[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019087809A1 - A/d converter - Google Patents

A/d converter Download PDF

Info

Publication number
WO2019087809A1
WO2019087809A1 PCT/JP2018/038902 JP2018038902W WO2019087809A1 WO 2019087809 A1 WO2019087809 A1 WO 2019087809A1 JP 2018038902 W JP2018038902 W JP 2018038902W WO 2019087809 A1 WO2019087809 A1 WO 2019087809A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
output
data
quantizer
converter
Prior art date
Application number
PCT/JP2018/038902
Other languages
French (fr)
Japanese (ja)
Inventor
恭英 高▲瀬▼
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019087809A1 publication Critical patent/WO2019087809A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/02Delta modulation, i.e. one-bit differential modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/04Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using pulse code modulation

Definitions

  • the present invention relates to an A / D converter that quantizes a difference between an analog input signal and a predicted value output from a prediction filter with a quantizer to convert the analog input signal into a digital signal.
  • the A / D converter comprises a resistor, a continuous time filter, a summing circuit, a quantizer, a continuous time DAC, a delay element, a discrete time DAC, and a switch.
  • a continuous time filter receives the analog input signal and the feedback signal from the switch.
  • the feedback signal is a signal from one feedback path including a discrete time DAC and a delay element used when the clock signal has a relatively large jitter due to switch switching, and a high quality clock signal with a relatively small amount of jitter.
  • the signal from the other feedback path, including the continuous time DAC which requires
  • the continuous time filter is implemented as an Nth-order integrator and provides multiple feed forward path outputs to multiple inputs of the summing circuit.
  • Each of the plurality of inputs of the summing circuit includes a gain element.
  • the quantizer has an input terminal connected to the output terminal of the summing circuit and a plurality of output terminals, and generates a quantized discrete multi-bit output based on the input received from the summing circuit.
  • the decimation filter has a plurality of input terminals connected to a plurality of output terminals of the quantizer and a plurality of output terminals for providing a plurality of digital output bits. This decimation filter is coupled to the multi-bit output of the quantizer and is used to lower the data frequency, remove additional noise, and increase the resolution of the output.
  • the above-described conventional A / D converter has a multi-bit quantizer, as described above, it is necessary to process multi-bit data at a high oversampling frequency in the decimation filter. Therefore, the above-described conventional A / D converter has a problem that power consumption is increased.
  • An adder for calculating a difference between an analog input signal and a predicted value, a quantizer for quantizing a difference output from the adder, and a prediction filter for generating a predicted value from a signal output from the quantizer.
  • An A / D converter comprising: a decimation filter for limiting the frequency band of an A / D conversion output which is converted into a digital signal and output an analog input signal input to an adder and outputting the digital signal;
  • a decimation filter is connected to the output of the quantizer,
  • the present invention is characterized by comprising a compensation filter that compensates for frequency characteristics of output data at the output side of the decimation filter.
  • the short word length and high frequency data output from the quantizer are output to the decimation filter, and the decimation filter first performs frequency band limitation for the short word length and high frequency data and Data frequency reduction processing is performed. Then, at the output side of the decimation filter, the frequency characteristic of the output data is compensated by the compensation filter at the low-speed data frequency reduced by the decimation filter. For this reason, the power consumption of the A / D converter is reduced in the decimation filter as compared to the conventional processing of multi-bit data at a high oversampling frequency.
  • the prediction filter uses the predicted value of the digital value before analog conversion to be fed back to the adder by the prediction filter as the A / D converted output of the analog input signal inputted to the adder.
  • a decimation filter is connected to the output of the prediction filter to limit the frequency band of the A / D conversion output and to lower the data frequency. For this reason, in the decimation filter, data processing is performed on data having a word length longer than that of data output from the quantizer at the same high data frequency as that of the quantizer, and power consumption increases.
  • the decimation filter is connected to the output of the quantizer, and the decimation filter performs frequency band limitation and data frequency reduction on data having a word length shorter than that of the prediction filter. Then, at the output side of the decimation filter, the frequency characteristic of the output data is compensated by the compensation filter at the low-speed data frequency reduced by the decimation filter. Therefore, the data processed by the decimation filter is quantized with a word length shorter than that of the data output from the prediction filter, as compared with the case where the prediction value output from the prediction filter is subjected to the decimation filter as an A / D conversion output. Power consumption of the A / D converter.
  • the decimation filter is A first decimation filter connected to the output of the quantizer to reduce the data frequency to an intermediate data frequency lower than the data frequency of the quantizer and higher than the data frequency of the A / D conversion output; Characterized in that it is divided into a second decimation filter connected to the output of the compensation filter and further reducing the data frequency from the intermediate data frequency pulled down by the first decimation filter to the data frequency of the A / D conversion output. Do.
  • the compensation filter data processing is performed at an intermediate data frequency higher than the data frequency of the A / D conversion output. Therefore, the compensation of the frequency characteristic of the output data performed by the compensation filter is performed more accurately than in the case of the data frequency of the A / D conversion output. Therefore, the A / D conversion output obtained through the second decimation filter becomes an output that is more faithful to the analog input signal.
  • the present invention is characterized in that the decimation filter or the first decimation filter is constituted by a second-order or higher-order sinc filter.
  • the decimation filter or the first decimation filter configured by the sinc filter can keep aliasing noise at its output to a sufficient SNR (signal-to-noise ratio) even at the compensation filter output. , Can be suppressed. For this reason, the A / D conversion output becomes an output that is more faithful to the analog input signal.
  • the present invention is characterized in that an integrator is provided between the adder and the quantizer.
  • the quantization noise is noise-shaped such that the spectrum distribution becomes high in the high frequency region by the integrator provided between the adder and the quantizer. Therefore, the quantization noise is efficiently removed by the band limiting function of the decimation filter, the SNR is improved, and the A / D conversion output becomes an output faithful to the analog input signal.
  • the present invention is characterized in that the compensation filter is configured by an integrator.
  • the compensation filter can be formed with a simple circuit configuration, and the circuit scale of the A / D converter can be reduced. Therefore, a compact and low power consumption A / D converter can be provided.
  • decimation filter data processing of a signal with a high data frequency is performed with a short word length, and in the compensation filter, data with long word length data with a low data frequency reduced by the decimation filter The processing reduces the power consumed by the A / D converter.
  • FIG. 1 is a circuit block diagram showing a schematic configuration of an A / D converter according to a first embodiment of the present invention.
  • FIG. 6 is a circuit block diagram showing a schematic configuration of an A / D converter that uses an output of a prediction filter as an A / D conversion output.
  • FIG. 7 is a circuit block diagram showing a schematic configuration of an A / D converter according to a second embodiment of the present invention.
  • (A) is a circuit block diagram which shows schematic structure of the A / D converter by 3rd Embodiment of this invention
  • (b) is the A / D converter by 4th Embodiment of this invention.
  • FIG. 18A is a circuit block diagram showing a schematic configuration of an A / D converter according to an eighth embodiment of the present invention.
  • FIG. 1 is a circuit block diagram showing a schematic configuration of an A / D converter 1A according to a first embodiment of the present invention.
  • the A / D converter 1A is configured to include an adder 2, a quantizer 3, a prediction filter 4, a decimation filter 5 and a compensation filter 6.
  • the adder 2 calculates the difference between the analog input signal U and the predicted value P.
  • the quantizer 3 quantizes the difference output from the adder 2 each time the sampling clock clk of the data frequency fs is input, and converts the analog input signal U into a word data length WL0, for example, a digital data string of 1 bit. Do.
  • the prediction filter 4 operates based on the sampling clock clk having the same data frequency fs as the quantizer 3, and a predicted value of the word length WL1 (WL0 ⁇ WL1) from the digital data string of the word length WL0 output from the quantizer 3 Generate P.
  • the decimation filter 5 has a low-pass band-limiting filter function and a decimation function, and is connected to the output of the quantizer 3.
  • the band limiting filter function attenuates the high frequency noise included in the output of the quantizer 3 and converts the analog input signal U input to the adder 2 into a digital signal and outputs the digital signal.
