WO2019092885A1 - Solar cell module - Google Patents
Solar cell module Download PDFInfo
- Publication number
- WO2019092885A1 WO2019092885A1 PCT/JP2017/040758 JP2017040758W WO2019092885A1 WO 2019092885 A1 WO2019092885 A1 WO 2019092885A1 JP 2017040758 W JP2017040758 W JP 2017040758W WO 2019092885 A1 WO2019092885 A1 WO 2019092885A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- receiving surface
- light receiving
- tab
- solar cell
- electrode
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims abstract description 57
- 239000000463 material Substances 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims description 35
- 229910000679 solder Inorganic materials 0.000 claims description 29
- 239000004065 semiconductor Substances 0.000 claims description 24
- 239000010410 layer Substances 0.000 description 21
- 230000000694 effects Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 238000004088 simulation Methods 0.000 description 13
- 238000009792 diffusion process Methods 0.000 description 12
- 239000003566 sealing material Substances 0.000 description 12
- 239000012535 impurity Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000003667 anti-reflective effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a solar cell module that converts light energy into electrical energy.
- a solar battery cell having an impurity diffusion layer uses, for example, a p-type silicon substrate as a base material, and a concavo-convex shape for enhancing the light collection ratio is formed on the light receiving surface side of the p-type silicon substrate.
- An antireflective film made of a silicon nitride film is formed.
- a grid electrode and a bus electrode are formed on the antireflection film.
- a back surface current collection electrode and a back surface contact electrode are often formed as a back surface side current collection electrode.
- the back surface current collection electrode is provided to form a back surface field (BSF) for improving open circuit voltage and short circuit current, and to collect current on the back surface side.
- BSF back surface field
- the back surface contact electrode is provided in order to take out the holes collected by the back surface current collection electrode to the outside and to make contact with the external electrode.
- a wiring material called a tab wire is connected to each of the bus electrode and the back surface contact electrode in order to take out the power generated by photoelectric conversion to the outside.
- a plurality of solar cells are electrically connected in series or in series and parallel to form a solar cell module.
- electrodes of different polarities in adjacent solar cells are electrically connected alternately by tab lines.
- Patent Document 1 discloses a solar cell module in which a plurality of solar cell elements electrically connected to each other by inner leads are disposed between the light transmitting panel and the back surface protective material.
- the solar cell element has a light receiving surface electrode including three surface bus bar electrodes for output extraction and a plurality of surface finger electrodes orthogonal to the surface bus bar electrodes on the light receiving surface side of the semiconductor substrate. Three back bus bar electrodes are provided on the non-light receiving surface side of the semiconductor substrate.
- This invention is made in view of the above, Comprising: It aims at obtaining the solar cell module which can suppress the fall of the output resulting from the tab wire and bus electrode which connect a several photovoltaic cell.
- the solar cell module according to the present invention is electrically connected by a tab wire between the light-receiving side protection component and the back-side protection component having translucency
- the plurality of solar cells are arranged.
- the solar battery cell includes a semiconductor substrate having a pn junction, a plurality of grid electrodes extending in parallel with a direction orthogonal to the connection direction of the solar cells by the tab line on the light receiving surface of the semiconductor substrate, and a plurality of grid electrodes on the light receiving surface.
- a light receiving surface electrode having a plurality of light receiving surface bus electrodes connected and extending along a connecting direction, and a back surface electrode extending along the connecting direction on the back surface of the semiconductor substrate facing the opposite side to the light receiving surface.
- the tab wire has a round conductor as a base material and has the same diameter as the width of the light receiving surface bus electrode.
- One tab line is connected to one light receiving surface bus electrode.
- the tab wire is provided in the same number as the light receiving surface bus electrode, extends along the connection direction, and is connected to the upper surface of the light receiving surface bus electrode of one of the two adjacent solar battery cells, Connected to the back electrode of the solar cell.
- the solar battery cell has a square shape in which the length of one side is in the range of 150 mm or more and 160 mm or less, and the sheet resistance of the light receiving surface is 70 ⁇ / sq. 90 ⁇ / sq.
- light receiving surface bus electrodes having a width of 0.5 mm are provided in a range of 5 or more and 15 or less.
- the solar cell module concerning this invention has an effect that the fall of the output resulting from the tab wire and bus electrode which connect a several photovoltaic cell can be suppressed.
- the perspective view which looked at the solar cell module concerning Embodiment 1 of this invention from the light-receiving surface side The disassembled perspective view which looked at the solar cell module concerning Embodiment 1 of this invention from the light-receiving surface side Principal part sectional view of solar cell module according to Embodiment 1 of the present invention
- the perspective view which looked at the solar cell array concerning Embodiment 1 of the present invention from the back side The principal part perspective view which looked at the solar cell string concerning Embodiment 1 of this invention from the light-receiving surface side
- the top view which looked at the photovoltaic cell concerning Embodiment 1 of this invention from the light-receiving surface side The top view which looked at the photovoltaic cell concerning Embodiment 1 of this invention from the back surface side which turns to the light receiving surface side and the opposite side
- the flowchart which shows the procedure of the manufacturing method of the solar cell module which depends on the form 1 of execution of this invention Schematic diagram showing a tab wire bonding step of electrically bonding the light receiving surface electrode and the back surface electrode to the tab wire according to the first embodiment of the present invention Principal part sectional view schematically showing the periphery
- FIG. 1 is a perspective view of a solar cell module 100 according to a first embodiment of the present invention as viewed from a light receiving surface side.
- FIG. 2 is an exploded perspective view of the solar cell module 100 according to the first embodiment of the present invention as viewed from the light receiving surface side.
- FIG. 3 is a cross-sectional view of main parts of the solar cell module 100 according to the first embodiment of the present invention.
- FIG. 4 is a perspective view of the solar cell array 70 according to the first embodiment of the present invention as viewed from the back side.
- FIG. 5 is a perspective view of an essential part of the solar cell string 50 according to the first embodiment of the present invention as viewed from the light receiving surface side.
- FIG. 6 is a perspective view of an essential part of the solar cell string 50 according to the first embodiment of the present invention as viewed from the back side.
- FIG. 7 is a plan view of the solar battery cell 10 according to the first embodiment of the present invention as viewed from the light receiving surface side.
- FIG. 8 is a plan view of the solar battery cell 10 according to the first embodiment of the present invention as viewed from the back surface side facing away from the light receiving surface side.
- an example of the joining position of the tab wire 20 is indicated by a broken line.
- the light receiving surface side of the solar cell array 70 is covered with the light receiving surface side sealing member 33 and the light receiving surface protection component 31.
- the back surface side of the array 70 facing the opposite side to the light receiving surface is covered with the back surface side sealing material 34 and the back surface protection component 32, and the outer peripheral edge is surrounded by the reinforcing frame 40.
- the solar cell array 70 is configured such that a plurality of solar cell strings 50 are electrically and mechanically connected in series or in parallel by a horizontal tab line 25 and an output tab line for collecting collected power. It is done.
- the solar cell array 70 outputs power from the output tab line to the external interface via the terminal box 41.
- the solar cell string 50 is configured by connecting a plurality of solar cells 10 in a rectangular shape arranged adjacent to each other in series electrically and mechanically at the tab wire 20. ing. As shown in FIGS. 3 to 6, the plurality of solar cells 10 are connected in series in the X direction, which is the first direction, by the tab wires 20. The first direction is the connection direction of the plurality of solar cells 10 connected by the tab wire 20.
- the solar battery cell 10 has a light receiving surface of a semiconductor substrate which is a first main surface of the semiconductor substrate 11 having a rectangular shape and formed of a p-type single crystal silicon substrate having an n-type impurity diffusion layer formed and a pn junction formed.
- a concavo-convex shape is formed by texture etching.
- the outer shape of the semiconductor substrate 11 has a square shape in the surface direction of the semiconductor substrate 11.
- the n-type impurity diffusion layer is formed on the light receiving surface 11A side of the semiconductor substrate.
- a silicon nitride film which is an antireflective film, is formed on the light receiving surface 11A of the semiconductor substrate.
- the uneven shape and the antireflective film are not shown.
- the light receiving surface electrode 12 is formed on the light receiving surface 11A side of the semiconductor substrate
- the back surface electrode 13 is formed on the back surface 11B side of the semiconductor substrate which is the second main surface of the semiconductor substrate 11.
- the solar battery cell 10 has a square shape with a side length of about 150 mm or more and about 160 mm or less, and in the first embodiment, the side length is 156 mm.
- the semiconductor substrate 11 is not limited to a p-type single crystal silicon substrate, and an n-type single crystal silicon, a polycrystalline silicon substrate, or the like is also applicable.
- the sheet resistance of the n-type impurity diffusion layer which is the sheet resistance of the light receiving surface, is 70 ⁇ / sq. 90 ⁇ / sq.
- the following n-type impurity diffusion layers are formed in the surface layer of the semiconductor substrate 11.
- the solar battery cell On the light receiving surface 10A side of the solar battery cell which is the first surface of the solar battery cell 10, as shown in FIGS. 5 and 7, it is a grid electrode of a light receiving surface collecting electrode for collecting electrons generated by light-electron conversion.
- a plurality of light receiving surface grid electrodes 12G and light receiving surface bus electrodes 12B which are bus electrodes of light receiving surface bonding electrodes for collecting the electrons collected by the light receiving surface grid electrodes 12G and bonding the tab wires 20 are formed.
- the width of the light receiving surface bus electrode 12B is thinned to the same width as the width of a tab line 20 described later.
- the width of the light receiving surface bus electrode 12B is the same as the width of the tab wire 20, and the tab wire 20 is connected to the correct position on the light receiving surface bus electrode 12B, whereby the tab wire 20 protrudes from the light receiving surface bus electrode 12B. It is possible to reduce shadow loss caused by
- the light receiving surface grid electrode 12G is an electrode for collecting a photocurrent, and in order to collect the photocurrent while preventing the sunlight from reaching the inside of the solar battery cell 10, a plurality of thin linear electrodes are provided. This book is formed in parallel.
- the light receiving surface bus electrodes 12B are provided in six lines in a line along substantially the entire length of the solar cell 10 along the first direction which is the connecting direction of the solar cell 10. ing. That is, the light receiving surface bus electrodes 12B are provided in connection with all the light receiving surface grid electrodes 12G along the direction orthogonal to the light receiving surface grid electrode 12G.
- FIGS. 1 and 2 show the case where the light receiving surface bus electrodes 12B are provided in two rows.
- the light receiving surface bus electrode 12 ⁇ / b> B is an electrode provided to electrically bond with the tab wire 20.
- the light receiving surface bus electrode 12B and the light receiving surface grid electrode 12G are formed by applying and baking a conductive paste having metal particles in a desired range.
- An electrode 13 b is formed to constitute a back electrode 13.
- the back surface current collection electrode 13a is an electrode provided to form a back surface field layer (BSF) (not shown) for improving the open circuit voltage and the short circuit current, and to collect current on the back surface side. Cover almost the entire area of 10B.
- BSF back surface field layer
- the back surface bonding electrode 13b is an electrode provided for taking out the holes collected by the back surface current collecting electrode 13a to the outside and making a contact with the external electrode. That is, the back surface bonding electrode 13 b is an electrode provided for electrically bonding to the tab wire 20.
- the back surface contact electrode 13 b is provided along the first direction, which is the connection direction of the solar cells 10, in the same manner as the light receiving surface bus electrode 12 B.
- the back surface bonding electrode 13 b is disposed at a position facing the light receiving surface bus electrode 12 B with the semiconductor substrate 11 interposed therebetween.
- the back surface contact electrodes 13 b according to the first embodiment are arranged in six rows in the shape of a stepping stone along substantially the entire length of the solar battery cell 10 along the first direction which is the connection direction of the solar battery cells 10.
- the back surface current collection electrode 13a and the back surface junction electrode 13b are formed by apply
- FIG. 9 is an exploded perspective view for explaining the connection between the solar cell 10 and the tab wire 20 in the solar cell module 100 according to the first embodiment of the present invention, and is an exploded perspective view seen from the light receiving surface side.
- FIG. 10 is an exploded perspective view for explaining the connection between the solar cell 10 and the tab wire 20 in the solar cell module 100 according to the first embodiment of the present invention, and is an exploded perspective view seen from the back side.
- the light receiving surface 10A of the solar cell in one solar cell 10 of two adjacent solar cells 10 is adjacent
- the back surface 10 ⁇ / b> B of the other solar cell among the two solar cells 10 to be matched is alternately connected by six tab lines 20.
- the back surface side connection region 23b is soldered to the back surface bonding electrode 13b formed on the back surface 10B of the solar battery cell, and the light receiving surface is formed on the light receiving surface 10A of the solar battery cell in the adjacent solar battery cell 10.
- the light receiving surface side connection area 23a is soldered to the bus electrode 12B.
- the tab line 20 connected to the light receiving surface bus electrode 12B formed on the light receiving surface 10A of the solar battery cell 10 in the solar battery cell 10 is formed on the back surface 10B of the solar battery cell in the adjacent solar battery cell 10
- the plurality of solar cells 10 are connected in series by being connected to the back surface contact electrode 13 b.
- the back surface bonding electrode 13 b is disposed at a position facing the light receiving surface bus electrode 12 B with the semiconductor substrate 11 interposed therebetween. Therefore, in one solar battery cell 10, the back surface side connection region 23b of the tab wire 20 bonded to the back surface bonding electrode 13b and the light receiving surface side connection region 23a of the tab wire 20 bonded to the light receiving surface bus electrode 12B are However, at least a part of the regions is disposed opposite to each other.
- the tab wire 20 is between the light receiving surface side connection region 23 a and the back surface side connection region 23 b in order to connect the light receiving surface bus electrode 12 B of the solar battery cell 10 and the back surface bonding electrode 13 b of the adjacent solar battery cell 10. And an inter-cell region 24 which is a bend.
- the tab lines 20 used in the solar cell string 50 all have the same total length, that is, the total length of the light receiving surface side connection region 23a, the back surface side connection region 23b, and the inter-cell region 24. .
- the tab wire 20 as a wiring material for connecting the solar battery cells 10 to each other is made of a conductor having a round cross section, and is made of a round wire of a metal material of good conductor such as copper. Solder is coated on the surface of the tab wire 20. Details of the tab line 20 according to the first embodiment will be described later. In addition, for convenience, in FIG. 1 and FIG. 2, a state in which two adjacent solar battery cells 10 are connected by two tab lines 20 is shown.
- thermoplastic synthetic resin mainly composed of a thermoplastic resin such as ethylene vinyl acetate (EVA) or polyvinyl butyral (PVB) Materials are preferred.
- EVA ethylene vinyl acetate
- PVB polyvinyl butyral
- the light receiving surface protection component 31 a material having light transmission and excellent in moisture resistance, weather resistance, hydrolysis resistance, and insulation is used, and in addition to a highly rigid light transmission substrate such as a glass substrate, Resin materials, such as a fluorine resin sheet and a polyethylene terephthalate (Polyethylene Terephthalate: PET) sheet, are used.
- Resin materials such as a fluorine resin sheet and a polyethylene terephthalate (Polyethylene Terephthalate: PET) sheet, are used.
- the back surface protection component 32 a material excellent in moisture resistance, weather resistance, hydrolysis resistance and insulation is used, and a resin material such as a fluorine resin sheet or a polyethylene terephthalate (PET) sheet on which alumina or silica is vapor deposited The back sheet or back film is used.
- a resin material such as a fluorine resin sheet or a polyethylene terephthalate (PET) sheet on which alumina or silica is vapor deposited The back sheet or back film is used.
- FIG. 11 is a flowchart showing the procedure of the method of manufacturing the solar cell module 100 according to the first embodiment of the present invention.
- a solar battery cell 10 is formed.
- a p-type single crystal silicon substrate is used as a starting material, and in order to increase the light collection rate, a concavo-convex shape is formed by texture etching on the surface to be the light receiving surface.
- an n-type impurity diffusion layer (not shown) is formed on the light receiving surface side of the p-type single crystal silicon substrate by diffusion to form a pn junction.
- the sheet resistance of the n-type impurity diffusion layer which is the sheet resistance of the light receiving surface, is 70 ⁇ / sq. 90 ⁇ / sq. It will be about the following.
- a silicon nitride film as an antireflective film is formed on the n-type impurity diffusion layer.
- the light receiving surface electrode 12 composed of the light receiving surface bus electrode 12B and the light receiving surface grid electrode 12G is formed on the light receiving surface 10A of the solar battery cell by screen printing and firing.
- the formation method of the light-receiving surface electrode 12 is not limited to screen printing and baking.
- a back surface current collecting electrode 13a and a back surface bonding electrode 13b are formed by screen printing and firing.
- the formation method of the photovoltaic cell 10 mentioned above is not limited, It can carry out by a well-known technique.
- the width of the light-receiving surface bus electrode 12B is formed to be the same as the width of the tab line 20 which is a round line.
- the tab wire 20 is connected to the photovoltaic cell 10 in step S20. That is, the back surface side connection region 23b of the tab wire 20 is disposed on the back surface bonding electrode 13b formed on the back surface 10B of the solar battery cell, and is formed on the light receiving surface 10A of the solar battery cell in the adjacent solar battery cell 10.
- the light receiving surface side connection area 23a of the tab line 20 is disposed on the light receiving surface bus electrode 12B.
