[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019080800A1 - 一种信息传输方法和设备 - Google Patents

一种信息传输方法和设备

Info

Publication number
WO2019080800A1
WO2019080800A1 PCT/CN2018/111234 CN2018111234W WO2019080800A1 WO 2019080800 A1 WO2019080800 A1 WO 2019080800A1 CN 2018111234 W CN2018111234 W CN 2018111234W WO 2019080800 A1 WO2019080800 A1 WO 2019080800A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
relay device
layer
information
message
Prior art date
Application number
PCT/CN2018/111234
Other languages
English (en)
French (fr)
Inventor
石小丽
刘菁
戴明增
王瑞
朱元萍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18869521.7A priority Critical patent/EP3687222B1/en
Publication of WO2019080800A1 publication Critical patent/WO2019080800A1/zh
Priority to US16/854,630 priority patent/US20200252853A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/037Protecting confidentiality, e.g. by encryption of the control plane, e.g. signalling traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/29Control channels or signalling for resource management between an access point and the access point controlling device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to an information transmission method and device.
  • the fifth-generation mobile communication system (5G) has stricter requirements on network performance indicators than the fourth generation mobile communication system (4G). For example, the capacity index is increased by 1000 times, the coverage requirement is wider, the ultra-reliable ultra-low latency, and the like.
  • the capacity index is increased by 1000 times, the coverage requirement is wider, the ultra-reliable ultra-low latency, and the like.
  • the use of high-frequency small station networking is becoming more and more popular.
  • a large number of densely deployed small stations will lead to high cost of fiber back-transmission.
  • the wireless relay (Relay) technology uses a wireless transmission scheme for both the Access Link and the Backhaul Link to avoid fiber deployment.
  • the Long Term Evolution (LTE) R10 introduces a relay technology.
  • a trunk is introduced between a donor base station (Donor eNB, DeNB) and a terminal device under the traditional network structure.
  • a Relay Node (RN), a newly added RN and a DeNB are connected by wireless.
  • the RN accesses the DeNB through the Backhaul Link, and the RN communicates with the terminal device through the Access Link.
  • the terminal device can directly use the relay cell as an accessible independent cell, and the RN can directly schedule the terminal device in the relay cell, and the terminal device in the coverage of the DeNB can also directly access the host cell.
  • R10Relay only supports a simple single-hop RN deployment scenario, and only introduces the network access process of the single-hop RN under the L3 protocol stack architecture (hereinafter referred to as L3 architecture), for other protocol stack architectures (for example, the L2 protocol stack architecture (The L2 and L3 hybrid protocol stack architecture (hereinafter referred to as the hybrid protocol stack architecture) is not involved in the network access process of the RN and the multi-hop RN scenario, so that it cannot meet the more diverse needs of the future network. .
  • L3 architecture L3 protocol stack architecture
  • the L2 and L3 hybrid protocol stack architecture (hereinafter referred to as the hybrid protocol stack architecture) is not involved in the network access process of the RN and the multi-hop RN scenario, so that it cannot meet the more diverse needs of the future network. .
  • the present application provides an information transmission method and device for solving the problem that the prior art only supports single-hop RN access to the network and cannot meet the requirements of the future network.
  • the embodiment of the present application provides a method for transmitting information, including: receiving, by a first device, a first message that is sent by a base station, including first indication information and system information, where the first indication information is used to indicate whether the first device broadcasts System information: the first device determines, according to the first indication information, that the system information needs to be broadcast, and broadcasts system information.
  • the present application provides an information transmission method, in which a first message is sent by a base station to a first device that has accessed the base station, and the first message is carried in the first message, so that the first device receives the first message,
  • the system information may be determined according to the first indication information.
  • the system information is broadcasted, so that the device that receives the system information broadcast by the first device, for example, the target device, may Accessing the base station by using the first device according to the system information, thereby implementing a process in which the target device accesses the base station by using the first device, and further, when the method is applied to the base station and the terminal device, there are multiple (including two)
  • the device is relayed, each of the plurality of relay devices between the base station and the terminal device can be accessed by the previous hop relay device that is already accessed by the foregoing solution, so that the terminal device can be And the base station can form a multi-hop relay network architecture by deploying multiple relay devices, which can meet the increasing communication requirements. , Can also compromise cost carriers, for example, to avoid providing network coverage in remote areas.
  • the first indication information is a first indicator, where the first indicator is used to indicate that the first device broadcasts the system information by using the first message.
  • the first indicator and the system information are carried, so that after parsing the first message, the first device can determine that the system information needs to be broadcast according to the first indicator, thereby broadcasting the system information.
  • the method provided by the embodiment of the present application further includes: in a random access process of the target device
  • the first device allocates a first identifier of the target device to the target device (for example, the first identifier may be a CRNTI), where the first identifier is used to identify the target device in the first cell, where the first cell is the first device at random a cell that is accessed in the access process; the first device sends a second identifier to the base station, and forwards a second message sent by the target device, where the second message is used to request to establish a radio resource control RRC between the base station and the target device. connection.
  • the first identifier may be a CRNTI
  • the first device further allocates an uplink resource to the target device
  • the second message is that the target device sends the uplink device to the first device, when the target
  • the device may send, by using the first device that has accessed the base station, a second message that the target device requests to establish a radio resource control RRC connection between the base station and the target device in the random access process, to the base station, In this way, after receiving the second message, the base station can establish an RRC connection between the base station and the target device, and the target device can successfully access the base station.
  • the method provided by the application further includes: a third message, the third message includes resource configuration information and second indication information for determining a target device to which the resource configuration information is transmitted; the first device determines, according to the second indication information, that the target device is not the first device, and configures the resource The information is sent to the target device.
  • the resource configuration information configured by the base station to the target device can be forwarded to the target device by multi-hop transmission by using a multi-hop architecture between the target device and the base station.
  • the resource configuration information includes the first resource configuration information and the second resource configuration Information, where the first configuration information is used to configure at least one of a packet data convergence layer protocol PDCP layer and a service data adaptation protocol SDAP layer of the target device; the second configuration information is used to configure a radio link control RLC of the target device Layer and medium access control at least one of a MAC layer and a physical PHY layer; or, the first resource configuration information is formed by the base station, and the second resource configuration information is generated by the base station or the first device, it being understood that when the second When the resource configuration information is generated by the first device, the first device sends the generated second resource configuration information to the base station.
  • the first configuration information is used to configure at least one of a packet data convergence layer protocol PDCP layer and a service data adaptation protocol SDAP layer of the target device
  • the second configuration information is used to configure a radio link control RLC of the target device Layer and medium access control at least one of a MAC layer and a physical PHY layer
  • the first resource configuration information is formed by
  • configuring the first resource configuration information and the second resource configuration information for the target device by using the base station may facilitate the target device to update the wireless resource configuration in time, and the method is applicable to the L2 architecture, and is also applicable to the hybrid protocol stack architecture.
  • the method provided by the present application is also applicable to the L2 architecture.
  • the first device has at least one of an RLC layer and a medium access control MAC layer and a physical PHY layer, so the first device can generate the second The resource configuration information, but the RRC layer is only used when the first device acts as a relay in the L2 architecture.
  • the first device may send the second resource configuration information to the base station as the terminal device, and forward the second resource configuration information to the target device in the form of a relay station, and
  • the manner in which the second resource configuration information is generated is diversified, and the solution provided by the present application is also applied.
  • Different protocol stack architecture Different protocol stack architecture.
  • the fourth possible implementation manner of the first aspect Paging time slot PO paging the fourth message of the terminal device in the tracking area TA; the first device determines that the first device belongs to the TA, and the first device is paging the terminal device in the TA in the paging slot PO; or A device determines that the candidate device belongs to the TA in the next hop device of the first device, and sends a fifth message to the candidate device, where the fifth message is used to indicate the terminal device in the PO paging TA.
  • the terminal device accesses the base station through the multi-hop relay device, and the terminal device changes from the connected state to the idle state, when the base station needs to page the terminal device, the base station does not determine which relay device the terminal device accesses, so the base station
  • the paging of the terminal device may be implemented at the designated PO by the at least one relay device by transmitting a fourth message to the at least one relay device that has accessed the base station.
  • the method provided by the application determines, by the first device, that the first device belongs to The method of the present application further includes: at least the paging PO is carried in the fourth message, and the first device is in the paging slot PO, before the first device is paging the time slot PO to the terminal device in the TA.
  • the method provided by the application further includes: the first device determines the paging PO from the fourth message; or the fourth message includes the second identifier of the terminal device, which is specific to
  • the method of the present application further includes: a method for providing a discontinuous reception period of the terminal device and a discontinuous reception period of the cell, the first device, before the paging device PO pages the terminal device in the TA
  • a device determines a paging PO according to a second identifier, a discontinuous reception period specific to the terminal device, and a cell-specific discontinuous reception period. This can make the manner in which the first device determines the paging PO more flexible.
  • the first device receives a fourth message that is sent by the base station, where the fourth The message includes a paging PO, an identifier of the terminal device, and a third indication information, where the third indication information is used to send the paging PO and the second identifier of the terminal device to the target device, and the first device sends the identifier to the target device according to the third indication information.
  • the target device sends the paging PO and the second identifier of the terminal device.
  • the method is applicable to the base station knowing that the TA where the paging terminal device is located is the TA where the target device is located. Therefore, when the base station needs to page the terminal device, the direct The second identifier of the paging terminal device and the PO are transmitted to the target device by the first device.
  • the method provided by the application further includes: the first device and the base station
  • the fourth signaling information carries the fourth indication information, where the fourth indication information is used to indicate that the system information or the fourth message is transmitted on the SRB on the current transmission time unit, and the fourth indication information is carried on the SRB.
  • the fourth indication information is carried in the adaptation layer of the base station and the first device peering protocol stack, so that the first device can distinguish, according to the fourth indication information, the current transmission time unit is transmitted on the SRB according to the fourth indication information. Is the system information or the paging message, so that the corresponding content is correctly parsed from the SRB.
  • the first device determines the radio bearer between the first device and the base station
  • the association relationship between the radio bearer between the first device and the target device, the association relationship between the radio bearer and the service information between the first device and the target device, and the radio bearer and service information between the first device and the base station At least one association relationship in the association relationship, where the at least one association relationship is used by the first device to determine a specified radio bearer of the transmission target data packet, where the target data packet may be sent by the base station to the first device, or may be sent by the terminal device to the
  • the first device by determining the at least one association relationship, may facilitate selecting, after receiving the target data packet, the designated radio bearer from the plurality of radio bearers for transmitting the target data packet.
  • the at least one association relationship is generated by the base station and then sent to the first device
  • the at least one association relationship is generated by the last hop relay device of the first device and then sent to the first device.
  • the target device is a terminal device
  • the method provided by the application further includes The first device selects an encryption algorithm for the target device, the first device sends a sixth message to the base station, and sends an identifier of the encryption algorithm to the target device, where the sixth message includes an identifier of the encryption algorithm and a third identifier of the target device, where the encryption The algorithm is used to encrypt data transmitted between the base station and the target device.
  • the first device selects an encryption algorithm for the target device, and sends the identifier of the selected encryption algorithm to the base station and the terminal device, so that the base station and the terminal device can determine a data encryption manner transmitted between the base station and the target device.
  • the target device is a terminal device, and the method provided by the application further The first device receives the fifth indication information sent by the base station, and the encryption algorithm, where the fifth indication information is used to send the identifier of the encryption algorithm to the target device, and the first device sends the identifier of the encryption algorithm according to the fifth indication information.
  • the encryption algorithm is used to encrypt data transmitted between the base station and the target device.
  • the selected encryption algorithm is sent to the terminal device by using the multi-hop relay architecture between the terminal device and the terminal device, so that the terminal device can transmit between the base station and the target device according to the encryption algorithm selected by the base station.
  • Data encryption
  • the application provided by the embodiment of the present application further provides an information transmission apparatus, which can implement the information transmission method described in any implementation manner of the first aspect.
  • the device may be a first device or a chip disposed in the first device, which may implement the above method by software, hardware, or by executing corresponding software by hardware.
  • the information transmission device can include a processor and a memory.
  • the processor is configured to support the information transmission apparatus to perform the corresponding function in the information transmission method described in the above first aspect.
  • the memory is for coupling with a processor that holds programs (instructions) and data necessary for the information transmission device.
  • the information transmission device may further comprise a communication interface for supporting communication between the information transmission device and other network elements (for example, a base station or a next hop information transmission device or a terminal device), and the communication interface may be a transceiver.
  • the information transmission device may include: a receiving unit and a transmitting unit.
  • the receiving unit is configured to receive a first message sent by the base station, where the first message includes first indication information and system information, where the first indication information is used to indicate whether the first device broadcasts system information, and the first device is configured according to the first indication.
  • the information determines that the system information needs to be broadcast, and the system information is broadcast.
