[(E)-4-Ethyl-3-[(Z)-hydroxyimino]-6-methyl-5-nitro-3-heptenyl]-3-pyridinecarboxamide、NOC-5:1-Hydroxy-2-oxo-3-(3-aminopropyl)-3-isopropyl-1-triazene、NOC-7:1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene、NOC-12:1-Hydroxy-2-oxo-3-(N-ethyl-2-aminoethyl)-3-ethyl-1-triazene、NOC-18:1-Hydroxy-2-oxo-3,3-bis(2-aminoethyl)-1-triazene、GSNO:S-nitrosoglutathioneなどのNOドナー、DTCS-Na: N-(Dithiocarboxy)sarcosine, disodium salt, dihydrate、Carboxy-PTIO:2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide,などのNO消去剤が挙げられる。NO調節剤を配合することによる抗腫瘍効果の増強効果は、ブドウ糖を含む水溶液だけではなく、リンゲル液などのブドウ糖を含まない輸液をプラズマ照射して得られる抗癌剤に対しても見られる。すなわち、水又はナトリウム水溶液にNO調節剤を添加したものに対してプラズマ照射をすることにより得られる抗癌剤は、NO調節剤を含まない水又はナトリウム水溶液に対してプラズマ照射をすることにより得られる抗癌剤よりも抗腫瘍効果が高いことが期待できる。また、水又はナトリウム水溶液にプラズマ照射をすることにより得られる抗癌剤と、NO調節剤を併用することで、プラズマ照射液単独よりも高い抗腫瘍効果が得られることが期待できる。NO調節剤の形態は特に限定されないが、好ましくは水溶液の形態で投与される。NO調節剤の濃度は、水溶液中、1μM~50mMが好ましく、10μM~10mMがより好ましく10μM~30μMがさらに好ましい。
また、NO調節剤として、化合物を添加する以外に、プラズマ照射時に水溶液に空気を送り込む、いわゆるバブリングを行うことも挙げられる。空気中には窒素が含まれることから、空気をバブリングすることがNO調節剤添加と同様の効果をもたらすものと考えられる。バブリングの具体的な方法としては特に限定されず、エアーポンプを用いる方法など、水や水溶液に空気を送り込む一般的な方法を採用することができる。
[ナトリウムイオン]
本発明の抗癌剤の製造方法で用いられる水溶液は、ナトリウムイオンを含むものが好ましい。ナトリウムイオンを含むことで、体内に投与する際に、浸透圧を調整することができる。
ナトリウムイオン源としては、ヒトに投与することができるものであればいずれでもよく、例えば、塩化ナトリウム、乳酸ナトリウム、酢酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウムを、本発明の水溶液に配合することができる。好ましくは、ナトリウムイオン濃度は、10~180mEq/L、より好ましくは12~150mEq/lである。
本発明の抗癌剤の製造方法で用いられる水溶液は、ナトリウムイオンを含むものが好ましい。ナトリウムイオンを含むことで、体内に投与する際に、浸透圧を調整することができる。
ナトリウムイオン源としては、ヒトに投与することができるものであればいずれでもよく、例えば、塩化ナトリウム、乳酸ナトリウム、酢酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウムを、本発明の水溶液に配合することができる。好ましくは、ナトリウムイオン濃度は、10~180mEq/L、より好ましくは12~150mEq/lである。
また、本発明の水溶液は、さらに、カリウムイオンを含有することが好ましい。カリウムイオン源としては、ヒトに投与することができるものであればいずれでもよく、例えば、塩化カリウム、乳酸カリウム、酢酸カリウム、炭酸カリウム、炭酸水素カリウムをブドウ糖を含む水溶液に配合することができる。好ましくは、カリウムイオン濃度は、2~180mEq/l、より好ましくは3~160mEq/Lである。
本発明の水溶液は、さらに、乳酸イオン、炭酸イオン、炭酸水素イオン、塩化物イオン、カルシウムイオン、マグネシウムイオンを含有していてもよい。乳酸イオンを含有する場合、例えば、乳酸ナトリウムを0.0001~0.01g/mL配合することが好ましい。炭酸水素イオンは、水溶液中、0.1~50mEq/L含まれることが好ましい。カルシウムイオンは、水溶液中、0.1~50mEq/L含まれることが好ましい。マグネシウムイオンは、水溶液中、0.1~50mEq/L含まれることが好ましい。
本発明の水溶液は、炭酸水素ナトリウムを含有することが好ましい。炭酸水素ナトリウムは、ダルベッコ培地の必須成分である。炭酸水素ナトリウムの含有量は、水溶液中、好ましくは1~10000mg/mL、より好ましくは、500~5000mg/mL、さらに好ましくは、2000~4000mg/mLである。
本発明の水溶液は、L-グルタミンを含有することが好ましい。L-グルタミンのNO含有量は、水溶液中、好ましくは、10~1000mg/mL、より好ましくは100~700mg/mL、さらに好ましくは、500~700mg/mLである。
本発明の水溶液は、さらに、ダルベッコ培地に用いられる成分のうち1種以上を含んでいてもよい。そのような成分としては、塩化カルシウム、塩化カリウム、硫酸マグネシウム、アルギニン、シスチン、グリシン、ヒスチジン、イソロイシン、ロイシン、リジン、メチオニン、フェニルアラニン、セリン、スレオニン、トリプトファン、チロシン、バリン等のアミノ酸(アミノ酸の好適な含有量は、それぞれ10~600mg/mLである。)、パントテン酸カルシウム、パントテン酸ナトリウム、塩化コリン、イノシトール、ナイアシン、ピリドキサール、リボフラビン、チアミン等のビタミン(ビタミンの好適な含有量はそれぞれ1~20mg/mLである。)などが挙げられる。
本発明の水溶液は、フェノールレッドを含まないダルベッコ培地であることが好ましい。フェノールレッドは人体に有害であるため、含まれないことが好ましい。ダルベッコ培地の組成は、Oncotarget 7: 19910-19927、2016に記載されたとおりである。
本発明の水溶液は、電解質液であることが好ましく、ヒト用の輸液製剤であることが好ましい。輸液製剤は、ヒトに対して、水分や電解質の補給のために頻繁に使用されており、安全性の観点から好ましい。輸液製剤としては、医療現場で使用されているものであれば特に制限されないが、例えば、開始液(1号液)、脱水補給液(2号液)、維持液(3号液)、術後回復液(4号液)といった低張性電解質液やそれにブドウ糖を添加したものが挙げられる。その他、ブドウ糖、電解質、アミノ酸、水溶性ビタミン液を含む抹消静脈栄養輸液や、ブドウ糖と電解質、あるいはこれらに加えてアミノ酸、ビタミン、微量元素等を含む高カロリー輸液が挙げられる。これらは、市販されているものをいずれも使用することができ、ブドウ糖を含むものはそのまま使用することができ、ブドウ糖を含まない輸液にはブドウ糖を添加することにより使用することができる。
[プラズマ照射]
本発明の抗癌剤の製造方法は、上記水溶液に対してプラズマを照射する工程を備える。プラズマを水溶液に照射する方法は、公知の方法をいずれも採用することができる。プラズマ照射のための装置としては、たとえば、国際公開第2014/167626号の図12に示されるプラズマ処理装置を用いることができる。プラズマ処理条件は、既存のプラズマ処理装置の既知の処理条件の範囲のなかで、適切な条件を適宜選択して実施することができる。本発明においては、プラズマを照射する工程が、前記水溶液に対して、大気圧下、室温(25℃)~100℃の低温プラズマを照射する工程であることが好ましい。ガス種としては、特に限定されず、アルゴン、ヘリウム、酸素、窒素などいずれも用いることができる。
本発明の抗癌剤の製造方法は、上記水溶液に対してプラズマを照射する工程を備える。プラズマを水溶液に照射する方法は、公知の方法をいずれも採用することができる。プラズマ照射のための装置としては、たとえば、国際公開第2014/167626号の図12に示されるプラズマ処理装置を用いることができる。プラズマ処理条件は、既存のプラズマ処理装置の既知の処理条件の範囲のなかで、適切な条件を適宜選択して実施することができる。本発明においては、プラズマを照射する工程が、前記水溶液に対して、大気圧下、室温(25℃)~100℃の低温プラズマを照射する工程であることが好ましい。ガス種としては、特に限定されず、アルゴン、ヘリウム、酸素、窒素などいずれも用いることができる。
本発明の抗癌剤の製造方法は、アポトーシス誘発剤に対して抵抗性を示す腫瘍用の抗癌剤を製造する方法であることが好ましい。本発明者らの検討によると、水又はナトリウム水溶液をプラズマ処理して得られる抗癌剤は、細胞のミトコンドリアの異常凝集、断片化や、オートファジーの亢進をもたらすことで、アポトーシスとは異なる経路により癌細胞や腫瘍細胞を死に至らしめており、これが故に、本発明の抗癌剤の製造方法によって製造される抗癌剤は、アポトーシス誘発剤に対して抵抗性を示す腫瘍に有効であると考えられる。アポトーシス誘発剤としては、TRAIL(TNF related apoptosis-inducing ligand) 、細胞死誘発型受容体(Death receptor, DR)のアゴニストやアゴニスト抗体、トポイソメラーゼ阻害剤、ドキソルビシン、アニソマイシン等が挙げられる。また、アポトーシス誘発剤に対して抵抗性を示す腫瘍、癌種として、悪性黒色腫(メラノーマ)、骨肉腫、神経芽腫、神経膠腫(グリオーマ)等が挙げられる。
本発明の抗癌剤の製造方法で得られる抗癌剤は、プラズマを照射した水溶液をそのまま使用することもできるが、希釈して使用することもできる。希釈して使用する場合の希釈倍率は、好ましくは、1.5~8倍、より好ましくは2~8倍、より好ましくは2~6倍である。
[細胞死受容体アゴニスト]
本発明の抗癌剤は、細胞死受容体アゴニスト、サリノマイシン、グリベンクラミド、メトホルミン、パクリタキセル及びゲムシタビンからなる群から選ばれる1種以上の医薬と併用するものであることが好ましい。本発明者らは、水又はナトリウム水溶液にプラズマを照射したものと、細胞死受容体アゴニスト、サリノマイシン、グリベンクラミド、メトホルミン、パクリタキセル及びゲムシタビンからなる群から選ばれる1種以上の医薬とを併用すると、優れた抗癌効果が発揮されることを見出した。
