[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019091225A1 - 跳频物理资源确定方法、用户终端和网络侧设备 - Google Patents

跳频物理资源确定方法、用户终端和网络侧设备 Download PDF

Info

Publication number
WO2019091225A1
WO2019091225A1 PCT/CN2018/106445 CN2018106445W WO2019091225A1 WO 2019091225 A1 WO2019091225 A1 WO 2019091225A1 CN 2018106445 W CN2018106445 W CN 2018106445W WO 2019091225 A1 WO2019091225 A1 WO 2019091225A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency hopping
physical resource
offset
user terminal
network side
Prior art date
Application number
PCT/CN2018/106445
Other languages
English (en)
French (fr)
Inventor
林祥利
高雪娟
缪德山
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711107724.6A external-priority patent/CN109788554A/zh
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Publication of WO2019091225A1 publication Critical patent/WO2019091225A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method for determining a frequency hopping physical resource, a user terminal, and a network side device.
  • the frequency hopping communication is supported in the communication system.
  • LTE Long Term Evolution
  • the hopping physical resource occupies both sides of the working bandwidth of the user terminal.
  • BWP Bandwidth Part
  • the BWP size of some user terminals may be different, such as a user.
  • the working bandwidth of the terminal contains the working bandwidth of another user terminal. In this way, if the hopping mode of the LTE system is also adopted, the frequency hopping physical resource occupies both sides of the working bandwidth of the user terminal, and the multiplexing rate of the physical resource may be relatively low.
  • the embodiments of the present disclosure provide a method for determining a frequency hopping physical resource, a user terminal, and a network side device, so as to solve the problem that the multiplexing rate of the physical resource is relatively low.
  • An embodiment of the present disclosure provides a method for determining a frequency hopping physical resource, including:
  • the user terminal determines the second frequency hopping physical resource according to the frequency hopping bandwidth range and the first frequency hopping physical resource.
  • the method further includes:
  • the user terminal determines the first frequency hopping physical resource.
  • the signaling includes:
  • PRB physical resource block
  • the PRB number and the frequency hopping bandwidth of the end position of the frequency hopping bandwidth range.
  • the signaling includes a first offset (offset);
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively any combination of the following:
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively combined as follows:
  • the offset is the first offset, and the N RB is the working bandwidth of the user terminal.
  • the user terminal determines the first frequency hopping physical resource, including:
  • the user terminal uses the PRB number configured on the network side as the PRB number of the first hopping physical resource; or
  • the user terminal Determining, by the user terminal, the first frequency hopping physical resource according to the PRB number configured by the network side and the number of PRBs of the first frequency hopping physical resource;
  • the user terminal determines the first frequency hopping physical resource according to the channel resource number configured by the network side.
  • the user terminal determines the first frequency hopping physical resource according to the channel resource number configured by the network side, including:
  • the user terminal determines the first frequency hopping physical resource by using the following formula:
  • a PRB number of the first frequency hopping physical resource Indicates rounding down
  • mod means remainder
  • N RB is the working bandwidth of the user terminal.
  • n PUCCH is the channel resource number
  • P is the multiplexing capacity.
  • the user terminal determines the second frequency hopping physical resource according to the frequency hopping bandwidth range and the first frequency hopping physical resource, including:
  • the physical resource acts as the second hopping physical resource.
  • the user terminal determines, in the frequency hopping bandwidth, a second hopping physical resource that is symmetric with the first hopping physical resource center, including:
  • the user terminal determines the second frequency hopping physical resource by using any one of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • N RB is the working bandwidth of the user terminal, and offset is the first offset;
  • the physical resource serves as the second hopping physical resource, including:
  • the user terminal determines the second frequency hopping physical resource by using any one of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • offset_2 is a second offset
  • N RB is the working bandwidth of the user terminal
  • offset is the first offset.
  • the embodiment of the present disclosure further provides a method for determining a frequency hopping physical resource, including:
  • the network side device determines the second frequency hopping physical resource of the user terminal according to the frequency hopping bandwidth range of the user terminal and the first frequency hopping physical resource.
  • the method further includes:
  • the network side device sends signaling to the user terminal, where the signaling is used by the user terminal to determine the frequency hopping bandwidth range in a working bandwidth;
  • the network side device determines the first frequency hopping physical resource.
  • the signaling includes:
  • the PRB number and the frequency hopping bandwidth of the end position of the frequency hopping bandwidth range.
  • the signaling includes a first offset
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively any combination of the following:
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively combined as follows:
  • the offset is the first offset, and the N RB is the working bandwidth of the user terminal.
  • the network side device configures, by using signaling, a PRB number of the first hopping physical resource to the user terminal; or
  • the network side device configures a channel resource number to the user terminal, where the channel resource number is used by the user terminal to determine a first frequency hopping physical resource.
  • the network side device determines the first frequency hopping physical resource, including:
  • the network side device determines the first frequency hopping physical resource by using the following formula:
  • a PRB number of the first frequency hopping physical resource Indicates rounding down
  • mod means remainder
  • N RB is the working bandwidth of the user terminal.
  • n PUCCH is the channel resource number
  • P is the multiplexing capacity.
  • the determining, by the network side device, the second frequency hopping physical resource, according to the frequency hopping bandwidth range and the first frequency hopping physical resource includes:
  • the network side device determines, in the frequency hopping bandwidth, a second frequency hopping physical resource that is symmetric with the first frequency hopping physical resource center, including:
  • the network side device determines the second frequency hopping physical resource by using any one of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • N RB is the working bandwidth of the user terminal, and offset is the first offset;
  • Determining, by the network side device, a physical resource symmetric with the first frequency hopping physical resource center, and offsetting a physical resource symmetric with the first frequency hopping physical resource center by a second offset Physical resources as the second hopping physical resource including:
  • the network side device determines the second frequency hopping physical resource by using any one of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • offset_2 is a second offset
  • N RB is the working bandwidth of the user terminal
  • offset is the first offset.
  • the embodiment of the present disclosure further provides a user terminal, including:
  • the first determining module is configured to determine the second frequency hopping physical resource according to the frequency hopping bandwidth range and the first frequency hopping physical resource.
  • the user terminal further includes:
  • a second determining module configured to determine, according to signaling configured by the network side, the frequency hopping bandwidth range in the working bandwidth
  • a third determining module configured to determine the first frequency hopping physical resource.
  • the third determining module is configured to use a PRB number configured by the network side as a PRB number of the first frequency hopping physical resource;
  • the third determining module is configured to determine the first hopping physical resource according to the PRB number configured by the network side and the number of PRBs of the first hopping physical resource; or
  • the third determining module is configured to determine the first frequency hopping physical resource according to the channel resource number configured by the network side.
  • the first determining module is configured to determine, according to the frequency hopping bandwidth, a second hopping physical resource that is symmetric with the first hopping physical resource center; or
  • the first determining module is configured to determine, in the frequency hopping bandwidth, a physical resource that is symmetric with the first frequency hopping physical resource center, and offset a physical resource that is symmetric with the first frequency hopping physical resource center.
  • the physical resource of the second offset is used as the second frequency hopping physical resource.
  • the embodiment of the present disclosure further provides a network side device, including:
  • the first determining module is configured to determine a second hopping physical resource of the user terminal according to the frequency hopping bandwidth range of the user terminal and the first hopping physical resource.
  • the network side device further includes:
  • a sending module configured to send signaling to the user terminal, where the signaling is used by the user terminal to determine the frequency hopping bandwidth range in a working bandwidth
  • a second determining module configured to determine the first frequency hopping physical resource.
  • the network side device configures, by using signaling, a PRB number of the first hopping physical resource to the user terminal; or
  • the network side device configures a channel resource number to the user terminal, where the channel resource number is used by the user terminal to determine a first frequency hopping physical resource.
  • the first determining module is configured to determine, according to the frequency hopping bandwidth, a second hopping physical resource that is symmetric with the first hopping physical resource center; or
  • the first determining module is configured to determine, in the frequency hopping bandwidth, a physical resource that is symmetric with the first frequency hopping physical resource center, and offset a physical resource that is symmetric with the first frequency hopping physical resource center.
  • the physical resource of the second offset is used as the second frequency hopping physical resource.
  • An embodiment of the present disclosure further provides a user terminal, including: a transceiver, a memory, a processor, and a computer program stored on the memory and executable on the processor, where
  • the transceiver is configured to determine a second frequency hopping physical resource according to the frequency hopping bandwidth range and the first frequency hopping physical resource;
  • the processor is configured to read a program in the memory and perform the following process:
  • the second frequency hopping physical resource is determined according to the frequency hopping bandwidth range and the first frequency hopping physical resource.
  • the transceiver or the processor is further configured to determine, according to signaling configured by the network side, the frequency hopping bandwidth range in the working bandwidth; and determine the first hopping physical resource.
  • the signaling includes:
  • the PRB number and the frequency hopping bandwidth of the end position of the frequency hopping bandwidth range.
  • the signaling includes a first offset
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively any combination of the following:
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively combined as follows:
  • the offset is the first offset, and the N RB is the working bandwidth of the user terminal.
  • the determining the first frequency hopping physical resource includes:
  • the PRB number configured on the network side is used as the PRB number of the first hopping physical resource
  • the first frequency hopping physical resource is determined according to the channel resource number configured on the network side.
  • the determining, according to the channel resource number configured by the network side, the first frequency hopping physical resource including:
  • the first frequency hopping physical resource is determined by the following formula:
  • a PRB number of the first frequency hopping physical resource Indicates rounding down
  • mod means remainder
  • N RB is the working bandwidth of the user terminal.
  • n PUCCH is the channel resource number
  • P is the multiplexing capacity.
  • the determining, according to the frequency hopping bandwidth range and the first hopping physical resource, the second hopping physical resource including:
  • the determining, by the hopping bandwidth, a second hopping physical resource that is symmetric with the first hopping physical resource center includes:
  • the second frequency hopping physical resource is determined by any of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • N RB is the working bandwidth of the user terminal, and offset is the first offset;
  • the second frequency hopping physical resource is determined by any of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • offset_2 is a second offset
  • N RB is the working bandwidth of the user terminal
  • offset is the first offset.
  • An embodiment of the present disclosure further provides a network side device, including: a transceiver, a memory, a processor, and a computer program stored on the memory and operable on the processor,
  • the transceiver is configured to determine a second hopping physical resource of the user terminal according to a frequency hopping bandwidth range of the user terminal and a first hopping physical resource;
  • the processor is configured to read a program in the memory and perform the following process:
  • the transceiver is further configured to send signaling to the user terminal, where the signaling is used by the user terminal to determine the frequency hopping bandwidth range in a working bandwidth; and determining the first hopping physics Resource
  • the transceiver is further configured to send signaling to the user terminal, where the signaling is used by the user terminal to determine the frequency hopping bandwidth range in a working bandwidth;
  • the processor is further configured to determine the first frequency hopping physical resource.
  • the signaling includes:
  • the PRB number and the frequency hopping bandwidth of the end position of the frequency hopping bandwidth range.
  • the signaling includes a first offset
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively any combination of the following:
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively combined as follows:
  • the offset is the first offset, and the N RB is the working bandwidth of the user terminal.
  • the PRB number of the first hopping physical resource configured by the network side device to the user terminal by using signaling
  • the network side device configures a channel resource number to the user terminal, where the channel resource number is used by the user terminal to determine a first frequency hopping physical resource within the frequency hopping bandwidth range.
  • the determining the first frequency hopping physical resource includes:
  • the first frequency hopping physical resource is determined by the following formula:
  • a PRB number of the first frequency hopping physical resource Indicates rounding down
  • mod means remainder
  • N RB is the working bandwidth of the user terminal.
  • n PUCCH is the channel resource number
  • P is the multiplexing capacity.
  • the determining, according to the hopping bandwidth range and the first hopping physical resource, the second hopping physical resource includes:
  • the determining, by the hopping bandwidth, a second hopping physical resource that is symmetric with the first hopping physical resource center includes:
  • the second frequency hopping physical resource is determined by any of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • N RB is the working bandwidth of the user terminal, and offset is the first offset;
  • the second frequency hopping physical resource is determined by any of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • offset_2 is a second offset
  • N RB is the working bandwidth of the user terminal
  • offset is the first offset.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer program is stored, and when the program is executed by the processor, the steps in the method for determining a frequency hopping physical resource on the user terminal side provided by the embodiment of the present disclosure are implemented.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer program is stored, and the program is executed by the processor to implement the steps in the method for determining a frequency hopping physical resource on the network side device side provided by the embodiment of the present disclosure.
  • the user terminal determines the second frequency hopping physical resource according to the frequency hopping bandwidth range and the first frequency hopping physical resource.
  • the embodiment of the present disclosure can improve the multiplexing rate of physical resources, because the frequency hopping physical resources are determined in the frequency hopping bandwidth range, and the hopping physical resources are directly determined on both sides of the working bandwidth.
  • FIG. 1 is a schematic structural diagram of a network applicable to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for determining a frequency hopping physical resource according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a frequency hopping physical resource according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of another frequency hopping physical resource provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of another frequency hopping physical resource according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of another frequency hopping physical resource according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another frequency hopping physical resource according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of another frequency hopping physical resource according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of another frequency hopping physical resource according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of another method for determining a frequency hopping physical resource according to an embodiment of the present disclosure.
  • FIG. 11 is a structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 12 is a structural diagram of another user terminal according to an embodiment of the present disclosure.
  • FIG. 13 is a structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 14 is a structural diagram of another network side device according to an embodiment of the present disclosure.
  • FIG. 15 is a structural diagram of another user terminal according to an embodiment of the present disclosure.
  • FIG. 16 is a structural diagram of another network side device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a network structure applicable to an embodiment of the present disclosure.
  • a user equipment (User Equipment, UE) 11 and a network side device 12 are illustrated.
  • the user terminal 11 may be a mobile phone or a tablet.
  • Terminal-side devices such as Tablet Personal Computer, Laptop Computer, Personal Digital Assistant (PDA), Mobile Internet Device (MID), or Wearable Device It should be noted that the specific type of the user terminal 11 is not limited in the embodiment of the present disclosure.
  • the network side device 12 may be a base station, for example, a macro station, an LTE eNB, a 5G NR NB, etc.; the network side device 12 may also be a small station, such as a low power node (LPN) Pico, Femto, etc., or The network side device 12 may be an access point (AP); the base station may also be a network node formed by a central unit (CU) and a plurality of transmission reception points (TRPs) managed and controlled by the central unit (CU). . It should be noted that the specific type of the network side device 12 is not limited in the embodiment of the present disclosure.
  • FIG. 2 is a flowchart of a method for determining a frequency hopping physical resource according to an embodiment of the present disclosure. As shown in FIG. 2, the method includes the following steps:
  • the user equipment determines the second frequency hopping physical resource according to the frequency hopping bandwidth range and the first frequency hopping physical resource.