  • the frequency band is limited. Further, the data frequency is lowered from the frequency fs to the frequency fo (fs> fo) by the thinning-out function, and the output of the quantizer 3 is resampled to low-speed, multi-bit data of word length WL2 (WL0 ⁇ WL2). It is converted.
  • the compensation filter 6 connected to the output of the decimation filter 5 integrates the output of the decimation filter 5 to compensate the frequency characteristic of the output data. Data processing in the compensation filter 6 is performed at the same data frequency fo as the decimation filter 5.
  • the decimation filter 5 data having a high frequency fs and a short word length WL0 output from the quantizer 3 is output to the decimation filter 5, and the decimation filter 5 initially has a short word length.
  • Frequency band limitation and data frequency reduction processing are performed on data having a high frequency fs at WL0.
  • the integration filter is performed by the compensation filter 6 at the low-speed data frequency fo lowered by the decimation filter 5, and the frequency characteristic of the output data is compensated. For this reason, the power consumption of the A / D converter 1A is reduced in the decimation filter of the conventional A / D converter disclosed in Patent Document 1 as compared with the case of processing multi-bit data at a high oversampling frequency. Be done.
  • the analog input to be input to the adder 22 is the predicted value P of the digital value before being analog converted and fed back to the adder 22 by the prediction filter 24. It is also conceivable to use an A / D conversion output Dout of the signal U.
  • the A / D converter 21 is configured to include an adder 22, a quantizer 23, a prediction filter 24, and a D / A converter 26.
  • the adder 22 calculates the difference between the analog input signal U and the predicted value P.
  • the quantizer 23 quantizes the difference output from the adder 22 each time the sampling clock clk is input, and converts the analog input signal U into a digital signal D.
  • the prediction filter 24 generates a prediction value P from the digital signal D output from the quantizer 23, and further delays the prediction value P by the delay unit 25 and outputs it.
  • the prediction filter 24 is composed of a second delay unit 27, a multiplier 28, a second adder 29, an attenuator 30, and a series circuit of an integrator 31, an incomplete differentiator 32, and a delay unit 25.
  • the D / A converter 26 converts the predicted value P from a digital signal to an analog signal and outputs the analog value to the adder 22.
  • the predicted value P before being converted into an analog signal by the D / A converter 26 is taken as the A / D conversion output Dout of the analog input signal U input to the adder 22. .
  • a decimation filter is connected to the output of the prediction filter 24 to limit the frequency band of the A / D conversion output Dout and to lower the data frequency. Since the prediction filter 24 is configured to include an integral element, the word length of data to be processed becomes long. Therefore, in the decimation filter, data processing is performed on data having a word length longer than the data of the word length WL0 output from the quantizer 23 at the same high data frequency fs as the quantizer 23. Power consumption increases.
  • the decimation filter 5 is connected to the output of the quantizer 3 by the A / D converter 1A according to the present embodiment, and the output of the quantizer 3 is converted to the A / D conversion output Dout.
  • the decimation filter 5 performs frequency band limitation and data frequency reduction on data having a word length WL0 shorter than the prediction filter 4 and the prediction filter 4. Then, at the output side of the decimation filter 5, the integration filter is performed by the compensation filter 6 at the low-speed data frequency fo lowered by the decimation filter 5, the frequency characteristic of the prediction filter 4 is compensated, and the frequency characteristic of the output data is Be compensated.
  • the data processed by the decimation filter 5 compared to the case where the prediction value P output from the prediction filter 24 is subjected to the decimation filter as the A / D conversion output Dout as in the A / D converter 21 shown in FIG. Is data output from the quantizer 3 having a word length WL0 shorter than the data of the word length WL1 output from the prediction filter 4, and the power consumption of the A / D converter 1A is reduced.
  • the decimation filter 5 data processing of the signal of high data frequency fs is performed with a short word length WL0, and in the compensation filter 6, it is reduced by the decimation filter 5.
  • the power consumed by the A / D converter 1A is reduced.
  • FIG. 3 is a circuit block diagram showing a schematic configuration of an A / D converter 1B according to a second embodiment of the present invention.
  • the same reference numerals as in FIG. 1 denote the same parts in FIG. 3, and a description thereof will be omitted.
  • the first decimation filter 5 a is connected to the output of the quantizer 3, and the second decimation is connected to the output of the compensation filter 6.
  • the point divided into the filter 5b is different from the A / D converter 1A according to the first embodiment.
  • the configuration other than this point is the same as that of the A / D converter 1A according to the first embodiment.
  • the first decimation filter 5a lowers the data frequency to an intermediate data frequency fd (fs> fd> fo) lower than the data frequency fs of the quantizer 3 and higher than the data frequency fo of the A / D conversion output Dout.
  • the compensation filter 6 performs integration processing on the data of the word length WL2 lowered to the intermediate data frequency fd to perform data processing to compensate the frequency characteristic of the output data, and the word length WL3 (WL2 ⁇ WL3). Output as data.
  • the second decimation filter 5b performs decimation processing on the data of word length WL3 input from the compensation filter 6, and the data of the A / D conversion output Dout from the intermediate data frequency fd reduced by the first decimation filter 5a.
  • the data frequency is further lowered to the frequency fo, and the data is output as data of the word length WLo (WL3 ⁇ WLo).
  • the compensation filter 6 data processing is performed at an intermediate data frequency fd higher than the data frequency fo of the A / D conversion output Dout. Therefore, the compensation of the frequency characteristic of the output data performed by the compensation filter 6 is performed more accurately than in the case of the data frequency fo with a low A / D conversion output Dout. Therefore, the A / D conversion output Dout obtained through the second decimation filter 5b becomes an output that is more faithful to the analog input signal U.
  • FIG. 4 (a) is an A / D converter 1C according to the third embodiment of the present invention
  • FIG. 4 (b) is a circuit block schematically showing the configuration of an A / D converter 1D according to the fourth embodiment.
  • FIG. 4 the same parts as in FIG. 1 and FIG. 3 are assigned the same reference numerals and explanation thereof is omitted.
  • the A / D converter 1C according to the third embodiment is characterized in that the decimation filter 5 in the A / D converter 1A according to the first embodiment is constituted by a second or higher-order sinc M filter (M ⁇ 2) 5c. Is different from the A / D converter 1A according to the first embodiment.
  • the configuration other than this point is similar to that of the A / D converter 1A according to the first embodiment.
  • the first decimation filter 5a in the A / D converter 1B according to the second embodiment is a second-order or higher sinc M filter (M ⁇ 2) 5d.
  • M ⁇ 2 sinc M filter
  • the sinc M filter 5c and the first decimation filter 5a constituting the decimation filter 5 can be used.
  • the sinc M filters 5d that are configured can suppress aliasing noise at their output to such an extent that a sufficient SNR (signal-to-noise ratio) can be maintained even at the output of the compensation filter 6. Therefore, each A / D conversion output Dout in the A / D converter 1C according to the third embodiment and the A / D converter 1D according to the fourth embodiment becomes an output faithful to the analog input signal U. .
  • FIG. 5 (a) is an A / D converter 1E according to a fifth embodiment of the present invention
  • FIG. 5 (b) is an A / D converter 1F according to the sixth embodiment of the present invention
  • FIG. 5D is a circuit block diagram showing a schematic configuration of an A / D converter 1H according to an eighth embodiment of the present invention.
  • the same reference numerals as in FIGS. 1, 3 and 4 denote the same parts in FIG. 5, and a description thereof will be omitted.
  • Each of the A / D converters 1E, 1F, 1G and 1H according to the fifth, sixth, seventh and eighth embodiments includes an integrator 7 between the adder 2 and the quantizer 3; This differs from the A / D converters 1A, 1B, 1C and 1D according to the first, second, third and fourth embodiments.
  • the configuration other than this point is the same as that of each of the A / D converters 1A, 1B, 1C and 1D according to the first, second, third and fourth embodiments.
  • the quantization noise is noise shaped in such a way that its spectral distribution becomes high in the high frequency domain. Therefore, the quantization noise is efficiently removed by the band limiting functions of the decimation filter 5, the first and second decimation filters 5a and 5b, and the sinc M filters 5c and 5d, and the SNR is improved, and the A / D is improved.
  • the converted output Dout further becomes an output faithful to the analog input signal U.
  • the A / D converters 1A, 1B, 1C, 1D, 1E, 1F, 1G according to the first, second, third, fourth, fifth, sixth, seventh and eighth embodiments described above.
  • the compensation filter 6 may be configured by an integrator (1 / (1-z.sup.- 1 )). According to this configuration, compensation filter 6 can be formed with a simple circuit configuration, and the circuit scale of A / D converters 1A, 1B, 1C, 1D, 1E, 1F, 1G and 1H can be reduced. . For this reason, it is possible to provide compact and low power consumption A / D converters 1A, 1B, 1C, 1D, 1E, 1F, 1G and 1H.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

