WO2019081054A1 - Electric motor comprising dual cooling - Google Patents
Electric motor comprising dual coolingInfo
- Publication number
- WO2019081054A1 WO2019081054A1 PCT/EP2018/000477 EP2018000477W WO2019081054A1 WO 2019081054 A1 WO2019081054 A1 WO 2019081054A1 EP 2018000477 W EP2018000477 W EP 2018000477W WO 2019081054 A1 WO2019081054 A1 WO 2019081054A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electric motor
- cooling
- jacket
- stator
- rotor
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/20—Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/20—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
- H02K5/203—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/02—Arrangements for cooling or ventilating by ambient air flowing through the machine
- H02K9/04—Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/02—Arrangements for cooling or ventilating by ambient air flowing through the machine
- H02K9/04—Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
- H02K9/06—Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/08—Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/10—Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/22—Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
- H02K9/227—Heat sinks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/26—Structural association of machines with devices for cleaning or drying cooling medium, e.g. with filters
Definitions
- the invention relates to an electric motor having a rotor which is connected in a rotationally fixed manner to a rotor shaft, to a housing which is provided with a cooling jacket through which a liquid can flow, which has an inner jacket and an outer jacket, and a stator which is fixedly arranged in the housing. which surrounds the rotor in the circumferential direction and which has at least one substantially axially extending cooling channel.
- EP 2 580 848 B1 shows a dynamo-electric machine with air-liquid cooling with a closed air cooling circuit.
- the inner shell has lugs on which the stator is attached, and cooling fins, where the air is cooled.
- a disadvantage of such an electric motor is complicated by the cooling fins and the lugs to be produced inner shell of the cooling jacket. Furthermore, the cooling of the stator takes place primarily by the convective air flow between the inner shell and the stator.
- Object of the present invention is to provide an electric motor of the type mentioned with an improved cooling system.
- a stator which contacts the inner jacket of the cooling jacket via a heat-transferring contact surface, the contact surface, viewed from one end side of the stator, comprising at least 50% of the envelope of the stator and / or the inner side of the inner jacket.
- the envelope means in the context of the invention, the lateral surface of an imaginary cylinder which extends around the stator or within the inner shell and on which the contact surface is arranged. For the calculation of the proportion, the respective smaller lateral surface is used. This causes at least 50% of a circumference, which includes the contact surfaces between the inner shell and stator, an intimate, heat-transferring contact between the stator and the inner jacket of the cooling jacket can be reduced.
- a gas or gas mixture such as, for example, air can be guided as a coolant through the stator.
- a gas or gas mixture such as, for example, air can be guided as a coolant through the stator.
- this results in a combined cooling via a convective heat transport through the coolant, in particular in the axially extending cooling channel, and heat removal by heat conduction via the electrically conductive material of the stator or of the inner jacket of the cooling jacket.
- the cooling of the stator and the temperature control in the electric motor, in particular in the region of the stator can be improved.
- the axial extent of the cooling jacket preferably corresponds at least to the axial extent of the stator. This ensures that a heat conductive contact not only in individual sections of at least 50% of the envelope of the stator and / or the inside of the inner shell comprises. Rather, this value is valid over the entire length of the stator. Thus, at least 50% of a lateral surface of a cylinder jacket enveloping the stator is in contact with the inside of the inner jacket. As a result, the heat dissipation is ensured by heat conduction from the stator to the inner jacket of the cooling jacket over the entire stator length and thus improved.
- At least one stagnation channel forming internals are arranged in the cooling jacket.
- the internals are spaced apart in the axial direction and extend in the circumferential direction between inner shell and outer coat.
- the internals each have at least one fluidic passage, wherein the passages of axially successive internals in the circumferential direction are arranged rotated against each other such that the internals in the cooling jacket form a flow channel with multiple deflection and flow division.
- Such installations which extend in the circumferential direction between the inner and outer shells, are to be realized in the manufacture of the cooling jacket in a simple manufacturing technology. Through such internals realized flow channels have multiple deflections and flow divisions and mergers of the cooling medium flow. Thus, a distribution of the cooling medium in the cooling jacket is realized in a simple manner and short-circuit currents are prevented.
- a homogenization of the cooling medium temperature is achieved by the division of the cooling medium flow and the subsequent remixing. This is particularly advantageous when it comes to the local hotspot formation in the electric motor, whereby two cooling medium streams having a different course in the cooling jacket, have different temperatures. Due to the mixing and repeated division, the temperature of the cooling medium is evened out here.
- the internals C-shaped extending between the inner shell and outer shell are arranged.
- Such C-shaped grooves in a particularly simple way have a corresponding fluidic passage and, for example, can be mutually rotated by 180 ° between the inner and outer sheath of the cooling jacket, in order to form a corresponding flow channel.
- the flow passage is defined by the clearance between the Formed ends of these installations and is thus automatically as high as the distance between the inner and outer sheath. Additional pressure losses are avoided.
- the internals extend by 270 ° to 350 °, in particular 320 ° to 340 °, between the inner and outer sheath. This ensures that on the one hand there is sufficient guidance of the coolant fluid through the C-shaped internals and, on the other hand, that the pressure loss in the cooling jacket is largely minimized.
- the distance between the two ends of the C-shaped internals is chosen so that the cross section between the two ends of the C-shaped internals between inner and outer shells approximately twice the area as a cross-section in the longitudinal direction of the motor between two directly successive internals , Thus, changes in the dimensions of the flow cross-section are reduced in the cooling jacket and optimized the flow guidance in the cooling jacket.
- the electric motor has a fan for generating a coolant flow, in particular a gas or gas mixture stream in an inner space accommodating the stator and the rotor.
- a forced convection in the region of the stator and rotor can be generated.
- the fan can in this case be designed as an axial fan, which is arranged in an extension of the axis of rotation of the rotor shaft or as a radial fan, which is offset relative to this axis of rotation, in particular in the radial direction outside of the housing and via a Coolant conductive connection with the interior is in communication.
- the fan can accelerate the coolant in either the axial or radial direction with respect to the direction of rotation of the fan.
- the fan is rotatably mounted on the rotor shaft.
- a coolant flow is continuously generated during operation of the electric motor.
- Such a fan is automatically in operation when the corresponding electric motor is in operation and rotates the rotor shaft.
- a particularly reliable cooling of the electric motor is achieved by the coolant.
- the structural complexity is relatively low, since a separate drive of the fan is unnecessary.
- the fan has its own and independent of the rotor shaft drive.
- the rotational speed of the fan can be controlled independently of the rotational speed of the rotor shaft or of the electric motor.
- the fan is arranged in the interior. Due to the arrangement of the fan in the interior, which also accommodates the stator and rotor of the electric motor, a compact design of a corresponding electric motor can be achieved. be enough.
- the interior is closed.
- the fan arranged in the interior thus generates a circulation of the coolant in the interior of the electric motor. Characterized in that the interior of the electric motor is separated in the closed version of the environment, an entry of foreign bodies is avoided in the interior. This is particularly important for the use of the electric motor according to the invention in harsh environments with high pollution load or if there is a lot of moisture in the environment. Thus, short circuits in the electrical system in the interior of the electric motor can be avoided. A dissipation of heat from the electric motor takes place in this case almost exclusively by the coolant jacket flowing through the cooling medium.
- the rotor has at least one substantially axially extending cooling channel. Through this cooling channel and the rotor can be flowed through by the coolant and cooled accordingly. The temperature control of the electric motor is thus improved.
- a cooling channel extending in the rotor is particularly advantageous in electric motors with a closed interior, since the coolant flow generated by the fan can thus form a cooling circuit which comprises the cooling channel in the rotor and the cooling channel in the stator, so that the coolant flows via the one cooling channel from the fan away and back to the fan via the other cooling channel.
- the electric motor has a cooling control, which comprises at least one sensor unit and is designed to control the cooling of the electric motor.
- the at least one sensor unit can be arranged in the interior of the electric motor, on the stator, on the rotor or in the region of the cooling medium inflow or cooling medium outflow of the cooling jacket or at another suitable location.
- the sensor unit can measure, for example, the flow rates or pressure losses.
