WO2019093437A1 - Road surface condition assessing device - Google Patents
Road surface condition assessing device Download PDFInfo
- Publication number
- WO2019093437A1 WO2019093437A1 PCT/JP2018/041545 JP2018041545W WO2019093437A1 WO 2019093437 A1 WO2019093437 A1 WO 2019093437A1 JP 2018041545 W JP2018041545 W JP 2018041545W WO 2019093437 A1 WO2019093437 A1 WO 2019093437A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tire
- road surface
- control unit
- transmission
- unit
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C19/00—Tyre parts or constructions not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
Definitions
- the present disclosure detects the vibration received by the tire with the tire side device, creates road surface data indicating the road surface state based on the vibration data, transmits it to the vehicle body side system, and determines the road surface state based on the road surface data.
- the present invention relates to a road surface state determination device.
- Patent Document 1 there is provided a road surface state determining method including an acceleration sensor on the back surface of the tire tread, detecting the vibration applied to the tire by the acceleration sensor, and determining the road surface state based on the detection result of the vibration. Proposed.
- this road surface condition determination method a feature vector is extracted from the tire's vibration waveform detected by the acceleration sensor, and the similarity between the extracted feature vector and all the support vectors stored for each type of road surface is calculated. , Determine the road surface condition.
- the kernel function is used to calculate the degree of similarity between the extracted feature vector and all the support vectors, and the type of road surface having the highest degree of similarity, such as dry road surface, wet road surface, frozen road, snow road etc., is currently running. It is determined that the road surface condition is According to such a road surface state determination method, it is possible to perform road surface determination with high robustness.
- An object of the present disclosure is to provide a road surface state determination device capable of reducing power consumption of a tire side device.
- the road surface state determining device includes a tire side device disposed in the tire and a vehicle body side system disposed on the vehicle body side, and the tire side device performs detection according to the magnitude of tire vibration.
- the vehicle body side system includes a vibration detection unit that outputs a signal, a first control unit that creates road surface data based on the detection signal, and a first transmission / reception unit that performs data communication with the vehicle body side system
- a second transmitting / receiving unit for performing data communication with the tire-side device, determination of a road surface state based on road surface data received by the second transmitting / receiving unit, and determination of an on / off state of an activation switch for making the vehicle startable
- the vehicle body system transmits a disconnection request signal to each tire device. Since each tire side device is provided inside the tire, the on / off state of the start switch can not be grasped, but each tire side can be detected by sending a cutting request signal from each vehicle side system to each tire side device. The device can also know that the start switch has been turned off. Therefore, it is possible to suppress each tire side device from trying to maintain the connection even after the start switch is switched off, and the connection can be disconnected in each tire side device. As a result, the road surface state determination device can be achieved that can reduce the power consumption of the tire side device.
- the parenthesized reference symbol attached to each component etc. shows an example of the correspondence of the component etc. and the specific component etc. as described in the embodiment to be described later.
- FIG. 1 It is a figure showing the block configuration in the vehicles mounting state of the tire device to which the tire side device concerning a 1st embodiment was applied. It is the block diagram which showed the detailed composition of the tire side device and the body side system. It is a cross-sectional schematic diagram of the tire in which the tire side apparatus was attached. It is an output voltage waveform figure of the acceleration acquisition part at the time of tire rotation. It is a figure which shows a mode that the detection signal of the acceleration acquisition part was divided for every time window of predetermined time width
- the determinants Xi (r) and Xi (r-1) in each section obtained by dividing the time axis waveform at the time of the current rotation of the tire and the time axis waveform at the time before one rotation by the time window of the predetermined time width T Is a diagram showing the relationship between the distance yz and the distance yz . It is a flowchart of the vehicle body side process which the control part of a vehicle body side system performs. It is a flowchart of the tire side process which the control part of a tire side apparatus performs. It is a flowchart of the tire side process which the tire side apparatus with which the tire apparatus concerning 2nd embodiment is equipped performs.
- a tire device 100 having a road surface state determination function according to the present embodiment will be described with reference to FIGS. 1 to 8.
- the tire device 100 according to the present embodiment determines the road surface state during traveling based on the vibration applied to the ground contact surface of the tire provided on each wheel of the vehicle, and notifies of the danger of the vehicle or the vehicle based on the road surface state. It performs exercise control and the like.
- the tire device 100 is configured to have a tire side device 1 provided on the wheel side and a vehicle body side system 2 including each part provided on the vehicle body side.
- a receiver 21 an electronic control unit for brake control (hereinafter referred to as a brake ECU) 22, a notification unit 23 and the like are provided.
- the part of the tire device 100 that realizes the road surface state determination function corresponds to the road surface state determination device.
- the receiver 21 of the tire side device 1 and the vehicle body side system 2 constitutes a road surface state determining device.
- the tire device 100 of the present embodiment transmits data (hereinafter referred to as road surface data) according to the road surface condition on the traveling road surface of the tire 3 from the tire device 1 and receives the road surface data by the receiver 21 To determine the Specifically, the tire side device 1 transmits road surface data when it is determined that the road surface state has changed. The receiver 21 receives road surface data sent when there is a change in the road surface condition, and the road surface condition is determined based on the received road surface data.
- the tire device 100 transmits the determination result of the road surface condition in the receiver 21 to the notification device 23, and causes the notification device 23 to notify the determination result of the road surface condition.
- This makes it possible to convey the road surface condition to the driver, for example, a dry road, a wet road, or a frozen road, and to warn the driver if the road surface is slippery.
- the tire device 100 transmits a road surface state to the brake ECU 22 or the like that performs vehicle motion control so that vehicle motion control for avoiding a danger is performed. For example, at the time of freezing, the braking force generated with respect to the brake operation amount is weakened as compared to the case of the dry road, so that the vehicle motion control corresponding to the time when the road surface ⁇ is low is achieved.
- the tire side device 1 and the vehicle body side system 2 are configured as follows.
- the tire side device 1 is disposed in each of the tires 3 so that bidirectional communication with the vehicle side system 2 is enabled.
- the tire-side device 1 is configured to include an acceleration acquisition unit 10, a control unit 11, a data communication unit 12, a power supply unit 13 and a start control unit 14. As shown, it is provided on the back side of the tread 31 of the tire 3.
- the acceleration acquisition unit 10 constitutes a vibration detection unit for detecting a vibration applied to the tire 3.
- the acceleration acquisition unit 10 is configured of an acceleration sensor.
- the acceleration acquiring unit 10 is an acceleration sensor, for example, the acceleration acquiring unit 10 is a direction in contact with the circular track drawn by the tire-side device 1 when the tire 3 rotates, that is, indicated by an arrow X in FIG.
- a detection signal of acceleration is output as a detection signal corresponding to the vibration in the tire tangential direction.
- the acceleration acquiring unit 10 generates, as a detection signal, an output voltage or the like in which one of the two directions indicated by the arrow X is positive and the opposite direction is negative.
- the acceleration acquisition unit 10 performs acceleration detection at a predetermined sampling cycle which is set to a cycle shorter than one rotation of the tire 3 and outputs it as a detection signal.
- the control unit 11 corresponds to a first control unit, is constituted by a known microcomputer including a CPU, a ROM, a RAM, an I / O and the like, and performs the above-described processing according to a program stored in the ROM and the like. .
- the control unit 11 is configured to include a feature extraction unit 11a, a feature storage unit 11b, a change determination unit 11c, and a communication control unit 11d as functional units that perform those processes.
- the feature amount extraction unit 11a extracts the feature amount of the tire vibration by processing the detection signal using the detection signal output from the acceleration acquisition unit 10 as a detection signal representing the vibration data in the tire tangential direction.
- the feature amount of the tire G is extracted by performing signal processing on a detection signal of the acceleration of the tire 3 (hereinafter referred to as a tire G).
- the feature amount extraction unit 11a transmits data including the extracted feature amount to the data communication unit 12 as road surface data through the communication control unit 11d. The details of the feature quantities referred to here will be described later.
- the feature amount storage unit 11 b stores the feature amount extracted by the feature amount extraction unit 11 a one turn before the tire 3 (hereinafter referred to as the “previous feature amount”). Since the fact that the tire 3 has made one rotation can be confirmed by a method described later, every time the tire 3 makes one rotation, the feature amount for one rotation is stored.
- the feature amount for one rotation of the tire 3 may be updated every time the tire 3 makes one rotation, or a plurality of rotations may be stocked, and the tire 3 makes one rotation every time the tire 3 makes one rotation. You may delete old data. However, from the viewpoint of saving memory of the control unit 11 in the tire 3, it is preferable to reduce the amount of data to be stored, and therefore, it is preferable to update data each time the tire 3 makes one rotation.
- the change determination unit 11c is configured to extract the feature quantity extracted by the feature quantity extraction unit 11a during the current rotation of the tire 3 (hereinafter referred to as the present feature quantity) and the previous feature quantity of the tire 3 stored in the feature quantity storage unit 11b. It is determined whether or not there is a change in road surface condition based on. When the change determination unit 11c determines that there is a change in the road surface state, it transmits a control signal indicating that to the communication control unit 11d.
- the communication control unit 11 d controls communication with the vehicle body side system 2 through the data communication unit 12. Specifically, the communication control unit 11 d controls connection for performing two-way communication with the receiver 21, that is, control of establishment and disconnection of a dedicated communication path, and control of data communication through the data communication unit 12. Do.
- the communication control unit 11 d detects that the tire 3 has rotated, that is, that the vehicle has traveled, based on, for example, the output voltage waveform of the detection signal of the acceleration acquisition unit 10 input to the feature extraction unit 11 a. A method of detecting that the vehicle has traveled will be described later. Then, when the vehicle starts traveling, the communication control unit 11 d performs processing for establishing a connection with the receiver 21 and disconnects the connection based on the disconnection request signal from the receiver 21. Further, when the communication control unit 11 d transmits a control signal indicating that there is a change in the road surface condition from the change determination unit 11 c after establishing the connection, the feature amount extraction unit 11 a extracts it at that time. Road surface data including the feature amount this time is transmitted to the data communication unit 12.
- the data communication unit 12 constitutes a first transmission / reception unit, and performs data communication with a data communication unit 25 described later of the receiver 21 in the vehicle body side system 2.
- the data communication unit 12 may be configured separately for the transmission unit and the reception unit.
- Various forms of bi-directional communication can be applied, such as Bluetooth communication including BLE (abbreviation of Bluetooth Low Energy) communication, wireless LAN such as wifi (abbreviation of Local Area Network), Sub-GHz communication, Ultra-wide band communication, ZigBee, etc. can be applied.
- Bluetooth is a "registered trademark”.
- the data communication unit 12 transmits the road surface data including the feature amount at this time.
- the timing of data transmission from the data communication unit 12 is controlled by the communication control unit 11 d, so data transmission is not performed every time the tire 3 makes one rotation, and when there is a change in the road surface condition Data transmission is performed only in
- the data communication unit 12 receives a disconnection request signal instructing disconnection of the connection from the data communication unit 25, the data communication unit 12 receives it and transmits it to the communication control unit 11d.
- the communication control unit 11 d disconnects the communication connection with the receiver 21 based on the received disconnection request signal.
- each tire-side device 1 can identify whether it is an instruction signal for itself based on the ID information attached to the disconnection request signal. Therefore, when the data communication unit 12 receives an instruction signal such as a sleep instruction signal to which its own ID information is attached, the data communication unit 12 transmits a signal indicating the content to the communication control unit 11 d.
- ID information unique identification information
- the power supply unit 13 is a power supply of the tire-side device 1 and supplies the power to the respective components provided in the tire-side device 1 so that the respective components can be operated.
- the power supply unit 13 is configured of, for example, a battery such as a button battery. Since the tire side device 1 is provided in the tire 3, battery replacement can not be easily performed, and therefore, it is necessary to reduce power consumption.
- the power supply unit 13 can also be configured by a power generation device, a storage battery, and the like.
- the activation control unit 14 controls activation and sleep of the functions of the units of the tire-side device 1.
- the start control unit 14 is illustrated as a configuration separate from the control unit 11, the start control unit 14 may be built in the control unit 11. Specifically, the activation control unit 14 switches to the activated state based on the detection signal of the acceleration acquiring unit 10, and switches to the sleep state when the connection with the receiver 21 is disconnected as described later. Do.
- each function of the acceleration acquisition unit 10, the control unit 11, the data communication unit 12, and the activation control unit 14 is activated based on the power supply from the power supply unit 13.
- the control unit 11 and the data communication unit 12 are put to sleep.
- the activation control unit 14 receives the detection signal of the acceleration acquisition unit 10, detects the rotation of the tire 3, that is, the traveling of the vehicle based on the waveform of the detection signal exceeding a predetermined threshold, and detects the traveling of the vehicle. Switch each part that was sleeping to the activated state.
- the detection signal of the acceleration acquisition unit 10 is the output voltage or output current of the acceleration acquisition unit 10, and when the voltage or current input to the activation control unit 14 exceeds a predetermined threshold, the activation control unit 14 Start up. Further, when the connection is disconnected, the activation control unit 14 switches the activated control unit 11 and the data communication unit 12 to the sleep state.
- the sleep state is the part that realizes various arithmetic functions such as waveform processing and data transmission function, and the acceleration acquisition unit 10 and the activation control unit 14 do not enter the sleep state. Power is consumed. However, since a part that realizes various arithmetic functions such as waveform processing that consumes a large amount of power and a data transmission function is put in the sleep state, it is effective for reducing power consumption.
- the receiver 21 and the brake ECU 22 and the notification device 23 constituting the vehicle body side system 2 are operated based on the power supply from the battery 40. Also, basically, when the start switch 30 is turned off, the power supply from the battery 40 is turned off and the operation is stopped. However, as for the receiver 21, even if the start switch 30 is turned off, the power supply from the battery 40 is continued for a predetermined time, or the receiver 21 can be operated for a predetermined period using power stored in a capacitor (not shown). It has become. In addition, about predetermined time which continues the electric power supply from the battery 40, it should just be set to the time which can transmit the cutting
- the order is determined so that the power supply from the battery 40 or the like to the receiver 21 is stopped after it is confirmed that the disconnection request signal is issued. Therefore, the power supply to the receiver 21 is continued until the disconnection request signal is transmitted, and the power supply to the receiver 21 is stopped after the transmission of the disconnection request signal.
- the receiver 21 is configured to have a data communication unit 25 and a control unit 26 as shown in FIG.
- the data communication unit 25 is a part that configures a second transmission / reception unit that performs data communication with the tire side device 1, and road surface data including the present feature amount transmitted from the data communication unit 12 of the tire side device 1 It plays a role of receiving and communicating to the control unit 26.
- the data communication unit 25 is described here as one configuration, the data communication unit 25 may be configured separately for the transmission unit and the reception unit.
- the control unit 26 corresponds to a second control unit, is configured by a well-known microcomputer including a CPU, a ROM, a RAM, an I / O, and the like, and performs various processes in accordance with a program stored in the ROM or the like.
- the control unit 26 includes an on / off determination unit 26a, a communication control unit 26b, a support vector storage unit 26c, and a road surface determination unit 26d as functional units that perform various processes.
- the on / off determination unit 26a receives a switch signal indicating the on / off state of the start switch 30 in the vehicle, that is, the switch for making the vehicle ready to start, such as an ignition switch, and turns on or off the start switch 30 based on the switch signal. Determine Then, the on / off determination unit 26a notifies the communication control unit 26b that the activation switch 30 has been switched from off to on or has been switched from on to off. The on / off determination unit 26a is not activated since the power supply to the receiver 21 is not performed before the activation switch 30 is turned on. However, the activation switch 30 is turned on to transmit power to the receiver 21. It operates when the supply is done.
- the on / off determination unit 26a determines that the activation switch 30 is switched from off to on based on the switch signal immediately after the start of operation. Further, in the case of the present embodiment, the receiver 21 is configured to be activated for a predetermined time even after the activation switch 30 is switched from on to off, so the activation switch 30 is turned on based on the switch signal. It is determined that the switch has been switched off.
- the communication control unit 26 b When the activation switch 30 is switched from off to on, the communication control unit 26 b performs processing for establishing a communication connection with each tire-side device 1. Further, when the activation switch 30 is switched from on to off, the communication control unit 26 b transmits a disconnection request signal to the data communication unit 25 in order to disconnect the communication connection with each tire-side device 1. Output control signal. Based on this, a disconnection request signal is transmitted from the data communication unit 25, and the connection of communication with each tire-side device 1 is disconnected.
- the support vector storage unit 26c stores and stores support vectors for each type of road surface.
- the support vector is a feature that serves as an example, and is obtained, for example, by learning using a support vector machine.
- the vehicle equipped with the tire-side device 1 is run experimentally for each type of road surface, and at that time the feature quantity extracted by the feature quantity extraction unit 11a is learned for a predetermined number of tire rotations, and a typical feature quantity among them What is extracted a predetermined number of times is taken as a support vector. For example, feature amounts for one million rotations are learned for each type of road surface, and typical feature amounts for 100 rotations are extracted therefrom as support vectors.
- the road surface determination unit 26 d compares the current feature amount sent from the tire-side device 1 received by the data communication unit 25 with the support vector for each type of road surface stored in the support vector storage unit 26 c. Determine the road surface condition. For example, the feature amount is compared with the support vector for each type of road surface, and the road surface of the support vector having the closest feature amount this time is determined as the current traveling road surface.
- the control unit 26 transmits the determined road surface state to the notification device 23, and notifies the driver of the road surface condition from the notification device 23 as necessary.
- the driver can keep in mind the driving corresponding to the road surface condition, and the danger of the vehicle can be avoided.
- the road surface condition determined through the notification device 23 may be always displayed, or the road surface condition is determined only when the driving needs to be performed more carefully, such as a wet route or a frozen route. The status may be displayed to warn the driver.
- the road surface state is transmitted from the receiver 21 to the ECU for executing the vehicle movement control such as the brake ECU 22, and the vehicle movement control is performed based on the transmitted road surface state.
- the brake ECU 22 constitutes a braking control device that performs various brake control. Specifically, the brake ECU 22 controls the braking force by increasing or decreasing the wheel cylinder pressure by driving an actuator for controlling the brake fluid pressure. The brake ECU 22 can also control the braking force of each wheel independently. When the road surface condition is transmitted from the receiver 21 by the brake ECU 22, the braking force is controlled as the vehicle motion control based thereon. For example, the brake ECU 22 weakens the braking force generated with respect to the amount of brake operation by the driver, as compared to a dry road surface, when it is indicated that the road surface state transmitted is a frozen road. Thereby, it is possible to suppress the wheel slip and to avoid the danger of the vehicle.
- the notification device 23 is configured of, for example, a meter indicator, and is used when notifying the driver of the road surface condition.
- the notification device 23 is configured by a meter indicator, the driver is disposed at a visible position during driving of the vehicle, for example, installed in an instrument panel of the vehicle.
- the meter display can notify the driver of the road surface condition visually by performing display in a mode in which the road surface condition can be grasped when the road surface condition is transmitted from the receiver 21.
- the notification device 23 can also be configured by a buzzer, a voice guidance device, or the like. In that case, the notification device 23 can aurally notify the driver of the road surface condition by buzzer sound or voice guidance.
- the meter display was mentioned as the example as the alerting
- the tire device 100 is configured as described above.