本発明の抗癌剤は、細胞死受容体アゴニスト、サリノマイシン、グリベンクラミド、メトホルミン、パクリタキセル及びゲムシタビンからなる群から選ばれる1種以上の医薬と併用するものであることが好ましい。本発明者らは、水又はナトリウム水溶液にプラズマを照射したものと、細胞死受容体アゴニスト、サリノマイシン、グリベンクラミド、メトホルミン、パクリタキセル及びゲムシタビンからなる群から選ばれる1種以上の医薬とを併用すると、優れた抗癌効果が発揮されることを見出した。
細胞死受容体アゴニストは、pro-apoptotic receptor agonist(PARAs)とも称される。
アポトーシスは、2つのシグナル伝達経路を通じて開始される。1つは細胞内のBcl-2タンパク質を通じて作動する経路であり、もう1つは細胞表面に存在する細胞死受容体(プロアポトーシス受容体とも称される。)を通じて作動する経路である。そして、近年、細胞死受容体アゴニスト(PARA)の抗癌剤としての開発が進んでいる。これは、細胞死受容体アゴニストが、癌細胞のアポトーシスを誘導し、癌細胞を死滅させる効果が期待されているためである。ところが、上記のように、いくつかの癌腫は、アポトーシス誘発剤に対して抵抗性を有することが見出された。
細胞死受容体アゴニストの中には、ヒトのリコンビナントタンパク質のアポトーシス誘導リガンド2/TNF関連アポトーシス誘導リガンド(Apo2L/TRAIL)、プロアポトーシス受容体にアゴニストとして作用するモノクローナル抗体、例えば抗DR4抗体や抗DR5抗体(DS-8273 、conatumumab等)が含まれる。
TRAIL(TNF related apoptosis-inducing ligand)とは、腫瘍壊死因子関連アポトーシス誘発リガントとも呼ばれる、腫瘍壊死因子(Tumor Necrosis Factor、TNF)スーパーファミリーに属するサイトカインである。TRAILは、TRAIL receptror 1/DR4や、TRAIL-R2/DR5と結合して、外因性、内因性経路を活性化してアポトーシスを誘発する。癌細胞にアポトーシスを誘導して癌細胞を死に至らしめる一方、正常細胞には作用を及ぼさないことが知られている。TRAILとしては、例えば、Human Tumor Necrosis Factor Ligand Super Family Member 10(TNFSF10)が挙げられる。TRAILには複数のスプライスバリアントが存在することが知られているが、いずれのスプライスバリアントもTRAILに含まれる。
また、Enzo社が販売しているKillerTRAIL、SuperKillerTRAILのような変異型TRAIL、改良型TRAILもTRAILに含まれる。TRAILは、ヒトのTRAILが好ましいが、マウスTRAIL等の他の哺乳類のTRAILであってもよい。また、TRAILの製造方法は特に限定されず、ヒト細胞由来のものや、マウスなどの哺乳類由来のものでもよく、また、in vitroで合成したものであってもよい。
TRAILと本発明の抗癌剤の製造方法で製造された抗癌剤を併用する場合、TRAILと本発明の抗癌剤を別々に投与する際には、TRAILの投与量は特に限定されず、例えば、医学的に認められたTRAILの通常の投与量で良く、本発明の抗癌剤は、原液でも希釈して用いてもよいが、2~8倍に希釈して用いることが好ましい。また、TRAILを本発明の抗癌剤に混合して用いる場合には、TRAILの含有量は、例えば、1~100ng/mLが好ましく、25~100ng/mLがより好ましく、本発明の抗癌剤は原液でも希釈して用いてもよいが、2~8倍、より好ましくは2~6倍、に希釈して用いることが好ましい。
アポトーシスは、2つのシグナル伝達経路を通じて開始される。1つは細胞内のBcl-2タンパク質を通じて作動する経路であり、もう1つは細胞表面に存在する細胞死受容体(プロアポトーシス受容体とも称される。)を通じて作動する経路である。そして、近年、細胞死受容体アゴニスト(PARA)の抗癌剤としての開発が進んでいる。これは、細胞死受容体アゴニストが、癌細胞のアポトーシスを誘導し、癌細胞を死滅させる効果が期待されているためである。ところが、上記のように、いくつかの癌腫は、アポトーシス誘発剤に対して抵抗性を有することが見出された。
細胞死受容体アゴニストの中には、ヒトのリコンビナントタンパク質のアポトーシス誘導リガンド2/TNF関連アポトーシス誘導リガンド(Apo2L/TRAIL)、プロアポトーシス受容体にアゴニストとして作用するモノクローナル抗体、例えば抗DR4抗体や抗DR5抗体(DS-8273 、conatumumab等)が含まれる。
TRAIL(TNF related apoptosis-inducing ligand)とは、腫瘍壊死因子関連アポトーシス誘発リガントとも呼ばれる、腫瘍壊死因子(Tumor Necrosis Factor、TNF)スーパーファミリーに属するサイトカインである。TRAILは、TRAIL receptror 1/DR4や、TRAIL-R2/DR5と結合して、外因性、内因性経路を活性化してアポトーシスを誘発する。癌細胞にアポトーシスを誘導して癌細胞を死に至らしめる一方、正常細胞には作用を及ぼさないことが知られている。TRAILとしては、例えば、Human Tumor Necrosis Factor Ligand Super Family Member 10(TNFSF10)が挙げられる。TRAILには複数のスプライスバリアントが存在することが知られているが、いずれのスプライスバリアントもTRAILに含まれる。
また、Enzo社が販売しているKillerTRAIL、SuperKillerTRAILのような変異型TRAIL、改良型TRAILもTRAILに含まれる。TRAILは、ヒトのTRAILが好ましいが、マウスTRAIL等の他の哺乳類のTRAILであってもよい。また、TRAILの製造方法は特に限定されず、ヒト細胞由来のものや、マウスなどの哺乳類由来のものでもよく、また、in vitroで合成したものであってもよい。
TRAILと本発明の抗癌剤の製造方法で製造された抗癌剤を併用する場合、TRAILと本発明の抗癌剤を別々に投与する際には、TRAILの投与量は特に限定されず、例えば、医学的に認められたTRAILの通常の投与量で良く、本発明の抗癌剤は、原液でも希釈して用いてもよいが、2~8倍に希釈して用いることが好ましい。また、TRAILを本発明の抗癌剤に混合して用いる場合には、TRAILの含有量は、例えば、1~100ng/mLが好ましく、25~100ng/mLがより好ましく、本発明の抗癌剤は原液でも希釈して用いてもよいが、2~8倍、より好ましくは2~6倍、に希釈して用いることが好ましい。
[サリノマイシン]
本発明において、サリノマイシンには、サリノマイシンのほか、サリノマイシンナトリウムなどのサリノマイシンの薬学的に許容される塩が含まれる。サリノマイシンは、抗原虫薬、抗コクシジウム薬として用いられている医薬である。サリノマイシンは、例えば、下記式で表される。サリノマイシンは、市販されているものをいずれも用いることができる。
サリノマイシンと本発明の抗癌剤の製造方法で製造された抗癌剤を併用する場合、サリノマイシンと本発明の抗癌剤を別々に投与する際には、サリノマイシンの投与量は特に限定されず、例えば、医学的に認められたサリノマイシンの通常の投与量で良く、本発明の抗癌剤は、原液でも希釈して用いてもよいが、2~8倍に希釈して用いることが好ましい。また、サリノマイシンを本発明の抗癌剤に混合して用いる場合には、サリノマイシンの含有量は、例えば、1~5μMが好ましく、1~3μMがより好ましく、本発明の抗癌剤は原液でも希釈して用いてもよいが、2~8倍、より好ましくは2~6倍、に希釈して用いることが好ましい。
本発明において、サリノマイシンには、サリノマイシンのほか、サリノマイシンナトリウムなどのサリノマイシンの薬学的に許容される塩が含まれる。サリノマイシンは、抗原虫薬、抗コクシジウム薬として用いられている医薬である。サリノマイシンは、例えば、下記式で表される。サリノマイシンは、市販されているものをいずれも用いることができる。
サリノマイシンと本発明の抗癌剤の製造方法で製造された抗癌剤を併用する場合、サリノマイシンと本発明の抗癌剤を別々に投与する際には、サリノマイシンの投与量は特に限定されず、例えば、医学的に認められたサリノマイシンの通常の投与量で良く、本発明の抗癌剤は、原液でも希釈して用いてもよいが、2~8倍に希釈して用いることが好ましい。また、サリノマイシンを本発明の抗癌剤に混合して用いる場合には、サリノマイシンの含有量は、例えば、1~5μMが好ましく、1~3μMがより好ましく、本発明の抗癌剤は原液でも希釈して用いてもよいが、2~8倍、より好ましくは2~6倍、に希釈して用いることが好ましい。
[グリベンクラミド]
本発明において、グリベンクラミドには、グリベンクラミドのほか、グリベンクラミドの薬学的に許容される塩が含まれる。グリベンクラミドは、2型糖尿病の治療用に用いられているスルフォニル尿素系の血糖降下薬である。グリベンクラミドは、例えば、下記式で表される。グリベンクラミドは、市販されているものをいずれも用いることができる。
グリベンクラミドと本発明の抗癌剤の製造方法で製造された抗癌剤を併用する場合、グリベンクラミドと本発明の抗癌剤を別々に投与する際には、グリベンクラミドの投与量は特に限定されず、例えば、医学的に認められたグリベンクラミドの通常の投与量で良く、本発明の抗癌剤は、原液でも希釈して用いてもよいが、2~8倍に希釈して用いることが好ましい。また、グリベンクラミドを本発明の抗癌剤に混合して用いる場合には、グリベンクラミドの含有量は、例えば、1~100μMが好ましく、30~100μMがより好ましく、本発明の抗癌剤は原液でも希釈して用いてもよいが、2~8倍、より好ましくは2~6倍、に希釈して用いることが好ましい。
本発明において、グリベンクラミドには、グリベンクラミドのほか、グリベンクラミドの薬学的に許容される塩が含まれる。グリベンクラミドは、2型糖尿病の治療用に用いられているスルフォニル尿素系の血糖降下薬である。グリベンクラミドは、例えば、下記式で表される。グリベンクラミドは、市販されているものをいずれも用いることができる。