  • the information transmission apparatus further includes: an allocating unit, configured to allocate a target to the target device in a random access process of the target device a first identifier of the device, where the first identifier is used to identify the target device in a cell accessed by the random access procedure of the target device, and the sending unit is further configured to send the first identifier to the base station, and forward the first identifier sent by the target device And a second message, where the second message is used to request to establish a radio resource control RRC connection between the base station and the target device.
  • an allocating unit configured to allocate a target to the target device in a random access process of the target device a first identifier of the device, where the first identifier is used to identify the target device in a cell accessed by the random access procedure of the target device
  • the sending unit is further configured to send the first identifier to the base station, and forward the first identifier sent by the target device
  • a second message where the second message is used to request to establish a radio resource control RRC
  • the receiving unit is further configured to receive a third message sent by the base station, where the third message includes the resource The configuration information and the second indication information, the second indication information is used to determine the target device to which the resource configuration information is transmitted.
  • the apparatus provided by the application further includes: a processing unit, configured to determine, according to the first indication information, whether the target device is the first device.
  • the sending unit is further configured to: at the processing unit, determine that the target device is not the first device, and send the resource configuration information to the target device.
  • the resource configuration information includes the first resource configuration information and the second resource configuration
  • the information receiving unit is further configured to receive the first resource configuration information and the second resource configuration information generated by the base station, where the first resource configuration information is used to configure a packet data convergence layer protocol PDCP layer and service data adaptation of the target device.
  • the second resource configuration information is used to configure at least one of a radio link control RLC layer and a medium access control MAC layer and a physical PHY layer of the target device; or, the receiving unit is further used Receiving, by the base station, the first resource configuration information generated by the base station, and the second resource configuration information generated by the first device, where the processing unit is further configured to generate the second resource configuration information, where the sending unit is further used to And sending, by the processing unit, the second resource configuration information to the base station.
  • the target device is a terminal device
  • the receiving unit is further configured to receive the base station Sending a fourth message for indicating the terminal device in the paging time slot PO paging tracking area TA
  • the processing unit is further configured to: when determining that the first device belongs to the TA, paging the TA in the paging slot PO
  • the sending unit is further configured to: when the processing unit determines that the candidate device belongs to the TA in the next hop device of the first device, send a fifth message to the candidate device, where the fifth message is used to indicate that The PO pages the terminal device in the TA.
  • the fourth message carries at least the paging PO, the processing unit, and the For determining a paging PO from the fourth message; or the fourth message includes a second identifier of the terminal device, a terminal device-specific discontinuous reception period, and a cell-specific discontinuous reception period, and the processing unit is further configured to: The paging PO is determined according to the second identity, the terminal device-specific discontinuous reception cycle, and the cell-specific discontinuous reception cycle.
  • a fourth message includes a paging PO, an identifier of the terminal device, and third indication information, where the third indication information is used to instruct the first device to send the paging PO and the identifier of the terminal device to the target device;
  • the sending unit is further configured to send the paging PO and the identifier of the terminal device to the target device.
  • the signaling radio bearer between the first device and the base station is in the SRB
  • the fourth indication information is carried, where the fourth indication information is used to indicate that the system information or the fourth message is transmitted on the SRB on the current transmission time unit.
  • the seventh possible implementation manner of the second aspect Correlation relationship between the radio bearer and the radio bearer between the first device and the target device, the association relationship between the radio bearer and the service information between the first device and the target device, and the radio bearer and service between the first device and the base station At least one of the association relationships that the information has, the at least one association relationship being used by the first device to determine the designated radio bearer of the transmission target data packet.
  • the receiving unit is further configured to receive the at least one association relationship generated by the base station .
  • the receiving unit is further configured to receive at least one association relationship generated by the last hop relay device of the first device.
  • the target device is a terminal device, and the processing unit is further used as a target
  • the device selects an encryption algorithm
  • the sending unit is further configured to send a sixth message to the base station and send an identifier of the encryption algorithm to the target device, where the sixth message includes an identifier of the encryption algorithm and a third identifier of the target device, where the encryption algorithm is used. Encrypt data between the base station and the target device.
  • the receiving unit is further configured to receive the fifth indication sent by the base station The information and the encryption algorithm, the fifth indication information is used to send the identifier of the encryption algorithm to the target device, and the sending unit is further configured to send the identifier of the encryption algorithm to the target device according to the fifth indication information, where the encryption algorithm is used for Encrypt data between the base station and the target device.
  • the present application provides a first device, which is applied to a process in which a target device accesses a base station by using a first device, where the first device includes: a memory, a transceiver, and at least one processor, where the memory stores instructions.
  • the memory, the transceiver, and the at least one processor are interconnected by a line, and the transceiver is configured to perform the operation of transmitting and receiving on the first device side in any of the optional implementations of the first aspect or the first aspect; at least one processor invokes the instruction, The message processing or control operation performed on the first device side in the first aspect or any of the optional implementations of the first aspect is performed.
  • the application provides a computer storage medium, where the computer readable storage medium stores an instruction, when the finger is running on the first device, causing the first device to perform any one of the foregoing first aspect or the first aspect.
  • the present application provides a computer program product comprising instructions, wherein a computer program product stores instructions that, when run on a first device, cause the first device to perform any of the first aspect or the first aspect described above A method of information transmission as described in a possible implementation.
  • a sixth aspect of the present application provides a chip system, which is applicable to a first device, where the chip system includes: at least one processor, a memory and an interface circuit, and the memory, the interface circuit, and the at least one processor are interconnected by a line, at least one The instructions are stored in the memory; the instructions are executed by the processor to perform the operations of the first device in the first aspect or any of the alternative implementations of the first aspect.
  • a communication system comprising a base station, at least one first device as provided in the second aspect or the third aspect, and a terminal device.
  • the solution provided by the embodiment of the present application can fully utilize the first device that has accessed the base station, forward the first indication information and system information of the base station, and complete other relay devices (for example, target devices) or the terminal device through the first device.
  • the process of accessing the base station for example, by using the first device that has accessed the base station to forward the first indication information and the system information, to implement the process of accessing the base station by the next hop device of the first device, so that the user equipment and the base station can be deployed.
  • Multiple relay devices can meet the increasing communication requirements and the cost of operators. For example, it avoids the problem of providing network coverage in some remote areas, the deployment of optical fibers is difficult, and the cost is high. Embodiments also provide corresponding devices and systems.
  • FIG. 1 is a schematic diagram of a single-hop network architecture provided in the prior art
  • FIG. 2 is a schematic diagram of a control plane protocol stack architecture of an R10 Relay provided in the prior art
  • FIG. 3 is a schematic diagram of a user plane protocol stack architecture of an R10 Relay provided in the prior art
  • FIG. 4 is a schematic diagram of a multi-hop network architecture according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of still another multi-hop network architecture according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a control plane protocol stack of an L2 protocol stack in a multi-hop network architecture according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a user plane protocol stack of an L2 protocol stack in a multi-hop network architecture according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a control plane protocol stack structure of an L3 protocol stack in a multi-hop network architecture according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a user plane protocol stack of an L3 protocol stack in a multi-hop network architecture according to an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of a control plane protocol stack structure of an L3 protocol stack in another multi-hop network architecture according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of a user plane protocol stack of an L3 protocol stack in another multi-hop network architecture according to an embodiment of the present disclosure
  • FIG. 13 is a schematic flowchart 1 of an information transmission method according to an embodiment of the present disclosure.
  • FIG. 14 is a second schematic flowchart of an information transmission method according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic flowchart 3 of an information transmission method according to an embodiment of the present disclosure.
  • 16 is a schematic flowchart 4 of an information transmission method according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a bearer mapping according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of a control plane transmission process of an L2 architecture according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of a user plane transmission process of an L2 architecture according to an embodiment of the present application.
  • FIG. 20 is a schematic diagram of a control plane transmission process in a hybrid protocol stack architecture according to an embodiment of the present disclosure
  • FIG. 21 is a schematic diagram of a user plane transmission process in a hybrid protocol stack architecture according to an embodiment of the present disclosure
  • FIG. 22 is a schematic flowchart of a key configuration process between relay devices according to an embodiment of the present disclosure
  • FIG. 23 is a schematic structural diagram 1 of a first device according to an embodiment of the present disclosure.
  • FIG. 24 is a schematic structural diagram 2 of a first device according to an embodiment of the present disclosure.
  • FIG. 25 is a schematic structural diagram 3 of a first device according to an embodiment of the present application.
  • FIG. 2 shows a control plane protocol stack architecture of the existing R10 Relay, which is applied to the network structure shown in FIG. 1 , as shown in FIG. 2 , the terminal device (taking the terminal device as an example) protocol.
  • the stack includes a non-access stratum (NAS) layer, a radio resource control (RRC) layer, a Packet Data Convergence Protocol (PDCP) layer, and a radio link control (Radio Link Control).
  • NAS non-access stratum
  • RRC radio resource control
  • PDCP Packet Data Convergence Protocol
  • Radio Link Control Radio Link Control
  • the relay device includes a first protocol stack peering with the terminal device and a second protocol peering with the base station a stack, wherein the first protocol stack includes a top-down RRC layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer, and the second protocol stack includes a top-down S1 Application Protocol (S1AP) layer
  • S1AP S1 Application Protocol
  • the base station includes a third protocol stack that is peered with the second protocol stack of the relay device and a pair of core network devices (eg, a mobility management entity (MME) in Long Term Evolution (LTE)) And a fourth protocol stack, where the third protocol stack includes a top-down S1AP layer, an SCTP layer, an IP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer, and the fourth protocol stack includes a top-down The S1AP layer, the SCTP layer, the IP layer, the L(Layer) 2, and the L1 layer, and the protocol stack of the core network device includes a NAS layer, an S1AP layer, an SCTP layer, an IP layer, an L2 layer, and an L1 layer.
  • MME mobility management entity
  • LTE Long Term Evolution
  • the L1 layer is a physical layer
  • the L2 layer is a data link layer.
  • the L1 layer is a physical layer defined by an open system interconnection reference model (OSI)
  • the L2 layer is a data link layer (DLL) defined by an OSI.
  • OSI open system interconnection reference model
  • DLL data link layer
  • FIG. 3 shows a user plane protocol stack architecture of the R10 Relay.
  • the protocol stack of the terminal device includes an Application (App) layer, a Transmission Control Protocol (TCP), and a User Datagram Protocol ( The User Datagram Protocol (UDP) layer, the IP layer, the PDCP layer, the RLC layer, the MAC layer, and the PHY layer, and the relay device includes a fifth protocol stack that is peered with the terminal device and a sixth protocol stack that is peered with the base station.
  • the fifth protocol stack includes a top-down PDCP layer, an RLC layer, a MAC layer, and a PHY layer
  • the sixth protocol stack includes a top-down GPRS Tunneling Protocol-User Plane (GTP-).
  • GTP- GPRS Tunneling Protocol-User Plane
  • the base station includes a seventh protocol stack peered with the sixth protocol stack and the core network
  • the eighth protocol stack of the device peering wherein the seventh protocol stack includes a top-down GTP-U layer, a UDP layer, an IP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer, and the eighth protocol stack includes The top-down GTP-U layer, the UDP layer, the IP layer, the L2 layer, and the L1 layer
  • the protocol stack of the core network device includes a GTP-U layer, a UDP layer, an IP layer, and an L2 layer that are equivalent to the eighth protocol stack. L1 layer.
  • the R10Relay since the R10Relay only supports the Layer 3 (L3) protocol stack architecture (hereinafter referred to as the L3 architecture), the network access process is performed for other protocol stack architectures, such as the L2 protocol stack architecture (hereinafter referred to as L2 architecture).
  • L3 architecture Layer 3 protocol stack architecture
  • L2 architecture L2 protocol stack architecture
  • the scenario of the multi-hop networking in the L3 architecture is greater than the multi-hop networking delay of the L2 architecture. Therefore, the research on the multi-hop networking scenario of the L2 architecture also needs to be considered. of.
  • n is an integer greater than or equal to 2.
  • the RN uses a wireless connection with both the terminal device 200 and the base station 100.
  • the radio interface between the RN and the base station 100 is a Un interface.
  • the radio interface between the RN 301 and the base station 100 is a Un interface
  • the radio interface between the RNs is a Un interface, for example, between the RN 301 and the RN 302.
  • the wireless interface is the Un interface.
  • the link between the next hop RN of the base station (for example, RN 301) and the base station 100 is called a backhaul link
  • the interface between the RN or the base station 100 to which the terminal device 200 is connected is a Uu interface.
  • the link between the device 200 and the base station/RN is referred to as an Access Link, for example, a link between the terminal device 200 and its previous hop RN 302.
  • the RN is used to transfer data and signaling between the base station 100 and the terminal device 200.
  • the base station 100 can also be used as a host (Donor) base station.