- each part which comprises the vehicle body side system 2 is connected through in-vehicle LAN (abbreviation of Local Area Network) by CAN (abbreviation of Controller Area Network) communication etc., for example. Therefore, each part can communicate information with each other through the in-vehicle LAN.
- in-vehicle LAN abbreviation of Local Area Network
- CAN abbreviation of Controller Area Network
- the feature amount referred to here is an amount indicating the feature of the vibration applied to the tire 3 acquired by the acceleration acquiring unit 10, and is expressed as, for example, a feature vector.
- An output voltage waveform of a detection signal of the acceleration acquisition unit 10 at the time of tire rotation is, for example, a waveform shown in FIG. 4.
- the output voltage of the acceleration acquiring unit 10 has a maximum value at the start of the ground contact when the portion of the tread 31 corresponding to the location where the acceleration acquiring unit 10 starts to contact with the rotation of the tire 3.
- the peak value at the start of grounding where the output voltage of the acceleration acquiring unit 10 has a maximum value is referred to as a first peak value.
- the acceleration acquisition unit 10 when the tire 3 is rotated, the acceleration acquisition unit 10 is not in contact with the ground when the portion corresponding to the location where the acceleration acquisition unit 10 is disposed is in contact with the ground.
- Output voltage has a local minimum value.
- the peak value at the end of grounding where the output voltage of the acceleration acquiring unit 10 has a local minimum value is referred to as a second peak value.
- the peak value of the output voltage of the acceleration acquisition unit 10 at such timing is as follows. That is, when a portion of the tread 31 corresponding to the location where the acceleration acquiring unit 10 is placed on the ground as the tire 3 rotates, the portion of the tire 3 having a substantially cylindrical surface in the vicinity of the acceleration acquiring unit 10 is It is pressed and deformed into a planar shape. By receiving the impact at this time, the output voltage of the acceleration acquiring unit 10 takes a first peak value. In addition, when a portion of the tread 31 corresponding to the location where the acceleration acquisition unit 10 is disposed is separated from the ground contact surface as the tire 3 rotates, the tire 3 is released from pressure in the vicinity of the acceleration acquisition unit 10 It returns to approximately cylindrical shape from.
- the output voltage of the acceleration acquiring unit 10 takes a second peak value.
- the output voltage of the acceleration acquiring unit 10 takes the first and second peak values at the start of grounding and at the end of grounding, respectively. Further, since the direction of the impact when the tire 3 is pressed and the direction of the impact when released from the pressing are opposite, the sign of the output voltage is also the opposite.
- step-in area an instant at which a portion of the tire tread 31 corresponding to the location where the acceleration acquisition unit 10 is disposed contacts the road surface
- step-out area an instant at which it is separated from the road surface
- step-in area includes the timing at which the first peak value is obtained
- step-out area includes the timing at which the second peak value is obtained.
- the area in front of the stepping area is the area before the stepping area, and the area from the stepping area to the kicking area, that is, the portion of the tire tread 31 corresponding to the location where the acceleration acquiring unit 10 is placed "Region after kicking out" is taken as "area after kicking out”.
- five areas R1 to R5 are “pre-step-in area”, “step-in area”, “kick-out front area”, “kick-out area”, and “post-kick out area” in the detection signal in this order. It is shown as.
- the vibration generated in the tire 3 fluctuates in each of the divided areas according to the road surface state, and the detection signal of the acceleration acquiring unit 10 changes, so that the frequency analysis of the detection signal of the acceleration acquiring unit 10 in each area is performed.
- each frequency component of the detection signal of the acceleration acquisition unit 10 changes according to the road surface state, it is possible to determine the road surface state based on the frequency analysis of the detection signal.
- the feature quantity extraction unit 11a detects the detection signal of the acceleration acquisition unit 10 for one rotation of the tire 3 that has a continuous time axis waveform for each time window of a predetermined time width T.
- the feature quantity is extracted by dividing into a plurality of sections and performing frequency analysis in each section. Specifically, the power spectrum value in each frequency band, that is, the vibration level in the specific frequency band is determined by performing frequency analysis in each section, and this power spectrum value is used as the feature amount.
- the number of the division divided by the time window of time width T is a value which changes according to the rotational speed of the tire 3 in more detail according to the vehicle speed.
- the number of sections for one tire rotation is n (where n is a natural number).
- the power obtained by passing the detection signal of each section through five band pass filters of a plurality of specific frequency bands for example, 0 to 1 kHz, 1 to 2 kHz, 2 to 3 kHz, 3 to 4 kHz, or 4 to 5 kHz
- This feature quantity is called a feature vector
- a feature vector Xi of a section i (where i is a natural number of 1 ⁇ i ⁇ n) is represented by aik when the power spectrum value of each specific frequency band is indicated by aik It is expressed as in the following equation as a matrix having.
- This determinant X is an expression representing the feature amount for one rotation of the tire.
- the feature amount extraction unit 11 a extracts the feature amount represented by the determinant X by performing frequency analysis on the detection signal of the acceleration acquisition unit 10.
- the determinant of the current feature is X (r)
- the determinant of the previous feature is X (r ⁇ 1)
- the power serving as each element of each determinant Let the spectral value a ik be represented by a (r) ik , a (r ⁇ 1) ik .
- the determinant X (r) of the current feature and the determinant X (r ⁇ 1) of the previous feature are expressed as follows.
- the degree of similarity indicates the degree of similarity between the feature quantities indicated by the two determinants, meaning that the higher the degree of similarity, the more similar.
- the change determination unit 11 c determines the degree of similarity using the kernel method, and determines the change in road surface state based on the degree of similarity.
- the inner product of the determinant X (r) at the time of the current rotation of the tire 3 and the determinant one rotation before is X (r-1), in other words, for each time window of a predetermined time width T in the feature space
- the distance between the coordinates indicated by the feature vector Xi of the sections divided by is calculated and used as the similarity.
- the time axis waveform at the time of the current rotation of the tire 3 and the time axis waveform at one rotation before are each set to a predetermined time width Divide into each section with the time window of.
- n 5 and i is represented by 1 ⁇ i ⁇ 5.
- the feature vector Xi of each section during the current rotation is Xi (r)
- the feature vector of each section before one rotation is Xi (r-1).
- the feature vector Xi is obtained by dividing into five specific frequency bands, the feature vector Xi of each section is represented in a six-dimensional space aligned with the time axis. For this reason, the distance between the coordinates indicated by the feature vectors Xi of the sections is the distance between the coordinates in the six-dimensional space.
- the distance between coordinates indicated by the feature vector Xi of each section is smaller as the feature quantities are similar and larger as they are not similar, so the smaller the distance is, the higher the similarity is, and the larger the distance is It indicates that the degree of similarity is low.
- the distance K yz between coordinates indicated by the feature vector of the compartment between time-division determined for all sections and calculates the distance K yz sum K total of all sections fraction, the total sum K total similarity It is used as the corresponding value.
- the total sum K total is compared with a predetermined threshold Th, and if the total sum K total is larger than the threshold Th, the similarity is low and it is determined that there is a change in road surface condition, and the total sum K total is smaller than the threshold Th For example, it is determined that the degree of similarity is high and there is no change in the road surface state.
- the sum K total of the distance K yz between two coordinates indicated by the feature vector of each section is used as a value corresponding to the degree of similarity
- another parameter may be used as a parameter indicating the degree of similarity.
- an average distance K ave which is an average value of the distances K yz obtained by dividing the total sum K total by the number of sections can be used.
- various kernel functions can be used to determine the degree of similarity.
- the control unit 26 of the receiver 21 executes the vehicle body side processing shown in FIG. This process is executed every predetermined control cycle when the power supply from the battery 40 is performed by turning on the start switch 30 and the receiver 21 and the like are started.
- the tire side process shown in FIG. 8 is performed.
- each process of FIG. 7 and FIG. 8 is demonstrated in order according to a time series.
- step S100 it is determined whether or not the connection is in progress. Immediately after the receiver 21 is activated, the connection is not yet in progress, so the process proceeds to step S105. If the connection is in progress based on the processing described later, the process proceeds to step S120.
- step S105 the control unit 26 determines whether the scanning cycle has come.
- the scanning is a process of reading data transmitted from the tire-side device 1.
- the control unit 26 repeatedly performs scanning at predetermined scanning cycles, and the process is repeated when negative determination is made in step S105, and the process proceeds to step S110 when positive determination is made.
- each tire-side device 1 when the vehicle starts traveling and, for example, the output voltage of the detection signal of the acceleration acquisition unit 10 exceeds a predetermined threshold, the activation control unit 14 activates the control unit 11 or the data communication unit 12. Let Thereby, the tire side process shown in FIG. 8 is performed.
- step S200 the control unit 11 determines whether the vehicle is traveling. This process is performed based on the detection signal of the acceleration acquisition unit 10. For example, when the output voltage waveform of the detection signal indicates a waveform for one rotation of the tire, it is determined that the vehicle is traveling. The fact that the tire 3 has made one rotation is determined based on the time axis waveform of the detection signal of the acceleration acquisition unit 10. That is, since the detection signal draws the time axis waveform shown in FIG. 4, one rotation of the tire 3 can be grasped by confirming the first peak value and the second peak value of the detection signal. In addition, since the rotation of the tire 3 is in agreement with the traveling of the vehicle, it can be detected based on the rotation of the tire 3 whether the vehicle is traveling or being stopped.
- step S200 when the vehicle starts traveling or when traveling is continued, an affirmative determination is made to proceed to step S205, and when a negative determination is made, the process of step S200 is repeated.
- the control unit 11 and the like are activated in the activation control unit 14 and the tire-side process is executed. Therefore, when the tire-side process is executed, that is, the vehicle travels. I agree that I started. For this reason, the process of this step may be omitted, and the process of the next step S205 may be performed.
- the tire-side process can be executed, and the control unit 11 and the data communication unit 12 can be left in the sleep state. In such a case, it is preferable to execute the process of step S200.
- step S205 it is determined whether connection is in progress. At this stage, since the connection is not yet performed, the determination in this process is negative and the process proceeds to step S210. However, when the connection is formed in step S225 described later, the process is positively determined and the process proceeds to step S230.
- each tire-side device 1 is in a reception standby state so as to be able to receive a connection request signal to be described later, which will be sent from the vehicle-body-side system 2 later, after transmitting the advertisement signal.
- the advertisement signal is a signal serving as a keyword used when establishing a connection between the tire-side device 1 and the receiver 21, and is a signal for requesting the receiver 21 to transmit a connection request signal.
- the advertisement signal is a 2.4 GHz frequency band, and transmission is performed multiple times in a short cycle.
- the advertisement signal includes ID information so that it can be confirmed that the signal is from the tire-side device 1 of the own vehicle.
- step S ⁇ b> 110 the control unit 26 determines whether or not the advertisement signal from each tire-side device 1 has been received.
- the advertisement signal is transmitted from each tire-side device 1
- the advertisement signal from all of the four tire-side devices 1 is received by the receiver 21, and an affirmative determination is made in step S110, and the process proceeds to step S115. move on.
- the control unit 26 makes an affirmative determination in step S110.
- an advertisement signal from at least one tire side device 1 is received, an affirmative determination is made in step S110. You may
- a connection request signal for establishing a connection with each tire-side device 1 is transmitted.
- the connection request signal is an instruction signal for causing each tire-side device 1 to perform a process of establishing a connection, and is a signal including an ID signal of the corresponding tire-side device 1.
- a connection request signal is transmitted to each tire-side device 1 through the data communication unit 25. Since a connection is established by this processing, a flag indicating the connection is set, and thereafter it is determined that the connection is in progress in the determination of step S100.
- step S215 the control unit 11 enters a data waiting state to receive the connection request signal. Then, as described above, if the connection request signal is transmitted from the receiver 21, an affirmative determination is made in step S220, and the process proceeds to step S225 to form a connection. As a result, a dedicated communication path is formed between each tire-side device 1 and the receiver 21 and communication is possible even with large-volume data.
- the road surface state appears as a change in the time axis waveform of the detection signal particularly in the period before and after that including the "step-in area”, the "before kicking area”, and the “kicking area”. Therefore, data in this period may be input, and data of all detection signals of the acceleration acquisition unit 10 during one rotation of the tire may not necessarily be input.
- data in the vicinity of the “step-in area” or in the vicinity of the “kicking-out area” is sufficient.
- the vibration level in the detection signal of the acceleration acquiring unit 10 is smaller than the threshold, it is detected as a period less susceptible to the road surface condition among the "pre-step-in region" and the "after kicking region".
- the signal may not be input.
- step S245 the extraction of the feature amount performed in step S245 is performed by the method as described above.
- step S250 the similarity is determined by the above-described method based on the current feature amount and the previous feature amount. For example, the similarity is compared with the threshold value Th to determine whether there is a change in the road surface condition. Determine if This process is executed based on the current feature amount extracted by the feature amount extraction unit 11a and the previous feature amount stored in the feature amount storage unit 11b in step S260 described later.
- step S120 the control unit 26 determines whether or not the start switch 30 has been switched off, and proceeds to step S125 if it has not been switched off.
- step S135 the control unit 26 determines the road surface state.
- the determination of the road surface state is performed by comparing the current feature amount included in the received road surface data with the support vector classified by road surface type stored in the support vector storage unit 26c. For example, the feature amount is obtained as the similarity with all the support vectors for each type of road surface, and the road surface of the support vector having the highest similarity is determined as the current road surface.
- the calculation of the similarity at this time may be performed using the same method as the calculation of the similarity between the current feature and the previous feature performed in step S250 of FIG.
- connection since the connection is disconnected when the start switch 30 is turned off, power consumption can be reduced. Further, in addition to disconnection of the connection, since the control unit 11 and the data communication unit 12 are put into the sleep state, power consumption can be further reduced.
- each tire side device 1 When each tire side device 1 transmits a cutting request signal to other tire side devices 1 other than itself, each tire side device 1 grasps ID information of the other tire side devices 1. It is preferable to transmit the disconnection request signal including the ID information of the other tire-side device 1. By doing this, each tire side device 1 can grasp that it is the disconnection request signal sent to itself based on the ID information included in the disconnection request signal. That is, each tire side device 1 can determine whether the cutting request signal is sent from the tire side device 1 of the own vehicle or from the tire side device 1 of the other vehicle.
- each tire-side device 1 not only disconnects the connection but puts the control unit 11 and the data communication unit 12 in the sleep state. As a result, the power consumption of the tire-side device 1 can be further reduced.
- transmission of road surface data including the present feature value from the tire side device 1 is made to be only the change timing of the road surface state.
- the road surface data from the tire side device 1 is transmitted only at the timing when the tire side device 1 determines that there is a change in the road surface state. Therefore, the communication frequency can be reduced, and power saving of the control unit 11 in the tire 3 can be realized.
- the configuration of the tire device 100 including the tire side device 1 and the vehicle body side system 2 of the present embodiment is the same as that of the first embodiment, but executed by the control unit 11 of the tire side device 1 and the control unit 26 of the receiver 21 The process to do is different.
- the vibration sensor unit 1a constituting the vibration detection unit is constituted by an acceleration sensor
- other elements capable of detecting vibration for example, piezoelectric elements etc.
- the data containing a feature-value is used as road surface data which show the road surface state which appears in the detection signal of the vibration sensor part 1a from the tire side apparatus 1.
- FIG. this is also merely an example, and other data may be used as road surface data.
- integrated value data of vibration waveforms of each of the five regions R1 to R5 included in vibration data during one rotation of the tire 3 may be road surface data, or raw data of the detection signal itself may be road surface data.
- the road surface data is transmitted when there is a change in the road surface state.
- the road surface data may be transmitted at another timing.
- the road surface data may be transmitted every time the tire 3 makes one rotation or a predetermined rotation, or at predetermined time intervals.
- the determination of the change in the road surface condition is not based on the similarity between the current feature amount and the previous feature amount as described above, but the feature at the time of rotation of the tire 3 in the past including the previous feature amount It can also be performed based on an amount (hereinafter, past feature amount).
- the feature amount storage unit 11b as the feature amount at the time of the past rotation of the tire 3, not only the feature amount of one rotation before but also the feature amount of one rotation before are stored. That is, not only the previous feature amount is stored as the past feature amount in the feature amount storage unit 11b, but the feature amount before multiple rotations is saved as the past feature amount, or the average value of the past feature amounts of multiple rotations is saved. To Then, for calculation of the degree of similarity with the previous feature amount, the previous feature amount of the past feature amounts is used, or an average value of a plurality of past values including the previous feature amount is used. Thus, the change in the road surface condition may be determined.
- the change of the road surface state may be determined by other various methods.
- the road surface data including the feature amount this time is transmitted from the tire device 1.
- the previous feature amount may be included in the road surface data.
- the road surface state before the change can also be determined by comparing the previous feature amount with the support vector. Therefore, it is possible to determine both the road surface condition before and after the change, and to more appropriately recognize the change in the road surface condition.
- the control unit 26 of the receiver 21 provided in the vehicle body side system 2 obtains the similarity between the current feature amount and the support vector to determine the road surface state.
- the similarity may be determined by another ECU, for example, the control unit of the brake ECU 22, or the road surface state may be determined.
- Each process such as the determination of the state may be executed. That is, the same function as the control unit 26 may be played somewhere in the vehicle body side system 2.
- the tire device 1 when the vehicle starts traveling, the tire device 1 transmits an advertisement signal, and the receiver 21 having received the signal transmits a connection request signal to communicate between the two. Connection is to be established.
- this is also just an example, and various methods for establishing communication connection can be applied.
- an advertisement signal may be sent from the receiver 21 side, and a connection request signal may be transmitted from the tire side devices 1 to the receiver 21 side to establish a connection.
- a connection request signal may be transmitted from the tire side devices 1 to the receiver 21 side to establish a connection.
- it is necessary to perform scanning at each scanning cycle so that each tire-side device 1 can receive the advertisement signal so from the viewpoint of reducing power consumption, the embodiment described above is used. Is preferred.
- the vehicle body side system 2 is provided with an external communication device capable of communicating with a communication center (not shown), and travels using data indicating the determination result of the road surface condition in the control unit 26 as the determination result data. It may be transmitted to the communication center together with the position information inside.
- tire side apparatus 1 was provided with respect to each of the some tire 3 in said each embodiment, what is necessary is just to be provided in at least one.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- Atmospheric Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Transportation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Tires In General (AREA)
Abstract
When a road surface condition is to be assessed, turning on a startup switch (30) causes a connection to be established between a tire side device (1) and a vehicle body side system (2), and data communication is performed. Then, when the startup switch (30) is turned off, a disconnection request signal is transmitted from the vehicle body side system (2) to the tire side device (1). As a result, the tire side device (1) can also recognize that the startup switch (30) has been turned off. The tire side device (1) can therefore be prevented from attempting to maintain the connection even after the startup switch (30) has been turned off, thereby making it possible to disconnect the connection at the tire side device (1) to reduce power consumption.
Description
本出願は、2017年11月10日に出願された日本特許出願番号2017-217113号と、2018年6月22日に出願された日本特許出願番号2018-118775号とに基づくもので、ここにその記載内容が参照により組み入れられる。
This application is based on Japanese Patent Application No. 2017-217113 filed on Nov. 10, 2017 and Japanese Patent Application No. 2018-187775 filed on June 22, 2018, which are incorporated herein by reference. The contents of the description are incorporated by reference.