グリベンクラミドと本発明の抗癌剤の製造方法で製造された抗癌剤を併用する場合、グリベンクラミドと本発明の抗癌剤を別々に投与する際には、グリベンクラミドの投与量は特に限定されず、例えば、医学的に認められたグリベンクラミドの通常の投与量で良く、本発明の抗癌剤は、原液でも希釈して用いてもよいが、2~8倍に希釈して用いることが好ましい。また、グリベンクラミドを本発明の抗癌剤に混合して用いる場合には、グリベンクラミドの含有量は、例えば、1~100μMが好ましく、30~100μMがより好ましく、本発明の抗癌剤は原液でも希釈して用いてもよいが、2~8倍、より好ましくは2~6倍、に希釈して用いることが好ましい。
[メトホルミン]
本発明において、メトホルミンには、メトホルミンのほか、メトホルミンの薬学的に許容される塩が含まれる。メトホルミンは、ビグアナイド系薬剤に分類される2型糖尿病治療薬の一つである。メトホルミンを含むビグアナイド系薬の標的はミトコンドリアの呼吸鎖複合体Iであると考えられており、その活性を阻害することにより、結果的に細胞内のAMP/ATP比を増加させて細胞内のエネルギーバランスを変化させるものと考えられる。これにより、例えば肝細胞において、細胞内のエネルギーバランスのセンサーであるAMP活性化プロテインキナーゼ(AMPK)を介する細胞内シグナル伝達系を刺激することにより、糖代謝を改善すると考えられている。メトホルミンは、例えば、下記式で表される。メトホルミンは市販されているものをいずれも用いることができる。
メトホルミンと本発明の抗癌剤の製造方法で製造された抗癌剤を併用する場合、メトホルミンと本発明の抗癌剤を別々に投与する際には、メトホルミンの投与量は特に限定されず、例えば、医学的に認められたメトホルミンの通常の投与量で良く、本発明の抗癌剤は、原液でも希釈して用いてもよいが、2~8倍に希釈して用いることが好ましい。また、メトホルミンを本発明の抗癌剤に混合して用いる場合には、メトホルミンの含有量は、例えば、1~30mMが好ましく、3~30mMがより好ましく、本発明の抗癌剤は原液でも希釈して用いてもよいが、2~8倍、より好ましくは2~6倍、に希釈して用いることが好ましい。
本発明において、メトホルミンには、メトホルミンのほか、メトホルミンの薬学的に許容される塩が含まれる。メトホルミンは、ビグアナイド系薬剤に分類される2型糖尿病治療薬の一つである。メトホルミンを含むビグアナイド系薬の標的はミトコンドリアの呼吸鎖複合体Iであると考えられており、その活性を阻害することにより、結果的に細胞内のAMP/ATP比を増加させて細胞内のエネルギーバランスを変化させるものと考えられる。これにより、例えば肝細胞において、細胞内のエネルギーバランスのセンサーであるAMP活性化プロテインキナーゼ(AMPK)を介する細胞内シグナル伝達系を刺激することにより、糖代謝を改善すると考えられている。メトホルミンは、例えば、下記式で表される。メトホルミンは市販されているものをいずれも用いることができる。
メトホルミンと本発明の抗癌剤の製造方法で製造された抗癌剤を併用する場合、メトホルミンと本発明の抗癌剤を別々に投与する際には、メトホルミンの投与量は特に限定されず、例えば、医学的に認められたメトホルミンの通常の投与量で良く、本発明の抗癌剤は、原液でも希釈して用いてもよいが、2~8倍に希釈して用いることが好ましい。また、メトホルミンを本発明の抗癌剤に混合して用いる場合には、メトホルミンの含有量は、例えば、1~30mMが好ましく、3~30mMがより好ましく、本発明の抗癌剤は原液でも希釈して用いてもよいが、2~8倍、より好ましくは2~6倍、に希釈して用いることが好ましい。
[パクリタキセル]
パクリタキセルには、パクリタキセルのほか、パクリタキセルの薬学的に許容される塩が含まれる。パクリタキセルは、タキサン系の抗癌剤である。パクリタキセルは、非小細胞肺癌、膵臓癌、胆道癌、膀胱癌、卵巣癌、乳癌、胃癌、頭頸部癌、血管肉腫など多種の癌の治療に使用されている。本発明の抗癌剤とパクリタキセルが相乗効果を示すことは、これらの癌の治療効果の向上だけではなく、パクリタキセルによる副作用の軽減も期待できる。
パクリタキセルと本発明の抗癌剤の製造方法で製造された抗癌剤を併用する場合、パクリタキセルと本発明の抗癌剤を別々に投与する際には、パクリタキセルの投与量は特に限定されず、例えば、医学的に認められたパクリタキセルの通常の投与量で良く、本発明の抗癌剤は、原液でも希釈して用いてもよいが、2~8倍に希釈して用いることが好ましい。また、パクリタキセルを本発明の抗癌剤に混合して用いる場合には、パクリタキセルの含有量は、例えば、10~100nMが好ましく、3~30nMがより好ましく、本発明の抗癌剤は原液でも希釈して用いてもよいが、2~8倍、より好ましくは2~6倍、に希釈して用いることが好ましい。
パクリタキセルには、パクリタキセルのほか、パクリタキセルの薬学的に許容される塩が含まれる。パクリタキセルは、タキサン系の抗癌剤である。パクリタキセルは、非小細胞肺癌、膵臓癌、胆道癌、膀胱癌、卵巣癌、乳癌、胃癌、頭頸部癌、血管肉腫など多種の癌の治療に使用されている。本発明の抗癌剤とパクリタキセルが相乗効果を示すことは、これらの癌の治療効果の向上だけではなく、パクリタキセルによる副作用の軽減も期待できる。
パクリタキセルと本発明の抗癌剤の製造方法で製造された抗癌剤を併用する場合、パクリタキセルと本発明の抗癌剤を別々に投与する際には、パクリタキセルの投与量は特に限定されず、例えば、医学的に認められたパクリタキセルの通常の投与量で良く、本発明の抗癌剤は、原液でも希釈して用いてもよいが、2~8倍に希釈して用いることが好ましい。また、パクリタキセルを本発明の抗癌剤に混合して用いる場合には、パクリタキセルの含有量は、例えば、10~100nMが好ましく、3~30nMがより好ましく、本発明の抗癌剤は原液でも希釈して用いてもよいが、2~8倍、より好ましくは2~6倍、に希釈して用いることが好ましい。
[ゲムシタビン]
ゲムシタビンには、ゲムシタビンのほか、ゲムシタビンの薬学的に許容される塩が含まれる。ゲムシタビンは、抗癌剤として用いられる含フッ素ヌクレオシドである。ゲムシタビンは、非小細胞肺癌、膵臓癌、胆道癌、膀胱癌、卵巣癌、乳癌、胃癌、頭頸部癌、血管肉腫など多種の癌の治療に使用されている。本発明の抗癌剤とゲムシタビンが相乗効果を示すことは、これらの癌の治療効果の向上だけではなく、ゲムシタビンによる副作用の軽減も期待できる。
ゲムシタビンと本発明の抗癌剤の製造方法で製造された抗癌剤を併用する場合、ゲムシタビンと本発明の抗癌剤を別々に投与する際には、ゲムシタビンの投与量は特に限定されず、例えば、医学的に認められたゲムシタビンの通常の投与量で良く、本発明の抗癌剤は、原液でも希釈して用いてもよいが、2~8倍に希釈して用いることが好ましい。また、ゲムシタビンを本発明の抗癌剤に混合して用いる場合には、ゲムシタビンの含有量は、例えば、0.1~3μMが好ましく、0.3~1μMがより好ましく、本発明の抗癌剤は原液でも希釈して用いてもよいが、2~8倍、より好ましくは2~6倍、に希釈して用いることが好ましい。
ゲムシタビンには、ゲムシタビンのほか、ゲムシタビンの薬学的に許容される塩が含まれる。ゲムシタビンは、抗癌剤として用いられる含フッ素ヌクレオシドである。ゲムシタビンは、非小細胞肺癌、膵臓癌、胆道癌、膀胱癌、卵巣癌、乳癌、胃癌、頭頸部癌、血管肉腫など多種の癌の治療に使用されている。本発明の抗癌剤とゲムシタビンが相乗効果を示すことは、これらの癌の治療効果の向上だけではなく、ゲムシタビンによる副作用の軽減も期待できる。
ゲムシタビンと本発明の抗癌剤の製造方法で製造された抗癌剤を併用する場合、ゲムシタビンと本発明の抗癌剤を別々に投与する際には、ゲムシタビンの投与量は特に限定されず、例えば、医学的に認められたゲムシタビンの通常の投与量で良く、本発明の抗癌剤は、原液でも希釈して用いてもよいが、2~8倍に希釈して用いることが好ましい。また、ゲムシタビンを本発明の抗癌剤に混合して用いる場合には、ゲムシタビンの含有量は、例えば、0.1~3μMが好ましく、0.3~1μMがより好ましく、本発明の抗癌剤は原液でも希釈して用いてもよいが、2~8倍、より好ましくは2~6倍、に希釈して用いることが好ましい。
以下、本発明の実施例を示す。本発明は以下の実施例に限定されるものではない。
<試験手順>
各実施例に共通する試験手順を以下に記載する。
[1.プラズマの作成:]
ヘリウムガスを周波数20kHz、ピーク電圧8kV,電流値20mA,毎分流速300mLの条件下に低周波数プラズマジェットを用いて非対称誘電体バリアー放電させてプラズマを作成した。(以下、「CAP-1」と称する。)
[2.低温大気圧プラズマの作成:]
低温大気圧プラズマジェットに室温でヘリウムガスを毎分流速30Lで流し、周波数10~50kHz、ピーク電圧1~10kV、電流値最大30mA、1気圧、室温(25℃)の条件下に放電させプラズマを作成した。(以下、「CAP-2」と称する。)
[3.培地、水溶液にCAP-1又はCAP-2を照射することによるプラズマ照射液の作製:]
従来技術ではpH指示薬のフェノールレッドを含む培地にプラズマ照射をしているため生成したプラズマ照射液(PAM)はこれを含む。化学品の危険有害性を世界的に統一された一定基準で分類したGHSに基づく安全データシート(SDS)によれば、pH指示薬として使用される0.1%(w/v)フェノールレッドは眼に対する重篤な損傷・眼刺激性:区分2A、生殖細胞変異原性:区分1B、生殖毒性:区分1A、特定標的臓器・全身毒性(反復暴露)区分1(肝臓)、区分2(神経)である。したがって、PAMはそのまま人体に投与できない。10%FCSを含むSigma-Aldrich社製のダルベッコ変法イーグル培地(DMEM)(フェノールレッド含む)(以下「MEM-1」と称する)1mLに、液面より約5mm上からCAP-1を5分間照射した(以下「PAM-1」と称する)。10%FCSを含むDMEM(フェノールレッド含まない)(以下「MEM-2」と称する)1mLに同様にCAP-1を5分間照射した(以下「PAM-2」と称する)。FCSを含まないDMEM(フェノールレッド含まない)(以下「MEM-3」と称する)1mLに同様にCAP-1を5分間照射した(以下「PAM-3」と称する)。
テルモ社製のソルデム3A輸液(組成:200mL中ブドウ糖8.6g,塩化ナトリウム0.18g,塩化カリウム0.298g,L-乳酸ナトリウム液:0.896g(L-乳酸ナトリウムとして:0.448gを含むもの)1mLに、液面より約5mm上からCAP-1を5分間照射した(以下「PASS、PLAST又はPSM」と称する)。
[4.ナトリウム水溶液にCAP-2を照射することによる低温大気圧プラズマ照射液の作製:]
テルモ社製ソルデム3A30mLを50mLファルコンチューブに入れて、液面より約5mm上からCAP-2を1分間照射した(以下「PC-1」と称する)。
[5.プラズマ照射液による培養細胞処理:]