According to the present invention, the power consumption of an A/D converter including an adder, a quantizer, a prediction filter, and a decimation filter is reduced. An A/D converter 1A is provided with an adder 2, a quantizer 3, a prediction filter 4, a decimation filter 5, and a compensation filter 6. The adder 2 calculates the difference between an analog input signal U and a prediction value P. The quantizer 3 quantizes the above difference and converts the analog input signal U into a digital data string of a word length WL0. The prediction filter 4 generates the prediction value P of a word length WL1 from the above digital data string. The decimation filter 5 attenuates high frequency noise from an output of the quantizer 3, lowers a data frequency from fs to fo, and converts the output of the quantizer 3into multi-bit data at a low speed of a word length WL2. The compensation filter 6 compensates for frequency characteristics of output data and outputs data of the word length WL0 with the data frequency fo.

Description

A/D変換器A / D converter
 本発明は、アナログ入力信号と予測フィルタから出力される予測値との差分を量子化器で量子化してアナログ入力信号をデジタル信号に変換するA/D変換器に関するものである。 The present invention relates to an A / D converter that quantizes a difference between an analog input signal and a predicted value output from a prediction filter with a quantizer to convert the analog input signal into a digital signal.
 従来、この種のA/D変換器としては、例えば、特許文献1に開示された構成変更可能な連続時間シグマデルタA/D変換器がある。 Conventionally, as this type of A / D converter, there is, for example, a changeable continuous time sigma delta A / D converter disclosed in Patent Document 1.
 このA/D変換器は、抵抗器、連続時間フィルタ、加算回路、量子化器、連続時間DAC、遅延要素、離散時間型DAC、およびスイッチを備える。連続時間フィルタは、アナログ入力信号と、スイッチからのフィードバック信号とを受信する。フィードバック信号は、スイッチの切り替えにより、クロック信号が比較的大きなジッタを有するときに用いられる離散時間型DACおよび遅延要素を含む一方のフィードバック経路からの信号と、比較的ジッタの少ない高品質なクロック信号を必要とする連続時間DACを含む他方のフィードバック経路からの信号とに切り替えられる。 The A / D converter comprises a resistor, a continuous time filter, a summing circuit, a quantizer, a continuous time DAC, a delay element, a discrete time DAC, and a switch. A continuous time filter receives the analog input signal and the feedback signal from the switch. The feedback signal is a signal from one feedback path including a discrete time DAC and a delay element used when the clock signal has a relatively large jitter due to switch switching, and a high quality clock signal with a relatively small amount of jitter. And the signal from the other feedback path, including the continuous time DAC, which requires
 連続時間フィルタは、N次の積分器として実装されており、複数のフィードフォワード経路出力を、加算回路の複数の入力に提供する。加算回路の複数の入力の各々は、利得要素を含む。量子化器は、加算回路の出力端子に接続された入力端子と、複数の出力端子とを有し、加算回路から受信された入力に基づき、量子化された離散マルチビット出力を発生させる。デシメーションフィルタは、量子化器の複数の出力端子に接続された複数の入力端子と、複数のデジタル出力ビットを提供するための複数の出力端子とを有する。このデシメーションフィルタは、量子化器のマルチビット出力に結合され、データ周波数を低下させ、追加のノイズを除去し、かつ出力の分解能を増大させるために用いられる。 The continuous time filter is implemented as an Nth-order integrator and provides multiple feed forward path outputs to multiple inputs of the summing circuit. Each of the plurality of inputs of the summing circuit includes a gain element. The quantizer has an input terminal connected to the output terminal of the summing circuit and a plurality of output terminals, and generates a quantized discrete multi-bit output based on the input received from the summing circuit. The decimation filter has a plurality of input terminals connected to a plurality of output terminals of the quantizer and a plurality of output terminals for providing a plurality of digital output bits. This decimation filter is coupled to the multi-bit output of the quantizer and is used to lower the data frequency, remove additional noise, and increase the resolution of the output.
特開2013-42488号公報JP, 2013-42488, A
 しかしながら、上記従来のA/D変換器は、量子化器が多ビット出力のため、上述のように、デシメーションフィルタにおいて、多ビットデータを高いオーバーサンプリング周波数で処理する必要がある。このため、上記従来のA/D変換器は、消費電力が大きくなるという課題があった。 However, since the above-described conventional A / D converter has a multi-bit quantizer, as described above, it is necessary to process multi-bit data at a high oversampling frequency in the decimation filter. Therefore, the above-described conventional A / D converter has a problem that power consumption is increased.
 本発明はこのような課題を解決するためになされたもので、
アナログ入力信号と予測値との差分を演算する加算器と、加算器から出力される差分を量子化する量子化器と、量子化器から出力される信号から予測値を生成する予測フィルタと、加算器に入力されるアナログ入力信号がデジタル信号に変換されて出力されるA/D変換出力の周波数帯域を制限すると共にデータ周波数を引き下げるデシメーションフィルタとを備えるA/D変換器において、
デシメーションフィルタが量子化器の出力に接続され、
デシメーションフィルタの出力側において出力データの周波数特性を補償する補償フィルタを備えることを特徴とする。
The present invention has been made to solve such problems.
An adder for calculating a difference between an analog input signal and a predicted value, a quantizer for quantizing a difference output from the adder, and a prediction filter for generating a predicted value from a signal output from the quantizer. An A / D converter comprising: a decimation filter for limiting the frequency band of an A / D conversion output which is converted into a digital signal and output an analog input signal input to an adder and outputting the digital signal;
A decimation filter is connected to the output of the quantizer,
The present invention is characterized by comprising a compensation filter that compensates for frequency characteristics of output data at the output side of the decimation filter.
 本構成によれば、量子化器から出力される短い語長で周波数の高いデータがデシメーションフィルタに出力され、最初にデシメーションフィルタにおいて、短い語長で周波数の高いデータに対して周波数帯域の制限およびデータ周波数の引き下げ処理が行われる。そして、デシメーションフィルタの出力側において、デシメーションフィルタによって引き下げられた低速のデータ周波数で、補償フィルタにより出力データの周波数特性が補償される。このため、A/D変換器の消費電力は、デシメーションフィルタにおいて、多ビットデータを高いオーバーサンプリング周波数で処理する従来に比べて、低減される。 According to this configuration, the short word length and high frequency data output from the quantizer are output to the decimation filter, and the decimation filter first performs frequency band limitation for the short word length and high frequency data and Data frequency reduction processing is performed. Then, at the output side of the decimation filter, the frequency characteristic of the output data is compensated by the compensation filter at the low-speed data frequency reduced by the decimation filter. For this reason, the power consumption of the A / D converter is reduced in the decimation filter as compared to the conventional processing of multi-bit data at a high oversampling frequency.
 また、予測フィルタによって加算器にフィードバックされるアナログ変換される前のデジタル値の予測値を、加算器に入力されるアナログ入力信号のA/D変換出力とすることも考えられる。しかし、この場合、予測フィルタの出力にデシメーションフィルタを接続して、A/D変換出力の周波数帯域を制限すると共にデータ周波数を引き下げることになる。このため、デシメーションフィルタでは、量子化器と同じ高いデータ周波数で、量子化器から出力されるデータよりも長い語長のデータに対してデータ処理を行うことになり、消費電力が大きくなる。 Further, it is also conceivable to use the predicted value of the digital value before analog conversion to be fed back to the adder by the prediction filter as the A / D converted output of the analog input signal inputted to the adder. However, in this case, a decimation filter is connected to the output of the prediction filter to limit the frequency band of the A / D conversion output and to lower the data frequency. For this reason, in the decimation filter, data processing is performed on data having a word length longer than that of data output from the quantizer at the same high data frequency as that of the quantizer, and power consumption increases.
 しかし、本構成により、デシメーションフィルタが量子化器の出力に接続され、予測フィルタよりも短い語長のデータに対して、デシメーションフィルタにより、周波数帯域の制限およびデータ周波数の引き下げが行われる。そして、デシメーションフィルタの出力側において、デシメーションフィルタによって引き下げられた低速のデータ周波数で、補償フィルタによって出力データの周波数特性が補償される。このため、予測フィルタから出力される予測値がA/D変換出力としてデシメーションフィルタにかけられる場合に比べ、デシメーションフィルタの処理するデータが、予測フィルタから出力されるデータよりも短い語長の、量子化器から出力されるデータになり、A/D変換器の消費電力は低減される。 However, according to this configuration, the decimation filter is connected to the output of the quantizer, and the decimation filter performs frequency band limitation and data frequency reduction on data having a word length shorter than that of the prediction filter. Then, at the output side of the decimation filter, the frequency characteristic of the output data is compensated by the compensation filter at the low-speed data frequency reduced by the decimation filter. Therefore, the data processed by the decimation filter is quantized with a word length shorter than that of the data output from the prediction filter, as compared with the case where the prediction value output from the prediction filter is subjected to the decimation filter as an A / D conversion output. Power consumption of the A / D converter.