- the sensor unit particularly preferably absorbs the temperature.
- the cooling control evaluates the signal of the sensor unit and controls the cooling of the electric motor accordingly.
- the cooling control is designed so that it controls the flow through the cooling jacket.
- the need for cooling medium as well as the energy needed to deliver the cooling medium through the cooling jacket can be adjusted to the current cooling requirements of the electric motor.
- the electric motor to the fan with its own, independent of the rotor shaft drive, wherein the cooling control is designed to control the speed of the fan.
- the flow of the coolant in the region of the stator and rotor can be controlled and adapted to the current coolant requirement.
- the energy required for the drive of the fan is optimized and ensures always sufficient cooling of the rotor and stator via the coolant.
- the sensor unit is arranged in the interior of the electric motor. In this case, it may in particular be arranged directly on the stator or on the rotor and directly record the temperatures of these components. Further advantageous embodiments of the invention will be explained in more detail with reference to the embodiments illustrated below. Show:
- FIG. 2 shows a cross-section at right angles to the longitudinal central axis of the electric motor according to FIG. 1;
- FIG. 3 shows a view of the housing of the electric motor according to the invention according to FIG. 1 with the stator;
- Fig. 4 is a view of the housing with the stator of Figure 3 taken along the longitudinal center axis.
- FIG. 5 shows a view of a rotor of an electric motor according to the invention from the end face
- FIG. 6 shows the longitudinal cross section of the rotor according to FIG. 5;
- FIG. 8 shows the housing according to FIG. 7 in a view from the side
- FIG. Fig. 9 shows the cross section through the housing of FIG. 8, and
- FIG. 10 shows a housing in an alternative embodiment.
- FIG. 1 shows an electric motor 2 with a housing 4, in which a stator 6 is arranged, which comprises a rotor 8.
- the rotor 8 is rotatably connected to a rotor shaft 10.
- the housing 4 has a cooling jacket 12 which has an inner jacket 14 and an outer jacket 16.
- internals 18 are fitted between the inner jacket 14 and the outer jacket 16, through which flow channels 20 are formed in the cooling jacket 12.
- flow channels 20 are formed in the cooling jacket 12.
- the stator 6 is connected via a heat-transferring contact surface 22 in a heat-conducting contact with the inner jacket 14 of the cooling jacket 12. In this way, excess energy can be discharged from the stator 6 to the cooling jacket 12 and discharged there by the cooling medium from the electric motor 2.
- the stator 6 and the rotor 8 are arranged in an inner space 24 of the electric motor 2.
- a fan 26 is rotatably disposed on the rotor shaft 10. Through this Fan is a coolant in the interior 24 upon rotation of the rotor shaft 10 is set in motion and flows through cooling channels 28 in the stator 6 and cooling channels 30 in the rotor 8 in the interior 24 on the stator 6 and rotor 8 over and cools them.
- Fig. 2 shows an electric motor according to Fig. 1 in a cross section.
- the cooling channels 28 of the stator 6 and the cooling channels 30 of the rotor 8 are clearly visible.
- the cooling jacket 12 internals 18 can be seen.
- the internals 18 each have a passage 32 through which the areas separated by the internals in the axial direction are in fluid communication.
- FIG. 3 shows the housing 4 of the electric motor with the cooling jacket 12 comprising the inner jacket 14 and the outer jacket 16, in which the internals 18 form flow channels 20.
- a stator 6 is arranged in the housing 4.
- Fig. 4 shows the housing 4 with the stator 6 arranged therein in a view from the front side.
- the cooling channels 28 in the stator 6 are clearly visible.
- the cooling channels 28 are mounted on the edge of the stator 6.
- An envelope of the stator coincides more than 50% with the contact surface 22 between the stator 6 and the inner jacket 14 of the cooling jacket 12 together. As a result, a large area is provided for heat transfer from the stator 6 into the cooling jacket 12 via solid-state heat conduction.
- the cooling channels 28 in the stator 6 can in this case also be arranged in the stator 6 in such a way that the outside of the stator 6 abuts the entire surface of the inner jacket 14 of the cooling jacket 12.
- the cooling channels 28 in the stator 6 then run not only along the stator 6 but within the stator 6.
- the rotor 8 is shown in Fig. 5 in a view from the front side, in which the cooling channels 30 of the rotor 8 can be clearly seen.
- Fig. 6 shows the same rotor 8 with the cooling channel 30 in a cross section.
- FIG. 7 shows a part of the housing 4, with the inner shells 14 of the cooling jacket 12, are fixed to the fixtures 18.
- the baffles 18 are in this case designed as C-shaped elements extending in the circumferential direction around the inner shell. Between the ends of the C-shaped internals 18, a passage 32 is formed, through which the areas defined by the internals are in a fluidic connection. In this case, it is easy to see how the internals 18 in the cooling jacket 12 form a flow channel 20, in which a multiple deflection and current division of the cooling medium and a back mixing of the cooling medium takes place.
- FIG. 8 shows this part of a housing 4 with the inner jacket 14 of the cooling jacket 12 and the internals 18 arranged on the inner jacket 14.
- FIG. 9 shows the housing in a section which is laid through the apertures 32 of the fixtures 18. It can be seen that the C-shaped internals are mutually offset by 180 0 offset.
- FIG. 10 shows a housing 4 in an alternative embodiment with a fan 26 arranged outside an interior 24.
- the fan 26 has a separate drive, which is designed here as an electric motor.
- the coolant is sucked in from outside the electric motor 2 through a filter and discharged back to the outside through an outlet opening after flowing through the interior 24 which is open to the outside.
- By an arrangement of the fan 26 outside the interior 24 can be realized in comparison with an arrangement of the fan 26 in the interior shorter overall length of the electric motor 2.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
The invention relates to an electric motor (2) comprising: a rotor (8) which is connected to a rotor shaft (10) for conjoint rotation therewith; a housing (4) which is provided with a cooling jacket (12), in particular a cooling jacket through which a fluid can flow and which has an inner jacket (14) and an outer jacket (16); and a stator (6) which is fixed in the housing (4), surrounds the rotor (8) in a circumferential direction and has at least one cooling channel (28) extending substantially axially. The stator (6) contacts the inner jacket (14) of the cooling jacket (12) via a heat transferring contact surface (22), and the contact surface (22) when viewed from an end face of the stator (6), comprises at least 50% of the envelope of the stator (6) and/or the inner face of the inner jacket (14).
Description
Elektromotor mit zweifacher Kühlung Electric motor with dual cooling
Die Erfindung betrifft einen Elektromotor mit einem Rotor, der mit einer Rotorwelle drehfest verbunden ist, mit einem Gehäuse, das mit einem insbesondere von einer Flüssigkeit durchströmbaren Kühlmantel versehen ist, der einen Innenmantel und einen Außenmantel aufweist, und mit einem ortsfest im Gehäuse angeordneten Stator, der den Rotor in Umfangsrichtung umgibt und der wenigstens einen im Wesentlichen axial verlaufenden Kühlkanal aufweist. The invention relates to an electric motor having a rotor which is connected in a rotationally fixed manner to a rotor shaft, to a housing which is provided with a cooling jacket through which a liquid can flow, which has an inner jacket and an outer jacket, and a stator which is fixedly arranged in the housing. which surrounds the rotor in the circumferential direction and which has at least one substantially axially extending cooling channel.
Derartige Elektromotoren sind im Stand der Technik bekannt. So zeigt beispielsweise die EP 2 580 848 B1 eine dynamoelektrische Maschine mit Luft-Flüssigkühlung mit einem geschlossenen Luftkühlkreislauf. Hierbei weist der Innenmantel Ansätze auf, an denen der Stator befestigt wird, sowie Kühlrippen, an denen die Luft gekühlt wird. Such electric motors are known in the art. For example, EP 2 580 848 B1 shows a dynamo-electric machine with air-liquid cooling with a closed air cooling circuit. Here, the inner shell has lugs on which the stator is attached, and cooling fins, where the air is cooled.
Nachteilig bei einem derartigen Elektromotor ist der durch die Kühlrippen sowie die Ansätze aufwändig zu fertigende Innenmantel des Kühlmantels. Weiterhin erfolgt die Kühlung des Stators vornehmlich durch den konvektiven Luftstrom zwischen dem Innenmantel und dem Stator. A disadvantage of such an electric motor is complicated by the cooling fins and the lugs to be produced inner shell of the cooling jacket. Furthermore, the cooling of the stator takes place primarily by the convective air flow between the inner shell and the stator.
Aufgabe der vorliegenden Erfindung ist es, einen Elektromotor der eingangs genannten Art mit einem verbesserten Kühlungssystem zu schaffen. Object of the present invention is to provide an electric motor of the type mentioned with an improved cooling system.
BESTÄTIGUNGSKOPIE
Gelöst wird die Aufgabe durch einen Stator, der über eine Wärme übertragende Kontaktfläche den Innenmantel des Kühlmantels kontaktiert, wobei die Kontaktfläche von einer Stirnseite des Stators betrachtet mindestens 50 % der Einhüllenden des Stators und/oder der Innenseite des Innenmantels umfasst. Die Einhüllende meint im Rahmen der Erfindung die Mantelfläche eines gedachten Zylinders, der sich um den Stator bzw. innerhalb des Innenmantels erstreckt und auf der die Kontaktfläche angeordnet ist. Für die Berechnung des Anteils wird dabei die jeweils kleinere Mantelfläche herangezogen. Dadurch wird bewirkt, dass auf mindestens 50 % eines Kreisumfanges, der die Kontaktflächen zwischen Innenmantel und Stator einschließt, ein inniger, Wärme übertragender Kontakt zwischen Stator und Innenmantel des Kühlmantels reduziert werden kann. Überschüssige Wärmeenergie kann aus dem Statormaterial über eine Festkörperwärmeleitung in den Innenmantel transportiert und durch das im Kühlmantel zirkulierende Kühlmedium aus dem Elektromotor ausgetragen werden. Für den Wärmetransport zwischen dem Festkörper werden hierbei die im Vergleich zu Gasen hohen Wärmeleitfähigkeiten von elektrisch leitfähigen, metallischen Körpern genutzt. CONFIRMATION COPY The object is achieved by a stator, which contacts the inner jacket of the cooling jacket via a heat-transferring contact surface, the contact surface, viewed from one end side of the stator, comprising at least 50% of the envelope of the stator and / or the inner side of the inner jacket. The envelope means in the context of the invention, the lateral surface of an imaginary cylinder which extends around the stator or within the inner shell and on which the contact surface is arranged. For the calculation of the proportion, the respective smaller lateral surface is used. This causes at least 50% of a circumference, which includes the contact surfaces between the inner shell and stator, an intimate, heat-transferring contact between the stator and the inner jacket of the cooling jacket can be reduced. Excess heat energy can be transported from the stator material via a solid heat pipe into the inner jacket and discharged through the cooling medium circulating in the cooling jacket from the electric motor. For the heat transfer between the solid here in comparison to gases high thermal conductivity of electrically conductive, metallic bodies are used.
Durch den im Wesentlichen axial verlaufenden Kühlkanal im Stator kann zudem ein Gas oder Gasgemisch wie beispielsweise Luft als Kühlmittel durch den Stator geführt werden. In Summe ergibt sich somit eine kombinierte Kühlung über einen kon- vektiven Wärmetransport durch das Kühlmittel insbesondere im axial verlaufenden Kühlkanal sowie einen Wärmeabtransport durch Wärmeleitung über das elektrisch leitfähige Material des Stators bzw. des Innenmantels des Kühlmantels. Somit kann
die Kühlung des Stators sowie die Temperaturkontrolle im Elektromotor, insbesondere im Bereich des Stators, verbessert werden. Due to the substantially axially extending cooling channel in the stator, a gas or gas mixture such as, for example, air can be guided as a coolant through the stator. In sum, this results in a combined cooling via a convective heat transport through the coolant, in particular in the axially extending cooling channel, and heat removal by heat conduction via the electrically conductive material of the stator or of the inner jacket of the cooling jacket. Thus, can the cooling of the stator and the temperature control in the electric motor, in particular in the region of the stator can be improved.
Bevorzugt entspricht die axiale Ausdehnung des Kühlmantels zumindest der axialen Ausdehnung des Stators. Hierdurch wird sichergestellt, dass ein Wärme leitender Kontakt nicht nur in einzelnen Abschnitten von mindestens 50 % der Einhüllenden des Stators und/oder der Innenseite des Innenmantels umfasst. Vielmehr hat dieser Wert Gültigkeit über die gesamte Länge des Stators. Somit stehen mindestens 50 % einer Mantelfläche eines den Stator einhüllenden Zylindermantels in Kontakt mit der Innenseite des Innenmantels. Hierdurch wird der Wärmeabtransport durch Wärmeleitung aus dem Stator an den Innenmantel des Kühlmantels über die gesamte Statorlänge gewährleistet und somit verbessert. The axial extent of the cooling jacket preferably corresponds at least to the axial extent of the stator. This ensures that a heat conductive contact not only in individual sections of at least 50% of the envelope of the stator and / or the inside of the inner shell comprises. Rather, this value is valid over the entire length of the stator. Thus, at least 50% of a lateral surface of a cylinder jacket enveloping the stator is in contact with the inside of the inner jacket. As a result, the heat dissipation is ensured by heat conduction from the stator to the inner jacket of the cooling jacket over the entire stator length and thus improved.
Mit Vorteil sind im Kühlmantel mindestens einen Störmungskanal ausbildende Einbauten angeordnet. Hierdurch erfolgt eine Führung des Kühlmediums, insbesondere einer Flüssigkeit im Kühlmantel, die eine gezielte und insbesondere gleichmäßige Verteilung des Kühlmediums und somit eine gleichmäßige Kühlung des Kühlmantels bewirkt. Kurzschlussströmungen des Kühlmediums sowie Bildung von Hotspots, die in Folge einer nicht ausreichenden Überströmung mit Kühlmedium überhöhte Temperaturen aufweisen, werden somit vermieden, der Strömungskanal kann hierbei beispielsweise einen spiralförmigen oder mäanderförmigen Verlauf aufweisen. Advantageously, at least one stagnation channel forming internals are arranged in the cooling jacket. This results in a guide of the cooling medium, in particular a liquid in the cooling jacket, which causes a targeted and in particular uniform distribution of the cooling medium and thus a uniform cooling of the cooling jacket. Short-circuit flows of the cooling medium and the formation of hotspots, which have excessive temperatures as a result of insufficient overflow with cooling medium, are thus avoided, the flow channel can in this case, for example, have a spiral or meandering course.
Besonders bevorzugt sind die Einbauten in axialer Richtung voneinander beabstandet und erstrecken sich in Umfangsrichtung zwischen Innenmantel und Außen-
mantel. Die Einbauten weisen jeweils mindestens einen fluidtechnischen Durchlass auf, wobei die Durchlässe von in axialer Richtung aufeinanderfolgenden Einbauten in Umfangsrichtung derart gegeneinander verdreht angeordnet sind, dass die Einbauten im Kühlmantel einen Strömungskanal mit mehrfacher Umlenkung und Stromteilung ausbilden. Derartige Einbauten, die sich in Umfangsrichtung zwischen Innen- und Außenmantel erstrecken, sind bei der Fertigung des Kühlmantels auf fertigungstechnisch einfache Weise zu realisieren. Durch derartige Einbauten realisierte Strömungskanäle weisen mehrfache Umlenkungen und Stromteilungen sowie Zusammenführungen des Kühlmediumstroms auf. Somit wird auf einfache Weise eine Verteilung des Kühlmediums im Kühlmantel realisiert und Kurzschlussströmungen werden verhindert. Zudem wird durch die Teilung des Kühlmediumstroms und die anschließende Wiedervermischung eine Vergleichmäßigung der Kühlmediumtemperatur erreicht. Dies ist insbesondere vorteilhaft, wenn es zur lokalen Hotspot-Bildung im Elektromotor kommt, wodurch zwei Kühlmediumströme, die einen unterschiedlichen Verlauf im Kühlmantel aufweisen, unterschiedliche Temperaturen aufweisen. Durch die Vermischung und wiederholte Teilung kommt es hier zu einer Vergleichmäßigung der Temperatur des Kühlmediums. Particularly preferably, the internals are spaced apart in the axial direction and extend in the circumferential direction between inner shell and outer coat. The internals each have at least one fluidic passage, wherein the passages of axially successive internals in the circumferential direction are arranged rotated against each other such that the internals in the cooling jacket form a flow channel with multiple deflection and flow division. Such installations, which extend in the circumferential direction between the inner and outer shells, are to be realized in the manufacture of the cooling jacket in a simple manufacturing technology. Through such internals realized flow channels have multiple deflections and flow divisions and mergers of the cooling medium flow. Thus, a distribution of the cooling medium in the cooling jacket is realized in a simple manner and short-circuit currents are prevented. In addition, a homogenization of the cooling medium temperature is achieved by the division of the cooling medium flow and the subsequent remixing. This is particularly advantageous when it comes to the local hotspot formation in the electric motor, whereby two cooling medium streams having a different course in the cooling jacket, have different temperatures. Due to the mixing and repeated division, the temperature of the cooling medium is evened out here.
Besonders bevorzugt sind die Einbauten C-förmig zwischen Innenmantel und Außenmantel erstreckt angeordnet. Derartige C-förmige Rinnen weisen auf eine besonders einfache Art einen entsprechenden fluidtechnischen Durchlass auf und können beispielsweise wechselseitig um 180° verdreht zwischen Innen- und Außenmantel des Kühlmantels angebracht sein, um einen entsprechenden Strömungskanal auszubilden. Der Strömungsdurchlass wird durch den Freiraum zwischen den
Enden dieser Einbauten gebildet und ist somit automatisch so hoch wie der Abstand zwischen Innen- und Außenmantel. Zusätzliche Druckverluste werden vermieden. Particularly preferably, the internals C-shaped extending between the inner shell and outer shell are arranged. Such C-shaped grooves in a particularly simple way have a corresponding fluidic passage and, for example, can be mutually rotated by 180 ° between the inner and outer sheath of the cooling jacket, in order to form a corresponding flow channel. The flow passage is defined by the clearance between the Formed ends of these installations and is thus automatically as high as the distance between the inner and outer sheath. Additional pressure losses are avoided.
Besonders bevorzugt erstrecken sich die Einbauten um 270° bis 350°, insbesondere 320° bis 340°, zwischen Innen- und Außenmantel. Hierdurch ist sichergestellt, dass einerseits eine ausreichende Führung des Kühlmittelfluids durch die C-förmigen Einbauten erfolgt und andererseits der Druckverlust im Kühlmantel weitgehend minimiert wird. Besonders bevorzugt ist der Abstand der beiden Enden der C-förmigen Einbauten so gewählt, dass der Querschnitt zwischen den beiden Enden der C-förmigen Einbauten zwischen Innen- und Außenmantel ungefähr die doppelte Fläche aufweist wie ein Querschnitt in Längsrichtung des Motors zwischen zwei direkt aufeinanderfolgenden Einbauten. Somit werden Änderungen der Abmessungen des Strömungsquerschnitts im Kühlmantel vermindert und die Strömungsführung im Kühlmantel optimiert. Particularly preferably, the internals extend by 270 ° to 350 °, in particular 320 ° to 340 °, between the inner and outer sheath. This ensures that on the one hand there is sufficient guidance of the coolant fluid through the C-shaped internals and, on the other hand, that the pressure loss in the cooling jacket is largely minimized. Particularly preferably, the distance between the two ends of the C-shaped internals is chosen so that the cross section between the two ends of the C-shaped internals between inner and outer shells approximately twice the area as a cross-section in the longitudinal direction of the motor between two directly successive internals , Thus, changes in the dimensions of the flow cross-section are reduced in the cooling jacket and optimized the flow guidance in the cooling jacket.
Vorteilhafterweise weist der Elektromotor einen Ventilator zum Erzeugen eines Kühlmittelstroms auf, insbesondere eines Gas- oder Gasgemischstroms in einem den Stator und den Rotor aufnehmenden Innenraum. Hierdurch kann eine erzwungene Konvektion im Bereich des Stators und Rotors erzeugt werden. Dies verbessert die Kühlung von Rotor und Stator und führt zu einer verbesserten Temperaturkontrolle im Bereich des Rotors und Stators. Der Ventilator kann hierbei als Axiallüfter ausgeführt werden, der in einer Verlängerung der Drehachse der Rotorwelle angeordnet ist oder als Radiallüfter, der gegenüber dieser Drehachse versetzt, insbesondere in radialer Richtung außerhalb des Gehäuses angeordnet und über eine
Kühlmittel leitende Verbindung mit dem Innenraum in Verbindung stehend ist. Durch den Ventilator kann das Kühlmittel entweder in axiale oder in radiale Richtung in Bezug auf die Drehrichtung des Ventilators beschleunigt werden. Advantageously, the electric motor has a fan for generating a coolant flow, in particular a gas or gas mixture stream in an inner space accommodating the stator and the rotor. As a result, a forced convection in the region of the stator and rotor can be generated. This improves the cooling of the rotor and stator and leads to an improved temperature control in the area of the rotor and stator. The fan can in this case be designed as an axial fan, which is arranged in an extension of the axis of rotation of the rotor shaft or as a radial fan, which is offset relative to this axis of rotation, in particular in the radial direction outside of the housing and via a Coolant conductive connection with the interior is in communication. The fan can accelerate the coolant in either the axial or radial direction with respect to the direction of rotation of the fan.
In einer bevorzugten Ausführungsform ist der Ventilator drehfest auf der Rotorwelle angeordnet. Hierdurch wird im Betrieb des Elektromotors kontinuierlich ein Kühlmittelstrom erzeugt. Ein derartiger Ventilator ist automatisch in Betrieb, wenn der entsprechende Elektromotor in Betrieb ist und sich die Rotorwelle dreht. Hierdurch wird eine besonders zuverlässige Kühlung des Elektromotors durch das Kühlmittel erreicht. Der bauliche Aufwand ist vergleichsweise gering, da ein separater Antrieb des Ventilators entbehrlich ist. In a preferred embodiment, the fan is rotatably mounted on the rotor shaft. As a result, a coolant flow is continuously generated during operation of the electric motor. Such a fan is automatically in operation when the corresponding electric motor is in operation and rotates the rotor shaft. As a result, a particularly reliable cooling of the electric motor is achieved by the coolant. The structural complexity is relatively low, since a separate drive of the fan is unnecessary.
In einer alternativen bevorzugten Ausführungsform weist der Ventilator einen eigenen und von der Rotorwelle unabhängigen Antrieb auf. In dieser Ausführungsform kann die Drehzahl des Ventilators unabhängig von der Drehzahl der Rotorwelle bzw. des Elektromotors gesteuert werden. Hierdurch wird eine bessere Anpassung des durch den Ventilator geförderten Kühlmittelstroms am Rotor und Stator vorbei gewährleistet. So kann sichergestellt werden, dass ein gleichmäßig hoher Kühlmittelstrom gerade auch bei niedrigen Drehzahlen des Elektromotors zur Verfügung steht. In an alternative preferred embodiment, the fan has its own and independent of the rotor shaft drive. In this embodiment, the rotational speed of the fan can be controlled independently of the rotational speed of the rotor shaft or of the electric motor. As a result, a better adaptation of the funded by the fan coolant flow on the rotor and stator is ensured. This ensures that evenly high coolant flow is available even at low engine speeds.
Mit Vorteil ist der Ventilator im Innenraum angeordnet. Durch die Anordnung des Ventilators in dem Innenraum, der ebenso den Stator und Rotor des Elektromotors aufnimmt, kann eine kompakte Gestaltung eines entsprechenden Elektromotors er-
reicht werden. Besonders bevorzugt ist der Innenraum geschlossen. Der im Innenraum angeordnete Ventilator erzeugt somit eine Zirkulation des Kühlmittels im Innenraum des Elektromotors. Dadurch, dass der Innenraum des Elektromotors in der geschlossenen Variante von der Umgebung getrennt ist, wird ein Eintragen von Fremdkörpern in den Innenraum vermieden. Dies ist besonders wichtig für die Verwendung des erfindungsgemäßen Elektromotors in rauen Umgebungen mit hoher Schmutzlast oder wenn viel Feuchtigkeit in der Umgebung vorhanden ist. Somit können Kurzschlüsse in der Elektrik im Innenraum des Elektromotors vermieden werden. Eine Abführung der Wärme aus dem Elektromotor erfolgt in diesem Fall fast ausschließlich durch das den Kühlmantel durchströmende Kühlmedium. Advantageously, the fan is arranged in the interior. Due to the arrangement of the fan in the interior, which also accommodates the stator and rotor of the electric motor, a compact design of a corresponding electric motor can be achieved. be enough. Particularly preferably, the interior is closed. The fan arranged in the interior thus generates a circulation of the coolant in the interior of the electric motor. Characterized in that the interior of the electric motor is separated in the closed version of the environment, an entry of foreign bodies is avoided in the interior. This is particularly important for the use of the electric motor according to the invention in harsh environments with high pollution load or if there is a lot of moisture in the environment. Thus, short circuits in the electrical system in the interior of the electric motor can be avoided. A dissipation of heat from the electric motor takes place in this case almost exclusively by the coolant jacket flowing through the cooling medium.
Mit Vorteil weist der Rotor wenigstens einen im Wesentlichen axial verlaufenden Kühlkanal auf. Durch diesen Kühlkanal kann auch der Rotor von dem Kühlmittel durchströmt und entsprechend gekühlt werden. Die Temperatursteuerung des Elektromotors wird somit verbessert. Besonders vorteilhaft ist ein derartiger im Rotor verlaufender Kühlkanal in Elektromotoren mit geschlossenen Innenraum, da der durch den Ventilator erzeugte Kühlmittelstrom somit einen Kühlkreislauf ausbilden kann, der den Kühlkanal im Rotor und den Kühlkanal im Stator umfasst, so dass das Kühlmittel über den einen Kühlkanal vom Ventilator weg und über den anderen Kühlkanal zum Ventilator zurückströmen kann. Durch einen derart zirkulierenden Kühlmittelstrom im Innenraum des Elektromotors wird die Kühlung und somit die Temperaturkontrolle im Innenraum des Elektromotors verbessert.
Vorzugsweise weist der Elektromotor eine Kühlungssteuerung auf, die zumindest eine Sensoreinheit umfasst und die Kühlung des Elektromotors steuernd ausgebildet ist. Hierbei kann die zumindest eine Sensoreinheit im Innenraum des Elektromotors, am Stator, am Rotor oder im Bereich des Kühlmediumzuflusses oder Kühlmediumabflusses des Kühlmantels oder an anderer geeigneter Stelle angeordnet sein. Die Sensoreinheit kann hierbei beispielsweise die Durchflussmengen oder Druckverluste messen. Besonders bevorzugt nimmt die Sensoreinheit jedoch die Temperatur auf. Die Kühlungssteuerung wertet das Signal der Sensoreinheit aus und steuert die Kühlung des Elektromotors entsprechend. Besonders bevorzugt ist die Kühlungssteuerung dabei so ausgestaltet, dass sie die Durchströmung des Kühlmantels steuert. Somit kann der Bedarf an Kühlmedium sowie die Energie, die für die Förderung des Kühlmediums durch den Kühlmantel nötig ist, an den aktuellen Kühlungsbedarf des Elektromotors angepasst werden. Besonders bevorzugt weist der Elektromotor den Ventilator mit einem eigenen, von der Rotorwelle unabhängigen Antrieb auf, wobei die Kühlungssteuerung die Drehzahl des Ventilators steuernd ausgebildet ist. Somit kann die Strömung des Kühlmittels im Bereich des Stators und Rotors gesteuert und an den aktuellen Kühlmittelbedarf angepasst werden. Somit wird der Energiebedarf für den Antrieb des Ventilators optimiert und eine stets ausreichende Kühlung von Rotor und Stator über das Kühlmittel sichergestellt. Advantageously, the rotor has at least one substantially axially extending cooling channel. Through this cooling channel and the rotor can be flowed through by the coolant and cooled accordingly. The temperature control of the electric motor is thus improved. Such a cooling channel extending in the rotor is particularly advantageous in electric motors with a closed interior, since the coolant flow generated by the fan can thus form a cooling circuit which comprises the cooling channel in the rotor and the cooling channel in the stator, so that the coolant flows via the one cooling channel from the fan away and back to the fan via the other cooling channel. By such a circulating coolant flow in the interior of the electric motor, the cooling and thus the temperature control in the interior of the electric motor is improved. Preferably, the electric motor has a cooling control, which comprises at least one sensor unit and is designed to control the cooling of the electric motor. In this case, the at least one sensor unit can be arranged in the interior of the electric motor, on the stator, on the rotor or in the region of the cooling medium inflow or cooling medium outflow of the cooling jacket or at another suitable location. The sensor unit can measure, for example, the flow rates or pressure losses. However, the sensor unit particularly preferably absorbs the temperature. The cooling control evaluates the signal of the sensor unit and controls the cooling of the electric motor accordingly. Particularly preferably, the cooling control is designed so that it controls the flow through the cooling jacket. Thus, the need for cooling medium as well as the energy needed to deliver the cooling medium through the cooling jacket can be adjusted to the current cooling requirements of the electric motor. Particularly preferably, the electric motor to the fan with its own, independent of the rotor shaft drive, wherein the cooling control is designed to control the speed of the fan. Thus, the flow of the coolant in the region of the stator and rotor can be controlled and adapted to the current coolant requirement. Thus, the energy required for the drive of the fan is optimized and ensures always sufficient cooling of the rotor and stator via the coolant.
Besonders bevorzugt ist die Sensoreinheit im Innenraum des Elektromotors angeordnet. Hierbei kann sie insbesondere direkt am Stator oder am Rotor angeordnet sein und unmittelbar die Temperaturen dieser Bauteile aufnehmen.
Weitere vorteilhafte Ausgestaltungen der Erfindung werden anhand der nachfolgend dargestellten Ausführungsbeispiele näher erläutert. Darin zeigen: Particularly preferably, the sensor unit is arranged in the interior of the electric motor. In this case, it may in particular be arranged directly on the stator or on the rotor and directly record the temperatures of these components. Further advantageous embodiments of the invention will be explained in more detail with reference to the embodiments illustrated below. Show:
Fig. 1 einen Querschnitt in Längsrichtung durch einen erfindungsgemäßen 1 shows a cross section in the longitudinal direction through an inventive
Elektromotor; Electric motor;
Fig. 2 einen Querschnitt rechtwinklig zur Längsmittelachse des Elektromotors nach Fig. 1 ; FIG. 2 shows a cross-section at right angles to the longitudinal central axis of the electric motor according to FIG. 1; FIG.
Fig. 3 eine Ansicht des Gehäuses des erfindungsgemäßen Elektromotors nach Fig. 1 mit dem Stator; FIG. 3 shows a view of the housing of the electric motor according to the invention according to FIG. 1 with the stator; FIG.
Fig. 4 eine Ansicht des Gehäuses mit Stator nach Fig. 3 entlang der Längsmittelachse betrachtet; Fig. 4 is a view of the housing with the stator of Figure 3 taken along the longitudinal center axis.
Fig. 5 eine Ansicht eines Rotors eines erfindungsgemäßen Elektromotors von der Stirnseite; 5 shows a view of a rotor of an electric motor according to the invention from the end face;
Fig. 6 den Längsquerschnitt des Rotors nach Fig. 5; FIG. 6 shows the longitudinal cross section of the rotor according to FIG. 5; FIG.
Fig. 7 den Innenmantel eines Kühlmantels eines erfindungsgemäßen Elektromotors mit Einbauten; 7 shows the inner jacket of a cooling jacket of an electric motor according to the invention with internals;
Fig. 8 das Gehäuse nach Fig. 7 in einer Ansicht von der Seite,
Fig. 9 den Querschnitt durch das Gehäuse nach Fig. 8, und 8 shows the housing according to FIG. 7 in a view from the side, FIG. Fig. 9 shows the cross section through the housing of FIG. 8, and
Fig. 10 ein Gehäuse in einer alternativen Ausgestaltung. 10 shows a housing in an alternative embodiment.
Nachfolgend werden gleichwirkende Elemente der Erfindung mit einer einheitlichen Bezugsziffer versehen. Die nachfolgend beschriebenen Merkmale der Ausführungsbeispiele können auch in anderen Merkmalskombinationen als dargestellt Gegenstand der Erfindung sein. Hereinafter, equivalent elements of the invention are given a common reference numeral. The features of the exemplary embodiments described below can also be the subject of the invention in other combinations of features.
Fig. 1 zeigt einen Elektromotor 2 mit einem Gehäuse 4, in dem ein Stator 6 angeordnet ist, der einen Rotor 8 umfasst. Der Rotor 8 ist mit einer Rotorwelle 10 drehfest verbunden. Das Gehäuse 4 weist einen Kühlmantel 12 auf, der einen Innenmantel 14 und einen Außenmantel 16 aufweist. Im Kühlmantel 12 sind zwischen Innenmantel 14 und Außenmantel 16 Einbauten 18 angebracht, durch die im Kühlmantel 12 Strömungskanäle 20 ausgebildet werden. Durch die Strömungskanäle 20 kann ein Kühlmedium durch den Kühlmantel 12 geleitet werden. Der Stator 6 steht über eine Wärme übertragende Kontaktfläche 22 in einem Wärme leitenden Kontakt mit dem Innenmantel 14 des Kühlmantels 12. Hierdurch kann überschüssige Energie aus dem Stator 6 an den Kühlmantel 12 abgegeben und dort durch das Kühlmedium aus dem Elektromotor 2 ausgetragen werden. 1 shows an electric motor 2 with a housing 4, in which a stator 6 is arranged, which comprises a rotor 8. The rotor 8 is rotatably connected to a rotor shaft 10. The housing 4 has a cooling jacket 12 which has an inner jacket 14 and an outer jacket 16. In the cooling jacket 12, internals 18 are fitted between the inner jacket 14 and the outer jacket 16, through which flow channels 20 are formed in the cooling jacket 12. Through the flow channels 20, a cooling medium can be passed through the cooling jacket 12. The stator 6 is connected via a heat-transferring contact surface 22 in a heat-conducting contact with the inner jacket 14 of the cooling jacket 12. In this way, excess energy can be discharged from the stator 6 to the cooling jacket 12 and discharged there by the cooling medium from the electric motor 2.
Der Stator 6 und der Rotor 8 sind in einem Innenraum 24 des Elektromotors 2 angeordnet. Auf der Rotorwelle 10 ist drehfest ein Ventilator 26 angeordnet. Durch diesen
Ventilator wird ein Kühlmittel im Innenraum 24 bei Drehung der Rotorwelle 10 in Bewegung versetzt und strömt durch Kühlkanäle 28 im Stator 6 und Kühlkanäle 30 im Rotor 8 im Innenraum 24 am Stator 6 und Rotor 8 vorbei und kühlt diese dabei. The stator 6 and the rotor 8 are arranged in an inner space 24 of the electric motor 2. On the rotor shaft 10, a fan 26 is rotatably disposed. Through this Fan is a coolant in the interior 24 upon rotation of the rotor shaft 10 is set in motion and flows through cooling channels 28 in the stator 6 and cooling channels 30 in the rotor 8 in the interior 24 on the stator 6 and rotor 8 over and cools them.
Fig. 2 zeigt einen Elektromotor nach Fig. 1 in einem Querschnitt. Hierbei sind die Kühlkanäle 28 des Stators 6 sowie die Kühlkanäle 30 des Rotors 8 deutlich erkennbar. Im Kühlmantel 12 sind Einbauten 18 erkennbar. Die Einbauten 18 weisen jeweils einen Durchlass 32 auf, durch den die durch die Einbauten voneinander in axialer Richtung getrennten Bereiche in einer fluidtechnischen Verbindung stehen. Fig. 2 shows an electric motor according to Fig. 1 in a cross section. Here, the cooling channels 28 of the stator 6 and the cooling channels 30 of the rotor 8 are clearly visible. In the cooling jacket 12 internals 18 can be seen. The internals 18 each have a passage 32 through which the areas separated by the internals in the axial direction are in fluid communication.
Fig. 3 zeigt das Gehäuse 4 des Elektromotors mit dem Kühlmantel 12 umfassend den Innenmantel 14 und Außenmantel 16, in dem Einbauten 18 Strömungskanäle 20 ausbilden. Im Gehäuse 4 ist ein Stator 6 angeordnet. Fig. 4 zeigt das Gehäuse 4 mit dem darin angeordneten Stator 6 in einer Ansicht von der Stirnseite. Die Kühlkanäle 28 im Stator 6 sind gut zu erkennen. In diesem Ausführungsbeispiel sind die Kühlkanäle 28 am Rand des Stators 6 angebracht. Eine Einhüllende des Stators fällt dabei zu mehr als 50 % mit der Kontaktfläche 22 zwischen Stator 6 und Innenmantel 14 des Kühlmantels 12 zusammen. Hierdurch wird eine große Fläche zur Wärmeübertragung vom Stator 6 in den Kühlmantel 12 über Festkörperwärmeleitung bereitgestellt. Die Kühlkanäle 28 im Stator 6 können hierbei auch derart im Stator 6 angeordnet sein, dass die Außenseite des Stators 6 vollflächig an dem Innenmantel 14 des Kühlmantels 12 anliegt. Die Kühlkanäle 28 im Stator 6 verlaufen dann nicht nur entlang des Stators 6 sondern innerhalb des Stators 6.
Der Rotor 8 ist in Fig. 5 in einer Ansicht von der Stirnseite dargestellt, in der die Kühlkanäle 30 des Rotors 8 deutlich zu erkennen sind. Fig. 6 zeigt denselben Rotor 8 mit dem Kühlkanal 30 in einem Querschnitt. FIG. 3 shows the housing 4 of the electric motor with the cooling jacket 12 comprising the inner jacket 14 and the outer jacket 16, in which the internals 18 form flow channels 20. In the housing 4, a stator 6 is arranged. Fig. 4 shows the housing 4 with the stator 6 arranged therein in a view from the front side. The cooling channels 28 in the stator 6 are clearly visible. In this embodiment, the cooling channels 28 are mounted on the edge of the stator 6. An envelope of the stator coincides more than 50% with the contact surface 22 between the stator 6 and the inner jacket 14 of the cooling jacket 12 together. As a result, a large area is provided for heat transfer from the stator 6 into the cooling jacket 12 via solid-state heat conduction. The cooling channels 28 in the stator 6 can in this case also be arranged in the stator 6 in such a way that the outside of the stator 6 abuts the entire surface of the inner jacket 14 of the cooling jacket 12. The cooling channels 28 in the stator 6 then run not only along the stator 6 but within the stator 6. The rotor 8 is shown in Fig. 5 in a view from the front side, in which the cooling channels 30 of the rotor 8 can be clearly seen. Fig. 6 shows the same rotor 8 with the cooling channel 30 in a cross section.
Fig. 7 zeigt einen Teil des Gehäuses 4, mit dem Innenmäntel 14 des Kühlmantels 12, an dem Einbauten 18 festgelegt sind. Die Einbauten 18 sind hierbei als sich C-förmig in Umfangsrichtung um den Innenmantel erstreckende Elemente ausgeführt. Zwischen den Enden der C-förmigen Einbauten 18 ist ein Durchlass 32 ausgebildet, durch den die durch die Einbauten definierten Bereiche in einer strömungstechnischen Verbindung stehen. Hierbei ist gut zu erkennen, wie die Einbauten 18 im Kühlmantel 12 einen Strömungskanal 20 ausbilden, in dem eine mehrfache Um- lenkung und Stromteilung des Kühlmediums sowie eine Rückvermischung des Kühlmediums stattfindet. Fig. 8 zeigt diesen Teil eines Gehäuses 4 mit dem Innenmantel 14 des Kühlmantels 12 und den auf dem Innenmantel 14 angeordneten Einbauten 18. Fig. 9 zeigt das Gehäuse in einem Schnitt, der durch die Durchlässe 32 der Einbauten 18 gelegt wird. Hierbei ist zu erkennen, dass die C-förmigen Einbauten jeweils wechselseitig um 180 0 versetzt angeordnet sind. Fig. 7 shows a part of the housing 4, with the inner shells 14 of the cooling jacket 12, are fixed to the fixtures 18. The baffles 18 are in this case designed as C-shaped elements extending in the circumferential direction around the inner shell. Between the ends of the C-shaped internals 18, a passage 32 is formed, through which the areas defined by the internals are in a fluidic connection. In this case, it is easy to see how the internals 18 in the cooling jacket 12 form a flow channel 20, in which a multiple deflection and current division of the cooling medium and a back mixing of the cooling medium takes place. FIG. 8 shows this part of a housing 4 with the inner jacket 14 of the cooling jacket 12 and the internals 18 arranged on the inner jacket 14. FIG. 9 shows the housing in a section which is laid through the apertures 32 of the fixtures 18. It can be seen that the C-shaped internals are mutually offset by 180 0 offset.
Fig. 10 zeigt ein Gehäuse 4 in einer alternativen Ausgestaltung mit einem außerhalb eines Innenraums 24 angeordneten Ventilator 26. Der Ventilator 26 weist dabei einen separaten Antrieb auf, der hier als Elektromotor ausgestaltet ist. Das Kühlmittel wird von außerhalb des Elektromotors 2 durch einen Filter angesaugt und nach der Durchströmung des nach außen offenen Innenraums 24 durch eine Austrittsöffnung wieder nach außen abgegeben. Durch eine Anordnung des Ventilators 26 außerhalb
des Innenraums 24 kann im Vergleich mit einer Anordnung des Ventilators 26 im Innenraum kürzere Baulänge des Elektromotors 2 realisiert werden.
10 shows a housing 4 in an alternative embodiment with a fan 26 arranged outside an interior 24. The fan 26 has a separate drive, which is designed here as an electric motor. The coolant is sucked in from outside the electric motor 2 through a filter and discharged back to the outside through an outlet opening after flowing through the interior 24 which is open to the outside. By an arrangement of the fan 26 outside the interior 24 can be realized in comparison with an arrangement of the fan 26 in the interior shorter overall length of the electric motor 2.
Claims
1 . Elektromotor (2) mit einem Rotor (8), der mit einer Rotorwelle (10) drehfest verbunden ist, mit einem Gehäuse (4), das mit einem insbesondere von einer Flüssigkeit durchströmbaren Kühlmantel (12) versehen ist, der einen Innenmantel (14) und einen Außenmantel (16) aufweist, und mit einem ortsfest im Gehäuse (4) angeordnetem Stator (6), der den Rotor (8) in Umfangsrichtung umgibt und der wenigstens einen im Wesentlichen axial verlaufenden Kühlkanal (28) aufweist, 1 . Electric motor (2) having a rotor (8) which is connected in a rotationally fixed manner to a rotor shaft (10), having a housing (4) which is provided with a cooling jacket (12), in particular through which a liquid can flow, which has an inner jacket (14) and an outer jacket (16), and having a stator (6) arranged fixedly in the housing (4), which surrounds the rotor (8) in the circumferential direction and which has at least one substantially axially extending cooling channel (28),
dadurch gekennzeichnet, dass characterized in that
der Stator (6) über eine Wärme übertragende Kontaktfläche (22) den Innenmantel (14) des Kühlmantels (12) kontaktiert, wobei die Kontaktfläche (22) von einer Stirnseite des Stators (6) betrachtet mindestens 50 % der Einhüllenden des Stators (6) und/oder der Innenseite des Innenmantels (14) umfasst. the stator (6) contacts the inner jacket (14) of the cooling jacket (12) via a heat-transmitting contact surface (22), the contact surface (22), viewed from one end side of the stator (6), covering at least 50% of the envelope of the stator (6). and / or the inside of the inner jacket (14).
2. Elektromotor (2) nach Anspruch 1 , dadurch gekennzeichnet, dass die axiale Ausdehnung des Kühlmantels (12) zumindest der axialen Ausdehnung des Stators (6) entspricht. 2. Electric motor (2) according to claim 1, characterized in that the axial extent of the cooling jacket (12) corresponds at least to the axial extent of the stator (6).
3. Elektromotor (2) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Kühlmantel (12) mindestens einen Strömungskanal (20) ausbildende Einbauten (18) angeordnet sind.
3. Electric motor (2) according to claim 1 or 2, characterized in that in the cooling jacket (12) at least one flow channel (20) forming internals (18) are arranged.
4. Elektromotor (2) nach Anspruch 3, dadurch gekennzeichnet, dass die Einbauten (18) in axialer Richtung voneinander beanstandet sind und sich in Umfangsrich- tung zwischen Innenmantel (14) und Außenmantel (16) erstrecken, wobei die Einbauten (18) jeweils mindestens einen fluidtechnischen Durchlass (32) aufweisen und wobei die Durchlässe (32) von in axialer Richtung aufeinander folgenden Einbauten (18) in Umfangsrichtung derart gegeneinander verdreht angeordnet sind, dass die Einbauten (18) im Kühlmantel (12) einen Strömungskanal (20) mit mehrfacher Umlenkung und Stromteilung ausbilden. 4. Electric motor (2) according to claim 3, characterized in that the internals (18) are spaced apart in the axial direction and extend in the circumferential direction between the inner shell (14) and outer shell (16), wherein the internals (18) respectively have at least one fluidic passage (32) and wherein the passages (32) of axially successive internals (18) in the circumferential direction are rotated against each other such that the internals (18) in the cooling jacket (12) has a flow channel (20) train multiple diversion and stream division.
5. Elektromotor (2) nach Anspruch 4, dadurch gekennzeichnet, dass die Einbauten (18) C-förmig zwischen Innenmantel (14) und Außenmantel (16) erstreckt angeordnet sind. 5. Electric motor (2) according to claim 4, characterized in that the internals (18) C-shaped between the inner shell (14) and outer jacket (16) extending arranged.
6. Elektromotor (2) nach Anspruch 5, dadurch gekennzeichnet, dass die Einbauten (18) um 270° bis 350°, insbesondere 320° bis 340°, zwischen Innenmantel (14) und Außenmantel (16) erstreckt angeordnet sind. 6. Electric motor (2) according to claim 5, characterized in that the internals (18) by 270 ° to 350 °, in particular 320 ° to 340 °, between the inner shell (14) and outer jacket (16) extending are arranged.
7. Elektromotor (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Elektromotor (2) einen Ventilator (26) zum Erzeugen eines Kühlmittelstromes, insbesondere eines Gas- oder Gasgemischstroms, in einem den Stator (6) und den Rotor (8) aufnehmenden Innenraum (24) aufweist. 7. Electric motor (2) according to one of the preceding claims, characterized in that the electric motor (2) has a fan (26) for generating a coolant flow, in particular a gas or gas mixture stream, in a stator (6) and the rotor (8 ) receiving interior (24).
8. Elektromotor (2) nach Anspruch 7, dadurch gekennzeichnet, dass der Ventilator (26) drehfest auf der Rotorwelle (10) angeordnet ist.
8. Electric motor (2) according to claim 7, characterized in that the fan (26) rotationally fixed on the rotor shaft (10) is arranged.
9. Elektromotor (2) nach Anspruch 7, dadurch gekennzeichnet, dass der Ventilator (26) einen eigenen und von der Rotorwelle (10) unabhängigen Antrieb aufweist. 9. Electric motor (2) according to claim 7, characterized in that the fan (26) has its own and of the rotor shaft (10) independent drive.
10. Elektromotor (2) nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass der Ventilator (26) im Innenraum (24) angeordnet ist. 10. Electric motor (2) according to one of claims 7 to 9, characterized in that the fan (26) in the interior (24) is arranged.
1 1 . Elektromotor (2) nach Anspruch 10, dadurch gekennzeichnet, dass der Innenraum (24) geschlossen ist. 1 1. Electric motor (2) according to claim 10, characterized in that the interior space (24) is closed.
12. Elektromotor (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rotor (8) wenigstens einen im Wesentlichen axial verlaufenden Kühlkanal (30) aufweist. 12. Electric motor (2) according to one of the preceding claims, characterized in that the rotor (8) has at least one substantially axially extending cooling channel (30).
13. Elektromotor (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Elektromotor (2) eine Kühlungssteuerung aufweist, die zumindest eine Sensoreinheit umfasst und die Kühlung des Elektromotors (2) steuernd ausgebildet ist. 13. Electric motor (2) according to one of the preceding claims, characterized in that the electric motor (2) has a cooling control, which comprises at least one sensor unit and the cooling of the electric motor (2) is formed controlling.
14. Elektromotor (2) nach einem Anspruch 13, dadurch gekennzeichnet, dass die Kühlungssteuerung die Durchströmung des Kühlmantels (12) steuernd ausgebildet ist.
14. Electric motor (2) according to claim 13, characterized in that the cooling control is designed to control the flow through the cooling jacket (12).
15. Elektromotor (2) nach Anspruch 9 und einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass die Kühlungssteuerung die Drehzahl des Ventilators (26) steuernd ausgebildet ist. 15. Electric motor (2) according to claim 9 and one of claims 13 or 14, characterized in that the cooling control is designed to control the speed of the fan (26).
16. Elektromotor (2) nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die Sensoreinheit im Innenraum (24) angeordnet ist.
16. Electric motor (2) according to one of claims 13 to 15, characterized in that the sensor unit in the interior (24) is arranged.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017009973.1 | 2017-10-26 | ||
DE102017009973.1A DE102017009973A1 (en) | 2017-10-26 | 2017-10-26 | Electric motor with dual cooling |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019081054A1 true WO2019081054A1 (en) | 2019-05-02 |
Family
ID=64308688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/000477 WO2019081054A1 (en) | 2017-10-26 | 2018-10-22 | Electric motor comprising dual cooling |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102017009973A1 (en) |
WO (1) | WO2019081054A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220200381A1 (en) * | 2019-04-12 | 2022-06-23 | Xinjiang Goldwind Science & Technology Co., Ltd. | Rotor of motor, method for maintaining rotor of motor, motor and wind-power electric generator set |
CN117543881A (en) * | 2023-12-25 | 2024-02-09 | 南阳防爆(苏州)特种装备有限公司 | Built-in air-water cooling motor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1248349A2 (en) * | 2001-04-06 | 2002-10-09 | Miscel Oy Ltd. | Asynchronous electric motor |
EP1515417A2 (en) * | 2003-09-10 | 2005-03-16 | Traktiossyteme Austria GmbH | Closed elecrtrical machine and method to design such a machine |
WO2013037409A1 (en) * | 2011-09-14 | 2013-03-21 | Schaeffler Technologies AG & Co. KG | Electric motor of a hybrid gearbox having cable outputs on a radial circumferential surface and electrical axle of a hybrid drive |
EP2662952A1 (en) * | 2012-05-11 | 2013-11-13 | Siemens Aktiengesellschaft | Generator, in particular for a wind turbine |
EP2800251A1 (en) * | 2013-04-29 | 2014-11-05 | Siemens Aktiengesellschaft | Electric machine with a bearing bracket |
EP2580848B1 (en) | 2010-06-11 | 2015-06-24 | Siemens Aktiengesellschaft | Dynamoelectric machine having air/liquid cooling |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2406489B2 (en) * | 1974-02-12 | 1978-10-19 | Kurt Dr.-Ing.Habil. 3360 Osterode Tardel | Ventilation device to be installed axially on the outside of electrical machines |
DE2649181A1 (en) * | 1976-10-28 | 1978-05-03 | Siemens Ag | Electric machine ventilating system with fan impeller - has radial fan cowl connected to machine and covering impeller |
DE4222131C3 (en) * | 1992-07-06 | 2000-01-27 | Vem Motors Gmbh | Ventilation device for pressure ventilation of surface-ventilated electrical machines |
US7948126B2 (en) * | 2007-03-16 | 2011-05-24 | Remy Technologies, L.L.C. | Liquid cooling system of an electric machine |
CN203368235U (en) * | 2013-07-25 | 2013-12-25 | 顾林男 | Explosion-proof motor |
-
2017
- 2017-10-26 DE DE102017009973.1A patent/DE102017009973A1/en not_active Withdrawn
-
2018
- 2018-10-22 WO PCT/EP2018/000477 patent/WO2019081054A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1248349A2 (en) * | 2001-04-06 | 2002-10-09 | Miscel Oy Ltd. | Asynchronous electric motor |
EP1515417A2 (en) * | 2003-09-10 | 2005-03-16 | Traktiossyteme Austria GmbH | Closed elecrtrical machine and method to design such a machine |
EP2580848B1 (en) | 2010-06-11 | 2015-06-24 | Siemens Aktiengesellschaft | Dynamoelectric machine having air/liquid cooling |
WO2013037409A1 (en) * | 2011-09-14 | 2013-03-21 | Schaeffler Technologies AG & Co. KG | Electric motor of a hybrid gearbox having cable outputs on a radial circumferential surface and electrical axle of a hybrid drive |
EP2662952A1 (en) * | 2012-05-11 | 2013-11-13 | Siemens Aktiengesellschaft | Generator, in particular for a wind turbine |
EP2800251A1 (en) * | 2013-04-29 | 2014-11-05 | Siemens Aktiengesellschaft | Electric machine with a bearing bracket |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220200381A1 (en) * | 2019-04-12 | 2022-06-23 | Xinjiang Goldwind Science & Technology Co., Ltd. | Rotor of motor, method for maintaining rotor of motor, motor and wind-power electric generator set |
CN117543881A (en) * | 2023-12-25 | 2024-02-09 | 南阳防爆(苏州)特种装备有限公司 | Built-in air-water cooling motor |
Also Published As
Publication number | Publication date |
---|---|
DE102017009973A1 (en) | 2019-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2062343B1 (en) | Electrical machine with an internally cooled rotor | |
DE102011087602B4 (en) | Electric machine | |
EP2305981B1 (en) | Electrical turbocharger | |
EP0623988B1 (en) | Electrical machine | |
EP2109207A2 (en) | Liquid cooled electric machine and process for cooling an electric machine | |
DE10018642C2 (en) | Rotary electric machine | |
DE4229395C2 (en) | Surface-cooled, closed electrical machine | |
EP2741397B1 (en) | Electric machine with combined air-water cooling | |
EP3881414A1 (en) | Electric motor | |
DE102016112251A1 (en) | Electric machine with a cooling device | |
DE10307813B4 (en) | Electric machine | |
DE102010001437A1 (en) | Dynamo electric machine for use as e.g. generator, has secondary cooler for cooling cooling media of primary cooling circuit of machine and primary cooling circuit of slip ring arrangement, where secondary cooler is formed as upper cooler | |
DE102015218519A1 (en) | Electric machine | |
WO2019081054A1 (en) | Electric motor comprising dual cooling | |
WO1999061692A1 (en) | Godet roll for guiding, heating and conveying a thread | |
EP2805403B1 (en) | Cooling device for a rotor of an electric machine | |
DE102015011863A1 (en) | Electric machine | |
EP2982021B1 (en) | Housing for an electric motor | |
DE102018114825A1 (en) | Cooling device for a rotating electrical machine and rotating electrical machine for driving a vehicle | |
DE102020208518A1 (en) | wave cooling | |
EP0585644A1 (en) | Totally enclosed liquid-cooled, fully enclosed electrical engine | |
DE102017202801A1 (en) | Rotor core for a rotor | |
EP3324516B1 (en) | Electric machine | |
DE102019111931A1 (en) | Electric machine with rotor bars through which an external cooling medium can flow directly | |
WO2018153598A1 (en) | Electric machine for a motor vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18803315 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018803315 Country of ref document: EP Effective date: 20200526 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18803315 Country of ref document: EP Kind code of ref document: A1 |