各癌細胞を、10%ウシ胎児血清を含むダルベッコ変法イーグル培地(FCS/DMEM)にサスペンドして、96穴マイクロプレートに100μLを播いた(1×105個/mL)。細胞が接着後、培地を一旦廃棄し、プラズマ照射液100μLにFCS/DMEMを加えて総量を200μL/ウェルになるように調整後、CO2インキュベーター(5%炭酸ガス95%空気条件下)内で37℃培養した。
プラズマ照射液としては、各実施例に記載のように、プラズマ(CAP-1/CAP-2)照射液原液またはプラズマ照射液を培地(MEM)又はソルデム3A輸液で2倍、4倍又は8倍に希釈したもの、あるいは、プラズマ照射液に、抗DR4抗体(R&D Systems社製agonistic anti-human TRAIL-R1/TNFRSF10A antibody clone 69036 #MAB347-SP)、抗DR5抗体(R&D Systems社製agonistic anti-human TRAIL-R2/TNFRSF10B antibody (clone 71903 #MAB631-100))、TRAIL(Enzo Life Sciences製KillerTRAILTM (soluble) (human), (recombinant) #ALX-201-073-3020)、サリノマイシン(Sigma-Aldrich製#S4526-5MG)、グリベンクラミド(Sigma-Aldrich製#PHR1287-1G)、メトホルミン(アブカム製#ab120847)を添加して、FCS/DMEMを加えて総量を200μLに調整後、上記と同様の条件で培養した。以下の各実施例における各薬剤の濃度は、FCS/DMEMで総量を調整した後のプラズマ照射液中の濃度である。
[6.NO調節剤の添加:]
NO調節剤は各実施例に記載の終濃度となるよう薬剤を添加することにより、プラズマ照射液と併用した。
[7.細胞生存率の計測:]
プラズマ照射液等を含む96穴マイクロプレート上で、3日間培養後、各癌細胞の細胞生存率を計測した。細胞生存率の計測方法は、水溶性テトラゾリウム塩(WST-8)還元法を用いた。この方法は、水溶性テトラゾリウム塩がミトコンドリア酸化還元酵素活性によって水溶性ホルマザンに還元されることを利用して細胞増殖と相関するこの活性を測定する方法である。
[8.水中照射・バブリングの方法:]
バブリングは、観賞魚水槽用の市販の小型エアーポンプのチューブを滅菌し、その先端を、プラズマ照射前の水溶液を入れたファルコンチューブに差し込み、空気を送るという方法により行った。そして、空気をナトリウム水溶液に送りながら、水中でCAP-2を照射した。以下、「PC-2」と称する。)または空気を送らずに水中でCAP-2を照射した。以下、「PC-3」と称する。)
各実施例に共通する試験手順を以下に記載する。
[1.プラズマの作成:]
ヘリウムガスを周波数20kHz、ピーク電圧8kV,電流値20mA,毎分流速300mLの条件下に低周波数プラズマジェットを用いて非対称誘電体バリアー放電させてプラズマを作成した。(以下、「CAP-1」と称する。)
[2.低温大気圧プラズマの作成:]
低温大気圧プラズマジェットに室温でヘリウムガスを毎分流速30Lで流し、周波数10~50kHz、ピーク電圧1~10kV、電流値最大30mA、1気圧、室温(25℃)の条件下に放電させプラズマを作成した。(以下、「CAP-2」と称する。)
[3.培地、水溶液にCAP-1又はCAP-2を照射することによるプラズマ照射液の作製:]
従来技術ではpH指示薬のフェノールレッドを含む培地にプラズマ照射をしているため生成したプラズマ照射液(PAM)はこれを含む。化学品の危険有害性を世界的に統一された一定基準で分類したGHSに基づく安全データシート(SDS)によれば、pH指示薬として使用される0.1%(w/v)フェノールレッドは眼に対する重篤な損傷・眼刺激性:区分2A、生殖細胞変異原性:区分1B、生殖毒性:区分1A、特定標的臓器・全身毒性(反復暴露)区分1(肝臓)、区分2(神経)である。したがって、PAMはそのまま人体に投与できない。10%FCSを含むSigma-Aldrich社製のダルベッコ変法イーグル培地(DMEM)(フェノールレッド含む)(以下「MEM-1」と称する)1mLに、液面より約5mm上からCAP-1を5分間照射した(以下「PAM-1」と称する)。10%FCSを含むDMEM(フェノールレッド含まない)(以下「MEM-2」と称する)1mLに同様にCAP-1を5分間照射した(以下「PAM-2」と称する)。FCSを含まないDMEM(フェノールレッド含まない)(以下「MEM-3」と称する)1mLに同様にCAP-1を5分間照射した(以下「PAM-3」と称する)。
テルモ社製のソルデム3A輸液(組成:200mL中ブドウ糖8.6g,塩化ナトリウム0.18g,塩化カリウム0.298g,L-乳酸ナトリウム液:0.896g(L-乳酸ナトリウムとして:0.448gを含むもの)1mLに、液面より約5mm上からCAP-1を5分間照射した(以下「PASS、PLAST又はPSM」と称する)。
[4.ナトリウム水溶液にCAP-2を照射することによる低温大気圧プラズマ照射液の作製:]
テルモ社製ソルデム3A30mLを50mLファルコンチューブに入れて、液面より約5mm上からCAP-2を1分間照射した(以下「PC-1」と称する)。
[5.プラズマ照射液による培養細胞処理:]
各癌細胞を、10%ウシ胎児血清を含むダルベッコ変法イーグル培地(FCS/DMEM)にサスペンドして、96穴マイクロプレートに100μLを播いた(1×105個/mL)。細胞が接着後、培地を一旦廃棄し、プラズマ照射液100μLにFCS/DMEMを加えて総量を200μL/ウェルになるように調整後、CO2インキュベーター(5%炭酸ガス95%空気条件下)内で37℃培養した。
プラズマ照射液としては、各実施例に記載のように、プラズマ(CAP-1/CAP-2)照射液原液またはプラズマ照射液を培地(MEM)又はソルデム3A輸液で2倍、4倍又は8倍に希釈したもの、あるいは、プラズマ照射液に、抗DR4抗体(R&D Systems社製agonistic anti-human TRAIL-R1/TNFRSF10A antibody clone 69036 #MAB347-SP)、抗DR5抗体(R&D Systems社製agonistic anti-human TRAIL-R2/TNFRSF10B antibody (clone 71903 #MAB631-100))、TRAIL(Enzo Life Sciences製KillerTRAILTM (soluble) (human), (recombinant) #ALX-201-073-3020)、サリノマイシン(Sigma-Aldrich製#S4526-5MG)、グリベンクラミド(Sigma-Aldrich製#PHR1287-1G)、メトホルミン(アブカム製#ab120847)を添加して、FCS/DMEMを加えて総量を200μLに調整後、上記と同様の条件で培養した。以下の各実施例における各薬剤の濃度は、FCS/DMEMで総量を調整した後のプラズマ照射液中の濃度である。
[6.NO調節剤の添加:]
NO調節剤は各実施例に記載の終濃度となるよう薬剤を添加することにより、プラズマ照射液と併用した。
[7.細胞生存率の計測:]
プラズマ照射液等を含む96穴マイクロプレート上で、3日間培養後、各癌細胞の細胞生存率を計測した。細胞生存率の計測方法は、水溶性テトラゾリウム塩(WST-8)還元法を用いた。この方法は、水溶性テトラゾリウム塩がミトコンドリア酸化還元酵素活性によって水溶性ホルマザンに還元されることを利用して細胞増殖と相関するこの活性を測定する方法である。
[8.水中照射・バブリングの方法:]
バブリングは、観賞魚水槽用の市販の小型エアーポンプのチューブを滅菌し、その先端を、プラズマ照射前の水溶液を入れたファルコンチューブに差し込み、空気を送るという方法により行った。そして、空気をナトリウム水溶液に送りながら、水中でCAP-2を照射した。以下、「PC-2」と称する。)または空気を送らずに水中でCAP-2を照射した。以下、「PC-3」と称する。)
[実施例1]
プラズマ(CAP-1)照射液(4倍希釈又は8倍希釈)と抗DR4抗体、抗DR5抗体又はサリノマイシンとの併用によるMG63細胞に対する抗癌効果を調べた。結果は図1に示す。
図1中、PASS×4は、上記の方法で作製したプラズマ照射液を4倍希釈したもの、PASS×8は、上記の方法で作製したプラズマ照射液を8倍希釈したもの、PASS×16は、上記の方法で作製したプラズマ照射液を16倍希釈したもの、αDR-4は抗DR4抗体、αDR-5は抗DR5抗体を表す。水溶液中の各薬剤の濃度はグラフに記載のとおりである。「PASS×4+」、「PASS×8+」「PASS×16+」の表記のないものは、プラズマ照射液の代わりに、プラズマ照射せずに輸液に各薬剤を添加したものを用いたことを表す。
プラズマ(CAP-1)照射液(4倍希釈又は8倍希釈)と抗DR4抗体、抗DR5抗体又はサリノマイシンとの併用によるMG63細胞に対する抗癌効果を調べた。結果は図1に示す。
図1中、PASS×4は、上記の方法で作製したプラズマ照射液を4倍希釈したもの、PASS×8は、上記の方法で作製したプラズマ照射液を8倍希釈したもの、PASS×16は、上記の方法で作製したプラズマ照射液を16倍希釈したもの、αDR-4は抗DR4抗体、αDR-5は抗DR5抗体を表す。水溶液中の各薬剤の濃度はグラフに記載のとおりである。「PASS×4+」、「PASS×8+」「PASS×16+」の表記のないものは、プラズマ照射液の代わりに、プラズマ照射せずに輸液に各薬剤を添加したものを用いたことを表す。
図1の上側のグラフから明らかなように、抗DR4抗体、抗DR5抗体単独投与では、MG63細胞の細胞生存率は、70%程度に下がるにとどまった。また、プラズマ照射液を8倍希釈したもののみを投与した例では、細胞生存率は減少しなかった。
それに対して、抗DR5抗体と、プラズマ照射液を併用した場合、抗DR5抗体の濃度依存的に著しい抗癌効果を示した。
また、図1の下側のグラフから明らかなように、サリノマイシンの単独投与や、プラズマ照射液を8倍以上希釈したものを単独投与した場合には、殆どHOS細胞は死滅しなかった。細胞生存率が100%を超えるものは、細胞が増殖したことによる。プラズマ照射液を4倍希釈したものは生存率を70%低下させた。サリノマイシンはこの抗腫瘍効果をさらに増強した。プラズマ照射液を8倍希釈したものでもサリノマイシンと併用すると、生存率を30%低下させたが、プラズマ照射液を16倍希釈したものでは抗腫瘍効果は見られなかった。このことから、プラズマ照射液がサリノマイシンと相乗効果を発揮しており、8倍以上まで希釈してしまうとプラズマ照射液の効果は弱まることが明らかとなった。