 また、本発明は、デシメーションフィルタが、
量子化器の出力に接続されて、量子化器のデータ周波数より低くA/D変換出力のデータ周波数よりも高い中間データ周波数にデータ周波数を引き下げる第1のデシメーションフィルタと、
補償フィルタの出力に接続されて、第1のデシメーションフィルタによって引き下げられた中間データ周波数からA/D変換出力のデータ周波数にデータ周波数をさらに引き下げる第2のデシメーションフィルタとに分割されることを特徴とする。
In the present invention, the decimation filter is
A first decimation filter connected to the output of the quantizer to reduce the data frequency to an intermediate data frequency lower than the data frequency of the quantizer and higher than the data frequency of the A / D conversion output;
Characterized in that it is divided into a second decimation filter connected to the output of the compensation filter and further reducing the data frequency from the intermediate data frequency pulled down by the first decimation filter to the data frequency of the A / D conversion output. Do.
 本構成によれば、補償フィルタでは、A/D変換出力のデータ周波数よりも高い中間データ周波数で、データ処理が行われる。したがって、補償フィルタで行われる出力データの周波数特性の補償は、A/D変換出力のデータ周波数で行われる場合よりも、より精度高く行われる。このため、第2のデシメーションフィルタを介して得られるA/D変換出力は、よりアナログ入力信号に忠実な出力となる。 According to this configuration, in the compensation filter, data processing is performed at an intermediate data frequency higher than the data frequency of the A / D conversion output. Therefore, the compensation of the frequency characteristic of the output data performed by the compensation filter is performed more accurately than in the case of the data frequency of the A / D conversion output. Therefore, the A / D conversion output obtained through the second decimation filter becomes an output that is more faithful to the analog input signal.
 また、本発明は、デシメーションフィルタまたは第1のデシメーションフィルタが、2次以上のsincフィルタによって構成されることを特徴とする。 Furthermore, the present invention is characterized in that the decimation filter or the first decimation filter is constituted by a second-order or higher-order sinc filter.
 本構成によれば、sincフィルタによって構成されるデシメーションフィルタまたは第1のデシメーションフィルタは、その出力における折り返し雑音を、補償フィルタ出力においても十分なSNR(信号対雑音比)を保つことができる程度に、抑圧することができる。このため、A/D変換出力はさらにアナログ入力信号に忠実な出力となる。 According to this configuration, the decimation filter or the first decimation filter configured by the sinc filter can keep aliasing noise at its output to a sufficient SNR (signal-to-noise ratio) even at the compensation filter output. , Can be suppressed. For this reason, the A / D conversion output becomes an output that is more faithful to the analog input signal.
 また、本発明は、加算器と量子化器との間に積分器を備えることを特徴とする。 Also, the present invention is characterized in that an integrator is provided between the adder and the quantizer.
 本構成によれば、加算器と量子化器との間に備える積分器により、量子化雑音は、そのスペクトラム分布が高周波数領域で高くなる形にノイズシェーピングされる。このため、量子化雑音はデシメーションフィルタの帯域制限機能によって効率よく除去され、SNRが改善されて、A/D変換出力はさらにアナログ入力信号に忠実な出力となる。 According to this configuration, the quantization noise is noise-shaped such that the spectrum distribution becomes high in the high frequency region by the integrator provided between the adder and the quantizer. Therefore, the quantization noise is efficiently removed by the band limiting function of the decimation filter, the SNR is improved, and the A / D conversion output becomes an output faithful to the analog input signal.
 また、本発明は、補償フィルタが積分器で構成されることを特徴とする。 Also, the present invention is characterized in that the compensation filter is configured by an integrator.
 本構成によれば、単純な回路構成で補償フィルタを形成することができ、A/D変換器の回路規模を小さくすることができる。このため、小型で低消費電力のA/D変換器を提供することができる。 According to this configuration, the compensation filter can be formed with a simple circuit configuration, and the circuit scale of the A / D converter can be reduced. Therefore, a compact and low power consumption A / D converter can be provided.
 本発明によれば、デシメーションフィルタにおいて、データ周波数の高い信号のデータ処理が短い語長で行われ、補償フィルタにおいて、デシメーションフィルタによって引き下げられた低いデータ周波数で、語長の長いデータに対してデータ処理が行われることで、A/D変換器で消費される電力は低減される。 According to the present invention, in the decimation filter, data processing of a signal with a high data frequency is performed with a short word length, and in the compensation filter, data with long word length data with a low data frequency reduced by the decimation filter The processing reduces the power consumed by the A / D converter.
本発明の第1の実施形態によるA/D変換器の概略構成を示す回路ブロック図である。FIG. 1 is a circuit block diagram showing a schematic configuration of an A / D converter according to a first embodiment of the present invention. 予測フィルタの出力をA/D変換出力とするA/D変換器の概略構成を示す回路ブロック図である。FIG. 6 is a circuit block diagram showing a schematic configuration of an A / D converter that uses an output of a prediction filter as an A / D conversion output. 本発明の第2の実施形態によるA/D変換器の概略構成を示す回路ブロック図である。FIG. 7 is a circuit block diagram showing a schematic configuration of an A / D converter according to a second embodiment of the present invention. (a)は本発明の第3の実施形態によるA/D変換器、(b)は本発明の第4の実施形態によるA/D変換器の概略構成を示す回路ブロック図である。(A) is a circuit block diagram which shows schematic structure of the A / D converter by 3rd Embodiment of this invention, (b) is the A / D converter by 4th Embodiment of this invention. (a)は本発明の第5の実施形態によるA/D変換器、(b)は本発明の第6の実施形態によるA/D変換器、(c)は本発明の第7の実施形態によるA/D変換器、(d)は本発明の第8の実施形態によるA/D変換器の概略構成を示す回路ブロック図である。(A) is an A / D converter according to a fifth embodiment of the present invention, (b) is an A / D converter according to the sixth embodiment of the present invention, (c) is a seventh embodiment of the present invention FIG. 18A is a circuit block diagram showing a schematic configuration of an A / D converter according to an eighth embodiment of the present invention, and FIG.
 次に、本発明のA/D変換器を実施するための形態について、説明する。 Next, an embodiment for implementing the A / D converter of the present invention will be described.
 図1は、本発明の第1の実施形態によるA/D変換器1Aの概略構成を示す回路ブロック図である。 FIG. 1 is a circuit block diagram showing a schematic configuration of an A / D converter 1A according to a first embodiment of the present invention.
 A/D変換器1Aは、加算器2、量子化器3、予測フィルタ4、デシメーションフィルタ5および補償フィルタ6を備えて構成される。加算器2はアナログ入力信号Uと予測値Pとの差分を演算する。量子化器3は、加算器2から出力される差分を、データ周波数fsのサンプリングクロックclkが入力される毎に量子化して、アナログ入力信号Uを語長WL0例えば1ビットのデジタルデータ列に変換する。予測フィルタ4は、量子化器3と同じデータ周波数fsのサンプリングクロックclkに基づき動作し、量子化器3から出力される語長WL0のデジタルデータ列から語長WL1(WL0<WL1)の予測値Pを生成する。 The A / D converter 1A is configured to include an adder 2, a quantizer 3, a prediction filter 4, a decimation filter 5 and a compensation filter 6. The adder 2 calculates the difference between the analog input signal U and the predicted value P. The quantizer 3 quantizes the difference output from the adder 2 each time the sampling clock clk of the data frequency fs is input, and converts the analog input signal U into a word data length WL0, for example, a digital data string of 1 bit. Do. The prediction filter 4 operates based on the sampling clock clk having the same data frequency fs as the quantizer 3, and a predicted value of the word length WL1 (WL0 <WL1) from the digital data string of the word length WL0 output from the quantizer 3 Generate P.
 デシメーションフィルタ5は、低域通過の帯域制限フィルタ機能と間引き(デシメーション)機能とを持ち、量子化器3の出力に接続される。帯域制限フィルタ機能により、量子化器3の出力に含まれる高周波ノイズが減衰させられ、加算器2に入力されるアナログ入力信号Uがデジタル信号に変換されて出力されるA/D変換出力Doutの周波数帯域が制限される。また、間引き機能により、データ周波数が周波数fsから周波数fo(fs>fo)に引き下げられ、量子化器3の出力がリサンプリングされて語長WL2(WL0<WL2)の低速で多ビットのデータに変換される。 The decimation filter 5 has a low-pass band-limiting filter function and a decimation function, and is connected to the output of the quantizer 3. The band limiting filter function attenuates the high frequency noise included in the output of the quantizer 3 and converts the analog input signal U input to the adder 2 into a digital signal and outputs the digital signal. The frequency band is limited. Further, the data frequency is lowered from the frequency fs to the frequency fo (fs> fo) by the thinning-out function, and the output of the quantizer 3 is resampled to low-speed, multi-bit data of word length WL2 (WL0 <WL2). It is converted.