本開示は、タイヤ側装置にてタイヤが受ける振動を検出すると共に、振動データに基づいて路面状態を示す路面データを作成して車体側システムに伝え、その路面データに基づいて路面状態を判別する路面状態判別装置に関する。
The present disclosure detects the vibration received by the tire with the tire side device, creates road surface data indicating the road surface state based on the vibration data, transmits it to the vehicle body side system, and determines the road surface state based on the road surface data. The present invention relates to a road surface state determination device.
従来、特許文献1において、タイヤトレッドの裏面に加速度センサを備え、加速度センサにてタイヤに加えられる振動を検出すると共に、その振動の検出結果に基づいて路面状態の判別を行う路面状態判別方法が提案されている。この路面状態判別方法では、加速度センサが検出したタイヤの振動波形から特徴ベクトルを抽出し、抽出した特徴ベクトルと路面の種類ごとに記憶しておいた全サポートベクタとの類似度を計算することで、路面状態を判別する。例えば、カーネル関数を用いて、抽出した特徴ベクトルと全サポートベクタとの類似度が計算され、最も類似度が高い路面の種類、例えばドライ路面、ウェット路面、凍結路、積雪路などが現在走行中の路面状態であると判別される。このような路面状態判別方法により、ロバスト性の高い路面判定を行うことが可能となる。
Conventionally, in Patent Document 1, there is provided a road surface state determining method including an acceleration sensor on the back surface of the tire tread, detecting the vibration applied to the tire by the acceleration sensor, and determining the road surface state based on the detection result of the vibration. Proposed. In this road surface condition determination method, a feature vector is extracted from the tire's vibration waveform detected by the acceleration sensor, and the similarity between the extracted feature vector and all the support vectors stored for each type of road surface is calculated. , Determine the road surface condition. For example, the kernel function is used to calculate the degree of similarity between the extracted feature vector and all the support vectors, and the type of road surface having the highest degree of similarity, such as dry road surface, wet road surface, frozen road, snow road etc., is currently running. It is determined that the road surface condition is According to such a road surface state determination method, it is possible to perform road surface determination with high robustness.
上記のような路面状態判別方法によって路面状態を判別する場合、路面状態の判別のためのデータをタイヤ側装置から車体側システムに送信する必要があるが、データ送信のための消費電力が大きい。しかし、タイヤ側装置は車体側システムから物理的に離れた位置に備えられるものであることから電源部での消費電力の低減が求められる。特に、電源部として電池が用いられる場合には、電池交換が容易ではなく、より消費電力の低減が求められる。
When determining the road surface state by the road surface state determining method as described above, it is necessary to transmit data for determining the road surface state from the tire side device to the vehicle body side system, but the power consumption for data transmission is large. However, since the tire side device is provided at a position physically separated from the vehicle body side system, it is required to reduce the power consumption in the power supply unit. In particular, when a battery is used as a power supply unit, battery replacement is not easy and reduction of power consumption is required.
本開示は、タイヤ側装置の消費電力の低減を図ることができる路面状態判別装置を提供することを目的とする。
An object of the present disclosure is to provide a road surface state determination device capable of reducing power consumption of a tire side device.
本開示の1つの観点における路面状態判別装置は、タイヤに配置されたタイヤ側装置と車体側に配置された車体側システムを有し、タイヤ側装置は、タイヤの振動の大きさに応じた検出信号を出力する振動検出部と、検出信号に基づいて路面データの作成する第1制御部と、車体側システムとの間においてデータ通信を行う第1送受信部と、を有し、車体側システムは、タイヤ側装置との間におけるデータ通信を行う第2送受信部と、第2送受信部が受信した路面データに基づく路面状態の判別と、車両を発進可能な状態にする起動スイッチのオンオフ状態の判定を行い、起動スイッチがオフからオンに切り替えられると第1送受信部と第2送受信部との間での通信のコネクションを構築し、起動スイッチがオンからオフに切り替えられるとタイヤ側装置に対してコネクションの切断を指示する切断要求信号を第2送受信部から送信させる第2制御部と、を有した構成とされている。
The road surface state determining device according to one aspect of the present disclosure includes a tire side device disposed in the tire and a vehicle body side system disposed on the vehicle body side, and the tire side device performs detection according to the magnitude of tire vibration. The vehicle body side system includes a vibration detection unit that outputs a signal, a first control unit that creates road surface data based on the detection signal, and a first transmission / reception unit that performs data communication with the vehicle body side system A second transmitting / receiving unit for performing data communication with the tire-side device, determination of a road surface state based on road surface data received by the second transmitting / receiving unit, and determination of an on / off state of an activation switch for making the vehicle startable When the activation switch is switched from off to on, the communication connection between the first transmission / reception unit and the second transmission / reception unit is established, and the activation switch is switched from on to off It has a configuration having a second control unit for transmitting a disconnection request signal instructing the disconnection from the second transceiver to the tire side unit.
このように、起動スイッチがオフに切り替わると車体側システムから各タイヤ側装置に対して切断要求信号を送信するようにしている。各タイヤ側装置は、タイヤの内部に備えられていることから、起動スイッチのオンオフ状態を把握することができないが、車体側システムから各タイヤ側装置に切断要求信号を送ることで、各タイヤ側装置でも起動スイッチがオフされたことを把握できる。したがって、起動スイッチがオフに切り替わってからも各タイヤ側装置がコネクションを維持しようとすることを抑制でき、各タイヤ側装置においてコネクションを切断することができる。これにより、タイヤ側装置の消費電力の低減を図ることができる路面状態判別装置にできる。
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 As described above, when the start switch is turned off, the vehicle body system transmits a disconnection request signal to each tire device. Since each tire side device is provided inside the tire, the on / off state of the start switch can not be grasped, but each tire side can be detected by sending a cutting request signal from each vehicle side system to each tire side device. The device can also know that the start switch has been turned off. Therefore, it is possible to suppress each tire side device from trying to maintain the connection even after the start switch is switched off, and the connection can be disconnected in each tire side device. As a result, the road surface state determination device can be achieved that can reduce the power consumption of the tire side device.
In addition, the parenthesized reference symbol attached to each component etc. shows an example of the correspondence of the component etc. and the specific component etc. as described in the embodiment to be described later.
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 As described above, when the start switch is turned off, the vehicle body system transmits a disconnection request signal to each tire device. Since each tire side device is provided inside the tire, the on / off state of the start switch can not be grasped, but each tire side can be detected by sending a cutting request signal from each vehicle side system to each tire side device. The device can also know that the start switch has been turned off. Therefore, it is possible to suppress each tire side device from trying to maintain the connection even after the start switch is switched off, and the connection can be disconnected in each tire side device. As a result, the road surface state determination device can be achieved that can reduce the power consumption of the tire side device.
In addition, the parenthesized reference symbol attached to each component etc. shows an example of the correspondence of the component etc. and the specific component etc. as described in the embodiment to be described later.
以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
Hereinafter, embodiments of the present disclosure will be described based on the drawings. In the following embodiments, parts that are the same as or equivalent to each other will be described with the same reference numerals.
(第1実施形態)
図1~図8を参照して、本実施形態にかかる路面状態判別機能を有するタイヤ装置100について説明する。本実施形態にかかるタイヤ装置100は、車両の各車輪に備えられるタイヤの接地面に加わる振動に基づいて走行中の路面状態を判別すると共に、路面状態に基づいて車両の危険性の報知や車両運動制御などを行うものである。 First Embodiment
Atire device 100 having a road surface state determination function according to the present embodiment will be described with reference to FIGS. 1 to 8. The tire device 100 according to the present embodiment determines the road surface state during traveling based on the vibration applied to the ground contact surface of the tire provided on each wheel of the vehicle, and notifies of the danger of the vehicle or the vehicle based on the road surface state. It performs exercise control and the like.
図1~図8を参照して、本実施形態にかかる路面状態判別機能を有するタイヤ装置100について説明する。本実施形態にかかるタイヤ装置100は、車両の各車輪に備えられるタイヤの接地面に加わる振動に基づいて走行中の路面状態を判別すると共に、路面状態に基づいて車両の危険性の報知や車両運動制御などを行うものである。 First Embodiment
A
図1および図2に示すようにタイヤ装置100は、車輪側に設けられたタイヤ側装置1と、車体側に備えられた各部を含む車体側システム2とを有する構成とされている。車体側システム2としては、受信機21、ブレーキ制御用の電子制御装置(以下、ブレーキECUという)22、報知装置23などが備えられている。なお、このタイヤ装置100のうち路面状態判別機能を実現する部分が路面状態判別装置に相当する。本実施形態の場合、タイヤ側装置1と車体側システム2のうちの受信機21が路面状態判別装置を構成している。
As shown in FIG. 1 and FIG. 2, the tire device 100 is configured to have a tire side device 1 provided on the wheel side and a vehicle body side system 2 including each part provided on the vehicle body side. As the vehicle body side system 2, a receiver 21, an electronic control unit for brake control (hereinafter referred to as a brake ECU) 22, a notification unit 23 and the like are provided. The part of the tire device 100 that realizes the road surface state determination function corresponds to the road surface state determination device. In the case of this embodiment, the receiver 21 of the tire side device 1 and the vehicle body side system 2 constitutes a road surface state determining device.
本実施形態のタイヤ装置100は、タイヤ側装置1よりタイヤ3の走行路面における路面状態に応じたデータ(以下、路面データという)を送信すると共に、受信機21で路面データを受信して路面状態の判別を行う。具体的には、タイヤ側装置1は、路面状態に変化があったことを判定したときに、路面データの送信を行う。そして、受信機21では、路面状態の変化があったときに送られてくる路面データが受信され、受信した路面データに基づいて路面状態の判別が行われるようになっている。
The tire device 100 of the present embodiment transmits data (hereinafter referred to as road surface data) according to the road surface condition on the traveling road surface of the tire 3 from the tire device 1 and receives the road surface data by the receiver 21 To determine the Specifically, the tire side device 1 transmits road surface data when it is determined that the road surface state has changed. The receiver 21 receives road surface data sent when there is a change in the road surface condition, and the road surface condition is determined based on the received road surface data.
また、タイヤ装置100は、受信機21での路面状態の判別結果を報知装置23に伝え、報知装置23より路面状態の判別結果を報知させる。これにより、例えばドライ路やウェット路もしくは凍結路であることなど、路面状態をドライバに伝えることが可能となり、滑り易い路面である場合にはドライバに警告することも可能となる。また、タイヤ装置100は、車両運動制御を行うブレーキECU22などに路面状態を伝えることで、危険を回避するための車両運動制御が行われるようにする。例えば、凍結時には、ドライ路の場合と比較してブレーキ操作量に対して発生させられる制動力が弱められるようにすることで、路面μが低いときに対応した車両運動制御となるようにする。具体的には、タイヤ側装置1および車体側システム2は、以下のように構成されている。
In addition, the tire device 100 transmits the determination result of the road surface condition in the receiver 21 to the notification device 23, and causes the notification device 23 to notify the determination result of the road surface condition. This makes it possible to convey the road surface condition to the driver, for example, a dry road, a wet road, or a frozen road, and to warn the driver if the road surface is slippery. In addition, the tire device 100 transmits a road surface state to the brake ECU 22 or the like that performs vehicle motion control so that vehicle motion control for avoiding a danger is performed. For example, at the time of freezing, the braking force generated with respect to the brake operation amount is weakened as compared to the case of the dry road, so that the vehicle motion control corresponding to the time when the road surface μ is low is achieved. Specifically, the tire side device 1 and the vehicle body side system 2 are configured as follows.
タイヤ側装置1は、各タイヤ3それぞれに配置され、車体側システム2との間において双方向通信が可能とされている。具体的には、タイヤ側装置1は、図2に示すように、加速度取得部10、制御部11、データ通信部12、電源部13および起動制御部14を備えた構成とされ、図3に示されるように、タイヤ3のトレッド31の裏面側に設けられる。
The tire side device 1 is disposed in each of the tires 3 so that bidirectional communication with the vehicle side system 2 is enabled. Specifically, as shown in FIG. 2, the tire-side device 1 is configured to include an acceleration acquisition unit 10, a control unit 11, a data communication unit 12, a power supply unit 13 and a start control unit 14. As shown, it is provided on the back side of the tread 31 of the tire 3.
加速度取得部10は、タイヤ3に加わる振動を検出するための振動検出部を構成するものである。例えば、加速度取得部10は、加速度センサによって構成される。加速度取得部10が加速度センサとされる場合、加速度取得部10は、例えば、タイヤ3が回転する際にタイヤ側装置1が描く円軌道に対して接する方向、つまり図3中の矢印Xで示すタイヤ接線方向の振動に応じた検出信号として、加速度の検出信号を出力する。より詳しくは、加速度取得部10は、矢印Xで示す二方向のうちの一方向を正、反対方向を負とする出力電圧などを検出信号として発生させる。例えば、加速度取得部10は、タイヤ3が1回転するよりも短い周期に設定される所定のサンプリング周期ごとに加速度検出を行い、それを検出信号として出力している。
The acceleration acquisition unit 10 constitutes a vibration detection unit for detecting a vibration applied to the tire 3. For example, the acceleration acquisition unit 10 is configured of an acceleration sensor. When the acceleration acquiring unit 10 is an acceleration sensor, for example, the acceleration acquiring unit 10 is a direction in contact with the circular track drawn by the tire-side device 1 when the tire 3 rotates, that is, indicated by an arrow X in FIG. A detection signal of acceleration is output as a detection signal corresponding to the vibration in the tire tangential direction. More specifically, the acceleration acquiring unit 10 generates, as a detection signal, an output voltage or the like in which one of the two directions indicated by the arrow X is positive and the opposite direction is negative. For example, the acceleration acquisition unit 10 performs acceleration detection at a predetermined sampling cycle which is set to a cycle shorter than one rotation of the tire 3 and outputs it as a detection signal.
制御部11は、第1制御部に相当し、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って上記した処理を行う部分である。そして、制御部11は、それらの処理を行う機能部として特徴量抽出部11a、特徴量保存部11b、変化判定部11cおよび通信制御部11dを備えた構成とされている。
The control unit 11 corresponds to a first control unit, is constituted by a known microcomputer including a CPU, a ROM, a RAM, an I / O and the like, and performs the above-described processing according to a program stored in the ROM and the like. . The control unit 11 is configured to include a feature extraction unit 11a, a feature storage unit 11b, a change determination unit 11c, and a communication control unit 11d as functional units that perform those processes.
特徴量抽出部11aは、加速度取得部10が出力する検出信号をタイヤ接線方向の振動データを表す検出信号として用いて、この検出信号を処理することで、タイヤ振動の特徴量を抽出する。本実施形態の場合、タイヤ3の加速度(以下、タイヤGという)の検出信号を信号処理することで、タイヤGの特徴量を抽出する。また、特徴量抽出部11aは、通信制御部11dを介して、抽出した特徴量を含むデータを路面データとしてデータ通信部12に伝える。なお、ここでいう特徴量の詳細については後で説明する。
The feature amount extraction unit 11a extracts the feature amount of the tire vibration by processing the detection signal using the detection signal output from the acceleration acquisition unit 10 as a detection signal representing the vibration data in the tire tangential direction. In the case of the present embodiment, the feature amount of the tire G is extracted by performing signal processing on a detection signal of the acceleration of the tire 3 (hereinafter referred to as a tire G). Further, the feature amount extraction unit 11a transmits data including the extracted feature amount to the data communication unit 12 as road surface data through the communication control unit 11d. The details of the feature quantities referred to here will be described later.
特徴量保存部11bは、タイヤ3の1回転前に特徴量抽出部11aで抽出された特徴量(以下、前回特徴量という)を保存している。タイヤ3が1回転したことについては後述する手法によって確認できることから、タイヤ3が1回転するごとに、1回転分の特徴量を保存している。なお、タイヤ3の1回転分の特徴量については、タイヤ3が1回転するごとにデータ更新するようにしても良いし、複数回転分をストックしておき、タイヤ3が1回転するごとに最も古いデータを消去するようにしても良い。ただし、タイヤ3内での制御部11の省メモリ化の観点からは、ストックするデータ量を少なくすることが好ましいため、タイヤ3が1回転するごとにデータ更新するのが好ましい。
The feature amount storage unit 11 b stores the feature amount extracted by the feature amount extraction unit 11 a one turn before the tire 3 (hereinafter referred to as the “previous feature amount”). Since the fact that the tire 3 has made one rotation can be confirmed by a method described later, every time the tire 3 makes one rotation, the feature amount for one rotation is stored. The feature amount for one rotation of the tire 3 may be updated every time the tire 3 makes one rotation, or a plurality of rotations may be stocked, and the tire 3 makes one rotation every time the tire 3 makes one rotation. You may delete old data. However, from the viewpoint of saving memory of the control unit 11 in the tire 3, it is preferable to reduce the amount of data to be stored, and therefore, it is preferable to update data each time the tire 3 makes one rotation.
変化判定部11cは、タイヤ3の今回の回転時に特徴量抽出部11aが抽出した特徴量(以下、今回特徴量という)と、特徴量保存部11bに保存されているタイヤ3の前回特徴量とに基づいて、路面状態の変化の有無を判定する。そして、変化判定部11cは、路面状態の変化があったと判定すると、それを示す制御信号を通信制御部11dに伝える。
The change determination unit 11c is configured to extract the feature quantity extracted by the feature quantity extraction unit 11a during the current rotation of the tire 3 (hereinafter referred to as the present feature quantity) and the previous feature quantity of the tire 3 stored in the feature quantity storage unit 11b. It is determined whether or not there is a change in road surface condition based on. When the change determination unit 11c determines that there is a change in the road surface state, it transmits a control signal indicating that to the communication control unit 11d.
通信制御部11dは、データ通信部12を通じての車体側システム2との間の通信を制御するものである。具体的には、通信制御部11dは、受信機21との間において双方向通信を行うためのコネクション、つまり専用の通信経路の構築切断の制御や、データ通信部12を通じてのデータ通信の制御を行う。
The communication control unit 11 d controls communication with the vehicle body side system 2 through the data communication unit 12. Specifically, the communication control unit 11 d controls connection for performing two-way communication with the receiver 21, that is, control of establishment and disconnection of a dedicated communication path, and control of data communication through the data communication unit 12. Do.
通信制御部11dは、例えば特徴量抽出部11aに入力される加速度取得部10の検出信号の出力電圧波形に基づいて、タイヤ3が回転したこと、つまり車両が走行したことを検知する。なお、車両が走行したことの検知の方法については後述する。そして、通信制御部11dは、車両が走行し始めると、受信機21との間においてコネクションを構築するための処理を行い、受信機21からの切断要求信号に基づいてコネクションの切断を行う。また、通信制御部11dは、コネクションの構築を行ったのち、変化判定部11cから路面状態の変化が有ったことを示す制御信号が伝えられると、そのときに特徴量抽出部11aで抽出された今回特徴量を含む路面データをデータ通信部12に伝える。
The communication control unit 11 d detects that the tire 3 has rotated, that is, that the vehicle has traveled, based on, for example, the output voltage waveform of the detection signal of the acceleration acquisition unit 10 input to the feature extraction unit 11 a. A method of detecting that the vehicle has traveled will be described later. Then, when the vehicle starts traveling, the communication control unit 11 d performs processing for establishing a connection with the receiver 21 and disconnects the connection based on the disconnection request signal from the receiver 21. Further, when the communication control unit 11 d transmits a control signal indicating that there is a change in the road surface condition from the change determination unit 11 c after establishing the connection, the feature amount extraction unit 11 a extracts it at that time. Road surface data including the feature amount this time is transmitted to the data communication unit 12.