それに対して、抗DR5抗体と、プラズマ照射液を併用した場合、抗DR5抗体の濃度依存的に著しい抗癌効果を示した。
また、図1の下側のグラフから明らかなように、サリノマイシンの単独投与や、プラズマ照射液を8倍以上希釈したものを単独投与した場合には、殆どHOS細胞は死滅しなかった。細胞生存率が100%を超えるものは、細胞が増殖したことによる。プラズマ照射液を4倍希釈したものは生存率を70%低下させた。サリノマイシンはこの抗腫瘍効果をさらに増強した。プラズマ照射液を8倍希釈したものでもサリノマイシンと併用すると、生存率を30%低下させたが、プラズマ照射液を16倍希釈したものでは抗腫瘍効果は見られなかった。このことから、プラズマ照射液がサリノマイシンと相乗効果を発揮しており、8倍以上まで希釈してしまうとプラズマ照射液の効果は弱まることが明らかとなった。
[実施例2]
プラズマ(CAP-1)照射液(PLAST 2倍希釈又は4倍希釈)、CAP-2照射液(2倍希釈又は4倍希釈)と、従来技術である培地にプラズマ(CAP-1)照射した照射液(PAMと称する)の悪性黒色腫(A2058)に対する抗癌効果を比較した。結果は図2に示す。
プラズマ(CAP-1)照射液(PLAST 2倍希釈又は4倍希釈)、CAP-2照射液(2倍希釈又は4倍希釈)と、従来技術である培地にプラズマ(CAP-1)照射した照射液(PAMと称する)の悪性黒色腫(A2058)に対する抗癌効果を比較した。結果は図2に示す。
PLASTは著しい抗癌効果を示し、4倍希釈でも細胞生存率は20%以下に低下した。PAM-1は2倍希釈のみで強い効果を示した。これに対してPAM-2、PAM-3は2倍希釈でも抗癌効果が小さかった。この結果は、PAMの抗癌効果はフェノールレッド依存性であることを示す。コントロールの中でMEM-3だけが生存率を著しく低下させたが、これはFCSがないためと考えられる。CAP-2照射液では空気バブリングをしたPC-2の方がPC-1よりも抗癌効果が高かったことは、その効果に空気(N2)が必要であることを示唆した。PLAST並びにPC-1/PC-2が高い抗癌効果を持つことから、ナトリウム水溶液由来のプラズマ照射液の抗癌効果はPAMとは異なり、フェノールレッドを必要としないことが分る。PLASTがPC-1,PC-2よりも抗癌効果が強いのは、PLASTが小量(1mL)の輸液に長時間(5分)プラズマ(CAP-1)を照射しているのに対して、PC-1、PC-2は大量(30mL)の輸液に短時間(1分)プラズマ(CAP-2)を照射しているためと考えられる。ただし、CAP-1ではヘリウムガスの流速は毎分300mLに対して、CAP-1では毎分30Lである。
[実施例3]
プラズマ(CAP-1)照射液(PLAST 2倍希釈又は4倍希釈)、CAP-2照射液(PC-1, PC-2 2倍希釈又は4倍希釈)と、従来技術である培地にプラズマ(CAP-1)照射した照射液(PAMと称する)の骨肉腫(HOS)に対する抗癌効果を比較した。結果は図3に示す。
プラズマ(CAP-1)照射液(PLAST 2倍希釈又は4倍希釈)、CAP-2照射液(PC-1, PC-2 2倍希釈又は4倍希釈)と、従来技術である培地にプラズマ(CAP-1)照射した照射液(PAMと称する)の骨肉腫(HOS)に対する抗癌効果を比較した。結果は図3に示す。
PLASTは著しい抗癌効果を示し、4倍希釈でも細胞生存率は30%以下に低下した。PAM-1は2倍、4倍希釈両方で強い効果を示した(生存率30%以下)。これに対してPAM-2、PAM-3は2倍希釈でも抗癌効果を示さなかった。また、CAP-2照射液では空気バブリングをしたPC-2の方がPC-1よりも抗癌効果が高かった。これらの結果は、A2058細胞と同様に、(1)PAMの抗癌効果はフェノールレッド依存性である。(2)ナトリウム水溶液由来のプラズマ照射液の抗癌効果はフェノールレッドを必要としない。(3)プラズマ照射液の抗癌効果向上にNOドナー(空気(N2))が有効であることを示唆する。
[実施例4]
プラズマ(CAP-1)照射液(PLAST 2倍希釈又は4倍希釈)、CAP-2照射液(PC-1、PC-2 2倍希釈又は4倍希釈)と、従来技術である培地にプラズマ(CAP-1)照射した照射液(PAMと称する)の骨肉腫(SAOS-2)に対する抗癌効果を比較した。結果は図4に示す。
プラズマ(CAP-1)照射液(PLAST 2倍希釈又は4倍希釈)、CAP-2照射液(PC-1、PC-2 2倍希釈又は4倍希釈)と、従来技術である培地にプラズマ(CAP-1)照射した照射液(PAMと称する)の骨肉腫(SAOS-2)に対する抗癌効果を比較した。結果は図4に示す。
PLASTは著しい抗癌効果を示し、4倍希釈でも細胞生存率は10%以下に低下した。PAM-1は2倍希釈のみで中程度の効果を示した(生存率40%)。これに対してPAM-2、PAM-3は2倍希釈でも抗癌効果を示さなかった。また、CAP-2照射液では空気バブリングをしたPC-2の方がPC-1よりも抗癌効果が高かった。これらの結果は、他の細胞と同様に、(1)PAMの抗癌効果はフェノールレッド依存性である。(2)ナトリウム水溶液由来のプラズマ照射液の抗癌効果はフェノールレッドを必要としない。(3)プラズマ照射液の抗癌効果向上にNOドナー(空気(N2))が有効であることを示唆する。
[実施例5]
プラズマ(CAP-1)照射液(PLAST 2倍希釈又は4倍希釈)、CAP-2照射液(PC-1、PC-2 2倍希釈又は4倍希釈)と、従来技術である培地にプラズマ(CAP-1)照射した照射液(PAMと称する)の神経芽腫(NB-1)に対する抗癌効果を比較した。結果は図5に示す。
プラズマ(CAP-1)照射液(PLAST 2倍希釈又は4倍希釈)、CAP-2照射液(PC-1、PC-2 2倍希釈又は4倍希釈)と、従来技術である培地にプラズマ(CAP-1)照射した照射液(PAMと称する)の神経芽腫(NB-1)に対する抗癌効果を比較した。結果は図5に示す。
PLASTは著しい抗癌効果を示し、4倍希釈でも細胞生存率は10%以下に低下した。PAM-1は2倍希釈のみで中程度の効果を示した(生存率40%)。これに対してPAM-2、PAM-3は2倍希釈でも抗癌効果を示さなかった。また、CAP-2照射液では空気バブリングをしたPC-2の方がPC-1よりも抗癌効果が高かった。これらの結果は、他の細胞と同様に、(1)PAMの抗癌効果はフェノールレッド依存性である。(2)ナトリウム水溶液由来のプラズマ照射液の抗癌効果はフェノールレッドを必要としない。(3)プラズマ照射液の抗癌効果向上にNOドナー(空気(N2))が有効であることを示唆する。
[実施例6]
プラズマ(CAP-1)照射液(PLAST 2倍希釈又は4倍希釈)、CAP-2照射液(PC-1、PC-2、PC-3 2倍希釈又は4倍希釈)と、従来技術である培地にプラズマ(CAP-1)照射した照射液(PAMと称する)の骨肉腫(HOS)に対する抗癌効果を比較した。結果は図6に示す。
プラズマ(CAP-1)照射液(PLAST 2倍希釈又は4倍希釈)、CAP-2照射液(PC-1、PC-2、PC-3 2倍希釈又は4倍希釈)と、従来技術である培地にプラズマ(CAP-1)照射した照射液(PAMと称する)の骨肉腫(HOS)に対する抗癌効果を比較した。結果は図6に示す。
PLASTは著しい抗癌効果を示した。PAM-1は2倍希釈のみで強い抗癌効果を示した(生存率20%)がPAM-2は2倍希釈でも抗癌効果を示さなかった。また、CAP-2照射液では空気バブリングをしたPC-2は空気バブリングをしないPC-1、PC-3よりも抗癌効果が高かった。これらの結果は、実施例の3の結果を再現しており、(1)PAMの抗癌効果はフェノールレッド依存性である。(2)ナトリウム水溶液由来のプラズマ照射液の抗癌効果はフェノールレッドを必要としない。(3)プラズマ照射液の抗癌効果向上にNOドナー(空気(N2))が有効であることを示す。
[実施例7]
プラズマ(CAP-1)照射液(PLAST 2倍希釈又は4倍希釈)、CAP-2照射液(PC-1, PC-2、PC-3 2倍希釈又は4倍希釈)と、従来技術である培地にプラズマ(CAP-1)照射した照射液(PAMと称する)の神経芽腫(NB-1)に対する抗癌効果を比較した。結果は図7に示す。
プラズマ(CAP-1)照射液(PLAST 2倍希釈又は4倍希釈)、CAP-2照射液(PC-1, PC-2、PC-3 2倍希釈又は4倍希釈)と、従来技術である培地にプラズマ(CAP-1)照射した照射液(PAMと称する)の神経芽腫(NB-1)に対する抗癌効果を比較した。結果は図7に示す。
PLASTは著しい抗癌効果を示した。PAM-1は2倍希釈のみで中程度の抗癌効果を示した(生存率40%)がPAM-2は2倍希釈でも抗癌効果を示さなかった。また、CAP-2照射液では空気バブリングをしたPC-2の方が空気バブリングをしないPC-1、PC-3よりも明らかに効果が高かった。これらの結果は、実施例の5の結果を再現しており、HOS細胞と同様に、(1)PAMの抗癌効果はフェノールレッド依存性である。(2)ナトリウム水溶液由来のプラズマ照射液の抗癌効果はフェノールレッドを必要としない。(3)プラズマ照射液の抗癌効果向上にNOドナー(空気(N2))が有効であることを示す。
[実施例8]
プラズマ照射液(3倍希釈又は6倍希釈)をマウス骨肉腫LM8細胞C3Hマウス(マウス由来癌細胞LM8を移植されたマウス)に投与したときの体重の増加推移及び腫瘍の大きさの変化を調べた。結果を図8に示す。
プラズマ照射液(3倍希釈又は6倍希釈)をマウス骨肉腫LM8細胞C3Hマウス(マウス由来癌細胞LM8を移植されたマウス)に投与したときの体重の増加推移及び腫瘍の大きさの変化を調べた。結果を図8に示す。
プラズマ(CAP-1)照射液(PASS)を投与したマウスでは、コントロールマウスが21日後及び28日後に腫瘍が著しく増殖していたことに比べて腫瘍の増殖が著しく抑制された。一方、マウスの体重は4週間連続投与でもコントロールのそれに比べて全く変わらず、食欲不振などの全身状態の悪化がないことを示す。これらの結果はin vitroの抗腫瘍効果と一致して、ナトリウム水溶液から作成したプラズマ照射液はフェノールレッドなしでも抗腫瘍効果を示し、副作用が小さいことを示している。
[実施例9]
NO調節剤と併用した場合の大気圧低温プラズマ照射液の悪性黒色腫(A2058)に対する抗癌効果を調べた。結果は図9に示す。
NO調節剤と併用した場合の大気圧低温プラズマ照射液の悪性黒色腫(A2058)に対する抗癌効果を調べた。結果は図9に示す。