  • the host base station can be (Donor gNodeB, DgNB).
  • the host base station can be (Donor eNodeB, DeNB).
  • the donor base station may also be simply referred to as: gNB or eNB.
  • the RN acts as a base station and processes it as a terminal device when accessing authentication and performing some security functions.
  • the RN can access the wireless network like a terminal device.
  • the network side performs authentication authentication and Key Agreement (AKA) for the terminal device.
  • AKA authentication authentication and Key Agreement
  • the process is also called Evolved Packet System (EPS). .
  • the RN acts as a base station for the terminal device it serves, and acts as a terminal device for the base station serving the RN.
  • the downlink data sent by the core network device first arrives at the base station 100, and then is transmitted by the base station 100 to the next hop RN of the base station 100 (for example, RN301).
  • the next hop RN is transmitted to the terminal device 200 through the RN (for example, RN 302) between the terminal device 200, and vice versa.
  • the base station 100 may be a device that communicates with the terminal device 200, and the base station 100 may be a relay station or an access point or the like.
  • the base station 100 may be a base transceiver station (BTS) in a global system for mobile communication (GSM) or a code division multiple access (CDMA) network, or may be a wideband code.
  • BTS base transceiver station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • a 3G base station (NodeB, NB) in a wideband code division multiple access (WCDMA) may also be an eNB or an eNodeB (evolutional NodeB) in LTE.
  • the base station 100 may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • CRAN cloud radio access network
  • the base station 100 may also be a network device in a 5G network or a network device in a future evolved network, such as a next generation base station (NR NodeB, gNB), and may also be a wearable device or an in-vehicle device.
  • a network device in a 5G network or a network device in a future evolved network, such as a next generation base station (NR NodeB, gNB)
  • gNB next generation base station
  • gNB next generation base station
  • C-RAN cloud radio access network
  • concentration A central unit (CU)
  • DU distributed unit
  • the actual deployment mode of CU and DU is flexible.
  • the CU parts of multiple base stations are integrated to form a large-scale function. entity. As shown in FIG.
  • the base station 100 can be split into one CU and at least one DU, and the CU is connected to each DU through an F1 interface, where the CU is used to implement the
  • the RRC layer and PDCP layer functions of the base station are used to implement the RLC layer, the MAC layer and the PHY layer function of the base station.
  • the CU and the DU may be divided according to a protocol layer of the wireless network, for example, the CU is used to implement a Packet Data Convergence Protocol (PDCP) and a Radio Resource Control located above the PDCP layer. , RRC) features.
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control located above the PDCP layer.
  • the DU is used to implement protocol layers below the PDCP, such as Radio Link Control (RLC) and Medium Access Control (MAC), and physical layer (PHY).
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY physical layer
  • the division of the protocol layer is only an example, and can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and the above protocol layer are set in the CU, and the functions of the protocol layer below the RLC layer are set in the DU; Alternatively, in a certain protocol layer, for example, a part of the function of the RLC layer and a function of a protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it may be divided in other manners, for example, according to the delay division, the function that needs to meet the delay requirement in the processing time is set in the DU, and the function that does not need to meet the delay requirement is set in the CU.
  • the radio frequency device can be extended, not placed in the DU, or integrated in the DU, or partially extended in the DU, without any limitation.
  • the terminal device 200 may be a User Equipment (UE), an Access Terminal, a User Unit, a User Station, a Mobile Station, a Mobile Station, or a Remote Station. Remote Station, Remote Terminal, Mobile Equipment, User Terminal, Wireless Telecom Equipment, User Agent, User Equipment or User device.
  • the terminal device can communicate with one or more core networks (such as network slices) via a Radio Access Network (RAN), or can communicate with another terminal device, such as a device to device (Device to Device, D2D) or machine to machine (M2M) scenario communication.
  • RAN Radio Access Network
  • the terminal device may be a station (STA) in a Wireless Local Area Networks (WLAN), and may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, or a wireless local loop (Wireless Local). Loop, WLL) stations, Personal Digital Assistant (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, For example, a terminal device in a fifth-generation (5G) communication network or a terminal device in a future evolved public land mobile network (PLMN) network.
  • 5G fifth-generation
  • PLMN future evolved public land mobile network
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • FIG. 6 shows a schematic diagram of another communication system of the present application.
  • FIG. 6 is different from FIG. 4 in that the RN 301 and the RN 302 form a multi-hop communication system architecture in FIG. 4, and FIG. 6 also At least one RN 303 (only one is shown in FIG. 6) is introduced, the RN 303 is wirelessly connected with the base station 100, and the RN 303 transfers the data and signaling of the base station 100 to the RN 302, or the data and signaling of the RN 303 relay terminal device 200.
  • the base station 100 to form a multi-hop multi-link communication system architecture.
  • FIG. 4 and FIG. 6 are only one schematic of the communication system architecture used in the present application, and more or more complex communication system architectures may be included in the actual communication process.
  • the application may define that the hop count of the base station is 0, and each one is added between the base station 100 and the terminal device 200 according to the direction from the base station 100 to the terminal device 200.
  • the relay device increases the hop count of the relay device by one hop.
  • the hop count of the branch also increases by one hop, for example, as shown in FIG.
  • the hop count of the RN 301 to the base station is 1, and the hop count of the RN 302 to the base station is 2.
  • the hop count of the RN 303 to the base station is 1, but the RN 303 and the RN 301 are located in different communications.
  • the link for example, RN 301 is located in communication link 1 and RN 303 is located in communication link 2.
  • first, second, and the like in this application are only used to distinguish different objects, and the order is not limited.
  • first resource configuration information and the second resource configuration information are only used to distinguish different resource configuration information, and the sequence thereof is not limited.
  • FIG. 7 shows a control plane protocol stack of the L2 architecture of the present application.
  • the control plane protocol stack of the L2 architecture is introduced.
  • the control plane protocol stack of the terminal device includes, in order from top to bottom, a NAS layer, an RRC layer, a PDCP layer, and an RLC layer.
  • the RN3 control plane protocol stack architecture includes a ninth protocol stack peering with the terminal device and a tenth protocol stack peering with RN2, wherein the ninth protocol stack is from top to bottom
  • the RLC layer, the MAC layer and the PHY layer, which are equivalent to the terminal device, and the tenth protocol stack include, in order from top to bottom, the NAS layer, the RRC layer, and the PDCP layer, the adaptation layer, the RLC layer, and the MAC layer.
  • the PHY layer; for the RN2 and the RN1, the protocol stack of the RN2 and the RN1 can be referred to the RN3 and FIG. 7, and the details are not described herein again.
  • the control plane protocol stack structure of the base station includes an eleventh protocol stack peering with the tenth protocol stack of the RN1 and a twelfth protocol stack peering with the core network device, wherein the eleventh protocol stack includes from top to bottom: The RRC layer, the PDCP layer, the Adaptation layer, the RLC layer, the MAC layer, and the PHY layer, the twelfth protocol stack includes: a Next Generation Application Protocol (NG AP) layer, an SCTP layer, an IP layer, and The L1/L2 layer; the protocol stack of the core network device includes a NAS layer, an NG AP layer, an SCTP layer, an IP layer, and an L1/L2 layer.
  • NG AP Next Generation Application Protocol
  • each relay device (for example, RN1, RN2, and RN3 as shown in FIG. 7) is connected as a terminal device to a base station or a relay device of a previous hop through a Uu interface (for example, RN2).
  • a Uu interface for example, RN2
  • each relay device has a NAS layer, an RRC layer and a PDCP layer between the base station or the respective previous hop relay device; and when each relay device acts as a relay
  • the Un interface is connected to the base station or the respective previous hop relay device, the relay device and the base station may not have the NAS layer, the RRC layer, and the PDCP layer.
  • the Uu interface and the Un interface may be the existing interfaces, and may be replaced by a new interface.
  • the protocol layer in the virtual frame indicates: a protocol layer (for example, a NAS layer, an RRC layer, and a PDCP layer) that the relay device has when the terminal device accesses the base station as a terminal device, when the relay device functions as When the relay forwards the data of the base station or the terminal device, it may not have.
  • a protocol layer for example, a NAS layer, an RRC layer, and a PDCP layer
  • the base station and the terminal device since both the base station and the terminal device have an RRC layer, when the terminal device accesses or the relay device accesses as the terminal device, the RRC message is terminated at the base station, and the PDCP layer on the base station
  • the configuration is specific to the terminal device, that is, each terminal device corresponds to one PDCP layer configuration
  • the RLC layer, the MAC layer, and the PHY layer on the base station are specific to the relay device, that is, each relay device corresponds to one RLC layer. , MAC layer, PHY layer.
  • the relay device and the base station have an Adaptation layer
  • the functions of the Adaptation layer mainly include adding or identifying the identifier of the terminal device, determining the radio bearer mapping of the RRC message of the terminal device between the relay device and the base station.
  • the adaptation layer exists when the relay device forwards data as a relay, and may not exist when the relay device accesses as a terminal device.
  • FIG. 8 shows a user plane of the L2 architecture of the present application.
  • the user plane protocol stack of the terminal device includes: IP layer, SDAP from top to bottom. Layer, PDCP layer, RLC layer, MAC layer, and PHY layer
  • RN3 includes a thirteenth protocol stack peering with the protocol stack of the terminal device, and a fourteenth protocol stack peering with the protocol stack of RN2, wherein tenth
  • the three protocol stack includes a top-down RLC layer, a MAC layer, and a PHY layer
  • the fourteenth protocol stack includes a top-down IP layer, an SDAP layer, a PDCP layer, an Adaptation layer, an RLC layer, a MAC layer, and a PHY layer.
  • the base station includes a fifteenth protocol stack peering with the fourteenth protocol stack of RN1 and a sixteenth protocol stack peering with the protocol stack of the core network device, wherein the fifteenth protocol stack includes a top-down SDAP layer
  • the sixteenth protocol stack includes a top-down GTP layer, a UDP layer, an IP layer, and an L1/L2 layer
  • the protocol stack of the core network device includes an IP layer.
  • GTP layer, UDP layer, IP layer, and L1/L2 layer are examples of IP layers.
  • the SDAP layer between the terminal device and the base station is a session specific to each terminal device, that is, one session of each terminal device corresponds to one SDAP layer, and different sessions of the terminal correspond to different SDAPs.
  • the Adaptation layer is used to add or identify the identifier of the terminal device and the identifier of the data radio bearer DRB of the Uu interface, where the Adaptation layer is used to perform bearer mapping between the data of the terminal device and the base station.
  • the protocol layer in the virtual frame indicates that when the relay device accesses the base station or its previous hop relay device as a terminal device, the relay device has a protocol layer in the virtual frame (for example, The IP layer, the SDAP layer, the PDCP layer, and the Adaptation layer), when the relay device forwards data as a Relay node, the relay device may not have the protocol layer in the virtual frame.
  • a protocol layer in the virtual frame for example, The IP layer, the SDAP layer, the PDCP layer, and the Adaptation layer
  • the PDCP layer and the SDAP layer of the relay device/terminal device are peered with the PDCP layer and the SDAP layer of the base station, and are specific to one bearer of each terminal device, that is, The PDCP layer and the SDAP layer correspond to one bearer of one terminal device, and different bearers of one terminal device correspond to different PDCP layers and SDAP layers.
  • the RLC layer, the MAC layer, and the PHY layer on the base station are specific to each relay device, and the RLC, MAC layer, and PHY on the Relay side are peer layers.
  • an Adaptation layer is defined between the relay device and the base station, and the functions of the Adaptation layer are as described above, and the details are not described herein again.
  • the Adaptation layer exists when the relay device forwards data as a Relay node, and may not exist when the relay device is accessed as a terminal device.
  • FIG. 9 shows a control plane protocol stack architecture of the L3 architecture.
  • the common points of FIG. 9 and FIG. 7 are: in the control planes under the L2 and L3 architectures, the terminal devices have the same protocol stack.
  • the core network devices have the same protocol stack, and the difference is that the RRC layer and the PDCP layer are sequentially above and below the ninth protocol stack of the relay devices (for example, RN1, RN2, and RN3) in the control plane of the L3 architecture.
  • the RLC layer of the relay device and the base station peering has a NAS layer, an NG AP layer, an SCTP layer, an IP layer, a PDCP layer, and a base station and a relay device (for example, RN1).
  • the layers from top to bottom are NG AP layer, SCTP layer, IP layer, and PDCP layer.
  • the protocol layer in the virtual frame indicates that when the relay device accesses the base station as a terminal device or accesses its previous hop relay device, the relay device has a protocol layer in the virtual frame.
  • the NAS layer at the same time, the NG AP layer, the SCTP layer, and the IP layer of the relay device in FIG. 9 also need to be replaced by the RRC layer, and the protocol layer of the peer-to-peer hop relay device is the NG AP.