 デシメーションフィルタ5の出力に接続される補償フィルタ6は、デシメーションフィルタ5の出力を積分処理して出力データの周波数特性を補償する。補償フィルタ6におけるデータ処理はデシメーションフィルタ5と同じデータ周波数foで行われる。 The compensation filter 6 connected to the output of the decimation filter 5 integrates the output of the decimation filter 5 to compensate the frequency characteristic of the output data. Data processing in the compensation filter 6 is performed at the same data frequency fo as the decimation filter 5.
 本実施形態によるA/D変換器1Aによれば、量子化器3から出力される短い語長WL0で周波数fsの高いデータがデシメーションフィルタ5に出力され、最初にデシメーションフィルタ5において、短い語長WL0で周波数fsの高いデータに対して周波数帯域の制限およびデータ周波数の引き下げ処理が行われる。そして、デシメーションフィルタ5の出力側において、デシメーションフィルタ5によって引き下げられた低速のデータ周波数foで、補償フィルタ6により積分処理が行われて出力データの周波数特性が補償される。このため、A/D変換器1Aの消費電力は、特許文献1に開示される従来のA/D変換器のデシメーションフィルタにおいて、多ビットデータを高いオーバーサンプリング周波数で処理する場合に比べて、低減される。 According to the A / D converter 1A according to the present embodiment, data having a high frequency fs and a short word length WL0 output from the quantizer 3 is output to the decimation filter 5, and the decimation filter 5 initially has a short word length. Frequency band limitation and data frequency reduction processing are performed on data having a high frequency fs at WL0. Then, at the output side of the decimation filter 5, the integration filter is performed by the compensation filter 6 at the low-speed data frequency fo lowered by the decimation filter 5, and the frequency characteristic of the output data is compensated. For this reason, the power consumption of the A / D converter 1A is reduced in the decimation filter of the conventional A / D converter disclosed in Patent Document 1 as compared with the case of processing multi-bit data at a high oversampling frequency. Be done.
 また、図2に示すA/D変換器21のように、予測フィルタ24によって加算器22にフィードバックされるアナログ変換される前のデジタル値の予測値Pを、加算器22に入力されるアナログ入力信号UのA/D変換出力Doutとすることも考えられる。 Further, as in the A / D converter 21 shown in FIG. 2, the analog input to be input to the adder 22 is the predicted value P of the digital value before being analog converted and fed back to the adder 22 by the prediction filter 24. It is also conceivable to use an A / D conversion output Dout of the signal U.
 A/D変換器21は、加算器22、量子化器23、予測フィルタ24およびD/A変換器26を備えて構成される。加算器22はアナログ入力信号Uと予測値Pとの差分を演算する。量子化器23は、加算器22から出力される差分をサンプリングクロックclkが入力される毎に量子化して、アナログ入力信号Uをデジタル信号Dに変換する。予測フィルタ24は、量子化器23から出力されるデジタル信号Dから予測値Pを生成し、さらに遅延器25で予測値Pを遅延させて出力する。予測フィルタ24は、第2の遅延器27、乗算器28、第2の加算器29、減衰器30、および、積分器31と不完全微分器32と遅延器25の直列回路から構成される。D/A変換器26は、予測値Pをデジタル信号からアナログ信号に変換して、加算器22へ出力する。このA/D変換器21では、D/A変換器26によってアナログ信号に変換される前の予測値Pが、加算器22に入力されるアナログ入力信号UのA/D変換出力Doutとされる。 The A / D converter 21 is configured to include an adder 22, a quantizer 23, a prediction filter 24, and a D / A converter 26. The adder 22 calculates the difference between the analog input signal U and the predicted value P. The quantizer 23 quantizes the difference output from the adder 22 each time the sampling clock clk is input, and converts the analog input signal U into a digital signal D. The prediction filter 24 generates a prediction value P from the digital signal D output from the quantizer 23, and further delays the prediction value P by the delay unit 25 and outputs it. The prediction filter 24 is composed of a second delay unit 27, a multiplier 28, a second adder 29, an attenuator 30, and a series circuit of an integrator 31, an incomplete differentiator 32, and a delay unit 25. The D / A converter 26 converts the predicted value P from a digital signal to an analog signal and outputs the analog value to the adder 22. In this A / D converter 21, the predicted value P before being converted into an analog signal by the D / A converter 26 is taken as the A / D conversion output Dout of the analog input signal U input to the adder 22. .
 しかし、この場合、予測フィルタ24の出力にデシメーションフィルタを接続して、A/D変換出力Doutの周波数帯域を制限すると共にデータ周波数を引き下げることになる。予測フィルタ24は積分要素を含んで構成されるので、処理するデータの語長が長くなる。このため、デシメーションフィルタでは、量子化器23と同じ高いデータ周波数fsで、量子化器23から出力される語長WL0のデータよりも長い語長のデータに対してデータ処理を行うことになり、消費電力が大きくなる。 However, in this case, a decimation filter is connected to the output of the prediction filter 24 to limit the frequency band of the A / D conversion output Dout and to lower the data frequency. Since the prediction filter 24 is configured to include an integral element, the word length of data to be processed becomes long. Therefore, in the decimation filter, data processing is performed on data having a word length longer than the data of the word length WL0 output from the quantizer 23 at the same high data frequency fs as the quantizer 23. Power consumption increases.
 しかし、本実施形態によるA/D変換器1Aにより、デシメーションフィルタ5が量子化器3の出力に接続され、量子化器3の出力がA/D変換出力Doutにされることで、予測フィルタ24や予測フィルタ4よりも短い語長WL0のデータに対して、デシメーションフィルタ5により、周波数帯域の制限およびデータ周波数の引き下げが行われる。そして、デシメーションフィルタ5の出力側において、デシメーションフィルタ5によって引き下げられた低速のデータ周波数foで、補償フィルタ6によって積分処理が行われて予測フィルタ4の周波数特性が補償され、出力データの周波数特性が補償される。このため、図2に示すA/D変換器21のように、予測フィルタ24から出力される予測値PがA/D変換出力Doutとしてデシメーションフィルタにかけられる場合に比べ、デシメーションフィルタ5の処理するデータが、予測フィルタ4から出力される語長WL1のデータよりも短い語長WL0の、量子化器3から出力されるデータになり、A/D変換器1Aの消費電力は低減される。 However, the decimation filter 5 is connected to the output of the quantizer 3 by the A / D converter 1A according to the present embodiment, and the output of the quantizer 3 is converted to the A / D conversion output Dout. The decimation filter 5 performs frequency band limitation and data frequency reduction on data having a word length WL0 shorter than the prediction filter 4 and the prediction filter 4. Then, at the output side of the decimation filter 5, the integration filter is performed by the compensation filter 6 at the low-speed data frequency fo lowered by the decimation filter 5, the frequency characteristic of the prediction filter 4 is compensated, and the frequency characteristic of the output data is Be compensated. Therefore, the data processed by the decimation filter 5 compared to the case where the prediction value P output from the prediction filter 24 is subjected to the decimation filter as the A / D conversion output Dout as in the A / D converter 21 shown in FIG. Is data output from the quantizer 3 having a word length WL0 shorter than the data of the word length WL1 output from the prediction filter 4, and the power consumption of the A / D converter 1A is reduced.
 すなわち、本実施形態によるA/D変換器1Aによれば、デシメーションフィルタ5において、高いデータ周波数fsの信号のデータ処理が短い語長WL0で行われ、補償フィルタ6において、デシメーションフィルタ5によって引き下げられた低いデータ周波数foで、長い語長WL2のデータに対してデータ処理が行われることで、A/D変換器1Aで消費される電力は低減される。 That is, according to the A / D converter 1A according to the present embodiment, in the decimation filter 5, data processing of the signal of high data frequency fs is performed with a short word length WL0, and in the compensation filter 6, it is reduced by the decimation filter 5. By performing data processing on data of a long word length WL2 at a low data frequency fo, the power consumed by the A / D converter 1A is reduced.
 図3は、本発明の第2の実施形態によるA/D変換器1Bの概略構成を示す回路ブロック図である。なお、図3において図1と同一部分には同一符号を付してその説明は省略する。 FIG. 3 is a circuit block diagram showing a schematic configuration of an A / D converter 1B according to a second embodiment of the present invention. The same reference numerals as in FIG. 1 denote the same parts in FIG. 3, and a description thereof will be omitted.
 第2の実施形態によるA/D変換器1Bは、デシメーションフィルタ5が、量子化器3の出力に接続される第1のデシメーションフィルタ5aと、補償フィルタ6の出力に接続される第2のデシメーションフィルタ5bとに分割される点が、第1の実施形態によるA/D変換器1Aと相違する。この点以外の構成は第1の実施形態によるA/D変換器1Aと同様である。 In the A / D converter 1 B according to the second embodiment, the first decimation filter 5 a is connected to the output of the quantizer 3, and the second decimation is connected to the output of the compensation filter 6. The point divided into the filter 5b is different from the A / D converter 1A according to the first embodiment. The configuration other than this point is the same as that of the A / D converter 1A according to the first embodiment.