データ通信部12は、第1送受信部を構成する部分であり、車体側システム2における受信機21の後述するデータ通信部25との間においてデータ通信を行う。データ通信部12は、ここでは1つの構成として記載されているが、送信部と受信部それぞれ別々に構成されたものであっても良い。双方向通信の形態については、様々なものを適用することができ、BLE(Bluetooth Low Energyの略)通信を含むブルートゥース通信、wifiなどの無線LAN(Local Area Networkの略)、Sub-GHz通信、ウルトラワイドバンド通信、ZigBeeなどを適用できる。なお、ブルートゥースは「登録商標」である。
The data communication unit 12 constitutes a first transmission / reception unit, and performs data communication with a data communication unit 25 described later of the receiver 21 in the vehicle body side system 2. Although the data communication unit 12 is described here as one configuration, the data communication unit 12 may be configured separately for the transmission unit and the reception unit. Various forms of bi-directional communication can be applied, such as Bluetooth communication including BLE (abbreviation of Bluetooth Low Energy) communication, wireless LAN such as wifi (abbreviation of Local Area Network), Sub-GHz communication, Ultra-wide band communication, ZigBee, etc. can be applied. Bluetooth is a "registered trademark".
例えば、データ通信部12は、通信制御部11dから路面データが伝えられると、そのタイミングで今回特徴量を含む路面データの送信を行う。データ通信部12からのデータ送信のタイミングについては、通信制御部11dによって制御されることから、タイヤ3が1回転するごとにデータ送信が行われる訳ではなく、路面状態の変化が有ったときにのみデータ送信が行われるようになっている。
For example, when the road surface data is transmitted from the communication control unit 11 d, the data communication unit 12 transmits the road surface data including the feature amount at this time. The timing of data transmission from the data communication unit 12 is controlled by the communication control unit 11 d, so data transmission is not performed every time the tire 3 makes one rotation, and when there is a change in the road surface condition Data transmission is performed only in
また、データ通信部12は、データ通信部25からコネクションの切断を指示する切断要求信号が伝えられると、それを受信して通信制御部11dに伝える。これにより、通信制御部11dは、伝えられた切断要求信号に基づいて、受信機21との間の通信のコネクションを切断する。
Further, when the data communication unit 12 receives a disconnection request signal instructing disconnection of the connection from the data communication unit 25, the data communication unit 12 receives it and transmits it to the communication control unit 11d. Thus, the communication control unit 11 d disconnects the communication connection with the receiver 21 based on the received disconnection request signal.
なお、各タイヤ側装置1には、固有識別情報(以下、ID情報という)が割り当てられている。このため、各タイヤ側装置1は、切断要求信号に付されたID情報に基づいて、自身に対する指示信号であるか否かを識別できるようになっている。このため、データ通信部12は、自身のID情報が付されたスリープ指示信号等の指示信号を受信したときに、その内容を示す信号を通信制御部11dに伝えるようにしている。
Note that unique identification information (hereinafter referred to as ID information) is assigned to each tire-side device 1. Therefore, each tire-side device 1 can identify whether it is an instruction signal for itself based on the ID information attached to the disconnection request signal. Therefore, when the data communication unit 12 receives an instruction signal such as a sleep instruction signal to which its own ID information is attached, the data communication unit 12 transmits a signal indicating the content to the communication control unit 11 d.
電源部13は、タイヤ側装置1の電源となるものであり、タイヤ側装置1に備えられる各部への電力供給を行うことで、各部が作動させられるようにしている。電源部13は、例えばボタン電池等の電池で構成される。タイヤ側装置1がタイヤ3内に備えられることから、容易に電池交換を行うことができないため、消費電力の軽減を図ることが必要となっている。また、電池の他にも、発電装置および蓄電池等によって電源部13を構成することもできる。電源部13が発電装置を有した構成とされる場合、電池とされる場合と比較すると電池寿命の問題は少なくなるが、大きな電力の発電は難しいため、消費電力の低減を図るという課題は電池とされる場合と同様である。
起動制御部14は、タイヤ側装置1の各部の機能の起動およびスリープの制御を行う。ここでは、起動制御部14を制御部11とは別構成として図示してあるが、制御部11に内蔵した構成としても良い。具体的には、起動制御部14は、加速度取得部10の検出信号に基づいて起動状態への切り替えを行い、後述するように受信機21とのコネクションが切断されるとスリープ状態への切り替えを行う。起動状態においては、加速度取得部10、制御部11、データ通信部12および起動制御部14は、電源部13からの電力供給に基づいて各機能が起動させられる。スリープ状態においては、制御部11およびデータ通信部12はスリープさせられている。起動制御部14は、加速度取得部10の検出信号を入力し、検出信号の波形が所定の閾値を超えることに基づいてタイヤ3の回転、つまり車両の走行を検知し、車両の走行を検知すると、スリープされていた各部を起動状態に切り替える。例えば、加速度取得部10の検出信号は、加速度取得部10の出力電圧もしくは出力電流であり、起動制御部14に入力される電圧もしくは電流が所定の閾値を超えると、起動制御部14が各部を起動させる。また、起動制御部14は、コネクションが切断されると、起動されていた制御部11およびデータ通信部12をスリープ状態に切り替える。 Thepower supply unit 13 is a power supply of the tire-side device 1 and supplies the power to the respective components provided in the tire-side device 1 so that the respective components can be operated. The power supply unit 13 is configured of, for example, a battery such as a button battery. Since the tire side device 1 is provided in the tire 3, battery replacement can not be easily performed, and therefore, it is necessary to reduce power consumption. In addition to the battery, the power supply unit 13 can also be configured by a power generation device, a storage battery, and the like. When the power supply unit 13 is configured to have a power generation device, the problem of battery life is reduced as compared to the case where it is a battery, but large power generation is difficult, so the problem of reducing power consumption is the battery The same as in the case of
Theactivation control unit 14 controls activation and sleep of the functions of the units of the tire-side device 1. Here, although the start control unit 14 is illustrated as a configuration separate from the control unit 11, the start control unit 14 may be built in the control unit 11. Specifically, the activation control unit 14 switches to the activated state based on the detection signal of the acceleration acquiring unit 10, and switches to the sleep state when the connection with the receiver 21 is disconnected as described later. Do. In the activation state, each function of the acceleration acquisition unit 10, the control unit 11, the data communication unit 12, and the activation control unit 14 is activated based on the power supply from the power supply unit 13. In the sleep state, the control unit 11 and the data communication unit 12 are put to sleep. The activation control unit 14 receives the detection signal of the acceleration acquisition unit 10, detects the rotation of the tire 3, that is, the traveling of the vehicle based on the waveform of the detection signal exceeding a predetermined threshold, and detects the traveling of the vehicle. Switch each part that was sleeping to the activated state. For example, the detection signal of the acceleration acquisition unit 10 is the output voltage or output current of the acceleration acquisition unit 10, and when the voltage or current input to the activation control unit 14 exceeds a predetermined threshold, the activation control unit 14 Start up. Further, when the connection is disconnected, the activation control unit 14 switches the activated control unit 11 and the data communication unit 12 to the sleep state.
起動制御部14は、タイヤ側装置1の各部の機能の起動およびスリープの制御を行う。ここでは、起動制御部14を制御部11とは別構成として図示してあるが、制御部11に内蔵した構成としても良い。具体的には、起動制御部14は、加速度取得部10の検出信号に基づいて起動状態への切り替えを行い、後述するように受信機21とのコネクションが切断されるとスリープ状態への切り替えを行う。起動状態においては、加速度取得部10、制御部11、データ通信部12および起動制御部14は、電源部13からの電力供給に基づいて各機能が起動させられる。スリープ状態においては、制御部11およびデータ通信部12はスリープさせられている。起動制御部14は、加速度取得部10の検出信号を入力し、検出信号の波形が所定の閾値を超えることに基づいてタイヤ3の回転、つまり車両の走行を検知し、車両の走行を検知すると、スリープされていた各部を起動状態に切り替える。例えば、加速度取得部10の検出信号は、加速度取得部10の出力電圧もしくは出力電流であり、起動制御部14に入力される電圧もしくは電流が所定の閾値を超えると、起動制御部14が各部を起動させる。また、起動制御部14は、コネクションが切断されると、起動されていた制御部11およびデータ通信部12をスリープ状態に切り替える。 The
The
これにより、タイヤ側装置1の一部、ここでは制御部11およびデータ通信部12がスリープ状態になっているときには、これらでの電力消費が無くなるため、タイヤ側装置1での消費電力の軽減が図れることになる。
As a result, when a part of the tire side device 1, here, the control unit 11 and the data communication unit 12 are in the sleep state, the power consumption in these is eliminated, so the power consumption in the tire side device 1 can be reduced. It will be possible.
なお、タイヤ側装置1のうちスリープ状態になるのは波形処理などの各種演算機能やデータ送信機能を実現する部分であり、加速度取得部10や起動制御部14についてはスリープ状態とならないため、これらでは電力が消費される。しかしながら、電力消費が大きい波形処理などの各種演算機能やデータ送信機能を実現する部分をスリープ状態とすることから、消費電力の軽減には有効である。
In the tire side device 1, the sleep state is the part that realizes various arithmetic functions such as waveform processing and data transmission function, and the acceleration acquisition unit 10 and the activation control unit 14 do not enter the sleep state. Power is consumed. However, since a part that realizes various arithmetic functions such as waveform processing that consumes a large amount of power and a data transmission function is put in the sleep state, it is effective for reducing power consumption.
一方、車体側システム2を構成する受信機21やブレーキECU22および報知装置23は、図2に示す起動スイッチ30がオンされるとバッテリ40からの電力供給に基づいて作動させられる。また、これらは、基本的には、起動スイッチ30がオフされるとバッテリ40からの電力供給がオフされて作動が停止される。ただし、受信機21については、起動スイッチ30がオフされてもバッテリ40からの電力供給が所定時間継続されたり、図示しないコンデンサ等に蓄電された電力を用いて所定期間中は作動させられるようになっている。なお、バッテリ40からの電力供給を継続する所定時間については、余裕を持って後述する切断要求信号を送信できる時間に設定されれば良い。本実施形態の場合は、切断要求信号が出されことが確認されてからバッテリ40等からの受信機21への電力供給が停止されるように順番を決めてある。このため、切断要求信号が送信されるまでは受信機21への電力供給が継続され、切断要求信号の送信後に受信機21への電力供給が停止されるようにしている。
On the other hand, when the start switch 30 shown in FIG. 2 is turned on, the receiver 21 and the brake ECU 22 and the notification device 23 constituting the vehicle body side system 2 are operated based on the power supply from the battery 40. Also, basically, when the start switch 30 is turned off, the power supply from the battery 40 is turned off and the operation is stopped. However, as for the receiver 21, even if the start switch 30 is turned off, the power supply from the battery 40 is continued for a predetermined time, or the receiver 21 can be operated for a predetermined period using power stored in a capacitor (not shown). It has become. In addition, about predetermined time which continues the electric power supply from the battery 40, it should just be set to the time which can transmit the cutting | disconnection request signal mentioned later with allowances. In the case of this embodiment, the order is determined so that the power supply from the battery 40 or the like to the receiver 21 is stopped after it is confirmed that the disconnection request signal is issued. Therefore, the power supply to the receiver 21 is continued until the disconnection request signal is transmitted, and the power supply to the receiver 21 is stopped after the transmission of the disconnection request signal.
受信機21は、図2に示すように、データ通信部25と制御部26とを有した構成とされている。
The receiver 21 is configured to have a data communication unit 25 and a control unit 26 as shown in FIG.
データ通信部25は、タイヤ側装置1との間においてデータ通信を行う第2送受信部を構成する部分であり、タイヤ側装置1のデータ通信部12より送信された今回特徴量を含む路面データを受信し、制御部26に伝える役割を果たす。データ通信部25は、ここでは1つの構成として記載されているが、送信部と受信部それぞれ別々に構成されたものであっても良い。
The data communication unit 25 is a part that configures a second transmission / reception unit that performs data communication with the tire side device 1, and road surface data including the present feature amount transmitted from the data communication unit 12 of the tire side device 1 It plays a role of receiving and communicating to the control unit 26. Although the data communication unit 25 is described here as one configuration, the data communication unit 25 may be configured separately for the transmission unit and the reception unit.
制御部26は、第2制御部に相当し、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って各種処理を行っている。そして、制御部26は、各種処理を行う機能部として、オンオフ判定部26a、通信制御部26b、サポートベクタ保存部26cおよび路面判別部26dを備えている。
The control unit 26 corresponds to a second control unit, is configured by a well-known microcomputer including a CPU, a ROM, a RAM, an I / O, and the like, and performs various processes in accordance with a program stored in the ROM or the like. The control unit 26 includes an on / off determination unit 26a, a communication control unit 26b, a support vector storage unit 26c, and a road surface determination unit 26d as functional units that perform various processes.
オンオフ判定部26aは、車両における起動スイッチ30、すなわちイグニッションスイッチのように車両を発進可能な状態にするためのスイッチのオンオフ状態を示すスイッチ信号を入力し、スイッチ信号に基づいて起動スイッチ30のオンオフを判定する。そして、オンオフ判定部26aは、起動スイッチ30がオフからオンに切り替わったことや、オンからオフに切り替わったことを通信制御部26bに対し伝える。なお、オンオフ判定部26aは、起動スイッチ30がオンされる前のときには受信機21への電力供給が行われていないため作動していないが、起動スイッチ30がオンされて受信機21への電力供給が行われると作動する。このため、オンオフ判定部26aは、作動開始して直ぐにスイッチ信号に基づいて起動スイッチ30がオフからオンに切り替わったと判定する。また、本実施形態の場合、受信機21は、起動スイッチ30がオンからオフに切り替わった後にも、所定時間は起動されるようになっていることから、スイッチ信号に基づいて起動スイッチ30がオンからオフに切り替わったと判定する。
The on / off determination unit 26a receives a switch signal indicating the on / off state of the start switch 30 in the vehicle, that is, the switch for making the vehicle ready to start, such as an ignition switch, and turns on or off the start switch 30 based on the switch signal. Determine Then, the on / off determination unit 26a notifies the communication control unit 26b that the activation switch 30 has been switched from off to on or has been switched from on to off. The on / off determination unit 26a is not activated since the power supply to the receiver 21 is not performed before the activation switch 30 is turned on. However, the activation switch 30 is turned on to transmit power to the receiver 21. It operates when the supply is done. Therefore, the on / off determination unit 26a determines that the activation switch 30 is switched from off to on based on the switch signal immediately after the start of operation. Further, in the case of the present embodiment, the receiver 21 is configured to be activated for a predetermined time even after the activation switch 30 is switched from on to off, so the activation switch 30 is turned on based on the switch signal. It is determined that the switch has been switched off.
通信制御部26bは、起動スイッチ30がオフからオンに切り替わると、各タイヤ側装置1との間の通信のコネクションを構築する処理を行う。また、通信制御部26bは、起動スイッチ30がオンからオフに切り替わると、各タイヤ側装置1との間の通信のコネクションを切断すべく、データ通信部25に対して切断要求信号の送信を行わせる制御信号を出力する。これに基づき、データ通信部25から切断要求信号が送信され、各タイヤ側装置1との間の通信のコネクションが切断されるようになっている。
When the activation switch 30 is switched from off to on, the communication control unit 26 b performs processing for establishing a communication connection with each tire-side device 1. Further, when the activation switch 30 is switched from on to off, the communication control unit 26 b transmits a disconnection request signal to the data communication unit 25 in order to disconnect the communication connection with each tire-side device 1. Output control signal. Based on this, a disconnection request signal is transmitted from the data communication unit 25, and the connection of communication with each tire-side device 1 is disconnected.
サポートベクタ保存部26cは、路面の種類ごとにサポートベクタを記憶して保存している。サポートベクタは、手本となる特徴量のことであり、例えばサポートベクタマシンを用いた学習によって得ている。タイヤ側装置1を備えた車両を実験的に路面の種類別に走行させ、そのときに特徴量抽出部11aで抽出した特徴量を所定のタイヤ回転数分学習し、その中から典型的な特徴量を所定数分抽出したものがサポートベクタとされる。例えば、路面の種類別に、100万回転分の特徴量を学習し、その中から100回転分の典型的な特徴量を抽出したものをサポートベクタとしている。
The support vector storage unit 26c stores and stores support vectors for each type of road surface. The support vector is a feature that serves as an example, and is obtained, for example, by learning using a support vector machine. The vehicle equipped with the tire-side device 1 is run experimentally for each type of road surface, and at that time the feature quantity extracted by the feature quantity extraction unit 11a is learned for a predetermined number of tire rotations, and a typical feature quantity among them What is extracted a predetermined number of times is taken as a support vector. For example, feature amounts for one million rotations are learned for each type of road surface, and typical feature amounts for 100 rotations are extracted therefrom as support vectors.
路面判別部26dは、データ通信部25が受信したタイヤ側装置1より送られてきた今回特徴量と、サポートベクタ保存部26cに保存された路面の種類別のサポートベクタとを比較することで、路面状態を判別する。例えば、今回特徴量を路面の種類別のサポートベクタと対比して、今回特徴量が最も近いサポートベクタの路面を現在の走行路面と判別している。
The road surface determination unit 26 d compares the current feature amount sent from the tire-side device 1 received by the data communication unit 25 with the support vector for each type of road surface stored in the support vector storage unit 26 c. Determine the road surface condition. For example, the feature amount is compared with the support vector for each type of road surface, and the road surface of the support vector having the closest feature amount this time is determined as the current traveling road surface.
また、制御部26は、路面判別部26dにて路面状態を判別すると、判別した路面状態を報知装置23に伝え、必要に応じて報知装置23より路面状態をドライバに伝える。これにより、ドライバは路面状態に対応した運転を心掛けるようになり、車両の危険性を回避することが可能となる。例えば、報知装置23を通じて判別された路面状態を常に表示するようにしても良いし、判別された路面状態がウェット路や凍結路等のように運転をより慎重に行う必要があるときにのみ路面状態を表示してドライバに警告するようにしても良い。また、受信機21からブレーキECU22などの車両運動制御を実行するためのECUに対して路面状態を伝えており、伝えられた路面状態に基づいて車両運動制御が実行されるようにしている。
In addition, when the road surface determination unit 26d determines the road surface state, the control unit 26 transmits the determined road surface state to the notification device 23, and notifies the driver of the road surface condition from the notification device 23 as necessary. As a result, the driver can keep in mind the driving corresponding to the road surface condition, and the danger of the vehicle can be avoided. For example, the road surface condition determined through the notification device 23 may be always displayed, or the road surface condition is determined only when the driving needs to be performed more carefully, such as a wet route or a frozen route. The status may be displayed to warn the driver. Further, the road surface state is transmitted from the receiver 21 to the ECU for executing the vehicle movement control such as the brake ECU 22, and the vehicle movement control is performed based on the transmitted road surface state.