  • the layer, the SCTP layer, and the IP layer also need to use the RRC layer instead; when the relay device forwards data as a Relay node, the relay device may not have the protocol layer in the virtual box.
  • the RRC message sent by the terminal device generates an NG AP message by sequentially following each of the relay devices (for example, RN3, RN2, and RN1), and the NG AP message is passed by the relay device to the base station. Send to the core network device.
  • the relay devices for example, RN3, RN2, and RN1
  • FIG. 10 shows a user plane protocol stack architecture of the L3 architecture.
  • the common point of FIG. 10 and FIG. 8 is that the protocol stack of the terminal device in the user plane under the hybrid protocol stack architecture is the same.
  • the protocol stack of the device is the same, and the base station is the same as the protocol stack of the core network device.
  • the difference is that the protocol stack of the relay device and the terminal device in the L3 architecture also includes the PDCP layer and the SDAP layer on the RLC layer.
  • the protocol stack of the device and the base station further includes a PDCP layer, an IP layer, a UDP layer, and a GTP layer on the RLC layer.
  • the protocol stack of the base station and the relay device also includes a PDCP layer and an IP layer on the RLC layer.
  • the protocol layer in the virtual frame indicates that when the relay device accesses the base station or its previous hop relay device as a terminal device, the relay device has a protocol layer in the virtual frame (for example, At the same time, the IP layer, UDP layer, and GTP layer of the relay device in FIG. 10 need to be replaced by the SDAP layer, and the protocol layer of the peer-to-peer hop relay device is the IP layer and the UDP layer. And the GTP layer also needs to use the SDAP layer instead; when the relay device forwards data as a Relay node, the relay device may not have the protocol layer in the virtual box.
  • one session of one terminal device corresponds to one GTP tunnel, and different sessions of the terminal device correspond to different GTP tunnels, and one GTP tunnel carries one of the RNs.
  • the DRB bearer supports the aggregation function of different QoS services of multiple terminal devices.
  • FIG. 11 shows another control plane protocol stack architecture of the L3 architecture provided by the present application.
  • the difference between FIG. 11 and FIG. 9 is that the relay device is in a protocol stack peered with the base station.
  • the SCTP and IP layers shown in FIG. 9 are replaced by the RRC layer, and the SCTP layer and the IP layer shown in FIG. 9 are replaced by the RRC layer in the protocol stack in which the base station and the relay device are peered.
  • the NG AP message is generated by the relay device, and the NG AP message is carried in the RRC message of the relay device and sent to the base station, and the base station will receive the NG.
  • the AP message proxy is given to NG_CN.
  • FIG. 12 shows another user plane protocol stack architecture of the L3 architecture provided by the present application.
  • the difference between FIG. 12 and FIG. 10 is that the relay device is used in a protocol stack peered with the base station.
  • the Adaptation layer shown in FIG. 12 replaces the GTP layer, the UDP layer, and the IP layer in FIG. 10, and the base station and the relay device peer-to-peer protocol stack replace the GTP layer and the UDP layer in FIG. 10 using the Adaptation layer in FIG. And the IP layer.
  • the multi-hop relay device is used as an example to introduce the protocol stack architecture in FIG. 7 to FIG. 12 .
  • the foregoing protocol stack is also applicable to a single-hop relay device scenario (ie, a terminal device).
  • a terminal device There is a relay device between the base station and the base station. Therefore, as shown in FIG. 7 to FIG. 12, there is a protocol stack of the relay device between the terminal device and the base station.
  • the RN3 and the RN3 in FIG. 7 to FIG. 12 may be omitted. Protocol stack of RN2.
  • the information transmission method provided by the embodiment of the present application is applicable to the L2 architecture and the hybrid protocol stack architecture.
  • the hybrid protocol stack architecture refers to: the control plane of the hybrid protocol stack architecture uses the control plane protocol stack architecture of the L3 protocol stack (for example, the control plane protocol stack architecture shown in FIG. 9 or FIG. 11 can be used).
  • the user plane uses the user plane protocol stack architecture of the L2 architecture as shown in FIG.
  • the first device in the present application may be a relay device, and the target device may be a next hop relay device that accesses the first device, or may be a user device that accesses the base station.
  • the first device is used as the first relay device
  • the target device is the second relay device as an example to describe in detail how the two relay devices access the base station to form a multi-hop networking architecture. .
  • the present application provides an interaction diagram of an information transmission method, including:
  • the base station generates system information.
  • the system information includes the SIB1 (system information block) and the SIB2, and the SIB1 and the SIB2 are similar to the prior art, and are not described in this embodiment.
  • the base station sends a first message to the first relay device, where the first message carries the first indication information and the system information, where the first indication information is used to indicate whether the first relay device broadcasts system information.
  • the first indication information may be an indicator, where the indicator is used to indicate whether the first relay device broadcasts system information.
  • the indicator may be a first indicator, where the first indicator is used to indicate that the first relay device broadcasts system information, or the indicator is a second indicator, the second indicator is used to indicate The first device does not broadcast system information, that is, the second indicator indicates that the first relay device itself uses the system information.
  • the first indicator may be 1 and the second indicator may be 0.
  • the first indicator and the second indicator in the present application may also be other parameters.
  • the first relay device may be a device directly connected to the base station, for example, the first relay device is the RN 301 as shown in FIG. 4, in this case, the base station may directly A message is sent to the first relay device through proprietary signaling, such as an RRC message.
  • the first relay device is the RN 302 as shown in FIG. 4, and then between the RN 302 and the base station. There is an RN 301. Therefore, when the base station sends the first message to the RN 302, it needs to be forwarded by the RN 301.
  • the method provided by the present application further includes: after the S101, the base station sends the previous message to the first relay device.
  • the hopping device sends the ninth indication information, the first indication information, and the system information, where the ninth indication information is used to indicate the first indication information and the first relay device to which the system information is transmitted.
  • the first hop relay device of the first relay device sends the first indication information and the system information to the first relay device by using the first message when determining that the first relay device indicated by the ninth indication information is not the self.
  • the ninth indication information may be at least one of an identifier of the first relay device and a hop count of the first relay device to the base station.
  • the ninth indication information may be an identifier of the first relay device, or a hop count of the first relay device to the base station, or a hop count of the first relay device to the base station and a first relay device.
  • An identifier where the identifier of the first relay device is used to identify the first relay device, and the identifier of the first relay device may be one or a group, specifically, if the first relay device is to the base station The plurality of relay devices are included, and the ninth indication information is an identifier of all the relay devices in the middle.
  • the first hop relay device of the first relay device may determine the identifier of the first relay device and the identifier of the first hop device indicated by the ninth indication information. Whether the first hop device determines that the identifier of the first relay device indicated by the ninth indication information is consistent with the identifier of the first hop device, the first hop device determines that the system information and the first indication information are sent to the user. Therefore, the first hop device can analyze the processing system information, for example, whether to broadcast system information based on the first indication information.
  • the first hop device determines that the identifier of the first relay device is inconsistent with the identifier of the first hop device, determines that the first indication information and the system information are not sent to the user, so the first hop device may The system information and the first indication information are sent to the first relay device. In this way, the first relay device can determine whether it is necessary to broadcast the system information according to the first indication information, and broadcast the system information after determining that the system information needs to be broadcast.
  • the first hop device may further determine whether the first indication information and the system information are sent to the user according to the hop count of the first relay device to the base station.
  • the specific determination process refer to the process according to the identifier of the first relay device. This application does not repeat here.
  • the first relay device is the RN 301 shown in FIG. 4 , and the hop count of the first relay device to the base station is 1. It can be understood that the first relay device is as shown in FIG. 6 .
  • the ninth indication information may also be an identifier of a communication link where the first relay device is located and a hop count of the first relay device to the base station.
  • the first indication information in the application may be carried in the adaptation layer.
  • the first indication information in step S102 in this application may be carried in the RRC.
  • the message may be carried in the adaptation layer of the control plane protocol stack.
  • the adaptation layer can be added under the PDCP layer.
  • the base station may send the first message to the first relay device by using the dedicated signaling (for example, the Rnreconfiguration message), or may be sent by using another existing RRC message or a new message.
  • the dedicated signaling for example, the Rnreconfiguration message
  • the first message further includes a subframe configuration, configured to instruct the first relay device to broadcast system information on the subframe time slot.
  • the first relay device before the base station sends the first message to the first relay device, the first relay device has accessed the base station, and the manner in which the first relay device accesses the base station is not limited.
  • the first relay device receives the first message sent by the base station.
  • the first relay device determines, according to the first indication information, that the system information needs to be broadcast, and the first relay device broadcasts the system information.
  • the first relay device determines that the first message includes the first indicator, and determines that the system information needs to be broadcasted; the first relay device determines that the first message is not included in the first message or the second message carries the second message.
  • An indicator determines that broadcast system information is not required.
  • the first indicator and the second indicator may multiplex the same bit position in the first message.
  • the system information sent by the base station is different for different relay devices, that is, the system information is when the base station is When it is known that the relay device is connected, the base station sends the system information different from the one broadcasted by itself to the first relay device in the first message.
  • the first message may include the first indication information, thereby The first relay device is made to know whether the system information needs to be broadcast to other other devices (for example, a relay device or a terminal device) or to apply the system information by itself.
  • the system information sent by the base station is the same for all the relay devices.
  • the first message may not be included in the first message, that is, the relay device that receives the system information only needs to broadcast.
  • the system information may be used, or the first relay device may also apply the system information while broadcasting the system information, or the first relay device applies the system information.
  • the first message may further carry the resource configuration
  • the step S104 may be specifically implemented by: determining, by the first relay device, that the first relay device needs to broadcast system information according to the first indication information, where the first relay device is System information is broadcast on a transmission time unit (eg, a subframe or a time slot) indicated by the resource configuration.
  • a transmission time unit eg, a subframe or a time slot
  • the first relay device when the first relay device is connected to the base station as the terminal device, the first relay device may not have the RRC layer and the PDCP layer. Therefore, in the L2 architecture, the first relay device does not generate system information, and the first relay device can forward system information generated by the base station.
  • the first relay device since the control plane of the hybrid protocol stack architecture is the protocol stack architecture as shown in FIG. 9 or FIG. 11, when the first relay device is connected to the base station as a terminal device, the first The relay device has an RRC layer and a PDCP layer. Therefore, in the hybrid protocol stack architecture, the first relay device can generate system information. When the first relay device generates system information by itself, steps S101 to S103 can be omitted.
  • the system information may be sent to the first relay device after the base station generates the shared system information (for example, common SI), and the first relay device is in the common
  • new system information for example, minimal SI
  • the shared system information may be related information shared by the base station or the base station and the relay device.
  • system information may be sent by the base station to the first relay device by using the RN reconfiguration message, and may also be through other existing RRC messages or new messages.
  • the first information in the foregoing step S102 may not be added to the first indication information, that is, after receiving the system information, the first relay device determines by the first relay device. Whether to broadcast system information, specifically, the first relay device can decide to change the system information by itself and decide whether to broadcast the changed system information.
  • step S104 may be specifically implemented by:
  • the first relay device sends an eighth message to the next hop relay device of the first relay device, where the eighth message carries the first indication information and the system information.
  • the next hop device of the first relay device forwards the eighth message, or the multiple relay devices between the first relay device and the second relay device sequentially forward the eighth message until the system The information is forwarded to the second relay device.
  • the system information in this application is used by the second relay device to determine how the cell corresponding to the base station is configured, so as to access the cell and work correctly in the cell, that is, the second relay device may be in the
  • the random access request ie, message 1
  • the first relay device to request access to the base station.
  • the base station can be accessed by the first relay device according to the system information to form a multi-hop relay architecture.
  • the present application provides an information transmission method, in which a first message is sent by a base station to a first relay device that has accessed the base station, and the first message is carried in the first message, so that the first relay device receives the first message. After a message, it is determined whether to broadcast system information according to the first indication information.
  • the first relay device may broadcast the system information, so that other devices, for example,
  • the second relay device that receives the system information broadcasted by the first relay device can access the base station through the system information, thereby implementing a process in which the second relay device accesses the base station through the first relay device, and
  • each of the plurality of relay devices between the base station and the terminal device may be based on the respective connected devices through the foregoing solution.
  • the one-hop relay device accesses the base station, so that the user equipment and the base station can deploy multiple relay devices to form a multi-hop relay network architecture.
  • the wireless relay technology aims to expand the coverage of the cell, reduce the dead zone in communication, balance the load, and transfer the business in the hot spot. Save the transmission power of the terminal equipment. Therefore, by deploying multi-hop relay devices, the cost of providing network coverage in some remote areas can be reduced.
  • the process of the second relay device accessing the base station by using the first relay device according to the system information, as shown in FIG. 14, can be implemented by:
  • the first relay device allocates a first identifier to the second relay device in the random access process of the second relay device, where the first identifier is used in a random access process of the second relay device.