- the solder coated on the tab wire 20 is melted by heating and then solidified. Thereby, solder bonding is performed between the back surface bonding electrode 13b and the back surface side connection region 23b, and the light receiving surface bus electrode 12B and the light receiving surface side connection region 23a, and the tab wire 20 electrically and mechanically Connected
- FIG. 12 is a schematic view showing a tab wire bonding step of electrically bonding the light receiving surface electrode 12 and the back surface electrode 13 to the tab wire 20 according to the first embodiment of the present invention.
- the back surface side connection region 23b of the tab wire 20 is overlapped on the back surface bonding electrode 13b of the solar battery cell 10, and the light receiving surface bus electrode 12B of the adjacent solar battery cell 10 not shown
- the light receiving surface side connection area 23 a of the line 20 is overlapped.
- by heating the tab wire 20 with the heat tool 200 electrical connection and mechanical connection between the tab wire 20 and the back surface bonding electrode 13b, and electrical connection and machine between the tab wire 20 and the light receiving surface bus electrode 12B. Connection can be obtained simultaneously.
- the solder coated on the surface of the tab wire 20 is melted. Thereafter, the tab wire 20 is cooled to solidify the solder, and the tab wire 20 and the light receiving surface bus electrode 12B are soldered via the solder, and the tab wire 20 and the back surface bonding electrode 13b are soldered via the solder. It is joined.
- the tab wire 20 may be bonded to the solar cell 10 by another method such as thermocompression bonding or ultrasonic welding.
- the bonding step of the tab wire 20 on the back surface side and the bonding step of the tab wire 20 on the light receiving surface side may be divided into two steps.
- the connection process of the above tab wire 20 is repeated, and several solar cell strings 50 in which the desired number of solar cells 10 were connected in series are formed.
- the solar cell array 70 is formed by connecting the plurality of solar cell strings 50 obtained as described above with the horizontal tab lines 25.
- the solar cell array 70 is formed by connecting a plurality of solar cell strings 50 arranged in parallel in series using the bus bar as the horizontal tab line 25 and installing the bus bar as an output tab line for extracting power. .
- step S30 the light receiving surface sealing material 33 and the light receiving surface protection component 31 are disposed on the light receiving surface side of the solar cell array 70 in the arrangement shown in FIG.
- the back side sealing material 34 and the back side protection component 32 are disposed to form a laminate.
- step S40 the laminate is mounted on a laminating apparatus, and heat treatment and lamination treatment are performed for about 30 minutes, for example, at a temperature of 140 ° C. or more and 160 ° C. or less.
- the solar cell array 70 and the light receiving surface protection component 31 are bonded by the light receiving surface side sealing material 33
- the solar cell array 70 and the back surface protective component 32 are bonded by the back surface side sealing material 34.
- the component part of a laminated body is integrated and the solar cell module 100 is obtained.
- the back junction electrode 13b is provided in the shape of a stepping stone along the first direction over substantially the entire length of the solar cell 10, but the back junction electrode 13b is in the first direction.
- the back junction electrode 13b is in the first direction.
- the entire length of the solar cell 10 may be provided continuously in the form of a strip or line.
- FIG. 13 is a cross-sectional view of relevant parts schematically illustrating the periphery of the tab wire 20 in the solar cell module 100 according to the first embodiment of the present invention.
- FIG. 14 is a cross-sectional view of main parts schematically showing the periphery of the tab wire in the solar cell module using the rectangular tab wire. Arrows in FIG. 13 and FIG. 14 indicate the optical path of sunlight incident on the solar battery cell.
- the tab wire 20 extends in the connecting direction of the solar cells 10, that is, the first direction when connected to the solar cells 10, and the light receiving of one of the two adjacent solar cells 10 is received. While being connected with the upper surface of the surface bus electrode 12B, it is connected with the upper surface of the back surface contact electrode 13b which is the back surface electrode of the other solar cell 10.
- a round wire of a good conductor represented by a metal material such as copper is used as a base material, and a solder is coated on the surface of the round wire.
- the tab wire 20 is plated with solder on the surface of the copper round wire conductor 20a, and a thin layer 20b of solder is formed on the entire surface of the round wire conductor 20a. Coating of the solder on the tab wire 20 is preferably performed by plating. By plating the solder on the surface of the tab wire 20, the solder can be coated on the surface of the tab wire 20 reliably and uniformly.
- the width of the light-receiving surface bus electrode 12B is the same as the diameter ⁇ of the tab wire or smaller than the width of the tab wire 20, twice the thickness m of the thin layer of solder and the diameter of the round conductor The total dimension of ⁇ a and.
- the thickness m of the thin layer of solder is very thin compared to the diameter ⁇ a of the round conductor and is a negligible level.
- the flat tab wire 300 having a flat shape is solder-plated on the surface of a flat conductor 300 a made of copper, and a thin layer 300 b of solder is formed on the entire surface of the flat conductor 300 a.
- the width of the light receiving surface bus electrode 12B is the same as the width w of the flat tab wire, and is the total size of twice the thickness m of the thin solder layer and the width wa of the flat conductor. .
- the thickness of the rectangular conductor 300a is represented by the thickness t of the rectangular conductor. However, the thickness m of the thin layer of solder is very thin compared to the width wa of the flat conductor and can be ignored.
- the resistive loss at the tab wire depends on the cross-sectional area of the base material of the tab wire. Therefore, in the solar cell module 100 shown in FIG. 13, the resistance loss at the tab wire 20 depends on the cross-sectional area of the copper round wire conductor 20 a. Moreover, in the solar cell module shown in FIG. 14 using a rectangular tab wire, the resistance loss at the rectangular tab wire 300 depends on the cross-sectional area of the copper rectangular conductor 300a.
- calculation of the cross-sectional area of the tab line 20 shown in FIG. 13 and the cross-sectional area of the flat tab line 300 shown in FIG. 14 will be described.
- the light receiving surface coverage which is the ratio of the tab line covering the light receiving surface of the solar battery cell.
- the diameter ⁇ of the tab wire 20 of the tab wire 20 can be enlarged to easily enlarge the cross-sectional area, the resistance loss of the tab wire 20 can be reduced, and the output can be improved.
- the 2nd effect of using the tab line 20 of a round line is demonstrated.
- the resistance loss of the tab wire 20 and that of the flat tab wire 300 are equal, while the light blocking loss due to the shadow of the tab wire, that is, the so-called shadow loss is different.
- the shadow loss due to one tab wire is tabbed Considering the width of the line shadow, the shadow loss L1 due to one tab line 20 is 0.5 mm.
- the shadow loss L2 by one flat rectangular tab line 300 is 0.8 mm.
- the thickness m of the thin layer of solder in the tab wire 20 and the flat tab wire 300 is ignored here because it is very thin.
- the solar cell module 100 using the tab wire 20 can reduce the shadow loss as compared to a solar cell module using the same number of flat tab wires 300 as the tab wire 20. Therefore, the solar cell module 100 reduces the shadow loss and increases the generated current as compared with the solar cell module using the same number of flat tab wires 300 having the same level of resistance loss as the tab wires 20, Output can be improved.
- the cross-sectional shape of the tab wire 20 is circular, the sunlight hitting the tab wire 20 becomes reflected light that is reflected in various directions, and the reflected light enters the solar battery cell 10 It contributes to the improvement of photoelectric conversion efficiency. That is, in the solar cell module 100, since the tab wire 20 is a round wire, it diffusely reflects on the surface on the light receiving surface protection component 31 side of the tab wire 20, and the surface on the solar battery cell 10 side of the light reception surface protective component 31 The light amount of the reflected light RL incident on the inner surface 31a with an incident angle is increased. The reflected light RL is diffusely reflected by the inner surface 31 a of the light receiving surface protection component 31 and enters the solar battery cell 10.
- the solar cell module 100 using the tab wire 20 has the same number of flat tab wires 300 as the tab wires 20 due to the increase of the diffuse reflection on the inner surface 31a of the light receiving surface protection component 31 as described above.
- an increase effect of light uptake into the solar cell 10 can be expected to be about 25%.
- the effect of increasing the light uptake into the solar battery cell 10 changes.
- the flat tab wire 300 needs a rolling process such as round wire crushing to process a commercially available round wire into a flat angle when producing the flat conductor 300a which is a flat copper wire. Moreover, when using metal foil for a tab wire, the further rolling process is needed. On the other hand, in the tab wire 20, such a rolling process is unnecessary, and the processing cost at the time of manufacturing the tab wire 20 can be reduced.
- the round wire shape of the round wire conductor 20a of the tab wire 20 can be easily processed into any desired thickness by changing the diameter of the die when producing the round wire conductor 20a by die wire drawing. .
- the tab wire 20 has a round wire shape, high speed random winding on the tab bobbin around which the tab wire is wound can be performed, and the manufacturing process of the tab wire can be simplified and the time can be shortened. Cost can be reduced.
- the output can be improved while the manufacturing cost is reduced by the first to fourth effects described above.
- the tab wire When the tab wire is bonded to the light receiving surface bus electrode 12B by a method using no solder, such as thermocompression bonding or ultrasonic welding, only the round conductor 20a can be used as the tab wire 20.
- the width of the light receiving surface bus electrode 12B is the same as the diameter of the tab line 20, and is the diameter of the round conductor 20a. Further, since the resistance loss at the tab wire depends on the cross-sectional area of the copper material of the base material, the above calculation also holds in this case.
- the influence of the number of tab lines on the output of the solar battery cell and the solar cell module is determined by the solar cell module 100 using the tab line 20 and the tab line 20. It demonstrates based on the result of having simulated the characteristic about the solar cell module which has the same structure as the solar cell module 100 except having used said flat tab wire 300 instead.
- the simulation of the characteristics of the solar cell and the solar cell module was performed on the solar cell module in which the types of tab lines and the number of tab lines were changed in the configuration of the solar cell module 100 according to the first embodiment described above.
- the solar battery array 70 is configured such that 40 solar battery cells 10 are electrically connected in series.
- the solar battery cell 10 was a 156 mm square solar battery cell with a thickness of 200 ⁇ m.
- the sheet resistance of the n-type impurity diffusion layer, which is the sheet resistance of the light receiving surface, is 80 ⁇ / sq.
- the number of light receiving surface grid electrodes was 100, and the resistance of the light receiving surface grid electrode 12G was 0.6 ⁇ / cm.
- the light receiving surface protection component 31 was a glass substrate, the light receiving surface side sealing material 33 and the back surface side sealing material 34 were EVA, and the back surface protection component 32 was a back film made of a PET sheet.
- FIG. 15 is a diagram showing the types of tab lines and the number of tab lines of the solar battery cell whose characteristics have been simulated, and the shadow loss (amperes: A) at the tab lines.
- the shadow loss indicates a reduction value of the short circuit current Isc (A) due to the tab wire.
- the short circuit current Isc (A) due to the tab wire is a short circuit current value of the solar battery cell reduced by forming the tab wire and the light receiving surface bus electrode.
- FIG. 16 is a characteristic graph of FIG.
- a round wire 0.3 mm ⁇ a is a round wire tab wire having a diameter ⁇ a of 0.3 mm
- a round wire 0.4 mm ⁇ a is a round wire tab having a diameter ⁇ a of 0.4 mm
- a round wire 0.5 mm ⁇ a indicates a round wire tab wire having a diameter ⁇ a of the round wire conductor of 0.5 mm.
- Flat angle 0.5wa ⁇ 0.25t is a flat tab wire whose width wa of flat conductor is 0.5 mm and thickness t of flat conductor is 0.25 mm
- flat block 0.8wa ⁇ 0.25 t is width wa of flat conductor.
- the flat tab wire which is 0.8 mm and thickness t of a flat conductor is 0.25 mm is shown.
- the thickness of the solder plating is neglected here because the thickness of the solder plating is very thin compared to the diameter ⁇ a of the round conductor or the width wa of the flat conductor and the influence of the solder plating on the shadow loss is small.
- the shadow loss increases, the light receiving surface coverage increases and the power generation area of the solar battery cell decreases, and as a result, the absolute amount of electrons that can be extracted from the solar battery cell decreases, and the short circuit current value decreases. . Then, as the solar battery cell is increased in current, the reduction amount of the short circuit current value increases even if the light receiving surface coverage is the same.
- the round wire tab wire the shadow loss in each solar battery cell can be suppressed, so the shadow loss of the entire solar battery module can be suppressed, the decrease in output can be suppressed, and high output can be realized.
- FIG. 17 shows the types of tab lines and the number of tab lines of the solar cell module whose characteristics were simulated, and the fill factor (F.F., curve factor) that is an index of the output of the solar cell module.
- FIG. FIG. 18 is a characteristic graph of FIG.
- One light receiving surface bus electrode 12B corresponds to one tab line, and when the number of tab lines increases, the number of light receiving surface bus electrodes 12B also increases.
- the effective current transfer distance from the light receiving surface grid electrode 12G which is a thin wire having a large electrical resistance, to the light receiving surface bus electrode 12B becomes short, so the resistance at the light receiving surface grid electrode 12G is reduced.
- the loss is reduced, and the resistance loss at the time of extracting the current from the solar battery cell is reduced, so that it is possible to reduce the current collection loss and achieve the high photoelectric conversion efficiency of the solar battery module.
- This high photoelectric conversion efficiency is common to both solar cell modules using round wire tab wires and solar cell modules using flat tab wires. Also, as the cross-sectional area of the tab wire is larger, the resistance loss at the tab wire is reduced and the fill factor is increased.
- FIG. 19 is a diagram showing an output loss generated when producing a solar cell module from solar cells.
- FIG. 19 the tendency of the characteristics shown in FIG. 15 to FIG. 18 and the third effect of the above-mentioned round tab wire 20 which is an optical gain when using a round tab wire is taken into consideration,
- the power loss (%) generated when producing a solar cell module from a battery cell is shown together with the power ratio (%).
- the output loss (%) is indicated by a number in parentheses.
- the output ratio is the short circuit current Isc of the solar cell module F.F. F.
- the short circuit current Isc of the solar cell module when assuming that there is no output loss that occurs when manufacturing the solar cell module from the solar cells with a value multiplied by. F.
- the short-circuit current Isc of the solar cell module F. F. The value obtained by multiplying the current value can know the current level at the maximum power output at which the solar cell module generates the maximum power, assuming that the open circuit voltage does not change.
- the output loss generated when manufacturing a solar cell module from a solar cell is referred to as a CTM (Cell to Module) loss.
- FIG. 20 is a characteristic graph of FIG. In FIG. 19, the simulation is performed on the assumption that the short circuit current Isc is 9A.
- the CTM loss is used as an index that represents the difference between the photoelectric conversion efficiency of the solar cell and the photoelectric conversion efficiency of the solar cell module, and is calculated here by the following equation. Further, in FIG. 19 and FIG. 20, the larger the numerical value, the smaller the CTM loss, and the smaller the numerical value, the more the CTM loss.
- CTM loss does not always continue to increase as the number of tab lines increases. From FIGS. 19 and 20, it can be seen that when the number of tab lines increases, the CTM loss in the case of the round wire 0.5 mm ⁇ a is the smallest, and then the CTM loss in the case of the round wire 0.4 mm ⁇ a is smaller.
- the CTM loss of a solar cell module having three surface bus bar electrodes of the prior art is around 3%.
- light receiving surface bus electrodes having a width of 0.4 mm are juxtaposed in a range of 10 to 15 or a light receiving surface having a width of 0.5 mm.
- the bus electrodes are arranged in parallel in a range of 5 or more and 15 or less.
- the thickness of the solder plating is very thin compared to the diameter ⁇ a of the round conductor or the width wa of the flat conductor, so the characteristics of the solar cell module tend to be the same as above even when the thickness of the solder plating is considered.
- the diameter ⁇ a of the round conductor and the width wa of the rectangular conductor can be treated as the diameter of the solder-plated tab wire 20. Therefore, in the solar cell module 100 according to the first embodiment, the tab wire 20 having a tab wire diameter ⁇ of 0.4 mm ⁇ a is used in a range of 10 or more and 15 or less, or the tab wire diameter ⁇ is round.
- the sheet resistance of the n-type impurity diffusion layer which is the sheet resistance of the light receiving surface
- the sheet resistance of the light receiving surface is 70 ⁇ / sq within the range of 150 mm to 160 mm square of the square external dimensions of the square solar battery cell used in the above simulation. . 90 ⁇ / sq.
- the same characteristics as described above can be obtained even when the conditions are arbitrarily changed in the following range and the electrical resistance of the light receiving surface grid electrode in the range of 0.45 ⁇ / cm to 0.7 ⁇ / cm. These conditions are preferable conditions for achieving a high practical output.
- the characteristics of the solar battery cell and the solar battery module are as shown in FIG. It is confirmed by the inventor's simulation that the same tendency as the characteristics shown in FIG.
- the distance between adjacent light receiving surface grid electrodes is in the range of 1 mm or more and 2 mm or less, and the number of light receiving surface grid electrodes is in the range of 75 or more and 150 or less Even when the conditions are arbitrarily changed, the same characteristics as described above can be obtained.
- the outer dimensions of the solar cell are in the range of 150 mm to 160 mm square, and the sheet resistance of the n-type impurity diffusion layer, which is the sheet resistance of the light receiving surface, is 70 ⁇ / sq. 90 ⁇ / sq.