なお、ブレーキECU22は、様々なブレーキ制御を行う制動制御装置を構成するものである。具体的には、ブレーキECU22は、ブレーキ液圧制御用のアクチュエータを駆動することでホイールシリンダ圧を増減して制動力を制御する。また、ブレーキECU22は、各車輪の制動力を独立して制御することもできる。このブレーキECU22により、受信機21から路面状態が伝えられると、それに基づいて車両運動制御として制動力の制御を行っている。例えば、ブレーキECU22は、伝えられた路面状態が凍結路であることを示していた場合、ドライ路面と比較して、ドライバによるブレーキ操作量に対して発生させる制動力を弱めるようにする。これにより、車輪スリップを抑制でき、車両の危険性を回避することが可能となる。
The brake ECU 22 constitutes a braking control device that performs various brake control. Specifically, the brake ECU 22 controls the braking force by increasing or decreasing the wheel cylinder pressure by driving an actuator for controlling the brake fluid pressure. The brake ECU 22 can also control the braking force of each wheel independently. When the road surface condition is transmitted from the receiver 21 by the brake ECU 22, the braking force is controlled as the vehicle motion control based thereon. For example, the brake ECU 22 weakens the braking force generated with respect to the amount of brake operation by the driver, as compared to a dry road surface, when it is indicated that the road surface state transmitted is a frozen road. Thereby, it is possible to suppress the wheel slip and to avoid the danger of the vehicle.
また、報知装置23は、例えばメータ表示器などで構成され、ドライバに対して路面状態を報知する際に用いられる。報知装置23をメータ表示器で構成する場合、ドライバが車両の運転中に視認可能な場所に配置され、例えば車両におけるインストルメントパネル内に設置される。メータ表示器は、受信機21から路面状態が伝えられると、その路面状態が把握できる態様で表示を行うことで、視覚的にドライバに対して路面状態を報知することができる。
Further, the notification device 23 is configured of, for example, a meter indicator, and is used when notifying the driver of the road surface condition. When the notification device 23 is configured by a meter indicator, the driver is disposed at a visible position during driving of the vehicle, for example, installed in an instrument panel of the vehicle. The meter display can notify the driver of the road surface condition visually by performing display in a mode in which the road surface condition can be grasped when the road surface condition is transmitted from the receiver 21.
なお、報知装置23をブザーや音声案内装置などで構成することもできる。その場合、報知装置23は、ブザー音や音声案内によって、聴覚的にドライバに対して路面状態を報知することができる。また、視覚的な報知を行う報知装置23としてメータ表示器を例に挙げたが、ヘッドアップディスプレイなどの情報表示を行う表示器によって報知装置23を構成しても良い。
The notification device 23 can also be configured by a buzzer, a voice guidance device, or the like. In that case, the notification device 23 can aurally notify the driver of the road surface condition by buzzer sound or voice guidance. Moreover, although the meter display was mentioned as the example as the alerting | reporting apparatus 23 which alert | reports visual, you may comprise the alerting | reporting apparatus 23 by the indicator which displays information, such as a head-up display.
以上のようにして、本実施形態にかかるタイヤ装置100が構成されている。なお、車体側システム2を構成する各部は、例えばCAN(Controller Area Networkの略)通信などによる車内LAN(Local Area Networkの略)を通じて接続されている。このため、車内LANを通じて各部が互いに情報伝達できるようになっている。
次に、上記した特徴量抽出部11aで抽出する特徴量や、変化判定部11cによる路面状態の変化の判定の詳細について説明する。 Thetire device 100 according to the present embodiment is configured as described above. In addition, each part which comprises the vehicle body side system 2 is connected through in-vehicle LAN (abbreviation of Local Area Network) by CAN (abbreviation of Controller Area Network) communication etc., for example. Therefore, each part can communicate information with each other through the in-vehicle LAN.
Next, the details of the determination of the change of the road surface state by the feature amount extracted by the above-described featureamount extraction unit 11a and the change determination unit 11c will be described.
次に、上記した特徴量抽出部11aで抽出する特徴量や、変化判定部11cによる路面状態の変化の判定の詳細について説明する。 The
Next, the details of the determination of the change of the road surface state by the feature amount extracted by the above-described feature
まず、特徴量抽出部11aで抽出する特徴量について説明する。ここでいう特徴量とは、加速度取得部10が取得したタイヤ3に加わる振動の特徴を示す量であり、例えば特徴ベクトルとして表される。
First, the feature quantities extracted by the feature quantity extraction unit 11a will be described. The feature amount referred to here is an amount indicating the feature of the vibration applied to the tire 3 acquired by the acceleration acquiring unit 10, and is expressed as, for example, a feature vector.
タイヤ回転時における加速度取得部10の検出信号の出力電圧波形は、例えば図4に示す波形となる。この図に示されるように、タイヤ3の回転に伴ってトレッド31のうち加速度取得部10の配置箇所と対応する部分が接地し始めた接地開始時に、加速度取得部10の出力電圧が極大値をとる。以下、この加速度取得部10の出力電圧が極大値をとる接地開始時のピーク値を第1ピーク値という。さらに、図4に示されるように、タイヤ3の回転に伴ってトレッド31のうち加速度取得部10の配置箇所と対応する部分が接地していた状態から接地しなくなる接地終了時に、加速度取得部10の出力電圧が極小値をとる。以下、この加速度取得部10の出力電圧が極小値をとる接地終了時のピーク値を第2ピーク値という。
An output voltage waveform of a detection signal of the acceleration acquisition unit 10 at the time of tire rotation is, for example, a waveform shown in FIG. 4. As shown in this figure, the output voltage of the acceleration acquiring unit 10 has a maximum value at the start of the ground contact when the portion of the tread 31 corresponding to the location where the acceleration acquiring unit 10 starts to contact with the rotation of the tire 3. Take. Hereinafter, the peak value at the start of grounding where the output voltage of the acceleration acquiring unit 10 has a maximum value is referred to as a first peak value. Furthermore, as shown in FIG. 4, when the tire 3 is rotated, the acceleration acquisition unit 10 is not in contact with the ground when the portion corresponding to the location where the acceleration acquisition unit 10 is disposed is in contact with the ground. Output voltage has a local minimum value. Hereinafter, the peak value at the end of grounding where the output voltage of the acceleration acquiring unit 10 has a local minimum value is referred to as a second peak value.
加速度取得部10の出力電圧が上記のようなタイミングでピーク値をとるのは、以下の理由による。すなわち、タイヤ3の回転に伴ってトレッド31のうち加速度取得部10の配置箇所と対応する部分が接地する際、加速度取得部10の近傍においてタイヤ3のうちそれまで略円筒面であった部分が押圧されて平面状に変形する。このときの衝撃を受けることで、加速度取得部10の出力電圧が第1ピーク値をとる。また、タイヤ3の回転に伴ってトレッド31のうち加速度取得部10の配置箇所と対応する部分が接地面から離れる際には、加速度取得部10の近傍においてタイヤ3は押圧が解放されて平面状から略円筒状に戻る。このタイヤ3の形状が元に戻るときの衝撃を受けることで、加速度取得部10の出力電圧が第2ピーク値をとる。このようにして、加速度取得部10の出力電圧が接地開始時と接地終了時でそれぞれ第1、第2ピーク値をとるのである。また、タイヤ3が押圧される際の衝撃の方向と、押圧から開放される際の衝撃の方向は逆方向であるため、出力電圧の符号も逆方向となる。
The peak value of the output voltage of the acceleration acquisition unit 10 at such timing is as follows. That is, when a portion of the tread 31 corresponding to the location where the acceleration acquiring unit 10 is placed on the ground as the tire 3 rotates, the portion of the tire 3 having a substantially cylindrical surface in the vicinity of the acceleration acquiring unit 10 is It is pressed and deformed into a planar shape. By receiving the impact at this time, the output voltage of the acceleration acquiring unit 10 takes a first peak value. In addition, when a portion of the tread 31 corresponding to the location where the acceleration acquisition unit 10 is disposed is separated from the ground contact surface as the tire 3 rotates, the tire 3 is released from pressure in the vicinity of the acceleration acquisition unit 10 It returns to approximately cylindrical shape from. By receiving an impact when the shape of the tire 3 returns to the original shape, the output voltage of the acceleration acquiring unit 10 takes a second peak value. In this manner, the output voltage of the acceleration acquiring unit 10 takes the first and second peak values at the start of grounding and at the end of grounding, respectively. Further, since the direction of the impact when the tire 3 is pressed and the direction of the impact when released from the pressing are opposite, the sign of the output voltage is also the opposite.
ここで、タイヤトレッド31のうち加速度取得部10の配置箇所と対応する部分が路面に接地した瞬間を「踏み込み領域」、路面から離れる瞬間を「蹴り出し領域」とする。「踏み込み領域」には、第1ピーク値となるタイミングが含まれ、「蹴り出し領域」には、第2ピーク値となるタイミングが含まれる。また、踏み込み領域の前を「踏み込み前領域」、踏み込み領域から蹴り出し領域までの領域、つまりタイヤトレッド31のうち加速度取得部10の配置箇所と対応する部分が接地中の領域を「蹴り出し前領域」、蹴り出し領域後を「蹴り出し後領域」とする。このように、タイヤトレッド31のうち加速度取得部10の配置箇所と対応する部分が接地する期間およびその前後を5つの領域に区画することができる。なお、図4中では、検出信号のうちの「踏み込み前領域」、「踏み込み領域」、「蹴り出し前領域」、「蹴り出し領域」、「蹴り出し後領域」を順に5つの領域R1~R5として示してある。
Here, an instant at which a portion of the tire tread 31 corresponding to the location where the acceleration acquisition unit 10 is disposed contacts the road surface is referred to as a "step-in area", and an instant at which it is separated from the road surface is referred to as a "kick-out area". The “step-in area” includes the timing at which the first peak value is obtained, and the “kick-out area” includes the timing at which the second peak value is obtained. In addition, the area in front of the stepping area is the area before the stepping area, and the area from the stepping area to the kicking area, that is, the portion of the tire tread 31 corresponding to the location where the acceleration acquiring unit 10 is placed "Region after kicking out" is taken as "area after kicking out". As described above, it is possible to divide the period in which the portion of the tire tread 31 corresponding to the arrangement location of the acceleration acquiring unit 10 is in contact with the ground and the region before and after that. In FIG. 4, five areas R1 to R5 are “pre-step-in area”, “step-in area”, “kick-out front area”, “kick-out area”, and “post-kick out area” in the detection signal in this order. It is shown as.
路面状態に応じて、区画した各領域でタイヤ3に生じる振動が変動し、加速度取得部10の検出信号が変化することから、各領域での加速度取得部10の検出信号を周波数解析することで、車両の走行路面における路面状態を検出する。例えば、圧雪路のような滑り易い路面状態では蹴り出し時の剪断力が低下するため、蹴り出し領域R4や蹴り出し後領域R5において、1kHz~4kHz帯域から選択される帯域値が小さくなる。このように、路面状態に応じて加速度取得部10の検出信号の各周波数成分が変化することから、検出信号の周波数解析に基づいて路面状態を判定することが可能になる。
The vibration generated in the tire 3 fluctuates in each of the divided areas according to the road surface state, and the detection signal of the acceleration acquiring unit 10 changes, so that the frequency analysis of the detection signal of the acceleration acquiring unit 10 in each area is performed. , Detects the road surface condition on the traveling road surface of the vehicle. For example, in a slippery road surface condition such as a snowy road, the shear force at the time of kicking is reduced, so the band value selected from the 1 kHz to 4 kHz band becomes smaller in the kicking out region R4 and the after kicking out region R5. As described above, since each frequency component of the detection signal of the acceleration acquisition unit 10 changes according to the road surface state, it is possible to determine the road surface state based on the frequency analysis of the detection signal.
このため、特徴量抽出部11aは、連続した時間軸波形となっているタイヤ3の1回転分の加速度取得部10の検出信号を、図5に示すように所定の時間幅Tの時間窓毎に複数の区画に分割し、各区画で周波数解析を行うことで特徴量を抽出している。具体的には、各区画で周波数解析を行うことで、各周波数帯域でのパワースペクトル値、つまり特定周波数帯域の振動レベルを求め、このパワースペクトル値を特徴量としている。
Therefore, as shown in FIG. 5, the feature quantity extraction unit 11a detects the detection signal of the acceleration acquisition unit 10 for one rotation of the tire 3 that has a continuous time axis waveform for each time window of a predetermined time width T. The feature quantity is extracted by dividing into a plurality of sections and performing frequency analysis in each section. Specifically, the power spectrum value in each frequency band, that is, the vibration level in the specific frequency band is determined by performing frequency analysis in each section, and this power spectrum value is used as the feature amount.
なお、時間幅Tの時間窓で分割された区画の数は車速に応じて、より詳しくはタイヤ3の回転速度に応じて変動する値である。以下の説明では、タイヤ1回転分の区画数をn(ただし、nは自然数)としている。
In addition, the number of the division divided by the time window of time width T is a value which changes according to the rotational speed of the tire 3 in more detail according to the vehicle speed. In the following description, the number of sections for one tire rotation is n (where n is a natural number).
例えば、各区画それぞれの検出信号を複数の特定周波数帯域のフィルタ、例えば0~1kHz、1~2kHz、2~3kHz、3~4kHz、4~5kHzの5つのバンドパスフィルタに通して得られたパワースペクトル値を特徴量としている。この特徴量は、特徴ベクトルと呼ばれるもので、ある区画i(ただし、iは1≦i≦nの自然数)の特徴ベクトルXiは、各特定周波数帯域のパワースペクトル値をaikで示すと、これを要素とする行列として、次式のように表される。
For example, the power obtained by passing the detection signal of each section through five band pass filters of a plurality of specific frequency bands, for example, 0 to 1 kHz, 1 to 2 kHz, 2 to 3 kHz, 3 to 4 kHz, or 4 to 5 kHz Spectral values are used as feature quantities. This feature quantity is called a feature vector, and a feature vector Xi of a section i (where i is a natural number of 1 ≦ i ≦ n) is represented by aik when the power spectrum value of each specific frequency band is indicated by aik It is expressed as in the following equation as a matrix having.
続いて、変化判定部11cによる路面状態の変化の判定について説明する。この判定は、特徴量抽出部11aが抽出した今回特徴量と、特徴量保存部11bに保存された前回特徴量とを用いて類似度を算出することにより行われる。
Subsequently, determination of the change of the road surface state by the change determination unit 11c will be described. This determination is performed by calculating the similarity using the current feature amount extracted by the feature amount extraction unit 11a and the previous feature amount stored in the feature amount storage unit 11b.
上記したように特徴量を表す行列式Xについて、今回特徴量の行列式をX(r)、前回特徴量の行列式をX(r-1)とし、それぞれの行列式の各要素となるパワースペクトル値aikをa(r)ik,a(r-1)ikで表すとする。その場合、今回特徴量の行列式X(r)と前回特徴量の行列式X(r-1)は、それぞれ次のように表される。
As described above, with regard to the determinant X representing the feature, the determinant of the current feature is X (r), and the determinant of the previous feature is X (r−1), and the power serving as each element of each determinant Let the spectral value a ik be represented by a (r) ik , a (r−1) ik . In that case, the determinant X (r) of the current feature and the determinant X (r−1) of the previous feature are expressed as follows.
例えば、図6に示すように、加速度取得部10の検出信号の時間軸波形について、タイヤ3の今回の回転時の時間軸波形と1回転前のときの時間軸波形それぞれを所定の時間幅Tの時間窓で各区画に分割する。図示例の場合、各時間軸波形を5つの区画に分割しているため、n=5となり、iは、1≦i≦5で表される。ここで、図中に示したように、今回の回転時の各区画の特徴ベクトルXiをXi(r)、1回転前のときの各区画の特徴ベクトルをXi(r-1)とする。その場合、各区画の特徴ベクトルXiが示す座標間の距離Kyzについては、今回の回転時の各区画の特徴ベクトルXi(r)を含む横の升と1回転前のときの各区画の特徴ベクトルXi(r-1)を含む縦の升とが交差する升のように示される。なお、距離Kyzについて、yはXi(r-1)におけるiを書き換えたものであり、zはXi(r)におけるiを書き換えたものである。また、車速については、今回の回転時と1回転前とで大きな変化はないため、基本的には各回転時の区画数は等しくなる。
For example, as shown in FIG. 6, regarding the time axis waveform of the detection signal of the acceleration acquiring unit 10, the time axis waveform at the time of the current rotation of the tire 3 and the time axis waveform at one rotation before are each set to a predetermined time width Divide into each section with the time window of. In the case of the illustrated example, since each time axis waveform is divided into five sections, n = 5 and i is represented by 1 ≦ i ≦ 5. Here, as shown in the figure, the feature vector Xi of each section during the current rotation is Xi (r), and the feature vector of each section before one rotation is Xi (r-1). In that case, with respect to the distance K yz between the coordinates indicated by the feature vector Xi of each section, the features of each section before one rotation and the lateral ridge including the feature vector Xi (r) of each section at the current rotation It is indicated as a weir that intersects with a vertical weir containing the vector Xi (r-1). Note that y is the one obtained by rewriting i in Xi (r-1), and z is the one obtained by rewriting i in Xi (r) for the distance Kyz . Further, the vehicle speed does not change significantly between the current rotation and one rotation before, so basically the number of sections at each rotation is equal.
本実施形態の場合、5つの特定周波数帯域に分けて特徴ベクトルXiを取得しているため、時間軸と合わせた6次元空間において各区画の特徴ベクトルXiが表されることとなる。このため、区画同士の特徴ベクトルXiが示す座標間の距離は、6次元空間における座標間の距離となる。ただし、各区画の特徴ベクトルXiが示す座標間の距離については、特徴量同士が似ているほど小さく、似ていないほど大きくなることから、当該距離が小さいほど類似度が高く、距離が大きいほど類似度が低いことを示している。
In the case of the present embodiment, since the feature vector Xi is obtained by dividing into five specific frequency bands, the feature vector Xi of each section is represented in a six-dimensional space aligned with the time axis. For this reason, the distance between the coordinates indicated by the feature vectors Xi of the sections is the distance between the coordinates in the six-dimensional space. However, the distance between coordinates indicated by the feature vector Xi of each section is smaller as the feature quantities are similar and larger as they are not similar, so the smaller the distance is, the higher the similarity is, and the larger the distance is It indicates that the degree of similarity is low.
例えば、時分割によって区画1~nとされている場合、区画1同士の特徴ベクトルが示す座標間の距離Kyzについては、次式で示される。
For example, when divisions 1 to n are made by time division, the distance K yz between the coordinates indicated by the feature vectors of the divisions 1 is expressed by the following equation.
なお、ここでは類似度に対応する値として各区画の特徴ベクトルが示す2つの座標間の距離Kyzの総和Ktotalを用いているが、類似度を示すパラメータとして他のものを用いることもできる。例えば、類似度を示すパラメータとして、総和Ktotalを区画数で割って求めた距離Kyzの平均値である平均距離Kaveを用いることができる。また、特許文献1に示されているように、様々なカーネル関数を用いて類似度を求めることもできる。また、特徴ベクトルのすべてを用いるのではなく、その中から類似度の低いパスを除いて類似度の演算を行うようにしても良い。
Here, although the sum K total of the distance K yz between two coordinates indicated by the feature vector of each section is used as a value corresponding to the degree of similarity, another parameter may be used as a parameter indicating the degree of similarity. . For example, as a parameter indicating the degree of similarity, an average distance K ave which is an average value of the distances K yz obtained by dividing the total sum K total by the number of sections can be used. Also, as shown in Patent Document 1, various kernel functions can be used to determine the degree of similarity. Further, instead of using all of the feature vectors, it is also possible to calculate the similarity by excluding paths with low similarity from them.