(図9)NOR-3、carboxy-PTIOは単独でも濃度依存的に、細胞生存率を最大50%までに低下させたが、NaNO2は単独では細胞生存に影響を与えなかった。NOR-3、carboxy-PTIO、NaNO2はいずれもそれ自身では生存率を低下させない濃度でもPASSの抗癌効果を著しく増強した。これらの結果はNO調節剤の併用がプラズマ照射液のA2058に対する抗癌効果を増強することを示す。
[実施例10]
実施例9と同様に、NO調節剤と併用した場合の大気圧低温プラズマ照射液の神経芽腫(NB-1)、骨肉腫(HOS)に対する抗癌効果を調べた。結果は図10、図11及び図12に示す。
実施例9と同様に、NO調節剤と併用した場合の大気圧低温プラズマ照射液の神経芽腫(NB-1)、骨肉腫(HOS)に対する抗癌効果を調べた。結果は図10、図11及び図12に示す。
(図10)(上)空気バブリングをせず、CAP-2を空中照射したPC-1は2倍希釈で抗癌効果を示した。carboxy-PTIO、NOR-3、NaNO2は単独では細胞生存に影響を与えなかったがいずれもPC-1の抗癌効果を増強し、その効果はNOR-3が最も高かった。(下)空気バブリングをしつつCAP-2を水中照射したPC-2は、著しい抗癌効果を示した。NOR-3、carboxy-PTIO、NaNO2は単独では細胞生存に影響を与えなかったが、いずれもPC-2の抗癌効果を増強し、その効果はNOR-3が最も高かった。これらの結果はNO調節剤の併用がプラズマ照射液のNB-1に対する抗癌効果を増強することを示す。
(図11)空気バブリングをせず、CAP-2を水中照射したPC-3は2倍希釈でも抗癌効果が小さかった。carboxy-PTIO、NOR-3、NaNO2は単独では細胞生存に影響を与えなかったが、いずれもPC-3の抗癌効果を増強し、その効果はNOR-3が最も高かった。これらの結果はNO調節剤の併用がプラズマ照射液のNB-1に対する抗癌効果を増強することを示す。
(図12)空気バブリングをせず、CAP-2を水中照射したPC-3は2倍希釈でも抗癌効果が小さかった。carboxy-PTIO、NOR-3、NaNO2は単独では細胞生存に影響を与えなかったが、いずれもPC-3の抗癌効果を増強し、その効果はNOR-3が最も高かった。これらの結果はNO調節剤の併用がプラズマ照射液のHOSに対する抗癌効果を増強することを示す。
(図11)空気バブリングをせず、CAP-2を水中照射したPC-3は2倍希釈でも抗癌効果が小さかった。carboxy-PTIO、NOR-3、NaNO2は単独では細胞生存に影響を与えなかったが、いずれもPC-3の抗癌効果を増強し、その効果はNOR-3が最も高かった。これらの結果はNO調節剤の併用がプラズマ照射液のNB-1に対する抗癌効果を増強することを示す。
(図12)空気バブリングをせず、CAP-2を水中照射したPC-3は2倍希釈でも抗癌効果が小さかった。carboxy-PTIO、NOR-3、NaNO2は単独では細胞生存に影響を与えなかったが、いずれもPC-3の抗癌効果を増強し、その効果はNOR-3が最も高かった。これらの結果はNO調節剤の併用がプラズマ照射液のHOSに対する抗癌効果を増強することを示す。
[実施例11]
グリベンクラミドを含む大気圧低温プラズマ照射液の悪性黒色腫(A2058)に対する抗癌効果を調べた。また、プラズマ照射液で誘発される細胞死のモードを調べた。結果は図13に示す。
グリベンクラミドを含む大気圧低温プラズマ照射液の悪性黒色腫(A2058)に対する抗癌効果を調べた。また、プラズマ照射液で誘発される細胞死のモードを調べた。結果は図13に示す。
(上)PAMは4倍希釈ではほとんど抗癌効果を示さなかったのに対して、本発明の抗癌剤であるPASSの4倍希釈は抗癌効果を示した(生存率50%)。グリベンクラミドは単独で弱い抗癌効果(生存率減少30%)を示す一方で、PAMならびにPASSの抗癌効果を著しく増強した。PASSの抗癌効果はカスパーゼ阻害剤zVAD-FMK(ZVAD)、ネクロトーシスの特異的阻害剤ネクロスタチン-1(NS-1)のいずれでも阻害されなかったことからアポトーシスやネクロトーシスとは異なる細胞死を誘発することによるものと考えられた。(下)TRAILは中程度抗癌効果(生存率50%)を示し、その効果はzVAD-FMK(ZVAD)でほぼ完全に抑制されたがNS-1による抑制は小さかった。またグリベンクラミドは、TRAILの抗癌効果を強く阻害した。これらの結果からTRAILはアポトーシス細胞死を誘発し、グリベンクラミドによる抗癌効果増強はプラズマ照射液に特異的であると考えられた。
[実施例12]
実施例11と同様に、グリベンクラミドを含む大気圧低温プラズマ照射液の悪性黒色腫(A2058)ならびに骨肉腫(SAOS-2)に対する抗癌効果を調べた。結果は図14に示す。
実施例11と同様に、グリベンクラミドを含む大気圧低温プラズマ照射液の悪性黒色腫(A2058)ならびに骨肉腫(SAOS-2)に対する抗癌効果を調べた。結果は図14に示す。
いずれの細胞でもPAMは4倍希釈ではほとんど抗癌効果を示さなかったのに対して、本発明の抗癌剤であるPASSの4倍希釈は抗癌効果を示した(生存率50%)。グリベンクラミドは単独で弱い抗癌効果(生存率減少30%)を示す一方で、PAMならびにPASSの抗癌効果を著しく増強した。
[実施例13]
実施例11と同様に、メトホルミンを含む大気圧低温プラズマ照射液の骨肉腫(HOS)、悪性黒色腫(A2058)に対する抗癌効果を調べた。結果は図15に示す。
実施例11と同様に、メトホルミンを含む大気圧低温プラズマ照射液の骨肉腫(HOS)、悪性黒色腫(A2058)に対する抗癌効果を調べた。結果は図15に示す。
(上)本発明の抗癌剤であるPLASTの4倍希釈はHOS細胞に対して、弱い抗癌効果を示した。メトホルミンは20mMまで単独では抗癌効果を示さなかったが濃度依存的に、PLASTの抗癌効果を著しく増強した。(下)PLASTの4倍希釈はA2058細胞に対して、抗癌効果を示した。メトホルミン高濃度は、単独で弱い抗癌効果を示す一方で、それ自身が細胞毒性を示さない濃度でもPLASTの抗癌効果を濃度依存的に著しく増強した。
[実施例14]
プラズマ照射液がオートファジー並びにミトコンドリア形態に与える影響を調べた。
健常(A)ならびに過剰増殖したA375細胞(B)を100% PSMを2倍希釈したもの(50%終濃度)または100ng/mLTRAILで24時間インキュベート後にオートファジーの誘発をオートファゴソーム検出染色剤CYTO-IDを用いて調べた。また、ミトコンドリアをMitoTracker Red CMXRosで染色して形態を解析した。Bar=100μmである。結果は図16に示す。
プラズマ照射液がオートファジー並びにミトコンドリア形態に与える影響を調べた。
健常(A)ならびに過剰増殖したA375細胞(B)を100% PSMを2倍希釈したもの(50%終濃度)または100ng/mLTRAILで24時間インキュベート後にオートファジーの誘発をオートファゴソーム検出染色剤CYTO-IDを用いて調べた。また、ミトコンドリアをMitoTracker Red CMXRosで染色して形態を解析した。Bar=100μmである。結果は図16に示す。
(A)コントロール細胞でもかなりの数のCYTO-IDの斑点が認められた。ミトコンドリアはフィラメント状を呈して、CYTO-IDとは異なる部位に存在した。PSM添加でCYTO-IDの斑点が集合し、ミトコンドリアは断片化、凝集した。さらに、CYTO-IDの斑点とミトコンドリアの凝集体は共存し、ミトコンドリアの特異的分解過程であるミトファジーの誘発が見られた。黄色の矢印は損傷された細胞を示す。(B)過剰増殖したA375細胞で(A)と同様な実験を行った。このような条件下では無刺激のコントロール細胞でもかなりの細胞が損傷し(黄色矢印)、CYTO-IDの斑点の集合とミトコンドリアの断片化、凝集と両者の共存が見られた。PSM刺激によってさらに細胞が傷害され、ほとんどの細胞が剥離したため、観察できる細胞数が大幅に減少した。(C)TRAIL添加でCYTO-IDの斑点が増加したが、ミトコンドリアは一部が断片化したが凝集は起こさなかった。また、CYTO-IDとミトコンドリアの共存はほとんど認められなかった。これらの結果は、PSMが特異的にミトファジーを誘発し、このミトファジーが細胞死につながることを示唆する。
[実施例15]
上記実施例1と同様にして、テルモ社製ソルデム3A30mLに対して、CAP-2を5分間照射した(以下「PCF-O(5min)」、「PCF-N(5min)」と称する)。「PCF-O(5min)」、「PCF-N(5min)」はどちらもヘリウムガスプラズマを照射したものであるが、使用したプラズマ発生器が異なる。前者は、ガス流量が0.3L/minのプラズマ発生器を用いたものであり、後者は、ガス流量が○○のプラズマ発生器を用いたものである。
ヒト骨肉腫細胞SAOS-2にPCF-O(5min)単独または他の薬剤との併用投与を行い、72時間後の生存率をWST-8法で測定した。PCF-O(5min)×2は、PCF-O(5min)を2倍希釈したものであり、Paclitaxel(PTX)はパクリタキセルである。Gemcitabine(GEM)はゲムシタビンである。Controlはプラズマ照射液を投与していないFCS/DMEMである。結果を図17に示す。
上記実施例1と同様にして、テルモ社製ソルデム3A30mLに対して、CAP-2を5分間照射した(以下「PCF-O(5min)」、「PCF-N(5min)」と称する)。「PCF-O(5min)」、「PCF-N(5min)」はどちらもヘリウムガスプラズマを照射したものであるが、使用したプラズマ発生器が異なる。前者は、ガス流量が0.3L/minのプラズマ発生器を用いたものであり、後者は、ガス流量が○○のプラズマ発生器を用いたものである。
ヒト骨肉腫細胞SAOS-2にPCF-O(5min)単独または他の薬剤との併用投与を行い、72時間後の生存率をWST-8法で測定した。PCF-O(5min)×2は、PCF-O(5min)を2倍希釈したものであり、Paclitaxel(PTX)はパクリタキセルである。Gemcitabine(GEM)はゲムシタビンである。Controlはプラズマ照射液を投与していないFCS/DMEMである。結果を図17に示す。