  • the second relay device is identified in the accessed cell.
  • the first identifier of the second relay device may be a Cell Radio Network Tempory Identity (CRNTI).
  • CNTI Cell Radio Network Tempory Identity
  • the first identifier may also be used for other purposes.
  • the identifier of the second relay device is identified in the cell accessed by the second relay device in the random access process.
  • the first relay device may allocate the first identifier to the second relay device by:
  • the first relay device selects a first identifier from the plurality of first identifiers pre-configured by the base station for the first relay device as the first identifier of the second relay device, and sends the selected first identifier. To the base station.
  • the first relay device sends the message 1 sent by the second relay device to the base station, and the first relay device receives the first identifier sent by the base station through the dedicated signaling, and the first identifier is received by the base station. After message 1, it is assigned to the second relay device.
  • the first relay device allocates a first identifier to the second relay device, and the first relay device sends the identifier of the first identifier and the first relay device to the base station.
  • the random access procedure of the second relay device in the present application refers to: the second relay device reads the system information, and initiates a random access request to the first relay device, where the random access request The access request carries a preamble randomly selected by the second relay device.
  • the first relay device allocates an uplink resource to the second relay device during the random access process of the second relay device, and the uplink resource may be used by the second relay device to the first relay device.
  • Send an upstream message may be an RRC connection message, where the identifier of the second relay device (for example, Temporary Mobile Subscriber Identity (TMSI)) is carried as the contention resolution identifier.
  • TMSI Temporary Mobile Subscriber Identity
  • the first relay device sends the first identifier to the base station and forwards the second message sent by the second relay device, where the second message is used to request to establish a radio resource control RRC between the base station and the second relay device. connection.
  • the second message may be an RRC connection request (RRC connection request) message.
  • the first relay device may further send the identifier information of the first relay device to the base station, so that the base station may determine, according to the identifier information of the first relay device, that the first identifier of the second relay device is the first
  • the relay device allocates, and determines that the second relay device is located at the next hop of the first relay device, and further, it may also be determined that the RRC connection is established for the second relay device.
  • the first relay device may omit the first step in step S106.
  • the first relay device may transmit the second message by using a designated signaling radio bearer (SRB) between the base station and the first relay device, that is, the first relay device
  • SRB signaling radio bearer
  • the second message is carried in the RRC message between the base station and the first relay device, and is carried in the RRC connection reconfiguration complete message, or the other existing SRB message or the new SRB message. Not limited.
  • the first relay device may transmit the second message by using a designated data radio bearer (DRB) between the base station and the first relay device, that is, the first relay device maps the second message.
  • DRB data radio bearer
  • the method provided by the application further includes:
  • the base station sends an RRC connection setup message to the first relay device.
  • the first relay device sends the RRC connection setup message to the second relay device.
  • the second relay device sends an RRC connection setup complete message to the first relay device, that is, (message 5, MSG5)
  • the first relay device forwards an RRC connection setup complete message to the base station.
  • the base station After the base station receives the RRC connection setup complete message, the base station generates an initial UE message and sends it to the core network device, where the initial UE message carries an RN indication message, which is used to indicate that the core network device is an RN access.
  • the second relay device successfully accesses the base station, and the security authentication and activation of the NAS layer and the AS layer after the second relay device accesses the base station, and finally the bearer may be specifically referenced.
  • the solution in the prior art is not described herein again.
  • the steps S105 to S110 are performed after the steps S101 to S104 as an example.
  • the first relay device allocates the first to the next hop relay device to be accessed.
  • the process of the identification and the process of forwarding the RRC connection setup message of the next hop relay device to be accessed may be performed separately, that is, steps S105 to S110 of the present application may be implemented as a separate embodiment in the actual process.
  • S105 to S110 may be implemented as a separate embodiment, which still applies to the architecture as shown in FIG. 3 or FIG.
  • the second relay device or the first relay device has accessed the base station through the first relay device in the manner of S101 to S104 or accesses the base station through the first relay device in other manners, or the second relay device or the first The next hop relay device of the relay device has access to the base station through the first relay device in other manners or accesses the base station through the first relay device in other manners. .
  • the next hop relay device of the second relay device for example, the third relay device as shown in FIG. 14, the third relay device Accessing the base station through the accessed second relay device, and accessing the terminal device of the base station through the third relay device, which may also be through one or more of the first relay devices
  • the relay device is connected to the base station, and the specific access process is the same as the process of accessing the base station by the second relay device, or the like. It can be understood that when the next hop relay device or the terminal device of the second relay device needs to access the base station through the second relay device, the role played by the second relay device is the same as steps S101 to S104 or S105 described above. The role played by the first relay device in S110 is the same.
  • the base station may trigger the second middle based on the formed multi-hop relay device.
  • the process for the base station to configure the resource configuration information for the second relay device based on the multi-hop architecture may be implemented in the following manner:
  • the base station sends a third message to the first relay device, where the third message includes resource configuration information and second indication information, where the second indication information is used to determine the second relay device to which the resource configuration information is transmitted.
  • the third message in the present application is transmitted through the SRB1 between the first relay device and the base station, that is, the third message is carried in the RRC message between the first relay device and the base station.
  • the embodiment of the present application is not limited to be carried in an RRC connection reconfiguration (RRC connection reconfiguration) message, or other existing SRB messages or a new SRB message.
  • the first relay device may transmit the third message by using a DRB between the base station and the first relay device, that is, the first relay device maps the second message to the first relay device and the base station.
  • the DRB is transmitted to the base station.
  • the second indication information may include at least one of an identifier of the second relay device and a hop count of the second relay device to the base station, and it may also be understood that the second indication information is in the foregoing step.
  • the ninth indication information is the same indication information, except that the specific meaning indicated by the ninth indication information or the second indication information is different in different messages.
  • the ninth indication information or the second indication information is in the first message, it is used to indicate that the system information is transmitted to the second relay device, when the ninth indication information or the second indication information is in the third In the message, it is used to indicate to the second relay device to which the resource configuration information is sent.
  • the second indication information may be an identifier of the second relay device, or a hop count of the second relay device to the base station, or a hop count of the second relay device to the base station and a second relay device.
  • the identifier wherein the identifier of the second relay device is used to identify the second relay device. That is, in this scenario, the identifier of the second relay device is unique under the owning base station, that is, if the second relay device includes multiple relay devices between the base stations, the relay device The identity of the second relay device can be uniquely identified.
  • the identifier of the second relay device may be a group of relay device identifiers. Specifically, if the second relay device includes multiple relay devices between the base stations, the second indication information. It is the identification list of all the relay devices in the middle, or the hop count list, or the identification list and hop count list of the relay device.
  • the second relay device is an RN3, and the second relay device has two RN2 and RN1 relay devices between the base stations, and the second indication information is an identifier list, including: an identifier of the RN1, The identifier of the RN2, the identifier of the RN3, or the second indication information is an identifier list and a hop count list, including: an identifier of the RN1 (1 hop), an identifier of the RN2 (2 hops), and an identifier of the RN3 (3 hops), where The identifier of RN1 is optional.
  • the target device is the second relay device as an example. If the target device is the terminal device, the second indication information includes the third identifier of the terminal device, the terminal device, and the base station. At least one of the identification list and the hop count list of all relay devices.
  • the first relay device receives a third message sent by the base station.
  • the first relay device determines, according to the second indication information, that the second relay device is not the first relay device, and sends the resource configuration information to the second relay device.
  • the second relay device may be the next hop device of the first relay device, and the first relay device may directly send the resource configuration information to the second relay device.
  • the first relay device may forward the resource configuration information to the second relay in sequence through other relay devices.
  • the device in particular, the first relay device may send a ninth message to the next hop relay device of the first relay device in the other relay device, the content of the ninth message is the same as the content of the third message, The application does not limit this.
  • the resource configuration information includes: first resource configuration information generated by the base station and second resource configuration information generated by the base station, where the first configuration information is used to configure the PDCP layer and the SDAP of the second relay device. At least one layer of the layer; the second configuration information is used to configure the RLC layer of the second relay device and at least one layer of the MAC layer and the PHY layer.
  • the first resource device has the RRC layer and the PDCP layer, that is, the first relay device can be used as the terminal device to generate the second resource configuration information, whether in the L2 architecture or the hybrid protocol stack architecture.
  • the second resource configuration information sent by the base station may be received. Therefore, in the L2 architecture and the hybrid protocol stack architecture, the first relay device may serve as the relay to forward the first resource configuration information and the second resource configuration information generated by the base station.
  • the resource configuration information includes first resource configuration information generated by the base station and second resource configuration information generated by the relay device, where the relay device is the first relay device or the second relay device.
  • the relay device is the first relay device or the second relay device.
  • a relay device of the last hop or a few hops hereinafter, the relay device is used as an example of the first relay device, wherein the second resource configuration information is generated by the first relay device and then sent to the base station.
  • the second resource configuration information may be generated by the first relay device, but in the L2 architecture due to the first
  • the first relay device may not have the RRC layer and the PDCP layer, and the first relay device may not directly send the generated second resource configuration information to the next hop relay when the first relay device is connected as the Real.
  • the first relay device may send the generated second resource configuration information to the base station first, and the base station forwards the relay device to the next hop relay device by using the first relay device as the relay station.
  • the second resource configuration information generated by the first relay device may be transmitted to the base station by using the DRB or the SRB between the first relay device and the base station, and then forwarded by the base station to the second relay device by using the first relay device. .
  • the base station forwards the second resource configuration information and the first resource configuration information by using the first relay device, adding, by the first resource configuration information, the configuration information that is used by the second resource configuration information and the first resource configuration information, where the indication information is used to indicate the second
  • the resource configuration information and the first resource configuration information are configured to the target relay device, and the indication message may be at least one of an identifier of the target relay device and a hop count of the target relay device to the base station.
  • the first relay device has the RRC layer and the PDCP layer when the terminal device is the terminal device, and does not have the RRC layer and the PDCP layer when the relay is used as the relay device, so the first relay device can forward the first resource.
  • the configuration information may be used to generate or modify the second resource configuration information, where the first relay device may modify the second resource configuration information in the scenario where the second resource configuration information is configured by the base station; and the L2 and L3 hybrid protocol stacks
  • the first relay device has an RRC layer and a PDCP layer, so the first relay device may forward the first resource configuration information, or may generate or modify the first resource configuration information; And generating or modifying the second resource configuration information, where the first relay device may modify the second resource configuration information when the second resource configuration information is configured by the base station.
  • the second indication information in the application may be carried in at least one layer of the adaptation layer, the RLC layer, the MAC layer, and the PHY layer; for the L2 and L3 hybrid architecture, the second indication The information may be carried in at least one layer of the RRC layer, the PDCP layer, the adaptation layer, the RLC layer, the MAC layer, and the PHY layer.
  • the base station may also directly generate two RRC messages, one of the two RRC messages is not encrypted, and the RRC message 1 is used for an intermediate relay device, for example, the first relay device adds a modified RLC layer. And at least one of a MAC layer and a PHY layer. That is, after receiving the RRC message 1, the first relay device adds the configuration to the RLC layer and the MAC layer and the PHY layer of the second relay device, and then sends the configuration to the second relay device.
  • the other RRC message 2 of the two RRC messages is encrypted, including the configuration of the PDCP layer or the SDAP layer.
  • the first relay device directly forwards the RRC message 2 to the second relay device. At least one of the configurations of the PDCP layer and the SDAP layer is acquired after the second relay device resolves the RRC message 2.
  • the RRC message 1 and the RRC message 2 both need to include an indication information, which is used to indicate that the RRC message is configured to the target RN, and the indication message may be at least one of an identifier of the target RN and a hop count of the target RN to the base station. .
  • the RRC message also needs to indicate whether the RRC message 1 or the RRC message 2 is sent to the first relay device on the current transmission time unit, and may be specifically indicated by the negotiated third indicator or the fourth indicator.
  • the third indicator may be 0, and the fourth indicator may be 1.
  • the embodiment of the present application is not limited.
  • each relay device can be generated by the base station, it can also be generated by the previous hop relay device that each of the relay devices accesses, when each of the relay devices When the second resource configuration information is generated by the respective one-hop relay device, the second-hop relay device that is accessed by each device needs to send the generated second resource configuration information to the base station first (specifically, each When the one-hop relay device sends the second resource configuration information to the one-hop relay device, the device carries a seventh indication information, where the seventh indication information is used to send the second resource configuration information to the base station, and the second resource configuration The information and the identifier of the relay device configured with the second resource configuration information are forwarded by the base station to the next hop relay device forwarded by the last hop relay device in the configuration information.
  • the steps S111 to S113 are performed based on the steps S101 to S110, and the description is not limited to the present application.
  • the base station is the first relay device.