 第1のデシメーションフィルタ5aは、量子化器3のデータ周波数fsより低く、A/D変換出力Doutのデータ周波数foよりも高い中間データ周波数fd(fs>fd>fo)に、データ周波数を引き下げる。補償フィルタ6は、この中間データ周波数fdに引き下げられた語長WL2のデータに対して、積分処理を行って出力データの周波数特性を補償するデータ処理をし、語長WL3(WL2<WL3)のデータにして出力する。第2のデシメーションフィルタ5bは、補償フィルタ6から入力した語長WL3のデータに対してデシメーション処理を行い、第1のデシメーションフィルタ5aによって引き下げられた中間データ周波数fdからA/D変換出力Doutのデータ周波数foに、データ周波数をさらに引き下げ、語長WLo(WL3<WLo)のデータとして出力する。 The first decimation filter 5a lowers the data frequency to an intermediate data frequency fd (fs> fd> fo) lower than the data frequency fs of the quantizer 3 and higher than the data frequency fo of the A / D conversion output Dout. The compensation filter 6 performs integration processing on the data of the word length WL2 lowered to the intermediate data frequency fd to perform data processing to compensate the frequency characteristic of the output data, and the word length WL3 (WL2 <WL3). Output as data. The second decimation filter 5b performs decimation processing on the data of word length WL3 input from the compensation filter 6, and the data of the A / D conversion output Dout from the intermediate data frequency fd reduced by the first decimation filter 5a. The data frequency is further lowered to the frequency fo, and the data is output as data of the word length WLo (WL3 <WLo).
 このような第2の実施形態によるA/D変換器1Bによれば、補償フィルタ6では、A/D変換出力Doutのデータ周波数foよりも高い中間データ周波数fdで、データ処理が行われる。したがって、補償フィルタ6で行われる出力データの周波数特性の補償は、A/D変換出力Doutの低いデータ周波数foで行われる場合よりも、より精度高く行われる。このため、第2のデシメーションフィルタ5bを介して得られるA/D変換出力Doutは、よりアナログ入力信号Uに忠実な出力となる。 According to the A / D converter 1B of the second embodiment, in the compensation filter 6, data processing is performed at an intermediate data frequency fd higher than the data frequency fo of the A / D conversion output Dout. Therefore, the compensation of the frequency characteristic of the output data performed by the compensation filter 6 is performed more accurately than in the case of the data frequency fo with a low A / D conversion output Dout. Therefore, the A / D conversion output Dout obtained through the second decimation filter 5b becomes an output that is more faithful to the analog input signal U.
 図4(a)は本発明の第3の実施形態によるA/D変換器1C、図4(b)は本発明の第4の実施形態によるA/D変換器1Dの概略構成を示す回路ブロック図である。なお、図4において図1および図3と同一部分には同一符号を付してその説明は省略する。 FIG. 4 (a) is an A / D converter 1C according to the third embodiment of the present invention, and FIG. 4 (b) is a circuit block schematically showing the configuration of an A / D converter 1D according to the fourth embodiment. FIG. In FIG. 4, the same parts as in FIG. 1 and FIG. 3 are assigned the same reference numerals and explanation thereof is omitted.
 第3の実施形態によるA/D変換器1Cは、第1の実施形態によるA/D変換器1Aにおけるデシメーションフィルタ5が、2次以上のsincフィルタ(M≧2)5cによって構成される点が、第1の実施形態によるA/D変換器1Aと相違する。この点以外の構成は第1の実施形態によるA/D変換器1Aと同様である。 The A / D converter 1C according to the third embodiment is characterized in that the decimation filter 5 in the A / D converter 1A according to the first embodiment is constituted by a second or higher-order sinc M filter (M ≧ 2) 5c. Is different from the A / D converter 1A according to the first embodiment. The configuration other than this point is similar to that of the A / D converter 1A according to the first embodiment.
 また、第4の実施形態によるA/D変換器1Dは、第2の実施形態によるA/D変換器1Bにおける第1のデシメーションフィルタ5aが、2次以上のsincフィルタ(M≧2)5dによって構成される点が、第2の実施形態によるA/D変換器1Bと相違する。この点以外の構成は第2の実施形態によるA/D変換器1Bと同様である。 In the A / D converter 1D according to the fourth embodiment, the first decimation filter 5a in the A / D converter 1B according to the second embodiment is a second-order or higher sinc M filter (M ≧ 2) 5d. Are different from the A / D converter 1B according to the second embodiment. The configuration other than this point is the same as that of the A / D converter 1B according to the second embodiment.
 このような第3の実施形態によるA/D変換器1Cおよび第4の実施形態によるA/D変換器1Dによれば、デシメーションフィルタ5を構成するsincフィルタ5cおよび第1のデシメーションフィルタ5aを構成するsincフィルタ5dは、それらの出力における折り返し雑音を、補償フィルタ6の出力においても十分なSNR(信号対雑音比)を保つことができる程度に、抑圧することができる。このため、これら第3の実施形態によるA/D変換器1Cおよび第4の実施形態によるA/D変換器1Dにおける各A/D変換出力Doutは、さらにアナログ入力信号Uに忠実な出力となる。 According to the A / D converter 1C according to the third embodiment and the A / D converter 1D according to the fourth embodiment, the sinc M filter 5c and the first decimation filter 5a constituting the decimation filter 5 can be used. The sinc M filters 5d that are configured can suppress aliasing noise at their output to such an extent that a sufficient SNR (signal-to-noise ratio) can be maintained even at the output of the compensation filter 6. Therefore, each A / D conversion output Dout in the A / D converter 1C according to the third embodiment and the A / D converter 1D according to the fourth embodiment becomes an output faithful to the analog input signal U. .
 図5(a)は本発明の第5の実施形態によるA/D変換器1E、図5(b)は本発明の第6の実施形態によるA/D変換器1F、図5(c)は本発明の第7の実施形態によるA/D変換器1G、図5(d)は本発明の第8の実施形態によるA/D変換器1Hの概略構成を示す回路ブロック図である。なお、図5において図1、図3および図4と同一部分には同一符号を付してその説明は省略する。 5 (a) is an A / D converter 1E according to a fifth embodiment of the present invention, FIG. 5 (b) is an A / D converter 1F according to the sixth embodiment of the present invention, and FIG. An A / D converter 1G according to a seventh embodiment of the present invention, and FIG. 5D is a circuit block diagram showing a schematic configuration of an A / D converter 1H according to an eighth embodiment of the present invention. The same reference numerals as in FIGS. 1, 3 and 4 denote the same parts in FIG. 5, and a description thereof will be omitted.
 第5,第6,第7および第8の実施形態による各A/D変換器1E,1F,1Gおよび1Hは、加算器2と量子化器3との間に積分器7を備える点が、第1,第2,第3および第4の実施形態による各A/D変換器1A,1B,1Cおよび1Dと相違する。この点以外の構成は第1,第2,第3および第4の実施形態による各A/D変換器1A,1B,1Cおよび1Dと同様である。 Each of the A / D converters 1E, 1F, 1G and 1H according to the fifth, sixth, seventh and eighth embodiments includes an integrator 7 between the adder 2 and the quantizer 3; This differs from the A / D converters 1A, 1B, 1C and 1D according to the first, second, third and fourth embodiments. The configuration other than this point is the same as that of each of the A / D converters 1A, 1B, 1C and 1D according to the first, second, third and fourth embodiments.
 このような第5,第6,第7および第8の実施形態による各A/D変換器1E,1F,1Gおよび1Hによれば、加算器2と量子化器3との間に備える積分器7により、量子化雑音は、そのスペクトラム分布が高周波数領域で高くなる形にノイズシェーピングされる。このため、量子化雑音はデシメーションフィルタ5,第1および第2のデシメーションフィルタ5a,5b、並びにsincフィルタ5c,5dの各帯域制限機能によって効率よく除去され、SNRが改善されて、A/D変換出力Doutはさらにアナログ入力信号Uに忠実な出力となる。 According to the respective A / D converters 1E, 1F, 1G and 1H according to the fifth, sixth, seventh and eighth embodiments, an integrator provided between the adder 2 and the quantizer 3 At 7, the quantization noise is noise shaped in such a way that its spectral distribution becomes high in the high frequency domain. Therefore, the quantization noise is efficiently removed by the band limiting functions of the decimation filter 5, the first and second decimation filters 5a and 5b, and the sinc M filters 5c and 5d, and the SNR is improved, and the A / D is improved. The converted output Dout further becomes an output faithful to the analog input signal U.
 なお、上記の第1,第2,第3,第4,第5,第6,第7および第8の実施形態による各A/D変換器1A,1B,1C,1D,1E,1F,1Gおよび1Hにおいて、補償フィルタ6を積分器(1/(1-z-1))で構成するようにしてもよい。本構成によれば、単純な回路構成で補償フィルタ6を形成することができ、A/D変換器1A,1B,1C,1D,1E,1F,1Gおよび1Hの回路規模を小さくすることができる。このため、小型で低消費電力のA/D変換器1A,1B,1C,1D,1E,1F,1Gおよび1Hを提供することができる。 The A / D converters 1A, 1B, 1C, 1D, 1E, 1F, 1G according to the first, second, third, fourth, fifth, sixth, seventh and eighth embodiments described above. And 1H, the compensation filter 6 may be configured by an integrator (1 / (1-z.sup.- 1 )). According to this configuration, compensation filter 6 can be formed with a simple circuit configuration, and the circuit scale of A / D converters 1A, 1B, 1C, 1D, 1E, 1F, 1G and 1H can be reduced. . For this reason, it is possible to provide compact and low power consumption A / D converters 1A, 1B, 1C, 1D, 1E, 1F, 1G and 1H.
 1A,1B,1C,1D,1E,1F,1G,1H…A/D変換器
 2…加算器
 3…量子化器
 4…予測フィルタ
 5…デシメーションフィルタ
 5a…第1のデシメーションフィルタ
 5b…第2のデシメーションフィルタ
 5c,5d…sincフィルタ(M≧2)
 6…補償フィルタ
 7…積分器
1A, 1B, 1C, 1D, 1E, 1G, 1H ... A / D converter 2 ... adder 3 ... quantizer 4 ... prediction filter 5 ... decimation filter 5a ... first decimation filter 5b ... second Decimation filter 5c, 5d ... sinc M filter (M 2 2)
6 ... Compensation filter 7 ... Integrator