図17から明らかなように、2倍希釈のPCF-O(5min)、PCF-N(5min)を投与したヒト骨肉腫細胞の生存率は、40%程度であり、顕著に生存率が減少した。一方、TRAIL、パクリタキセル、ゲムシタビンの単剤投与は、SAOS-2に対しては殆ど効果がなかった。これに対して、PCF-O(5min)やPCF-N(5min)とパクリタキセルとの併用、PCF-O(5min)やPCF-N(5min)とゲムシタビンとの併用は、細胞生存率を20%程度にまで減少させており、著しい相乗効果を示した(Mean±SD、N=3)。
[実施例16]
実施例15で作成したPCF-N(5min)2倍希釈、ゲムシタビン(0.1μM)をそれぞれ単剤あるいは併用してヒト骨肉腫細胞HOSに投与し、24時間後に細胞核、ミトコンドリアならびに小胞体をHoechst33342、MitoTracker Red、ERT Tracker Greenを用いて染色して、それらの形態を蛍光顕微鏡で観察、撮影した。Controlはプラズマ照射液を投与していないFCS/DMEMである。結果を図18に示す。
実施例15で作成したPCF-N(5min)2倍希釈、ゲムシタビン(0.1μM)をそれぞれ単剤あるいは併用してヒト骨肉腫細胞HOSに投与し、24時間後に細胞核、ミトコンドリアならびに小胞体をHoechst33342、MitoTracker Red、ERT Tracker Greenを用いて染色して、それらの形態を蛍光顕微鏡で観察、撮影した。Controlはプラズマ照射液を投与していないFCS/DMEMである。結果を図18に示す。
図18から明らかなように、PCF-N(5min)2倍希釈は、フィラメント状のミトコンドリアを断片化し、膨張させたが、小胞体の外観に与える影響はわずかであった。一方、ゲムシタビンは小胞体を強く傷害し、断片化、凝集させた。、PCF-N(5min)とゲムシタビンとの併用は、ミトコンドリアと小胞体の双方が著しく変形し、ミトコンドリアと小胞体の分離をもたらした。なお、写真中のバーは10μmである。
[実施例17]
ダルベッコ変法イーグル培地(FCS/DMEM)(Sigma-Aldrich社製 D5796)に対して、上記と同様にして低温大気圧酸素プラズマを5分間照射した(以下「PZ5w-NF」と称する。)。
メラノーマ細胞A2058にPZ5w-NF単独または他の薬剤との併用投与を行い、72時間後の生存率をWST-8法で測定した。PZ5w-NF×2、×4、×8は、PCF-O(5min)をそれぞれ2倍、4倍、8倍希釈したものである。Controlはプラズマ照射液を投与していないFCS/DMEMである。結果を図19に示す。
ダルベッコ変法イーグル培地(FCS/DMEM)(Sigma-Aldrich社製 D5796)に対して、上記と同様にして低温大気圧酸素プラズマを5分間照射した(以下「PZ5w-NF」と称する。)。
メラノーマ細胞A2058にPZ5w-NF単独または他の薬剤との併用投与を行い、72時間後の生存率をWST-8法で測定した。PZ5w-NF×2、×4、×8は、PCF-O(5min)をそれぞれ2倍、4倍、8倍希釈したものである。Controlはプラズマ照射液を投与していないFCS/DMEMである。結果を図19に示す。
図19から明らかなように、PZ5w-NFは濃度依存的にメラノーマ細胞の生存率を低下させた。8倍希釈や16倍希釈では殆ど効果がなかった。一方、PZ5w-NFは、ZVADやネクロスタチンによっては全く抑制されなかったことから、PZ5w-NFの抗癌効果は、アポトーシスやネクローシス経路に依存するものではないことが示唆された。
[実施例18]
実施例17と同様にして、骨肉腫細胞HOSにPZ5w-NF単独または他の薬剤との併用投与を行い、72時間後の生存率をWST-8法で測定した。結果を図20に示す。
実施例17と同様にして、骨肉腫細胞HOSにPZ5w-NF単独または他の薬剤との併用投与を行い、72時間後の生存率をWST-8法で測定した。結果を図20に示す。
図20から明らかなように、PZ5w-NFは濃度依存的に骨肉腫細胞の生存率を低下させた。8倍希釈や16倍希釈では殆ど効果がなかった。一方、PZ5w-NFは、ZVADやネクロスタチンによっては全く抑制されなかったことから、PZ5w-NFの抗癌効果は、アポトーシスやネクローシス経路に依存するものではないことが示唆された。
[実施例19]
実施例17と同様にして作成したPZ5w-NFの2倍希釈液と4倍希釈液をそれぞれヒト骨肉腫細胞HOSに投与し、24時間後に細胞核及びミトコンドリアをHoechst33342、MitoTracker Redを用いて染色して、それらの形態を蛍光顕微鏡で観察、撮影した。Controlはプラズマ照射液を投与していないFCS/DMEMである。結果を図21に示す。
実施例17と同様にして作成したPZ5w-NFの2倍希釈液と4倍希釈液をそれぞれヒト骨肉腫細胞HOSに投与し、24時間後に細胞核及びミトコンドリアをHoechst33342、MitoTracker Redを用いて染色して、それらの形態を蛍光顕微鏡で観察、撮影した。Controlはプラズマ照射液を投与していないFCS/DMEMである。結果を図21に示す。
図21から明らかなように、PZ5w-NFは濃度依存的に骨肉腫細胞の細胞死を誘発し、細胞形態変化、核破壊、ならびにミトコンドリアネットワーク異常が観察された(Bar=10μm)。また、2倍希釈液では細胞がちぎれ飛んで、まともな細胞はほとんど観察されなかった。また核は完全に破壊され、断片化した。
以上のように、本発明のプラズマ照射液は、様々な癌種に対して抗癌作用を発揮した。また、本発明のプラズマ照射液は、NO調節剤や、糖尿病薬、抗癌剤などと併用することによって、安定的かつ相乗的な抗癌効果を発揮した。この併用効果が発揮される原因としては定かではないが、一つは、細胞死を抑制するミトコンドリアの形態恒常性に付随するいくつかの経路が活性化されることによって抗癌剤に対する抵抗性が生じ得るところ、NO調節剤や糖尿病薬、抗癌剤などとの併用によってこのミトコンドリアに関連する経路を抑制することによって、抗癌効果が著しく増強されることが考えられる。
Claims (12)
- ブドウ糖及びNO調節剤から選択される1種以上を含有する水溶液にプラズマを照射する工程を備えることを特徴とする抗癌剤の製造方法。
- 前記水溶液が、炭酸水素ナトリウムを含有する請求項1記載の抗癌剤の製造方法。
- 前記水溶液が、L-グルタミンを含有する請求項1又は2記載の抗癌剤の製造方法。
- 前記水溶液が、ヒト用輸液製剤、ヒト用輸液製剤にブドウ糖及びNO調節剤から選択される1種以上を配合したもの、又は、フェノールレッドを含まないダルベッコ培地である請求項1記載の抗癌剤の製造方法。
- 前記プラズマを照射する工程が、前記水溶液に対して、大気圧下、室温~100℃の低温プラズマを照射する工程である請求項1~4のいずれか一項記載の抗癌剤の製造方法。
- 前記抗癌剤が、アポトーシス誘発剤に対して抵抗性を示す腫瘍用の抗癌剤である請求項1~5のいずれか一項記載の抗癌剤の製造方法。
- 細胞死受容体アゴニスト、サリノマイシン、グリベンクラミド、メトホルミン、パクリタキセル、ゲムシタビン及びそれらの薬学的に許容される塩からなる群から選ばれる1種以上の医薬と併用する、請求項1~6のいずれか一項記載の抗癌剤の製造方法により得られた抗癌剤。
- NO調節剤と併用する、請求項1~7のいずれか一項記載の抗癌剤の製造方法により得られた抗癌剤。
- (A)水又はナトリウム水溶液にプラズマを照射することにより得られる抗癌剤と、(B)細胞死受容体アゴニスト、サリノマイシン、グリベンクラミド、メトホルミン、パクリタキセル、ゲムシタビン及びそれらの薬学的に許容される塩からなる群から選ばれる1種以上の医薬とを組み合わせてなる癌の治療用医薬。
- (A)水又はナトリウム水溶液にプラズマを照射することにより得られる抗癌剤と、(C)NO調節剤とを組合せてなる癌の治療用医薬。
- 水又はナトリウム水溶液に空気をバブリングしながらプラズマ照射する工程を備えることを特徴とする抗癌剤の製造方法。
- 請求項1~6のいずれか一項記載の抗癌剤の製造方法により得られた抗癌剤で癌を治療する方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019514334A JP6667792B2 (ja) | 2017-11-17 | 2018-11-16 | 抗癌剤の製造方法、抗癌剤及び医薬 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017222299 | 2017-11-17 | ||
JP2017-222299 | 2017-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019098339A1 true WO2019098339A1 (ja) | 2019-05-23 |
Family
ID=66538998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/042538 WO2019098339A1 (ja) | 2017-11-17 | 2018-11-16 | 抗癌剤の製造方法、抗癌剤及び医薬 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6667792B2 (ja) |
WO (1) | WO2019098339A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023068366A1 (ja) * | 2021-10-22 | 2023-04-27 | 東京計器株式会社 | オゾン含有水溶液組成物 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11171423A (ja) * | 1997-12-15 | 1999-06-29 | Hitachi Ltd | エレベーターの地震時自動復帰装置 |
JP2006232447A (ja) * | 2005-02-23 | 2006-09-07 | Mitsubishi Electric Corp | エレベーターの地震時自動復帰装置 |
JP2007119218A (ja) * | 2005-10-31 | 2007-05-17 | Mitsubishi Electric Building Techno Service Co Ltd | エレベータの地震感知器遠隔解除システム |
JP2007246183A (ja) * | 2006-03-13 | 2007-09-27 | Toshiba Elevator Co Ltd | エレベータの運転制御装置 |