  • the process of allocating resource configuration information by the one-hop relay device may be implemented as an embodiment separately, that is, steps S111 to S113 of the present application may be separately performed in an actual process.
  • S111 to S113 are separately executed, it is applicable to the architecture shown in FIG. 3 or FIG. 4, that is, in a scenario where the base station configures resource configuration information for the accessed relay device through the multi-hop relay device,
  • the relay device is connected to the base station by using the first relay device that accesses the base station.
  • the manner in which the respective relay device accesses the base station is not limited, for example, the first method may be adopted in the manner of S101 to S104.
  • S111 to S113 may also be performed after steps S101 to S104, that is, S101 to S104 and S111 to S113 as one embodiment, or after steps S105 to S110, that is, S105 to S110 and S111 to S113 as one embodiment.
  • steps S101 to S104 mainly describe how the second relay device accesses the base station through the first relay device that has accessed the base station
  • steps S105 to S110 mainly describe how the base station is based on the second relay device and the base station.
  • the process in which the hop relay device sends the resource configuration information to the second relay device it can be understood that, in the actual process, the terminal device can also access the base station through the second relay device and the first relay device, and the terminal device
  • the process of accessing the base station by using the second relay device and the first relay device refer to the process in which the second relay device is used as the terminal device to access the base station by using the first relay device in the foregoing embodiment. Narration. It should be understood that when the terminal device needs to access the base station through multiple relay devices, the multiple relay devices should have been accessed in the base station by the above manner.
  • the terminal device accesses the base station through the multi-hop relay device (for example, RN 302 and RN 301 shown in FIG. 4 )
  • the base station does not Knowing which relay device the terminal device is connected to.
  • the paging device needs to be patched, and the base station can implement the terminal device by using multiple relay devices established between the terminal device and the base station. Paging. Therefore, the following describes the paging process of the base station to the terminal device through the multi-hop relay device:
  • the method provided by the present application is as shown in FIG. 16, and further includes:
  • the base station sends a fourth message to the first relay device, where the fourth message is used to indicate that the first relay device is in a Paging Occasion (PO) paging tracking area (TA). device.
  • PO Paging Occasion
  • TA paging tracking area
  • the core network device when the network side (for example, the core network device) needs to page the terminal device, the core network device sends a paging message to the base station.
  • the network side for example, the core network device
  • the core network device sends a paging message to all base stations in the Tracking Area List (TAList) where the terminal device is located (the TATAL includes the TA, and the TA update process registration, etc.).
  • the call message carries information such as a second identifier (eg, S-TMSI) of the terminal device and a Tracking Area Identity (TAI).
  • S-TMSI Tracking Area Identity
  • TAI Tracking Area Identity
  • the second identifier of the terminal device is used to determine the paged terminal device, and the TAI is used to determine the TA where the page terminal device is located.
  • the base station may forward the paging message to the terminal device through the relay device underneath to implement paging to the terminal device, but usually, the following Three paging situations:
  • each node e.g., base station, first relay device, second relay device
  • each node may have a TA where the next hop relay device is located.
  • the base station may have a TA where the first relay device is located
  • the first relay device may have a TA where the second relay device is located
  • the second relay device may have a TA where the terminal device is located.
  • Each node can have the TA where all of its relays are located.
  • the base station may have a first relay device and a TA where the second relay device is located, and the first relay device may determine the TA where the second relay device is located.
  • each node does not have the TA where the relay device it is included.
  • the base station 100 only knows the TA1 where the RN 301 is located, the RN 301 knows the TA2 where the RN 302 is located, and the terminal device 200 that the base station 100 pages is located at the TA2.
  • Step S114 can be specifically implemented in the following manner:
  • the base station sends a fourth message to the first relay device in the next hop relay device of the base station.
  • the base station sends a fourth message to the RN 301.
  • the TA where the first relay device is located in the step S1141 includes at least the TA where the terminal device is located, that is, the TA where the terminal device is located is located in the TA where the first relay device is located, and therefore, before S1141, include:
  • the base station determines, according to the TA of each of the next hops, the target TA of the TA where the terminal device is located, where the target TA is the TA where the first relay device is located.
  • the first relay device determines that the first relay device belongs to the TA, and the first relay device pages the terminal device in the TA in the paging slot PO.
  • the first relay device has a TA where the first relay device is located.
  • the first relay device may also store the next hop relay device of the first relay device. TA.
  • the first relay device determines that the candidate device belongs to the TA in the next hop device of the first relay device, and sends a fifth message to the candidate device, where the fifth message is used to indicate the terminal device in the PO paging TA. .
  • step S116 the first relay device has at least one next hop relay device.
  • the fifth message may carry the second identifier of the paged terminal device, the paging slot, and the TAI.
  • the fifth message may carry parameters for calculating a paging slot (for example, a second identifier of the terminal device, a discontinuous reception period specific to the terminal device, and a cell-specific non- The continuous receiving period) and the TAI, the candidate device may determine the paging PO according to the second identifier carried in the fifth message, the terminal device-specific discontinuous reception period, and the cell-specific discontinuous reception period.
  • a paging slot for example, a second identifier of the terminal device, a discontinuous reception period specific to the terminal device, and a cell-specific non- The continuous receiving period
  • the candidate device may determine the paging PO according to the second identifier carried in the fifth message, the terminal device-specific discontinuous reception period, and the cell-specific discontinuous reception period.
  • the base station sends the parameter for calculating the paging slot and the TAI to the first relay device, and the first relay device determines that the TA of the first relay device is not the TA indicated by the TAI, and the first relay device
  • the parameters for calculating the paging slot and the TAI are carried in the fifth message and sent to the candidate device after determining the candidate device.
  • the RN 301 determines that the TA where the RN 302 is located is the TA where the paging terminal device is located, and the RN 301 sends the paging PO and the second identifier of the paged terminal device to the RN 302.
  • the RN 301 determines that the TA where the RN 302 is located is the TA where the paging terminal device is located, and the RN 301 sends the parameter for calculating the paging slot to the RN 302.
  • the candidate device belongs to the TA (due to Each relay device can determine the TA where the next hop device is located.
  • the TA where the next hop device is located is different from the TA where the terminal device is located, the TA of the relay device between the next hop device and the terminal device is also The TA may be the same as the TA where the terminal device is located) or the first relay device does not have the TA of the next hop relay device, and the first page hop device may be sent to all the next hop devices of the first relay device.
  • a second identifier, a paging slot, and a TAI to continue to determine to forward the paging message to the terminal device by the next hop relay device of the first relay device until the first All the relay devices between the relay device and the terminal device determine that the TA where the paging terminal device is located does not belong to the TA of each relay device, and the first relay device may return a message such as paging failure to the base station, so that the base station Re-initiate the terminal design Paging.
  • the method provided by the application further includes:
  • the first relay device determines a paging slot.
  • the fourth message sent by the base station to the first relay device may carry the paging time slot, and may also carry parameters for calculating the paging time slot, and the content of the fourth message is different, resulting in the first
  • the present application now describes the specific implementation process in step S117 in combination with different situations:
  • step S117 can be specifically implemented in the following manner:
  • the first relay device determines the paging PO from the fourth message.
  • the fourth message carries the paging PO, the TAI, and the second identifier of the paged terminal device.
  • the fourth message sent by the base station to the first relay device carries the parameter for the first relay device to determine the paging slot
  • the fourth message includes the second identifier (for example, temporary mobility).
  • S-Temporary Mobile Subscriber Identity S-TMSI
  • IMSI International Mobile Subscriber Identity
  • DRX Discontinuous Reception
  • the second identifier is used to indicate the identifier of the terminal device when paging the terminal device.
  • the first relay device determines the paging PO according to the second identifier, the terminal device-specific discontinuous reception period, and the cell-specific discontinuous reception period.
  • the first relay device determines that the first relay device is paged.
  • the first relay device usually sends a fifth message to its next hop relay device (the second relay device).
  • the message may directly carry the paging PO, or may carry the second identifier, the terminal device-specific discontinuous reception period, and the cell-specific discontinuous reception (Cell Specific DRX) period, so that the second relay device determines the paging time.
  • Cell Specific DRX Cell Specific DRX
  • the process of forwarding the paging message to the second identifier may also be referred to the first relay device. limited.
  • the second case For example, in the architecture shown in FIG. 4, the base station 100 knows the TA1 where the RN 301 is located, and the TA2 where the RN 302 is located, and the terminal device 200 that the base station 100 pages is located at TA2.
  • the method provided by the present application further includes:
  • the base station sends a fourth message to the first relay device, where the fourth message includes a paging PO, a second identifier of the terminal device, and third indication information, where the third indication information is used to indicate that the first relay device will page.
  • the PO and the second identifier of the terminal device are sent to the third relay device.
  • the third indication information may further carry at least one of an identifier of the third relay device or a hop count of the third relay device to the base station, and the identifier of the third relay device may be specifically referred to in the foregoing embodiment. Description, this application is not limited thereto.
  • the third indication information may be an identifier of the third relay device, or a hop count of the third relay device to the base station, or a hop count of the third relay device to the base station and a third relay device.
  • the identifier wherein the identifier of the third relay device is used to identify the third relay device. That is, in this scenario, the identifier of the third relay device is unique under the own base station, that is, if the third relay device includes many relay devices between the base stations, the relay device can The identifier of the third relay device is uniquely identified.
  • the identifier of the third relay device may be a group of relay device identifiers. Specifically, if the third relay device includes a plurality of relay devices between the base stations, the third indication information is A list of identities of all relay devices in the middle, or a list of hop counts, or a list of identities and hop counts of the relay devices.
  • the third relay device is an example of the RN3, and the third relay device has two relay devices, RN2 and RN1, between the base station, and the third indication information is an identifier list, including: an identifier of the RN1, The identifier of the RN2, the identifier of the RN3, or the third indication information is an identifier list and a hop count list, including: an identifier of the RN1 (1 hop), an identifier of the RN2 (2 hops), and an identifier of the RN3 (3 hops), where The identifier of RN1 is optional.
  • the target device is the third relay device as an example. If the target device is the terminal device, the third indication information includes the identifier of the terminal device (for example, may be the second At least one of an identification list or a hop count list of all relay devices between the terminal device and the base station.
  • the third indication information in the application may be carried in at least one layer of the adaptation layer, the RLC layer, the MAC layer, and the PHY layer; for the L2 and L3 hybrid architecture, the third indication The information may be carried in at least one layer of the RRC layer, the PDCP layer, the adaptation layer, the RLC layer, the MAC layer, and the PHY layer, where, in the hybrid protocol stack architecture, if the third indication information is carried in the adaptation layer, Then, the adaptation layer can be added to the control plane architecture in the hybrid protocol stack architecture, similar to the control plane of the L2 architecture, such as adding an adaptation layer below the PDCP layer.
  • the first relay device receives the fourth message sent by the base station.
  • the first relay device sends the paging PO and the second identifier of the terminal device to the third relay device according to the third indication information.
  • the step S120 in the present application may be implemented in the following manner: the first relay device determines that the third relay device indicated by the third indication information is not the first relay device, and then the first relay device The third relay device sends the paging PO and the second identifier of the terminal device; further, when the first relay device determines that the third relay device is not its next hop relay device, the first relay device may pass the third The relay device between the relay device and the first relay device forwards the paging PO to the third relay device and the second identifier of the terminal device to the third relay device, where the first relay device further needs The identifier of the third relay device is sent to the relay device between the third relay device and the first relay device.
  • the third relay device is paging the terminal device indicated by the second identifier of the PO paging terminal device.
  • the paging slot PO, the TAI, the identifier of the relay device, the second identifier of the terminal device, and at least one of the discontinuous reception period of the terminal device and the discontinuous reception period specific to the cell are specified.
  • the item may be transmitted by the base station through the SRB transmission or the DRB transmission between the first relay device and the third relay device, or the new SRB and the DRB, which are not limited in this embodiment.
  • the base station transmits the SRB (which may also be a DRB) between the first relay device and the third relay device, for the L2 architecture, the PO layer, the TAI, the RN identifier, and the terminal device are added to the adaptation layer. At least one of a second identity, a terminal device-specific discontinuous reception cycle, and a cell-specific discontinuous reception cycle.
  • the adaptation layer or the RRC layer or the PDCP layer adds PO, TAI, RN identity, second identity of the terminal device, terminal device-specific discontinuous reception cycle, and cell-specific discontinuous reception cycle. At least one of them.
  • an adaptation layer is added to the control plane architecture in the hybrid protocol stack architecture, similar to the control plane of the L2 architecture, such as adding an adaptation under the PDCP layer.
  • Floor Similar to the control plane of the L2 architecture, such as adding an adaptation under the PDCP layer.
  • the difference from the first case is that the base station sends a fourth message to all of its next hop relay devices, for example, in the architecture shown in FIG. 6, the base station to the RN 301 and the RN 302
  • the fourth relay message is sent, and the first relay device in step S1141 is any one of the next hop relay devices that the base station has. Therefore, the paging of the first relay device to the terminal device can be referred to the foregoing. In one case, the application will not be repeated here.