- the electrical resistance of the light receiving surface grid electrode is in the range of 0.45 ⁇ / cm to 0.7 ⁇ / cm, there are suitable conditions for the wire diameter and the number of tab wires 20.
- a tab wire 20 having a tab wire diameter ⁇ of 0.4 mm ⁇ a in a range of 10 to 15 or a tab wire 20 of a tab wire diameter ⁇ of 0.5 mm ⁇ a Thinning the width of the light receiving surface bus electrode to the width of the tab wire 20 or less by using in the range of 5 or more and 15 or less, an appropriate condition of the wire diameter of the tab wire 20 and the number that can suppress CTM loss. You can say that.
- the solar cell module 100 it is possible to suppress an increase in light blocking loss due to the shadow of the tab wire 20 connecting the plurality of solar cells 10 and the light receiving surface bus electrode 12B.
- the resistance loss at 12 G can be reduced to reduce the resistance loss at the time of taking out the current from the solar battery cell 10, and the solar cell module can be obtained in which cost reduction and high photoelectric conversion efficiency are realized.
- the resistance loss at the light receiving surface grid electrode decreases and the output improves. That is, in view of the characteristics of the solar battery cell, it is preferable that the number of tab lines is large, but when the tab lines become thin, manufacturing of the solar cell module becomes difficult. For this reason, in practice, the number of tab wires is selected in view of the characteristics of the solar cell module and the manufacturing technology of the solar cell module. That is, in the prior art, it was generally understood that the characteristic of the solar cell module is improved by increasing the number by narrowing the tab lines.
- the diffuse reflection effect of sunlight incident on the solar cell module by the tab wire of the round wire and the reflected light diffusely reflected by the tab wire of the round wire is on the solar cell side of the light receiving surface protection component
- the inventor of the present invention aims to suppress the decrease in the output of the solar cell module due to the current collection loss of the generated current generated by the solar cell module by sunlight, that is, the solar cell module caused by the tab wire and the light receiving surface bus electrode
- the above simulation has found that there is an appropriate number of tab lines as shown in FIG. 19 and FIG.
- the configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.
- SYMBOLS 10 solar battery cell light receiving surface of 10 A solar battery cell, back surface of 10 B solar battery cell, 11 semiconductor substrate, light receiving surface of 11 A semiconductor substrate, back surface of 11 B semiconductor substrate, 12 light receiving surface electrode, 12 B light receiving surface bus electrode, 12 G light receiving Surface grid electrode, 13 back surface electrode, 13a back surface collecting electrode, 13b back surface contact electrode, 20 tab wire, 20a round wire conductor, 20b, thin layer of solder 300b, 300a light receiving surface side connection region, 23b rear surface side connection region, 24 Inter-cell area, 25 horizontal tab line, 31 light receiving surface protection component, 31a inner surface, 32 back surface protection component, 33 light receiving surface sealing material, 34 rear surface sealing material, 40 frame, 41 terminal box, 50 solar cell string, 70 solar array, 100 solar modules, 200 heat tools, 30 Flat tab wire, 300a flat conductor, L1, L2 shadow loss, m thin solder layer thickness, r round conductor radius, RL reflected light, S1 round conductor cross section, S2 flat conductor cross section
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Photovoltaic Devices (AREA)
Abstract
This solar cell module comprises a plurality of solar battery cells connected by means of tab lines (20) each comprising a round wire conductor as a base material and having a diameter which is the same as the width of light-receiving surface bus electrodes (12B), the tab lines (20) being connected to the light-receiving surface bus electrodes (12B) on a one-to-one basis. The tab lines (20) extend in a direction in which the solar battery cells are linked by means of the tab lines. The tab lines (20) are connected to an upper surface of the light-receiving surface bus electrodes (12B) of one solar battery cell of two solar battery cells adjacent to each other, and are connected to back-surface electrodes of the other solar battery cell. Under the condition that the solar battery cells have a square shape with each side having a length of not less than 150 mm and not more than 160 mm, the light-receiving surface has a sheet resistance in a range of not less than 70 Ω/sq. and not more than 90 Ω/sq., and grid electrodes have a resistance value of not less than 0.45 Ω/cm and not more than 0.7 Ω/cm, 10 or more and 15 or less light-receiving surface bus electrodes (12B) having a width of 0.4 mm are arranged side by side, or five or more and 15 or less light-receiving surface bus electrodes (12B) having a width of 0.5 mm are arranged side by side.
Description
本発明は、光エネルギーを電気エネルギーに変換する太陽電池モジュールに関する。
The present invention relates to a solar cell module that converts light energy into electrical energy.
不純物拡散層を有する太陽電池セルは、たとえばp型シリコン基板を基材とし、光の集光率を高めるための凹凸形状がp型シリコン基板の受光面側に形成され、凹凸形状の上にたとえばシリコン窒化膜からなる反射防止膜が形成されている。また、太陽電池セルで光電変換された電子を集める受光面側集電電極として、グリッド電極とバス電極とが反射防止膜の上に形成されている。
A solar battery cell having an impurity diffusion layer uses, for example, a p-type silicon substrate as a base material, and a concavo-convex shape for enhancing the light collection ratio is formed on the light receiving surface side of the p-type silicon substrate. An antireflective film made of a silicon nitride film is formed. Further, as a light receiving surface side collecting electrode for collecting electrons photoelectrically converted in the solar battery cell, a grid electrode and a bus electrode are formed on the antireflection film.
一方、p型シリコン基板の裏面側には、裏面側集電電極として、裏面集電電極および裏面接合電極が形成されることが多い。裏面集電電極は、開放電圧および短絡電流を向上させるための裏面電界層(Back Surface Field:BSF)を形成するため、および裏面側の電流を集めるために設けられる。裏面接合電極は、裏面集電電極で集電された正孔を外部に取り出し、外部電極とコンタクトを取るために設けられる。
On the other hand, on the back surface side of the p-type silicon substrate, a back surface current collection electrode and a back surface contact electrode are often formed as a back surface side current collection electrode. The back surface current collection electrode is provided to form a back surface field (BSF) for improving open circuit voltage and short circuit current, and to collect current on the back surface side. The back surface contact electrode is provided in order to take out the holes collected by the back surface current collection electrode to the outside and to make contact with the external electrode.
このような太陽電池セルでは、光電変換により発生した電力を外部に取り出すために、タブ線と呼ばれる配線材がバス電極および裏面接合電極のそれぞれに接続される。しかしながら、1枚の太陽電池セルは、発生する電力が小さい。このため、複数の太陽電池セルが直列または直並列に電気接続されて太陽電池モジュールが形成される。太陽電池モジュールでは、隣り合う太陽電池セルにおける異なる極性の電極がタブ線で交互に電気接続される。
In such a solar battery cell, a wiring material called a tab wire is connected to each of the bus electrode and the back surface contact electrode in order to take out the power generated by photoelectric conversion to the outside. However, one solar battery cell generates a small amount of power. For this reason, a plurality of solar cells are electrically connected in series or in series and parallel to form a solar cell module. In a solar cell module, electrodes of different polarities in adjacent solar cells are electrically connected alternately by tab lines.
特許文献1には、インナーリードで互いに電気的に接続された複数枚の太陽電池素子が、透光性パネルと裏面保護材との間に配された太陽電池モジュールが開示されている。太陽電池素子は、出力取出用の3本の表面バスバー電極及び該表面バスバー電極に直交する複数の表面フィンガー電極を含んでなる受光面電極を半導体基板の受光面側に有し、出力取出用の3本の裏面バスバー電極を半導体基板の非受光面側に有している。
Patent Document 1 discloses a solar cell module in which a plurality of solar cell elements electrically connected to each other by inner leads are disposed between the light transmitting panel and the back surface protective material. The solar cell element has a light receiving surface electrode including three surface bus bar electrodes for output extraction and a plurality of surface finger electrodes orthogonal to the surface bus bar electrodes on the light receiving surface side of the semiconductor substrate. Three back bus bar electrodes are provided on the non-light receiving surface side of the semiconductor substrate.
近年、太陽電池モジュールにおいては、太陽電池セルの大電流化に伴い、タブ線およびバス電極の影に起因した発電効率の損失である光遮光損失、所謂シャドーロスが増加し、太陽電池モジュールの出力の低下分が増加する、という問題があった。しかしながら、上記特許文献1では、このような問題は考慮されておらず、解決できない。
In recent years, in the solar cell module, as the current of the solar cell increases, so-called shadow loss increases as a loss of power generation efficiency, which is a loss of power generation efficiency due to the shadow of the tab wire and the bus electrode, The problem is that the amount of However, in the patent document 1, such a problem is not considered and can not be solved.
本発明は、上記に鑑みてなされたものであって、複数の太陽電池セルを接続するタブ線およびバス電極に起因した出力の低下を抑制可能な太陽電池モジュールを得ることを目的とする。
This invention is made in view of the above, Comprising: It aims at obtaining the solar cell module which can suppress the fall of the output resulting from the tab wire and bus electrode which connect a several photovoltaic cell.
上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池モジュールは、透光性を有する受光面側保護部品と裏面側保護部品との間に、タブ線によって電気的に接続された複数の太陽電池セルが配置される。太陽電池セルは、pn接合を有する半導体基板と、半導体基板の受光面においてタブ線による太陽電池セルの連結方向と直交する方向と平行に延びる複数のグリッド電極と、受光面において複数のグリッド電極を接続して連結方向に沿って延びる複数本の受光面バス電極とを有する受光面電極と、半導体基板における受光面と反対側を向く裏面において連結方向に沿って延びる裏面電極と、を備える。タブ線は、丸線の導体を母材とし、受光面バス電極の幅と同じ直径を有する。タブ線は、1本の受光面バス電極に対して1本が接続される。タブ線は、受光面バス電極と同数が設けられ、連結方向に沿って延びて、隣り合う2つの太陽電池セルのうち一方の太陽電池セルの受光面バス電極の上面と接続されるとともに、他方の太陽電池セルの裏面電極と接続される。太陽電池セルが、1辺の長さが150mm以上160mm以下の範囲である正方形状を有し、受光面のシート抵抗が70Ω/sq.以上90Ω/sq.以下の範囲であり、グリッド電極の抵抗値が0.45Ω/cm以上0.7Ω/cm以下である条件下において、幅が0.4mmである受光面バス電極が10本以上15本以下の範囲で並設され、または、幅が0.5mmである受光面バス電極が5本以上15本以下の範囲で並設される。
In order to solve the problems described above and to achieve the object, the solar cell module according to the present invention is electrically connected by a tab wire between the light-receiving side protection component and the back-side protection component having translucency The plurality of solar cells are arranged. The solar battery cell includes a semiconductor substrate having a pn junction, a plurality of grid electrodes extending in parallel with a direction orthogonal to the connection direction of the solar cells by the tab line on the light receiving surface of the semiconductor substrate, and a plurality of grid electrodes on the light receiving surface. A light receiving surface electrode having a plurality of light receiving surface bus electrodes connected and extending along a connecting direction, and a back surface electrode extending along the connecting direction on the back surface of the semiconductor substrate facing the opposite side to the light receiving surface. The tab wire has a round conductor as a base material and has the same diameter as the width of the light receiving surface bus electrode. One tab line is connected to one light receiving surface bus electrode. The tab wire is provided in the same number as the light receiving surface bus electrode, extends along the connection direction, and is connected to the upper surface of the light receiving surface bus electrode of one of the two adjacent solar battery cells, Connected to the back electrode of the solar cell. The solar battery cell has a square shape in which the length of one side is in the range of 150 mm or more and 160 mm or less, and the sheet resistance of the light receiving surface is 70 Ω / sq. 90 Ω / sq. A range of 10 to 15 light-receiving surface bus electrodes having a width of 0.4 mm under the following range, and under the condition that the resistance value of the grid electrode is 0.45 Ω / cm or more and 0.7 Ω / cm or less Or light receiving surface bus electrodes having a width of 0.5 mm are provided in a range of 5 or more and 15 or less.
本発明にかかる太陽電池モジュールは、複数の太陽電池セルを接続するタブ線およびバス電極に起因した出力の低下を抑制可能である、という効果を奏する。
ADVANTAGE OF THE INVENTION The solar cell module concerning this invention has an effect that the fall of the output resulting from the tab wire and bus electrode which connect a several photovoltaic cell can be suppressed.
以下に、本発明の実施の形態1にかかる太陽電池モジュールを図面に基づいて詳細に説明する。なお、この実施の形態1によりこの発明が限定されるものではない。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
Below, the solar cell module concerning Embodiment 1 of this invention is demonstrated in detail based on drawing. The present invention is not limited by the first embodiment. Further, in the drawings shown below, the scale of each member may be different from the actual one for easy understanding. The same applies to each drawing.
実施の形態1.
図1は、本発明の実施の形態1にかかる太陽電池モジュール100を受光面側から見た斜視図である。図2は、本発明の実施の形態1にかかる太陽電池モジュール100を受光面側から見た分解斜視図である。図3は、本発明の実施の形態1にかかる太陽電池モジュール100の要部断面図である。図4は、本発明の実施の形態1にかかる太陽電池アレイ70を裏面側から見た斜視図である。図5は、本発明の実施の形態1にかかる太陽電池ストリング50を受光面側から見た要部斜視図である。図6は、本発明の実施の形態1にかかる太陽電池ストリング50を裏面側から見た要部斜視図である。図7は、本発明の実施の形態1にかかる太陽電池セル10を受光面側から見た平面図である。図8は、本発明の実施の形態1にかかる太陽電池セル10を受光面側と反対側を向く裏面側から見た平面図である。図8においては、タブ線20の接合される位置の一例を破線で示している。Embodiment 1
FIG. 1 is a perspective view of asolar cell module 100 according to a first embodiment of the present invention as viewed from a light receiving surface side. FIG. 2 is an exploded perspective view of the solar cell module 100 according to the first embodiment of the present invention as viewed from the light receiving surface side. FIG. 3 is a cross-sectional view of main parts of the solar cell module 100 according to the first embodiment of the present invention. FIG. 4 is a perspective view of the solar cell array 70 according to the first embodiment of the present invention as viewed from the back side. FIG. 5 is a perspective view of an essential part of the solar cell string 50 according to the first embodiment of the present invention as viewed from the light receiving surface side. FIG. 6 is a perspective view of an essential part of the solar cell string 50 according to the first embodiment of the present invention as viewed from the back side. FIG. 7 is a plan view of the solar battery cell 10 according to the first embodiment of the present invention as viewed from the light receiving surface side. FIG. 8 is a plan view of the solar battery cell 10 according to the first embodiment of the present invention as viewed from the back surface side facing away from the light receiving surface side. In FIG. 8, an example of the joining position of the tab wire 20 is indicated by a broken line.
図1は、本発明の実施の形態1にかかる太陽電池モジュール100を受光面側から見た斜視図である。図2は、本発明の実施の形態1にかかる太陽電池モジュール100を受光面側から見た分解斜視図である。図3は、本発明の実施の形態1にかかる太陽電池モジュール100の要部断面図である。図4は、本発明の実施の形態1にかかる太陽電池アレイ70を裏面側から見た斜視図である。図5は、本発明の実施の形態1にかかる太陽電池ストリング50を受光面側から見た要部斜視図である。図6は、本発明の実施の形態1にかかる太陽電池ストリング50を裏面側から見た要部斜視図である。図7は、本発明の実施の形態1にかかる太陽電池セル10を受光面側から見た平面図である。図8は、本発明の実施の形態1にかかる太陽電池セル10を受光面側と反対側を向く裏面側から見た平面図である。図8においては、タブ線20の接合される位置の一例を破線で示している。
FIG. 1 is a perspective view of a
本実施の形態1にかかる太陽電池モジュール100は、図1から図3に示すように、太陽電池アレイ70における受光面側が受光面側封止材33および受光面保護部品31で覆われ、太陽電池アレイ70における受光面と反対側を向く裏面側が裏面側封止材34および裏面保護部品32で覆われているとともに、外周縁部が補強用のフレーム40で囲まれている。
In the solar cell module 100 according to the first embodiment, as shown in FIGS. 1 to 3, the light receiving surface side of the solar cell array 70 is covered with the light receiving surface side sealing member 33 and the light receiving surface protection component 31. The back surface side of the array 70 facing the opposite side to the light receiving surface is covered with the back surface side sealing material 34 and the back surface protection component 32, and the outer peripheral edge is surrounded by the reinforcing frame 40.
太陽電池アレイ70は、図4に示すように、複数の太陽電池ストリング50が、集電した電力を取り出す横タブ線25および出力タブ線で電気的および機械的に直列または並列に接合されて構成されている。太陽電池アレイ70は、出力タブ線から端子ボックス41を介して外部インタフェースへ電力を出力する。
As shown in FIG. 4, the solar cell array 70 is configured such that a plurality of solar cell strings 50 are electrically and mechanically connected in series or in parallel by a horizontal tab line 25 and an output tab line for collecting collected power. It is done. The solar cell array 70 outputs power from the output tab line to the external interface via the terminal box 41.