WO2008026246A1 (fr) * | 2006-08-29 | 2008-03-06 | Mitsubishi Electric Corporation | Procede et appareil de controle d'ascenseur |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61154540A (ja) * | 1984-12-26 | 1986-07-14 | 日本光電工業株式会社 | 血液中の気体濃度測定用装置 |
JPH07242565A (ja) * | 1994-03-04 | 1995-09-19 | Nikken Chem Co Ltd | 出血性ショック治療剤 |
TWI445540B (zh) * | 2007-04-20 | 2014-07-21 | Ajinomoto Kk | 抗低體溫組成物 |
JP6099277B2 (ja) * | 2012-02-27 | 2017-03-22 | 国立大学法人名古屋大学 | 抗腫瘍水溶液および抗癌剤とそれらの製造方法 |
SG11201510045TA (en) * | 2013-06-28 | 2016-01-28 | Otsuka Pharma Co Ltd | Trehalose and dextran-containing solution for transplanting mammalian cells |
JP2015136644A (ja) * | 2014-01-21 | 2015-07-30 | パナソニックIpマネジメント株式会社 | 液体処理装置及び液体処理方法、ならびにプラズマ処理液 |
JP6736004B2 (ja) * | 2014-12-24 | 2020-08-05 | 国立大学法人東海国立大学機構 | 抗癌剤および輸液とそれらの製造方法ならびに抗癌物質 |
-
2018
- 2018-11-16 WO PCT/JP2018/042538 patent/WO2019098339A1/ja active Application Filing
- 2018-11-16 JP JP2019514334A patent/JP6667792B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11171423A (ja) * | 1997-12-15 | 1999-06-29 | Hitachi Ltd | エレベーターの地震時自動復帰装置 |
JP2006232447A (ja) * | 2005-02-23 | 2006-09-07 | Mitsubishi Electric Corp | エレベーターの地震時自動復帰装置 |
JP2007119218A (ja) * | 2005-10-31 | 2007-05-17 | Mitsubishi Electric Building Techno Service Co Ltd | エレベータの地震感知器遠隔解除システム |
JP2007246183A (ja) * | 2006-03-13 | 2007-09-27 | Toshiba Elevator Co Ltd | エレベータの運転制御装置 |
WO2008026246A1 (fr) * | 2006-08-29 | 2008-03-06 | Mitsubishi Electric Corporation | Procede et appareil de controle d'ascenseur |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023068366A1 (ja) * | 2021-10-22 | 2023-04-27 | 東京計器株式会社 | オゾン含有水溶液組成物 |
Also Published As
Publication number | Publication date |
---|---|
JP6667792B2 (ja) | 2020-03-18 |
JPWO2019098339A1 (ja) | 2019-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nakashima-Kamimura et al. | Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice | |
JP7352901B2 (ja) | 腫瘍成長を阻害するための材料および方法 | |
US11702449B2 (en) | Angiogenesis-inhibiting peptide and composition for preventing and treating angiogenesis-related disease comprising same as active ingredient | |
Wu et al. | Quercetin induced NUPR1-dependent autophagic cell death by disturbing reactive oxygen species homeostasis in osteosarcoma cells | |
KR20190084291A (ko) | 암 치료를 위한 제약 조성물 및 방법 | |
JPH11507056A (ja) | グルタチオンアナログの代謝的効果 | |
Athikom Supabphol | Antimetastatic potential of N-acetylcysteine on human prostate cancer cells | |
US20200253868A1 (en) | Cell autophagy inhibitor and preparation method therefor and application thereof | |
US20230014055A1 (en) | Treatment of Immune-Related Disorders, Kidney Disorders, Liver Disorders, Hemolytic Disorders, and Oxidative Stress-Associated Disorders Using NRH, NARH and Reduced Derivatives Thereof | |
WO2019098339A1 (ja) | 抗癌剤の製造方法、抗癌剤及び医薬 | |
US20230165832A1 (en) | Compositions and methods for treating cancer with andrographolide and melatonin combination therapy | |
Hanikoglu et al. | A review on Melatonin's effects in Cancer: potential mechanisms | |
Przegaliṅski et al. | Stimulation of postsynaptic 5-HT1A receptors is responsible for the anticonflict effect of ipsapirone in rats | |
RU2760324C1 (ru) | Новое применение полоксамера в качестве фармакологически активного вещества | |
US20220211663A1 (en) | Nano co-delivery of quercetin and alantolactone promotes anti-tumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer | |
JP2019520310A (ja) | 癌及び前癌病変に対する治療剤、治療方法、及び治療薬剤製造方法 | |
Zhu et al. | Selective intratumoral drug release and simultaneous inhibition of oxidative stress by a highly reductive nanosystem and its application as an anti-tumor agent | |
WO2023242100A1 (en) | Novel ras inhibitors | |
US20130011480A1 (en) | Cytotoxic therapy by proton flux modulation | |
Alyasova et al. | Effect of ozone and doxorubicin on the viability and morphology of malignant hepatic cells | |
Mao et al. | Combination of carboplatin and photodynamic therapy with 9-hydroxypheophorbide ɑ enhances mitochondrial and endoplasmic reticulum apoptotic effect in AMC-HN-3 laryngeal cancer cells | |
KR20200085901A (ko) | 급성 방사선 증후군의 예방 또는 치료를 위한 조성물 | |
Awad et al. | Role of Heme Oxygenase (HO)-1 Enzyme in the Protective and Therapeutic Effect of Omega 3 Fatty Acids on Cisplatin-induced Hepatic and Renal Toxicity in Rats | |
US20230073499A1 (en) | Compounds for use in the treatment of leukemia | |
WO2023068366A1 (ja) | オゾン含有水溶液組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019514334 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18878877 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18878877 Country of ref document: EP Kind code of ref document: A1 |