Claims (5)

  1.  アナログ入力信号と予測値との差分を演算する加算器と、前記加算器から出力される前記差分を量子化する量子化器と、前記量子化器から出力される信号から前記予測値を生成する予測フィルタと、前記加算器に入力されるアナログ入力信号がデジタル信号に変換されて出力されるA/D変換出力の周波数帯域を制限すると共にデータ周波数を引き下げるデシメーションフィルタとを備えるA/D変換器において、
     前記デシメーションフィルタは前記量子化器の出力に接続され、
     前記デシメーションフィルタの出力側において出力データの周波数特性を補償する補償フィルタを備える
     ことを特徴とするA/D変換器。
    An adder for calculating a difference between an analog input signal and a predicted value, a quantizer for quantizing the difference output from the adder, and a predicted value generated from a signal output from the quantizer A / D converter comprising: a prediction filter; and a decimation filter for limiting the frequency band of the A / D conversion output and converting the analog input signal input to the adder into a digital signal and outputting the digital signal. In
    The decimation filter is connected to the output of the quantizer,
    An A / D converter comprising a compensation filter which compensates frequency characteristics of output data at an output side of the decimation filter.
  2.  前記デシメーションフィルタは、
     前記量子化器の出力に接続されて、前記量子化器のデータ周波数より低くA/D変換出力のデータ周波数よりも高い中間データ周波数にデータ周波数を引き下げる第1のデシメーションフィルタと、
     前記補償フィルタの出力に接続されて、前記第1のデシメーションフィルタによって引き下げられた前記中間データ周波数からA/D変換出力のデータ周波数にデータ周波数をさらに引き下げる第2のデシメーションフィルタとに分割される
     ことを特徴とする請求項1に記載のA/D変換器。
    The decimation filter
    A first decimation filter connected to the output of the quantizer to lower the data frequency to an intermediate data frequency lower than the data frequency of the quantizer and higher than the data frequency of the A / D conversion output;
    Being connected to the output of the compensation filter and divided into a second decimation filter that further reduces the data frequency from the intermediate data frequency pulled down by the first decimation filter to the data frequency of the A / D conversion output. The A / D converter according to claim 1, characterized in that
  3.  前記デシメーションフィルタまたは前記第1のデシメーションフィルタは、2次以上のsincフィルタによって構成されることを特徴とする請求項1または請求項2に記載のA/D変換器。 The A / D converter according to claim 1 or 2, wherein the decimation filter or the first decimation filter is configured by a second-order or higher-order sinc filter.
  4.  前記加算器と前記量子化器との間に積分器を備えることを特徴とする請求項1から請求項3のいずれか1項に記載のA/D変換器。 The A / D converter according to any one of claims 1 to 3, further comprising an integrator between the adder and the quantizer.
  5.  前記補償フィルタは積分器で構成されることを特徴とする請求項1から請求項4のいずれか1項に記載のA/D変換器。 The A / D converter according to any one of claims 1 to 4, wherein the compensation filter is configured by an integrator.
PCT/JP2018/038902 2017-10-31 2018-10-18 A/d converter WO2019087809A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017210870 2017-10-31
JP2017-210870 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019087809A1 true WO2019087809A1 (en) 2019-05-09