続いて、本実施形態にかかるタイヤ装置100の作動について、図7~図8を参照して説明する。
Subsequently, the operation of the tire device 100 according to the present embodiment will be described with reference to FIGS. 7 to 8.
まず、停車している状態からドライバが起動スイッチ30をオンして車両が走行を開始したのち、停車してドライバが起動スイッチ30をオフしたときの作動について説明する。
First, an operation when the driver starts the traveling by turning on the start switch 30 while the vehicle is stopped and then the vehicle stops and the driver turns off the start switch 30 will be described.
車体側システム2では、受信機21の制御部26にて図7に示す車体側処理が実行される。この処理は、起動スイッチ30がオンされることでバッテリ40からの電力供給が行われて受信機21などが起動させられると、所定の制御周期毎に実行される。一方、各タイヤ側装置1では、図8に示すタイヤ側処理が実行される。なお、以下では、図7および図8の各処理を時系列に沿って順番に説明していく。
In the vehicle body side system 2, the control unit 26 of the receiver 21 executes the vehicle body side processing shown in FIG. This process is executed every predetermined control cycle when the power supply from the battery 40 is performed by turning on the start switch 30 and the receiver 21 and the like are started. On the other hand, in each tire side device 1, the tire side process shown in FIG. 8 is performed. In addition, below, each process of FIG. 7 and FIG. 8 is demonstrated in order according to a time series.
まず、起動スイッチ30がオンされることでバッテリ40からの電力供給が行われて受信機21などが起動させられ、図7に示す車体側処理が実行されると、制御部26は、ステップS100において、コネクション中であるか否かを判定する。受信機21が起動させられて直ぐのときには、まだコネクション中ではないためステップS105に進む。また、後述する処理に基づいてコネクション中になっていれば、ステップS120に進む。
First, when the start switch 30 is turned on, the power supply from the battery 40 is performed to start the receiver 21 and the like, and when the vehicle body side process shown in FIG. 7 is performed, the control unit 26 performs step S100. It is determined whether or not the connection is in progress. Immediately after the receiver 21 is activated, the connection is not yet in progress, so the process proceeds to step S105. If the connection is in progress based on the processing described later, the process proceeds to step S120.
ステップS105では、制御部26は、スキャニング周期になったか否かを判定する。スキャニングは、タイヤ側装置1から送信されたデータの読み取りを行う処理である。制御部26は、所定のスキャニング周期毎に繰り返しスキャニングを行うようにしており、ステップS105で否定判定されると当該処理が繰り返され、肯定判定されるとステップS110以降に進む。
In step S105, the control unit 26 determines whether the scanning cycle has come. The scanning is a process of reading data transmitted from the tire-side device 1. The control unit 26 repeatedly performs scanning at predetermined scanning cycles, and the process is repeated when negative determination is made in step S105, and the process proceeds to step S110 when positive determination is made.
一方、各タイヤ側装置1では、車両が走行を開始し、例えば加速度取得部10の検出信号の出力電圧が所定の閾値を超えると、起動制御部14が制御部11やデータ通信部12を起動させる。これにより、図8に示すタイヤ側処理が実行される。
On the other hand, in each tire-side device 1, when the vehicle starts traveling and, for example, the output voltage of the detection signal of the acceleration acquisition unit 10 exceeds a predetermined threshold, the activation control unit 14 activates the control unit 11 or the data communication unit 12. Let Thereby, the tire side process shown in FIG. 8 is performed.
まず、ステップS200において、制御部11は、走行中であるか否かを判定する。この処理は、加速度取得部10の検出信号に基づいて行われる。例えば、検出信号の出力電圧波形がタイヤ1回転分の波形を示すと走行中であると判定している。なお、タイヤ3が1回転したことについては、加速度取得部10の検出信号の時間軸波形に基づいて判定している。すなわち、検出信号は図4に示した時間軸波形を描くことから、検出信号の第1ピーク値や第2ピーク値を確認することでタイヤ3の1回転を把握することができる。また、タイヤ3が回転したことは、車両が走行していることと同意であることから、タイヤ3の回転に基づいて車両走行中であるか停車中であるかを検知できる。
First, in step S200, the control unit 11 determines whether the vehicle is traveling. This process is performed based on the detection signal of the acceleration acquisition unit 10. For example, when the output voltage waveform of the detection signal indicates a waveform for one rotation of the tire, it is determined that the vehicle is traveling. The fact that the tire 3 has made one rotation is determined based on the time axis waveform of the detection signal of the acceleration acquisition unit 10. That is, since the detection signal draws the time axis waveform shown in FIG. 4, one rotation of the tire 3 can be grasped by confirming the first peak value and the second peak value of the detection signal. In addition, since the rotation of the tire 3 is in agreement with the traveling of the vehicle, it can be detected based on the rotation of the tire 3 whether the vehicle is traveling or being stopped.
ここで、車両が走行を開始したときや走行が継続されているときには肯定判定されてステップS205に進み、否定判定されるとステップS200の処理を繰り返す。なお、車両が走行を開始したときに、起動制御部14において制御部11などが起動されて、タイヤ側処理が実行されることになるため、タイヤ側処理が実行された場合はすなわち車両が走行を開始したと同意である。このため、本ステップの処理を省略して、次のステップS205の処理が実行されるようにしても良い。ただし、起動制御部14にノイズ的に閾値を超える電圧が入力されても、タイヤ側処理が実行され得るし、制御部11やデータ通信部12をスリープ状態にしないままとすることもできる。このような場合には、ステップS200の処理を実行するのが好ましい。
Here, when the vehicle starts traveling or when traveling is continued, an affirmative determination is made to proceed to step S205, and when a negative determination is made, the process of step S200 is repeated. When the vehicle starts traveling, the control unit 11 and the like are activated in the activation control unit 14 and the tire-side process is executed. Therefore, when the tire-side process is executed, that is, the vehicle travels. I agree that I started. For this reason, the process of this step may be omitted, and the process of the next step S205 may be performed. However, even if a voltage exceeding the threshold in noise is input to the activation control unit 14, the tire-side process can be executed, and the control unit 11 and the data communication unit 12 can be left in the sleep state. In such a case, it is preferable to execute the process of step S200.
次に、ステップS205では、コネクション中であるか否かを判定する。この段階ではまだコネクション中ではないため、本処理で否定判定されてステップS210に進むことになるが、後述するステップS225においてコネクションが形成されると本処理で肯定判定されてステップS230に進む。
Next, in step S205, it is determined whether connection is in progress. At this stage, since the connection is not yet performed, the determination in this process is negative and the process proceeds to step S210. However, when the connection is formed in step S225 described later, the process is positively determined and the process proceeds to step S230.
続くステップS210では、アドバタイズ信号の送信処理が行われる。この処理により、各タイヤ側装置1は、アドバタイズ信号の送信を行ったのち、後で車体側システム2から送られてくる予定の後述する接続要求信号を受信できるように受信待機状態となる。アドバタイズ信号は、タイヤ側装置1と受信機21とのコネクションを構築する際に用いられるキーワードとなる信号であり、受信機21に対して接続要求信号の送信を求める信号となる。例えば、双方向通信としてBLT通信が適用される場合、2.4GHzの周波数帯のアドバタイズ信号とされ、短周期で複数回送信が行われる。アドバタイズ信号には、自車両のタイヤ側装置1からの信号であることが確認できるようにID情報が含まれている。
In the subsequent step S210, transmission processing of the advertisement signal is performed. By this processing, each tire-side device 1 is in a reception standby state so as to be able to receive a connection request signal to be described later, which will be sent from the vehicle-body-side system 2 later, after transmitting the advertisement signal. The advertisement signal is a signal serving as a keyword used when establishing a connection between the tire-side device 1 and the receiver 21, and is a signal for requesting the receiver 21 to transmit a connection request signal. For example, when BLT communication is applied as bi-directional communication, the advertisement signal is a 2.4 GHz frequency band, and transmission is performed multiple times in a short cycle. The advertisement signal includes ID information so that it can be confirmed that the signal is from the tire-side device 1 of the own vehicle.
また、図7の車体側処理に戻り、ステップS110において、制御部26は、各タイヤ側装置1からのアドバタイズ信号を受信したか否かを判定する。上記したように、各タイヤ側装置1からアドバタイズ信号が送信されていると、受信機21で4輪すべてのタイヤ側装置1からのアドバタイズ信号が受信され、ステップS110で肯定判定されてステップS115に進む。なお、基本的には、制御部26は、4輪すべてのタイヤ側装置1からのアドバタイズ信号を受信するとステップS110で肯定判定する。ただし、路面状態の判別を行う場合には少なくとも1つのタイヤ側装置1からの路面データが得られれば良いため、少なくとも1つのタイヤ側装置1からのアドバタイズ信号を受信するとステップS110で肯定判定するようにしても良い。
Further, returning to the vehicle body side processing of FIG. 7, in step S <b> 110, the control unit 26 determines whether or not the advertisement signal from each tire-side device 1 has been received. As described above, when the advertisement signal is transmitted from each tire-side device 1, the advertisement signal from all of the four tire-side devices 1 is received by the receiver 21, and an affirmative determination is made in step S110, and the process proceeds to step S115. move on. Note that, basically, when the advertisement signal from all the four tire side devices 1 is received, the control unit 26 makes an affirmative determination in step S110. However, since it is only necessary to obtain road surface data from at least one tire side device 1 when determining the road surface state, if an advertisement signal from at least one tire side device 1 is received, an affirmative determination is made in step S110. You may
そして、ステップS115において、各タイヤ側装置1とコネクションを構築するための接続要求信号を送信する。接続要求信号は、各タイヤ側装置1に対してコネクションを構築する処理を行わせるための指示信号であり、該当するタイヤ側装置1のID信号を含めた信号とされる。この処理が実行されることにより、データ通信部25を通じて各タイヤ側装置1に向けて接続要求信号が送信される。なお、この処理によってコネクションが構築されることから、それを示すフラグをセットするなどしておくことで、その後はステップS100の判定においてコネクション中であると判定されるようにする。
Then, in step S115, a connection request signal for establishing a connection with each tire-side device 1 is transmitted. The connection request signal is an instruction signal for causing each tire-side device 1 to perform a process of establishing a connection, and is a signal including an ID signal of the corresponding tire-side device 1. By executing this process, a connection request signal is transmitted to each tire-side device 1 through the data communication unit 25. Since a connection is established by this processing, a flag indicating the connection is set, and thereafter it is determined that the connection is in progress in the determination of step S100.
一方、図8のタイヤ側処理では、ステップS215において、制御部11は、接続要求信号を受信するためにデータ待ち受け状態となる。そして、上記したように、受信機21から接続要求信号が送信されていれば、ステップS220で肯定判定されてステップS225に進み、コネクションを形成する。これにより、各タイヤ側装置1と受信機21との間において専用の通信経路が形成され、大容量データであっても通信可能となる。
On the other hand, in the tire-side process of FIG. 8, in step S215, the control unit 11 enters a data waiting state to receive the connection request signal. Then, as described above, if the connection request signal is transmitted from the receiver 21, an affirmative determination is made in step S220, and the process proceeds to step S225 to form a connection. As a result, a dedicated communication path is formed between each tire-side device 1 and the receiver 21 and communication is possible even with large-volume data.
この後、ステップS230に進み、切断要求信号を受信したか否かを判定する。この処理では、後述する図7のステップS140で受信機21から切断要求信号が送信されて、これが受信されていると肯定判定されるが、ここではまだ切断要求信号が送信されていないため否定判定される。このため、ステップS235に進み、加速度取得部10の検出信号の入力処理を行う。この処理は、続くステップS240において、タイヤ3が1回転するまでの期間継続される。そして、加速度取得部10の検出信号をタイヤ1回転分入力すると、その後のステップS245に進み、今回特徴量として、入力したタイヤ1回転分の加速度取得部10の検出信号の時間軸波形の特徴量を抽出する。なお、タイヤ3が1回転したことについては、上記した方法に基づいて判定できる。
Thereafter, the process proceeds to step S230, and it is determined whether a disconnection request signal has been received. In this process, a disconnection request signal is transmitted from the receiver 21 in step S140 of FIG. 7 described later, and it is positively determined that this is received, but a disconnection determination signal is not transmitted here because it is not yet transmitted. Be done. Therefore, the process proceeds to step S235, and the input processing of the detection signal of the acceleration acquisition unit 10 is performed. This process is continued in the subsequent step S240 for a period until the tire 3 makes one revolution. Then, when the detection signal of the acceleration acquisition unit 10 is input for one rotation of the tire, the process proceeds to the subsequent step S245, and the feature value of the time axis waveform of the detection signal of the acceleration acquisition unit 10 for one rotation of the tire input as the current feature value. Extract The fact that the tire 3 has made one rotation can be determined based on the method described above.
なお、路面状態が検出信号の時間軸波形の変化として特に現れるのが、「踏み込み領域」、「蹴り出し前領域」、「蹴り出し領域」を含めたその前後の期間である。このため、この期間中のデータが入力されていれば良く、必ずしもタイヤ1回転中における加速度取得部10の検出信号すべてのデータを入力していなくても良い。例えば、「踏み込み前領域」や「蹴り出し後領域」については、「踏み込み領域」の近傍や「蹴り出し領域」の近傍のデータがあれば良い。このため、加速度取得部10の検出信号のうちの振動レベルが閾値よりも小さくなる領域については、「踏み込み前領域」や「蹴り出し後領域」の中でも路面状態の影響を受け難い期間として、検出信号の入力を行わないようにしても良い。
It should be noted that the road surface state appears as a change in the time axis waveform of the detection signal particularly in the period before and after that including the "step-in area", the "before kicking area", and the "kicking area". Therefore, data in this period may be input, and data of all detection signals of the acceleration acquisition unit 10 during one rotation of the tire may not necessarily be input. For example, with regard to the “area before stepping in” and the “area after kicking out”, data in the vicinity of the “step-in area” or in the vicinity of the “kicking-out area” is sufficient. For this reason, in a region where the vibration level in the detection signal of the acceleration acquiring unit 10 is smaller than the threshold, it is detected as a period less susceptible to the road surface condition among the "pre-step-in region" and the "after kicking region". The signal may not be input.
また、ステップS245で行う特徴量の抽出については、上述した通りの手法によって行っている。
Further, the extraction of the feature amount performed in step S245 is performed by the method as described above.
この後、ステップS250に進み、今回特徴量と前回特徴量とに基づいて、上述した手法によって類似度を求め、例えば類似度を閾値Thと比較することで、路面状態の変化が有ったか否かを判定する。この処理は、特徴量抽出部11aで抽出した今回特徴量と、後述するステップS260において特徴量保存部11bに保存された前回特徴量とに基づいて実行される。
Thereafter, the process proceeds to step S250, and the similarity is determined by the above-described method based on the current feature amount and the previous feature amount. For example, the similarity is compared with the threshold value Th to determine whether there is a change in the road surface condition. Determine if This process is executed based on the current feature amount extracted by the feature amount extraction unit 11a and the previous feature amount stored in the feature amount storage unit 11b in step S260 described later.
そして、ステップS250で肯定判定されると、ステップS255においてデータ送信の処理を行う。すなわち、通信制御部11dにより今回特徴量を含む路面データをデータ通信部12に伝える。これにより、データ通信部12より、今回特徴量を含む路面データが送信される。このように、路面状態の変化が有った時にのみデータ通信部12から今回特徴量を含む路面データが送信されるようにしてあり、路面状態の変化が無かったときにはデータ送信が行われないようにしている。このため、通信頻度を低下させることが可能となり、タイヤ3内の制御部11の省電力化を実現することが可能となる。
When an affirmative determination is made in step S250, data transmission processing is performed in step S255. That is, the communication control unit 11 d transmits road surface data including the feature amount this time to the data communication unit 12. As a result, road surface data including the feature amount this time is transmitted from the data communication unit 12. As described above, road surface data including the feature amount is transmitted from the data communication unit 12 only when there is a change in the road surface state, and data transmission is not performed when there is no change in the road surface state. I have to. Therefore, the communication frequency can be reduced, and power saving of the control unit 11 in the tire 3 can be realized.
さらに、ステップS260に進み、今回特徴量を前回特徴量として特徴量保存部11bに保存して、処理を終了する。この後は、所定の制御周期毎に再びステップS200からの各処理が実行される。そして、既にコネクション中であることから、コネクションの構築のためのステップS210~S225の処理を省略して特徴量の抽出が行われ、路面状態の変化があるたびに特徴量を含む路面データが車体側システム2に向けて送信されることになる。
Further, the process proceeds to step S260, the current feature amount is stored as the previous feature amount in the feature amount storage unit 11b, and the process is ended. After this, each process from step S200 is executed again every predetermined control cycle. Since the connection is already in progress, the process of steps S210 to S225 for establishing the connection is omitted and the feature quantity is extracted, and the road surface data including the feature quantity is the car body every time there is a change in the road condition. It will be transmitted to the side system 2.
一方、図7の車体側処理では、ステップS120において、制御部26は、起動スイッチ30がオフに切り替わったか否かを判定し、オフに切り替わっていなければステップS125に進む。
On the other hand, in the vehicle body side process of FIG. 7, in step S120, the control unit 26 determines whether or not the start switch 30 has been switched off, and proceeds to step S125 if it has not been switched off.
ステップS125では、データ受信処理が行われる。この処理は、データ通信部25が路面データを受信したときに、その路面データを制御部26が取り込むことによって行われる。データ通信部25がデータ受信を行っていないときには、制御部26は何も路面データを取り込むことなく本処理を終えることになる。
In step S125, data reception processing is performed. This process is performed by the control unit 26 taking in the road surface data when the data communication unit 25 receives the road surface data. When the data communication unit 25 is not receiving data, the control unit 26 ends the process without taking in road surface data.
この後、ステップS130に進み、制御部26は、データ受信が有ったか否かを判定し、受信していた場合にはステップS135に進み、受信していなければ受信するまで上記各ステップの処理が繰り返される。
Thereafter, the process proceeds to step S130, where the control unit 26 determines whether data has been received. If it has been received, the process proceeds to step S135. If it has not been received, the process of each step is performed until reception. Is repeated.
そして、ステップS135において、制御部26は、路面状態の判別を行う。路面状態の判別については、受信した路面データに含まれる今回特徴量と、サポートベクタ保存部26cに保存された路面の種類別のサポートベクタとを比較することで行う。例えば、今回特徴量を路面の種類別の全サポートベクタとの類似度を求め、最も類似度が高かったサポートベクタの路面を現在の走行路面と判別している。このときの類似度の演算については、図8のステップS250で行った今回特徴量と前回特徴量との類似度の演算と同じ手法を用いれば良い。
Then, in step S135, the control unit 26 determines the road surface state. The determination of the road surface state is performed by comparing the current feature amount included in the received road surface data with the support vector classified by road surface type stored in the support vector storage unit 26c. For example, the feature amount is obtained as the similarity with all the support vectors for each type of road surface, and the road surface of the support vector having the highest similarity is determined as the current road surface. The calculation of the similarity at this time may be performed using the same method as the calculation of the similarity between the current feature and the previous feature performed in step S250 of FIG.
また、ドライバが停車したのち起動スイッチ30をオフにすることによって、ステップS120において起動スイッチ30がオフに切り替わったと判定されると、ステップS140に進む。そして、ステップS140において、各タイヤ側装置1とのコネクションを切断するための切断要求信号を送信する。切断要求信号は、タイヤ側装置1に対してコネクションを切断する処理を行わせるための指示信号であり、該当するタイヤ側装置1のID信号を含めた信号とされる。この処理が実行されることにより、データ通信部25を通じて各タイヤ側装置1に向けて切断要求信号が送信される。なお、この処理によってコネクションが切断されることから、その後はステップS100の判定においてコネクション中ではないと判定される。
When it is determined that the start switch 30 is switched off in step S120 by turning off the start switch 30 after the driver has stopped, the process proceeds to step S140. Then, in step S140, a disconnection request signal for disconnecting the connection with each tire-side device 1 is transmitted. The disconnection request signal is an instruction signal for causing the tire-side device 1 to perform the process of disconnecting the connection, and is a signal including the ID signal of the corresponding tire-side device 1. By executing this process, a disconnection request signal is transmitted to each tire-side device 1 through the data communication unit 25. Note that since the connection is disconnected by this processing, it is determined that the connection is not in progress in the determination of step S100 thereafter.
その後、ステップS145に進み、バッテリ40などからの受信機21への電力供給が停止されて受信機21も電源がオフとなり、車体側処理が終了となる。
Thereafter, the process proceeds to step S145, the power supply from the battery 40 or the like to the receiver 21 is stopped, the power of the receiver 21 is also turned off, and the vehicle body side process is ended.
また、切断要求信号が送信されると、図8のタイヤ側処理では、ステップS230において切断要求信号を受信したと判定されてステップS265に進む。そして、ステップS265において、各タイヤ側装置1から自身以外の他のタイヤ側装置1に対しての切断要求信号の送信を行ったのち、ステップS270に進んで自身もデータ通信を切断する。これにより、コネクションが切断されると共に、起動制御部14によって制御部11やデータ通信部12がスリープ状態に切り替えられ、タイヤ側処理が終了となる。
When the disconnection request signal is transmitted, in the tire-side process of FIG. 8, it is determined in step S230 that the disconnection request signal has been received, and the process proceeds to step S265. Then, in step S265, after each tire device 1 transmits a disconnection request signal to the other tire device 1 other than itself, it proceeds to step S270 and disconnects the data communication itself. As a result, the connection is disconnected, and the control unit 11 and the data communication unit 12 are switched to the sleep state by the activation control unit 14, and the tire-side process is ended.
このように、起動スイッチ30がオフされたらコネクションを切断するようにしているため、消費電力の低減を図ることができる。また、コネクションの切断に加えて、制御部11やデータ通信部12をスリープ状態にするため、より消費電力の低減を図ることができる。
As described above, since the connection is disconnected when the start switch 30 is turned off, power consumption can be reduced. Further, in addition to disconnection of the connection, since the control unit 11 and the data communication unit 12 are put into the sleep state, power consumption can be further reduced.
また、各タイヤ側装置1において、コネクションの切断を行う際に、他のタイヤ側装置1に対する切断要求信号の送信を行わせているため、より確実にすべてのタイヤ側装置1でコネクションを切断できる。例えば、受信機21から切断要求信号が送信されたときに、すべてのタイヤ側装置1に届くとは限らない。つまり、いずれかのタイヤ側装置1が受信機21からの電波が届きにくいNullの位置にある可能性も有る。したがって、各タイヤ側装置1から他のタイヤ側装置1に対して切断要求信号を送る処理を加えることで、より確実に各タイヤ側装置1と受信機21とのコネクションを切断することが可能となる。
なお、各タイヤ側装置1から自身以外の他のタイヤ側装置1に対しての切断要求信号の送信を行う際には、各タイヤ側装置1において他のタイヤ側装置1のID情報を把握し、切断要求信号に他のタイヤ側装置1のID情報を含めて送信するのが好ましい。このようにすることで、各タイヤ側装置1は、切断要求信号に含まれたID情報に基づいて自身に送られてきた切断要求信号であることを把握することが可能となる。つまり、各タイヤ側装置1は、切断要求信号が自車両のタイヤ側装置1から送られてきたものであるのか、他車両のタイヤ側装置1から送られてきたものであるのかを判別できる。受信機21は、自車両のすべてのタイヤ側装置1のID情報を記憶しているため、受信機21から各タイヤ側装置1に自車両の他のタイヤ側装置1のID情報を送信して記憶させるようにすれば、各タイヤ側装置1に他のタイヤ側装置1のID情報を把握できる。このように、切断要求を行う際に、自車両のタイヤ側装置1のID情報を含めることで、他車両のタイヤ側装置1からの切断要求信号によって誤ってコネクションを切断してしまわないようにできる。 Further, in each tire-side device 1, the disconnection request signal is transmitted to the other tire-side device 1 when disconnecting the connection, so that all the tire-side devices 1 can disconnect the connection more reliably. . For example, when the disconnection request signal is transmitted from the receiver 21, it does not necessarily reach all the tire side devices 1. That is, there is also a possibility that one of the tire side devices 1 is at the position of Null where radio waves from the receiver 21 are difficult to reach. Therefore, it is possible to disconnect the connection between each tire-side device 1 and the receiver 21 more reliably by adding the processing of sending a disconnection request signal from each tire-side device 1 to the other tire-side devices 1 Become.
When eachtire side device 1 transmits a cutting request signal to other tire side devices 1 other than itself, each tire side device 1 grasps ID information of the other tire side devices 1. It is preferable to transmit the disconnection request signal including the ID information of the other tire-side device 1. By doing this, each tire side device 1 can grasp that it is the disconnection request signal sent to itself based on the ID information included in the disconnection request signal. That is, each tire side device 1 can determine whether the cutting request signal is sent from the tire side device 1 of the own vehicle or from the tire side device 1 of the other vehicle. Since the receiver 21 stores ID information of all the tire side devices 1 of the own vehicle, the receiver 21 transmits ID information of the other tire side devices 1 of the own vehicle to each tire side device 1 If it is made to memorize, ID information of other tire side devices 1 can be grasped to each tire side device 1. As described above, by including the ID information of the tire-side device 1 of the own vehicle when making a disconnection request, the connection is not erroneously disconnected by the disconnection request signal from the tire-side device 1 of the other vehicle. it can.
なお、各タイヤ側装置1から自身以外の他のタイヤ側装置1に対しての切断要求信号の送信を行う際には、各タイヤ側装置1において他のタイヤ側装置1のID情報を把握し、切断要求信号に他のタイヤ側装置1のID情報を含めて送信するのが好ましい。このようにすることで、各タイヤ側装置1は、切断要求信号に含まれたID情報に基づいて自身に送られてきた切断要求信号であることを把握することが可能となる。つまり、各タイヤ側装置1は、切断要求信号が自車両のタイヤ側装置1から送られてきたものであるのか、他車両のタイヤ側装置1から送られてきたものであるのかを判別できる。受信機21は、自車両のすべてのタイヤ側装置1のID情報を記憶しているため、受信機21から各タイヤ側装置1に自車両の他のタイヤ側装置1のID情報を送信して記憶させるようにすれば、各タイヤ側装置1に他のタイヤ側装置1のID情報を把握できる。このように、切断要求を行う際に、自車両のタイヤ側装置1のID情報を含めることで、他車両のタイヤ側装置1からの切断要求信号によって誤ってコネクションを切断してしまわないようにできる。 Further, in each tire-
When each
なお、各タイヤ側装置1から他のタイヤ側装置1に対して切断要求信号を送ることは必須ではなく、単に各タイヤ側装置1はコネクションの切断を行うだけでも良い。また、各タイヤ側装置1との間において、大容量データの通信を行う場合には予めコネクションを構築しておくことになる。ただし、切断要求信号を伝えるだけであれば、必要とするデータ量も少ないため、コネクションを構築しておく必要はなく、他のタイヤ側装置1からのデータを受信できるように、受信モードにしておけばよい。
以上のようにして、本実施形態にかかるタイヤ装置100による路面状態の判別が行われる。このような路面状態の判別を行うに際し、起動スイッチ30がオンされると各タイヤ側装置1と車体側システム2との間にコネクションを構築してデータ通信を行っている。そして、起動スイッチ30がオフに切り替わると車体側システム2から各タイヤ側装置1に対して切断要求信号を送信するようにしている。 In addition, it is not essential to send a cutting | disconnection request | requirement signal with respect to the othertire side apparatus 1 from each tire side apparatus 1, and each tire side apparatus 1 may just cut a connection. Further, in the case of performing communication of large volume data with each tire side device 1, a connection is established in advance. However, if only the disconnection request signal is transmitted, the amount of data required is small, so there is no need to establish a connection, and the reception mode is set so that data from the other tire-side device 1 can be received. You should save.
As described above, the determination of the road surface state by thetire device 100 according to the present embodiment is performed. When the road surface condition is determined, when the start switch 30 is turned on, connections are established between the tire side devices 1 and the vehicle body side system 2 to perform data communication. Then, when the start switch 30 is switched off, the vehicle body side system 2 transmits a disconnection request signal to each tire side device 1.
以上のようにして、本実施形態にかかるタイヤ装置100による路面状態の判別が行われる。このような路面状態の判別を行うに際し、起動スイッチ30がオンされると各タイヤ側装置1と車体側システム2との間にコネクションを構築してデータ通信を行っている。そして、起動スイッチ30がオフに切り替わると車体側システム2から各タイヤ側装置1に対して切断要求信号を送信するようにしている。 In addition, it is not essential to send a cutting | disconnection request | requirement signal with respect to the other
As described above, the determination of the road surface state by the
各タイヤ側装置1は、タイヤ3の内部に備えられていることから、起動スイッチ30のオンオフ状態を把握することができないため、コネクションを維持しようとする。しかしながら、起動スイッチ30がオフされたときに、双方向通信を用いて、車体側システム2から各タイヤ側装置1に切断要求信号を送ることで、各タイヤ側装置1でも起動スイッチ30がオフされたことを把握できる。したがって、起動スイッチ30がオフに切り替わってからも各タイヤ側装置1がコネクションを維持しようとすることを抑制でき、各タイヤ側装置1においてコネクションを切断することができる。これにより、タイヤ側装置1の消費電力の低減を図ることができる路面状態判別装置を含むタイヤ装置100とすることが可能となる。
Since each tire-side device 1 is provided inside the tire 3, it can not grasp the on / off state of the start switch 30, and therefore, tries to maintain the connection. However, when the start switch 30 is turned off, the start switch 30 is turned off also in each tire side device 1 by sending a disconnection request signal from the vehicle body side system 2 to each tire side device 1 using two-way communication. Know what happened. Therefore, it is possible to suppress each tire side device 1 from trying to maintain the connection even after the start switch 30 is switched off, and the connection can be disconnected in each tire side device 1. As a result, the tire device 100 including the road surface state determination device capable of reducing the power consumption of the tire side device 1 can be obtained.
また、起動スイッチ30がオフされると、各タイヤ側装置1はコネクションを切断させるだけでなく、制御部11やデータ通信部12をスリープ状態にする。これにより、さらにタイヤ側装置1の消費電力の低減を図ることができる。
In addition, when the start switch 30 is turned off, each tire-side device 1 not only disconnects the connection but puts the control unit 11 and the data communication unit 12 in the sleep state. As a result, the power consumption of the tire-side device 1 can be further reduced.
また、各タイヤ側装置1から路面データを送信するタイミングについても、タイヤ側装置1からの今回特徴量を含む路面データの送信が路面状態の変化タイミングのみとなるようにしている。具体的には、タイヤ側装置1にて路面状態の変化があったと判定されたタイミングにのみ、タイヤ側装置1からの路面データの送信が行われるようにしている。このため、通信頻度を低下させることが可能となり、さらにタイヤ3内の制御部11の省電力化を実現することが可能となる。
Also, with regard to the timing of transmitting road surface data from each tire side device 1, transmission of road surface data including the present feature value from the tire side device 1 is made to be only the change timing of the road surface state. Specifically, the road surface data from the tire side device 1 is transmitted only at the timing when the tire side device 1 determines that there is a change in the road surface state. Therefore, the communication frequency can be reduced, and power saving of the control unit 11 in the tire 3 can be realized.
(第2実施形態)
第2実施形態について説明する。本実施形態は、第1実施形態に対して各タイヤ側装置1が自身の判定に基づくコネクションの切断も可能にしたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 Second Embodiment
The second embodiment will be described. The present embodiment is the same as the first embodiment in that eachtire side device 1 enables the disconnection of the connection based on its own determination with respect to the first embodiment, and the other is the same as the first embodiment. Only the differences from the form will be described.
第2実施形態について説明する。本実施形態は、第1実施形態に対して各タイヤ側装置1が自身の判定に基づくコネクションの切断も可能にしたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 Second Embodiment
The second embodiment will be described. The present embodiment is the same as the first embodiment in that each
本実施形態のタイヤ側装置1および車体側システム2を含むタイヤ装置100の構成については第1実施形態と同様であるが、タイヤ側装置1の制御部11および受信機21の制御部26で実行する処理が異なっている。
The configuration of the tire device 100 including the tire side device 1 and the vehicle body side system 2 of the present embodiment is the same as that of the first embodiment, but executed by the control unit 11 of the tire side device 1 and the control unit 26 of the receiver 21 The process to do is different.
具体的には、制御部11では、図9に示すように、ステップS200において、走行中であるか否かの判定、つまり走行中であるか停車中であるかの判定を行い、停車中と判定した場合に、ステップS275に進むようになっている。そして、ステップS275において所定時間経過したかを判定する。ここでいう所定時間は、信号機などでの停車時間よりも長い時間、すなわちドライバが運転を終了したと想定される時間に設定される。そして、所定時間経過するまでの間はステップS200の処理を繰り返して時間計測を行う。例えば、ステップS275で否定判定されるたびにインクリメントされるカウンタを備えるようにし、カウンタのカウント値が所定値に至ると所定時間経過したと判定されるようにし、ステップS275で肯定判定されるとカウント値がリセットされるようにする。このようにすることで、停車してから所定時間経過したことの判定が可能となる。そして、停車してから所定時間が経過すると、ステップS265、S270の処理を実行する。
Specifically, as shown in FIG. 9, the control unit 11 determines in step S200 whether or not the vehicle is traveling, that is, determines whether the vehicle is traveling or being stopped, as shown in FIG. If it is determined, the process proceeds to step S275. Then, in step S275, it is determined whether a predetermined time has elapsed. The predetermined time here is set to a time longer than a stopping time at a traffic light or the like, that is, a time when it is assumed that the driver has finished driving. Then, until the predetermined time elapses, the processing of step S200 is repeated to measure time. For example, a counter which is incremented each time a negative determination is made in step S275 is provided, and when a count value of the counter reaches a predetermined value, it is determined that a predetermined time has elapsed, and when a positive determination is made in step S275 Make the value reset. This makes it possible to determine that a predetermined time has elapsed since the vehicle was stopped. Then, when a predetermined time has elapsed since the vehicle stopped, the processes of steps S265 and S270 are executed.
このように、タイヤ側装置1において、停車したことを検知し、信号機などでの停車ではなくドライバが運転を終了したと想定される時間経過すると、自身でコネクションの切断を行ったり、制御部11やデータ通信部12をスリープ状態にできるようにしている。これにより、仮に、受信機21からの切断要求信号がタイヤ側装置1に届かないことがあったとしても、タイヤ側装置1は自身で確実にコネクションの切断を行うことが可能となる。
As described above, the tire side device 1 detects that the vehicle has stopped and does not stop at a traffic light or the like, and disconnects the connection by itself when it is assumed that the driver has finished driving. And the data communication unit 12 can be put to sleep. As a result, even if the disconnection request signal from the receiver 21 may not reach the tire-side device 1, the tire-side device 1 can reliably disconnect itself by itself.
ただし、ドライバが長時間起動スイッチ30をオフすることなく停車状態を続け、その後、車両の走行を再開するような状況においても、タイヤ側装置1が自身でコネクションの切断を行う可能性がある。したがって、本実施形態の場合、図7のステップS100においてコネクション中であるか否かを判定する際に、制御部26は、各タイヤ側装置1との実際のコネクションの状況を調べ、その結果に基づいて判定を行うようにする。このように、ステップS100で実際のコネクションの状況を調べてコネクション中であるか否かを判定すれば、仮に、タイヤ側装置1が自身でコネクションの切断を行っていたとしても、ステップS100で否定判定される。これにより、ステップS105~S115の各処理が実行されることで、コネクションの再構築がなされるようにできる。
However, even in a situation where the driver continues to stop the vehicle without turning off the start switch 30 for a long time and then resumes the traveling of the vehicle, the tire device 1 may cut off the connection by itself. Therefore, in the case of the present embodiment, when it is determined in step S100 of FIG. 7 whether or not the connection is in progress, the control unit 26 checks the state of the actual connection with each tire-side device 1 and Make a decision based on that. As described above, if it is determined in step S100 whether or not the connection is in progress by checking the actual connection status, even if the tire-side device 1 itself disconnects the connection, the determination in step S100 is negative. It is judged. As a result, by performing the processes of steps S105 to S115, it is possible to reconstruct the connection.
(他の実施形態)
本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 (Other embodiments)
The present disclosure has been described based on the above-described embodiment, but is not limited to the embodiment, and includes various modifications and variations within the equivalent range. In addition, various combinations and forms, and further, other combinations and forms including only one element, or more or less than these elements are also within the scope and the scope of the present disclosure.
本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 (Other embodiments)
The present disclosure has been described based on the above-described embodiment, but is not limited to the embodiment, and includes various modifications and variations within the equivalent range. In addition, various combinations and forms, and further, other combinations and forms including only one element, or more or less than these elements are also within the scope and the scope of the present disclosure.
(1)例えば、上記各実施形態では、振動検出部を構成する振動センサ部1aを加速度センサによって構成する場合を例示したが、他の振動検出を行うことができる素子、例えば圧電素子などによって構成することもできる。
(1) For example, in each of the above embodiments, the case where the vibration sensor unit 1a constituting the vibration detection unit is constituted by an acceleration sensor is exemplified, but other elements capable of detecting vibration, for example, piezoelectric elements etc. You can also
(2)また、上記各実施形態では、タイヤ側装置1から振動センサ部1aの検出信号に現れる路面状態を示す路面データとして、特徴量を含むデータを用いている。しかしながら、これも一例を示したに過ぎず、他のデータを路面データとして用いても良い。例えば、タイヤ3の1回転中の振動データに含まれる5つの領域R1~R5それぞれの振動波形の積分値データを路面データとしても良いし、検出信号そのものの生データを路面データとしても良い。
(2) Moreover, in each said embodiment, the data containing a feature-value is used as road surface data which show the road surface state which appears in the detection signal of the vibration sensor part 1a from the tire side apparatus 1. FIG. However, this is also merely an example, and other data may be used as road surface data. For example, integrated value data of vibration waveforms of each of the five regions R1 to R5 included in vibration data during one rotation of the tire 3 may be road surface data, or raw data of the detection signal itself may be road surface data.
(3)また、上記各実施形態では、タイヤ側装置1の消費電力の低減を図るために、路面状態の変化があったときに路面データを送信するようにした。しかしながら、これも一例を示したに過ぎず、他のタイミングで路面データの送信が行われるようにするようにしても良い。例えば、路面状況の変化にかかわらず、タイヤ3が1回転もしくは所定回転するごと、もしくは一定の時間間隔毎に路面データを送信しても良い。
(3) Further, in each of the above-described embodiments, in order to reduce the power consumption of the tire side device 1, the road surface data is transmitted when there is a change in the road surface state. However, this is also merely an example, and the road surface data may be transmitted at another timing. For example, regardless of a change in the road surface condition, the road surface data may be transmitted every time the tire 3 makes one rotation or a predetermined rotation, or at predetermined time intervals.
(4)また、路面状態の変化の判定についても、上記したような今回特徴量と前回特徴量との類似度に基づくものではなく、前回特徴量を含めた過去のタイヤ3の回転時の特徴量(以下、過去特徴量)というに基づいて行うこともできる。
(4) Also, the determination of the change in the road surface condition is not based on the similarity between the current feature amount and the previous feature amount as described above, but the feature at the time of rotation of the tire 3 in the past including the previous feature amount It can also be performed based on an amount (hereinafter, past feature amount).
例えば、特徴量保存部11bでは、タイヤ3の過去の回転時における特徴量として、1回転前の特徴量を保存するだけでなく、1回転前の特徴量以外にも保存する。すなわち、特徴量保存部11bに過去特徴量として前回特徴量を保存するだけでなく、複数回転前の特徴量を過去特徴量として保存したり、複数回転分の過去特徴量の平均値を保存したりする。そして、前回特徴量との類似度の計算については、過去特徴量のうちの前回特徴量を用いたり、前回特徴量を含めた過去複数分の平均値を用いたりする。このようにして路面状態の変化を判定しても良い。
For example, in the feature amount storage unit 11b, as the feature amount at the time of the past rotation of the tire 3, not only the feature amount of one rotation before but also the feature amount of one rotation before are stored. That is, not only the previous feature amount is stored as the past feature amount in the feature amount storage unit 11b, but the feature amount before multiple rotations is saved as the past feature amount, or the average value of the past feature amounts of multiple rotations is saved. To Then, for calculation of the degree of similarity with the previous feature amount, the previous feature amount of the past feature amounts is used, or an average value of a plurality of past values including the previous feature amount is used. Thus, the change in the road surface condition may be determined.
さらに、特徴量の類似度に基づいて路面状態の変化の判定を行う場合だけでなく、他の様々な手法によって路面状態の変化の判定を行うようにしても良い。
Further, not only when the change of the road surface state is determined based on the similarity of the feature amount, the change of the road surface state may be determined by other various methods.
また、路面状態の変化があったときに、タイヤ側装置1から今回特徴量を含む路面データを送信するようにしているが、前回特徴量についても路面データに含めるようにしても良い。その場合、車体側システム2において、前回特徴量をサポートベクタと比較することで、変化前の路面状態についても判別できる。したがって、変化前後の路面状態の両方を判別し、より的確に路面状態の変化を認識することが可能となる。
In addition, when there is a change in the road surface state, the road surface data including the feature amount this time is transmitted from the tire device 1. However, the previous feature amount may be included in the road surface data. In that case, in the vehicle body side system 2, the road surface state before the change can also be determined by comparing the previous feature amount with the support vector. Therefore, it is possible to determine both the road surface condition before and after the change, and to more appropriately recognize the change in the road surface condition.
(5)また、上記各実施形態では、車体側システム2に備えられる受信機21の制御部26によって今回特徴量とサポートベクタとの類似度を求め、路面状態の判別を行うようにしている。しかしながら、これも一例を示したに過ぎず、他のECU、例えばブレーキECU22の制御部によって類似度を求めたり、路面状態の判別を行うようにしても良いし、複数のECUで共同して路面状態の判別などの各処理を実行するようにしても良い。すなわち、車体側システム2のどこかで制御部26と同様の役割を果たせればよい。
(5) Further, in each of the above embodiments, the control unit 26 of the receiver 21 provided in the vehicle body side system 2 obtains the similarity between the current feature amount and the support vector to determine the road surface state. However, this is only an example, and the similarity may be determined by another ECU, for example, the control unit of the brake ECU 22, or the road surface state may be determined. Each process such as the determination of the state may be executed. That is, the same function as the control unit 26 may be played somewhere in the vehicle body side system 2.
さらに、タイヤ側装置1にサポートベクタ保存部を備え、タイヤ側装置1で路面状態の判別が行えるようにし、受信機21では、その判別結果を示す路面データを受信し、その路面データを読み取ることで路面状態の判別が行われるようにしても良い。
Furthermore, the tire side device 1 is provided with a support vector storage unit so that the tire side device 1 can determine the road surface state, and the receiver 21 receives road surface data indicating the determination result and reads the road surface data. The determination of the road surface condition may be performed.
(6)また、上記各実施形態では、車両が走行を開始すると、タイヤ側装置1からアドバタイズ信号を送信し、それを受信した受信機21から接続要求信号を送ることで、両者の間の通信のコネクションが構築されるようにしている。しかしながら、これも一例を示したに過ぎず、通信のコネクションを構築する様々な手法を適用できる。例えば、起動スイッチ30がオンされたら受信機21側からアドバタイズ信号を送り、各タイヤ側装置1から接続要求信号を受信機21側に伝えることでコネクションが構築されるようにしても良い。ただし、その場合には、各タイヤ側装置1がアドバタイズ信号を受信できるように、スキャニング周期毎にスキャニングを行う必要があるため、消費電力の低減の観点からは、上記実施形態のようにするのが好ましい。
(6) In each of the above-described embodiments, when the vehicle starts traveling, the tire device 1 transmits an advertisement signal, and the receiver 21 having received the signal transmits a connection request signal to communicate between the two. Connection is to be established. However, this is also just an example, and various methods for establishing communication connection can be applied. For example, when the activation switch 30 is turned on, an advertisement signal may be sent from the receiver 21 side, and a connection request signal may be transmitted from the tire side devices 1 to the receiver 21 side to establish a connection. However, in such a case, it is necessary to perform scanning at each scanning cycle so that each tire-side device 1 can receive the advertisement signal, so from the viewpoint of reducing power consumption, the embodiment described above is used. Is preferred.
(7)また、上記各実施形態において、車体側システム2に図示しない通信センターとの通信を行える外部通信装置を備え、制御部26での路面状態の判別結果を示すデータを判別結果データとして走行中の位置情報と共に通信センターに伝えるようにしても良い。
(7) In each of the above embodiments, the vehicle body side system 2 is provided with an external communication device capable of communicating with a communication center (not shown), and travels using data indicating the determination result of the road surface condition in the control unit 26 as the determination result data. It may be transmitted to the communication center together with the position information inside.
通信センターは、地図データ中の各道路の場所ごとの路面状態の情報をデータベースとして管理し、受信した判別結果データに基づいて時々刻々と変化する路面状態のマッピングを行う施設である。つまり、通信センターは、受信した判別結果データに基づいて地図データ中の各道路の場所ごとの路面状態の情報を更新する。そして、通信センターは、そのデータベースから車両に対して路面データを提供する。また、通信センターは、天気情報等を収集することもでき、天気情報等に基づいて各路面データを補正し、より確かな路面データとして更新することもできる。このような通信センターに対して路面状態の判別結果データを伝えることで、より正確な路面状態を得ることができるし、現在走行中の路面だけでなく走行予定の路面における路面状態も先行して得ることができる。
The communication center is a facility that manages, as a database, road surface condition information for each road location in the map data, and performs mapping of the road surface condition that changes momentarily based on the received determination result data. That is, the communication center updates the road surface condition information for each road location in the map data based on the received determination result data. Then, the communication center provides road surface data to the vehicle from the database. The communication center can also collect weather information and the like, correct each road surface data based on the weather information and the like, and can update it as more reliable road surface data. A more accurate road surface condition can be obtained by transmitting the road surface condition determination result data to such a communication center, and the road surface condition not only on the current road surface but also on the road surface to be traveled precedes. You can get it.
また、上記各実施形態では、複数のタイヤ3のそれぞれに対してタイヤ側装置1を備えるようにしたが、少なくとも1つに備えられていればよい。
Moreover, although the tire side apparatus 1 was provided with respect to each of the some tire 3 in said each embodiment, what is necessary is just to be provided in at least one.
Claims (8)
- 車両に備えられるタイヤ(3)に配置され、路面状態に関するデータである路面データを送信するタイヤ側装置(1)、および、前記車両における車体側に配置され、前記路面データを受信して前記路面状態を判別する車体側システム(2)を有する路面状態判別装置であって、
前記タイヤ側装置は、
前記タイヤの振動の大きさに応じた検出信号を出力する振動検出部(10)と、前記検出信号に基づいて前記路面データの作成する第1制御部(11)と、前記車体側システムとの間においてデータ通信を行う第1送受信部(12)と、を有し、
前記車体側システムは、
前記タイヤ側装置との間におけるデータ通信を行う第2送受信部(25)と、前記第2送受信部が受信した前記路面データに基づく路面状態の判別と、前記車両を発進可能な状態にする起動スイッチ(30)のオンオフ状態の判定を行い、前記起動スイッチがオフからオンに切り替えられると前記第1送受信部と前記第2送受信部との間での通信のコネクションを構築し、前記起動スイッチがオンからオフに切り替えられると前記タイヤ側装置に対して前記コネクションの切断を指示する切断要求信号を前記第2送受信部から送信させる第2制御部(26)と、を有している路面状態判別装置。 A tire side device (1) disposed in a tire (3) provided in a vehicle and transmitting road surface data that is data relating to a road surface condition; and a vehicle side disposed in the vehicle and receiving the road surface data A road surface condition judging device having a vehicle body side system (2) for judging a condition,
The tire side device is
A vibration detection unit (10) that outputs a detection signal according to the magnitude of the vibration of the tire; a first control unit (11) that creates the road surface data based on the detection signal; and the vehicle body side system A first transmission / reception unit (12) for performing data communication between the
The body side system is
A second transmission / reception unit (25) performing data communication with the tire-side device, determination of a road surface state based on the road surface data received by the second transmission / reception unit, and activation to make the vehicle ready to start The on / off state of the switch (30) is determined, and when the activation switch is switched from off to on, the communication connection between the first transmission / reception unit and the second transmission / reception unit is established, and the activation switch A second control unit (26) for transmitting a disconnection request signal for instructing the tire device to disconnect the connection from the second transmission / reception unit when switched from on to off; apparatus. - 前記第1制御部は、前記検出信号に基づいて前記車両が走行中であるか停車中であるかを判定し、所定時間継続して停車中であるとき、自身で前記第1送受信部と前記第2送受信部との間での通信のコネクションを切断する請求項1に記載の路面状態判別装置。 The first control unit determines whether the vehicle is traveling or stopping based on the detection signal, and when the vehicle is stopped for a predetermined time, the first transmission / reception unit and the first control unit The road surface condition determination apparatus according to claim 1, which disconnects communication connection with the second transmission / reception unit.
- 前記第2制御部は、前記起動スイッチがオンされているときには、前記第1送受信部と前記第2送受信部との間の通信のコネクションが構築された後にも、前記第1送受信部と前記第2送受信部との間の通信がコネクション中であるか否かを判定し、前記コネクション中でなければ、前記第1送受信部と前記第2送受信部との間での通信のコネクションを構築する請求項2に記載の路面状態判別装置。 When the activation switch is turned on, the second control unit is configured to set the first transmission / reception unit and the second transmission / reception unit even after the connection of communication between the first transmission / reception unit and the second transmission / reception unit is established. (2) It is determined whether or not the communication between the two transmission / reception units is in connection, and if the connection is not in progress, a connection of communication between the first transmission / reception unit and the second transmission / reception unit is established. The road surface state determination apparatus of claim 2.
- 前記タイヤは複数備えられ、該複数のタイヤそれぞれに前記タイヤ側装置が配置され、
前記複数のタイヤそれぞれに配置された前記タイヤ側装置は、互いに通信可能とされており、前記第2制御部からの前記切断要求信号を受信すると、他の前記タイヤ側装置に向けて前記コネクションの切断の指示を指示する切断要求信号を伝える請求項1ないし3のいずれか1つに記載の路面状態判別装置。 A plurality of the tires are provided, and the tire side device is disposed on each of the plurality of tires.
The tire-side devices disposed in each of the plurality of tires are communicable with each other, and when receiving the disconnection request signal from the second control unit, the tire-side devices are directed to the other tire-side devices. The road surface condition determining apparatus according to any one of claims 1 to 3, which transmits a disconnection request signal instructing a disconnection instruction. - 前記第1制御部は、前記車両が走行を開始すると、前記第1送受信部を通じてアドバタイズ信号を送信し、
前記第2制御部は、前記第2送受信部を通じて前記アドバタイズ信号を受信すると、前記第2送受信部から前記複数のタイヤそれぞれに配置された前記タイヤ側装置に対して前記コネクションを構築するための接続要求信号を送信する請求項1ないし4のいずれか1つに記載の路面状態判別装置。 The first control unit transmits an advertisement signal through the first transmission / reception unit when the vehicle starts traveling.
When the second control unit receives the advertisement signal through the second transmission / reception unit, a connection for establishing the connection to the tire-side device disposed in each of the plurality of tires from the second transmission / reception unit The road surface condition determination apparatus according to any one of claims 1 to 4, which transmits a request signal. - 前記タイヤ側装置は、前記第1制御部と前記第1送受信部とにおける起動状態とスリープ状態との切り替えの制御を行う起動制御部(14)を有し、
前記起動制御部は、前記コネクションが切断されると前記第1制御部と前記第1送受信部とを前記起動状態から前記スリープ状態に切り替える請求項1ないし5のいずれか1つに記載の路面状態判別装置。 The tire-side device has a start control unit (14) that controls switching between the start state and the sleep state in the first control unit and the first transmission / reception unit,
The road surface state according to any one of claims 1 to 5, wherein the activation control unit switches the first control unit and the first transmission / reception unit from the activation state to the sleep state when the connection is disconnected. Discrimination device. - 前記起動制御部は、前記振動検出部の検出信号を入力し、該検出信号に基づいて前記車両の走行を検知すると、前記第1制御部と前記第1送受信部とを前記スリープ状態から前記起動状態に切り替える請求項6に記載の路面状態判別装置。 The start control unit receives the detection signal of the vibration detection unit, and detects the traveling of the vehicle based on the detection signal, and starts the first control unit and the first transmission / reception unit from the sleep state. The road surface state determination device according to claim 6, wherein the road surface state is switched to the state.
- 前記第2制御部は、前記起動スイッチがオンからオフに切り替えられてからも電力供給が継続されることで作動を続けて前記切断要求信号を送信し、該切断要求信号を送信してから電力供給が停止される請求項1ないし7のいずれか1つに記載の路面状態判別装置。 The second control unit continues operation by continuing power supply even after the start switch is switched from on to off, transmits the disconnection request signal, and transmits the disconnection request signal. The road surface condition judging device according to any one of claims 1 to 7, wherein the supply is stopped.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/841,488 US11091163B2 (en) | 2017-11-10 | 2020-04-06 | Road surface condition assessing device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-217113 | 2017-11-10 | ||
JP2017217113 | 2017-11-10 | ||
JP2018118775A JP2019089532A (en) | 2017-11-10 | 2018-06-22 | Road surface condition determining device |
JP2018-118775 | 2018-06-22 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/841,488 Continuation US11091163B2 (en) | 2017-11-10 | 2020-04-06 | Road surface condition assessing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019093437A1 true WO2019093437A1 (en) | 2019-05-16 |
Family
ID=66437891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/041545 WO2019093437A1 (en) | 2017-11-10 | 2018-11-08 | Road surface condition assessing device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019093437A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11376901B2 (en) * | 2018-03-02 | 2022-07-05 | Denso Corporation | Road surface condition determination device performing sensing based on different sensing conditions |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008162534A (en) * | 2006-12-29 | 2008-07-17 | Denso Corp | Wheel position detecting device, transmitter-receiver for detecting wheel position, and tire air pressure detecting device with the receiver and the wheel position detecting device |
JP2010234858A (en) * | 2009-03-30 | 2010-10-21 | Denso Corp | Tire air pressure monitoring device |
JP2016107833A (en) * | 2014-12-05 | 2016-06-20 | 株式会社ブリヂストン | Road surface state discrimination method |
JP2017520451A (en) * | 2014-06-19 | 2017-07-27 | サルティカ アライド ソリューションズ スンディリアンブルハド | Wireless tire monitoring system |
-
2018
- 2018-11-08 WO PCT/JP2018/041545 patent/WO2019093437A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008162534A (en) * | 2006-12-29 | 2008-07-17 | Denso Corp | Wheel position detecting device, transmitter-receiver for detecting wheel position, and tire air pressure detecting device with the receiver and the wheel position detecting device |
JP2010234858A (en) * | 2009-03-30 | 2010-10-21 | Denso Corp | Tire air pressure monitoring device |
JP2017520451A (en) * | 2014-06-19 | 2017-07-27 | サルティカ アライド ソリューションズ スンディリアンブルハド | Wireless tire monitoring system |
JP2016107833A (en) * | 2014-12-05 | 2016-06-20 | 株式会社ブリヂストン | Road surface state discrimination method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11376901B2 (en) * | 2018-03-02 | 2022-07-05 | Denso Corporation | Road surface condition determination device performing sensing based on different sensing conditions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019131568A1 (en) | Road surface condition assessing device | |
JP6614073B2 (en) | Road surface condition estimation device | |
JP6551274B2 (en) | Hydroplaning judgment device | |
US20190047556A1 (en) | Vehicle risk avoidance device | |
CN111615479B (en) | Tire system | |
WO2019074027A1 (en) | Road surface condition determining device, and tire system provided with same | |
CN110603180B (en) | Tire side device and tire device comprising same | |
JP2019081530A (en) | Road surface state estimation apparatus | |
WO2019103095A1 (en) | Road surface conditions determination device | |
US20190225227A1 (en) | Tire-mounted sensor and road surface condition estimation device including same | |
WO2019142869A1 (en) | Tire system | |
WO2019124482A1 (en) | Apparatus for determining road surface conditions | |
WO2019088024A1 (en) | Road surface state determination device and tire system including same | |
JP2019089532A (en) | Road surface condition determining device | |
JP2019151217A (en) | Road surface state determination device | |
WO2020004471A1 (en) | Road surface state determination device and tire system provided therewith | |
WO2019151415A1 (en) | Road surface condition determination device | |
WO2019093437A1 (en) | Road surface condition assessing device | |
JP2018026111A (en) | Tire-mounted sensor and chain regulation management system | |
WO2019142870A1 (en) | Tire system | |
WO2019131567A1 (en) | Road surface condition determination device | |
WO2018003693A1 (en) | Tire mounted sensor and road surface condition estimating device including same | |
WO2019088023A1 (en) | Road surface state estimation device | |
JP2019117181A (en) | Road surface state discriminating device | |
WO2018025530A1 (en) | Tire mount sensor and chain regulation management system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18875646 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18875646 Country of ref document: EP Kind code of ref document: A1 |