  • the hopping bandwidth range may be part or all of the working bandwidth of the user terminal, and the hopping bandwidth range may be configured by the network side, or may be predefined by the user terminal, and the like.
  • the foregoing first hopping physical resource may be directly configured by the network side, or determined according to the channel physical resource number configured by the network side device, and the like, which is not limited by the embodiment of the disclosure.
  • the second hopping physical resource may be a physical resource symmetric with the first hopping physical resource center, and the two hopping physical resources may be in different time domain resources, for example, different time slots.
  • the first frequency hopping physical resource may be an upper frequency hopping (high frequency) physical resource
  • the second frequency hopping physical resource is a lower frequency hopping (low frequency)
  • the first frequency hopping physical resource may be a lower frequency hopping ( The low frequency) physical resource
  • the second frequency hopping physical resource is the upper frequency hopping (high frequency).
  • the central symmetry is understood to be that the distance between the first hopping physical resource and the first boundary of the bandwidth range is equal to the distance between the second hopping physical resource and the second boundary of the bandwidth range, where the first boundary is The boundary between the bandwidth and the first hopping physical resource is in the range of the bandwidth, and the second boundary is the closest boundary from the second hopping physical resource in the bandwidth.
  • the foregoing bandwidth ranges from PRB0 to PRB49, the first hopping physical resource is PRB1, and the second hopping physical resource is PRB48, and are respectively located in two time slots.
  • first hopping physical resource and the second hopping physical resource may not be centrally symmetric, and the embodiment of the disclosure is not limited.
  • determining the first frequency hopping physical resource and determining the second frequency hopping physical resource may be: determining the first frequency hopping physical resource and determining the location of the second frequency hopping physical resource, for example, determining the first frequency hopping physical resource.
  • the foregoing first hopping physical resource and the second hopping physical resource may be used for transmission of a Physical Uplink Control Channel (PUCCH), of course, the embodiment of the present disclosure does not limit this, for example: Can be used for other physical channel transmissions.
  • PUCCH Physical Uplink Control Channel
  • the second hopping physical resource is determined according to the hopping bandwidth range and the first hop physical resource, so that the physical resources of the hopping physical resource can be improved by directly determining the working bandwidth on both sides of the related technology. Resource reuse rate.
  • the foregoing method may further include the following steps:
  • the user terminal determines the first frequency hopping physical resource.
  • the foregoing signaling may be a radio resource control (RRC) signaling, or a configuration signaling, a high-layer signaling, or the like, which is not limited by the embodiment of the disclosure.
  • RRC radio resource control
  • the signaling may be that the network side device can Any signaling sent by the user terminal.
  • the network side device can configure the frequency hopping bandwidth range to be multiplexed by multiple user terminals. Scope, which can increase the reuse rate of physical resources. For example, if the working bandwidth of the user terminal 1 is 0 to 200 MHz, the working bandwidth of the user terminal 2 is 0 to 400 MHz, and the working bandwidth of the user terminal 3 is 0 to 300 MHz, the bandwidth range of the frequency hopping of the three user terminals can be configured. 0 to 200 MHz, or both 0 to 100 MHz and so on.
  • the foregoing first frequency hopping physical resource may be configured on the network side, or defined by a protocol, and the like.
  • the foregoing signaling includes:
  • the PRB number and the frequency hopping bandwidth of the end position of the frequency hopping bandwidth range.
  • the size of the frequency hopping bandwidth can be understood as the size of the foregoing bandwidth range, for example, the number of PRBs.
  • the content user terminal included in the signaling may accurately determine the bandwidth range of the frequency hopping, that is, the starting location and the ending location of the bandwidth range may be accurately determined as physical resource block numbers respectively. with among them,
  • the foregoing signaling may include a first offset
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively any combination of the following:
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively combined as follows:
  • the offset is the first offset, and the N RB is the working bandwidth of the user terminal.
  • the first offset may be a positive integer, a negative integer, or 0, and the foregoing N RB may be the number of PRBs included in the working bandwidth.
  • the configuration of the frequency hopping bandwidth range is implemented by using the first offset, so that signaling overhead can be saved.
  • the user terminal may determine that the start position and the end position of the hopping bandwidth are physical resource block numbers 0 and N RB -1-offset, respectively, or determine the start position and end of the hopping bandwidth.
  • the physical resource block numbers are offset and N RB -1 respectively, or the start and end positions of the hopping bandwidth can be determined according to the offset as the physical resource block number offset and N RB -1-offset, respectively.
  • the user terminal may determine that the start position and the end position of the hopping bandwidth are the physical resource block numbers -offset and N RB -1 respectively, or determine the start position and the end position of the hopping bandwidth as physical respectively.
  • the resource block numbers are 0 and N RB -1+offset.
  • the user terminal determines the first frequency hopping physical resource, including:
  • the user terminal uses the PRB number configured on the network side as the PRB number of the first hopping physical resource; or
  • the user terminal Determining, by the user terminal, the first frequency hopping physical resource according to the PRB number configured by the network side and the number of PRBs of the first frequency hopping physical resource;
  • the user terminal determines the first frequency hopping physical resource according to the channel resource number configured by the network side.
  • the first implementation manner may be that the PRB number of the first hopping physical resource is directly configured. For example, when the number of PRBs of the first hopping physical resource is 1, the number of the PRB is directly configured, or the number of PRBs is At 2 o'clock, the numbers of the two PRBs are directly configured.
  • the PBR number configured on the network side may be the number of one of the multiple PRBs occupied by the first frequency hopping physical resource.
  • the PRB number configured on the network side may be the initial PRB number of the first hopping physical resource
  • the first hopping physical resource may be a plurality of consecutive PRBs, for example, the network side directly configured to the user terminal.
  • a hopping physical resource is a continuous resource
  • the starting resource block number of the continuous resource is The number of PRBs of the consecutive resources is 3, and the PRB number occupied by the first Hop is 2, 3, and 4.
  • the PRB number configured on the network side may also be the last PRB number, and the first hopping physical resource may be directly configured for the user terminal.
  • the configuration signaling can include only one PRB number, thereby saving signaling overhead.
  • the number of the PRBs of the foregoing consecutive resources may be pre-configured, or may be indicated in the foregoing signaling, or configured by high-level signaling configuration or Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the first hopping physical resource may be directly configured by the network side by using the signaling, and the hopping bandwidth range and the first hopping physical resource may be configured by using the same signaling, for example, the network side passes the step 201.
  • the signaling configures the above hopping bandwidth range and the first hopping physical resource.
  • the foregoing frequency hopping bandwidth range and the first hopping physical resource may also be configured by different signaling.
  • the network side sends two signalings to the user terminal, and is configured to configure the frequency hopping bandwidth range and the first frequency hopping frequency respectively. Physical resources.
  • the first hopping physical resource is directly configured by the network side through signaling, so that the multiplexing effect of the physical resource can be better improved, because the network side knows the specific situation of the physical resources configured by each user terminal, and thus can be configured to exhaust Possible frequency hopping physical resources multiplexed by user terminals.
  • the channel resource number may be configured on the network side, and the user terminal determines the first frequency hopping physical resource according to the channel resource number.
  • the channel resource number may be a channel resource number of the PUCCH, such as Said.
  • the first hopping physical resource is determined according to the channel resource number, and the first hopping physical resource is calculated according to the pre-acquired formula. For example, the user terminal determines the first frequency hopping according to the channel resource number configured by the network side.
  • Physical resources including:
  • the user terminal determines the first frequency hopping physical resource by using the following formula:
  • a PRB number of the first frequency hopping physical resource Indicates rounding down
  • mod means remainder
  • N RB is the working bandwidth of the user terminal.
  • n PUCCH is the channel resource number
  • P is the multiplexing capacity.
  • the foregoing multiplexing capacity may be defined by a protocol, or pre-configured by the network side, and the like, which is not limited in this embodiment.
  • the first frequency hopping physical resource can be accurately determined by the above formula.
  • the first hopping physical resource may be determined by using other methods, for example, determining the first hopping physical resource by using a mapping relationship between the previously obtained channel resource number and the first hopping physical resource.
  • the configuration of the foregoing channel resource number may be configured by using the signaling in step 201, or may be configured by other signaling, which is not limited in this embodiment, or may be pre-configured to the user terminal.
  • the user terminal determines the second hopping physical resource according to the hopping bandwidth range and the first hopping physical resource, including:
  • the physical resource acts as the second hopping physical resource.
  • the physical resource that is symmetric with the first frequency hopping physical resource center can be used as the second frequency hopping physical resource, so that the first frequency hopping physical resource and the second frequency hopping physical resource center can be symmetrically Improve the utilization of physical resources.
  • a physical resource that is offset from the first hopping physical resource center by a second offset may be used as the second hopping physical resource.
  • the second hopping (Hop) temporary physical resource is determined according to the first hopping physical resource according to the central symmetric manner, and then the second hopping adjusting parameter is second. Offset(offset_2), adjusts the physical resource location of the second frequency hopping. In this way, in the case that the physical resource that is symmetric with the first frequency hopping physical resource center is occupied, the physical resource that is close to the first hopping physical resource is configured as much as possible to ensure the utilization of the physical resource.
  • the foregoing second offset may be defined by a protocol, or pre-configured by the network side, or determined by the user terminal, and the like.
  • the second offset may be used to modify the resource allocation of the second hopping physical resource, and may be used to adapt the coexistence of the PUCCH and the Physical Uplink Shared Channel (PUSCH), and may also be used for two user terminals.
  • the coexistence of PUCCH to further provide the multiplexing rate of physical resources.
  • the problem that the multiplexing capacity of the frequency hopping physical resource is asymmetric and the resource multiplexing rate is low is solved, and on the other hand, the continuity of the remaining physical resources for frequency hopping is ensured, so that other channel transmissions are effectively utilized.
  • the determining, by the user terminal, the second hopping physical resource that is symmetric with the first hopping physical resource center in the hopping bandwidth may include:
  • the user terminal determines the second frequency hopping physical resource by using any one of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • N RB is the working bandwidth of the user terminal, and offset is the first offset;
  • the physical resource may include:
  • the user terminal determines the second frequency hopping physical resource by using any one of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • offset_2 is a second offset
  • N RB is the working bandwidth of the user terminal
  • offset is the first offset.
  • the bandwidth of the user terminal is 100 RBs
  • the network side device notifies the specific frequency hopping bandwidth of the user terminal by the configuration signaling.
  • the first hop physical resource block location directly configured by the network side device to the user terminal is The user terminal determines the second frequency hopping physical resource according to the first frequency hopping physical resource in a center symmetric manner within a frequency hopping bandwidth range. for:
  • the first frequency hopping physical resource that the user terminal performs frequency hopping and the calculated second frequency hopping physical resource location are shown.
  • the network side device notifies the specific frequency hopping bandwidth of the user terminal by the configuration signaling.
  • the user terminal determines the second frequency hopping physical resource number according to the first frequency hopping physical resource in a center symmetric manner within a frequency hopping bandwidth.
  • the first frequency hopping physical resource that the user terminal performs frequency hopping and the calculated second frequency hopping physical resource location are shown.
  • the bandwidth size of the user terminal operates as N RBs of 100 PRBs, and the network side device determines the parameter offset of the frequency hopping bandwidth range by configuring signaling configuration.
  • the user terminal when the offset is non-negative, the user terminal can determine that the physical resource block numbers of the start and end positions of the hopping bandwidth are respectively with
  • the offset when the offset is non-positive, the user terminal can determine that the physical resource block numbers of the start and end positions of the frequency hopping bandwidth are respectively with
  • the offset parameter configured on the network side device is 1/2 BWP or 50 PRBs
  • the network side device is directly configured to the terminal first hopping physical resource block location.
  • the terminal may determine that the second hopping physical resource block number is obtained by the following formula:
  • the first frequency hopping physical resource that the user terminal performs frequency hopping and the calculated second frequency hopping physical resource location are shown.
  • the bandwidth of the N- RB is 100 PRBs
  • the network-side device notifies the terminal of an offset parameter by configuring signaling.
  • the offset is defined as a non-negative number
  • the user terminal can determine the start of the frequency hopping bandwidth range.
  • the physical resource block numbers at the end position are with
  • the user terminal determines the second frequency hopping physical resource number according to the first frequency hopping physical resource in a center symmetric manner within a frequency hopping bandwidth.
  • the first frequency hopping physical resource that the user terminal performs frequency hopping and the calculated second frequency hopping physical resource location are shown.
  • the bandwidth of the user terminal operates as NRP RBs of 100 PRBs.
  • the configuration of the network side device of the user terminal indicates that the start and end positions of the hopping bandwidth are physical resource block numbers.
  • the network side device is directly configured to the first frequency hopping physical resource block location of the user terminal.
  • the network side device configuration adjusts the parameter offset_2 of the second hopping physical resource location to 1, and in this embodiment, assumes that the formula used by the definition is
  • the user terminal may determine that the second hopping physical resource block number is obtained by:
  • the first frequency hopping physical resource that the user terminal performs frequency hopping and the calculated second frequency hopping physical resource location are shown.
  • the network side device can configure the physical resource block number of the start and end of the frequency hopping bandwidth, and can also configure the starting position of the frequency hopping bandwidth.
  • Physical resource block number And the bandwidth of the frequency hopping BW the user terminal can determine that the physical resource block numbers of the start and end of the hopping bandwidth are respectively with
  • the physical resource block number and the hopping bandwidth size BW at the end of the hopping bandwidth may be configured, and the terminal may determine that the physical resource block numbers of the start and end of the hopping bandwidth are respectively with
  • the user terminal determines the second frequency hopping physical resource according to the frequency hopping bandwidth range and the first frequency hopping physical resource.
  • the embodiment of the present disclosure can improve the multiplexing rate of physical resources, because the frequency hopping physical resources are determined in the frequency hopping bandwidth range, and the hopping physical resources are directly determined on both sides of the working bandwidth.
  • the user terminal may calculate by using the above formula.
  • the starting PRB number of the second hopping physical resource, and the second hopping physical resource is decremented downward from the starting PRB number.
  • the starting PRB number of the first hopping physical resource is 2, and the number of PRBs is 3.
  • the first hopping physical resource occupies the PRB numbers of 2, 3, and 4 PRBs respectively, and the hopping bandwidth ranges from 50 PRBs.
  • the starting hop number of the second hopping physical resource is 48, PRB.
  • the number is 3, and the PRB numbers occupied by the second hopping physical resources are three PRBs of 48, 47, and 46, respectively.
  • each PRB number is sequentially calculated according to the above formula to obtain all PRB numbers occupied by the first hopping physical resource.
  • the PRB number 48 is calculated by PRB number 2
  • the PRB number 47 is calculated by PRB number 3
  • the PRB number 46 is calculated by PRB number 4.
  • the bandwidth of the user terminal is 100 RBs
  • the network side device notifies the specific frequency hopping bandwidth of the user terminal as the physical resource block number.
  • the first hopping physical resource directly allocated to the user terminal by the network side device is a continuous resource
  • the starting resource block number of the continuous resource is
  • the number of PRBs of the contiguous resources is 3, and the PRB numbers occupied by the first hopping physical resources are 2, 3, and 4.
  • the user terminal determines the starting PRB number of the physical resource of the second hop according to the starting PRB number of the first hopping physical resource in a center symmetric manner within a frequency hopping bandwidth. for:
  • the user terminal may determine that the second hopping physical resource is decremented downward from the starting PRB number, and the PRB numbers are three PRBs of 48, 47, and 46.
  • the user equipment shown in FIG. 8 performs frequency hopping of the first hopping physical resource and the calculated location of the second hopping physical resource.
  • the bandwidth of the user terminal is 100 RBs
  • the network side device notifies the specific frequency hopping bandwidth of the user terminal as the physical resource block number.
  • the first hopping physical resource directly allocated to the user terminal by the network side device is a continuous resource
  • the starting resource block number of the continuous resource is The number of PRBs of the contiguous resources is 3, and the PRB number occupied by the first hopping physical resource is 46, 47, 48, wherein the continuous resource is a starting + PRB number -1.
  • the user terminal determines the starting PRB number of the second hopping physical resource according to the starting PRB number of the first hopping physical resource in a center symmetric manner within a frequency hopping bandwidth. for:
  • the user terminal may determine that the second hopping physical resource is decremented downward from the starting PRB number, and the PRB number is four, three, and two PRBs.
  • the first hopping physical resource that the user terminal performs frequency hopping and the calculated location of the second hopping physical resource are shown.
  • the first hopping physical resource in the examples 6 and 7 is a continuous resource allocation
  • the network side device may be configured with a starting PRB number and a plurality of consecutive PRBs, wherein the number of PRBs It can be a high layer signaling configuration or a DCI configuration.
  • FIG. 10 is a flowchart of another method for determining a frequency hopping physical resource according to an embodiment of the present disclosure. As shown in FIG. 10, the method includes the following steps:
  • Step 1001 The network side device determines a second frequency hopping physical resource of the user terminal according to the frequency hopping bandwidth range of the user terminal and the first frequency hopping physical resource.
  • the network side device may send a configuration on the first frequency hopping physical resource and the second frequency hopping physical resource, or receive a data transmission operation.
  • the method further includes:
  • the network side device sends signaling to the user terminal, where the signaling is used by the user terminal to determine the frequency hopping bandwidth range in a working bandwidth;
  • the network side device determines the first frequency hopping physical resource.
  • the signaling includes:
  • the PRB number and the frequency hopping bandwidth of the end position of the frequency hopping bandwidth range.
  • the signaling includes a first offset
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively any combination of the following:
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively combined as follows:
  • the offset is the first offset, and the N RB is the working bandwidth of the user terminal.
  • the network side device configures, by using signaling, a PRB number of the first hopping physical resource to the user terminal; or
  • the network side device configures a channel resource number to the user terminal, where the channel resource number is used by the user terminal to determine a first frequency hopping physical resource.
  • the network side device determines the first frequency hopping physical resource, including:
  • the network side device determines the first frequency hopping physical resource by using the following formula:
  • a PRB number of the first frequency hopping physical resource Indicates rounding down
  • mod means remainder
  • N RB is the working bandwidth of the user terminal.
  • n PUCCH is the channel resource number
  • P is the multiplexing capacity.
  • the determining, by the network side device, the second frequency hopping physical resource, according to the frequency hopping bandwidth range and the first frequency hopping physical resource includes:
  • the network side device determines, in the frequency hopping bandwidth, a second frequency hopping physical resource that is symmetric with the first frequency hopping physical resource center, including:
  • the network side device determines the second frequency hopping physical resource by using any one of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • N RB is the working bandwidth of the user terminal, and offset is the first offset;
  • Determining, by the network side device, a physical resource symmetric with the first frequency hopping physical resource center, and offsetting a physical resource symmetric with the first frequency hopping physical resource center by a second offset Physical resources as the second hopping physical resource including:
  • the network side device determines the second frequency hopping physical resource by using any one of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • offset_2 is a second offset
  • N RB is the working bandwidth of the user terminal
  • offset is the first offset.
  • the present embodiment is an implementation manner of the network side device corresponding to the embodiment shown in FIG. 2, and a specific implementation manner of the embodiment may refer to the related description of the embodiment shown in FIG. This embodiment will not be described again, and the same advantageous effects can be achieved.
  • FIG. 11 is a structural diagram of a user terminal according to an embodiment of the present disclosure. As shown in FIG. 11, the user terminal 1100 includes:
  • the first determining module 1101 is configured to determine, by the first determining module, a second frequency hopping physical resource according to the frequency hopping bandwidth range and the first frequency hopping physical resource.
  • the user terminal 1100 further includes:
  • the second determining module 1102 is configured to determine, according to signaling configured by the network side, a frequency hopping bandwidth range in the working bandwidth.
  • the third determining module 1103 is configured to determine the first frequency hopping physical resource.
  • the signaling includes:
  • the PRB number and the frequency hopping bandwidth of the end position of the frequency hopping bandwidth range.
  • the signaling includes a first offset offset
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively any combination of the following:
  • the PRB numbers of the start position and the end position of the bandwidth range are respectively combined as follows:
  • the offset is the first offset, and the N RB is the working bandwidth of the user terminal.
  • the third determining module 1103 is configured to use the PRB number configured by the network side as a PRB of the first hopping physical resource;
  • the third determining module 1103 is configured to determine the first frequency hopping physical resource according to the PRB number configured by the network side and the number of PRBs of the first frequency hopping physical resource; or
  • the third determining module 1103 is configured to determine a first frequency hopping physical resource according to a channel resource number configured by the network side.
  • the third determining module 1103 is configured to determine the first frequency hopping physical resource by using the following formula:
  • a PRB number of the first frequency hopping physical resource Indicates rounding down
  • mod means remainder
  • N RB is the working bandwidth of the user terminal.
  • n PUCCH is the channel resource number
  • P is the multiplexing capacity.
  • the first determining module 1101 is configured to determine, according to the frequency hopping bandwidth, a second hopping physical resource that is symmetric with the first hopping physical resource center; or
  • the first determining module 1101 is configured to determine, in the frequency hopping bandwidth, a physical resource that is symmetric with the first frequency hopping physical resource center, and offset a physical resource that is symmetric with the first frequency hopping physical resource center.
  • the physical resource of the second offset is moved as the second frequency hopping physical resource.
  • the first determining module 1101 is configured to determine the second frequency hopping physical resource by using any one of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • N RB is the working bandwidth of the user terminal, and offset is the first offset;
  • the first determining module 1101 is configured to determine the second frequency hopping physical resource by using any one of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • offset_2 is a second offset
  • N RB is the working bandwidth of the user terminal
  • offset is the first offset.
  • the user terminal 1100 may be a user terminal in any embodiment of the method in the embodiment of the disclosure, and any implementation manner of the user terminal in the method embodiment of the disclosure may be used in this embodiment.
  • the foregoing user terminal 1100 in the embodiment is implemented, and achieves the same beneficial effects, and details are not described herein again.
  • FIG. 13 is a structural diagram of a network side device according to an embodiment of the present disclosure. As shown in FIG. 13, the network side device 1300 includes:
  • the first determining module 1301 is configured to determine a second hopping physical resource of the user terminal according to the hopping bandwidth range of the user terminal and the first hopping physical resource.
  • the network side device 1300 further includes:
  • the sending module 1302 is configured to send signaling to the user terminal, where the signaling is used by the user terminal to determine the frequency hopping bandwidth range in a working bandwidth.
  • the second determining module 1303 is configured to determine the first frequency hopping physical resource.
  • the signaling includes:
  • the PRB number and the frequency hopping bandwidth of the end position of the frequency hopping bandwidth range.
  • the signaling includes a first offset
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively any combination of the following:
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively combined as follows:
  • the offset is the first offset, and the N RB is the working bandwidth of the user terminal.
  • the network side device configures, by using signaling, a PRB number of the first hopping physical resource to the user terminal; or
  • the network side device configures a channel resource number to the user terminal, where the channel resource number is used by the user terminal to determine a first frequency hopping physical resource.
  • the second determining module 1303 is configured to determine the first frequency hopping physical resource by using the following formula:
  • a PRB number of the first frequency hopping physical resource Indicates rounding down
  • mod means remainder
  • N RB is the working bandwidth of the user terminal.
  • n PUCCH is the channel resource number
  • P is the multiplexing capacity.
  • the first determining module 1301 is configured to determine, according to the frequency hopping bandwidth, a second hopping physical resource that is symmetric with the first hopping physical resource center; or
  • the first determining module 1301 is configured to determine, in the frequency hopping bandwidth, a physical resource that is symmetric with the first frequency hopping physical resource center, and offset a physical resource that is symmetric with the first frequency hopping physical resource center.
  • the physical resource of the second offset is moved as the second frequency hopping physical resource.
  • the first determining module 1301 is configured to determine the second frequency hopping physical resource by using any one of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • N RB is the working bandwidth of the user terminal, and offset is the first offset;
  • the first determining module 1301 is configured to determine the second frequency hopping physical resource by using any one of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • offset_2 is a second offset
  • N RB is the working bandwidth of the user terminal
  • offset is the first offset.
  • the network side device 1300 may be the network side device in any of the method embodiments in the embodiment of the disclosure, and any implementation manner of the network side device in the method embodiment in the embodiment of the disclosure It can be implemented by the above network side device 1300 in this embodiment, and achieve the same beneficial effects, and details are not described herein again.
  • FIG. 15 is a structural diagram of another user terminal according to an embodiment of the present disclosure.
  • the user terminal includes: a transceiver 1510, a memory 1520, a processor 1500, and a memory stored in the memory.
  • the transceiver 1510 is configured to determine a second frequency hopping physical resource according to the frequency hopping bandwidth range and the first frequency hopping physical resource;
  • the processor 1500 is configured to read a program in the memory 1520 and perform the following process:
  • the second frequency hopping physical resource is determined according to the frequency hopping bandwidth range and the first frequency hopping physical resource.
  • the transceiver 1510 can be configured to receive and transmit data under the control of the processor 1500.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1500 and various circuits of memory represented by memory 1520.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1510 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1500 is responsible for managing the bus architecture and general processing, and the memory 1520 can store data used by the processor 1500 in performing operations.
  • the memory 1520 is not limited to only the user terminal, and the memory 1520 and the processor 1500 can be separated into different geographical locations.
  • the transceiver 1510 or the processor 1500 is further configured to determine, according to signaling configured by the network side, a frequency hopping bandwidth range in the working bandwidth; and determine the first hopping physical resource.
  • the signaling includes:
  • the PRB number and the frequency hopping bandwidth of the end position of the frequency hopping bandwidth range.
  • the signaling includes a first offset
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively any combination of the following:
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively combined as follows:
  • the offset is the first offset, and the N RB is the working bandwidth of the user terminal.
  • the determining the first frequency hopping physical resource includes:
  • the PRB number configured on the network side is used as the PRB number of the first hopping physical resource
  • the first frequency hopping physical resource is determined according to the channel resource number configured on the network side.
  • the determining, according to the channel resource number configured by the network side, the first frequency hopping physical resource including:
  • the first frequency hopping physical resource is determined by the following formula:
  • a PRB number of the first frequency hopping physical resource Indicates rounding down
  • mod means remainder
  • N RB is the working bandwidth of the user terminal.
  • n PUCCH is the channel resource number
  • P is the multiplexing capacity.
  • the determining, according to the frequency hopping bandwidth range and the first hopping physical resource, the second hopping physical resource including:
  • the determining, by the hopping bandwidth, a second hopping physical resource that is symmetric with the first hopping physical resource center includes:
  • the second frequency hopping physical resource is determined by any of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • N RB is the working bandwidth of the user terminal, and offset is the first offset;
  • the second frequency hopping physical resource is determined by any of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • offset_2 is a second offset
  • N RB is the working bandwidth of the user terminal
  • offset is the first offset.
  • the foregoing user terminal may be a user terminal in any embodiment of the method in the embodiment of the disclosure, and any implementation manner of the user terminal in the method embodiment in the embodiment of the disclosure may be implemented by the implementation.
  • the above-mentioned user terminal in the example is implemented, and the same beneficial effects are achieved, and details are not described herein again.
  • FIG. 16 is a structural diagram of another network side device according to an embodiment of the present disclosure.
  • the network side device includes: a transceiver 1610, a memory 1620, a processor 1600, and A computer program on memory 1620 and operable on the processor, wherein:
  • the transceiver 1610 is configured to determine a second hopping physical resource of the user terminal according to the frequency hopping bandwidth range of the user terminal and the first hopping physical resource;
  • the processor 1600 is configured to read a program in the memory 1620 and perform the following process:
  • the transceiver 1610 is configured to receive and transmit data under the control of the processor 1600.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1600 and various circuits of memory represented by memory 1620.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1610 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1600 is responsible for managing the bus architecture and general processing, and the memory 1620 can store data used by the processor 1600 in performing operations.
  • the memory 1620 is not limited to only the network side device, and the memory 1620 and the processor 1600 may be separated into different geographical locations.
  • the transceiver 1610 is further configured to generate signaling, where the signaling is used by the user terminal to determine the frequency hopping bandwidth range in a working bandwidth; send the signaling to the user terminal; The first frequency hopping physical resource;
  • the processor 1600 is further configured to generate signaling, where the signaling is used by the user terminal to determine the frequency hopping bandwidth range in a working bandwidth;
  • the transceiver 1610 is further configured to send the signaling to the user terminal;
  • the processor 1600 is further configured to determine the first frequency hopping physical resource.
  • the signaling includes:
  • the PRB number and the frequency hopping bandwidth of the end position of the frequency hopping bandwidth range.
  • the signaling includes a first offset
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively any combination of the following:
  • the PRB numbers of the start position and the end position of the frequency hopping bandwidth range are respectively combined as follows:
  • the offset is the first offset, and the N RB is the working bandwidth of the user terminal.
  • the PRB number of the first hopping physical resource configured by the network side device to the user terminal by using signaling
  • the network side device configures a channel resource number to the user terminal, where the channel resource number is used by the user terminal to determine a first frequency hopping physical resource within the frequency hopping bandwidth range.
  • the determining the first frequency hopping physical resource includes:
  • the first frequency hopping physical resource is determined by the following formula:
  • a PRB number of the first frequency hopping physical resource Indicates rounding down
  • mod means remainder
  • N RB is the working bandwidth of the user terminal.
  • n PUCCH is the channel resource number
  • P is the multiplexing capacity.
  • the determining, according to the hopping bandwidth range and the first hopping physical resource, the second hopping physical resource includes:
  • the determining, by the hopping bandwidth, a second hopping physical resource that is symmetric with the first hopping physical resource center includes:
  • the second frequency hopping physical resource is determined by any of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • N RB is the working bandwidth of the user terminal, and offset is the first offset;
  • the second frequency hopping physical resource is determined by any of the following formulas:
  • a PRB number of the second frequency hopping physical resource The PRB number of the starting position of the frequency hopping bandwidth range, The PRB number of the end position of the frequency hopping bandwidth range,
  • offset_2 is a second offset
  • N RB is the working bandwidth of the user terminal
  • offset is the first offset.
  • the network side device may be the network side device in any of the method embodiments in the embodiment of the disclosure, and any implementation manner of the network side device in the method embodiment in the embodiment of the disclosure may be used. It is implemented by the above network side device in this embodiment, and achieves the same beneficial effects, and details are not described herein again.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer program is stored, and when the program is executed by the processor, the steps in the method for determining a frequency hopping physical resource on the user terminal side provided by the embodiment of the present disclosure are implemented.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer program is stored, and when the program is executed by the processor, the steps in the method for determining a frequency hopping physical resource on the network side device side provided by the embodiment of the present disclosure are implemented.
  • the disclosed method and apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform part of the steps of the transceiving method of the various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种跳频物理资源确定方法、用户终端和网络侧设备,该方法包括:用户终端根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源。

Description

跳频物理资源确定方法、用户终端和网络侧设备
相关申请的交叉引用
本申请主张在2017年11月9日在中国提交的中国专利申请号No.201711097734.6的优先权,以及2017年11月10日在中国提交的中国专利申请号No.201711107724.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种跳频物理资源确定方法、用户终端和网络侧设备。
背景技术
通信系统中支持跳频通信,在目前的长期演进(Long Term Evolution,LTE)系统中,跳频物理资源是占用用户终端工作带宽的两侧。然而,在未来移动通信会引入带宽部分(Bandwidth Part,BWP)这一特征,例如:5G新空口(5Generation New RAT)通信系统中,有些用户终端工作的BWP大小可以是不相同的,如一个用户终端的工作带宽包含另一个用户终端的工作带宽。这样,如果还采用LTE系统的跳频方式,跳频物理资源是占用用户终端工作带宽的两侧,那么,可能会导致物理资源的复用率比较低。
发明内容
本公开实施例提供一种跳频物理资源确定方法、用户终端和网络侧设备,以解决物理资源的复用率比较低的问题。
本公开实施例提供一种跳频物理资源确定方法,包括:
用户终端根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源。
可选地,所述方法还包括:
所述用户终端根据网络侧配置的信令,确定工作带宽中的所述跳频带宽范围;
所述用户终端确定所述第一跳频物理资源。
可选地,所述信令包括:
所述跳频带宽范围的起始位置和末尾位置的物理资源块(Physical Resource Block,PRB)编号;或者
所述跳频带宽范围的起始位置的PRB编号和跳频带宽大小;或者
所述跳频带宽范围的末尾位置的PRB编号和跳频带宽大小。
可选地,所述信令包括第一偏移(offset);
若所述第一offset为非负数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别为如下任一组合:
0和N RB-1-offset,或者,offset和N RB-1,或者,offset和N RB-1-offset;
或者
若所述第一offset为非正数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别如下任一组合:
–offset和N RB-1,或者,0和N RB-1+offset;
其中,offset为所述第一offset,N RB为所述用户终端的工作带宽。
可选地,所述用户终端确定第一跳频物理资源,包括:
所述用户终端将网络侧配置的PRB编号作为第一跳频物理资源的PRB编号;或者
所述用户终端根据网络侧配置的PRB编号,以及第一跳频物理资源的PRB个数,确定所述第一跳频物理资源;或者
所述用户终端根据网络侧配置的信道资源编号,确定第一跳频物理资源。
可选地,所述用户终端根据网络侧配置的信道资源编号,确定第一跳频物理资源,包括:
所述用户终端通过如下公式确定所述第一跳频物理资源:
Figure PCTCN2018106445-appb-000001
其中,
Figure PCTCN2018106445-appb-000002
为所述第一跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000003
表示向下取整,mod表示求余,N RB为所述用户终端的工作带宽,
Figure PCTCN2018106445-appb-000004
n PUCCH为所述信道资源编号,P为复用容量。
可选地,所述用户终端根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源,包括:
所述用户终端在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
所述用户终端在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
可选地,所述用户终端在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源,包括:
所述用户终端通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000005
或者,
Figure PCTCN2018106445-appb-000006
或者,
Figure PCTCN2018106445-appb-000007
或者,
Figure PCTCN2018106445-appb-000008
其中,
Figure PCTCN2018106445-appb-000009
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000010
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000011
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000012
为所述第一跳频物理资源的PRB编号,N RB为所述用户终端的工作带宽,offset为第一offset;
所述用户终端在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源,包括:
所述用户终端通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000013
或者,
Figure PCTCN2018106445-appb-000014
或者,
Figure PCTCN2018106445-appb-000015
或者,
Figure PCTCN2018106445-appb-000016
或者,
Figure PCTCN2018106445-appb-000017
或者,
Figure PCTCN2018106445-appb-000018
或者,
Figure PCTCN2018106445-appb-000019
或者,
Figure PCTCN2018106445-appb-000020
其中,
Figure PCTCN2018106445-appb-000021
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000022
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000023
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000024
为所述第一跳频物理资源的PRB编号,offset_2为第二offset,N RB为所述用户终端的工作带宽,offset为第一offset。
本公开实施例还提供一种跳频物理资源确定方法,包括:
网络侧设备根据用户终端的跳频带宽范围以及第一跳频物理资源,确定所述用户终端的第二跳频物理资源。
可选地,所述方法还包括:
所述网络侧设备向所述用户终端发送信令,所述信令用于所述用户终端在工作带宽中确定所述跳频带宽范围;
所述网络侧设备确定所述第一跳频物理资源。
可选地,所述信令包括:
所述跳频带宽范围的起始位置和末尾位置的PRB编号;或者
所述跳频带宽范围的起始位置的PRB编号和跳频带宽大小;或者
所述跳频带宽范围的末尾位置的PRB编号和跳频带宽大小。
可选地,所述信令包括第一offset;
若所述第一offset为非负数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别为如下任一组合:
0和N RB-1-offset,或者,offset和N RB-1,或者,offset和N RB-1-offset;
或者
若所述第一offset为非正数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别如下任一组合:
–offset和N RB-1,或者,0和N RB-1+offset;
其中,offset为所述第一offset,N RB为所述用户终端的工作带宽。
可选地,所述网络侧设备通过信令向所述用户终端配置第一跳频物理资源的PRB编号;或者
所述网络侧设备通过信令向所述用户终端配置第一跳频物理资源的PRB 编号,以及第一跳频物理资源的PRB个数;或者
所述网络侧设备向所述用户终端配置信道资源编号,所述信道资源编号用于所述用户终端确定第一跳频物理资源。
可选地,所述网络侧设备确定所述第一跳频物理资源,包括:
所述网络侧设备通过如下公式确定所述第一跳频物理资源:
Figure PCTCN2018106445-appb-000025
其中,
Figure PCTCN2018106445-appb-000026
为所述第一跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000027
表示向下取整,mod表示求余,N RB为所述用户终端的工作带宽,
Figure PCTCN2018106445-appb-000028
n PUCCH为所述信道资源编号,P为复用容量。
可选地,所述网络侧设备根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源包括:
所述网络侧设备在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
所述网络侧设备在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
可选地,所述网络侧设备在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源,包括:
所述网络侧设备通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000029
或者,
Figure PCTCN2018106445-appb-000030
或者,
Figure PCTCN2018106445-appb-000031
或者,
Figure PCTCN2018106445-appb-000032
其中,
Figure PCTCN2018106445-appb-000033
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000034
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000035
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000036
为所述第一跳频物理资源的PRB编号,N RB为所述用户终端的工作带宽,offset为第一offset;
所述网络侧设备在所述跳频带宽范围内确定与所述第一跳频物理资源中 心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源,包括:
所述网络侧设备通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000037
或者,
Figure PCTCN2018106445-appb-000038
或者,
Figure PCTCN2018106445-appb-000039
或者,
Figure PCTCN2018106445-appb-000040
或者,
Figure PCTCN2018106445-appb-000041
或者,
Figure PCTCN2018106445-appb-000042
或者,
Figure PCTCN2018106445-appb-000043
或者,
Figure PCTCN2018106445-appb-000044
其中,
Figure PCTCN2018106445-appb-000045
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000046
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000047
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000048
为所述第一跳频物理资源的PRB编号,offset_2为第二offset,N RB为所述用户终端的工作带宽,offset为第一offset。
本公开实施例还提供一种用户终端,包括:
第一确定模块,用于根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源。
可选地,所述用户终端还包括:
第二确定模块,用于根据网络侧配置的信令,确定工作带宽中的所述跳频带宽范围;
第三确定模块,用于确定所述第一跳频物理资源。
可选地,所述第三确定模块用于将网络侧配置的PRB编号作为第一跳频物理资源的PRB编号;或者
所述第三确定模块用于根据网络侧配置的PRB编号,以及第一跳频物理资源的PRB个数,确定所述第一跳频物理资源;或者
所述第三确定模块用于根据网络侧配置的信道资源编号,确定第一跳频物理资源。
可选地,所述第一确定模块用于在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
所述第一确定模块用于在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
本公开实施例还提供一种网络侧设备,包括:
第一确定模块,用于根据用户终端的跳频带宽范围以及第一跳频物理资源,确定所述用户终端的第二跳频物理资源。
可选地,所述网络侧设备还包括:
发送模块,用于向所述用户终端发送信令,所述信令用于所述用户终端在工作带宽中确定所述跳频带宽范围;
第二确定模块,用于确定所述第一跳频物理资源。
可选地,所述网络侧设备通过信令向所述用户终端配置第一跳频物理资源的PRB编号;或者
所述网络侧设备通过信令向所述用户终端配置第一跳频物理资源的PRB编号,以及第一跳频物理资源的PRB个数;或者
所述网络侧设备向所述用户终端配置信道资源编号,所述信道资源编号用于所述用户终端在确定第一跳频物理资源。
可选地,所述第一确定模块用于在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
所述第一确定模块用于在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
本公开实施例还提供一种用户终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,
所述收发机,用于根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源;
或者,
所述处理器用于读取存储器中的程序,执行下列过程:
根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源。
可选地,所述收发机或者所述处理器还用于根据网络侧配置的信令,确定工作带宽中的所述跳频带宽范围;确定所述第一跳频物理资源。
可选地,所述信令包括:
所述跳频带宽范围的起始位置和末尾位置的PRB编号;或者
所述跳频带宽范围的起始位置的PRB编号和跳频带宽大小;或者
所述跳频带宽范围的末尾位置的PRB编号和跳频带宽大小。
可选地,所述信令包括第一offset;
若所述第一offset为非负数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别为如下任一组合:
0和N RB-1-offset,或者,offset和N RB-1,或者,offset和N RB-1-offset;
或者
若所述第一offset为非正数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别如下任一组合:
–offset和N RB-1,或者,0和N RB-1+offset;
其中,offset为所述第一offset,N RB为所述用户终端的工作带宽。
可选地,所述确定第一跳频物理资源,包括:
将网络侧配置的PRB编号作为第一跳频物理资源的PRB编号;或者
根据网络侧配置的PRB编号,以及第一跳频物理资源的PRB个数,确定所述第一跳频物理资源;或者
根据网络侧配置的信道资源编号,确定第一跳频物理资源。
可选地,所述根据网络侧配置的信道资源编号,确定第一跳频物理资源,包括:
通过如下公式确定所述第一跳频物理资源:
Figure PCTCN2018106445-appb-000049
其中,
Figure PCTCN2018106445-appb-000050
为所述第一跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000051
表示向下取整,mod表示求余,N RB为所述用户终端的工作带宽,
Figure PCTCN2018106445-appb-000052
n PUCCH为所述信道资源编号,P为复用容量。
可选地,所述根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源,包括:
在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
可选地,所述在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源,包括:
通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000053
或者,
Figure PCTCN2018106445-appb-000054
或者,
Figure PCTCN2018106445-appb-000055
或者,
Figure PCTCN2018106445-appb-000056
其中,
Figure PCTCN2018106445-appb-000057
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000058
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000059
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000060
为所述第一跳频物理资源的PRB编号,N RB为所述用户终端的工作带宽,offset为第一offset;
所述在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源,包括:
通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000061
或者,
Figure PCTCN2018106445-appb-000062
或者,
Figure PCTCN2018106445-appb-000063
或者,
Figure PCTCN2018106445-appb-000064
或者,
Figure PCTCN2018106445-appb-000065
或者,
Figure PCTCN2018106445-appb-000066
或者,
Figure PCTCN2018106445-appb-000067
或者,
Figure PCTCN2018106445-appb-000068
其中,
Figure PCTCN2018106445-appb-000069
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000070
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000071
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000072
为所述第一跳频物理资源的PRB编号,offset_2为第二offset,N RB为所述用户终端的工作带宽,offset为第一offset。
本公开实施例还提供一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,
所述收发机,用于根据用户终端的跳频带宽范围以及第一跳频物理资源,确定所述用户终端的第二跳频物理资源;
或者,
所述处理器用于读取存储器中的程序,执行下列过程:
根据用户终端的跳频带宽范围以及第一跳频物理资源,确定所述用户终端的第二跳频物理资源。
可选地,所述收发机还用于向所述用户终端发送信令,所述信令用于所述用户终端在工作带宽中确定所述跳频带宽范围;确定所述第一跳频物理资源;
或者,
所述收发机还用于向所述用户终端发送信令,所述信令用于所述用户终端在工作带宽中确定所述跳频带宽范围;
所述处理器还用于确定所述第一跳频物理资源。
可选地,所述信令包括:
所述跳频带宽范围的起始位置和末尾位置的PRB编号;或者
所述跳频带宽范围的起始位置的PRB编号和跳频带宽大小;或者
所述跳频带宽范围的末尾位置的PRB编号和跳频带宽大小。
可选地,所述信令包括第一offset;
若所述第一offset为非负数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别为如下任一组合:
0和N RB-1-offset,或者,offset和N RB-1,或者,offset和N RB-1-offset;
或者
若所述第一offset为非正数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别如下任一组合:
–offset和N RB-1,或者,0和N RB-1+offset;
其中,offset为所述第一offset,N RB为所述用户终端的工作带宽。
可选地,所述网络侧设备通过信令向所述用户终端配置的第一跳频物理资源的PRB编号;或者
所述网络侧设备通过信令向所述用户终端配置第一跳频物理资源的PRB编号,以及第一跳频物理资源的PRB个数;或者
所述网络侧设备向所述用户终端配置信道资源编号,所述信道资源编号用于所述用户终端在所述跳频带宽范围内确定第一跳频物理资源。
可选地,所述确定所述第一跳频物理资源,包括:
通过如下公式确定所述第一跳频物理资源:
Figure PCTCN2018106445-appb-000073
其中,
Figure PCTCN2018106445-appb-000074
为所述第一跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000075
表示向下取整,mod表示求余,N RB为所述用户终端的工作带宽,
Figure PCTCN2018106445-appb-000076
n PUCCH为所述信道资源编号,P为复用容量。
可选地,所述根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源包括:
在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
可选地,所述在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源,包括:
通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000077
或者,
Figure PCTCN2018106445-appb-000078
或者,
Figure PCTCN2018106445-appb-000079
或者,
Figure PCTCN2018106445-appb-000080
其中,
Figure PCTCN2018106445-appb-000081
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000082
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000083
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000084
为所述第一跳频物理资源的PRB编号,N RB为所述用户终端的工作带宽,offset为第一offset;
所述在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源,包括:
通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000085
或者,
Figure PCTCN2018106445-appb-000086
或者,
Figure PCTCN2018106445-appb-000087
或者,
Figure PCTCN2018106445-appb-000088
或者,
Figure PCTCN2018106445-appb-000089
或者,
Figure PCTCN2018106445-appb-000090
或者,
Figure PCTCN2018106445-appb-000091
或者,
Figure PCTCN2018106445-appb-000092
其中,
Figure PCTCN2018106445-appb-000093
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000094
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000095
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000096
为所述第一跳频物理资源的PRB编号,offset_2为第二offset,N RB为所述用户终端的工作带宽,offset为第一offset。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开实施例提供的用户终端侧的跳频物理资源确定方法中的步骤。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开实施例提供的网络侧设备侧的跳频物理资 源确定方法中的步骤。
本公开实施例中,用户终端根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源。由于是在跳频带宽范围确定跳频物理资源,从而相比相关技术中直接确定工作带宽的两侧为跳频物理资源,本公开实施例可以提高物理资源的复用率。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例可应用的网络结构示意图;
图2是本公开实施例提供的一种跳频物理资源确定方法的流程图;
图3是本公开实施例提供的一种跳频物理资源的示意图;
图4是本公开实施例提供的另一种跳频物理资源的示意图;
图5是本公开实施例提供的另一种跳频物理资源的示意图;
图6是本公开实施例提供的另一种跳频物理资源的示意图;
图7是本公开实施例提供的另一种跳频物理资源的示意图;
图8是本公开实施例提供的另一种跳频物理资源的示意图;
图9是本公开实施例提供的另一种跳频物理资源的示意图;
图10是本公开实施例提供的另一种跳频物理资源确定方法的流程图;
图11是本公开实施例提供的一种用户终端的结构图;
图12是本公开实施例提供的另一种用户终端的结构图;
图13是本公开实施例提供的一种网络侧设备的结构图;
图14是本公开实施例提供的另一种网络侧设备的结构图;
图15是本公开实施例提供的另一种用户终端的结构图;
图16是本公开实施例提供的另一种网络侧设备的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
参见图1,图1是本公开实施例可应用的网络结构示意图,如图1所示,包括用户终端(User Equipment,UE)11和网络侧设备12,其中,用户终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定用户终端11的具体类型。网络侧设备12可以是基站,例如:宏站、LTE eNB、5G NR NB等;网络侧设备12也可以是小站,如低功率节点(Low Lower Node,LPN)Pico、Femto等小站,或者网络侧设备12可以接入点(Access Point,AP);基站也可以是中央单元(Central Unit,CU)与其管理是和控制的多个传输接收点(Transmission Reception Point,TRP)共同组成的网络节点。需要说明的是,在本公开实施例中并不限定网络侧设备12的具体类型。
请参见图2,图2是本公开实施例提供的一种跳频物理资源确定方法的流程图,如图2所示,包括以下步骤:
201、用户终端根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源。
其中,跳频带宽范围可以是用户终端工作带宽中的部分或者全部,且上述跳频带宽范围可以是网络侧配置的,或者可以是用户终端预先定义的等等。另外,上述第一跳频物理资源可以是网络侧直接配置的,或者根据网络侧设备配置的信道物理资源编号确定的等等,本公开实施例对此不作限定。
而上述第二跳频物理资源可以是与上述第一跳频物理资源中心对称的物理资源,且这两个跳频物理资源可以在不同的时域资源,例如:不同的时隙。另外,上述第一跳频物理资源可以是上跳频(高频)物理资源,第二跳频物 理资源为下跳频(低频),或者,上述第一跳频物理资源可以是下跳频(低频)物理资源,第二跳频物理资源为上跳频(高频)。另外,上述中心对称可以理解为,第一跳频物理资源离上述带宽范围第一边界的距离与第二跳频物理资源离上述带宽范围第二边界的距离是相等的,其中,第一边界为上述带宽范围内离第一跳频物理资源离最近的边界,第二边界为上述带宽范围内离第二跳频物理资源离最近的边界。例如:上述带宽范围为PRB0至PRB49,上述第一跳频物理资源为PRB1,第二跳频物理资源为PRB48,且分别位于两个时隙。
当然,上述第一跳频物理资源和第二跳频物理资源也可以不是中心对称,对此本公开实施例不作限定。
需要说明的是,确定第一跳频物理资源和确定第二跳频物理资源可以是,确定第一跳频物理资源和确定第二跳频物理资源的位置,例如:确定第一跳频物理资源的PRB编号,以及确定第二跳频物理资源的PRB编号。另外,上述第一跳频物理资源和第二跳频物理资源可以用于物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)的传输,当然,本公开实施例对此不作限定,例如:还可以用于其他物理信道传输。
本公开实施例中,由于第二跳频物理资源是根据上述跳频带宽范围和第一跳物理资源确定的,从而相比相关技术中直接确定工作带宽的两侧为跳频物理资源可以提高物理资源的复用率。
可选地,上述方法还可以包括如下步骤:
所述用户终端根据网络侧配置的信令,确定工作带宽中的所述跳频带宽范围;
所述用户终端确定所述第一跳频物理资源。
其中,上述信令可以是无线资源控制(Radio Resource Control,RRC)信令,或者配置信令、高层信令等等,本公开实施例对此不作限定,上述信令可以是网络侧设备能够向用户终端发送的任何信令。
由于用户终端的跳频带宽范围是网络侧信令配置的,而网络侧设备知道多个用户终端的工作带宽,这样网络侧设备可以配置上述跳频带宽范围为多个用户终端可以复用的带宽范围,从而可以提高物理资源的复用率。例如: 用户终端1的工作带宽为0至200MHz,用户终端2的工作带宽为0至400MHz,用户终端3的工作带宽为0至300MHz,则可以配置这三个用户终端跳频的带宽范围均为0至200MHz,或者均0至100MHz等等。
另外,上述第一跳频物理资源可以是网络侧配置的,或者协议定义的等等。
可选地,上述信令包括:
所述跳频带宽范围的起始位置和末尾位置的PRB编号;或者
所述跳频带宽范围的起始位置的PRB编号和跳频带宽大小;或者
所述跳频带宽范围的末尾位置的PRB编号和跳频带宽大小。
其中,上述跳频带宽大小可以理解为上述带宽范围的大小,例如:PRB数量。
该实施方式中,通过上述信令包括的内容用户终端可以准确确定出跳频的带宽范围,即可以准确确定该带宽范围的起始位置和末尾位置分别为物理资源块编号
Figure PCTCN2018106445-appb-000097
Figure PCTCN2018106445-appb-000098
其中,
Figure PCTCN2018106445-appb-000099
或者上述信令可以包括第一offset;
若所述第一offset为非负数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别为如下任一组合:
0和N RB-1-offset,或者,offset和N RB-1,或者,offset和N RB-1-offset;
或者
若所述第一offset为非正数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别如下任一组合:
–offset和N RB-1,或者,0和N RB-1+offset;
其中,offset为所述第一offset,N RB为所述用户终端的工作带宽。
上述第一offset可以是为正整数、负整数或者0,上述N RB可以是上述工作带宽包括的PRB数量。
该实施方式,可以实现通过第一offset实现跳频带宽范围的配置,从而可以节约信令开销。具体可以是,若offset为非负数,用户终端可以确定跳频带宽的起始位置和末尾位置分别为物理资源块编号0和N RB-1-offset,或者确定跳频带宽的起始位置和末尾位置分别为物理资源块编号为offset和 N RB-1,或者,可以根据offset确定跳频带宽的起始位置和末尾位置分别为物理资源块编号offset和N RB-1-offset。若offset为非正数,用户终端可以确定跳频带宽的起始位置和末尾位置分别为物理资源块编号–offset和N RB-1,或者确定跳频带宽的起始位置和末尾位置分别为物理资源块编号为0和N RB-1+offset。
可选地,所述用户终端确定第一跳频物理资源,包括:
所述用户终端将网络侧配置的PRB编号作为第一跳频物理资源的PRB编号;或者
所述用户终端根据网络侧配置的PRB编号,以及第一跳频物理资源的PRB个数,确定所述第一跳频物理资源;或者
所述用户终端根据网络侧配置的信道资源编号,确定第一跳频物理资源。
其中,第一种实施方式可以是,直接配置第一跳频物理资源的PRB编号,例如:第一跳频物理资源的PRB个数为1时,直接配置该PRB的编号,或者PRB个数为2时,直接配置这两个PRB的编号。
第二种实施方式中,网络侧配置的PBR编号可以是第一跳频物理资源占用的多个PRB中的某一PRB的编号。例如:上述网络侧配置的PRB编号可以是第一跳频物理资源的起始PRB编号,且上述第一跳频物理资源可以是连续的多个PRB,例如:网络侧直接配置给用户终端的第一跳频物理资源为连续资源,其连续资源的起始资源块编号为
Figure PCTCN2018106445-appb-000100
其连续资源的PRB个数为3,则第一Hop占用的PRB编号为2,3,4。当然,上述网络侧配置的PRB编号也可以是末尾PRB编号,同样可以实现直接为用户终端配置第一跳频物理资源。由于第一跳频物理资源可以为连续资源,这样配置信令中可以只包括一个PRB编号,从而节约信令开销。且上述连续资源的PRB个数可以预先配置,也可以在上述信令中指示,或者通过高层信令配置或者下行控制信息(Downlink Control Information,DCI)等配置。
该实施方式中,可以实现第一跳频物理资源为网络侧通过信令直接配置,且上述跳频带宽范围和第一跳频物理资源可以通过同一信令配置,如:网络侧通过步骤201中的信令配置上述跳频带宽范围和第一跳频物理资源。当然,上述跳频带宽范围和第一跳频物理资源也可以由不同的信令配置,例如:网 络侧向用户终端发送两个信令,分别用于配置上述跳频带宽范围和第一跳频物理资源。
由于上述第一跳频物理资源由网络侧通过信令直接配置,从而可以更好的提高物理资源的复用效果,因为网络侧知道各用户终端配置的物理资源的具体情况,进而可以配置让尽可能多的用户终端复用的跳频物理资源。
另外,上述实施方式中,还可以实现网络侧配置信道资源编号,用户终端根据该信道资源编号确定第一跳频物理资源。其中,上述信道资源编号可以是PUCCH的信道资源编号,如
Figure PCTCN2018106445-appb-000101
表示。
其中,根据该信道资源编号确定第一跳频物理资源可以是根据预先获取的公式计算得到第一跳频物理资源,例如:所述用户终端根据网络侧配置的信道资源编号,确定第一跳频物理资源,包括:
所述用户终端通过如下公式确定所述第一跳频物理资源:
Figure PCTCN2018106445-appb-000102
其中,
Figure PCTCN2018106445-appb-000103
为所述第一跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000104
表示向下取整,mod表示求余,N RB为所述用户终端的工作带宽,
Figure PCTCN2018106445-appb-000105
n PUCCH为所述信道资源编号,P为复用容量。
其中,上述复用容量可以协议定义的,或者网络侧预先配置的等等,对此本公开实施例不作限定。
通过上述公式可以准确地确定出第一跳频物理资源。
当然,本公开实施例中,还可以通过其他方式确定上述第一跳频物理资源,例如:通过预先获取的信道资源编号与第一跳频物理资源的映射关系确定上述第一跳频物理资源。
该实施方式中,由于可以通过网络侧配置的信道资源编号确定第一跳频物理资源,从而可以节约信令开销,因为不需要通过额外的信令配置上述第一跳频物理资源。另外,上述信道资源编号的配置可以是通过步骤201中的信令配置的,也可以是通过其他信令配置的,对此本公开实施例不作限定,或者可以是预先配置给用户终端的。
可选地,所述用户终端根据跳频带宽范围以及第一跳频物理资源,确定 第二跳频物理资源,包括:
所述用户终端在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
所述用户终端在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
该实施方式中,可以实现将与所述第一跳频物理资源中心对称的物理资源作为第二跳频物理资源,这样可以实现第一跳频物理资源和第二跳频物理资源中心对称,从而提高物理资源的利用率。
另外,该实施方式中,也可以实现将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。具体可以是,在所述跳频带宽范围内,按照中心对称的方式,根据第一跳频物理资源确定第二跳频(Hop)的临时物理资源,再根据第二跳频的调整参数第二offset(offset_2),调整第二跳频的物理资源位置。这样可以在与所述第一跳频物理资源中心对称的物理资源已占用的情况下,尽可能配置与第一跳频物理资源接近对称的物理资源,以保证物理资源的利用率。
需要说明的是,上述第二offset可以是协议定义的,或者网络侧预先配置的,或者用户终端自行决定的等等。优选的,上述第二offset可以用来修正第二跳频物理资源的资源分配,可以用来适配PUCCH和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的共存,也可用于两个用户终端的PUCCH的共存,以进一步提供物理资源的复用率。
通过上述实施方式,一方面解决跳频物理资源复用容量不对称和资源复用率低的问题,另一方面保证余下没有用于跳频的物理资源的连续性,以便其他信道传输有效利用。
其中,所述用户终端在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源,可以包括:
所述用户终端通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000106
或者,
Figure PCTCN2018106445-appb-000107
或者,
Figure PCTCN2018106445-appb-000108
或者,
Figure PCTCN2018106445-appb-000109
其中,
Figure PCTCN2018106445-appb-000110
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000111
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000112
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000113
为所述第一跳频物理资源的PRB编号,N RB为所述用户终端的工作带宽,offset为第一offset;
所述用户终端在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源,可以包括:
所述用户终端通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000114
或者,
Figure PCTCN2018106445-appb-000115
或者,
Figure PCTCN2018106445-appb-000116
或者,
Figure PCTCN2018106445-appb-000117
或者,
Figure PCTCN2018106445-appb-000118
或者,
Figure PCTCN2018106445-appb-000119
或者,
Figure PCTCN2018106445-appb-000120
或者,
Figure PCTCN2018106445-appb-000121
其中,
Figure PCTCN2018106445-appb-000122
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000123
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000124
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000125
为所述第一跳频物理资源的PRB编号,offset_2为第二offset,N RB为所述用户终端的工作带宽,offset为第一offset。
下面以具体的实例对上述公式进行举例说明:
例1:
假设用户终端工作的带宽大小为N RB为100个PRB,网络侧设备通过配置信令通知用户终端具体的跳频带宽范围分别为物理资源块编号
Figure PCTCN2018106445-appb-000126
Figure PCTCN2018106445-appb-000127
且网络侧设备直接配置给用户终端的第一跳频(hop)物理资源块位置为
Figure PCTCN2018106445-appb-000128
则用户终端在跳频带宽范围内,按照中心对称的方式,根据 第一跳频物理资源确定第二跳频物理资源
Figure PCTCN2018106445-appb-000129
为:
Figure PCTCN2018106445-appb-000130
如图3所示为用户终端执行跳频的第一跳频物理资源和计算得到的第二跳频物理资源位置。
例2:
假设用户终端工作的带宽大小为N RB为100个PRB,网络侧设备通过配置信令通知用户终端具体的跳频带宽范围分别为物理资源块编号
Figure PCTCN2018106445-appb-000131
Figure PCTCN2018106445-appb-000132
并且,网络侧设备配置给用户终端一个信道资源编号n PUCCH=50,用户终端可以由以下公式确定第一跳频物理资源编号
Figure PCTCN2018106445-appb-000133
Figure PCTCN2018106445-appb-000134
Figure PCTCN2018106445-appb-000135
进而用户终端在跳频带宽范围内,按照中心对称的方式,根据第一跳频物理资源确定第二跳频物理资源编号
Figure PCTCN2018106445-appb-000136
Figure PCTCN2018106445-appb-000137
如图4所示为用户终端执行跳频的第一跳频物理资源和计算得到的第二跳频物理资源位置。
例3:
假设用户终端工作的带宽大小N RB为100个PRB,网络侧设备通过配置信令配置确定跳频带宽范围的参数offset。在该实施例中,当offset为非负数时,用户终端可以确定跳频带宽的起始和末尾位置的物理资源块编号分别为
Figure PCTCN2018106445-appb-000138
Figure PCTCN2018106445-appb-000139
当offset为非正数时,用户终端可以确定跳频带宽的起始和末尾位置的物理资源块编号分别为
Figure PCTCN2018106445-appb-000140
Figure PCTCN2018106445-appb-000141
当网络侧设备配置的offset参数为1/2的BWP或者50个PRB,并且,网络侧设备直接配置给终端第一跳频物理资源块位置
Figure PCTCN2018106445-appb-000142
则终端可以确定第二跳频物理资源块编号由以下公式得到:
Figure PCTCN2018106445-appb-000143
如图5所示为用户终端执行跳频的第一跳频物理资源和计算得到的第二跳频物理资源位置。
例4:
假设用户终端工作的带宽大小N RB为100个PRB,网络侧设备通过配置信令通知终端一个offset参数,在该实施例中,offset定义为非负数,用户终端可以确定跳频带宽范围的起始和末尾位置的物理资源块编号分别为
Figure PCTCN2018106445-appb-000144
Figure PCTCN2018106445-appb-000145
假设网络侧设备配置的offset参数为25,并且,网络侧设备配置给用户终端一个信道资源编号n PUCCH=630,用户终端可以由以下公式确定第一跳频物理资源编号
Figure PCTCN2018106445-appb-000147
Figure PCTCN2018106445-appb-000148
进而用户终端在跳频带宽范围内,按照中心对称的方式,根据第一跳频物理资源确定第二跳频物理资源编号
Figure PCTCN2018106445-appb-000149
Figure PCTCN2018106445-appb-000150
如图6所示为用户终端执行跳频的第一跳频物理资源和计算得到的第二跳频物理资源位置。
例5:
假设用户终端工作的带宽大小N RB为100个PRB,用户终端由网络侧设备的配置可知跳频带宽起始位置和结束位置分别为物理资源块编号
Figure PCTCN2018106445-appb-000151
Figure PCTCN2018106445-appb-000152
网络侧设备直接配置给用户终端第一跳频物理资源块位置
Figure PCTCN2018106445-appb-000153
并且网络侧设备配置调整第二跳频物理资源位置的参数offset_2为1,在该实施例中假设定义使用的公式为
Figure PCTCN2018106445-appb-000154
则用户终端可以确定第二跳频物理资源块编号由以下得到:
Figure PCTCN2018106445-appb-000155
如图7所示为用户终端执行跳频的第一跳频物理资源和计算得到的第二跳频物理资源位置。
需要说明的是,在上述例1、例2和例5的实施方式中,网络侧设备既可以配置跳频带宽起始和末尾位置的物理资源块编号,也可以配置跳频带宽的起始位置的物理资源块编号
Figure PCTCN2018106445-appb-000156
和跳频的带宽大小BW,则用户终端可以确 定出跳频带宽的起始和末尾位置的物理资源块编号分别为
Figure PCTCN2018106445-appb-000157
Figure PCTCN2018106445-appb-000158
或者,也可以配置跳频带宽的末尾位置的物理资源块编号和跳频带宽大小BW,则终端可以确定出跳频带宽的起始和末尾位置的物理资源块编号分别为
Figure PCTCN2018106445-appb-000159
Figure PCTCN2018106445-appb-000160
用户终端根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源。由于是在跳频带宽范围确定跳频物理资源,从而相比相关技术中直接确定工作带宽的两侧为跳频物理资源,本公开实施例可以提高物理资源的复用率。
需要说明的是,本公开实施例中,在第一跳频物理资源包括多个PRB时,若网络侧设备配置其一个PRB的编号,例如:起始PRB编号,则用户终端可以通过上述公式计算出第二跳频物理资源的起始PRB编号,且第二跳频物理资源为自起始PRB编号向下递减,例如:第一跳频物理资源的起始PRB编号为2,PRB个数为3,则第一跳频物理资源占用的PRB编号分别为2、3和4三个PRB,跳频带宽范围为50个PRB,则第二跳频物理资源的起始PRB编号为48,PRB个数为3,则第二跳频物理资源占用的PRB编号分别为48、47和46三个PRB。
当然,也可以是确定第一跳频物理资源占用的所有PRB编号后,按照上述公式依次对每个PRB编号进行计算,以得到第一跳频物理资源占用的所有PRB编号。例如:通过PRB编号2计算得到PRB编号48,通过PRB编号3计算得到PRB编号47,以及通过PRB编号4计算得到PRB编号46。
该情况下具体可以参见例6和例7
例6:
假设用户终端工作的带宽大小为N RB为100个PRB,网络侧设备通过配置信令通知用户终端具体的跳频带宽位置分别为物理资源块编号
Figure PCTCN2018106445-appb-000161
Figure PCTCN2018106445-appb-000162
且网络侧设备直接配置给用户终端的第一跳频物理资源为连续资源,其连续资源的起始资源块编号为
Figure PCTCN2018106445-appb-000163
其连续资源的PRB个数为3,则第一跳频物理资源占用的PRB编号为2,3,4。则用户终端在跳频带宽范围内,按照中心对称的方式,根据第一跳频物理资源的起始PRB编号确定第二hop的物理资源的起始PRB编号
Figure PCTCN2018106445-appb-000164
为:
Figure PCTCN2018106445-appb-000165
根据中心对称方式,用户终端可以确定第二跳频物理资源为自起始PRB编号向下递减,PRB编号为48,47,46三个PRB。
如图8所示的用户终端执行跳频的第一跳频物理资源和计算得到的第二跳频物理资源的位置。
例7:
假设用户终端工作的带宽大小为N RB为100个PRB,网络侧设备通过配置信令通知用户终端具体的跳频带宽位置分别为物理资源块编号
Figure PCTCN2018106445-appb-000166
Figure PCTCN2018106445-appb-000167
且网络侧设备直接配置给用户终端的第一跳频物理资源为连续资源,其连续资源的起始资源块编号为
Figure PCTCN2018106445-appb-000168
其连续资源的PRB个数为3,则第一跳频物理资源占用的PRB编号为46,47,48,其中,连续资源为一个起始+PRB个数-1。则用户终端在跳频带宽范围内,按照中心对称的方式,根据第一跳频物理资源的起始PRB编号确定第二跳频物理资源的起始PRB编号
Figure PCTCN2018106445-appb-000169
为:
Figure PCTCN2018106445-appb-000170
根据中心对称方式,用户终端可以确定第二跳频物理资源自起始PRB编号向下递减,PRB编号为4,3,2三个PRB。
如图9所示为用户终端执行跳频的第一跳频物理资源和计算得到的第二跳频物理资源的位置。
需要说明的是,例6和例7中第一跳频物理资源为连续的资源分配,网络侧设备可以是配置起始PRB编号,以及占用的多个连续的PRB个数,其中,PRB个数可以是高层信令配置或者DCI配置。
请参见图10,图10是本公开实施例提供的另一种跳频物理资源确定方法的流程图,如图10所示,包括以下步骤:
步骤1001、网络侧设备根据用户终端的跳频带宽范围以及第一跳频物理资源,确定所述用户终端的第二跳频物理资源。
网络侧设备可以在上述第一跳频物理资源和第二跳频物理资源发送配置,或者以及接收数据等传输操作。
可选地,所述方法还包括:
所述网络侧设备向所述用户终端发送信令,所述信令用于所述用户终端在工作带宽中确定所述跳频带宽范围;
所述网络侧设备确定所述第一跳频物理资源。
可选地,所述信令包括:
所述跳频带宽范围的起始位置和末尾位置的PRB编号;或者
所述跳频带宽范围的起始位置的PRB编号和跳频带宽大小;或者
所述跳频带宽范围的末尾位置的PRB编号和跳频带宽大小。
可选地,所述信令包括第一offset;
若所述第一offset为非负数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别为如下任一组合:
0和N RB-1-offset,或者,offset和N RB-1,或者,offset和N RB-1-offset;
或者
若所述第一offset为非正数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别如下任一组合:
–offset和N RB-1,或者,0和N RB-1+offset;
其中,offset为所述第一offset,N RB为所述用户终端的工作带宽。
可选地,所述网络侧设备通过信令向所述用户终端配置第一跳频物理资源的PRB编号;或者
所述网络侧设备通过信令向所述用户终端配置第一跳频物理资源的PRB编号,以及第一跳频物理资源的PRB个数;或者
所述网络侧设备向所述用户终端配置信道资源编号,所述信道资源编号用于所述用户终端确定第一跳频物理资源。
可选地,所述网络侧设备确定所述第一跳频物理资源,包括:
所述网络侧设备通过如下公式确定所述第一跳频物理资源:
Figure PCTCN2018106445-appb-000171
其中,
Figure PCTCN2018106445-appb-000172
为所述第一跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000173
表示向下取整,mod表示求余,N RB为所述用户终端的工作带宽,
Figure PCTCN2018106445-appb-000174
n PUCCH为所述信道资源编号,P为复用容量。
可选地,所述网络侧设备根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源包括:
所述网络侧设备在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
所述网络侧设备在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
可选地,所述网络侧设备在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源,包括:
所述网络侧设备通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000175
或者,
Figure PCTCN2018106445-appb-000176
或者,
Figure PCTCN2018106445-appb-000177
或者,
Figure PCTCN2018106445-appb-000178
其中,
Figure PCTCN2018106445-appb-000179
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000180
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000181
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000182
为所述第一跳频物理资源的PRB编号,N RB为所述用户终端的工作带宽,offset为第一offset;
所述网络侧设备在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源,包括:
所述网络侧设备通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000183
或者,
Figure PCTCN2018106445-appb-000184
或者,
Figure PCTCN2018106445-appb-000185
或者,
Figure PCTCN2018106445-appb-000186
或者,
Figure PCTCN2018106445-appb-000187
或者,
Figure PCTCN2018106445-appb-000188
或者,
Figure PCTCN2018106445-appb-000189
或者,
Figure PCTCN2018106445-appb-000190
其中,
Figure PCTCN2018106445-appb-000191
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000192
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000193
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000194
为所述第一跳频物理资源的PRB编号,offset_2为第二offset,N RB为所述用户终端的工作带宽,offset为第一offset。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络侧设备的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
请参见图11,图11是本公开实施例提供的一种用户终端的结构图,如图11所示,用户终端1100包括:
第一确定模块1101,用于第一确定模块,用于根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源。
可选地,如图12所示,用户终端1100还包括:
第二确定模块1102,用于根据网络侧配置的信令,确定工作带宽中的跳频带宽范围;
第三确定模块1103,用于确定所述第一跳频物理资源。
可选地,所述信令包括:
所述跳频带宽范围的起始位置和末尾位置的物理资源块PRB编号;或者
所述跳频带宽范围的起始位置的PRB编号和跳频带宽大小;或者
所述跳频带宽范围的末尾位置的PRB编号和跳频带宽大小。
可选地,所述信令包括第一偏移offset;
若所述第一offset为非负数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别为如下任一组合:
0和N RB-1-offset,或者,offset和N RB-1,或者,offset和N RB-1-offset;
或者
若所述第一offset为非正数,则所述带宽范围的起始位置和末尾位置的PRB编号分别如下任一组合:
–offset和N RB-1,或者,0和N RB-1+offset;
其中,offset为所述第一offset,N RB为所述用户终端的工作带宽。
可选地,所述第三确定模块1103用于将网络侧配置的PRB编号作为第一跳频物理资源的PRB编;或者
所述第三确定模块1103用于根据网络侧配置的PRB编号,以及第一跳频物理资源的PRB个数,确定所述第一跳频物理资源;或者
所述第三确定模块1103用于根据网络侧配置的信道资源编号,确定第一跳频物理资源。
可选地,所述第三确定模块1103用于通过如下公式确定所述第一跳频物理资源:
Figure PCTCN2018106445-appb-000195
其中,
Figure PCTCN2018106445-appb-000196
为所述第一跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000197
表示向下取整,mod表示求余,N RB为所述用户终端的工作带宽,
Figure PCTCN2018106445-appb-000198
n PUCCH为所述信道资源编号,P为复用容量。
可选地,所述第一确定模块1101用于在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
所述第一确定模块1101用于在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
可选地,所述第一确定模块1101用于通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000199
或者,
Figure PCTCN2018106445-appb-000200
或者,
Figure PCTCN2018106445-appb-000201
或者,
Figure PCTCN2018106445-appb-000202
其中,
Figure PCTCN2018106445-appb-000203
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000204
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000205
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000206
为所述第一跳频物理资源的PRB编号,N RB为所述用户终端的工作带宽,offset为第一offset;
或者,所述第一确定模块1101用于通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000207
或者,
Figure PCTCN2018106445-appb-000208
或者,
Figure PCTCN2018106445-appb-000209
或者,
Figure PCTCN2018106445-appb-000210
或者,
Figure PCTCN2018106445-appb-000211
或者,
Figure PCTCN2018106445-appb-000212
或者,
Figure PCTCN2018106445-appb-000213
或者,
Figure PCTCN2018106445-appb-000214
其中,
Figure PCTCN2018106445-appb-000215
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000216
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000217
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000218
为所述第一跳频物理资源的PRB编号,offset_2为第二offset,N RB为所述用户终端的工作带宽,offset为第一offset。
需要说明的是,本实施例中上述用户终端1100可以是本公开实施例中方法实施例中任意实施方式的用户终端,本公开实施例中方法实施例中用户终端的任意实施方式都可以被本实施例中的上述用户终端1100所实现,以及达到相同的有益效果,此处不再赘述。
请参见图13,图13是本公开实施例提供的一种网络侧设备的结构图,如图13所示,网络侧设备1300包括:
第一确定模块1301,用于根据用户终端的跳频带宽范围以及第一跳频物理资源,确定所述用户终端的第二跳频物理资源。
可选地,如图14所示,所述网络侧设备1300还包括:
发送模块1302,用于向所述用户终端发送信令,所述信令用于所述用户终端在工作带宽中确定所述跳频带宽范围;
第二确定模块1303,用于确定所述第一跳频物理资源。
可选地,所述信令包括:
所述跳频带宽范围的起始位置和末尾位置的PRB编号;或者
所述跳频带宽范围的起始位置的PRB编号和跳频带宽大小;或者
所述跳频带宽范围的末尾位置的PRB编号和跳频带宽大小。
可选地,所述信令包括第一offset;
若所述第一offset为非负数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别为如下任一组合:
0和N RB-1-offset,或者,offset和N RB-1,或者,offset和N RB-1-offset;
或者
若所述第一offset为非正数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别如下任一组合:
–offset和N RB-1,或者,0和N RB-1+offset;
其中,offset为所述第一offset,N RB为所述用户终端的工作带宽。
可选地,所述网络侧设备通过信令向所述用户终端配置第一跳频物理资源的PRB编号;或者
所述网络侧设备通过信令向所述用户终端配置第一跳频物理资源的PRB编号,以及第一跳频物理资源的PRB个数;或者
所述网络侧设备向所述用户终端配置信道资源编号,所述信道资源编号用于所述用户终端在确定第一跳频物理资源。
可选地,第二确定模块1303用于通过如下公式确定所述第一跳频物理资源:
Figure PCTCN2018106445-appb-000219
其中,
Figure PCTCN2018106445-appb-000220
为所述第一跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000221
表示向下取整,mod表示求余,N RB为所述用户终端的工作带宽,
Figure PCTCN2018106445-appb-000222
n PUCCH为所述信道资源编号,P为复用容量。
可选地,所述第一确定模块1301用于在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
所述第一确定模块1301用于在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
可选地,所述第一确定模块1301用于通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000223
或者,
Figure PCTCN2018106445-appb-000224
或者,
Figure PCTCN2018106445-appb-000225
或者,
Figure PCTCN2018106445-appb-000226
其中,
Figure PCTCN2018106445-appb-000227
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000228
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000229
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000230
为所述第一跳频物理资源的PRB编号,N RB为所述用户终端的工作带宽,offset为第一offset;
或者所述第一确定模块1301用于通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000231
或者,
Figure PCTCN2018106445-appb-000232
或者,
Figure PCTCN2018106445-appb-000233
或者,
Figure PCTCN2018106445-appb-000234
或者,
Figure PCTCN2018106445-appb-000235
或者,
Figure PCTCN2018106445-appb-000236
或者,
Figure PCTCN2018106445-appb-000237
或者,
Figure PCTCN2018106445-appb-000238
其中,
Figure PCTCN2018106445-appb-000239
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000240
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000241
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000242
为所述第一跳频物理资源的PRB编号,offset_2为第二offset,N RB为所述用户终端的工作带宽,offset为第一offset。
需要说明的是,本实施例中上述网络侧设备1300可以是本公开实施例中方法实施例中任意实施方式的网络侧设备,本公开实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备1300所实现,以及达到相同的有益效果,此处不再赘述。
请参考图15,图15是本公开实施例提供的另一种用户终端的结构图,如图15所示,该用户终端包括:收发机1510、存储器1520、处理器1500及存储在所述存储器1520上并可在所述处理器上运行的计算机程序,其中:
所述收发机1510,用于根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源;
或者,
所述处理器1500用于读取存储器1520中的程序,执行下列过程:
根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源。
其中,收发机1510,可以用于在处理器1500的控制下接收和发送数据。
在图15中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1500代表的一个或多个处理器和存储器1520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1510可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1500负责管理总线架构和通常的处理,存储器1520可以存储处理器1500在执行操作时所使用的数据。
需要说明的是,存储器1520并不限定只在用户终端上,可以将存储器1520和处理器1500分离处于不同的地理位置。
可选地,所述收发机1510或者所述处理器1500还用于根据网络侧配置的信令,确定工作带宽中的跳频带宽范围;确定所述第一跳频物理资源。
可选地,所述信令包括:
所述跳频带宽范围的起始位置和末尾位置的PRB编号;或者
所述跳频带宽范围的起始位置的PRB编号和跳频带宽大小;或者
所述跳频带宽范围的末尾位置的PRB编号和跳频带宽大小。
可选地,所述信令包括第一offset;
若所述第一offset为非负数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别为如下任一组合:
0和N RB-1-offset,或者,offset和N RB-1,或者,offset和N RB-1-offset;
或者
若所述第一offset为非正数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别如下任一组合:
–offset和N RB-1,或者,0和N RB-1+offset;
其中,offset为所述第一offset,N RB为所述用户终端的工作带宽。
可选地,所述确定第一跳频物理资源,包括:
将网络侧配置的PRB编号作为第一跳频物理资源的PRB编号;或者
根据网络侧配置的PRB编号,以及第一跳频物理资源的PRB个数,确定所述第一跳频物理资源;或者
根据网络侧配置的信道资源编号,确定第一跳频物理资源。
可选地,所述根据网络侧配置的信道资源编号,确定第一跳频物理资源,包括:
通过如下公式确定所述第一跳频物理资源:
Figure PCTCN2018106445-appb-000243
其中,
Figure PCTCN2018106445-appb-000244
为所述第一跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000245
表示向下取整,mod表示求余,N RB为所述用户终端的工作带宽,
Figure PCTCN2018106445-appb-000246
n PUCCH为所述信道资源编号,P为复用容量。
可选地,所述根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源,包括:
在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
可选地,所述在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源,包括:
通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000247
或者,
Figure PCTCN2018106445-appb-000248
或者,
Figure PCTCN2018106445-appb-000249
或者,
Figure PCTCN2018106445-appb-000250
其中,
Figure PCTCN2018106445-appb-000251
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000252
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000253
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000254
为所述第一跳频物理资源的PRB编号,N RB为所述用户终端的工作带宽,offset为第一offset;
所述在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源,包括:
通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000255
或者,
Figure PCTCN2018106445-appb-000256
或者,
Figure PCTCN2018106445-appb-000257
或者,
Figure PCTCN2018106445-appb-000258
或者,
Figure PCTCN2018106445-appb-000259
或者,
Figure PCTCN2018106445-appb-000260
或者,
Figure PCTCN2018106445-appb-000261
或者,
Figure PCTCN2018106445-appb-000262
其中,
Figure PCTCN2018106445-appb-000263
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000264
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000265
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000266
为所述第一跳频物理资源的PRB编号,offset_2为第二offset,N RB为所述用户终端的工作带宽,offset为第一offset。
需要说明的是,本实施例中上述用户终端可以是本公开实施例中方法实施例中任意实施方式的用户终端,本公开实施例中方法实施例中用户终端的任意实施方式都可以被本实施例中的上述用户终端所实现,以及达到相同的有益效果,此处不再赘述。
请参考图16,图16是本公开实施提供的另一种网络侧设备的结构图, 如图16所示,该网络侧设备包括:收发机1610、存储器1620、处理器1600及存储在所述存储器1620上并可在所述处理器上运行的计算机程序,其中:
所述收发机1610,用于根据用户终端的跳频带宽范围以及第一跳频物理资源,确定所述用户终端的第二跳频物理资源;
或者,
所述处理器1600用于读取存储器1620中的程序,执行下列过程:
根据用户终端的跳频带宽范围以及第一跳频物理资源,确定所述用户终端的第二跳频物理资源。
其中,收发机1610,用于在处理器1600的控制下接收和发送数据。
在图16中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1600代表的一个或多个处理器和存储器1620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1600负责管理总线架构和通常的处理,存储器1620可以存储处理器1600在执行操作时所使用的数据。
需要说明的是,存储器1620并不限定只在网络侧设备上,也可以将存储器1620和处理器1600分离处于不同的地理位置。
可选地,所述收发机1610还用于生成信令,所述信令用于所述用户终端在工作带宽中确定所述跳频带宽范围;向所述用户终端发送所述信令;确定所述第一跳频物理资源;
或者,
所述处理器1600还用于生成信令,所述信令用于所述用户终端在工作带宽中确定所述跳频带宽范围;
所述收发机1610还用于向所述用户终端发送所述信令;
所述处理器1600还用于确定所述第一跳频物理资源。
可选地,所述信令包括:
所述跳频带宽范围的起始位置和末尾位置的PRB编号;或者
所述跳频带宽范围的起始位置的PRB编号和跳频带宽大小;或者
所述跳频带宽范围的末尾位置的PRB编号和跳频带宽大小。
可选地,所述信令包括第一offset;
若所述第一offset为非负数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别为如下任一组合:
0和N RB-1-offset,或者,offset和N RB-1,或者,offset和N RB-1-offset;
或者
若所述第一offset为非正数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别如下任一组合:
–offset和N RB-1,或者,0和N RB-1+offset;
其中,offset为所述第一offset,N RB为所述用户终端的工作带宽。
可选地,所述网络侧设备通过信令向所述用户终端配置的第一跳频物理资源的PRB编号;或者
所述网络侧设备通过信令向所述用户终端配置第一跳频物理资源的PRB编号,以及第一跳频物理资源的PRB个数;或者
所述网络侧设备向所述用户终端配置信道资源编号,所述信道资源编号用于所述用户终端在所述跳频带宽范围内确定第一跳频物理资源。
可选地,所述确定所述第一跳频物理资源,包括:
通过如下公式确定所述第一跳频物理资源:
Figure PCTCN2018106445-appb-000267
其中,
Figure PCTCN2018106445-appb-000268
为所述第一跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000269
表示向下取整,mod表示求余,N RB为所述用户终端的工作带宽,
Figure PCTCN2018106445-appb-000270
n PUCCH为所述信道资源编号,P为复用容量。
可选地,所述根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源包括:
在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资 源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
可选地,所述在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源,包括:
通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000271
或者,
Figure PCTCN2018106445-appb-000272
或者,
Figure PCTCN2018106445-appb-000273
或者,
Figure PCTCN2018106445-appb-000274
其中,
Figure PCTCN2018106445-appb-000275
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000276
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000277
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000278
为所述第一跳频物理资源的PRB编号,N RB为所述用户终端的工作带宽,offset为第一offset;
所述在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源,包括:
通过如下任一公式确定所述第二跳频物理资源:
Figure PCTCN2018106445-appb-000279
或者,
Figure PCTCN2018106445-appb-000280
或者,
Figure PCTCN2018106445-appb-000281
或者,
Figure PCTCN2018106445-appb-000282
或者,
Figure PCTCN2018106445-appb-000283
或者,
Figure PCTCN2018106445-appb-000284
或者,
Figure PCTCN2018106445-appb-000285
或者,
Figure PCTCN2018106445-appb-000286
其中,
Figure PCTCN2018106445-appb-000287
为所述第二跳频物理资源的PRB编号,
Figure PCTCN2018106445-appb-000288
为所述跳频带宽范围的起始位置的PRB编号,
Figure PCTCN2018106445-appb-000289
为所述跳频带宽范围的末尾位置的PRB编号,
Figure PCTCN2018106445-appb-000290
为所述第一跳频物理资源的PRB编号,offset_2为第二offset,N RB 为所述用户终端的工作带宽,offset为第一offset。
需要说明的是,本实施例中上述网络侧设备可以是本公开实施例中方法实施例中任意实施方式的网络侧设备,本公开实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备所实现,以及达到相同的有益效果,此处不再赘述。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开实施例提供的用户终端侧的跳频物理资源确定方法中的步骤。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开实施例提供的网络侧设备侧的跳频物理资源确定方法中的步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (42)

  1. 一种跳频物理资源确定方法,包括:
    用户终端根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源。
  2. 如权利要求1所述的方法,其中,所述方法还包括:
    所述用户终端根据网络侧配置的信令,确定工作带宽中的所述跳频带宽范围;
    所述用户终端确定所述第一跳频物理资源。
  3. 如权利要求2所述的方法,其中,所述信令包括:
    所述跳频带宽范围的起始位置和末尾位置的物理资源块PRB编号;或者
    所述跳频带宽范围的起始位置的PRB编号和跳频带宽大小;或者
    所述跳频带宽范围的末尾位置的PRB编号和跳频带宽大小。
  4. 如权利要求2所述的方法,其中,所述信令包括第一偏移offset;
    若所述第一offset为非负数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别为如下任一组合:
    0和N RB-1-offset,或者,offset和N RB-1,或者,offset和N RB-1-offset;
    或者
    若所述第一offset为非正数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别如下任一组合:
    –offset和N RB-1,或者,0和N RB-1+offset;
    其中,offset为所述第一offset,N RB为所述用户终端的工作带宽。
  5. 如权利要求2所述的方法,其中,所述用户终端确定第一跳频物理资源,包括:
    所述用户终端将网络侧配置的PRB编号作为第一跳频物理资源的PRB编号;或者
    所述用户终端根据网络侧配置的PRB编号,以及第一跳频物理资源的PRB个数,确定所述第一跳频物理资源;或者
    所述用户终端根据网络侧配置的信道资源编号,确定第一跳频物理资源。
  6. 如权利要求5所述的方法,其中,所述用户终端根据网络侧配置的信道资源编号,确定第一跳频物理资源,包括:
    所述用户终端通过如下公式确定所述第一跳频物理资源:
    Figure PCTCN2018106445-appb-100001
    其中,
    Figure PCTCN2018106445-appb-100002
    为所述第一跳频物理资源的PRB编号,
    Figure PCTCN2018106445-appb-100003
    表示向下取整,mod表示求余,N RB为所述用户终端的工作带宽,
    Figure PCTCN2018106445-appb-100004
    n PUCCH为所述信道资源编号,P为复用容量。
  7. 如权利要求1至6中任一项所述的方法,其中,所述用户终端根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源包括:
    所述用户终端在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
    所述用户终端在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
  8. 如权利要求7所述的方法,其中,所述用户终端在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源,包括:
    所述用户终端通过如下任一公式确定所述第二跳频物理资源:
    Figure PCTCN2018106445-appb-100005
    或者,
    Figure PCTCN2018106445-appb-100006
    或者,
    Figure PCTCN2018106445-appb-100007
    或者,
    Figure PCTCN2018106445-appb-100008
    其中,
    Figure PCTCN2018106445-appb-100009
    为所述第二跳频物理资源的PRB编号,
    Figure PCTCN2018106445-appb-100010
    为所述跳频带宽范围的起始位置的PRB编号,
    Figure PCTCN2018106445-appb-100011
    为所述跳频带宽范围的末尾位置的PRB编号,
    Figure PCTCN2018106445-appb-100012
    为所述第一跳频物理资源的PRB编号,N RB为所述用户终端的工作带宽,offset为第一offset;
    所述用户终端在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源,包括:
    所述用户终端通过如下任一公式确定所述第二跳频物理资源:
    Figure PCTCN2018106445-appb-100013
    或者,
    Figure PCTCN2018106445-appb-100014
    或者,
    Figure PCTCN2018106445-appb-100015
    或者,
    Figure PCTCN2018106445-appb-100016
    或者,
    Figure PCTCN2018106445-appb-100017
    或者,
    Figure PCTCN2018106445-appb-100018
    或者,
    Figure PCTCN2018106445-appb-100019
    或者,
    Figure PCTCN2018106445-appb-100020
    其中,
    Figure PCTCN2018106445-appb-100021
    为所述第二跳频物理资源的PRB编号,
    Figure PCTCN2018106445-appb-100022
    为所述跳频带宽范围的起始位置的PRB编号,
    Figure PCTCN2018106445-appb-100023
    为所述跳频带宽范围的末尾位置的PRB编号,
    Figure PCTCN2018106445-appb-100024
    为所述第一跳频物理资源的PRB编号,offset_2为第二offset,N RB为所述用户终端的工作带宽,offset为第一offset。
  9. 一种跳频物理资源确定方法,包括:
    网络侧设备根据用户终端的跳频带宽范围以及第一跳频物理资源,确定所述用户终端的第二跳频物理资源。
  10. 如权利要求9所述的方法,其中,所述方法还包括:
    所述网络侧设备向所述用户终端发送信令,所述信令用于所述用户终端在工作带宽中确定所述跳频带宽范围;
    所述网络侧设备确定所述第一跳频物理资源。
  11. 如权利要求10所述的方法,其中,所述信令包括:
    所述跳频带宽范围的起始位置和末尾位置的PRB编号;或者
    所述跳频带宽范围的起始位置的PRB编号和跳频带宽大小;或者
    所述跳频带宽范围的末尾位置的PRB编号和跳频带宽大小。
  12. 如权利要求10所述的方法,其中,所述信令包括第一offset;
    若所述第一offset为非负数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别为如下任一组合:
    0和N RB-1-offset,或者,offset和N RB-1,或者,offset和N RB-1-offset;
    或者
    若所述第一offset为非正数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别如下任一组合:
    –offset和N RB-1,或者,0和N RB-1+offset;
    其中,offset为所述第一offset,N RB为所述用户终端的工作带宽。
  13. 如权利要求10所述的方法,其中,所述网络侧设备通过信令向所述用户终端配置第一跳频物理资源的PRB编号;或者
    所述网络侧设备通过信令向所述用户终端配置第一跳频物理资源的PRB编号,以及第一跳频物理资源的PRB个数;或者
    所述网络侧设备向所述用户终端配置信道资源编号,所述信道资源编号用于所述用户终端确定第一跳频物理资源。
  14. 如权利要求13所述的方法,其中,所述网络侧设备确定所述第一跳频物理资源,包括:
    所述网络侧设备通过如下公式确定所述第一跳频物理资源:
    Figure PCTCN2018106445-appb-100025
    其中,
    Figure PCTCN2018106445-appb-100026
    为所述第一跳频物理资源的PRB编号,
    Figure PCTCN2018106445-appb-100027
    表示向下取整,mod表示求余,N RB为所述用户终端的工作带宽,
    Figure PCTCN2018106445-appb-100028
    n PUCCH为所述信道资源编号,P为复用容量。
  15. 如权利要求9至14中任一项所述的方法,其中,所述网络侧设备根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源包括:
    所述网络侧设备在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
    所述网络侧设备在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
  16. 如权利要求15所述的方法,其中,所述网络侧设备在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源,包括:
    所述网络侧设备通过如下任一公式确定所述第二跳频物理资源:
    Figure PCTCN2018106445-appb-100029
    或者,
    Figure PCTCN2018106445-appb-100030
    或者,
    Figure PCTCN2018106445-appb-100031
    或者,
    Figure PCTCN2018106445-appb-100032
    其中,
    Figure PCTCN2018106445-appb-100033
    为所述第二跳频物理资源的PRB编号,
    Figure PCTCN2018106445-appb-100034
    为所述跳频带宽范围的起始位置的PRB编号,
    Figure PCTCN2018106445-appb-100035
    为所述跳频带宽范围的末尾位置的PRB编号,
    Figure PCTCN2018106445-appb-100036
    为所述第一跳频物理资源的PRB编号,N RB为所述用户终端的工作带宽,offset为第一offset;
    所述网络侧设备在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源,包括:
    所述网络侧设备通过如下任一公式确定所述第二跳频物理资源:
    Figure PCTCN2018106445-appb-100037
    或者,
    Figure PCTCN2018106445-appb-100038
    或者,
    Figure PCTCN2018106445-appb-100039
    或者,
    Figure PCTCN2018106445-appb-100040
    或者,
    Figure PCTCN2018106445-appb-100041
    或者,
    Figure PCTCN2018106445-appb-100042
    或者,
    Figure PCTCN2018106445-appb-100043
    或者,
    Figure PCTCN2018106445-appb-100044
    其中,
    Figure PCTCN2018106445-appb-100045
    为所述第二跳频物理资源的PRB编号,
    Figure PCTCN2018106445-appb-100046
    为所述跳频带宽范围的起始位置的PRB编号,
    Figure PCTCN2018106445-appb-100047
    为所述跳频带宽范围的末尾位置的PRB编号,
    Figure PCTCN2018106445-appb-100048
    为所述第一跳频物理资源的PRB编号,offset_2为第二offset,N RB为所述用户终端的工作带宽,offset为第一offset。
  17. 一种用户终端,包括:
    第一确定模块,用于根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源。
  18. 如权利要求17所述的用户终端,其中,所述用户终端还包括:
    第二确定模块,用于根据网络侧配置的信令,确定工作带宽中的所述跳频带宽范围;
    第三确定模块,用于确定所述第一跳频物理资源。
  19. 如权利要求18所述的用户终端,其中,所述第三确定模块用于将网络侧配置的PRB编号作为第一跳频物理资源的PRB编号;或者
    所述第三确定模块用于根据网络侧配置的PRB编号,以及第一跳频物理资源的PRB个数,确定所述第一跳频物理资源;或者
    所述第三确定模块用于根据网络侧配置的信道资源编号,确定第一跳频物理资源。
  20. 如权利要求17或18所述的用户终端,其中,所述第一确定模块用于在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
    所述第一确定模块用于在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
  21. 一种网络侧设备,包括:
    第一确定模块,用于根据用户终端的跳频带宽范围以及第一跳频物理资源,确定所述用户终端的第二跳频物理资源。
  22. 如权利要求21所述的网络侧设备,其中,所述网络侧设备还包括:
    发送模块,用于向所述用户终端发送信令,所述信令用于所述用户终端在工作带宽中确定所述跳频带宽范围;
    第二确定模块,用于确定所述第一跳频物理资源。
  23. 如权利要求21或22所述的网络侧设备,其中,所述网络侧设备通过信令向所述用户终端配置第一跳频物理资源的PRB编号;或者
    所述网络侧设备通过信令向所述用户终端配置第一跳频物理资源的PRB编号,以及第一跳频物理资源的PRB个数;或者
    所述网络侧设备向所述用户终端配置信道资源编号,所述信道资源编号用于所述用户终端在确定第一跳频物理资源。
  24. 如权利要求21或22所述的网络侧设备,其中,所述第一确定模块 用于在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
    所述第一确定模块用于在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
  25. 一种用户终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,
    所述收发机,用于根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源;
    或者,
    所述处理器用于读取存储器中的程序,执行下列过程:
    根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源。
  26. 如权利要求25所述的用户终端,其中,所述收发机或者所述处理器还用于根据网络侧配置的信令,确定工作带宽中的所述跳频带宽范围;确定所述第一跳频物理资源。
  27. 如权利要求26所述的用户终端,其中,所述信令包括:
    所述跳频带宽范围的起始位置和末尾位置的PRB编号;或者
    所述跳频带宽范围的起始位置的PRB编号和跳频带宽大小;或者
    所述跳频带宽范围的末尾位置的PRB编号和跳频带宽大小。
  28. 如权利要求26所述的用户终端,其中,所述信令包括第一offset;
    若所述第一offset为非负数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别为如下任一组合:
    0和N RB-1-offset,或者,offset和N RB-1,或者,offset和N RB-1-offset;
    或者
    若所述第一offset为非正数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别如下任一组合:
    –offset和N RB-1,或者,0和N RB-1+offset;
    其中,offset为所述第一offset,N RB为所述用户终端的工作带宽。
  29. 如权利要求26所述的用户终端,其中,所述确定第一跳频物理资源, 包括:
    将网络侧配置的PRB编号作为第一跳频物理资源的PRB编号;或者
    根据网络侧配置的PRB编号,以及第一跳频物理资源的PRB个数,确定所述第一跳频物理资源;或者
    根据网络侧配置的信道资源编号,确定第一跳频物理资源。
  30. 如权利要求29所述的用户终端,其中,所述根据网络侧配置的信道资源编号,确定第一跳频物理资源,包括:
    通过如下公式确定所述第一跳频物理资源:
    Figure PCTCN2018106445-appb-100049
    其中,
    Figure PCTCN2018106445-appb-100050
    为所述第一跳频物理资源的PRB编号,
    Figure PCTCN2018106445-appb-100051
    表示向下取整,mod表示求余,N RB为所述用户终端的工作带宽,
    Figure PCTCN2018106445-appb-100052
    n PUCCH为所述信道资源编号,P为复用容量。
  31. 如权利要求25至30中任一项所述的用户终端,其中,所述根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源,包括:
    在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
    在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
  32. 如权利要求31所述的用户终端,其中,所述在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源,包括:
    通过如下任一公式确定所述第二跳频物理资源:
    Figure PCTCN2018106445-appb-100053
    或者,
    Figure PCTCN2018106445-appb-100054
    或者,
    Figure PCTCN2018106445-appb-100055
    或者,
    Figure PCTCN2018106445-appb-100056
    其中,
    Figure PCTCN2018106445-appb-100057
    为所述第二跳频物理资源的PRB编号,
    Figure PCTCN2018106445-appb-100058
    为所述跳频带宽范围的起始位置的PRB编号,
    Figure PCTCN2018106445-appb-100059
    为所述跳频带宽范围的末尾位置的PRB编 号,
    Figure PCTCN2018106445-appb-100060
    为所述第一跳频物理资源的PRB编号,N RB为所述用户终端的工作带宽,offset为第一offset;
    所述在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源,包括:
    通过如下任一公式确定所述第二跳频物理资源:
    Figure PCTCN2018106445-appb-100061
    或者,
    Figure PCTCN2018106445-appb-100062
    或者,
    Figure PCTCN2018106445-appb-100063
    或者,
    Figure PCTCN2018106445-appb-100064
    或者,
    Figure PCTCN2018106445-appb-100065
    或者,
    Figure PCTCN2018106445-appb-100066
    或者,
    Figure PCTCN2018106445-appb-100067
    或者,
    Figure PCTCN2018106445-appb-100068
    其中,
    Figure PCTCN2018106445-appb-100069
    为所述第二跳频物理资源的PRB编号,
    Figure PCTCN2018106445-appb-100070
    为所述跳频带宽范围的起始位置的PRB编号,
    Figure PCTCN2018106445-appb-100071
    为所述跳频带宽范围的末尾位置的PRB编号,
    Figure PCTCN2018106445-appb-100072
    为所述第一跳频物理资源的PRB编号,offset_2为第二offset,N RB为所述用户终端的工作带宽,offset为第一offset。
  33. 一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,
    所述收发机,用于根据用户终端的跳频带宽范围以及第一跳频物理资源,确定所述用户终端的第二跳频物理资源;
    或者,
    所述处理器用于读取存储器中的程序,执行下列过程:
    根据用户终端的跳频带宽范围以及第一跳频物理资源,确定所述用户终端的第二跳频物理资源。
  34. 如权利要求33所述的网络侧设备,其中,所述收发机还用于向所述用户终端发送信令,所述信令用于所述用户终端在工作带宽中确定所述跳频 带宽范围;确定所述第一跳频物理资源;
    或者,
    所述收发机还用于向所述用户终端发送信令,所述信令用于所述用户终端在工作带宽中确定所述跳频带宽范围;
    所述处理器还用于确定所述第一跳频物理资源。
  35. 如权利要求34所述的网络侧设备,其中,所述信令包括:
    所述跳频带宽范围的起始位置和末尾位置的PRB编号;或者
    所述跳频带宽范围的起始位置的PRB编号和跳频带宽大小;或者
    所述跳频带宽范围的末尾位置的PRB编号和跳频带宽大小。
  36. 如权利要求34所述的网络侧设备,其中,所述信令包括第一offset;
    若所述第一offset为非负数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别为如下任一组合:
    0和N RB-1-offset,或者,offset和N RB-1,或者,offset和N RB-1-offset;
    或者
    若所述第一offset为非正数,则所述跳频带宽范围的起始位置和末尾位置的PRB编号分别如下任一组合:
    –offset和N RB-1,或者,0和N RB-1+offset;
    其中,offset为所述第一offset,N RB为所述用户终端的工作带宽。
  37. 如权利要求34所述的网络侧设备,其中,所述网络侧设备通过信令向所述用户终端配置的第一跳频物理资源的PRB编号;或者
    所述网络侧设备通过信令向所述用户终端配置第一跳频物理资源的PRB编号,以及第一跳频物理资源的PRB个数;或者
    所述网络侧设备向所述用户终端配置信道资源编号,所述信道资源编号用于所述用户终端在所述跳频带宽范围内确定第一跳频物理资源。
  38. 如权利要求37所述的网络侧设备,其中,所述确定所述第一跳频物理资源,包括:
    通过如下公式确定所述第一跳频物理资源:
    Figure PCTCN2018106445-appb-100073
    其中,
    Figure PCTCN2018106445-appb-100074
    为所述第一跳频物理资源的PRB编号,
    Figure PCTCN2018106445-appb-100075
    表示向下取整,mod表示求余,N RB为所述用户终端的工作带宽,
    Figure PCTCN2018106445-appb-100076
    n PUCCH为所述信道资源编号,P为复用容量。
  39. 如权利要求33至38中任一项所述的网络侧设备,其中,所述根据跳频带宽范围以及第一跳频物理资源,确定第二跳频物理资源包括:
    在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源;或者
    在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源。
  40. 如权利要求39所述的网络侧设备,其中,所述在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的第二跳频物理资源,包括:
    通过如下任一公式确定所述第二跳频物理资源:
    Figure PCTCN2018106445-appb-100077
    或者,
    Figure PCTCN2018106445-appb-100078
    或者,
    Figure PCTCN2018106445-appb-100079
    或者,
    Figure PCTCN2018106445-appb-100080
    其中,
    Figure PCTCN2018106445-appb-100081
    为所述第二跳频物理资源的PRB编号,
    Figure PCTCN2018106445-appb-100082
    为所述跳频带宽范围的起始位置的PRB编号,
    Figure PCTCN2018106445-appb-100083
    为所述跳频带宽范围的末尾位置的PRB编号,
    Figure PCTCN2018106445-appb-100084
    为所述第一跳频物理资源的PRB编号,N RB为所述用户终端的工作带宽,offset为第一offset;
    所述在所述跳频带宽范围内确定与所述第一跳频物理资源中心对称的物理资源,并将与所述第一跳频物理资源中心对称的物理资源偏移第二offset的物理资源作为第二跳频物理资源,包括:
    通过如下任一公式确定所述第二跳频物理资源:
    Figure PCTCN2018106445-appb-100085
    或者,
    Figure PCTCN2018106445-appb-100086
    或者,
    Figure PCTCN2018106445-appb-100087
    或者,
    Figure PCTCN2018106445-appb-100088
    或者,
    Figure PCTCN2018106445-appb-100089
    或者,
    Figure PCTCN2018106445-appb-100090
    或者,
    Figure PCTCN2018106445-appb-100091
    或者,
    Figure PCTCN2018106445-appb-100092
    其中,
    Figure PCTCN2018106445-appb-100093
    为所述第二跳频物理资源的PRB编号,
    Figure PCTCN2018106445-appb-100094
    为所述跳频带宽范围的起始位置的PRB编号,
    Figure PCTCN2018106445-appb-100095
    为所述跳频带宽范围的末尾位置的PRB编号,
    Figure PCTCN2018106445-appb-100096
    为所述第一跳频物理资源的PRB编号,offset_2为第二offset,N RB为所述用户终端的工作带宽,offset为第一offset。
  41. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1至8中任一项所述的跳频物理资源确定方法中的步骤。
  42. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求9至16中任一项所述的跳频物理资源确定方法中的步骤。
PCT/CN2018/106445 2017-11-09 2018-09-19 跳频物理资源确定方法、用户终端和网络侧设备 WO2019091225A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711097734.6 2017-11-09
CN201711097734 2017-11-09
CN201711107724.6 2017-11-10
CN201711107724.6A CN109788554A (zh) 2017-11-10 2017-11-10 一种跳频物理资源确定方法、用户终端和网络侧设备

Publications (1)

Publication Number Publication Date
WO2019091225A1 true WO2019091225A1 (zh) 2019-05-16

Family

ID=66438180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106445 WO2019091225A1 (zh) 2017-11-09 2018-09-19 跳频物理资源确定方法、用户终端和网络侧设备

Country Status (1)

Country Link
WO (1) WO2019091225A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201704B2 (en) * 2017-12-22 2021-12-14 Telefonaktiebolaget Lm Ericsson (Publ) Interlace hopping in unlicensed band

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610231A (zh) * 2008-06-18 2009-12-23 中兴通讯股份有限公司 跳频实现方法和装置
CN101621325A (zh) * 2008-07-03 2010-01-06 中兴通讯股份有限公司 一种长期演进系统的公共导频跳频方法
CN105282846A (zh) * 2014-07-25 2016-01-27 中兴通讯股份有限公司 设备到设备通信方法及装置、设备到设备通信控制装置
CN105379133A (zh) * 2013-07-12 2016-03-02 Lg电子株式会社 用于在无线通信系统中发送信号的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610231A (zh) * 2008-06-18 2009-12-23 中兴通讯股份有限公司 跳频实现方法和装置
CN101621325A (zh) * 2008-07-03 2010-01-06 中兴通讯股份有限公司 一种长期演进系统的公共导频跳频方法
CN105379133A (zh) * 2013-07-12 2016-03-02 Lg电子株式会社 用于在无线通信系统中发送信号的方法和设备
CN105282846A (zh) * 2014-07-25 2016-01-27 中兴通讯股份有限公司 设备到设备通信方法及装置、设备到设备通信控制装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201704B2 (en) * 2017-12-22 2021-12-14 Telefonaktiebolaget Lm Ericsson (Publ) Interlace hopping in unlicensed band

Similar Documents

Publication Publication Date Title
US10117107B2 (en) Method, apparatus, system and computer program
CN106162888B (zh) 载波聚合中的pucch资源配置方法及其设备
JP2019537860A (ja) アップリンク通信波形選択の容易化
KR102322814B1 (ko) 자원 블록 그룹의 구획 방법 및 사용자 단말
WO2017041748A1 (zh) 无线通信的方法和装置
WO2019095953A1 (zh) 一种资源配置方法及装置、计算机存储介质
WO2018228586A1 (zh) 一种通信方法、网络设备及用户设备
US20230209540A1 (en) Method of allocating uplink data packet resource and user equipment
US9622115B2 (en) Channel negotiation method, device, and system
JP7213190B2 (ja) リソースを判定する方法および装置ならびに記憶媒体
KR20220050157A (ko) 리소스 다중화 방법 및 장치
WO2019228511A1 (zh) 资源配置方法、网络设备和终端
WO2020063441A1 (zh) 重复传输方法、终端和网络侧设备
CN109891983A (zh) 动态时分双工的设置装置、方法以及通信系统
TW201935942A (zh) 資訊發送方法及終端
WO2019137299A1 (zh) 通信的方法和通信设备
JP7476334B2 (ja) 時間領域リソースの決定方法及びその装置、端末機器
CN111919472A (zh) 用于bwp的随机接入响应
WO2019091225A1 (zh) 跳频物理资源确定方法、用户终端和网络侧设备
WO2020192719A1 (zh) 更新波束的方法与通信装置
CN114071726A (zh) 一种通信方法及装置
JP2023544285A (ja) 物理アップリンク制御チャネル送信方法、受信方法、および通信装置
WO2017114218A1 (zh) 资源划分方法及装置
WO2019137204A1 (zh) 控制资源集coreset的分配方法、用户终端和网络侧设备
TWI754301B (zh) 資源配置、確定方法、裝置及電腦存儲介質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875419

Country of ref document: EP

Kind code of ref document: A1