Family

ID=66331710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038902 WO2019087809A1 (en) 2017-10-31 2018-10-18 A/d converter

Country Status (1)

Country Link
WO (1) WO2019087809A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509544A (en) * 1994-11-02 1998-09-14 アドバンスト・マイクロ・ディバイシス・インコーポレーテッド Monolithic PC audio circuit
JP2013042488A (en) * 2011-08-15 2013-02-28 Freescale Semiconductor Inc Configurable continuous time sigma delta analog-to-digital converter
WO2016021382A1 (en) * 2014-08-04 2016-02-11 アズビル株式会社 Digital filter
WO2017179508A1 (en) * 2016-04-15 2017-10-19 株式会社村田製作所 A/d converter and sensor device equipped with same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509544A (en) * 1994-11-02 1998-09-14 アドバンスト・マイクロ・ディバイシス・インコーポレーテッド Monolithic PC audio circuit
JP2013042488A (en) * 2011-08-15 2013-02-28 Freescale Semiconductor Inc Configurable continuous time sigma delta analog-to-digital converter
WO2016021382A1 (en) * 2014-08-04 2016-02-11 アズビル株式会社 Digital filter
WO2017179508A1 (en) * 2016-04-15 2017-10-19 株式会社村田製作所 A/d converter and sensor device equipped with same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FELTON, CHRISTOPHER L. ET AL.: "A Comparison of Efficient First Stage Decimation Filters for Continuous Time Delta Sigma Modulators", 2017 51ST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 29 October 2017 (2017-10-29), pages 473 - 477, XP033346082, DOI: doi:10.1109/ACSSC.2017.8335384 *

Similar Documents

Publication Publication Date Title
JP4443591B2 (en) Noise shaping circuit and method using feedback steering for overload compensation, and system using the same
US5682161A (en) High-order delta sigma modulator
US9007247B2 (en) Multi-bit sigma-delta modulator with reduced number of bits in feedback path
US6384761B1 (en) Second and higher order dynamic element matching in multibit digital to analog and analog to digital data converters
US20090309774A1 (en) Delta-sigma modulator
US8223051B2 (en) Multi-bit sigma-delta modulator with reduced number of bits in feedback path
JP4331188B2 (en) Digital / analog converter and signal digital / analog conversion method
JP3830924B2 (en) Cascaded delta-sigma modulator
US7453382B2 (en) Method and apparatus for A/D conversion
JP2010171484A (en) Semiconductor integrated circuit device
US7557744B2 (en) PWM driver and class D amplifier using same
US7436336B2 (en) Analog digital converter (ADC) having improved stability and signal to noise ratio (SNR)
JP4823244B2 (en) converter
US10659074B2 (en) Delta-sigma modulator, electronic device, and method for controlling delta-sigma modulator
JP3785361B2 (en) ΔΣ modulator, A / D converter and D / A converter
US6741197B1 (en) Digital-to-analog converter (DAC) output stage
JP4141865B2 (en) Modulator
JP4058175B2 (en) Audio signal processing device
WO2019087809A1 (en) A/d converter
KR100462483B1 (en) Circuit configuration for quantization of digital signals and for filtering quantization noise
US11799494B2 (en) Delta-sigma modulator, delta-sigma digital-analog converter, and method for operating a delta-sigma modulator and a delta-sigma digital-analog converter
KR101559456B1 (en) A low-power·low-area third order sigma-delta modulator with delayed feed-forward path
JP3799146B2 (en) 1-bit signal processor
JP3558911B2 (en) D / A converter
US11121718B1 (en) Multi-stage sigma-delta analog-to-digital converter with dither

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP