WO2019088284A1 - Method for producing ball joint, method for producing stabilizer link, and ball joint - Google Patents
Method for producing ball joint, method for producing stabilizer link, and ball joint Download PDFInfo
- Publication number
- WO2019088284A1 WO2019088284A1 PCT/JP2018/040988 JP2018040988W WO2019088284A1 WO 2019088284 A1 WO2019088284 A1 WO 2019088284A1 JP 2018040988 W JP2018040988 W JP 2018040988W WO 2019088284 A1 WO2019088284 A1 WO 2019088284A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ball
- housing
- recess
- ball joint
- center point
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G21/00—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
- B60G21/02—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
- B60G21/04—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
- B60G21/05—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
- B60G21/055—Stabiliser bars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G7/00—Pivoted suspension arms; Accessories thereof
- B60G7/02—Attaching arms to sprung part of vehicle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C11/00—Pivots; Pivotal connections
- F16C11/04—Pivotal connections
- F16C11/06—Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
Definitions
- the present invention relates to a method of manufacturing a ball joint, a method of manufacturing a stabilizer link, and a ball joint.
- a ball joint comprising a metal ball stud in which a shaft portion and a ball portion are connected to each other, and a housing made of a thermoplastic resin having a hollow portion in which the ball portion is rotatably inserted around its center point
- the outer peripheral surface of the ball portion and the inner surface of the recessed portion are brought into close contact with each other to assemble the ball stud and the housing, and the outer peripheral surface side of the ball portion and the inner surface side of the recessed portion are heated. And a heating step is known.
- the ball portion is reduced to the original size, while the inner surface side of the recess is not reduced to the original size and kept larger than the original size.
- the close contact state between the outer peripheral surface of the ball portion and the inner surface of the recessed portion can be relaxed, and the contact state such as the gap between the outer peripheral surface of the ball portion and the inner surface of the recessed portion or the interference can be adjusted.
- the heating step for example, a method is known in which the heat of the ball stud is transferred to the inner surface side of the recess by inductively heating the ball stud after the assembling step as shown in Patent Document 1 below.
- the present invention has been made in consideration of such circumstances, and it is possible to accurately heat the outer peripheral surface side of the ball portion and the inner surface side of the recessed portion over the entire area with little variation during the heating step. It is an object of the present invention to provide a manufacturing method, a manufacturing method of a stabilizer link, and a ball joint.
- a method of manufacturing a ball joint according to a first aspect of the present invention is a metal ball stud in which a shaft portion and a ball portion are connected to each other; And a housing made of a thermoplastic resin having a hollow portion in which the ball portion is rotatably inserted around the center point, and a manufacturing method of a ball joint, comprising: an outer peripheral surface of the ball portion; The outer surface side of the ball portion and the inner surface side of the recessed portion are brought into close contact with each other by assembling the ball stud and the housing in close contact with each other, and by relatively moving the ball portion within the recessed portion. Are heated by frictional heat to increase the degree of crystallization on the inner surface side of the depressed portion.
- the outer peripheral surface of the thermally expanded ball portion is pressed against the inner surface of the softened hollow portion during the heating step, whereby the inner surface side of the hollow portion is expanded and deformed, and the inner surface side of the hollow portion While the degree of crystallinity of the hollow portion is increased, the material forming the inner surface side of the recess flows, and the ball portion shrinks to its original size at the time of subsequent cooling, while the inner surface side of the recessed portion is smaller than the original size Be kept large. Therefore, the close contact state between the outer peripheral surface of the ball portion and the inner surface of the recessed portion can be alleviated, and the contact state such as the gap between the outer peripheral surface of the ball portion and the inner surface of the recessed portion or the interference can be adjusted. .
- the outer peripheral surface side of the ball and the inner surface of the recess which are in close contact with each other are heated by frictional heat.
- the shape factor of the portion other than the outer peripheral surface of the heating ball portion and the inner surface of the hollow portion and the environmental factor are the outer peripheral surface side of the ball portion and the inner surface side of the hollow portion. The influence on each heating temperature can be reduced.
- the outer peripheral surface side of the ball portion and the inner surface side of the recessed portion can be heated with less variation throughout the entire area with high accuracy, and the inner surface side of the recessed portion is raised to the desired crystallinity degree, and the outer periphery of the ball portion
- the aforementioned adjustment between the surface and the inner surface of the recess can be made with high accuracy.
- the degree of crystallization on the inner surface side of the depressed portion is increased during the heating step, the hardness on the inner surface side of the depressed portion can be improved and the surface roughness can be reduced. Therefore, even if the gap between the outer peripheral surface of the ball portion and the inner surface of the recessed portion is suppressed as much as possible to prevent generation of noise due to external force from the ball joint reliably, the ball stud and housing smooth. It is possible to ensure both relative movement and wear resistance on the inner surface side of the recess.
- the ball portion and the housing may be relatively rotated around a center point of the ball portion.
- the relative rotation of the ball portion and the housing around the center point of the ball portion includes, for example, swinging around the center point and when the center point of the ball portion is located on the center axis of the shaft portion There is rotation etc. around the shaft.
- the ball portion and the housing may be relatively rotated around the shaft portion, and may be oscillated around a center point of the ball portion.
- the ball portion and the housing are relatively rotated around the shaft portion and oscillated around the center point of the ball portion during the heating step, so the outer peripheral surface of the ball portion is sandwiched by the center point of the ball portion In the whole area including the pole part located on the opposite side of the connecting part with the shaft part, it becomes possible to heat with less variation and accuracy with certainty, and surely suppress the occurrence of temperature distribution on the inner surface of the recess. Can.
- the housing in the assembling step, may be injection molded using the ball portion as an insert.
- the housing is injection-molded using the ball portion as an insert during the assembling process, the above-mentioned adjustment can be performed with high accuracy since the interference of the inner surface of the recessed portion with respect to the outer peripheral surface of the ball portion is large. The possible effects are outstandingly successful. Further, since the housing is formed by insert molding, the outer peripheral surface of the ball portion is uniformly tightened to the inner surface of the recessed portion over the entire region, and the above-described frictional heat causes the outer peripheral surface side of the ball portion It is possible to realize heating of the inner surface side of the recessed portion with less variation and accuracy with greater precision over the entire area.
- a metal ball stud in which a shaft portion and a ball portion are connected to each other, and a recess portion in which the ball portion is rotatably inserted around its center point
- a ball joint comprising a thermoplastic resin housing having the following: a stabilizer link in which the ball joint is separately connected to both ends of the support bar via the housing, and the ball joint is a member of the present invention. It forms by the manufacturing method of the ball joint which concerns on a 1st aspect.
- the second aspect it is possible to obtain a stabilizer link in which the frictional force generated between the outer peripheral surface of the ball portion and the inner surface of the recessed portion is suppressed while preventing rattling of the ball stud relative to the housing. While driving
- a ball joint according to a third aspect of the present invention is a heat having a metal ball stud in which a shaft portion and a ball portion are connected to each other, and a hollow portion in which the ball portion is rotatably inserted around its center point.
- a housing made of a plastic resin, wherein the housing is formed in a cylindrical shape with a wall thickness of 2 mm or more, and the inside is a hollow portion, and the hollow portion has a center point Is formed in a spherical shape positioned on the central axis of the housing, and at least the inner surface of the hollow portion, the center of the hollow portion on the basis of a plane perpendicular to the central axis and passing through the central point of the hollow portion.
- the ten-point average roughness Rzjis (JIS B 0601: 2001) of a portion over a range of ⁇ 20 ° centering on a point is set to 20 ⁇ m or less at a reference length of 0.8 mm, and the recess
- the hardness of the inner surface, in the housing is equal to or greater than 110% the hardness of the portion located at a depth of 1mm from the inner surface of the recess.
- the ten-point average roughness Rzjis (JIS) of the portion of the inner surface of the recess at least at least in the range of ⁇ 20 ° centering on the center point of the recess with reference to the plane.
- B 0601: 2001 has a reference length of 0.8 mm and is 20 ⁇ m or less, so it is possible to reliably suppress the frictional force generated between the outer peripheral surface of the ball portion and the inner surface of the recessed portion, Smooth relative movement of the stud and the housing can be ensured.
- the hardness of the inner surface of the recessed portion is 110% or more of the hardness of the portion located at a depth of 1 mm from the inner surface of the recessed portion in the housing, the wear resistance on the inner surface side of the recessed portion is secured can do.
- the housing is formed in a bottomed cylindrical shape having a thickness of 2 mm or more, good formability can also be ensured.
- the outer peripheral surface side of the ball portion and the inner surface side of the recess are respectively covered over the entire area during the heating step. It is possible to heat with less variation and accuracy. Further, according to the ball joint according to the third aspect of the present invention, both of the smooth relative movement of the ball stud and the housing and the wear resistance on the inner surface side of the recessed portion can be secured.
- FIG. 1 is a longitudinal cross-sectional view of the stabilizer link along a central axis O described later.
- the stabilizer link 1 of the present embodiment is a housing made of a crystalline thermoplastic resin having a metal ball stud 13 in which the shaft portion 11 and the ball portion 12 are connected to each other and a hollow portion 14 in which the ball portion 12 is inserted. And 15 are connected separately to both end portions 16 a of the support bar 16 through the housing 15.
- the stabilizer link 1 has one shaft portion 11 of the pair of ball joints 10 connected to the stabilizer 2 and the other shaft portion 11 connected to the suspension device 3.
- the other shaft 11 is connected to, for example, a cylinder or an arm member of a damper in the suspension device 3.
- the pair of ball joints 10 have the same size and the same shape.
- the pair of ball joints 10 may be formed in different shapes and in different shapes.
- the housing 15 is made of, for example, polyamide 66 (PA 66), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polyacetal (POM) or the like, or a thermoplastic resin material thereof, for example, carbon fiber or glass fiber Etc. are formed of a material containing a reinforcing fiber.
- the housing 15 is formed of PA 66 containing 30% by weight of glass fiber.
- the glass transition temperature of PA66 is about 50 ° C.
- the crystallization temperature is about 232 ° C.
- the melting point is about 265 ° C.
- the housing 15 is formed in a flat bottomed cylindrical shape, and the inside thereof is a recess 14.
- the thickness of the housing 15 is 2 mm or more.
- the hollow portion 14 is open on one side in the axial direction along the central axis O of the housing 15 and closed on the other side.
- the recess 14 is formed in a spherical shape whose center point is located on the center axis O.
- a direction intersecting the central axis O is referred to as a radial direction
- a direction circling around the central axis O is referred to as a circumferential direction.
- the point average roughness Rzjis (JIS B 0601: 2001) is, for example, about 20 ⁇ m or less at a reference length of 0.8 mm.
- the hardness of the inner surface of the recess 14 is, for example, about 110% or more of the hardness of the portion of the housing 15 located at a depth of 1 mm from the inner surface of the recess 14. This hardness can be measured based on the nanoindentation method.
- the force required to inflate a triangular pyramidal indenter having a tip edge radius of 50 nm or less to a certain depth, and the indented portion of the indenter can be measured based on the projected area.
- a protrusion 15a that protrudes in the axial direction and extends continuously over the entire circumference is formed.
- the inner circumferential surface of the protruding portion 15a extends radially outward gradually as it goes to the outside of the housing 15 along the axial direction.
- the inclination angle of the inner peripheral surface of the protruding portion 15a with respect to the central axis O may be appropriately set according to the swing angle of the ball stud 13 around the central point S of the ball portion 12 or the like.
- the housing 15 is integrally formed of the same material as a whole.
- the ball stud 13 is formed of, for example, a steel material, and the shaft portion 11 and the ball portion 12 are connected by welding. The entire ball stud 13 may be integrally formed.
- the ball portion 12 is a spherical body, and the shaft portion 11 is a cylindrical body. In the shaft portion 11, the ball portion 12 is connected to one of the end portions in the axial direction along the central axis.
- the center point S of the ball portion 12 is located on the center axis of the shaft portion 11.
- the state in which the ball stud 13 is disposed coaxially with the central axis O of the housing 15 will be described.
- a flange portion 11a protruding outward in the radial direction is formed over the entire circumference.
- a male screw portion is formed in a portion located on the opposite side of the ball portion 12 with the flange portion 11a interposed in the axial direction.
- a circumferential groove 11b extending continuously over the entire circumference is formed at an end (an end near the flange portion 11a) on the flange portion 11a side in a portion positioned between the flange portion 11a and the ball portion 12 in the shaft portion 11 It is done.
- the outer diameter of the ball portion 12 is larger than the outer diameter of the portion excluding the flange portion 11 a in the shaft portion 11.
- the ball portion 12 is inserted into the recess 14 of the housing 15 so as to be rotatable about its center point S.
- the center point S of the ball portion 12 substantially coincides with the center point of the recess 14 of the housing 15.
- the diameter of the ball 12 is slightly smaller than the diameter of the recess 14.
- the diameter of the ball portion 12 may be equal to or larger than the diameter of the recess portion 14.
- the connection portion of the ball portion 12 with the shaft portion 11 protrudes outward in the axial direction from the recess portion 14.
- the recess portion 14 covers a portion of the outer peripheral surface of the ball portion 12 which exceeds half.
- the portion of the ball portion 12 that protrudes outward in the axial direction from the recess 14 is located inward in the axial direction from the protruding portion 15a, and is surrounded from the outside in the radial direction over the entire region by the protruding portion 15a. There is. A portion of the ball portion 12 protruding outward in the axial direction from the recess portion 14 may be positioned on the outer side in the axial direction from the protruding portion 15a.
- the stabilizer link 1 is provided with a dust cover 17 that prevents water, dust, dust, and the like from entering between the outer peripheral surface of the ball portion 12 and the inner surface of the recessed portion 14.
- the dust cover 17 is formed in a cylindrical shape so as to be elastically deformable, and is disposed coaxially with the central axis O.
- One of both end portions in the axial direction of the dust cover 17 is mounted in the circumferential groove 11 b of the shaft portion 11, and the other is externally fitted to the protruding portion 15 a of the housing 15.
- the stabilizer link 1 may not have the dust cover 17.
- the support bar 16 is cylindrically formed of, for example, a steel material.
- the central axis L of the support bar 16 passes through the central point S of the ball portion 12 and is orthogonal to the central axis O of the housing 15.
- Both end portions 16a of the support bar 16 are formed into a flat plate by being crushed in the axial direction (axial direction along the central axis O) by press working or the like.
- Both end portions 16 a of the support bar 16 are covered with a covering 18 made of a thermoplastic resin.
- the cover 18 is integrally formed with the housing 15.
- the support bar 16 may be formed solid, and the end 16a of the support bar 16 may not be formed in a flat plate shape, and the end 16a of the support bar 16 may not be covered with the covering 18 Good. If the cover 18 does not cover the end 16 a of the support bar 16, the support bar 16 and the housing 15 may be connected.
- the method of manufacturing the stabilizer link 1 includes an assembly process and a heating process.
- the ball stud 13 and the housing 15 are combined by bringing the outer peripheral surface of the ball portion 12 into close contact with the inner surface of the recess portion 14.
- the housing 15 and the cover 18 are injection-molded using the ball portion 12 and the end portion 16a of the support bar 16 as an insert. Thereafter, the outer peripheral surface of the ball portion 12 is tightened to the inner surface of the recessed portion 14 by the molding shrinkage of the thermoplastic resin.
- the cover 18 may be bonded to the end 16 a of the support bar 16 by applying an adhesive to the end 16 a of the support bar 16 in advance before the assembly process.
- the mold temperature is, for example, about 80 ° C. or less during the assembly process.
- the time until the molded article obtained can be released can be kept short, and the crystallization on the outer peripheral surface side of the housing 15 can be suppressed, and the molding shrinkage of the housing 15 can be suppressed.
- the tightening of the inner surface of the recess 14 to the outer peripheral surface of the ball 12 can be suppressed.
- the outer peripheral surface side of the ball portion 12 and the inner surface side of the recessed portion 14 are heated by frictional heat by relatively moving the ball portion 12 in the recessed portion 14, and the crystallization degree of the inner surface side of the recessed portion 14 Raise.
- the ball portion 12 and the housing 15 are relatively rotated around the center point S of the ball portion 12.
- the ball portion 12 and the housing 15 are relatively rotated around the shaft portion 11 (around the central axis of the shaft portion 11) and oscillated around the center point S of the ball portion 12 .
- the ball portion 12 is relatively moved in the recess portion 14 in a state in which no axial force is applied to the ball stud 13.
- one of the ball portion 12 and the housing 15 is rotated around the shaft portion 11 (around the central axis of the shaft portion 11), and the other is rocked around the central point S of the ball portion 12.
- the ball portion 12 and the housing 15 may be rotated around the shaft portion 11 (around the central axis of the shaft portion 11) and swung around the center point S of the ball portion 12.
- the ball portion 12 may be relatively moved within the recess 14 in a state where an axial force is applied to the ball stud 13.
- the inner surface side of the recess 14 is heated to the crystallization temperature higher than the glass transition point and lower than the melting point by the above-described frictional heat or its vicinity to increase the crystallinity of the inner surface side of the recess 14.
- the relative moving speed, the number of movements, and the moving time of the outer peripheral surface of the ball portion 12 and the inner surface of the recess portion 14 are the tightening force (pressing force) of the inner surface of the recess portion 14 with respect to the outer peripheral surface of the ball portion 12
- the relationship with the heat generation temperature due to frictional heat may be determined in advance by experiments, and may be set based on the experimental data.
- the clamping force can be specified by the molding conditions.
- the crystallization temperature is determined, for example, using DSC (differential scanning calorimeter) as the peak top temperature of the exothermic peak observed when the temperature is decreased from the molten state at a rate of 20 ° C./minute under a nitrogen atmosphere.
- the degree of crystallinity can be determined as the ratio of the measured heat of fusion to the theoretical heat of fusion at 100% crystallization.
- the measured heat of fusion can be determined, for example, from the difference between the heat of the endothermic peak and the heat of the exothermic peak observed when the temperature is raised to the melting point or more at a rate of 10 ° C./min under a nitrogen atmosphere using DSC. .
- the degree of crystallization on the inner surface side of the recess 14 is increased, whereby the reinforcing fibers contained in the thermoplastic resin forming the housing 15 move from the inner surface of the recess 14 toward the outer surface of the housing 15
- Surface roughness of the inner surface of the recess 14 is considered to be low.
- the heating process may be performed in the cavity of the molding die immediately after the assembling process without opening the mold after the assembling process, or may be performed after removing the mold after the assembling process. Good. In the former case, the time required to heat the inner surface side of the recess 14 to the crystallization temperature or its vicinity can be kept short during the heating step, and in the latter case, the molding cycle can be prevented from being lengthened. Finally, one of both end portions in the axial direction of the dust cover 17 is mounted in the circumferential groove 11 b of the shaft portion 11, and the other is externally fitted to the protruding portion 15 a of the housing 15.
- the outer peripheral surface of the thermally expanded ball portion 12 is pressed against the inner surface of the softened recessed portion 14 during the heating step. While the inner surface side of 14 is expanded and deformed, the degree of crystallization of the inner surface side of the recess 14 is enhanced, and the material forming the inner surface of the recess 14 flows, and the ball 12 While the inner surface side of the recess 14 is kept larger than the original size.
- the close contact state between the outer peripheral surface of the ball portion 12 and the inner surface of the recess portion 14 is relieved, and the contact state such as the gap between the outer peripheral surface of the ball portion 12 and the inner surface of the recess portion 14 or the interference is adjusted can do.
- the outer peripheral surface side of the ball portion 12 and the inner surface side of the recess portion 14 in close contact with each other are heated by frictional heat.
- the shape factor of the portion other than the outer peripheral surface of the ball portion 12 to be heated and the inner surface of the hollow portion 14 in the ball joint 10 and the environmental factor etc. The influences on the heating temperatures on the surface side and the inner surface side of the recess 14 can be reduced.
- the outer peripheral surface side of the ball portion 12 and the inner surface side of the recess portion 14 can be heated with little variation over the entire area with high accuracy, and the inner surface side of the recess portion 14 is enhanced to the desired crystallinity.
- the aforementioned adjustment between the outer peripheral surface of the portion 12 and the inner surface of the recess portion 14 can be performed with high accuracy.
- the degree of crystallization on the inner surface side of the recess 14 is increased during the heating step, the hardness on the inner surface side of the recess 14 can be improved and the surface roughness can be reduced. Therefore, even if the gap between the outer peripheral surface of the ball portion 12 and the inner surface of the recessed portion 14 is suppressed as much as possible to prevent generation of noise from the ball joint 10 due to external force, the ball stud 13 Both the smooth relative movement of the housing 15 and the wear resistance of the inner surface of the recess 14 can be secured.
- the ball portion 12 and the housing 15 are relatively rotated around the center point S of the ball portion 12 in the heating step, the outer peripheral surface of the ball portion 12 and the inner surface of the recessed portion 14 are efficiently moved with a short movement amount. Frictional heat can be generated.
- the ball 12 and the housing 15 are relatively rotated around the shaft 11 (around the central axis of the shaft 11) and pivoted around the center point S of the ball 12, so that the ball
- the outer peripheral surface of the portion 12 can be heated with less variation and accuracy over the entire area including the pole portion 12a located on the opposite side of the connecting portion with the shaft portion 11 across the center point S of the ball portion 12
- the occurrence of temperature distribution on the inner surface of the recess 14 can be reliably suppressed.
- the housing 15 is injection molded using the ball portion 12 as an insert during the assembly process, the interference of the inner surface of the recessed portion 14 with respect to the outer peripheral surface of the ball portion 12 is increased. The effects that can be achieved are remarkably successful.
- the housing 15 is formed by insert molding, the outer peripheral surface of the ball portion 12 is uniformly tightened to the inner surface of the recessed portion 14 over the entire area, and the above-described frictional heat of the ball portion 12 occurs during the heating process. It is possible to realize the heating on the outer peripheral surface side and the inner surface side of the recess portion 14 with less variation over the entire area with higher accuracy.
- the stabilizer link 1 is obtained in which the frictional force generated between the outer peripheral surface of the ball portion 12 and the inner surface of the recessed portion 14 is suppressed while preventing the rattling of the ball stud 13 with respect to the housing 15. While traveling with the vehicle on which the stabilizer link 1 is mounted, it is possible to prevent the abnormal noise from being generated from the stabilizer link 1 and obtain the stabilizer link 1 that can contribute to a comfortable ride. .
- the heating step is performed after the assembling step and after the mold is removed, for example, air is blown to the outer peripheral surface side of the housing 15 while relatively moving the ball portion 12 in the recess portion 14 at the heating step. By cooling it, crystallization on the outer peripheral surface side of the housing 15 can be suppressed, thermal contraction of the housing 15 can be suppressed, and the above-mentioned adjustment can be performed more accurately.
- the hardness of the inner surface of the recess 14 is 110% or more of the hardness of the portion located at a depth of 1 mm from the inner surface of the recess 14 in the housing 15. Wearability can be secured. Moreover, since the housing 15 is formed in a bottomed cylindrical shape having a thickness of 2 mm or more, good formability can also be ensured.
- the housing 15 obtained by the method of manufacturing the stabilizer link 1 of the present embodiment is adopted, and as a comparative example, among the methods of manufacturing the stabilizer link 1 of the present embodiment, it is obtained by the manufacturing method without the heating step. Adopted housing.
- the hardness on the inner surface side of the recessed portion was measured based on the nanoindentation method. This measurement was performed using TriboIndenter manufactured by Hysitron, at a temperature of 23 ° C., the force required to inflate a triangular pyramidal indenter having a tip edge radius of 50 nm or less to a certain depth, and the indenter among the indenters. It measured based on the projection area of a part. This measurement was carried out with different indentation depths for each of the example and the comparative example. As a result, as shown in FIG. 2, it was confirmed that the hardness of the inner surface side of the depression portion in the example was larger than that in the comparative example.
- the elastic modulus on the inner surface side of the depressed portion was measured based on the nanoindentation method. This measurement is performed using TriboIndenter manufactured by Hysitron, and after pushing the indenter to a certain depth at a temperature of 23 ° C., the slope at the maximum load in the load-displacement curve when unloaded, the projected area, It measured based on. This measurement was carried out with different indentation depths for each of the example and the comparative example. As a result, as shown in FIG. 3, it was confirmed that the elastic modulus on the inner surface side of the depression portion in the example was larger than that in the comparative example.
- the hardness and the elastic modulus of the inner surface side of a hollow part based on a nanoindentation method are larger in the direction of an example than a comparative example, and the direction of an inner surface side of a hollow portion is a direction of an example than a comparative example. It was confirmed that the hardness of the
- corrugated height of the inner surface of a hollow part was measured.
- the measurement length was made the same for each of the example and the comparative example.
- the results are shown in FIG. 4 and FIG. In FIG. 4 and FIG. 5, the order of the unevenness height on the vertical axis is the same.
- the surface roughness of the inner surface of the recess was smaller in the example than in the comparative example.
- glass fiber was able to be visually observed on the inner surface of the hollow part, it was not able to visually observe in the Example.
- the stabilizer joint 1 is shown in which the ball joints 10 are separately connected to the both end portions 16 a of the support bar 16 via the housing 15, but the ball joint 10 alone does not have the support bar 16. Even if there is, the present invention is applicable.
- the ball joint 10 alone may be applied to, for example, a robot arm or the like.
- the entire housing 15 is integrally formed of the same material.
- the present invention is not limited thereto.
- the housing main body having a recess and the recess 14 may be provided in the recess.
- the housing body contains reinforcing fibers
- the ball sheet may not contain reinforcing fibers.
- the insert molding in which the housing 15 is injection-molded using the ball portion 12 as an insert is described.
- the invention is not limited thereto.
- the ball stud 12 and the housing 15 may be combined with each other by bringing the outer peripheral surface of the ball portion 12 into close contact with the inner surface of the recessed portion 14 by press-fitting the ball portion 12 into the portion 14.
- the present invention can be applied to a method of manufacturing a ball joint, a method of manufacturing a stabilizer link, and a ball joint.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Pivots And Pivotal Connections (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
This method for producing a ball joint (10) provided with a metal ball stud (13) obtained by connecting a shaft part (11) and a ball part (12) to each other, and a housing (15) which comprises a thermoplastic resin, and has a recess portion (14) into which the ball part is inserted so as to be capable of rotating around a centre point thereof, is provided with: an assembly step in which the outer circumferential surface of the ball part and the inner surface of the recess portion are brought into close contact with each other, to join the ball stud and the housing; and a heating step in which the outer circumferential surface side of the ball part and the inner surface side of the recess portion are heated using frictional heat by moving the ball part relatively in the recess portion, and the crystallinity of the inner surface side of the recess portion is increased.
Description
本発明は、ボールジョイントの製造方法、スタビライザリンクの製造方法、およびボールジョイントに関する。
本願は、2017年11月6日に日本に出願された特願2017-213878号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a method of manufacturing a ball joint, a method of manufacturing a stabilizer link, and a ball joint.
Priority is claimed on Japanese Patent Application No. 2017-213878, filed Nov. 6, 2017, the content of which is incorporated herein by reference.
本願は、2017年11月6日に日本に出願された特願2017-213878号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a method of manufacturing a ball joint, a method of manufacturing a stabilizer link, and a ball joint.
Priority is claimed on Japanese Patent Application No. 2017-213878, filed Nov. 6, 2017, the content of which is incorporated herein by reference.