図3から図6に示すように、太陽電池ストリング50は、隣り合って配置された四角形状を呈する複数の太陽電池セル10がタブ線20で電気的および機械的に直列に接続されて構成されている。複数の太陽電池セル10は、図3から図6に示すように、タブ線20により、第1の方向である図中X方向に直列に接続されている。第1の方向は、タブ線20により接続された複数の太陽電池セル10の連結方向である。
As shown in FIG. 3 to FIG. 6, the solar cell string 50 is configured by connecting a plurality of solar cells 10 in a rectangular shape arranged adjacent to each other in series electrically and mechanically at the tab wire 20. ing. As shown in FIGS. 3 to 6, the plurality of solar cells 10 are connected in series in the X direction, which is the first direction, by the tab wires 20. The first direction is the connection direction of the plurality of solar cells 10 connected by the tab wire 20.
太陽電池セル10は、n型不純物拡散層が形成されてpn接合が形成されたp型単結晶シリコン基板で構成された四角形状を呈する半導体基板11の第1主面である半導体基板の受光面11A側に、光の集光率を高めるためにテクスチャーエッチングにより凹凸形状が形成されている。ここでは、半導体基板11の外形は、半導体基板11の面方向において正方形状を有する。n型不純物拡散層は、半導体基板の受光面11A側に形成されている。そして、半導体基板の受光面11Aの上に反射防止膜であるシリコン窒化膜が成膜されている。なお、図面においては、凹凸形状および反射防止膜の図示を省略している。また、太陽電池セル10は、半導体基板の受光面11A側に受光面電極12が、半導体基板11の第2主面である半導体基板の裏面11B側に裏面電極13が形成されている。
The solar battery cell 10 has a light receiving surface of a semiconductor substrate which is a first main surface of the semiconductor substrate 11 having a rectangular shape and formed of a p-type single crystal silicon substrate having an n-type impurity diffusion layer formed and a pn junction formed. On the 11A side, in order to increase the light collection rate, a concavo-convex shape is formed by texture etching. Here, the outer shape of the semiconductor substrate 11 has a square shape in the surface direction of the semiconductor substrate 11. The n-type impurity diffusion layer is formed on the light receiving surface 11A side of the semiconductor substrate. Then, a silicon nitride film, which is an antireflective film, is formed on the light receiving surface 11A of the semiconductor substrate. In the drawings, the uneven shape and the antireflective film are not shown. In the solar battery cell 10, the light receiving surface electrode 12 is formed on the light receiving surface 11A side of the semiconductor substrate, and the back surface electrode 13 is formed on the back surface 11B side of the semiconductor substrate which is the second main surface of the semiconductor substrate 11.
太陽電池セル10は、単結晶シリコン太陽電池の場合、1辺の長さが150mm以上160mm以下程度の正方形状であり、本実施の形態1では1辺の長さが156mmである。なお、半導体基板11としてはp型単結晶シリコン基板に限定されることなく、n型単結晶シリコン、多結晶シリコン基板なども適用可能である。
In the case of a single crystal silicon solar cell, the solar battery cell 10 has a square shape with a side length of about 150 mm or more and about 160 mm or less, and in the first embodiment, the side length is 156 mm. The semiconductor substrate 11 is not limited to a p-type single crystal silicon substrate, and an n-type single crystal silicon, a polycrystalline silicon substrate, or the like is also applicable.
また、本実施の形態1では、受光面のシート抵抗であるn型不純物拡散層のシート抵抗が70Ω/sq.以上90Ω/sq.以下程度のn型不純物拡散層が半導体基板11の表面層に形成されている。
In the first embodiment, the sheet resistance of the n-type impurity diffusion layer, which is the sheet resistance of the light receiving surface, is 70 Ω / sq. 90 Ω / sq. The following n-type impurity diffusion layers are formed in the surface layer of the semiconductor substrate 11.
太陽電池セル10の第1面である太陽電池セルの受光面10A側には、図5および図7に示すように光-電子変換により発生した電子を集める受光面集電電極のグリッド電極である複数の受光面グリッド電極12Gと、受光面グリッド電極12Gで集めた電子を収集するとともにタブ線20を接合する受光面接合電極のバス電極である受光面バス電極12Bとが形成されている。受光面バス電極12Bの幅は、後述するタブ線20の幅と同じ幅に細線化されている。受光面バス電極12Bの幅がタブ線20の幅と同じ幅とされ、タブ線20が受光面バス電極12B上の正しい位置に接続されることで、タブ線20が受光面バス電極12Bからはみ出すことに起因したシャドーロスを低減することができる。受光面グリッド電極12Gは、光電流を集めるための電極であり、太陽光が太陽電池セル10の内部に到達するのを妨げないようにしながら光電流を集めるために、細い直線状の電極を複数本並行に並べて形成されている。
On the light receiving surface 10A side of the solar battery cell which is the first surface of the solar battery cell 10, as shown in FIGS. 5 and 7, it is a grid electrode of a light receiving surface collecting electrode for collecting electrons generated by light-electron conversion. A plurality of light receiving surface grid electrodes 12G and light receiving surface bus electrodes 12B which are bus electrodes of light receiving surface bonding electrodes for collecting the electrons collected by the light receiving surface grid electrodes 12G and bonding the tab wires 20 are formed. The width of the light receiving surface bus electrode 12B is thinned to the same width as the width of a tab line 20 described later. The width of the light receiving surface bus electrode 12B is the same as the width of the tab wire 20, and the tab wire 20 is connected to the correct position on the light receiving surface bus electrode 12B, whereby the tab wire 20 protrudes from the light receiving surface bus electrode 12B. It is possible to reduce shadow loss caused by The light receiving surface grid electrode 12G is an electrode for collecting a photocurrent, and in order to collect the photocurrent while preventing the sunlight from reaching the inside of the solar battery cell 10, a plurality of thin linear electrodes are provided. This book is formed in parallel.
また、受光面バス電極12Bは、図7に示すように太陽電池セル10の連結方向である第1の方向に沿って、太陽電池セル10のほぼ全長に渡ってライン状に6列に設けられている。すなわち、受光面バス電極12Bは、受光面グリッド電極12Gと直交する方向に沿って、全ての受光面グリッド電極12Gと接続して設けられている。なお、便宜上、図1および図2においては、受光面バス電極12Bが2列に設けられている場合を示している。受光面バス電極12Bは、タブ線20と電気的に接合するために設けられる電極である。受光面バス電極12Bおよび受光面グリッド電極12Gは、金属粒子を有する導電性ペーストを所望の範囲に塗布して焼成することで形成されている。
Further, as shown in FIG. 7, the light receiving surface bus electrodes 12B are provided in six lines in a line along substantially the entire length of the solar cell 10 along the first direction which is the connecting direction of the solar cell 10. ing. That is, the light receiving surface bus electrodes 12B are provided in connection with all the light receiving surface grid electrodes 12G along the direction orthogonal to the light receiving surface grid electrode 12G. For convenience, FIGS. 1 and 2 show the case where the light receiving surface bus electrodes 12B are provided in two rows. The light receiving surface bus electrode 12 </ b> B is an electrode provided to electrically bond with the tab wire 20. The light receiving surface bus electrode 12B and the light receiving surface grid electrode 12G are formed by applying and baking a conductive paste having metal particles in a desired range.
太陽電池セル10の第2主面である太陽電池セルの裏面10B側には、図6および図8に示すようにアルミニウム(Al)を含む裏面集電電極13aおよび銀(Ag)を含む裏面接合電極13bが形成され、裏面電極13を構成している。裏面集電電極13aは、開放電圧および短絡電流を向上させるための図示しない裏面電界層(BSF)を形成するため、および裏面側の電流を集めるために設けられる電極であり、太陽電池セルの裏面10Bのほぼ全域を覆う。
On the back surface 10B side of the solar battery cell which is the second main surface of the solar battery cell 10, as shown in FIGS. 6 and 8, a back surface junction including a back surface current collecting electrode 13a containing aluminum (Al) and silver (Ag) An electrode 13 b is formed to constitute a back electrode 13. The back surface current collection electrode 13a is an electrode provided to form a back surface field layer (BSF) (not shown) for improving the open circuit voltage and the short circuit current, and to collect current on the back surface side. Cover almost the entire area of 10B.
また、裏面接合電極13bは、裏面集電電極13aで集電された正孔を外部に取り出し、外部電極とコンタクトを取るために設けられる電極である。すなわち、裏面接合電極13bは、タブ線20と電気的に接合するために設けられる電極である。裏面接合電極13bは、受光面バス電極12Bと同様に、太陽電池セル10の連結方向である第1の方向に沿って設けられている。そして、裏面接合電極13bは、半導体基板11を挟んで、受光面バス電極12Bと対向する位置に配置されている。
Further, the back surface bonding electrode 13b is an electrode provided for taking out the holes collected by the back surface current collecting electrode 13a to the outside and making a contact with the external electrode. That is, the back surface bonding electrode 13 b is an electrode provided for electrically bonding to the tab wire 20. The back surface contact electrode 13 b is provided along the first direction, which is the connection direction of the solar cells 10, in the same manner as the light receiving surface bus electrode 12 B. The back surface bonding electrode 13 b is disposed at a position facing the light receiving surface bus electrode 12 B with the semiconductor substrate 11 interposed therebetween.
本実施の形態1の裏面接合電極13bは、図8に示すように太陽電池セル10の連結方向である第1の方向に沿って、太陽電池セル10のほぼ全長に渡って飛び石状に6列に設けられている。裏面集電電極13aおよび裏面接合電極13bは、前述したようにAlまたはAgなどの金属粒子を有する導電性ペーストを所望の範囲に塗布して焼成することで形成されている。
As shown in FIG. 8, the back surface contact electrodes 13 b according to the first embodiment are arranged in six rows in the shape of a stepping stone along substantially the entire length of the solar battery cell 10 along the first direction which is the connection direction of the solar battery cells 10. Provided in The back surface current collection electrode 13a and the back surface junction electrode 13b are formed by apply | coating and baking the conductive paste which has metal particles, such as Al or Ag, as mentioned above in a desired range.
図9は、本発明の実施の形態1にかかる太陽電池モジュール100における太陽電池セル10とタブ線20との接続を説明する分解斜視図であり、受光面側から見た分解斜視図である。図10は、本発明の実施の形態1にかかる太陽電池モジュール100における太陽電池セル10とタブ線20との接続を説明する分解斜視図であり、裏面側から見た分解斜視図である。
FIG. 9 is an exploded perspective view for explaining the connection between the solar cell 10 and the tab wire 20 in the solar cell module 100 according to the first embodiment of the present invention, and is an exploded perspective view seen from the light receiving surface side. FIG. 10 is an exploded perspective view for explaining the connection between the solar cell 10 and the tab wire 20 in the solar cell module 100 according to the first embodiment of the present invention, and is an exploded perspective view seen from the back side.
図5、図6、図9、図10に示すように、太陽電池ストリング50においては、隣り合う2つの太陽電池セル10のうち一方の太陽電池セル10における太陽電池セルの受光面10Aと、隣り合う2つの太陽電池セル10のうち他方の太陽電池セルの裏面10Bとが、交互に6本のタブ線20で接続されている。タブ線20は、太陽電池セルの裏面10Bに形成された裏面接合電極13bに裏面側接続領域23bがはんだ接合され、隣接する太陽電池セル10における太陽電池セルの受光面10Aに形成された受光面バス電極12Bに受光面側接続領域23aがはんだ接合されている。すなわち、太陽電池セル10における太陽電池セルの受光面10A上に形成された受光面バス電極12Bと接続したタブ線20は、隣接する太陽電池セル10における太陽電池セルの裏面10B上に形成された裏面接合電極13bに接続されることで、複数の太陽電池セル10を直列に接続している。
As shown in FIG. 5, FIG. 6, FIG. 9, and FIG. 10, in the solar cell string 50, the light receiving surface 10A of the solar cell in one solar cell 10 of two adjacent solar cells 10 is adjacent The back surface 10 </ b> B of the other solar cell among the two solar cells 10 to be matched is alternately connected by six tab lines 20. In the tab wire 20, the back surface side connection region 23b is soldered to the back surface bonding electrode 13b formed on the back surface 10B of the solar battery cell, and the light receiving surface is formed on the light receiving surface 10A of the solar battery cell in the adjacent solar battery cell 10. The light receiving surface side connection area 23a is soldered to the bus electrode 12B. That is, the tab line 20 connected to the light receiving surface bus electrode 12B formed on the light receiving surface 10A of the solar battery cell 10 in the solar battery cell 10 is formed on the back surface 10B of the solar battery cell in the adjacent solar battery cell 10 The plurality of solar cells 10 are connected in series by being connected to the back surface contact electrode 13 b.
また、裏面接合電極13bは半導体基板11を挟んで受光面バス電極12Bと対向する位置に配置されている。したがって、1つの太陽電池セル10において、裏面接合電極13bに接合されたタブ線20の裏面側接続領域23bと、受光面バス電極12Bに接合されたタブ線20の受光面側接続領域23aとは、全ての領域ではないが少なくとも一部が対向した位置に配置されている。
The back surface bonding electrode 13 b is disposed at a position facing the light receiving surface bus electrode 12 B with the semiconductor substrate 11 interposed therebetween. Therefore, in one solar battery cell 10, the back surface side connection region 23b of the tab wire 20 bonded to the back surface bonding electrode 13b and the light receiving surface side connection region 23a of the tab wire 20 bonded to the light receiving surface bus electrode 12B are However, at least a part of the regions is disposed opposite to each other.
タブ線20は、太陽電池セル10の受光面バス電極12Bと、隣接する太陽電池セル10の裏面接合電極13bとを接続するために、受光面側接続領域23aと裏面側接続領域23bとの間に屈曲部であるセル間領域24を有する。また、太陽電池ストリング50において用いられているタブ線20は、全長、すなわち受光面側接続領域23aと裏面側接続領域23bとセル間領域24との合計の長さが全て同じ長さとされている。
The tab wire 20 is between the light receiving surface side connection region 23 a and the back surface side connection region 23 b in order to connect the light receiving surface bus electrode 12 B of the solar battery cell 10 and the back surface bonding electrode 13 b of the adjacent solar battery cell 10. And an inter-cell region 24 which is a bend. The tab lines 20 used in the solar cell string 50 all have the same total length, that is, the total length of the light receiving surface side connection region 23a, the back surface side connection region 23b, and the inter-cell region 24. .
太陽電池セル10同士を接続する配線材としてのタブ線20は、断面が丸型の導体からなり、銅などの良導体の金属材料の丸線からなる。タブ線20の表面にはんだがコーティングされている。本実施の形態1にかかるタブ線20の詳細については、後述する。なお、便宜上、図1および図2においては隣り合う2つの太陽電池セル10が2本のタブ線20で接続されている状態について示している。
The tab wire 20 as a wiring material for connecting the solar battery cells 10 to each other is made of a conductor having a round cross section, and is made of a round wire of a metal material of good conductor such as copper. Solder is coated on the surface of the tab wire 20. Details of the tab line 20 according to the first embodiment will be described later. In addition, for convenience, in FIG. 1 and FIG. 2, a state in which two adjacent solar battery cells 10 are connected by two tab lines 20 is shown.
太陽電池アレイ70の太陽電池セルの裏面10B側に配置される裏面側封止材34および太陽電池セルの受光面10A側に配置される受光面側封止材33には、透光性、耐熱性、電気絶縁性、柔軟性を有する素材が用いられ、エチレンビニルアセテート(Ethylene-Vinyl Acetate:EVA)あるいはポリビニルブチラール(Polyvinyl butyral:PVB)などの熱可塑性樹脂を主成分とする熱可塑性の合成樹脂材が好適である。
The back surface side sealing material 34 disposed on the back surface 10B side of the solar battery cell of the solar cell array 70 and the light receiving surface side sealing material 33 disposed on the light reception surface 10A side of the solar battery cell Material having conductivity, electrical insulation, and flexibility is used, and a thermoplastic synthetic resin mainly composed of a thermoplastic resin such as ethylene vinyl acetate (EVA) or polyvinyl butyral (PVB) Materials are preferred.
受光面保護部品31としては、透光性を有して耐湿性、耐候性、耐加水分解性、絶縁性に優れた材料が用いられ、ガラス基板などの剛性の高い透光性基板の他、フッ素系樹脂シート、ポリエチレンテレフタレート(Polyethylene Terephthalate:PET)シートなどの樹脂材が用いられる。
As the light receiving surface protection component 31, a material having light transmission and excellent in moisture resistance, weather resistance, hydrolysis resistance, and insulation is used, and in addition to a highly rigid light transmission substrate such as a glass substrate, Resin materials, such as a fluorine resin sheet and a polyethylene terephthalate (Polyethylene Terephthalate: PET) sheet, are used.
裏面保護部品32としては、耐湿性、耐候性、耐加水分解性、絶縁性に優れた材料が用いられ、フッ素系樹脂シート、アルミナまたはシリカを蒸着したポリエチレンテレフタレート(PET)シートなどの樹脂材からなるバックシートまたはバックフィルムが用いられる。
As the back surface protection component 32, a material excellent in moisture resistance, weather resistance, hydrolysis resistance and insulation is used, and a resin material such as a fluorine resin sheet or a polyethylene terephthalate (PET) sheet on which alumina or silica is vapor deposited The back sheet or back film is used.
つぎに、本実施の形態1にかかる太陽電池モジュール100の製造方法について説明する。図11は、本発明の実施の形態1にかかる太陽電池モジュール100の製造方法の手順を示すフローチャートである。
Below, the manufacturing method of the solar cell module 100 concerning this Embodiment 1 is demonstrated. FIG. 11 is a flowchart showing the procedure of the method of manufacturing the solar cell module 100 according to the first embodiment of the present invention.
まず、ステップS10において、太陽電池セル10が形成される。p型単結晶シリコン基板を出発材料とし、光の集光率を高めるために受光面となる面にテクスチャエッチングにより凹凸形状を形成する。そして、拡散によりp型単結晶シリコン基板の受光面側に図示しないn型不純物拡散層を形成してpn接合を形成する。受光面のシート抵抗であるn型不純物拡散層のシート抵抗が70Ω/sq.以上90Ω/sq.以下程度とする。さらに、n型不純物拡散層上に反射防止膜としてのシリコン窒化膜を成膜する。
First, in step S10, a solar battery cell 10 is formed. A p-type single crystal silicon substrate is used as a starting material, and in order to increase the light collection rate, a concavo-convex shape is formed by texture etching on the surface to be the light receiving surface. Then, an n-type impurity diffusion layer (not shown) is formed on the light receiving surface side of the p-type single crystal silicon substrate by diffusion to form a pn junction. The sheet resistance of the n-type impurity diffusion layer, which is the sheet resistance of the light receiving surface, is 70 Ω / sq. 90 Ω / sq. It will be about the following. Further, a silicon nitride film as an antireflective film is formed on the n-type impurity diffusion layer.
つぎに、太陽電池セルの受光面10Aに、図7に示すように、受光面バス電極12Bと受光面グリッド電極12Gとからなる受光面電極12とをスクリーン印刷および焼成により形成する。なお、受光面電極12の形成方法はスクリーン印刷および焼成に限定されない。また、太陽電池セルの裏面10Bには、図8に示すように、裏面集電電極13aと裏面接合電極13bとをスクリーン印刷および焼成により形成する。なお、上述した太陽電池セル10の形成方法は、限定されず公知の技術により行うことができる。ここで、受光面バス電極12Bの幅は、丸線であるタブ線20の幅と同じ幅に細線化して形成する。受光面バス電極12Bの幅をタブ線20の幅と同じ幅として、タブ線20を受光面バス電極12B上の正しい位置に接続することで、タブ線20が受光面バス電極12Bからはみ出すことに起因したシャドーロスを低減することができる。
Next, as shown in FIG. 7, the light receiving surface electrode 12 composed of the light receiving surface bus electrode 12B and the light receiving surface grid electrode 12G is formed on the light receiving surface 10A of the solar battery cell by screen printing and firing. In addition, the formation method of the light-receiving surface electrode 12 is not limited to screen printing and baking. Further, as shown in FIG. 8, on the back surface 10B of the solar battery cell, a back surface current collecting electrode 13a and a back surface bonding electrode 13b are formed by screen printing and firing. In addition, the formation method of the photovoltaic cell 10 mentioned above is not limited, It can carry out by a well-known technique. Here, the width of the light-receiving surface bus electrode 12B is formed to be the same as the width of the tab line 20 which is a round line. By connecting the tab line 20 to the correct position on the light receiving surface bus electrode 12B with the width of the light receiving surface bus electrode 12B being the same width as the width of the tab wire 20, the tab line 20 protrudes from the light receiving surface bus electrode 12B. Shadow loss caused can be reduced.
つぎに、ステップS20において、太陽電池セル10にタブ線20が接続される。すなわち、太陽電池セルの裏面10Bに形成された裏面接合電極13b上にタブ線20における裏面側接続領域23bが配置され、且つ隣接する太陽電池セル10における太陽電池セルの受光面10Aに形成された受光面バス電極12Bに該タブ線20における受光面側接続領域23aが配置される。そして、タブ線20に被覆されたはんだが、加熱により溶融され、その後、凝固される。これにより、裏面接合電極13bと裏面側接続領域23b、および受光面バス電極12Bと受光面側接続領域23aとのはんだ接合が行われ、太陽電池セル10にタブ線20が電気的および機械的に接続される。
Next, the tab wire 20 is connected to the photovoltaic cell 10 in step S20. That is, the back surface side connection region 23b of the tab wire 20 is disposed on the back surface bonding electrode 13b formed on the back surface 10B of the solar battery cell, and is formed on the light receiving surface 10A of the solar battery cell in the adjacent solar battery cell 10. The light receiving surface side connection area 23a of the tab line 20 is disposed on the light receiving surface bus electrode 12B. Then, the solder coated on the tab wire 20 is melted by heating and then solidified. Thereby, solder bonding is performed between the back surface bonding electrode 13b and the back surface side connection region 23b, and the light receiving surface bus electrode 12B and the light receiving surface side connection region 23a, and the tab wire 20 electrically and mechanically Connected
図12は、本発明の実施の形態1の受光面電極12および裏面電極13とタブ線20とを電気的に接合するタブ線接合工程を示す模式図である。タブ線接合工程では、図12に示すように太陽電池セル10の裏面接合電極13bにタブ線20における裏面側接続領域23bを重ね、図示しない隣接する太陽電池セル10の受光面バス電極12Bにタブ線20における受光面側接続領域23aが重ねられる。そして、ヒートツール200でタブ線20を加熱することで、タブ線20と裏面接合電極13bとの電気的接続および機械的接続と、タブ線20と受光面バス電極12Bとの電気的接続および機械的接続と、が同時に得られる。具体的には、ヒートツール200によってタブ線20を加熱することによって、タブ線20の表面にコーティングされたはんだが溶融する。その後、タブ線20を冷却してはんだを凝固させることで、タブ線20と受光面バス電極12Bとがはんだを介してはんだ接合され、タブ線20と裏面接合電極13bとがはんだを介してはんだ接合される。
FIG. 12 is a schematic view showing a tab wire bonding step of electrically bonding the light receiving surface electrode 12 and the back surface electrode 13 to the tab wire 20 according to the first embodiment of the present invention. In the tab wire bonding step, as shown in FIG. 12, the back surface side connection region 23b of the tab wire 20 is overlapped on the back surface bonding electrode 13b of the solar battery cell 10, and the light receiving surface bus electrode 12B of the adjacent solar battery cell 10 not shown The light receiving surface side connection area 23 a of the line 20 is overlapped. Then, by heating the tab wire 20 with the heat tool 200, electrical connection and mechanical connection between the tab wire 20 and the back surface bonding electrode 13b, and electrical connection and machine between the tab wire 20 and the light receiving surface bus electrode 12B. Connection can be obtained simultaneously. Specifically, by heating the tab wire 20 by the heat tool 200, the solder coated on the surface of the tab wire 20 is melted. Thereafter, the tab wire 20 is cooled to solidify the solder, and the tab wire 20 and the light receiving surface bus electrode 12B are soldered via the solder, and the tab wire 20 and the back surface bonding electrode 13b are soldered via the solder. It is joined.
なお、タブ線20は、熱圧着または超音波溶着といった他の方法によって太陽電池セル10に接着されてもよい。また、タブ線接合工程では、裏面側のタブ線20の接合工程と受光面側のタブ線20の接合工程とを分けて、2回の工程で実施してもよい。
The tab wire 20 may be bonded to the solar cell 10 by another method such as thermocompression bonding or ultrasonic welding. In the tab wire bonding step, the bonding step of the tab wire 20 on the back surface side and the bonding step of the tab wire 20 on the light receiving surface side may be divided into two steps.
そして、以上のタブ線20の接続処理を繰り返して、所望の枚数の太陽電池セル10が直列に接続された複数の太陽電池ストリング50が形成される。そして、以上のようにして得られた複数の太陽電池ストリング50を横タブ線25で接続することで、太陽電池アレイ70が形成される。太陽電池アレイ70は、並列に配置した複数の太陽電池ストリング50を横タブ線25としてのバスバーを用いて直列に接続し、電力取り出し用の出力タブ線としてのバスバーを設置することで形成される。
And the connection process of the above tab wire 20 is repeated, and several solar cell strings 50 in which the desired number of solar cells 10 were connected in series are formed. Then, the solar cell array 70 is formed by connecting the plurality of solar cell strings 50 obtained as described above with the horizontal tab lines 25. The solar cell array 70 is formed by connecting a plurality of solar cell strings 50 arranged in parallel in series using the bus bar as the horizontal tab line 25 and installing the bus bar as an output tab line for extracting power. .
つぎに、ステップS30において、図2に示した配置で、太陽電池アレイ70の受光面側に受光面側封止材33と受光面保護部品31とを配置し、太陽電池アレイ70の裏面側に裏面側封止材34と裏面保護部品32とを配置して積層体を形成する。
Next, in step S30, the light receiving surface sealing material 33 and the light receiving surface protection component 31 are disposed on the light receiving surface side of the solar cell array 70 in the arrangement shown in FIG. The back side sealing material 34 and the back side protection component 32 are disposed to form a laminate.
つぎに、ステップS40において、積層体をラミネート装置に装着し、たとえば140℃以上160℃以下の温度で30分前後の熱処理およびラミネート処理を行う。ラミネート処理により、太陽電池アレイ70と受光面保護部品31とが受光面側封止材33によって接着され、太陽電池アレイ70と裏面保護部品32とが裏面側封止材34によって接着される。これにより、積層体の構成部が一体化され、太陽電池モジュール100が得られる。
Next, in step S40, the laminate is mounted on a laminating apparatus, and heat treatment and lamination treatment are performed for about 30 minutes, for example, at a temperature of 140 ° C. or more and 160 ° C. or less. By the lamination process, the solar cell array 70 and the light receiving surface protection component 31 are bonded by the light receiving surface side sealing material 33, and the solar cell array 70 and the back surface protective component 32 are bonded by the back surface side sealing material 34. Thereby, the component part of a laminated body is integrated and the solar cell module 100 is obtained.
なお、上記においては、裏面接合電極13bが第1の方向に沿って太陽電池セル10のほぼ全長に渡って飛び石状に設けられている場合について説明したが、裏面接合電極13bは第1の方向に沿って太陽電池セル10のほぼ全長に渡って連続して帯状、すなわちライン状に設けられてもよい。
In the above description, the back junction electrode 13b is provided in the shape of a stepping stone along the first direction over substantially the entire length of the solar cell 10, but the back junction electrode 13b is in the first direction. Along the entire length of the solar cell 10 may be provided continuously in the form of a strip or line.
つぎに、本実施の形態1にかかるタブ線20について説明する。図13は、本発明の実施の形態1にかかる太陽電池モジュール100におけるタブ線20の周辺を模式的に示す要部断面図である。図14は、平角形状のタブ線を用いた太陽電池モジュールにおけるタブ線の周辺を模式的に示す要部断面図である。図13および図14における矢印は、太陽電池セルに入射する太陽光の光路を示している。
Next, the tab line 20 according to the first embodiment will be described. FIG. 13 is a cross-sectional view of relevant parts schematically illustrating the periphery of the tab wire 20 in the solar cell module 100 according to the first embodiment of the present invention. FIG. 14 is a cross-sectional view of main parts schematically showing the periphery of the tab wire in the solar cell module using the rectangular tab wire. Arrows in FIG. 13 and FIG. 14 indicate the optical path of sunlight incident on the solar battery cell.
タブ線20は、太陽電池セル10に接続された際に太陽電池セル10の連結方向、すなわち第1の方向に延びて、隣り合う2つの太陽電池セル10のうち一方の太陽電池セル10の受光面バス電極12Bの上面と接続されるとともに、他方の太陽電池セル10の裏面電極である裏面接合電極13bの上面と接続される。タブ線20は、銅などの金属材料に代表される良導体の丸線が母材とされ、丸線の表面にはんだがコーティングされている。本実施形態では、タブ線20は、銅製の丸線導体20aの表面にはんだメッキが施されており、丸線導体20aの表面の全体にはんだの薄層20bが形成されている。タブ線20へのはんだのコーティングは、メッキにより行うことが好ましい。タブ線20の表面にはんだをメッキすることで、タブ線20の表面に確実かつ均一にはんだをコーティングできる。
The tab wire 20 extends in the connecting direction of the solar cells 10, that is, the first direction when connected to the solar cells 10, and the light receiving of one of the two adjacent solar cells 10 is received. While being connected with the upper surface of the surface bus electrode 12B, it is connected with the upper surface of the back surface contact electrode 13b which is the back surface electrode of the other solar cell 10. In the tab wire 20, a round wire of a good conductor represented by a metal material such as copper is used as a base material, and a solder is coated on the surface of the round wire. In the present embodiment, the tab wire 20 is plated with solder on the surface of the copper round wire conductor 20a, and a thin layer 20b of solder is formed on the entire surface of the round wire conductor 20a. Coating of the solder on the tab wire 20 is preferably performed by plating. By plating the solder on the surface of the tab wire 20, the solder can be coated on the surface of the tab wire 20 reliably and uniformly.
この場合、受光面バス電極12Bの幅は、タブ線の直径φと同じ幅またはタブ線20の幅よりも狭い幅とされ、はんだの薄層の厚みmの2倍と、丸線導体の直径φaと、の合計寸法とされる。ただし、はんだの薄層の厚みmは、丸線導体の直径φaと比較すると非常に薄く、無視できるレベルである。
In this case, the width of the light-receiving surface bus electrode 12B is the same as the diameter φ of the tab wire or smaller than the width of the tab wire 20, twice the thickness m of the thin layer of solder and the diameter of the round conductor The total dimension of φa and. However, the thickness m of the thin layer of solder is very thin compared to the diameter φa of the round conductor and is a negligible level.
図14において、平角形状を有する平角タブ線300は、銅製の平角導体300aの表面にはんだメッキが施されており、平角導体300aの表面の全体にはんだの薄層300bが形成されている。また、受光面バス電極12Bの幅の寸法は、平角タブ線の幅wと同じ幅とされ、はんだの薄層の厚みmの2倍と、平角導体の幅waと、の合計寸法とされる。平角導体300aの厚みは、平角導体の厚みtで表している。ただし、はんだの薄層の厚みmは、平角導体の幅waと比較すると非常に薄く、無視できるレベルである。
In FIG. 14, the flat tab wire 300 having a flat shape is solder-plated on the surface of a flat conductor 300 a made of copper, and a thin layer 300 b of solder is formed on the entire surface of the flat conductor 300 a. The width of the light receiving surface bus electrode 12B is the same as the width w of the flat tab wire, and is the total size of twice the thickness m of the thin solder layer and the width wa of the flat conductor. . The thickness of the rectangular conductor 300a is represented by the thickness t of the rectangular conductor. However, the thickness m of the thin layer of solder is very thin compared to the width wa of the flat conductor and can be ignored.
以下、図13および図14を参照して、本実施の形態1にかかる太陽電池モジュール100の効果を説明する。まず、丸線のタブ線20を用いることの第1の効果について説明する。通常、タブ線での抵抗損失は、タブ線の母材の断面積に依存することが知られている。したがって、図13に示す太陽電池モジュール100では、タブ線20での抵抗損失は、銅製の丸線導体20aの断面積に依存する。また、平角形状のタブ線を用いた図14に示す太陽電池モジュールでは、平角タブ線300での抵抗損失は、銅製の平角導体300aの断面積に依存する。以下に、図13に示すタブ線20の断面積と、図14に示す平角タブ線300の断面積の計算を示す。
The effects of the solar cell module 100 according to the first embodiment will be described below with reference to FIGS. 13 and 14. First, the first effect of using the round tab wire 20 will be described. It is generally known that the resistive loss at the tab wire depends on the cross-sectional area of the base material of the tab wire. Therefore, in the solar cell module 100 shown in FIG. 13, the resistance loss at the tab wire 20 depends on the cross-sectional area of the copper round wire conductor 20 a. Moreover, in the solar cell module shown in FIG. 14 using a rectangular tab wire, the resistance loss at the rectangular tab wire 300 depends on the cross-sectional area of the copper rectangular conductor 300a. Hereinafter, calculation of the cross-sectional area of the tab line 20 shown in FIG. 13 and the cross-sectional area of the flat tab line 300 shown in FIG. 14 will be described.
(丸線導体20aの断面積)
丸線導体の直径φa=0.5mmの条件下、すなわち丸線導体の半径r=0.25mmの条件では、丸線導体の断面積S1=πr2=0.196mm2となる。 (Cross section ofround wire conductor 20a)
Under the condition of the diameter φa = 0.5 mm of the round wire conductor, ie, the condition of the radius r = 0.25 mm of the round wire conductor, the cross sectional area S1 = πr 2 = 0.296 mm 2 of the round wire conductor.
丸線導体の直径φa=0.5mmの条件下、すなわち丸線導体の半径r=0.25mmの条件では、丸線導体の断面積S1=πr2=0.196mm2となる。 (Cross section of
Under the condition of the diameter φa = 0.5 mm of the round wire conductor, ie, the condition of the radius r = 0.25 mm of the round wire conductor, the cross sectional area S1 = πr 2 = 0.296 mm 2 of the round wire conductor.
(平角導体300aの断面積)
平角導体の幅wa=0.8mm、平角導体の厚みt=0.25mmの条件下では、平角導体の断面積S2=W×t=0.2mm2となる。 (Cross section offlat conductor 300a)
Under the condition of the width wa of the flat conductor of 0.8 mm and the thickness t of the flat conductor of 0.25 mm, the cross sectional area S2 of the flat conductor is S2 = W × t = 0.2 mm 2 .
平角導体の幅wa=0.8mm、平角導体の厚みt=0.25mmの条件下では、平角導体の断面積S2=W×t=0.2mm2となる。 (Cross section of
Under the condition of the width wa of the flat conductor of 0.8 mm and the thickness t of the flat conductor of 0.25 mm, the cross sectional area S2 of the flat conductor is S2 = W × t = 0.2 mm 2 .
したがって、上記の計算から、上記の条件下においては、丸線導体20aと平角導体300aとの抵抗損失は同等レベルであり、タブ線20と平角タブ線300との抵抗損失は同等レベルといえる。
Therefore, from the above calculation, under the above conditions, the resistance losses of the round conductor 20a and the flat conductor 300a are at the same level, and the resistance losses of the tab wire 20 and the flat tab 300 are at the same level.
ここで、タブ線が太陽電池セルの受光面を覆ってしまう割合である受光面カバー率について考える。丸線導体の直径φa=0.5mmは、平角導体の幅wa=0.8mmよりも小さい。このため、タブ線20を用いた太陽電池モジュール100は、抵抗損失がタブ線20と同レベルである同じ本数の平角タブ線300を用いた太陽電池モジュールと比べて各太陽電池セルでの受光面カバー率を低減可能である。したがって、太陽電池モジュール100は、抵抗損失がタブ線20と同レベルである同じ本数の平角タブ線300を用いた太陽電池モジュールと比べて、太陽電池セル10の受光面カバー率を抑えて、発電電流を増大させて、出力を向上させることができる。
Here, the light receiving surface coverage, which is the ratio of the tab line covering the light receiving surface of the solar battery cell, will be considered. The diameter φa = 0.5 mm of the round wire conductor is smaller than the width wa = 0.8 mm of the flat conductor. Therefore, the solar cell module 100 using the tab wire 20 has a light receiving surface in each solar cell as compared with a solar cell module using the same number of flat tab wires 300 having the same level of resistance loss as the tab wire 20. The coverage can be reduced. Therefore, the solar cell module 100 suppresses the light receiving surface coverage of the solar battery cell 10 compared to the solar cell module using the same number of flat tab wires 300 having the same level of resistance loss as the tab wires 20, and generates power. The current can be increased to improve the output.
また、受光面カバー率を同じとした場合、タブ線20のタブ線の直径φを拡大して断面積を容易に拡大でき、タブ線20の抵抗損失を低減し、出力を向上させることができる。
When the light receiving surface coverage is the same, the diameter φ of the tab wire 20 of the tab wire 20 can be enlarged to easily enlarge the cross-sectional area, the resistance loss of the tab wire 20 can be reduced, and the output can be improved. .
つぎに、丸線のタブ線20を用いることの第2の効果について説明する。上記の条件下においては、タブ線20と平角タブ線300との抵抗損失が同等である一方で、タブ線の影に起因した光遮光損失、所謂シャドーロスが異なる。太陽電池セルの受光面における、タブ線20と、抵抗損失がタブ線20と同レベルである平角タブ線300とのタブ線の長さが同じ条件において、1本のタブ線によるシャドーロスをタブ線の影の幅で考えると、1本のタブ線20によるシャドーロスL1は、0.5mmである。1本の平角タブ線300によるシャドーロスL2は、0.8mmである。なお、タブ線20および平角タブ線300におけるはんだの薄層の厚みmは、非常に薄いため、ここでは無視している。
Below, the 2nd effect of using the tab line 20 of a round line is demonstrated. Under the above conditions, the resistance loss of the tab wire 20 and that of the flat tab wire 300 are equal, while the light blocking loss due to the shadow of the tab wire, that is, the so-called shadow loss is different. Under the condition that the tab wire 20 and the flat tab wire 300 having the same level of resistance loss as the tab wire 20 on the light receiving surface of the solar cell have the same length, the shadow loss due to one tab wire is tabbed Considering the width of the line shadow, the shadow loss L1 due to one tab line 20 is 0.5 mm. The shadow loss L2 by one flat rectangular tab line 300 is 0.8 mm. The thickness m of the thin layer of solder in the tab wire 20 and the flat tab wire 300 is ignored here because it is very thin.
したがって、上記の条件下においては、タブ線20を用いた太陽電池モジュール100は、タブ線20と同じ本数の平角タブ線300を用いた太陽電池モジュールに比べて、シャドーロスが低減可能である。したがって、太陽電池モジュール100は、抵抗損失がタブ線20と同レベルである同じ本数の平角タブ線300を用いた太陽電池モジュールと比べて、シャドーロスが低減して、発電電流を増大させて、出力を向上させることができる。
Therefore, under the above conditions, the solar cell module 100 using the tab wire 20 can reduce the shadow loss as compared to a solar cell module using the same number of flat tab wires 300 as the tab wire 20. Therefore, the solar cell module 100 reduces the shadow loss and increases the generated current as compared with the solar cell module using the same number of flat tab wires 300 having the same level of resistance loss as the tab wires 20, Output can be improved.
つぎに、丸線のタブ線20を用いることの第3の効果について説明する。太陽電池モジュール100では、タブ線20の断面形状が円形であることにより、タブ線20に当たった太陽光は、様々な方向に反射する反射光となり、反射光が太陽電池セル10に入射して光電変換効率の向上に寄与する。すなわち、太陽電池モジュール100では、タブ線20が丸線であるため、タブ線20における受光面保護部品31側の表面で拡散反射して、受光面保護部品31の太陽電池セル10側の面である内面31aに入射角を有して入射する反射光RLの光量が増加する。そして、反射光RLは、受光面保護部品31の内面31aで拡散反射して太陽電池セル10に入射する。
Next, the third effect of using the round tab wire 20 will be described. In the solar cell module 100, since the cross-sectional shape of the tab wire 20 is circular, the sunlight hitting the tab wire 20 becomes reflected light that is reflected in various directions, and the reflected light enters the solar battery cell 10 It contributes to the improvement of photoelectric conversion efficiency. That is, in the solar cell module 100, since the tab wire 20 is a round wire, it diffusely reflects on the surface on the light receiving surface protection component 31 side of the tab wire 20, and the surface on the solar battery cell 10 side of the light reception surface protective component 31 The light amount of the reflected light RL incident on the inner surface 31a with an incident angle is increased. The reflected light RL is diffusely reflected by the inner surface 31 a of the light receiving surface protection component 31 and enters the solar battery cell 10.
このような受光面保護部品31の内面31aでの拡散反射の増加により、上記の条件下においては、タブ線20を用いた太陽電池モジュール100は、タブ線20と同じ本数の平角タブ線300を用いた太陽電池モジュールに比べて、太陽電池セル10への光取り込みの増加効果が、25%程度期待できる。但し、タブ線20の丸線の形状によっては、太陽電池セル10への光取り込みの増加効果は変化する。
Under the above conditions, the solar cell module 100 using the tab wire 20 has the same number of flat tab wires 300 as the tab wires 20 due to the increase of the diffuse reflection on the inner surface 31a of the light receiving surface protection component 31 as described above. Compared to the solar cell module used, an increase effect of light uptake into the solar cell 10 can be expected to be about 25%. However, depending on the shape of the round wire of the tab wire 20, the effect of increasing the light uptake into the solar battery cell 10 changes.
つぎに、丸線のタブ線20を用いることの第4の効果について説明する。平角タブ線300は、平角銅線である平角導体300aを作製する際に、市販の丸線を平角に加工する丸線つぶしなどの圧延工程が必要である。また、タブ線に金属箔を使用する場合には、更なる圧延工程が必要となる。一方、タブ線20においては、このような圧延工程が不要であり、タブ線20の製造時の加工費を削減することができる。これに加え、タブ線20の丸線導体20aの丸線形状は、ダイス伸線によって丸線導体20aを作製する際にダイスの径を変えることで容易に任意の太さに加工することができる。さらに、タブ線20は丸線形状を有することから、タブ線を巻くタブボビンへの高速での乱巻きが可能となり、タブ線の製造工程の簡略化および時間短縮が可能であり、タブ線の製造コストを低減できる。
Next, the fourth effect of using the round tab wire 20 will be described. The flat tab wire 300 needs a rolling process such as round wire crushing to process a commercially available round wire into a flat angle when producing the flat conductor 300a which is a flat copper wire. Moreover, when using metal foil for a tab wire, the further rolling process is needed. On the other hand, in the tab wire 20, such a rolling process is unnecessary, and the processing cost at the time of manufacturing the tab wire 20 can be reduced. In addition to this, the round wire shape of the round wire conductor 20a of the tab wire 20 can be easily processed into any desired thickness by changing the diameter of the die when producing the round wire conductor 20a by die wire drawing. . Furthermore, since the tab wire 20 has a round wire shape, high speed random winding on the tab bobbin around which the tab wire is wound can be performed, and the manufacturing process of the tab wire can be simplified and the time can be shortened. Cost can be reduced.
太陽電池モジュール100では、タブ線20を使用することで、上述した第1の効果から第4の効果により、製造コストを低減しながら、出力を向上させることができる。
In the solar cell module 100, by using the tab wire 20, the output can be improved while the manufacturing cost is reduced by the first to fourth effects described above.
なお、タブ線を熱圧着または超音波溶着といった、はんだを用いない方法によってタブ線を受光面バス電極12Bに接着する場合には、丸線導体20aのみをタブ線20として用いることができる。この場合、受光面バス電極12Bの幅は、タブ線20の直径と同じ幅とされ、丸線導体20aの直径とされる。また、タブ線での抵抗損失は母材の銅材の断面積に依存するため、この場合も上記の計算が成り立つ。
When the tab wire is bonded to the light receiving surface bus electrode 12B by a method using no solder, such as thermocompression bonding or ultrasonic welding, only the round conductor 20a can be used as the tab wire 20. In this case, the width of the light receiving surface bus electrode 12B is the same as the diameter of the tab line 20, and is the diameter of the round conductor 20a. Further, since the resistance loss at the tab wire depends on the cross-sectional area of the copper material of the base material, the above calculation also holds in this case.
つぎに、タブ線の本数を変化させた場合にタブ線の本数が太陽電池セルおよび太陽電池モジュールの出力に及ぼす影響を、上記のタブ線20を用いた太陽電池モジュール100、およびタブ線20の代わりに上記の平角タブ線300を用いたこと以外は太陽電池モジュール100と同じ構成を有する太陽電池モジュールについて特性をシミュレーションした結果に基づいて説明する。
Next, when the number of tab lines is changed, the influence of the number of tab lines on the output of the solar battery cell and the solar cell module is determined by the solar cell module 100 using the tab line 20 and the tab line 20. It demonstrates based on the result of having simulated the characteristic about the solar cell module which has the same structure as the solar cell module 100 except having used said flat tab wire 300 instead.
太陽電池セルおよび太陽電池モジュールの特性のシミュレーションは、上述した実施の形態1にかかる太陽電池モジュール100の構成において、タブ線の種類およびタブ線の本数を変化させた太陽電池モジュールについて行った。太陽電池アレイ70は、図4に示すように40枚の太陽電池セル10を電気的に直列接続されたものとした。太陽電池セル10は、156mm角、厚さ200μmのサイズの太陽電池セルとした。受光面のシート抵抗であるn型不純物拡散層のシート抵抗は、80Ω/sq.とした。受光面グリッド電極の本数は100本とし、受光面グリッド電極12Gの抵抗は、0.6Ω/cmとした。受光面保護部品31はガラス基板とし、受光面側封止材33および裏面側封止材34はEVAとし、裏面保護部品32はPETシートからなるバックフィルムとした。
The simulation of the characteristics of the solar cell and the solar cell module was performed on the solar cell module in which the types of tab lines and the number of tab lines were changed in the configuration of the solar cell module 100 according to the first embodiment described above. As shown in FIG. 4, the solar battery array 70 is configured such that 40 solar battery cells 10 are electrically connected in series. The solar battery cell 10 was a 156 mm square solar battery cell with a thickness of 200 μm. The sheet resistance of the n-type impurity diffusion layer, which is the sheet resistance of the light receiving surface, is 80 Ω / sq. And The number of light receiving surface grid electrodes was 100, and the resistance of the light receiving surface grid electrode 12G was 0.6 Ω / cm. The light receiving surface protection component 31 was a glass substrate, the light receiving surface side sealing material 33 and the back surface side sealing material 34 were EVA, and the back surface protection component 32 was a back film made of a PET sheet.
(シャドーロスのシミュレーション)
図15は、特性のシミュレーションを行った太陽電池セルのタブ線の種類およびタブ線の本数と、タブ線でのシャドーロス(アンペア:A)とを示す図である。シャドーロスは、タブ線による短絡電流Isc(A)の低減値を示している。タブ線による短絡電流Isc(A)は、タブ線および受光面バス電極を形成したことにより低減した太陽電池セルの短絡電流値である。図16は、図15をグラフ化した特性図である。 (Simulation of shadow loss)
FIG. 15 is a diagram showing the types of tab lines and the number of tab lines of the solar battery cell whose characteristics have been simulated, and the shadow loss (amperes: A) at the tab lines. The shadow loss indicates a reduction value of the short circuit current Isc (A) due to the tab wire. The short circuit current Isc (A) due to the tab wire is a short circuit current value of the solar battery cell reduced by forming the tab wire and the light receiving surface bus electrode. FIG. 16 is a characteristic graph of FIG.
図15は、特性のシミュレーションを行った太陽電池セルのタブ線の種類およびタブ線の本数と、タブ線でのシャドーロス(アンペア:A)とを示す図である。シャドーロスは、タブ線による短絡電流Isc(A)の低減値を示している。タブ線による短絡電流Isc(A)は、タブ線および受光面バス電極を形成したことにより低減した太陽電池セルの短絡電流値である。図16は、図15をグラフ化した特性図である。 (Simulation of shadow loss)
FIG. 15 is a diagram showing the types of tab lines and the number of tab lines of the solar battery cell whose characteristics have been simulated, and the shadow loss (amperes: A) at the tab lines. The shadow loss indicates a reduction value of the short circuit current Isc (A) due to the tab wire. The short circuit current Isc (A) due to the tab wire is a short circuit current value of the solar battery cell reduced by forming the tab wire and the light receiving surface bus electrode. FIG. 16 is a characteristic graph of FIG.
図15および図16において、丸線0.3mmφaは丸線導体の直径φaが0.3mmの丸線タブ線を、丸線0.4mmφaは丸線導体の直径φaが0.4mmの丸線タブ線を、丸線0.5mmφaは丸線導体の直径φaが0.5mmの丸線タブ線を示している。平角0.5wa×0.25tは平角導体の幅waが0.5mmであり平角導体の厚みtが0.25mmの平角タブ線を、平角0.8wa×0.25tは平角導体の幅waが0.8mmであり平角導体の厚みtが0.25mmの平角タブ線を示している。
In FIG. 15 and FIG. 16, a round wire 0.3 mmφa is a round wire tab wire having a diameter φa of 0.3 mm, and a round wire 0.4 mmφa is a round wire tab having a diameter φa of 0.4 mm As for the wire, a round wire 0.5 mmφa indicates a round wire tab wire having a diameter φa of the round wire conductor of 0.5 mm. Flat angle 0.5wa × 0.25t is a flat tab wire whose width wa of flat conductor is 0.5 mm and thickness t of flat conductor is 0.25 mm, and flat block 0.8wa × 0.25 t is width wa of flat conductor. The flat tab wire which is 0.8 mm and thickness t of a flat conductor is 0.25 mm is shown.
なお、はんだメッキの厚みは丸線導体の直径φaまたは平角導体の幅waと比較すると非常に薄く、はんだメッキがシャドーロスに及ぼす影響は小さいため、ここでははんだメッキの厚みは無視している。
The thickness of the solder plating is neglected here because the thickness of the solder plating is very thin compared to the diameter φa of the round conductor or the width wa of the flat conductor and the influence of the solder plating on the shadow loss is small.
図15および図16から、タブ線の本数が増加するに伴って、タブ線でのシャドーロスが、ほぼタブ線の本数に比例するように、増加することがわかる。シミュレーションを行った太陽電池セルのサンプルの中でも、平角タブ線を用いた太陽電池セルにおいては、受光面カバー率が大きいためシャドーロスの増加傾向が顕著に表れる結果となった。また、図15および図16において、抵抗損失が同等レベルである、丸線0.5mmφaの場合と、平角0.8wa×0.25tの場合とを比較すると、丸線0.5mmφaの場合のシャドーロスが平角0.8wa×0.25tの場合のシャドーロスの半分程度となっていることがわかる。
It can be seen from FIGS. 15 and 16 that as the number of tab lines increases, the shadow loss at the tab lines increases substantially in proportion to the number of tab lines. Among the samples of the solar cells for which the simulation was performed, in the solar cells using the flat tab wire, the increase in the shadow loss was noticeable because the light receiving surface coverage was large. Further, in FIGS. 15 and 16, when the case of the round wire 0.5 mmφa and the case of the flat angle 0.8wa × 0.25t at the same level of resistance loss are compared, the shadow in the case of the round wire 0.5 mmφa It can be seen that the loss is about half of the shadow loss when the angle is 0.8 wa × 0.25 t.
シャドーロスが増えることで、受光面カバー率が増加して太陽電池セルの発電エリアが減少し、その結果、太陽電池セルから取り出せる電子の絶対量が減ることで、短絡電流値が減少してしまう。そして、太陽電池セルが大電流化されるにしたがって、受光面カバー率が同じでも、短絡電流値の減少量は多くなる。丸線タブ線を用いることで、各太陽電池セルにおけるシャドーロスを抑制できるので、太陽電池モジュール全体としてのシャドーロスを抑制し、出力の低下を抑制でき、高出力化を実現できる。
As the shadow loss increases, the light receiving surface coverage increases and the power generation area of the solar battery cell decreases, and as a result, the absolute amount of electrons that can be extracted from the solar battery cell decreases, and the short circuit current value decreases. . Then, as the solar battery cell is increased in current, the reduction amount of the short circuit current value increases even if the light receiving surface coverage is the same. By using the round wire tab wire, the shadow loss in each solar battery cell can be suppressed, so the shadow loss of the entire solar battery module can be suppressed, the decrease in output can be suppressed, and high output can be realized.
(フィルファクターのシミュレーション)
図17は、特性のシミュレーションを行った太陽電池モジュールのタブ線の種類およびタブ線の本数と、太陽電池モジュールの出力の指標であるフィルファクター(Fill Factor:F.F.、曲線因子)とを示す図である。図18は、図17をグラフ化した特性図である。 (Simulation of fill factor)
FIG. 17 shows the types of tab lines and the number of tab lines of the solar cell module whose characteristics were simulated, and the fill factor (F.F., curve factor) that is an index of the output of the solar cell module. FIG. FIG. 18 is a characteristic graph of FIG.
図17は、特性のシミュレーションを行った太陽電池モジュールのタブ線の種類およびタブ線の本数と、太陽電池モジュールの出力の指標であるフィルファクター(Fill Factor:F.F.、曲線因子)とを示す図である。図18は、図17をグラフ化した特性図である。 (Simulation of fill factor)
FIG. 17 shows the types of tab lines and the number of tab lines of the solar cell module whose characteristics were simulated, and the fill factor (F.F., curve factor) that is an index of the output of the solar cell module. FIG. FIG. 18 is a characteristic graph of FIG.
図18から、タブ線の本数が増加するに伴って、放物線を描きながらフィルファクターが増加することがわかる。1本のタブ線に対して1本の受光面バス電極12Bが対応しており、タブ線の本数が増加する場合には、受光面バス電極12Bの本数も増加する。タブ線の本数が増えることによって、細線であって電気抵抗の大きい受光面グリッド電極12Gから受光面バス電極12Bまでの実効的な電流の移動距離が短くなるので、受光面グリッド電極12Gでの抵抗損失が低減し、太陽電池セルから電流を取り出す際の抵抗損失が少なくなり、集電ロスを低減して太陽電池モジュールの高光電変換効率化を図ることが可能となる。この高光電変換効率化は、丸線タブ線を使用した太陽電池モジュール、および平角タブ線を使用した太陽電池モジュールの両方に共通している。また、タブ線の断面積が大きい方が、タブ線での抵抗損失が低減し、フィルファクターが増加する。
It can be seen from FIG. 18 that as the number of tab lines increases, the fill factor increases while drawing a parabola. One light receiving surface bus electrode 12B corresponds to one tab line, and when the number of tab lines increases, the number of light receiving surface bus electrodes 12B also increases. As the number of tab lines increases, the effective current transfer distance from the light receiving surface grid electrode 12G, which is a thin wire having a large electrical resistance, to the light receiving surface bus electrode 12B becomes short, so the resistance at the light receiving surface grid electrode 12G is reduced. The loss is reduced, and the resistance loss at the time of extracting the current from the solar battery cell is reduced, so that it is possible to reduce the current collection loss and achieve the high photoelectric conversion efficiency of the solar battery module. This high photoelectric conversion efficiency is common to both solar cell modules using round wire tab wires and solar cell modules using flat tab wires. Also, as the cross-sectional area of the tab wire is larger, the resistance loss at the tab wire is reduced and the fill factor is increased.
(CTM(Cell to Module)ロスのシミュレーション)
図19は、太陽電池セルから太陽電池モジュールを作製する際に発生する出力ロスを示す図である。図19では、図15から図18に示した特性の傾向、および丸線タブ線を使用した場合の光学的な利得である上記の丸線のタブ線20の第3の効果を加味し、太陽電池セルから太陽電池モジュールを作製する際に発生する出力ロス(%)を、出力比(%)とともに示している。図19では、出力ロス(%)を括弧付きの数字で示している。 (Simulation of CTM (Cell to Module) loss)
FIG. 19 is a diagram showing an output loss generated when producing a solar cell module from solar cells. In FIG. 19, the tendency of the characteristics shown in FIG. 15 to FIG. 18 and the third effect of the above-mentionedround tab wire 20 which is an optical gain when using a round tab wire is taken into consideration, The power loss (%) generated when producing a solar cell module from a battery cell is shown together with the power ratio (%). In FIG. 19, the output loss (%) is indicated by a number in parentheses.
図19は、太陽電池セルから太陽電池モジュールを作製する際に発生する出力ロスを示す図である。図19では、図15から図18に示した特性の傾向、および丸線タブ線を使用した場合の光学的な利得である上記の丸線のタブ線20の第3の効果を加味し、太陽電池セルから太陽電池モジュールを作製する際に発生する出力ロス(%)を、出力比(%)とともに示している。図19では、出力ロス(%)を括弧付きの数字で示している。 (Simulation of CTM (Cell to Module) loss)
FIG. 19 is a diagram showing an output loss generated when producing a solar cell module from solar cells. In FIG. 19, the tendency of the characteristics shown in FIG. 15 to FIG. 18 and the third effect of the above-mentioned
出力比は、太陽電池モジュールの短絡電流Iscに太陽電池モジュールのF.F.を乗じた値の、太陽電池セルから太陽電池モジュールを作製する際に発生する出力ロスが無いと仮定した場合の太陽電池モジュールの短絡電流Iscに太陽電池モジュールのF.F.を乗じた値に対する比率(%)としている。太陽電池モジュールの短絡電流Iscに太陽電池モジュールのF.F.を乗じた値により、開放電圧が変わらないと仮定した場合の、太陽電池モジュールが最大のパワーを発生する最大パワー出力での電流レベルを知ることができる。以下、太陽電池セルから太陽電池モジュールを作製する際に発生する出力ロスを、CTM(Cell to Module)ロスと呼ぶ。図20は、図19をグラフ化した特性図である。図19では、短絡電流Iscを9Aと想定してシミュレーションを行っている。
The output ratio is the short circuit current Isc of the solar cell module F.F. F. The short circuit current Isc of the solar cell module when assuming that there is no output loss that occurs when manufacturing the solar cell module from the solar cells with a value multiplied by. F. The ratio (%) to the value multiplied by. The short-circuit current Isc of the solar cell module F. F. The value obtained by multiplying the current value can know the current level at the maximum power output at which the solar cell module generates the maximum power, assuming that the open circuit voltage does not change. Hereinafter, the output loss generated when manufacturing a solar cell module from a solar cell is referred to as a CTM (Cell to Module) loss. FIG. 20 is a characteristic graph of FIG. In FIG. 19, the simulation is performed on the assumption that the short circuit current Isc is 9A.
CTMロスとは、太陽電池セルの光電変換効率と太陽電池モジュールの光電変換効率との差を表す指標として用いられ、ここでは下記の式により算出される。また、図19および図20においては、数値が大きいほどCTMロスが少なく、数値が小さいほどCTMロスが多いことを意味する。
The CTM loss is used as an index that represents the difference between the photoelectric conversion efficiency of the solar cell and the photoelectric conversion efficiency of the solar cell module, and is calculated here by the following equation. Further, in FIG. 19 and FIG. 20, the larger the numerical value, the smaller the CTM loss, and the smaller the numerical value, the more the CTM loss.
CTMロス=(1-出力比)×100(%)
出力比=(太陽電池モジュールの短絡電流Isc×太陽電池モジュールのF.F.)/{(太陽電池セルの短絡電流Isc×太陽電池セルのF.F.)×(太陽電池セルの枚数:40枚)} CTM loss = (1-output ratio) x 100 (%)
Power ratio = (short circuit current of the solar cell module Isc × F.F. Of the solar cell module) / {(short circuit current of the solar cell Isc × F.F. Of the solar cell) × (number of solar cells: 40 Sheet)}
出力比=(太陽電池モジュールの短絡電流Isc×太陽電池モジュールのF.F.)/{(太陽電池セルの短絡電流Isc×太陽電池セルのF.F.)×(太陽電池セルの枚数:40枚)} CTM loss = (1-output ratio) x 100 (%)
Power ratio = (short circuit current of the solar cell module Isc × F.F. Of the solar cell module) / {(short circuit current of the solar cell Isc × F.F. Of the solar cell) × (number of solar cells: 40 Sheet)}
図19および図20から、CTMロスはタブ線の本数が増加するに伴って必ずしも増加し続けるとはいえないことが分かる。図19および図20から、タブ線の本数が増加した場合、丸線0.5mmφaの場合のCTMロスが最も少なく、次いで丸線0.4mmφaの場合のCTMロスが少なくなっていることがわかる。
From FIGS. 19 and 20, it can be seen that CTM loss does not always continue to increase as the number of tab lines increases. From FIGS. 19 and 20, it can be seen that when the number of tab lines increases, the CTM loss in the case of the round wire 0.5 mmφa is the smallest, and then the CTM loss in the case of the round wire 0.4 mmφa is smaller.
一方で、タブ線の本数が増加すると、平角0.5wa×0.25tの場合および平角0.8wa×0.25tの場合は、丸線0.5mmφaの場合および丸線0.4mmφaの場合と比較してCTMロスが大きい。タブ線の本数が増加した際の丸線0.5mmφaの場合および丸線0.4mmφaの場合のCTMロスが少なくなるのは、上記の丸線のタブ線20を用いることの第1の効果から第3の効果によるものであると考えられる。
On the other hand, when the number of tab lines increases, in the case of flat angle 0.5wa × 0.25t and in the case of flat angle 0.8wa × 0.25t, the case of round wire 0.5 mmφa and the case of round wire 0.4mmφa In comparison, CTM loss is large. The CTM loss decreases in the case of 0.5 mmφa of round wire and 0.4 mmφa of round wire when the number of tab wires is increased, from the first effect of using tab wire 20 of the above-mentioned round wire. It is considered to be due to the third effect.
従来技術の3本の表面バスバー電極を有する太陽電池モジュールのCTMロスは3%前後である。本実施の形態1にかかる太陽電池モジュール100においては、幅が0.4mmである受光面バス電極が10本以上15本以下の範囲で並設され、または、幅が0.5mmである受光面バス電極が5本以上15本以下の範囲で並設される。すなわち、太陽電池モジュール100においては、丸線0.4mmφaのタブ線を10本以上15本以下の範囲で用いること、または丸線0.5mmφaのタブ線を5本以上15本以下の範囲で用いることによって、CTMロスを特許文献1に記載されている太陽電池モジュールと比較して半減させて1.5%程度以内とすることが可能になる。さらに、製造方法の違いにより、平角線よりも安価に製造できる丸線タブ線の使用は、太陽電池モジュールの材料費の削減が可能となる。
The CTM loss of a solar cell module having three surface bus bar electrodes of the prior art is around 3%. In the solar cell module 100 according to the first embodiment, light receiving surface bus electrodes having a width of 0.4 mm are juxtaposed in a range of 10 to 15 or a light receiving surface having a width of 0.5 mm. The bus electrodes are arranged in parallel in a range of 5 or more and 15 or less. That is, in the solar cell module 100, use of tab wire of round wire 0.4 mmφa in a range of 10 or more and 15 or less, or use of tab wire of round wire 0.5 mmφa in a range of 5 or more and 15 or less This makes it possible to halve the CTM loss to about 1.5% or less as compared with the solar cell module described in Patent Document 1. Furthermore, the difference in the manufacturing method makes it possible to reduce the material cost of the solar cell module by using the round tab wire which can be manufactured cheaper than the flat wire.
なお、上記においては、はんだメッキの厚みは丸線導体の直径φaまたは平角導体の幅waと比較すると非常に薄いため、はんだメッキの厚みを考慮した場合でも太陽電池モジュールの特性は上記と同じ傾向となり、丸線導体の直径φaおよび平角導体の幅waをはんだメッキが施されたタブ線20の直径として取り扱うことができる。したがって、本実施の形態1にかかる太陽電池モジュール100においては、タブ線の直径φが0.4mmφaのタブ線20を10本以上15本以下の範囲で用いること、またはタブ線の直径φが丸線0.5mmφaのタブ線20を5本以上15本以下の範囲で用いることによって、CTMロスを特許文献1に記載されている太陽電池モジュールと比較して半減させて1.5%程度以内とすることが可能になるといえる。
In the above, the thickness of the solder plating is very thin compared to the diameter φa of the round conductor or the width wa of the flat conductor, so the characteristics of the solar cell module tend to be the same as above even when the thickness of the solder plating is considered. Thus, the diameter φa of the round conductor and the width wa of the rectangular conductor can be treated as the diameter of the solder-plated tab wire 20. Therefore, in the solar cell module 100 according to the first embodiment, the tab wire 20 having a tab wire diameter φ of 0.4 mmφa is used in a range of 10 or more and 15 or less, or the tab wire diameter φ is round. By using the tab wire 20 of 0.5 mmφa in a range of 5 to 15, it is possible to reduce the CTM loss by half in comparison with the solar cell module described in Patent Document 1 to within about 1.5%. It will be possible to
また、上記のシミュレーションに用いた正方形状の太陽電池セルの正方形状の外形寸法を150mm角以上160mm角以下の範囲で、受光面のシート抵抗であるn型不純物拡散層のシート抵抗を70Ω/sq.以上90Ω/sq.以下の範囲で、かつ受光面グリッド電極の電気抵抗を0.45Ω/cm以上0.7Ω/cm以下の範囲で任意に条件を変更した場合においても、上記と同様の特性が得られる。これらの条件は、実用レベルの高い出力を実現するために好ましい条件である。すなわち、太陽電池セルの外形寸法、受光面のシート抵抗および受光面グリッド電極の電気抵抗を上記の範囲で任意に条件を変更した場合においても、太陽電池セルおよび太陽電池モジュールの特性において、図15から図20に示した特性と同じ傾向が得られることが、発明者のシミュレーションによって確認されている。
In addition, the sheet resistance of the n-type impurity diffusion layer, which is the sheet resistance of the light receiving surface, is 70 Ω / sq within the range of 150 mm to 160 mm square of the square external dimensions of the square solar battery cell used in the above simulation. . 90 Ω / sq. The same characteristics as described above can be obtained even when the conditions are arbitrarily changed in the following range and the electrical resistance of the light receiving surface grid electrode in the range of 0.45 Ω / cm to 0.7 Ω / cm. These conditions are preferable conditions for achieving a high practical output. That is, even when the external dimensions of the solar battery cell, the sheet resistance of the light receiving surface, and the electric resistance of the light receiving surface grid electrode are arbitrarily changed in the above range, the characteristics of the solar battery cell and the solar battery module are as shown in FIG. It is confirmed by the inventor's simulation that the same tendency as the characteristics shown in FIG.
また、上記のシミュレーションに用いた太陽電池セルの条件について、隣り合う受光面グリッド電極の間隔を1mm以上、2mm以下の範囲で、かつ受光面グリッド電極の本数を75本以上、150本以下の範囲で任意に条件を変更した場合においても、上記と同様の特性が得られる。
With regard to the conditions of the solar cells used in the above simulation, the distance between adjacent light receiving surface grid electrodes is in the range of 1 mm or more and 2 mm or less, and the number of light receiving surface grid electrodes is in the range of 75 or more and 150 or less Even when the conditions are arbitrarily changed, the same characteristics as described above can be obtained.
したがって、太陽電池モジュール100においては、太陽電池セルの外形寸法を150mm角以上160mm角以下の範囲、受光面のシート抵抗であるn型不純物拡散層のシート抵抗を70Ω/sq.以上90Ω/sq.以下の範囲、かつ受光面グリッド電極の電気抵抗が0.45Ω/cm以上0.7Ω/cm以下の範囲である条件下において、タブ線20の線径と本数とに適切な条件がある。太陽電池モジュール100においては、タブ線の直径φが0.4mmφaのタブ線20を10本以上15本以下の範囲で用いること、またはタブ線の直径φが丸線0.5mmφaのタブ線20を5本以上15本以下の範囲で用いて、受光面バス電極の幅をタブ線20の幅以下に細線化することが、CTMロスを抑制できるタブ線20の線径と本数との適切な条件であるといえる。
Therefore, in the solar cell module 100, the outer dimensions of the solar cell are in the range of 150 mm to 160 mm square, and the sheet resistance of the n-type impurity diffusion layer, which is the sheet resistance of the light receiving surface, is 70 Ω / sq. 90 Ω / sq. Under the following range and under the condition that the electrical resistance of the light receiving surface grid electrode is in the range of 0.45 Ω / cm to 0.7 Ω / cm, there are suitable conditions for the wire diameter and the number of tab wires 20. In the solar cell module 100, use a tab wire 20 having a tab wire diameter φ of 0.4 mmφa in a range of 10 to 15 or a tab wire 20 of a tab wire diameter φ of 0.5 mmφa Thinning the width of the light receiving surface bus electrode to the width of the tab wire 20 or less by using in the range of 5 or more and 15 or less, an appropriate condition of the wire diameter of the tab wire 20 and the number that can suppress CTM loss. You can say that.
したがって、本発明にかかる太陽電池モジュール100によれば、複数の太陽電池セル10を接続するタブ線20および受光面バス電極12Bの影に起因した光遮光損失の増加を抑制でき、受光面グリッド電極12Gでの抵抗損失を低減して太陽電池セル10から電流を取り出す際の抵抗損失を低減でき、低コスト化と高光電変換効率化とが実現された太陽電池モジュールが得られるという効果を奏する。
Therefore, according to the solar cell module 100 according to the present invention, it is possible to suppress an increase in light blocking loss due to the shadow of the tab wire 20 connecting the plurality of solar cells 10 and the light receiving surface bus electrode 12B. The resistance loss at 12 G can be reduced to reduce the resistance loss at the time of taking out the current from the solar battery cell 10, and the solar cell module can be obtained in which cost reduction and high photoelectric conversion efficiency are realized.
従来技術の平角導体からなるタブ線を用いた太陽電池モジュールの場合、例えばタブ線の幅を1/2にして本数を2倍にすると、タブ線の幅および本数を変更する前の状態と比較して、全体のシャドーロスは同じであり、またタブ線に流れる電流の電流密度は同じになるのでタブ線での抵抗損失も同じになる。一方、タブ線の幅を1/2にして本数を2倍にすると、タブ線の幅および本数を変更する前の状態と比較して、太陽電池セルにおける光電変換で生成されて受光面グリッド電極に達したキャリアが受光面グリッド電極中を流れる際の最大距離が1/2になるため、受光面グリッド電極での抵抗損失は低下する。
In the case of a solar cell module using a tab wire made of flat rectangular conductors according to the prior art, for example, when the width of the tab wire is halved and the number is doubled, the state before changing the width and the number of tab wires is compared Then, the overall shadow loss is the same, and the current density of the current flowing through the tab line is the same, so the resistance loss at the tab line is also the same. On the other hand, when the width of the tab line is halved and the number is doubled, the light receiving surface grid electrode is generated by photoelectric conversion in the solar battery cell as compared with the state before changing the width and the number of tab lines. The resistance loss at the light receiving surface grid electrode is reduced because the maximum distance when the carrier that has reached f.sub.1 flows in the light receiving surface grid electrode is halved.
したがって、太陽電池モジュールの全体の損失としては、タブ線の本数を増やせば増やすほど、受光面グリッド電極での抵抗損失が低下して、出力が向上する。すなわち、太陽電池セルの特性から見るとタブ線の本数は多い方が望ましいが、タブ線が細くなると太陽電池モジュールの製造が困難になる。このため、実際には、太陽電池モジュールの特性と太陽電池モジュールの製造技術との兼ね合いで、タブ線の本数が選択される。すなわち、従来の技術では、タブ線を細くして本数を増やした方が太陽電池モジュールの特性が向上する、ということが一般的な理解であった。
Therefore, as the total loss of the solar cell module, as the number of tab lines increases, the resistance loss at the light receiving surface grid electrode decreases and the output improves. That is, in view of the characteristics of the solar battery cell, it is preferable that the number of tab lines is large, but when the tab lines become thin, manufacturing of the solar cell module becomes difficult. For this reason, in practice, the number of tab wires is selected in view of the characteristics of the solar cell module and the manufacturing technology of the solar cell module. That is, in the prior art, it was generally understood that the characteristic of the solar cell module is improved by increasing the number by narrowing the tab lines.
一方、丸線のタブ線を用いた場合、タブ線の幅を細くすると、タブ線の高さも低くなるので、上記の理論は成り立たない。また、丸線のタブ線を用いた場合、光の反射による効果、すなわち、丸線タブ線を使用した場合の光学的な利得である上記の丸線のタブ線20の第3の効果も存在する。このため、タブ線に関して、適切な構成を見い出すことは容易ではない。
On the other hand, when a round tab wire is used, if the width of the tab wire is reduced, the height of the tab wire is also reduced, the above theory does not hold. In addition, when a round tab wire is used, there is also a third effect of the above-mentioned round tab wire 20, which is the effect of light reflection, that is, the optical gain when using a round tab wire. Do. Therefore, it is not easy to find an appropriate configuration for the tab line.
発明者は、シミュレーションの過程においては、丸線のタブ線による太陽電池モジュールに入射した太陽光の拡散反射効果および丸線のタブ線で拡散反射した反射光が受光面保護部品の太陽電池セル側の面である内面に入射する際の臨界角に基づいた、太陽電池モジュールに入射する太陽光の有効光線量の明確化、受光面側封止材の太陽光の透過率といった条件を検討した上でシミュレーションを行った。そして、発明者は、太陽光により太陽電池モジュールで発電される発電電流の集電ロスによる太陽電池モジュールの出力の低下を抑制すべく、すなわち、タブ線および受光面バス電極に起因した太陽電池モジュールの出力の低下を抑制すべく、上述したシミュレーションにより、図19および図20に示すように適切なタブ線の本数が存在することを見い出すとともに、その適切な範囲を見い出した。
In the process of simulation, in the process of simulation, the diffuse reflection effect of sunlight incident on the solar cell module by the tab wire of the round wire and the reflected light diffusely reflected by the tab wire of the round wire is on the solar cell side of the light receiving surface protection component After clarifying the effective light amount of sunlight incident on the solar cell module based on the critical angle when entering the inner surface which is the surface of the surface, transmittance conditions of sunlight on the light receiving surface side sealing material, etc. The simulation was done. Then, the inventor of the present invention aims to suppress the decrease in the output of the solar cell module due to the current collection loss of the generated current generated by the solar cell module by sunlight, that is, the solar cell module caused by the tab wire and the light receiving surface bus electrode In order to suppress the reduction of the power of the above, the above simulation has found that there is an appropriate number of tab lines as shown in FIG. 19 and FIG.
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
The configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.
10 太陽電池セル、10A 太陽電池セルの受光面、10B 太陽電池セルの裏面、11 半導体基板、11A 半導体基板の受光面、11B 半導体基板の裏面、12 受光面電極、12B 受光面バス電極、12G 受光面グリッド電極、13 裏面電極、13a 裏面集電電極、13b 裏面接合電極、20 タブ線、20a 丸線導体、20b,300b はんだの薄層、23a 受光面側接続領域、23b 裏面側接続領域、24 セル間領域、25 横タブ線、31 受光面保護部品、31a 内面、32 裏面保護部品、33 受光面側封止材、34 裏面側封止材、40 フレーム、41 端子ボックス、50 太陽電池ストリング、70 太陽電池アレイ、100 太陽電池モジュール、200 ヒートツール、300 平角タブ線、300a 平角導体、L1,L2 シャドーロス、m はんだの薄層の厚み、r 丸線導体の半径、RL 反射光、S1 丸線導体の断面積、S2 平角導体の断面積、t 平角導体の厚み、w 平角タブ線の幅、wa 平角導体の幅、φ タブ線の直径、φa 丸線導体の直径。
DESCRIPTION OF SYMBOLS 10 solar battery cell, light receiving surface of 10 A solar battery cell, back surface of 10 B solar battery cell, 11 semiconductor substrate, light receiving surface of 11 A semiconductor substrate, back surface of 11 B semiconductor substrate, 12 light receiving surface electrode, 12 B light receiving surface bus electrode, 12 G light receiving Surface grid electrode, 13 back surface electrode, 13a back surface collecting electrode, 13b back surface contact electrode, 20 tab wire, 20a round wire conductor, 20b, thin layer of solder 300b, 300a light receiving surface side connection region, 23b rear surface side connection region, 24 Inter-cell area, 25 horizontal tab line, 31 light receiving surface protection component, 31a inner surface, 32 back surface protection component, 33 light receiving surface sealing material, 34 rear surface sealing material, 40 frame, 41 terminal box, 50 solar cell string, 70 solar array, 100 solar modules, 200 heat tools, 30 Flat tab wire, 300a flat conductor, L1, L2 shadow loss, m thin solder layer thickness, r round conductor radius, RL reflected light, S1 round conductor cross section, S2 flat conductor cross section, t flat angle Conductor thickness, w Flat tab wire width, wa Flat conductor width, φ Tab wire diameter, φa Round wire conductor diameter.
Claims (3)
- 透光性を有する受光面側保護部品と裏面側保護部品との間に、タブ線によって電気的に接続された複数の太陽電池セルが配置された太陽電池モジュールであって、
前記太陽電池セルは、
pn接合を有する半導体基板と、
前記半導体基板の受光面において前記タブ線による前記太陽電池セルの連結方向と直交する方向と平行に延びる複数のグリッド電極と、前記受光面において前記複数のグリッド電極を接続して前記連結方向に沿って延びる複数本の受光面バス電極とを有する受光面電極と、
前記半導体基板における前記受光面と反対側を向く裏面において前記連結方向に沿って延びる裏面電極と、
を備え、
前記タブ線は、
丸線の導体を母材とし、前記受光面バス電極の幅と同じ直径を有し、
1本の前記受光面バス電極に対して1本が接続されて前記受光面バス電極と同数が設けられ、
前記連結方向に沿って延びて、隣り合う2つの前記太陽電池セルのうち一方の前記太陽電池セルの前記受光面バス電極の上面と接続されるとともに、他方の前記太陽電池セルの前記裏面電極と接続され、
前記太陽電池セルが、1辺の長さが150mm以上160mm以下の範囲である正方形状を有し、前記受光面のシート抵抗が70Ω/sq.以上90Ω/sq.以下の範囲であり、前記グリッド電極の抵抗値が0.45Ω/cm以上0.7Ω/cm以下である条件下において、
幅が0.4mmである前記受光面バス電極が10本以上15本以下の範囲で並設され、または、幅が0.5mmである前記受光面バス電極が5本以上15本以下の範囲で並設されること、
を特徴とする太陽電池モジュール。 A solar cell module in which a plurality of solar cells electrically connected by a tab wire is disposed between a light-receiving side protection component having a light-transmitting property and a back-side protection component,
The solar battery cell is
a semiconductor substrate having a pn junction,
A plurality of grid electrodes extending parallel to a direction orthogonal to the connecting direction of the solar cells by the tab line on the light receiving surface of the semiconductor substrate and the plurality of grid electrodes on the light receiving surface are connected along the connecting direction A light receiving surface electrode having a plurality of light receiving surface bus electrodes extending;
A back surface electrode extending along the connection direction on the back surface of the semiconductor substrate facing the opposite side to the light receiving surface;
Equipped with
The tab line is
A round conductor is used as a base material and has the same diameter as the width of the light receiving surface bus electrode,
One is connected to one of the light receiving surface bus electrodes, and the same number as the light receiving surface bus electrodes is provided.
It extends along the connection direction and is connected to the upper surface of the light receiving surface bus electrode of one of the two adjacent solar cells, and the back electrode of the other solar cell. Connected and
The solar battery cell has a square shape in which the length of one side is in the range of 150 mm to 160 mm, and the sheet resistance of the light receiving surface is 70 Ω / sq. 90 Ω / sq. In the following range, under the condition that the resistance value of the grid electrode is not less than 0.45 Ω / cm and not more than 0.7 Ω / cm,
The light-receiving surface bus electrodes having a width of 0.4 mm are juxtaposed in a range of 10 to 15, and the light-receiving surface bus electrodes having a width of 0.5 mm are in a range of 5 to 15 Be placed side by side,
A solar cell module characterized by - 前記タブ線は、前記丸線の導体の表面がはんだで覆われたものであること、
を特徴とする請求項1に記載の太陽電池モジュール。 The tab wire is that the surface of the conductor of the round wire is covered with solder,
The solar cell module according to claim 1, characterized in that - 前記はんだは、前記丸線の導体の表面にメッキされたものであること、
を特徴とする請求項2に記載の太陽電池モジュール。 The solder is plated on the surface of the round conductor.
The solar cell module according to claim 2, characterized in that
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/040758 WO2019092885A1 (en) | 2017-11-13 | 2017-11-13 | Solar cell module |
JP2019551862A JPWO2019092885A1 (en) | 2017-11-13 | 2017-11-13 | Solar cell module |
TW107136542A TWI680586B (en) | 2017-11-13 | 2018-10-17 | Solar battery module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/040758 WO2019092885A1 (en) | 2017-11-13 | 2017-11-13 | Solar cell module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019092885A1 true WO2019092885A1 (en) | 2019-05-16 |
Family
ID=66438399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/040758 WO2019092885A1 (en) | 2017-11-13 | 2017-11-13 | Solar cell module |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2019092885A1 (en) |
TW (1) | TWI680586B (en) |
WO (1) | WO2019092885A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4953562B2 (en) * | 2004-06-10 | 2012-06-13 | 京セラ株式会社 | Solar cell module |
US20130160847A1 (en) * | 2010-08-24 | 2013-06-27 | Sanyo Electric Co., Ltd. | Solar cell and method of manufacturing the same |
JP2014063978A (en) * | 2013-04-26 | 2014-04-10 | Noritake Co Ltd | Solar cell module and manufacturing method therefor |
JP2017022275A (en) * | 2015-07-10 | 2017-01-26 | 三菱電機株式会社 | Solar cell and method for manufacturing solar cell |
JP2017098548A (en) * | 2015-11-17 | 2017-06-01 | エルジー エレクトロニクス インコーポレイティド | Solar cell panel, and apparatus and method for attaching wiring material of solar cell panel |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5318815B2 (en) * | 2010-04-19 | 2013-10-16 | デクセリアルズ株式会社 | Solar cell module and method for manufacturing solar cell module |
DE112011105493T5 (en) * | 2011-08-02 | 2014-06-05 | Mitsubishi Electric Corporation | Production process for solar cells and solar cell manufacturing system |
WO2014045909A1 (en) * | 2012-09-22 | 2014-03-27 | 株式会社ノリタケカンパニーリミテド | Solar cell module, and method for producing same |
-
2017
- 2017-11-13 WO PCT/JP2017/040758 patent/WO2019092885A1/en active Application Filing
- 2017-11-13 JP JP2019551862A patent/JPWO2019092885A1/en not_active Withdrawn
-
2018
- 2018-10-17 TW TW107136542A patent/TWI680586B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4953562B2 (en) * | 2004-06-10 | 2012-06-13 | 京セラ株式会社 | Solar cell module |
US20130160847A1 (en) * | 2010-08-24 | 2013-06-27 | Sanyo Electric Co., Ltd. | Solar cell and method of manufacturing the same |
JP2014063978A (en) * | 2013-04-26 | 2014-04-10 | Noritake Co Ltd | Solar cell module and manufacturing method therefor |
JP2017022275A (en) * | 2015-07-10 | 2017-01-26 | 三菱電機株式会社 | Solar cell and method for manufacturing solar cell |
JP2017098548A (en) * | 2015-11-17 | 2017-06-01 | エルジー エレクトロニクス インコーポレイティド | Solar cell panel, and apparatus and method for attaching wiring material of solar cell panel |
Also Published As
Publication number | Publication date |
---|---|
TW201919250A (en) | 2019-05-16 |
JPWO2019092885A1 (en) | 2020-02-27 |
TWI680586B (en) | 2019-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5869608B2 (en) | Solar cell module | |
US7759158B2 (en) | Scalable photovoltaic cell and solar panel manufacturing with improved wiring | |
JP5025184B2 (en) | Solar cell element, solar cell module using the same, and manufacturing method thereof | |
KR101554045B1 (en) | Solar cell module | |
US20180019349A1 (en) | Gridless photovoltaic cells and methods of producing a string using the same | |
JP2008159895A (en) | Solar cell and solar cell module | |
JP5879513B2 (en) | Solar cell module | |
JP5328996B2 (en) | SOLAR BATTERY CELL, SOLAR BATTERY MODULE AND SOLAR CELL LEAD JOIN | |
JP2012129359A (en) | Solar cell module and solar cell | |
JP2008010857A (en) | Solar cell module | |
JP6506404B2 (en) | Solar cell module, method of manufacturing solar cell module | |
JP2020510321A (en) | Battery string for splicing N-type IBC solar cells and method of manufacturing the same, module and system | |
JP5047134B2 (en) | Solar cell module | |
CN103681894A (en) | Solar cell module and manufacturing method thereof | |
JP6448792B2 (en) | Solar cell module and method for manufacturing solar cell module | |
JP4557622B2 (en) | Solar cell element connection structure and solar cell module including the same | |
WO2019159255A1 (en) | Method for manufacturing solar cell module | |
WO2019092885A1 (en) | Solar cell module | |
JP2005353836A (en) | Solar cell element and solar cell module using the same | |
TW201214727A (en) | Photovoltaic module including transparent sheet with channel | |
JP6639589B2 (en) | Solar cell module and method of manufacturing solar cell module | |
JP2016178280A (en) | Solar cell element and solar cell module using the same | |
TW201310674A (en) | Solar cell module and method for manufacturing the same | |
JP6602242B2 (en) | Solar cell module | |
JP5851355B2 (en) | Light receiving element module and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17931492 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019551862 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17931492 Country of ref document: EP Kind code of ref document: A1 |