従来から、軸部およびボール部が互いに連結された金属製のボールスタッドと、ボール部がその中心点回りに回転可能に挿入された窪み部を有する熱可塑性樹脂からなるハウジングと、を備えるボールジョイントの製造方法として、ボール部の外周面と、窪み部の内面と、を密接させて、ボールスタッドとハウジングとを組み合わせる組付け工程と、ボール部の外周面側および窪み部の内面側を加熱する加熱工程と、を有する方法が知られている。この方法によれば、加熱工程後の冷却時に、ボール部は元の大きさまで縮小する一方、窪み部の内面側は、元の大きさまで縮小せず元の大きさより大きい状態に保たれることで、ボール部の外周面と窪み部の内面との密接状態を緩和し、ボール部の外周面と窪み部の内面との間の隙間、若しくは締め代等の当接状態を調整することができる。
前記加熱工程として、例えば下記特許文献1に示されるような、組付け工程後に、ボールスタッドを誘導加熱することで、ボールスタッドの熱を窪み部の内面側に伝達させる方法が知られている。 BACKGROUND ART Conventionally, a ball joint comprising a metal ball stud in which a shaft portion and a ball portion are connected to each other, and a housing made of a thermoplastic resin having a hollow portion in which the ball portion is rotatably inserted around its center point In the manufacturing method, the outer peripheral surface of the ball portion and the inner surface of the recessed portion are brought into close contact with each other to assemble the ball stud and the housing, and the outer peripheral surface side of the ball portion and the inner surface side of the recessed portion are heated. And a heating step is known. According to this method, at the time of cooling after the heating step, the ball portion is reduced to the original size, while the inner surface side of the recess is not reduced to the original size and kept larger than the original size. The close contact state between the outer peripheral surface of the ball portion and the inner surface of the recessed portion can be relaxed, and the contact state such as the gap between the outer peripheral surface of the ball portion and the inner surface of the recessed portion or the interference can be adjusted.
As the heating step, for example, a method is known in which the heat of the ball stud is transferred to the inner surface side of the recess by inductively heating the ball stud after the assembling step as shown inPatent Document 1 below.
前記加熱工程として、例えば下記特許文献1に示されるような、組付け工程後に、ボールスタッドを誘導加熱することで、ボールスタッドの熱を窪み部の内面側に伝達させる方法が知られている。 BACKGROUND ART Conventionally, a ball joint comprising a metal ball stud in which a shaft portion and a ball portion are connected to each other, and a housing made of a thermoplastic resin having a hollow portion in which the ball portion is rotatably inserted around its center point In the manufacturing method, the outer peripheral surface of the ball portion and the inner surface of the recessed portion are brought into close contact with each other to assemble the ball stud and the housing, and the outer peripheral surface side of the ball portion and the inner surface side of the recessed portion are heated. And a heating step is known. According to this method, at the time of cooling after the heating step, the ball portion is reduced to the original size, while the inner surface side of the recess is not reduced to the original size and kept larger than the original size. The close contact state between the outer peripheral surface of the ball portion and the inner surface of the recessed portion can be relaxed, and the contact state such as the gap between the outer peripheral surface of the ball portion and the inner surface of the recessed portion or the interference can be adjusted.
As the heating step, for example, a method is known in which the heat of the ball stud is transferred to the inner surface side of the recess by inductively heating the ball stud after the assembling step as shown in
しかしながら、前記従来のボールジョイントの製造方法では、加熱工程時に、ボール部の外周面側および窪み部の内面側をそれぞれ、全域にわたってばらつき少なく精度よく加熱することが困難な場合がある。
However, in the above-described conventional ball joint manufacturing method, it may be difficult to heat the outer peripheral surface side of the ball portion and the inner surface side of the recessed portion over the entire area with little variation and accuracy during the heating step.
この発明は、このような事情を考慮してなされたもので、加熱工程時に、ボール部の外周面側および窪み部の内面側をそれぞれ、全域にわたってばらつき少なく精度よく加熱することができるボールジョイントの製造方法、スタビライザリンクの製造方法、およびボールジョイントを提供することを目的とする。
The present invention has been made in consideration of such circumstances, and it is possible to accurately heat the outer peripheral surface side of the ball portion and the inner surface side of the recessed portion over the entire area with little variation during the heating step. It is an object of the present invention to provide a manufacturing method, a manufacturing method of a stabilizer link, and a ball joint.
前記課題を解決して、このような目的を達成するために、本発明の第1の態様に係るボールジョイントの製造方法は、軸部およびボール部が互いに連結された金属製のボールスタッドと、前記ボール部がその中心点回りに回転可能に挿入された窪み部を有する熱可塑性樹脂からなるハウジングと、を備えるボールジョイントの製造方法であって、前記ボール部の外周面と、前記窪み部の内面と、を密接させて、前記ボールスタッドと前記ハウジングとを組み合わせる組付け工程と、前記ボール部を前記窪み部内で相対移動させることで、前記ボール部の外周面側および前記窪み部の内面側を摩擦熱により加熱し、前記窪み部の内面側の結晶化度を高める加熱工程と、を有する。
In order to solve the above problems and achieve such an object, a method of manufacturing a ball joint according to a first aspect of the present invention is a metal ball stud in which a shaft portion and a ball portion are connected to each other; And a housing made of a thermoplastic resin having a hollow portion in which the ball portion is rotatably inserted around the center point, and a manufacturing method of a ball joint, comprising: an outer peripheral surface of the ball portion; The outer surface side of the ball portion and the inner surface side of the recessed portion are brought into close contact with each other by assembling the ball stud and the housing in close contact with each other, and by relatively moving the ball portion within the recessed portion. Are heated by frictional heat to increase the degree of crystallization on the inner surface side of the depressed portion.
この第1の態様によれば、加熱工程時に、熱膨張したボール部の外周面が、軟化した窪み部の内面に押し付けられることで、窪み部の内面側が拡張変形しつつ、窪み部の内面側の結晶化度が高められるとともに、窪み部の内面側を形成する材料が流動することとなり、その後の冷却時に、ボール部は元の大きさまで縮小する一方、窪み部の内面側は元の大きさより大きい状態に保たれる。したがって、ボール部の外周面と窪み部の内面との密接状態を緩和し、ボール部の外周面と窪み部の内面との間の隙間、若しくは締め代等の当接状態を調整することができる。
特に、加熱工程時に、ボール部を窪み部内で相対移動させることで、互いに密接しているボール部の外周面側および窪み部の内面側を摩擦熱により加熱するので、例えば誘導加熱装置またはヒータ等を用いる場合と比べて、ボールジョイントのうち、加熱するボール部の外周面および窪み部の内面以外の部位の形状要因、および環境要因等が、ボール部の外周面側および窪み部の内面側の各加熱温度に及ぼす影響を低減することができる。
したがって、ボール部の外周面側および窪み部の内面側をそれぞれ、全域にわたってばらつき少なく精度よく加熱することが可能になり、窪み部の内面側が所期した結晶化度まで高められ、ボール部の外周面と窪み部の内面との間の前述の調整を高精度に行うことができる。これにより、ボールスタッドのハウジングに対するガタツキ、つまり異音の発生を防ぎつつ、ボール部の外周面と窪み部の内面との間に発生する摩擦力が抑えられたボールジョイントが得られる。
また、加熱工程時に、窪み部の内面側の結晶化度を高めることから、窪み部の内面側の硬度を向上させることができるとともに、表面粗さを低減することができる。したがって、ボール部の外周面と窪み部の内面との間の隙間を極力抑えて、ボールジョイントから外力に起因した異音が発生することを確実に防止したとしても、ボールスタッド、およびハウジングの円滑な相対移動、並びに、窪み部の内面側の耐摩耗性の双方を確保することができる。 According to the first aspect, the outer peripheral surface of the thermally expanded ball portion is pressed against the inner surface of the softened hollow portion during the heating step, whereby the inner surface side of the hollow portion is expanded and deformed, and the inner surface side of the hollow portion While the degree of crystallinity of the hollow portion is increased, the material forming the inner surface side of the recess flows, and the ball portion shrinks to its original size at the time of subsequent cooling, while the inner surface side of the recessed portion is smaller than the original size Be kept large. Therefore, the close contact state between the outer peripheral surface of the ball portion and the inner surface of the recessed portion can be alleviated, and the contact state such as the gap between the outer peripheral surface of the ball portion and the inner surface of the recessed portion or the interference can be adjusted. .
In particular, by moving the ball relative to each other in the recess during the heating step, the outer peripheral surface side of the ball and the inner surface of the recess which are in close contact with each other are heated by frictional heat. In the ball joint, as compared with the case of using the ball joint, the shape factor of the portion other than the outer peripheral surface of the heating ball portion and the inner surface of the hollow portion and the environmental factor are the outer peripheral surface side of the ball portion and the inner surface side of the hollow portion. The influence on each heating temperature can be reduced.
Therefore, the outer peripheral surface side of the ball portion and the inner surface side of the recessed portion can be heated with less variation throughout the entire area with high accuracy, and the inner surface side of the recessed portion is raised to the desired crystallinity degree, and the outer periphery of the ball portion The aforementioned adjustment between the surface and the inner surface of the recess can be made with high accuracy. As a result, it is possible to obtain a ball joint in which the frictional force generated between the outer peripheral surface of the ball portion and the inner surface of the recessed portion is suppressed while preventing generation of rattling of the ball stud with respect to the housing, that is, abnormal noise.
In addition, since the degree of crystallization on the inner surface side of the depressed portion is increased during the heating step, the hardness on the inner surface side of the depressed portion can be improved and the surface roughness can be reduced. Therefore, even if the gap between the outer peripheral surface of the ball portion and the inner surface of the recessed portion is suppressed as much as possible to prevent generation of noise due to external force from the ball joint reliably, the ball stud and housing smooth. It is possible to ensure both relative movement and wear resistance on the inner surface side of the recess.
特に、加熱工程時に、ボール部を窪み部内で相対移動させることで、互いに密接しているボール部の外周面側および窪み部の内面側を摩擦熱により加熱するので、例えば誘導加熱装置またはヒータ等を用いる場合と比べて、ボールジョイントのうち、加熱するボール部の外周面および窪み部の内面以外の部位の形状要因、および環境要因等が、ボール部の外周面側および窪み部の内面側の各加熱温度に及ぼす影響を低減することができる。
したがって、ボール部の外周面側および窪み部の内面側をそれぞれ、全域にわたってばらつき少なく精度よく加熱することが可能になり、窪み部の内面側が所期した結晶化度まで高められ、ボール部の外周面と窪み部の内面との間の前述の調整を高精度に行うことができる。これにより、ボールスタッドのハウジングに対するガタツキ、つまり異音の発生を防ぎつつ、ボール部の外周面と窪み部の内面との間に発生する摩擦力が抑えられたボールジョイントが得られる。
また、加熱工程時に、窪み部の内面側の結晶化度を高めることから、窪み部の内面側の硬度を向上させることができるとともに、表面粗さを低減することができる。したがって、ボール部の外周面と窪み部の内面との間の隙間を極力抑えて、ボールジョイントから外力に起因した異音が発生することを確実に防止したとしても、ボールスタッド、およびハウジングの円滑な相対移動、並びに、窪み部の内面側の耐摩耗性の双方を確保することができる。 According to the first aspect, the outer peripheral surface of the thermally expanded ball portion is pressed against the inner surface of the softened hollow portion during the heating step, whereby the inner surface side of the hollow portion is expanded and deformed, and the inner surface side of the hollow portion While the degree of crystallinity of the hollow portion is increased, the material forming the inner surface side of the recess flows, and the ball portion shrinks to its original size at the time of subsequent cooling, while the inner surface side of the recessed portion is smaller than the original size Be kept large. Therefore, the close contact state between the outer peripheral surface of the ball portion and the inner surface of the recessed portion can be alleviated, and the contact state such as the gap between the outer peripheral surface of the ball portion and the inner surface of the recessed portion or the interference can be adjusted. .
In particular, by moving the ball relative to each other in the recess during the heating step, the outer peripheral surface side of the ball and the inner surface of the recess which are in close contact with each other are heated by frictional heat. In the ball joint, as compared with the case of using the ball joint, the shape factor of the portion other than the outer peripheral surface of the heating ball portion and the inner surface of the hollow portion and the environmental factor are the outer peripheral surface side of the ball portion and the inner surface side of the hollow portion. The influence on each heating temperature can be reduced.
Therefore, the outer peripheral surface side of the ball portion and the inner surface side of the recessed portion can be heated with less variation throughout the entire area with high accuracy, and the inner surface side of the recessed portion is raised to the desired crystallinity degree, and the outer periphery of the ball portion The aforementioned adjustment between the surface and the inner surface of the recess can be made with high accuracy. As a result, it is possible to obtain a ball joint in which the frictional force generated between the outer peripheral surface of the ball portion and the inner surface of the recessed portion is suppressed while preventing generation of rattling of the ball stud with respect to the housing, that is, abnormal noise.
In addition, since the degree of crystallization on the inner surface side of the depressed portion is increased during the heating step, the hardness on the inner surface side of the depressed portion can be improved and the surface roughness can be reduced. Therefore, even if the gap between the outer peripheral surface of the ball portion and the inner surface of the recessed portion is suppressed as much as possible to prevent generation of noise due to external force from the ball joint reliably, the ball stud and housing smooth. It is possible to ensure both relative movement and wear resistance on the inner surface side of the recess.
ここで、前記第1の態様において、前記加熱工程は、前記ボール部および前記ハウジングを、前記ボール部の中心点回りに相対的に回転させてもよい。
Here, in the first aspect, in the heating step, the ball portion and the housing may be relatively rotated around a center point of the ball portion.
この場合、加熱工程時に、ボール部およびハウジングを、ボール部の中心点回りに相対的に回転させるので、ボール部の外周面および窪み部の内面に、短い移動量で効率よく摩擦熱を発生させることができる。
なお、ボール部およびハウジングの、ボール部の中心点回りの相対回転としては、例えば、前記中心点回りの揺動、並びに、ボール部の中心点が軸部の中心軸線上に位置する場合には軸部回りの回転等がある。 In this case, since the ball portion and the housing are relatively rotated around the center point of the ball portion during the heating step, frictional heat is efficiently generated with a short moving amount on the outer peripheral surface of the ball portion and the inner surface of the hollow portion. be able to.
The relative rotation of the ball portion and the housing around the center point of the ball portion includes, for example, swinging around the center point and when the center point of the ball portion is located on the center axis of the shaft portion There is rotation etc. around the shaft.
なお、ボール部およびハウジングの、ボール部の中心点回りの相対回転としては、例えば、前記中心点回りの揺動、並びに、ボール部の中心点が軸部の中心軸線上に位置する場合には軸部回りの回転等がある。 In this case, since the ball portion and the housing are relatively rotated around the center point of the ball portion during the heating step, frictional heat is efficiently generated with a short moving amount on the outer peripheral surface of the ball portion and the inner surface of the hollow portion. be able to.
The relative rotation of the ball portion and the housing around the center point of the ball portion includes, for example, swinging around the center point and when the center point of the ball portion is located on the center axis of the shaft portion There is rotation etc. around the shaft.
また、前記第1の態様において、前記加熱工程は、前記ボール部および前記ハウジングを相対的に、前記軸部回りに回転させるとともに、前記ボール部の中心点回りに揺動させてもよい。
In the first aspect, in the heating step, the ball portion and the housing may be relatively rotated around the shaft portion, and may be oscillated around a center point of the ball portion.
この場合、加熱工程時に、ボール部およびハウジングを相対的に、軸部回りに回転させるとともに、ボール部の中心点回りに揺動させるので、ボール部の外周面を、ボール部の中心点を挟んで軸部との連結部分の反対側に位置する極部を含む全域にわたって、ばらつき少なく精度よく確実に加熱することが可能になり、窪み部の内面に温度分布が生ずるのを確実に抑制することができる。
In this case, the ball portion and the housing are relatively rotated around the shaft portion and oscillated around the center point of the ball portion during the heating step, so the outer peripheral surface of the ball portion is sandwiched by the center point of the ball portion In the whole area including the pole part located on the opposite side of the connecting part with the shaft part, it becomes possible to heat with less variation and accuracy with certainty, and surely suppress the occurrence of temperature distribution on the inner surface of the recess. Can.
また、前記第1の態様において、前記組付け工程は、前記ボール部をインサート品として前記ハウジングを射出成形してもよい。
In the first aspect, in the assembling step, the housing may be injection molded using the ball portion as an insert.
この場合、組付け工程時に、ボール部をインサート品としてハウジングを射出成形するので、ボール部の外周面に対する窪み部の内面の締め代が大きくなることから、前述の調整を高精度に行うことが可能になる作用効果が顕著に奏功される。
また、ハウジングがインサート成形により形成されることから、ボール部の外周面が、全域にわたって均等に窪み部の内面に締め付けられることとなり、加熱工程時に、前述の摩擦熱によってボール部の外周面側および窪み部の内面側をそれぞれ、全域にわたってばらつき少なく精度よく加熱することをより一層確実に実現することができる。 In this case, since the housing is injection-molded using the ball portion as an insert during the assembling process, the above-mentioned adjustment can be performed with high accuracy since the interference of the inner surface of the recessed portion with respect to the outer peripheral surface of the ball portion is large. The possible effects are outstandingly successful.
Further, since the housing is formed by insert molding, the outer peripheral surface of the ball portion is uniformly tightened to the inner surface of the recessed portion over the entire region, and the above-described frictional heat causes the outer peripheral surface side of the ball portion It is possible to realize heating of the inner surface side of the recessed portion with less variation and accuracy with greater precision over the entire area.
また、ハウジングがインサート成形により形成されることから、ボール部の外周面が、全域にわたって均等に窪み部の内面に締め付けられることとなり、加熱工程時に、前述の摩擦熱によってボール部の外周面側および窪み部の内面側をそれぞれ、全域にわたってばらつき少なく精度よく加熱することをより一層確実に実現することができる。 In this case, since the housing is injection-molded using the ball portion as an insert during the assembling process, the above-mentioned adjustment can be performed with high accuracy since the interference of the inner surface of the recessed portion with respect to the outer peripheral surface of the ball portion is large. The possible effects are outstandingly successful.
Further, since the housing is formed by insert molding, the outer peripheral surface of the ball portion is uniformly tightened to the inner surface of the recessed portion over the entire region, and the above-described frictional heat causes the outer peripheral surface side of the ball portion It is possible to realize heating of the inner surface side of the recessed portion with less variation and accuracy with greater precision over the entire area.
本発明の第2の態様に係るスタビライザリンクの製造方法は、軸部およびボール部が互いに連結された金属製のボールスタッドと、前記ボール部がその中心点回りに回転可能に挿入された窪み部を有する熱可塑性樹脂からなるハウジングと、を備えるボールジョイントが、前記ハウジングを介してサポートバーの両端部に各別に連結されたスタビライザリンクの製造方法であって、前記ボールジョイントを、本発明の前記第1の態様に係るボールジョイントの製造方法により形成する。
In the method of manufacturing a stabilizer link according to the second aspect of the present invention, a metal ball stud in which a shaft portion and a ball portion are connected to each other, and a recess portion in which the ball portion is rotatably inserted around its center point A ball joint comprising a thermoplastic resin housing having the following: a stabilizer link in which the ball joint is separately connected to both ends of the support bar via the housing, and the ball joint is a member of the present invention. It forms by the manufacturing method of the ball joint which concerns on a 1st aspect.
この第2の態様によれば、ボールスタッドのハウジングに対するガタツキを防ぎつつ、ボール部の外周面と窪み部の内面との間に発生する摩擦力が抑えられたスタビライザリンクが得られることとなり、このスタビライザリンクの装着された車両の走行時に、スタビライザリンクから異音が発生するのを防ぐことができるとともに、快適な乗り心地性に寄与することが可能なスタビライザリンクを得ることができる。
According to the second aspect, it is possible to obtain a stabilizer link in which the frictional force generated between the outer peripheral surface of the ball portion and the inner surface of the recessed portion is suppressed while preventing rattling of the ball stud relative to the housing. While driving | running | working of the vehicle with which the stabilizer link was mounted | worn, while being able to prevent that noise generate | occur | produces from a stabilizer link, the stabilizer link which can be contributed to a comfortable ride can be obtained.
本発明の第3の態様に係るボールジョイントは、軸部およびボール部が互いに連結された金属製のボールスタッドと、前記ボール部がその中心点回りに回転可能に挿入された窪み部を有する熱可塑性樹脂からなるハウジングと、を備えるボールジョイントであって、前記ハウジングは、肉厚が2mm以上の有底筒状に形成され、その内側が前記窪み部とされ、前記窪み部は、その中心点が前記ハウジングの中心軸線上に位置する球状に形成され、前記窪み部の内面のうち、少なくとも、前記中心軸線に直交しかつ前記窪み部の中心点を通る平面を基準に、前記窪み部の中心点を中心とする±20°の範囲にわたる部分の、十点平均粗さRzjis(JIS B 0601:2001)が、基準長さ0.8mmで20μm以下とされ、前記窪み部の内面の硬さは、前記ハウジングにおいて、前記窪み部の内面から深さ1mmに位置する部分の硬さの110%以上となっている。
A ball joint according to a third aspect of the present invention is a heat having a metal ball stud in which a shaft portion and a ball portion are connected to each other, and a hollow portion in which the ball portion is rotatably inserted around its center point. And a housing made of a plastic resin, wherein the housing is formed in a cylindrical shape with a wall thickness of 2 mm or more, and the inside is a hollow portion, and the hollow portion has a center point Is formed in a spherical shape positioned on the central axis of the housing, and at least the inner surface of the hollow portion, the center of the hollow portion on the basis of a plane perpendicular to the central axis and passing through the central point of the hollow portion. The ten-point average roughness Rzjis (JIS B 0601: 2001) of a portion over a range of ± 20 ° centering on a point is set to 20 μm or less at a reference length of 0.8 mm, and the recess The hardness of the inner surface, in the housing, is equal to or greater than 110% the hardness of the portion located at a depth of 1mm from the inner surface of the recess.
この第3の態様によれば、窪み部の内面のうち、少なくとも、前記平面を基準に、窪み部の中心点を中心とする±20°の範囲にわたる部分の、十点平均粗さRzjis(JIS B 0601:2001)が、基準長さ0.8mmで20μm以下となっているので、ボール部の外周面と窪み部の内面との間に発生する摩擦力を確実に抑えることができるとともに、ボールスタッド、およびハウジングの円滑な相対移動を確保することができる。
また、窪み部の内面の硬さが、ハウジングにおいて、窪み部の内面から深さ1mmに位置する部分の硬さの110%以上となっているので、窪み部の内面側の耐摩耗性を確保することができる。
また、ハウジングが、肉厚が2mm以上の有底筒状に形成されているので、良好な成形性を確保することもできる。 According to the third aspect, the ten-point average roughness Rzjis (JIS) of the portion of the inner surface of the recess at least at least in the range of ± 20 ° centering on the center point of the recess with reference to the plane. B 0601: 2001) has a reference length of 0.8 mm and is 20 μm or less, so it is possible to reliably suppress the frictional force generated between the outer peripheral surface of the ball portion and the inner surface of the recessed portion, Smooth relative movement of the stud and the housing can be ensured.
In addition, since the hardness of the inner surface of the recessed portion is 110% or more of the hardness of the portion located at a depth of 1 mm from the inner surface of the recessed portion in the housing, the wear resistance on the inner surface side of the recessed portion is secured can do.
Moreover, since the housing is formed in a bottomed cylindrical shape having a thickness of 2 mm or more, good formability can also be ensured.
また、窪み部の内面の硬さが、ハウジングにおいて、窪み部の内面から深さ1mmに位置する部分の硬さの110%以上となっているので、窪み部の内面側の耐摩耗性を確保することができる。
また、ハウジングが、肉厚が2mm以上の有底筒状に形成されているので、良好な成形性を確保することもできる。 According to the third aspect, the ten-point average roughness Rzjis (JIS) of the portion of the inner surface of the recess at least at least in the range of ± 20 ° centering on the center point of the recess with reference to the plane. B 0601: 2001) has a reference length of 0.8 mm and is 20 μm or less, so it is possible to reliably suppress the frictional force generated between the outer peripheral surface of the ball portion and the inner surface of the recessed portion, Smooth relative movement of the stud and the housing can be ensured.
In addition, since the hardness of the inner surface of the recessed portion is 110% or more of the hardness of the portion located at a depth of 1 mm from the inner surface of the recessed portion in the housing, the wear resistance on the inner surface side of the recessed portion is secured can do.
Moreover, since the housing is formed in a bottomed cylindrical shape having a thickness of 2 mm or more, good formability can also be ensured.
この発明の前記第1及び第2の態様に係るボールジョイントの製造方法、およびスタビライザリンクの製造方法によれば、加熱工程時に、ボール部の外周面側および窪み部の内面側をそれぞれ、全域にわたってばらつき少なく精度よく加熱することができる。また、この発明の前記第3の態様に係るボールジョイントによれば、ボールスタッド、およびハウジングの円滑な相対移動、並びに、窪み部の内面側の耐摩耗性の双方を確保することができる。
According to the method of manufacturing a ball joint and the method of manufacturing a stabilizer link according to the first and second aspects of the present invention, the outer peripheral surface side of the ball portion and the inner surface side of the recess are respectively covered over the entire area during the heating step. It is possible to heat with less variation and accuracy. Further, according to the ball joint according to the third aspect of the present invention, both of the smooth relative movement of the ball stud and the housing and the wear resistance on the inner surface side of the recessed portion can be secured.
以下、本発明に係るスタビライザリンクの製造方法の一実施形態を、図1を参照しながら説明する。なお、図1は、スタビライザリンクの、後述する中心軸線Oに沿った縦断面図である。
本実施形態のスタビライザリンク1は、軸部11およびボール部12が互いに連結された金属製のボールスタッド13と、ボール部12が挿入された窪み部14を有する結晶性の熱可塑性樹脂からなるハウジング15と、を備えるボールジョイント10が、ハウジング15を介してサポートバー16の両端部16aに各別に連結されて構成されている。
スタビライザリンク1は、一対のボールジョイント10のうちのいずれか一方の軸部11がスタビライザ2に連結されるとともに、他方の軸部11が懸架装置3に連結される。なお、他方の軸部11は、懸架装置3のうち、例えばダンパーのシリンダ若しくはアーム部材等に連結される。一対のボールジョイント10は、互いに同じ大きさで同じ形状に形成されている。なお、一対のボールジョイント10は、互いに異なる大きさで異なる形状に形成されてもよい。 Hereinafter, one embodiment of a method of manufacturing a stabilizer link according to the present invention will be described with reference to FIG. FIG. 1 is a longitudinal cross-sectional view of the stabilizer link along a central axis O described later.
Thestabilizer link 1 of the present embodiment is a housing made of a crystalline thermoplastic resin having a metal ball stud 13 in which the shaft portion 11 and the ball portion 12 are connected to each other and a hollow portion 14 in which the ball portion 12 is inserted. And 15 are connected separately to both end portions 16 a of the support bar 16 through the housing 15.
Thestabilizer link 1 has one shaft portion 11 of the pair of ball joints 10 connected to the stabilizer 2 and the other shaft portion 11 connected to the suspension device 3. The other shaft 11 is connected to, for example, a cylinder or an arm member of a damper in the suspension device 3. The pair of ball joints 10 have the same size and the same shape. The pair of ball joints 10 may be formed in different shapes and in different shapes.
本実施形態のスタビライザリンク1は、軸部11およびボール部12が互いに連結された金属製のボールスタッド13と、ボール部12が挿入された窪み部14を有する結晶性の熱可塑性樹脂からなるハウジング15と、を備えるボールジョイント10が、ハウジング15を介してサポートバー16の両端部16aに各別に連結されて構成されている。
スタビライザリンク1は、一対のボールジョイント10のうちのいずれか一方の軸部11がスタビライザ2に連結されるとともに、他方の軸部11が懸架装置3に連結される。なお、他方の軸部11は、懸架装置3のうち、例えばダンパーのシリンダ若しくはアーム部材等に連結される。一対のボールジョイント10は、互いに同じ大きさで同じ形状に形成されている。なお、一対のボールジョイント10は、互いに異なる大きさで異なる形状に形成されてもよい。 Hereinafter, one embodiment of a method of manufacturing a stabilizer link according to the present invention will be described with reference to FIG. FIG. 1 is a longitudinal cross-sectional view of the stabilizer link along a central axis O described later.
The
The
ハウジング15は、例えば、ポリアミド66(PA66)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、若しくはポリアセタール(POM)等、または、これらの熱可塑性樹脂材料に、例えば炭素繊維、若しくはガラス繊維等の強化繊維が含有された材料により形成されている。本実施形態では、ハウジング15は、ガラス繊維を30重量%含有したPA66により形成されている。
例えば、PA66のガラス転位温度は約50℃、結晶化温度は約232℃、融点は約265℃となっている。 Thehousing 15 is made of, for example, polyamide 66 (PA 66), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polyacetal (POM) or the like, or a thermoplastic resin material thereof, for example, carbon fiber or glass fiber Etc. are formed of a material containing a reinforcing fiber. In the present embodiment, the housing 15 is formed of PA 66 containing 30% by weight of glass fiber.
For example, the glass transition temperature of PA66 is about 50 ° C., the crystallization temperature is about 232 ° C., and the melting point is about 265 ° C.
例えば、PA66のガラス転位温度は約50℃、結晶化温度は約232℃、融点は約265℃となっている。 The
For example, the glass transition temperature of PA66 is about 50 ° C., the crystallization temperature is about 232 ° C., and the melting point is about 265 ° C.
ハウジング15は、扁平な有底筒状に形成され、その内側が窪み部14となっている。ハウジング15の肉厚は2mm以上となっている。窪み部14は、ハウジング15の中心軸線Oに沿う軸方向の一方側が開口し、他方側が閉塞されている。窪み部14は、中心点が中心軸線O上に位置する球状に形成されている。
以下、軸方向から見て、中心軸線Oに交差する方向を径方向といい、中心軸線O回りに周回する方向を周方向という。 Thehousing 15 is formed in a flat bottomed cylindrical shape, and the inside thereof is a recess 14. The thickness of the housing 15 is 2 mm or more. The hollow portion 14 is open on one side in the axial direction along the central axis O of the housing 15 and closed on the other side. The recess 14 is formed in a spherical shape whose center point is located on the center axis O.
Hereinafter, viewed from the axial direction, a direction intersecting the central axis O is referred to as a radial direction, and a direction circling around the central axis O is referred to as a circumferential direction.
以下、軸方向から見て、中心軸線Oに交差する方向を径方向といい、中心軸線O回りに周回する方向を周方向という。 The
Hereinafter, viewed from the axial direction, a direction intersecting the central axis O is referred to as a radial direction, and a direction circling around the central axis O is referred to as a circumferential direction.
窪み部14の内面のうち、少なくとも、中心軸線Oに直交しかつ窪み部14の中心点を通る平面を基準に、窪み部14の中心点を中心とする±20°の範囲にわたる部分の、十点平均粗さRzjis(JIS B 0601:2001)が、基準長さ0.8mmで例えば約20μm以下となっている。
窪み部14の内面の硬さは、ハウジング15において、窪み部14の内面から深さ1mmに位置する部分の硬さの例えば約110%以上となっている。この硬さは、ナノインデンテーション法に基づいて測定できる。例えば、Hysitron社製TriboIndenterを用い、23℃の温度下で、先端縁の半径が50nm以下の三角錐型の圧子を一定の深さまで押し込むのに要する力と、前記圧子のうち押し込まれた部分の投影面積と、に基づいて測定できる。 A portion of the inner surface of therecess 14 over a range of ± 20 ° centered on the center point of the recess 14 with respect to at least a plane perpendicular to the central axis O and passing through the center point of the recess 14 The point average roughness Rzjis (JIS B 0601: 2001) is, for example, about 20 μm or less at a reference length of 0.8 mm.
The hardness of the inner surface of therecess 14 is, for example, about 110% or more of the hardness of the portion of the housing 15 located at a depth of 1 mm from the inner surface of the recess 14. This hardness can be measured based on the nanoindentation method. For example, using TriboIndenter manufactured by Hysitron, at a temperature of 23.degree. C., the force required to inflate a triangular pyramidal indenter having a tip edge radius of 50 nm or less to a certain depth, and the indented portion of the indenter. It can be measured based on the projected area.
窪み部14の内面の硬さは、ハウジング15において、窪み部14の内面から深さ1mmに位置する部分の硬さの例えば約110%以上となっている。この硬さは、ナノインデンテーション法に基づいて測定できる。例えば、Hysitron社製TriboIndenterを用い、23℃の温度下で、先端縁の半径が50nm以下の三角錐型の圧子を一定の深さまで押し込むのに要する力と、前記圧子のうち押し込まれた部分の投影面積と、に基づいて測定できる。 A portion of the inner surface of the
The hardness of the inner surface of the
ハウジング15における窪み部14の開口周縁部に、軸方向に突出し全周にわたって連続して延びる突条部15aが形成されている。突条部15aの内周面は、軸方向に沿ってハウジング15の外側に向かうに従い漸次、径方向の外側に向けて延びている。突条部15aの内周面の、中心軸線Oに対する傾斜角度は、例えばボールスタッド13の、ボール部12の中心点S回りの揺動角等に応じて適宜設定してもよい。ハウジング15は全体が同一の材質で一体に形成されている。
At the peripheral edge of the opening of the recess 14 in the housing 15, a protrusion 15a that protrudes in the axial direction and extends continuously over the entire circumference is formed. The inner circumferential surface of the protruding portion 15a extends radially outward gradually as it goes to the outside of the housing 15 along the axial direction. The inclination angle of the inner peripheral surface of the protruding portion 15a with respect to the central axis O may be appropriately set according to the swing angle of the ball stud 13 around the central point S of the ball portion 12 or the like. The housing 15 is integrally formed of the same material as a whole.
ボールスタッド13は、例えば鋼材等により形成され、軸部11とボール部12とは溶接により連結されている。なお、ボールスタッド13全体を一体に形成してもよい。ボール部12は球体とされ、軸部11は円柱体となっている。軸部11において、その中心軸線に沿う軸方向の両端部のうちの一方側の端部にボール部12が連結されている。軸部11の中心軸線上にボール部12の中心点Sが位置している。
以下、ボールスタッド13が、ハウジング15の中心軸線Oと同軸に配設された状態を説明する。 Theball stud 13 is formed of, for example, a steel material, and the shaft portion 11 and the ball portion 12 are connected by welding. The entire ball stud 13 may be integrally formed. The ball portion 12 is a spherical body, and the shaft portion 11 is a cylindrical body. In the shaft portion 11, the ball portion 12 is connected to one of the end portions in the axial direction along the central axis. The center point S of the ball portion 12 is located on the center axis of the shaft portion 11.
Hereinafter, the state in which theball stud 13 is disposed coaxially with the central axis O of the housing 15 will be described.
以下、ボールスタッド13が、ハウジング15の中心軸線Oと同軸に配設された状態を説明する。 The
Hereinafter, the state in which the
軸部11における軸方向の中間部に、径方向の外側に向けて突出するフランジ部11aが全周にわたって形成されている。軸部11において、フランジ部11aを軸方向に挟んでボール部12の反対側に位置する部分に雄ねじ部が形成されている。軸部11において、フランジ部11aとボール部12との間に位置する部分におけるフランジ部11a側の端部(フランジ部11a寄りの端部)に、全周にわたって連続して延びる周溝11bが形成されている。
ボール部12の外径は、軸部11において、フランジ部11aを除く部分の外径より大きくなっている。 At an axially intermediate portion of theshaft portion 11, a flange portion 11a protruding outward in the radial direction is formed over the entire circumference. In the shaft portion 11, a male screw portion is formed in a portion located on the opposite side of the ball portion 12 with the flange portion 11a interposed in the axial direction. A circumferential groove 11b extending continuously over the entire circumference is formed at an end (an end near the flange portion 11a) on the flange portion 11a side in a portion positioned between the flange portion 11a and the ball portion 12 in the shaft portion 11 It is done.
The outer diameter of theball portion 12 is larger than the outer diameter of the portion excluding the flange portion 11 a in the shaft portion 11.
ボール部12の外径は、軸部11において、フランジ部11aを除く部分の外径より大きくなっている。 At an axially intermediate portion of the
The outer diameter of the
ボール部12は、その中心点S回りに回転可能にハウジング15の窪み部14内に挿入されている。ボール部12の中心点Sは、ハウジング15の窪み部14の中心点とほぼ一致している。ボール部12の直径は、窪み部14の直径よりわずかに小さい。なお、ボール部12の直径を、窪み部14の直径以上としてもよい。ボール部12における軸部11との連結部分は、窪み部14から軸方向の外側に張り出している。窪み部14は、ボール部12の外周面のうち半分を超える部分を覆っている。ボール部12のうち、窪み部14から軸方向の外側に張り出した部分は、突条部15aより軸方向の内側に位置しており、突条部15aにより全域にわたって径方向の外側から囲繞されている。なお、ボール部12のうち、窪み部14から軸方向の外側に張り出した部分を、突条部15aより軸方向の外側に位置させてもよい。
The ball portion 12 is inserted into the recess 14 of the housing 15 so as to be rotatable about its center point S. The center point S of the ball portion 12 substantially coincides with the center point of the recess 14 of the housing 15. The diameter of the ball 12 is slightly smaller than the diameter of the recess 14. The diameter of the ball portion 12 may be equal to or larger than the diameter of the recess portion 14. The connection portion of the ball portion 12 with the shaft portion 11 protrudes outward in the axial direction from the recess portion 14. The recess portion 14 covers a portion of the outer peripheral surface of the ball portion 12 which exceeds half. The portion of the ball portion 12 that protrudes outward in the axial direction from the recess 14 is located inward in the axial direction from the protruding portion 15a, and is surrounded from the outside in the radial direction over the entire region by the protruding portion 15a. There is. A portion of the ball portion 12 protruding outward in the axial direction from the recess portion 14 may be positioned on the outer side in the axial direction from the protruding portion 15a.
図示の例では、スタビライザリンク1は、ボール部12の外周面と窪み部14の内面との間に、水、埃、および塵等が進入するのを防止するダストカバー17を備えている。ダストカバー17は、弾性変形可能に筒状に形成されるとともに、中心軸線Oと同軸に配設されている。ダストカバー17における軸方向の両端部のうち、いずれか一方は軸部11の周溝11b内に装着され、他方はハウジング15の突条部15aに外嵌されている。なお、スタビライザリンク1は、ダストカバー17を有しなくてもよい。
In the illustrated example, the stabilizer link 1 is provided with a dust cover 17 that prevents water, dust, dust, and the like from entering between the outer peripheral surface of the ball portion 12 and the inner surface of the recessed portion 14. The dust cover 17 is formed in a cylindrical shape so as to be elastically deformable, and is disposed coaxially with the central axis O. One of both end portions in the axial direction of the dust cover 17 is mounted in the circumferential groove 11 b of the shaft portion 11, and the other is externally fitted to the protruding portion 15 a of the housing 15. The stabilizer link 1 may not have the dust cover 17.
サポートバー16は、例えば鋼材等により筒状に形成されている。サポートバー16の中心軸線Lは、ボール部12の中心点Sを通り、かつハウジング15の中心軸線Oと直交している。サポートバー16の両端部16aは、プレス加工等により軸方向(中心軸線Oに沿う軸方向)に圧潰されて平板状に形成されている。サポートバー16の両端部16aは、熱可塑性樹脂からなる被覆体18で覆われている。被覆体18はハウジング15と一体に形成されている。
なお、サポートバー16は中実に形成してもよく、また、サポートバー16の端部16aは平板状に形成しなくてもよく、サポートバー16の端部16aを被覆体18で覆わなくてもよい。サポートバー16の端部16aを被覆体18が覆わない場合は、サポートバー16とハウジング15とが連結されていればよい。 Thesupport bar 16 is cylindrically formed of, for example, a steel material. The central axis L of the support bar 16 passes through the central point S of the ball portion 12 and is orthogonal to the central axis O of the housing 15. Both end portions 16a of the support bar 16 are formed into a flat plate by being crushed in the axial direction (axial direction along the central axis O) by press working or the like. Both end portions 16 a of the support bar 16 are covered with a covering 18 made of a thermoplastic resin. The cover 18 is integrally formed with the housing 15.
Thesupport bar 16 may be formed solid, and the end 16a of the support bar 16 may not be formed in a flat plate shape, and the end 16a of the support bar 16 may not be covered with the covering 18 Good. If the cover 18 does not cover the end 16 a of the support bar 16, the support bar 16 and the housing 15 may be connected.
なお、サポートバー16は中実に形成してもよく、また、サポートバー16の端部16aは平板状に形成しなくてもよく、サポートバー16の端部16aを被覆体18で覆わなくてもよい。サポートバー16の端部16aを被覆体18が覆わない場合は、サポートバー16とハウジング15とが連結されていればよい。 The
The
次に、以上のように構成されたスタビライザリンク1の製造方法について説明する。
スタビライザリンク1の製造方法は、組付け工程と加熱工程とを有する。 Next, the manufacturing method of thestabilizer link 1 comprised as mentioned above is demonstrated.
The method of manufacturing thestabilizer link 1 includes an assembly process and a heating process.
スタビライザリンク1の製造方法は、組付け工程と加熱工程とを有する。 Next, the manufacturing method of the
The method of manufacturing the
組付け工程は、ボール部12の外周面と、窪み部14の内面と、を密接させて、ボールスタッド13とハウジング15とを組み合わせる。本実施形態では、組付け工程は、ボール部12、およびサポートバー16の端部16aをインサート品として、ハウジング15および被覆体18を射出成形する。その後、熱可塑性樹脂の成形収縮により、ボール部12の外周面が窪み部14の内面に締め付けられる。なお、組付け工程の前に予め、サポートバー16の端部16aに接着剤を塗布しておくことで、被覆体18をサポートバー16の端部16aに接着してもよい。
In the assembling process, the ball stud 13 and the housing 15 are combined by bringing the outer peripheral surface of the ball portion 12 into close contact with the inner surface of the recess portion 14. In the present embodiment, in the assembling process, the housing 15 and the cover 18 are injection-molded using the ball portion 12 and the end portion 16a of the support bar 16 as an insert. Thereafter, the outer peripheral surface of the ball portion 12 is tightened to the inner surface of the recessed portion 14 by the molding shrinkage of the thermoplastic resin. The cover 18 may be bonded to the end 16 a of the support bar 16 by applying an adhesive to the end 16 a of the support bar 16 in advance before the assembly process.
ここで、組付け工程時に金型温度は例えば約80℃以下とする。これにより、得られた成形品が脱型可能になるまでの時間を短く抑えることができるとともに、ハウジング15の外周面側の結晶化が抑えられ、ハウジング15の成形収縮を抑えることが可能になり、窪み部14の内面の、ボール部12の外周面に対する締め付けを抑制することができる。
Here, the mold temperature is, for example, about 80 ° C. or less during the assembly process. As a result, the time until the molded article obtained can be released can be kept short, and the crystallization on the outer peripheral surface side of the housing 15 can be suppressed, and the molding shrinkage of the housing 15 can be suppressed. The tightening of the inner surface of the recess 14 to the outer peripheral surface of the ball 12 can be suppressed.
加熱工程は、ボール部12を窪み部14内で相対移動させることで、ボール部12の外周面側および窪み部14の内面側を摩擦熱により加熱し、窪み部14の内面側の結晶化度を高める。加熱工程は、ボール部12およびハウジング15を、ボール部12の中心点S回りに相対的に回転させる。本実施形態では、加熱工程は、ボール部12およびハウジング15を相対的に、軸部11回り(軸部11の中心軸線回り)に回転させるとともに、ボール部12の中心点S回りに揺動させる。この際、ボールスタッド13に軸方向の力を加えない状態で、ボール部12を窪み部14内で相対移動させる。また、ボール部12およびハウジング15のうち、いずれか一方を軸部11回り(軸部11の中心軸線回り)に回転させ、他方をボール部12の中心点S回りに揺動させる。この場合、装置構造の複雑化を抑えつつ、回転および揺動の調整を各別に精度よく容易に行うことができる。
なお、ボール部12およびハウジング15のうち、いずれか一方のみを軸部11回り(軸部11の中心軸線回り)に回転させ、かつボール部12の中心点S回りに揺動させてもよい。また、ボールスタッド13に軸方向の力を加えた状態で、ボール部12を窪み部14内で相対移動させてもよい。 In the heating step, the outer peripheral surface side of theball portion 12 and the inner surface side of the recessed portion 14 are heated by frictional heat by relatively moving the ball portion 12 in the recessed portion 14, and the crystallization degree of the inner surface side of the recessed portion 14 Raise. In the heating process, the ball portion 12 and the housing 15 are relatively rotated around the center point S of the ball portion 12. In the present embodiment, in the heating step, the ball portion 12 and the housing 15 are relatively rotated around the shaft portion 11 (around the central axis of the shaft portion 11) and oscillated around the center point S of the ball portion 12 . At this time, the ball portion 12 is relatively moved in the recess portion 14 in a state in which no axial force is applied to the ball stud 13. Further, one of the ball portion 12 and the housing 15 is rotated around the shaft portion 11 (around the central axis of the shaft portion 11), and the other is rocked around the central point S of the ball portion 12. In this case, it is possible to perform the adjustment of the rotation and the rocking separately with high precision while suppressing the complication of the device structure.
Alternatively, only one of theball portion 12 and the housing 15 may be rotated around the shaft portion 11 (around the central axis of the shaft portion 11) and swung around the center point S of the ball portion 12. Alternatively, the ball portion 12 may be relatively moved within the recess 14 in a state where an axial force is applied to the ball stud 13.
なお、ボール部12およびハウジング15のうち、いずれか一方のみを軸部11回り(軸部11の中心軸線回り)に回転させ、かつボール部12の中心点S回りに揺動させてもよい。また、ボールスタッド13に軸方向の力を加えた状態で、ボール部12を窪み部14内で相対移動させてもよい。 In the heating step, the outer peripheral surface side of the
Alternatively, only one of the
加熱工程時に、窪み部14の内面側を、前述の摩擦熱により、ガラス転位点より高く融点より低い結晶化温度、またはその付近まで加熱し、窪み部14の内面側の結晶化度を高める。
なお、ボール部12の外周面、および窪み部14の内面の相対的な移動速度、移動回数、および移動時間等は、ボール部12の外周面に対する窪み部14の内面の締め付け力(押圧力)毎に、摩擦熱による発熱温度との関係を予め実験して求めておき、この実験データに基づいて設定してもよい。前記締め付け力は成形条件により特定できる。
また、結晶化温度は、例えば、DSC(示差走査熱量計)を用い、窒素雰囲気下で溶融状態から20℃/分の速度で降温した際に観測される発熱ピークのピークトップの温度として求めることができる。
結晶化度は、100%結晶時の理論融解熱量に対する測定融解熱量の比率として求めることができる。測定融解熱量は、例えば、DSCを用い、窒素雰囲気下で10℃/分の速度で融点以上まで昇温した際に観測される吸熱ピークの熱量と発熱ピークの熱量との差から求めることができる。 At the time of the heating step, the inner surface side of therecess 14 is heated to the crystallization temperature higher than the glass transition point and lower than the melting point by the above-described frictional heat or its vicinity to increase the crystallinity of the inner surface side of the recess 14.
The relative moving speed, the number of movements, and the moving time of the outer peripheral surface of theball portion 12 and the inner surface of the recess portion 14 are the tightening force (pressing force) of the inner surface of the recess portion 14 with respect to the outer peripheral surface of the ball portion 12 The relationship with the heat generation temperature due to frictional heat may be determined in advance by experiments, and may be set based on the experimental data. The clamping force can be specified by the molding conditions.
In addition, the crystallization temperature is determined, for example, using DSC (differential scanning calorimeter) as the peak top temperature of the exothermic peak observed when the temperature is decreased from the molten state at a rate of 20 ° C./minute under a nitrogen atmosphere. Can.
The degree of crystallinity can be determined as the ratio of the measured heat of fusion to the theoretical heat of fusion at 100% crystallization. The measured heat of fusion can be determined, for example, from the difference between the heat of the endothermic peak and the heat of the exothermic peak observed when the temperature is raised to the melting point or more at a rate of 10 ° C./min under a nitrogen atmosphere using DSC. .
なお、ボール部12の外周面、および窪み部14の内面の相対的な移動速度、移動回数、および移動時間等は、ボール部12の外周面に対する窪み部14の内面の締め付け力(押圧力)毎に、摩擦熱による発熱温度との関係を予め実験して求めておき、この実験データに基づいて設定してもよい。前記締め付け力は成形条件により特定できる。
また、結晶化温度は、例えば、DSC(示差走査熱量計)を用い、窒素雰囲気下で溶融状態から20℃/分の速度で降温した際に観測される発熱ピークのピークトップの温度として求めることができる。
結晶化度は、100%結晶時の理論融解熱量に対する測定融解熱量の比率として求めることができる。測定融解熱量は、例えば、DSCを用い、窒素雰囲気下で10℃/分の速度で融点以上まで昇温した際に観測される吸熱ピークの熱量と発熱ピークの熱量との差から求めることができる。 At the time of the heating step, the inner surface side of the
The relative moving speed, the number of movements, and the moving time of the outer peripheral surface of the
In addition, the crystallization temperature is determined, for example, using DSC (differential scanning calorimeter) as the peak top temperature of the exothermic peak observed when the temperature is decreased from the molten state at a rate of 20 ° C./minute under a nitrogen atmosphere. Can.
The degree of crystallinity can be determined as the ratio of the measured heat of fusion to the theoretical heat of fusion at 100% crystallization. The measured heat of fusion can be determined, for example, from the difference between the heat of the endothermic peak and the heat of the exothermic peak observed when the temperature is raised to the melting point or more at a rate of 10 ° C./min under a nitrogen atmosphere using DSC. .
加熱工程時に、窪み部14の内面側の結晶化度が高まることで、ハウジング15を形成する熱可塑性樹脂に含まれる強化繊維が、窪み部14の内面側からハウジング15の外面側に向けて移動し、窪み部14の内面の表面粗さが低くなると考えられる。
なお、加熱工程を、組付け工程後に成形金型を型開きせず、組付け工程の直後に成形金型のキャビティ内で行ってもよいし、組付け工程後、脱型した後に行ってもよい。前者の場合、加熱工程時に、窪み部14の内面側を結晶化温度、またはその付近まで加熱するのに要する時間が短く抑えられ、後者の場合、成形サイクルが長くなるのを防ぐことができる。
最後に、ダストカバー17における軸方向の両端部のうち、一方を軸部11の周溝11b内に装着し、他方をハウジング15の突条部15aに外嵌する。 At the time of the heating step, the degree of crystallization on the inner surface side of therecess 14 is increased, whereby the reinforcing fibers contained in the thermoplastic resin forming the housing 15 move from the inner surface of the recess 14 toward the outer surface of the housing 15 Surface roughness of the inner surface of the recess 14 is considered to be low.
The heating process may be performed in the cavity of the molding die immediately after the assembling process without opening the mold after the assembling process, or may be performed after removing the mold after the assembling process. Good. In the former case, the time required to heat the inner surface side of therecess 14 to the crystallization temperature or its vicinity can be kept short during the heating step, and in the latter case, the molding cycle can be prevented from being lengthened.
Finally, one of both end portions in the axial direction of thedust cover 17 is mounted in the circumferential groove 11 b of the shaft portion 11, and the other is externally fitted to the protruding portion 15 a of the housing 15.
なお、加熱工程を、組付け工程後に成形金型を型開きせず、組付け工程の直後に成形金型のキャビティ内で行ってもよいし、組付け工程後、脱型した後に行ってもよい。前者の場合、加熱工程時に、窪み部14の内面側を結晶化温度、またはその付近まで加熱するのに要する時間が短く抑えられ、後者の場合、成形サイクルが長くなるのを防ぐことができる。
最後に、ダストカバー17における軸方向の両端部のうち、一方を軸部11の周溝11b内に装着し、他方をハウジング15の突条部15aに外嵌する。 At the time of the heating step, the degree of crystallization on the inner surface side of the
The heating process may be performed in the cavity of the molding die immediately after the assembling process without opening the mold after the assembling process, or may be performed after removing the mold after the assembling process. Good. In the former case, the time required to heat the inner surface side of the
Finally, one of both end portions in the axial direction of the
以上説明したように、本実施形態によるスタビライザリンク1の製造方法によれば、加熱工程時に、熱膨張したボール部12の外周面が、軟化した窪み部14の内面に押し付けられることで、窪み部14の内面側が拡張変形しつつ、窪み部14の内面側の結晶化度が高められるとともに、窪み部14の内面側を形成する材料が流動することとなり、その後の冷却時に、ボール部12は元の大きさまで縮小する一方、窪み部14の内面側は元の大きさより大きい状態に保たれる。したがって、ボール部12の外周面と窪み部14の内面との密接状態を緩和し、ボール部12の外周面と窪み部14の内面との間の隙間、若しくは締め代等の当接状態を調整することができる。
As described above, according to the method of manufacturing the stabilizer link 1 according to the present embodiment, the outer peripheral surface of the thermally expanded ball portion 12 is pressed against the inner surface of the softened recessed portion 14 during the heating step. While the inner surface side of 14 is expanded and deformed, the degree of crystallization of the inner surface side of the recess 14 is enhanced, and the material forming the inner surface of the recess 14 flows, and the ball 12 While the inner surface side of the recess 14 is kept larger than the original size. Therefore, the close contact state between the outer peripheral surface of the ball portion 12 and the inner surface of the recess portion 14 is relieved, and the contact state such as the gap between the outer peripheral surface of the ball portion 12 and the inner surface of the recess portion 14 or the interference is adjusted can do.
特に、加熱工程時に、ボール部12を窪み部14内で相対移動させることで、互いに密接しているボール部12の外周面側および窪み部14の内面側を摩擦熱により加熱するので、例えば誘導加熱装置またはヒータ等を用いる場合と比べて、ボールジョイント10のうち、加熱するボール部12の外周面および窪み部14の内面以外の部位の形状要因、および環境要因等が、ボール部12の外周面側および窪み部14の内面側の各加熱温度に及ぼす影響を低減することができる。
In particular, by relatively moving the ball portion 12 in the recess portion 14 during the heating step, the outer peripheral surface side of the ball portion 12 and the inner surface side of the recess portion 14 in close contact with each other are heated by frictional heat. The shape factor of the portion other than the outer peripheral surface of the ball portion 12 to be heated and the inner surface of the hollow portion 14 in the ball joint 10 and the environmental factor etc. The influences on the heating temperatures on the surface side and the inner surface side of the recess 14 can be reduced.
したがって、ボール部12の外周面側および窪み部14の内面側をそれぞれ、全域にわたってばらつき少なく精度よく加熱することが可能になり、窪み部14の内面側が所期した結晶化度まで高められ、ボール部12の外周面と窪み部14の内面との間の前述の調整を高精度に行うことができる。これにより、ボールスタッド13のハウジング15に対するガタツキ、つまり異音の発生を防ぎつつ、ボール部12の外周面と窪み部14の内面との間に発生する摩擦力が抑えられたボールジョイント10が得られる。
Therefore, the outer peripheral surface side of the ball portion 12 and the inner surface side of the recess portion 14 can be heated with little variation over the entire area with high accuracy, and the inner surface side of the recess portion 14 is enhanced to the desired crystallinity. The aforementioned adjustment between the outer peripheral surface of the portion 12 and the inner surface of the recess portion 14 can be performed with high accuracy. Thus, it is possible to obtain the ball joint 10 in which the frictional force generated between the outer peripheral surface of the ball portion 12 and the inner surface of the recessed portion 14 is suppressed while preventing generation of rattling of the ball stud 13 with respect to the housing 15; Be
また、加熱工程時に、窪み部14の内面側の結晶化度を高めることから、窪み部14の内面側の硬度を向上させることができるとともに、表面粗さを低減することができる。したがって、ボール部12の外周面と窪み部14の内面との間の隙間を極力抑えて、ボールジョイント10から外力に起因した異音が発生することを確実に防止したとしても、ボールスタッド13、およびハウジング15の円滑な相対移動、並びに、窪み部14の内面側の耐摩耗性の双方を確保することができる。
In addition, since the degree of crystallization on the inner surface side of the recess 14 is increased during the heating step, the hardness on the inner surface side of the recess 14 can be improved and the surface roughness can be reduced. Therefore, even if the gap between the outer peripheral surface of the ball portion 12 and the inner surface of the recessed portion 14 is suppressed as much as possible to prevent generation of noise from the ball joint 10 due to external force, the ball stud 13 Both the smooth relative movement of the housing 15 and the wear resistance of the inner surface of the recess 14 can be secured.
また、加熱工程時に、ボール部12およびハウジング15を、ボール部12の中心点S回りに相対的に回転させるので、ボール部12の外周面および窪み部14の内面に、短い移動量で効率よく摩擦熱を発生させることができる。
また、加熱工程時に、ボール部12およびハウジング15を相対的に、軸部11回り(軸部11の中心軸線回り)に回転させるとともに、ボール部12の中心点S回りに揺動させるので、ボール部12の外周面を、ボール部12の中心点Sを挟んで軸部11との連結部分の反対側に位置する極部12aを含む全域にわたって、ばらつき少なく精度よく確実に加熱することが可能になり、窪み部14の内面に温度分布が生ずるのを確実に抑制することができる。 Further, since theball portion 12 and the housing 15 are relatively rotated around the center point S of the ball portion 12 in the heating step, the outer peripheral surface of the ball portion 12 and the inner surface of the recessed portion 14 are efficiently moved with a short movement amount. Frictional heat can be generated.
Further, in the heating process, theball 12 and the housing 15 are relatively rotated around the shaft 11 (around the central axis of the shaft 11) and pivoted around the center point S of the ball 12, so that the ball The outer peripheral surface of the portion 12 can be heated with less variation and accuracy over the entire area including the pole portion 12a located on the opposite side of the connecting portion with the shaft portion 11 across the center point S of the ball portion 12 Thus, the occurrence of temperature distribution on the inner surface of the recess 14 can be reliably suppressed.
また、加熱工程時に、ボール部12およびハウジング15を相対的に、軸部11回り(軸部11の中心軸線回り)に回転させるとともに、ボール部12の中心点S回りに揺動させるので、ボール部12の外周面を、ボール部12の中心点Sを挟んで軸部11との連結部分の反対側に位置する極部12aを含む全域にわたって、ばらつき少なく精度よく確実に加熱することが可能になり、窪み部14の内面に温度分布が生ずるのを確実に抑制することができる。 Further, since the
Further, in the heating process, the
また、組付け工程時に、ボール部12をインサート品としてハウジング15を射出成形するので、ボール部12の外周面に対する窪み部14の内面の締め代が大きくなることから、前述の調整を高精度に行うことが可能になる作用効果が顕著に奏功される。
また、ハウジング15がインサート成形により形成されることから、ボール部12の外周面が、全域にわたって均等に窪み部14の内面に締め付けられることとなり、加熱工程時に、前述の摩擦熱によってボール部12の外周面側および窪み部14の内面側をそれぞれ、全域にわたってばらつき少なく精度よく加熱することをより一層確実に実現することができる。 In addition, since thehousing 15 is injection molded using the ball portion 12 as an insert during the assembly process, the interference of the inner surface of the recessed portion 14 with respect to the outer peripheral surface of the ball portion 12 is increased. The effects that can be achieved are remarkably successful.
In addition, since thehousing 15 is formed by insert molding, the outer peripheral surface of the ball portion 12 is uniformly tightened to the inner surface of the recessed portion 14 over the entire area, and the above-described frictional heat of the ball portion 12 occurs during the heating process. It is possible to realize the heating on the outer peripheral surface side and the inner surface side of the recess portion 14 with less variation over the entire area with higher accuracy.
また、ハウジング15がインサート成形により形成されることから、ボール部12の外周面が、全域にわたって均等に窪み部14の内面に締め付けられることとなり、加熱工程時に、前述の摩擦熱によってボール部12の外周面側および窪み部14の内面側をそれぞれ、全域にわたってばらつき少なく精度よく加熱することをより一層確実に実現することができる。 In addition, since the
In addition, since the
以上のように、ボールスタッド13のハウジング15に対するガタツキを防ぎつつ、ボール部12の外周面と窪み部14の内面との間に発生する摩擦力が抑えられたスタビライザリンク1が得られることとなり、このスタビライザリンク1の装着された車両の走行時に、スタビライザリンク1から異音が発生するのを防ぐことができるとともに、快適な乗り心地性に寄与することが可能なスタビライザリンク1を得ることができる。
なお、加熱工程を、組付け工程後、脱型した後に行う場合、加熱工程時に、ボール部12を窪み部14内で相対移動させつつ、ハウジング15の外周面側を、例えば空気を吹き付ける等して冷却することで、ハウジング15の外周面側の結晶化が抑えられ、ハウジング15の熱収縮を抑制することが可能になり、前述の調整をより一層精度よく行うことができる。 As described above, thestabilizer link 1 is obtained in which the frictional force generated between the outer peripheral surface of the ball portion 12 and the inner surface of the recessed portion 14 is suppressed while preventing the rattling of the ball stud 13 with respect to the housing 15. While traveling with the vehicle on which the stabilizer link 1 is mounted, it is possible to prevent the abnormal noise from being generated from the stabilizer link 1 and obtain the stabilizer link 1 that can contribute to a comfortable ride. .
When the heating step is performed after the assembling step and after the mold is removed, for example, air is blown to the outer peripheral surface side of thehousing 15 while relatively moving the ball portion 12 in the recess portion 14 at the heating step. By cooling it, crystallization on the outer peripheral surface side of the housing 15 can be suppressed, thermal contraction of the housing 15 can be suppressed, and the above-mentioned adjustment can be performed more accurately.
なお、加熱工程を、組付け工程後、脱型した後に行う場合、加熱工程時に、ボール部12を窪み部14内で相対移動させつつ、ハウジング15の外周面側を、例えば空気を吹き付ける等して冷却することで、ハウジング15の外周面側の結晶化が抑えられ、ハウジング15の熱収縮を抑制することが可能になり、前述の調整をより一層精度よく行うことができる。 As described above, the
When the heating step is performed after the assembling step and after the mold is removed, for example, air is blown to the outer peripheral surface side of the
また、本実施形態によるボールジョイントによれば、窪み部14の内面のうち、少なくとも、前記平面を基準に、窪み部14の中心点を中心とする±20°の範囲にわたる部分の、十点平均粗さRzjis(JIS B 0601:2001)が、基準長さ0.8mmで20μm以下となっているので、ボール部12の外周面と窪み部14の内面との間に発生する摩擦力を確実に抑えることができるとともに、ボールスタッド13、およびハウジング15の円滑な相対移動を確保することができる。
また、窪み部14の内面の硬さが、ハウジング15において、窪み部14の内面から深さ1mmに位置する部分の硬さの110%以上となっているので、窪み部14の内面側の耐摩耗性を確保することができる。
また、ハウジング15が、肉厚が2mm以上の有底筒状に形成されているので、良好な成形性を確保することもできる。 Further, according to the ball joint according to the present embodiment, a ten-point average of at least a portion of the inner surface of therecess 14 over a range of ± 20 ° centering on the center point of the recess 14 with reference to the plane. Since the roughness Rzjis (JIS B 0601: 2001) is 20 μm or less with a reference length of 0.8 mm, the frictional force generated between the outer peripheral surface of the ball portion 12 and the inner surface of the recessed portion 14 can be assuredly While being able to be restrained, smooth relative movement of ball stud 13 and housing 15 can be secured.
Further, the hardness of the inner surface of therecess 14 is 110% or more of the hardness of the portion located at a depth of 1 mm from the inner surface of the recess 14 in the housing 15. Wearability can be secured.
Moreover, since thehousing 15 is formed in a bottomed cylindrical shape having a thickness of 2 mm or more, good formability can also be ensured.
また、窪み部14の内面の硬さが、ハウジング15において、窪み部14の内面から深さ1mmに位置する部分の硬さの110%以上となっているので、窪み部14の内面側の耐摩耗性を確保することができる。
また、ハウジング15が、肉厚が2mm以上の有底筒状に形成されているので、良好な成形性を確保することもできる。 Further, according to the ball joint according to the present embodiment, a ten-point average of at least a portion of the inner surface of the
Further, the hardness of the inner surface of the
Moreover, since the
次に、以上説明した作用効果の検証試験について説明する。
実施例として、本実施形態のスタビライザリンク1の製造方法で得られたハウジング15を採用し、比較例として、本実施形態のスタビライザリンク1の製造方法のうち、加熱工程を有しない製造方法で得られたハウジングを採用した。 Next, the verification test of the effect demonstrated above is demonstrated.
As an example, thehousing 15 obtained by the method of manufacturing the stabilizer link 1 of the present embodiment is adopted, and as a comparative example, among the methods of manufacturing the stabilizer link 1 of the present embodiment, it is obtained by the manufacturing method without the heating step. Adopted housing.
実施例として、本実施形態のスタビライザリンク1の製造方法で得られたハウジング15を採用し、比較例として、本実施形態のスタビライザリンク1の製造方法のうち、加熱工程を有しない製造方法で得られたハウジングを採用した。 Next, the verification test of the effect demonstrated above is demonstrated.
As an example, the
窪み部の内面側の硬さを、ナノインデンテーション法に基づいて測定した。この測定は、Hysitron社製TriboIndenterを用い、23℃の温度下で、先端縁の半径が50nm以下の三角錐型の圧子を一定の深さまで押し込むのに要する力と、前記圧子のうち押し込まれた部分の投影面積と、に基づいて測定した。この測定を、実施例および比較例それぞれについて、押し込み深さを異ならせて行った。
その結果、図2に示されるように、実施例の方が、比較例より窪み部の内面側の硬さが大きくなっていることが確認された。 The hardness on the inner surface side of the recessed portion was measured based on the nanoindentation method. This measurement was performed using TriboIndenter manufactured by Hysitron, at a temperature of 23 ° C., the force required to inflate a triangular pyramidal indenter having a tip edge radius of 50 nm or less to a certain depth, and the indenter among the indenters. It measured based on the projection area of a part. This measurement was carried out with different indentation depths for each of the example and the comparative example.
As a result, as shown in FIG. 2, it was confirmed that the hardness of the inner surface side of the depression portion in the example was larger than that in the comparative example.
その結果、図2に示されるように、実施例の方が、比較例より窪み部の内面側の硬さが大きくなっていることが確認された。 The hardness on the inner surface side of the recessed portion was measured based on the nanoindentation method. This measurement was performed using TriboIndenter manufactured by Hysitron, at a temperature of 23 ° C., the force required to inflate a triangular pyramidal indenter having a tip edge radius of 50 nm or less to a certain depth, and the indenter among the indenters. It measured based on the projection area of a part. This measurement was carried out with different indentation depths for each of the example and the comparative example.
As a result, as shown in FIG. 2, it was confirmed that the hardness of the inner surface side of the depression portion in the example was larger than that in the comparative example.
窪み部の内面側の弾性率を、ナノインデンテーション法に基づいて測定した。この測定は、Hysitron社製TriboIndenterを用い、23℃の温度下で、前記圧子を一定深さまで押し込んだ後に、除荷したときの荷重-変位曲線における最大荷重時の傾きと、前記投影面積と、に基づいて測定した。この測定を、実施例および比較例それぞれについて、押し込み深さを異ならせて行った。
その結果、図3に示されるように、実施例の方が、比較例より窪み部の内面側の弾性率が大きくなっていることが確認された。
以上より、実施例の方が、比較例よりナノインデンテーション法に基づく、窪み部の内面側の硬さおよび弾性率が大きくなっており、実施例の方が、比較例より窪み部の内面側の硬度が高くなっていることが確認された。 The elastic modulus on the inner surface side of the depressed portion was measured based on the nanoindentation method. This measurement is performed using TriboIndenter manufactured by Hysitron, and after pushing the indenter to a certain depth at a temperature of 23 ° C., the slope at the maximum load in the load-displacement curve when unloaded, the projected area, It measured based on. This measurement was carried out with different indentation depths for each of the example and the comparative example.
As a result, as shown in FIG. 3, it was confirmed that the elastic modulus on the inner surface side of the depression portion in the example was larger than that in the comparative example.
As mentioned above, the hardness and the elastic modulus of the inner surface side of a hollow part based on a nanoindentation method are larger in the direction of an example than a comparative example, and the direction of an inner surface side of a hollow portion is a direction of an example than a comparative example. It was confirmed that the hardness of the
その結果、図3に示されるように、実施例の方が、比較例より窪み部の内面側の弾性率が大きくなっていることが確認された。
以上より、実施例の方が、比較例よりナノインデンテーション法に基づく、窪み部の内面側の硬さおよび弾性率が大きくなっており、実施例の方が、比較例より窪み部の内面側の硬度が高くなっていることが確認された。 The elastic modulus on the inner surface side of the depressed portion was measured based on the nanoindentation method. This measurement is performed using TriboIndenter manufactured by Hysitron, and after pushing the indenter to a certain depth at a temperature of 23 ° C., the slope at the maximum load in the load-displacement curve when unloaded, the projected area, It measured based on. This measurement was carried out with different indentation depths for each of the example and the comparative example.
As a result, as shown in FIG. 3, it was confirmed that the elastic modulus on the inner surface side of the depression portion in the example was larger than that in the comparative example.
As mentioned above, the hardness and the elastic modulus of the inner surface side of a hollow part based on a nanoindentation method are larger in the direction of an example than a comparative example, and the direction of an inner surface side of a hollow portion is a direction of an example than a comparative example. It was confirmed that the hardness of the
次に、窪み部の内面の凹凸高さを測定した。
実施例、および比較例それぞれについて、測定長さは同じにした。結果を図4および図5に示す。なお、図4および図5において、縦軸の凹凸高さのオーダーは一致している。
その結果、実施例の方が、比較例より窪み部の内面の表面粗さが小さくなっていることが確認された。また、比較例では、窪み部の内面にガラス繊維が目視できたが、実施例では目視できなかった。 Next, the uneven | corrugated height of the inner surface of a hollow part was measured.
The measurement length was made the same for each of the example and the comparative example. The results are shown in FIG. 4 and FIG. In FIG. 4 and FIG. 5, the order of the unevenness height on the vertical axis is the same.
As a result, it was confirmed that the surface roughness of the inner surface of the recess was smaller in the example than in the comparative example. Moreover, in the comparative example, although glass fiber was able to be visually observed on the inner surface of the hollow part, it was not able to visually observe in the Example.
実施例、および比較例それぞれについて、測定長さは同じにした。結果を図4および図5に示す。なお、図4および図5において、縦軸の凹凸高さのオーダーは一致している。
その結果、実施例の方が、比較例より窪み部の内面の表面粗さが小さくなっていることが確認された。また、比較例では、窪み部の内面にガラス繊維が目視できたが、実施例では目視できなかった。 Next, the uneven | corrugated height of the inner surface of a hollow part was measured.
The measurement length was made the same for each of the example and the comparative example. The results are shown in FIG. 4 and FIG. In FIG. 4 and FIG. 5, the order of the unevenness height on the vertical axis is the same.
As a result, it was confirmed that the surface roughness of the inner surface of the recess was smaller in the example than in the comparative example. Moreover, in the comparative example, although glass fiber was able to be visually observed on the inner surface of the hollow part, it was not able to visually observe in the Example.
なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the present invention.
例えば前記実施形態では、ボールジョイント10が、ハウジング15を介してサポートバー16の両端部16aに各別に連結されてなるスタビライザリンク1を示したが、サポートバー16を有さないボールジョイント10単体であっても本発明は適用可能である。ボールジョイント10単体は、例えばロボットアーム等に適用してもよい。
前記実施形態では、ハウジング15として、全体が同一の材質で一体に形成された構成を示したが、これに限らず例えば、凹部を有するハウジング本体と、凹部内に配設されて窪み部14の内面を構成する結晶性の熱可塑性樹脂からなるボールシートと、を備えてもよい。この構成において、ハウジング本体が強化繊維を含有し、ボールシートは強化繊維を含有しなくてもよい。
前記実施形態では、組付け工程として、ボール部12をインサート品としてハウジング15を射出成形するインサート成形を示したが、これに限らず例えば、窪み部14を有するハウジング15を射出成形した後に、窪み部14内にボール部12を圧入することで、ボール部12の外周面と、窪み部14の内面と、を密接させて、ボールスタッド13とハウジング15とを組み合わせてもよい。 For example, in the above embodiment, thestabilizer joint 1 is shown in which the ball joints 10 are separately connected to the both end portions 16 a of the support bar 16 via the housing 15, but the ball joint 10 alone does not have the support bar 16. Even if there is, the present invention is applicable. The ball joint 10 alone may be applied to, for example, a robot arm or the like.
In the above embodiment, theentire housing 15 is integrally formed of the same material. However, the present invention is not limited thereto. For example, the housing main body having a recess and the recess 14 may be provided in the recess. And a ball sheet made of a crystalline thermoplastic resin constituting an inner surface. In this configuration, the housing body contains reinforcing fibers, and the ball sheet may not contain reinforcing fibers.
In the above embodiment, as the assembling process, the insert molding in which thehousing 15 is injection-molded using the ball portion 12 as an insert is described. However, the invention is not limited thereto. For example, after the housing 15 having the recess 14 is injection-molded, The ball stud 12 and the housing 15 may be combined with each other by bringing the outer peripheral surface of the ball portion 12 into close contact with the inner surface of the recessed portion 14 by press-fitting the ball portion 12 into the portion 14.
前記実施形態では、ハウジング15として、全体が同一の材質で一体に形成された構成を示したが、これに限らず例えば、凹部を有するハウジング本体と、凹部内に配設されて窪み部14の内面を構成する結晶性の熱可塑性樹脂からなるボールシートと、を備えてもよい。この構成において、ハウジング本体が強化繊維を含有し、ボールシートは強化繊維を含有しなくてもよい。
前記実施形態では、組付け工程として、ボール部12をインサート品としてハウジング15を射出成形するインサート成形を示したが、これに限らず例えば、窪み部14を有するハウジング15を射出成形した後に、窪み部14内にボール部12を圧入することで、ボール部12の外周面と、窪み部14の内面と、を密接させて、ボールスタッド13とハウジング15とを組み合わせてもよい。 For example, in the above embodiment, the
In the above embodiment, the
In the above embodiment, as the assembling process, the insert molding in which the
その他、本発明の趣旨を逸脱しない範囲で、前記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。
In addition, it is possible to replace the component in the above-mentioned embodiment with a well-known component suitably, in the range which does not deviate from the meaning of the present invention, and may combine the above-mentioned modification suitably.
本発明は、ボールジョイントの製造方法、スタビライザリンクの製造方法、およびボールジョイントに利用することができる。
The present invention can be applied to a method of manufacturing a ball joint, a method of manufacturing a stabilizer link, and a ball joint.
1 スタビライザリンク
2 スタビライザ
3 懸架装置
10 ボールジョイント
11 軸部
12 ボール部
13 ボールスタッド
14 窪み部
15 ハウジング
16 サポートバー
16a サポートバーの端部
S 中心点Reference Signs List 1 stabilizer link 2 stabilizer 3 suspension system 10 ball joint 11 shaft 12 ball 13 ball stud 14 hollow 15 housing 16 support bar 16a end of support bar S center point
2 スタビライザ
3 懸架装置
10 ボールジョイント
11 軸部
12 ボール部
13 ボールスタッド
14 窪み部
15 ハウジング
16 サポートバー
16a サポートバーの端部
S 中心点
Claims (6)
- 軸部およびボール部が互いに連結された金属製のボールスタッドと、
前記ボール部がその中心点回りに回転可能に挿入された窪み部を有する熱可塑性樹脂からなるハウジングと、を備えるボールジョイントの製造方法であって、
前記ボール部の外周面と、前記窪み部の内面と、を密接させて、前記ボールスタッドと前記ハウジングとを組み合わせる組付け工程と、
前記ボール部を前記窪み部内で相対移動させることで、前記ボール部の外周面側および前記窪み部の内面側を摩擦熱により加熱し、前記窪み部の内面側の結晶化度を高める加熱工程と、を有するボールジョイントの製造方法。 A metal ball stud with the shaft and ball connected to each other;
And a housing made of a thermoplastic resin having a hollow portion in which the ball portion is rotatably inserted about its center point, and a method of manufacturing a ball joint,
Assembling the ball stud and the housing by bringing the outer peripheral surface of the ball portion into close contact with the inner surface of the recessed portion;
A heating step of heating the outer peripheral surface side of the ball portion and the inner surface side of the recessed portion by frictional heat by relative movement of the ball portion in the recessed portion to increase the degree of crystallization of the inner surface side of the recessed portion And a method of manufacturing a ball joint. - 前記加熱工程は、前記ボール部および前記ハウジングを、前記ボール部の中心点回りに相対的に回転させる請求項1に記載のボールジョイントの製造方法。 The method for manufacturing a ball joint according to claim 1, wherein in the heating step, the ball portion and the housing are relatively rotated around a center point of the ball portion.
- 前記加熱工程は、前記ボール部および前記ハウジングを相対的に、前記軸部回りに回転させるとともに、前記ボール部の中心点回りに揺動させる請求項1または2に記載のボールジョイントの製造方法。 The method for manufacturing a ball joint according to claim 1, wherein in the heating step, the ball portion and the housing are relatively rotated around the shaft portion and oscillated around a center point of the ball portion.
- 前記組付け工程は、前記ボール部をインサート品として前記ハウジングを射出成形する請求項1から3のいずれか1項に記載のボールジョイントの製造方法。 The method for manufacturing a ball joint according to any one of claims 1 to 3, wherein in the assembling step, the housing is injection-molded using the ball portion as an insert.
- 軸部およびボール部が互いに連結された金属製のボールスタッドと、前記ボール部がその中心点回りに回転可能に挿入された窪み部を有する熱可塑性樹脂からなるハウジングと、を備えるボールジョイントが、前記ハウジングを介してサポートバーの両端部に各別に連結されたスタビライザリンクの製造方法であって、
前記ボールジョイントを、請求項1から4のいずれか1項に記載のボールジョイントの製造方法により形成するスタビライザリンクの製造方法。 A ball joint comprising: a metal ball stud in which a shaft portion and a ball portion are connected to each other; and a housing made of a thermoplastic resin having a hollow portion in which the ball portion is rotatably inserted around its center point. A method of manufacturing a stabilizer link separately connected to both ends of a support bar via the housing,
The manufacturing method of the stabilizer link which forms the said ball joint by the manufacturing method of the ball joint of any one of Claim 1 to 4. - 軸部およびボール部が互いに連結された金属製のボールスタッドと、
前記ボール部がその中心点回りに回転可能に挿入された窪み部を有する熱可塑性樹脂からなるハウジングと、を備えるボールジョイントであって、
前記ハウジングは、肉厚が2mm以上の有底筒状に形成され、その内側が前記窪み部とされ、
前記窪み部は、その中心点が前記ハウジングの中心軸線上に位置する球状に形成され、
前記窪み部の内面のうち、少なくとも、前記中心軸線に直交しかつ前記窪み部の中心点を通る平面を基準に、前記窪み部の中心点を中心とする±20°の範囲にわたる部分の、十点平均粗さRzjis(JIS B 0601:2001)が、基準長さ0.8mmで20μm以下とされ、
前記窪み部の内面の硬さは、前記ハウジングにおいて、前記窪み部の内面から深さ1mmに位置する部分の硬さの110%以上となっているボールジョイント。 A metal ball stud with the shaft and ball connected to each other;
A housing made of thermoplastic resin having a hollow portion in which the ball portion is rotatably inserted around its center point, and a ball joint comprising:
The housing is formed in a bottomed cylindrical shape having a thickness of 2 mm or more, and the inside is a hollow portion.
The recess is formed in a spherical shape whose center point is located on the center axis of the housing,
A portion of the inner surface of the recess extending over a range of ± 20 ° centered on the center point of the recess, at least on a plane perpendicular to the central axis and passing through the center point of the recess, The point average roughness Rzjis (JIS B 0601: 2001) is set to 20 μm or less at a reference length of 0.8 mm,
A ball joint having a hardness of 110% or more of a hardness of a portion positioned at a depth of 1 mm from the inner surface of the recess in the housing.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017213878A JP6751068B2 (en) | 2017-11-06 | 2017-11-06 | Ball joint manufacturing method and stabilizer link manufacturing method |
JP2017-213878 | 2017-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019088284A1 true WO2019088284A1 (en) | 2019-05-09 |
Family
ID=66332008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/040988 WO2019088284A1 (en) | 2017-11-06 | 2018-11-05 | Method for producing ball joint, method for producing stabilizer link, and ball joint |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6751068B2 (en) |
WO (1) | WO2019088284A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11376919B2 (en) * | 2020-05-06 | 2022-07-05 | Zf Friedrichshafen Ag | Chassis component and stabilizer arrangement for a chassis of a vehicle with such a chassis component |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4826105B1 (en) * | 1970-08-27 | 1973-08-06 | ||
JPS5430354A (en) * | 1977-08-11 | 1979-03-06 | Musashi Seimitsu Kogyo Kk | Method for manufacturing ball joint |
JP2011220462A (en) * | 2010-04-09 | 2011-11-04 | Somic Ishikawa Inc | Ball joint and method of manufacturing the same |
JP2017129223A (en) * | 2016-01-21 | 2017-07-27 | 日本発條株式会社 | Torque tuning method and ball joint |
WO2017138573A1 (en) * | 2016-02-10 | 2017-08-17 | 日本発條株式会社 | Method for manufacturing ball joint and method for manufacturing stabilizer link |
-
2017
- 2017-11-06 JP JP2017213878A patent/JP6751068B2/en active Active
-
2018
- 2018-11-05 WO PCT/JP2018/040988 patent/WO2019088284A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4826105B1 (en) * | 1970-08-27 | 1973-08-06 | ||
JPS5430354A (en) * | 1977-08-11 | 1979-03-06 | Musashi Seimitsu Kogyo Kk | Method for manufacturing ball joint |
JP2011220462A (en) * | 2010-04-09 | 2011-11-04 | Somic Ishikawa Inc | Ball joint and method of manufacturing the same |
JP2017129223A (en) * | 2016-01-21 | 2017-07-27 | 日本発條株式会社 | Torque tuning method and ball joint |
WO2017138573A1 (en) * | 2016-02-10 | 2017-08-17 | 日本発條株式会社 | Method for manufacturing ball joint and method for manufacturing stabilizer link |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11376919B2 (en) * | 2020-05-06 | 2022-07-05 | Zf Friedrichshafen Ag | Chassis component and stabilizer arrangement for a chassis of a vehicle with such a chassis component |
Also Published As
Publication number | Publication date |
---|---|
JP6751068B2 (en) | 2020-09-02 |
JP2019086066A (en) | 2019-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5826508B2 (en) | Manufacturing method of stabilizer link | |
EP2722540B1 (en) | Stabilizer link and production method therefor | |
WO2011148792A1 (en) | Stabilizer link and method for producing same | |
US6698963B1 (en) | Ball and socket joint and method therefor | |
KR100192148B1 (en) | Flexible joint | |
US8196486B2 (en) | Ball screw mechanism and assembling method of the same | |
US11491837B2 (en) | Suspension arm and ball joint | |
JP6234491B2 (en) | Ball joint manufacturing method and stabilizer link manufacturing method | |
JP2010030421A (en) | Stabilizer device and its manufacturing method | |
WO2019088284A1 (en) | Method for producing ball joint, method for producing stabilizer link, and ball joint | |
JP2012518139A (en) | Pivot socket having cartridge bearing and vehicle steering link mechanism having the same | |
US20180298940A1 (en) | Ball joint | |
US11179992B2 (en) | Ball joint manufacturing method and stabilizer link manufacturing method | |
US11585372B2 (en) | Ball joint, stabilizer link using ball joint, and stabilizer assembly | |
BRPI0610507A2 (en) | spherical joint | |
WO2020129429A1 (en) | Ball joint manufacturing method | |
JPH0798034A (en) | Structure of sliding bush | |
JPH11264433A (en) | Coil spring insulator and its manufacture | |
CN110181818B (en) | Joining device | |
JP2009250251A (en) | Ball joint and method for manufacturing it | |
JP4599085B2 (en) | Position adjustment member and optical axis adjustment device for vehicle lamp using the position adjustment member | |
JP2009299725A (en) | Method of manufacturing ball joint | |
JP2011163460A (en) | Ball joint and method for manufacturing the same | |
JP2021116829A (en) | Ball seat and ball joint | |
JP2010019330A (en) | Manufacturing method of resilient bushing and resilient bushing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18874941 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18874941 Country of ref document: EP Kind code of ref document: A1 |