  • the next hop relay device (for example, the first relay device) of the base station can know the next hop.
  • the TA of the next hop of the relay device (for example, the first relay device knows the TA where the second relay device is located), in this case, the first relay device may adopt the PO, the second identifier of the terminal device,
  • the TAI mode notifies the next hop relay device to page the terminal device, and may also notify the next hop relay device to page the terminal device by using the method in S1141.
  • next hop relay device of the base station may also not know the TA of the next hop of the next hop relay device (eg, the first relay device does not know the second relay)
  • the TA where the device is located then the first relay device may send all of its next hop relay devices to all of its next hop relay devices to indicate the manner in which the terminal devices in the PO paging TA are notified. Paging the terminal device.
  • the first relay device when the first relay device is connected as a relay through the Un interface, there is no RRC layer and PDCP layer. Therefore, in the L2 architecture, the first relay device can only receive and forward the base station.
  • the paging message sent by the terminal device specifically, the paging time slot of the terminal device, the identifier of the third relay device, and the TAI may be carried in the protocol stack of the base station and the first relay device. And in the layer, and transmitted to the first relay device by using an SRB or a DRB between the base station and the first relay device.
  • the first relay device When the first relay device will pat the at least one of the time slot PO and the TAI and the identifier of the third relay device (or the second identifier of the paged terminal device, the second identifier of the terminal device, and the terminal device specific
  • the first relay device may pass the SRB between it and its next hop relay device.
  • the DRB transmits at least one of the paging slot PO and the identifier of the TAI and the third relay device (or the second identifier of the paged terminal device, the second identifier of the terminal device, and the discontinuity specific to the terminal device) Receiving period and cell-specific discontinuous reception period, TAI), and carrying the paging slot PO and TAI and the identifier of the third relay device in the adaptation layer of the protocol stack peering with the next hop device At least one item (or a second identity of the paged terminal device, a second identity of the terminal device, a terminal device-specific discontinuous reception cycle, and a cell-specific discontinuous reception cycle, TAI).
  • the difference from the L2 architecture is when the paging message is in the base station and the middle.
  • the paging time slot of the terminal device, the identifier of the third relay device (or the second identifier of the paged terminal device, the second identifier of the terminal device, and the discontinuous reception specific to the terminal device) when transmitting between the devices The periodic and cell-specific discontinuous reception period (TAI) may be carried in the adaptation layer of the protocol stack of the base station and the first relay device, or may be carried in the RRC protocol of the base station and the first relay device.
  • the layer or the PDCP protocol layer is carried in the RRC message and transmitted to the first relay device through the SRB or DRB between the base station and the first relay device.
  • the base station needs to add an indication in the adaptation layer to indicate whether the SRB or the DRB is used for transmitting paging information or system information; for the hybrid protocol stack architecture, the base station can be in the adaptation layer, PDCP.
  • An indication is added to at least one layer of the layer or the RRC layer to indicate whether the SRB or DRB is for transmitting paging information or system information.
  • Steps S114 to S121 describe how the base station performs a paging process on the terminal device by using the multi-hop relay device between the base station and the terminal device. In the actual process, the steps S114 to S121 may be performed separately or in the process.
  • Steps S101 to S104 are implemented (ie, steps S101 to S104 and S114 to S121 may be one embodiment), or may be implemented after S101 to S113 (ie, steps S101 to S113 and S114 to S121 may be used as one embodiment), or in separate After the implementation of S105 to S110 is performed (ie, steps S105 to S110 and S114 to S121 may be used as one embodiment), and may be implemented after S111 to S113 are separately performed (ie, steps S111 to S113 and S114 to S121 may be used as one Embodiments, the present application is described by taking steps S114 to S121 as an example based on the execution of steps S101 to S113 (as shown in FIG. 16).
  • the base station when the base station is in a multi-hop relay scenario, it is based on multi-hop relay.
  • the terminal device and the plurality of relay devices between the terminal device and the base station have adopted the first relay device in a manner as in S101 to S104.
  • Accessing the base station or accessing the base station by using the first relay device in another manner, in the scenario that the base station pages the terminal device by using the multi-hop relay device the present application applies multiple to the terminal device and the terminal device and the base station.
  • the process of how the relay device accesses the base station is not limited.
  • radio bearers for example, SRB or DRB, between the first relay device and the base station, the first relay device and the second relay device, and the second relay device and the terminal device.
  • the radio bearer is a DRB as an example.
  • the DRB between the RN1 and the base station includes DRB1, DRB2, and DRB3, and the DRB between RN1 and RN2 includes DRB1, DRB2, and DRB3. Therefore, in the process of downlink transmission (that is, data or information sent by the base station to the terminal device), when the base station sends signaling or service data to the terminal device, it also needs to map it to the designated downlink wireless according to the information acquired from the NG.
  • Bearer ie, the radio bearer when the base station sends signaling or data to the terminal device or its next hop relay device, or the radio bearer when the relay device sends signaling or data to the next hop relay device of the relay device
  • each relay device forwards data or signaling (for example, RRC message, paging message) of the base station to the terminal device, it also needs to determine which downlink radio bearer to map the data or signaling to, in the uplink transmission.
  • the terminal device also needs to determine which uplink radio bearer (ie, the radio bearer when the terminal device sends signaling or data to the base station) on which the data or signaling is mapped.
  • Each relay device also needs to determine which uplink to map data or signaling in the process of forwarding data or signaling of the terminal device to the base station.
  • the method provided by the present application further includes:
  • the first relay device determines a relationship between the radio bearer between the first relay device and the base station, and the radio bearer between the first relay device and the second relay device, where the first relay device and the second At least one association relationship between the radio bearer and the service information between the relay device and the association relationship between the radio bearer and the service information between the first relay device and the base station, and at least one association relationship is used in the first
  • the device determines the designated radio bearer of the transmission destination packet.
  • the at least one association relationship may be sent by the base station to the first relay device, or the at least one association relationship is generated by the previous hop relay device of the first relay device and then sent to the first relay device.
  • the association relationship may be directly sent to the first relay device by using an RRC message of the base station.
  • the RRC message includes an eighth indication information, where the eighth indication information includes at least one of an identifier of the first relay device and a hop count of the first relay device to the base station, where the eighth indication The information is used to indicate that the association relationship is for the first relay device.
  • the eighth indication information may be an identifier of the first relay device, or a hop count of the first relay device to the base station, or a hop count of the first relay device to the base station and a first relay device.
  • the identifier wherein the identifier of the first relay device is used to identify the first relay device. That is, in this scenario, the identifier of the first relay device is unique under the associated base station, that is, if the first relay device includes many relay devices between the base stations, the relay devices are all The identity of the first relay device can be uniquely identified.
  • the eighth indication information may be a group of relay device identifiers. Specifically, if the first relay device includes a plurality of relay devices between the base stations, the eighth indication information is all in the middle. The identification list of the relay device, or the hop count list, or the identification list and hop count list of the relay device.
  • the first relay device is an RN3, and the first relay device has two relay devices, RN2 and RN1, between the base station, and the eighth indication information is an identifier list, including: an identifier of the RN1, The identifier of the RN2, the identifier of the RN3, or the eighth indication information is an identifier list and a hop count list, including: an identifier of the RN1 (1 hop), an identifier of the RN2 (2 hops), and an identifier of the RN3 (3 hops), where The identifier of RN1 is optional.
  • the association relationship may be directly sent by the hop message of the first relay device of the first relay device to the first relay device by using an RRC message;
  • the previous hop relay device of the first relay device may add the at least one association relationship to the first relay device in the adaptation layer, or the last hop of the first relay device.
  • the device may first send the at least one association relationship to the base station, and the base station sends the hop message to the previous hop relay device of the first relay device, and is relayed by the first hop of the first relay device.
  • the RRC message includes an eighth indication information, where the eighth indication information includes an identifier of the first relay device or a hop count of the first relay device to the base station.
  • the eighth indication information is used to indicate that the association relationship is for the first relay device; for example, when the first relay device is not the next hop relay device of the base station, for example, the first relay device is In RN3 in FIG. 17, at least one association relationship in the first relay device may be generated by RN2.
  • the eighth indication information in the application may be carried in at least one layer of the adaptation layer, the RLC layer, the MAC layer, and the PHY layer.
  • the eighth indication information may be carried in at least one layer of an RRC layer, a PDCP layer, an adaptation layer, an RLC layer, a MAC layer, and a PHY layer, where, for the hybrid protocol stack architecture, if the eighth The indication information is carried in the adaptation layer.
  • the adaptation layer can be added in the control plane architecture in the hybrid protocol stack architecture.
  • the control plane of the L2 architecture can be referred to, and the adaptation layer is added under the PDCP layer.
  • RN1 determines the association relationship between DRB1 between RN1 and the base station and DRB2 between RN1 and RN2.
  • the following data transmission is taken as an example: when RN1 receives the downlink data sent by the base station on the DRB1 between the RN1 and the base station, the RN1 may select one of the multiple DRBs between the RN1 and the RN2 according to the association relationship.
  • the DRB2 is used to transmit downlink data sent by the base station.
  • the radio bearer can also be an SRB, but the SRB is used to transmit control information or signaling, and in addition, how to select RN2 and RN3
  • For the process of the DRB to transmit data refer to the process of selecting the DRB by the foregoing RN1, and the application does not repeat here.
  • the terminal device select the DRB to transmit uplink data to the RN3, how the RN3 selects the DRB to transmit the uplink data to the RN2, and how the RN selects the DRB to transmit the uplink data to the RN1, and how the RN1 selects the DRB transmission.
  • the process of the data to the base station can refer to the process of how the RN1 selects the DRB during the downlink data transmission, and details are not described herein again.
  • the uplink refers to a data packet or signaling sent by the terminal device to the base station
  • the downlink refers to a data packet or signaling sent by the base station to the terminal device
  • the core network device transmits the terminal device service from the next generation core network (NGC) to the base station through a session GTP tunnel of each terminal device; the base station is connected to the NG interface between the base station and the NGC.
  • the service of the terminal device is extracted from the GTP tunnel of the interface, and the service type of the terminal device transmitted is obtained according to the QoS flow ID of the terminal device carried in the GTP tunnel header field of the NG interface.
  • the base station processes the terminal device service through the SDAP layer, the PDCP layer, and the Adaptation layer, that is, the base station according to the session ID or the Qos flow ID of the terminal device service and the identifier of the radio bearer.
  • the base station maps the terminal equipment service to the DRB indicated by the DRB ID associated with the terminal equipment service among the multiple DRBs between the base station and the RN1.
  • the base station adds the DRB ID to the adaptation layer.
  • the base station may also set the session ID, the Qos flow ID, and the specific quality of service (Qos) information and the QoS Classification Identifier.
  • the QCI is added to the adaptation layer.
  • the RN1 After receiving the downlink data packet of the terminal device from the base station, the RN1 parses the adaptation layer and reads the related terminal device service information.
  • the base station needs to associate the terminal device service information (for example, session ID, QoS flow ID) and the radio bearer (for example, the relationship between the QoS flow ID and the DRB ID).
  • the association relationship is sent to the next hop relay device, for example, RN1 and each hop relay device needs to send the association relationship between the terminal device service information and the radio bearer to the respective next hop relay device.
  • the association relationship may be carried in an RRC message between the base station and the RN1.
  • the RN1 reads the service information of the terminal device and the terminal device identifier from the adaptation layer, and obtains the service type of the transmitted terminal device according to the Qos flow ID and the session ID identifier of the terminal device carried in the service information.
  • the relay device in the present application may have the capability of determining a radio bearer mapping relationship, or may not have the capability of determining a radio bearer mapping relationship. Therefore, on the one hand, the relay device does not have a decision radio bearer mapping relationship, and then the RN1 acquires the terminal. After the service information of the device, the QoS flow is mapped to the first DRB between the RN1 and the RN2 according to the QoS information, where the first DRB is any one of the multiple DRBs between the RN1 and the RN2.
  • the RN1 can still determine the first DRB according to at least one association relationship configured by the base station. At this time, the first DRB receives the identifier of the data radio bearer of the downlink data packet by the RN1. Determining at least one association relationship with the base station configuration, for example, the RN1 receives the downlink data packet on the DRB1 between the base station and the RN1, and the DRB1 between the base station and the RN1 and the DRB2 between the RN1 and the RN2 have an association relationship, then The first DRB determined by RN1 may be DRB2 between RN1 and RN2.
  • the RN1 may use the radio bearer identification information (for example, DRB) used in the previous hop transmission carried in the adaptation layer of the base station and the protocol stack of the RN1. ID), then RN1 randomly selects one DRB from multiple DRBs between RN1 and RN2, maps the services of the terminal equipment to the randomly selected DRB and transmits to the RN2.
  • DRB radio bearer identification information
  • the relay device when the relay device does not have a decision bearer mapping relationship, if the identity information of the radio bearer carried in the adaptation layer of the base station and the protocol stack of the RN1 indicates the DRB between the base station and the RN1 The RN1 can determine which DRB between the RN1 and the RN2 is mapped to the DRB, that is, the DRB between the RN1 and the RN2, which is associated with the DRB indicated by the identifier of the DRB.
  • the RN3 extracts the terminal device service from the adaptation layer, and learns the transmitted terminal device according to the Qos flow ID, the session ID identifier, and the identifier of the terminal device of the terminal device carried in the adaptation layer. business type.
  • the RN3 maps the Qos flow to any one of the DRBs between the RN3 and the terminal device according to the Qos information.
  • RN1 transmits the downlink data packet to the RN2, and the mapping process of the radio bearer between RN2 and RN3 is similar to the mapping process of the radio bearer between RN1 and RN2, and the mapping process of the radio bearer between RN2 and RN3 is similar.
  • the mapping process of the radio bearer between RN1 and RN2 which is not described herein again.
  • the downlink data packet is transmitted to the RN3 through the similar step RN2, and the RN3 maps the downlink data packet according to the DRB ID carried in the adaptation layer to the RN3.
  • the DRB indicated by the DRB ID information between the RN3 and the terminal device may be arbitrarily mapped by the RN3, or may be mapped according to the association relationship of the base hop or the hop relay device configuration of the RN3.
  • the previous hop relay device of each relay device needs to send the mapping relationship between the terminal device service information and the radio bearer to the respective next hop relay device.
  • the RN3 needs to send a mapping relationship between the QoS flow ID and the DRB ID to the terminal device.
  • the mapping relationship may be that the RN3 is configured to notify the base station, and then sent by the eNB to the terminal device by using the RRC message.
  • the process of transmitting the RRC message refer to the foregoing signaling forwarding mode, that is, the L2 architecture signaling plane and the L2 and L3 hybrid protocol stack architecture.
  • the signaling forwarding mode of the lower control plane is not described here, or the mapping relationship is directly configured by the base station to the terminal device through the RRC message in advance, which is not limited herein.
  • the following describes the bearer mapping process of the uplink data packet (that is, the data packet sent by the terminal device to the base station) from the terminal device to the base station in the L2 architecture:
  • Solution 1 The mapping between the Uu interface (the interface between the terminal device and the RN3) and the interface between the RN3 and the RN2 is introduced in an explicit configuration manner, that is, the data radio bearer between the terminal device and the RN3 is between the RN3 and the RN2.
  • Data radio bearer mapping :
  • the terminal device maps the terminal device service to the DRB ID between the terminal device and the RN3 according to the mapping between the terminal device service information and the data radio bearer information (for example, the Qos flow ID and the DRB ID) configured by the base station or the RN3.
  • the determined DRB is sent to RN3.
  • the RN3 After receiving the service sent by the terminal device, the RN3 transmits the service to the RN2 on the first DRB between the RN3 and the RN2.
  • the process of determining the first DRB by the RN3 is as follows:
  • the RN3 selects the first DRB mapping between the RN3 and the RN2 according to the logical channel priority of the DRB of the Uu interface, and maps the received uplink data packet sent by the terminal device to the first DRB.
  • the RN3 selects the first DRB mapping between the RN3 and the RN2 according to the service information of the terminal device, such as the Qos flow ID in the Qos parameter, and the QoS flow ID needs to be in the PDCP layer when the terminal device sends the uplink data packet.
  • the following information identifies the QoS flow ID.
  • the specific terminal device can add an adaptation layer to the PDCP layer.
  • the service layer information of the terminal device is added to the adaptation layer, that is, the Qos flow ID information.
  • the RN3 and the peer device peer layer also need to be configured. Add an adaptation layer for parsing the Qos flow ID information.
  • the radio bearer mapping relationship of the relay device can be configured by the base station or the upstream hop relay device and the Operation, Administration and Maintenance (OAM) system:
  • the RN3 selects one DRB from multiple DRBs between the RN3 and the RN2 according to the DRB mapping relationship that the base station configures for the RN3 (the mapping relationship is the DRB between the terminal device and the RN3 and the DRB between the RN3 and the RN2). First DRB.
  • the RN3 is based on the mapping relationship between the service information and the DRB configured by the base station for the RN3 (ie, the mapping relationship between the Qos flow between the terminal device and the RN3 and the DRB between the RN3 and the RN2), and the service of the terminal device.
  • One DRB is selected from the plurality of DRBs between RN3 and RN2 as the first DRB.
  • the RN3 first needs to obtain the service information of the terminal device, for example, the Qos flow ID, the Qos flow ID, and the information of the Qos flow ID is added to the PDCP layer when the terminal device sends the uplink data packet, and the specific terminal device can be An adaptation layer is added under the PDCP layer, and the service information of the terminal device is added in the adaptation layer, for example, the Qos flow ID. Then, the RN3 and the terminal device peer layer also add an adaptation layer for parsing the Qos flow ID information.
  • the process of configuring the mapping relationship between the OAM and the RN3 can refer to the process of configuring the association relationship between the eNB and the RN3.
  • radio bearer mapping process between RN3 and RN2 and the radio bearer mapping process between RN2 and RN1 or the radio bearer mapping process between RN2 and RN1 and the radio bearer mapping process between RN1 and the base station
  • the description is not repeated herein.
  • Solution 2 Introduce the radio bearer mapping process between the Uu interface and RN3 and RN2 in a reflective mapping manner, that is, the data radio bearer between the terminal device and RN3 and the data radio bearer mapping between RN3 and RN2.
  • the terminal device receives the downlink data packet sent by the base station through the relay device, if the terminal device determines that the downlink data packet is received on the second DRB (the DRB between the RN3 and the terminal device), the terminal device transmits the uplink. The data packet is mapped to the second DRB and transmitted to the RN3.
  • the base station is required to add a QoS flow ID identifier to the SDAP layer when the downlink data packet is sent to the terminal device, so that the terminal device receives the downlink data packet and parses the QoS information of the terminal device. Therefore, the DRB bearer for performing uplink transmission is determined when the uplink transmission is performed.
  • each relay device may also perform a DRB when the base station performs downlink transmission to the terminal device when forwarding the service of the terminal device. That is, the DRB used by the upstream hop relay device of a relay device to perform downlink transmission to the relay device is the same as the DRB used by the relay device for uplink transmission to the previous hop relay device.
  • the DRB1 when the base station performs downlink transmission to the RN1, the DRB1 carries data, and when the RN1 and the base station perform uplink transmission, the DRB1 can still use the uplink data sent by the eNB to the eNB, and the RN1 uses the DRB2 to carry data when performing downlink transmission to the RN2, then When RN2 and RN1 perform uplink transmission, DRB3 can still carry uplink data sent to RN1.
  • the radio bearer mapping relationship between the radio bearer between the relay device, the radio bearer of the base station and the relay device, and the radio bearer between the terminal device and the last hop relay device is taken as an example.
  • the radio bearer between the relay devices, the radio bearer between the base station and the relay device, and the radio bearer between the terminal device and the last hop relay device may also be SRBs, and the SRB mapping between the relay devices
  • the SRB mapping between the base station and the relay device and the SRB mapping process between the terminal device and the previous hop relay device can be referred to the DRB mapping process.
  • the implicit configuration process will be relayed according to the base station.
  • the SRB that the device sends the downlink information or the downlink signaling determines that the relay device sends the uplink information or the SRB of the uplink signaling to the base station.
  • the following describes how the signaling is transmitted during the process in which the terminal device communicates with the base station through the multi-hop relay device. Specifically, how various transmission messages (for example, RRC messages) between the terminal device and the base station pass through each other.
  • the RRC message may be an RRC connection setup message or an RRC connection reconfiguration message.
  • the RRC message may be an RRC connection setup message or a RRC connection reconfiguration message. Or other existing RRC messages, which are not limited in this application.
  • the RRC message sent by the terminal device to the base station or the base station to the terminal device is transmitted on the SRB between the RN1, the RN2 and the RN3 as an example:
  • the downlink signaling (the signaling sent by the base station to the terminal device) is transmitted.
  • the downlink signaling of the present application is an example of the downlink RRC message.
  • the base stations involved in the foregoing embodiments send various types to the terminal device.
  • the transmission process of the system information, the paging message, and the like can be used as the downlink signaling, and the transmission process is similar to the transmission process of the downlink RRC message.
  • FIG. 18 is an example of the transmission of the downlink RRC message of the control plane in the L2 architecture, as shown by the line labeled 4 in FIG.
  • the PDCP PDU is generated, and then the adaptation layer header is added to the adaptation layer, and the identifier information of the terminal device is added to the adaptation layer header (eg, the terminal device ID, the terminal device) CRNTI, etc., or other identifiers that can identify the terminal device, which are not limited herein, signaling radio bearer information (for example, SRB0 or SRB1) and indication information (such as the identifier of the relay device or the identifier of the relay device)
  • the hop count of the relay device or the base station, or other identification information that can identify the relay device, which is not limited herein, is obtained by the RLC layer, the MAC layer, and the PHY layer of the base station.
  • the base station transmits the obtained downlink signaling frame to the PHY layer of the protocol stack of the RN1 and the base station peer.
  • the RN1 After receiving the downlink signaling frame, the RN1 identifies the relevant information (such as the foregoing indication information, radio bearer information, etc.) from the adaptation layer after processing by the PHY layer, the MAC layer, the RLC layer, and the adaptation layer corresponding to the eNB.
  • the radio bearer information indicates the SRB1, and the following is the description of the SRB1 in the signaling radio bearer information.
  • the corresponding adaptation layer or the RLC layer entity respectively, through the adaptation layer and RLC of the RN1 and the RN2.
  • the downlink signaling frame 3 after the processing of the layer, the MAC layer, and the PHY layer is delivered to the PHY layer of the RN2.
  • the RN2 After the RN2 processes the downlink signaling frame and then processes the PHY layer, the MAC layer, the RLC layer, and the adaptation layer, which are peered by the RN2 and the RN1, the RN2 identifies relevant information (such as indication information and bearer) from the adaptation layer. Information, etc., then identifying the next hop forwarding node of the signaling message according to the indication information, and then mapping the downlink signaling frame to the adaptation layer or the RLC layer entity corresponding to SRB1 between RN2 and RN3
  • the downlink signaling frame after the processing of the adaptation layer, the RLC layer, the MAC layer, and the PHY layer of the RN2 and the RN3, respectively, is delivered to the PHY layer of the RN3.
  • the RN3 After receiving the downlink signaling frame sent by the RN2, the RN3 identifies the signaling through the indication information in the adaptation layer after the PHY layer, the MAC layer, the RLC layer, and the adaptation layer of the RN3 and the RN2 are processed respectively.
  • the target node of the message is sent to the terminal device, that is, the downlink signaling frame is mapped to the entity of the RLC layer corresponding to the SRB1 between the RN3 and the terminal device, and the RLC layer, the MAC layer, and the PHY that are peered with the terminal device through the RN3, respectively.
  • the downlink signaling frame after the processing of the layer is delivered to the PHY layer of the terminal device.
  • the terminal device After receiving the downlink signaling frame sent by the RN3, the terminal device processes the PDCCH layer, the MAC layer, and the RLC layer, and then sends the corresponding downlink signaling frame (downlink RRC message) to the PDCP entity corresponding to the terminal device, and then sends the packet to the PDCP entity corresponding to the terminal device.
  • the corresponding RRC entity, and then the RRC entity of the terminal device completes the RRC configuration.
  • the corresponding signaling frame (RRC Connection Request message) is sent to the PDCP entity corresponding to the terminal device, and the PDCP entity first applies the decryption key corresponding to the terminal device.
  • the PDCP PDU is then sent to the corresponding RRC entity.
  • the uplink signaling (ie, the signaling sent by the terminal device to the base station) is still an example of the above RRC message, that is, the inverse process of the line identified as 4 as shown in FIG. 18:
  • the PDCP PDU is generated, and then the uplink signaling frame is obtained by the RLC layer, the MAC layer, and the PHY layer of the terminal device, and the terminal device transmits the uplink signaling frame to the RN3.
  • RN3 after receiving the uplink signaling frame, RN3 adds the Adaptation header to the PHY layer, the MAC layer, and the RLC layer, which are peered by the RN3 and the terminal device respectively, and adds the identification information and indication information of the terminal device in the Adaptation header (for example, The identifier of the relay device, the identifier list of the relay device, the hop count, the identifier of the base station, and the like, and the Adaptation header may also have no indication information. If the Adaptation header does not have the indication information, the uplink signaling is received.
  • the device forwards the RRC message to the base station, and the SRB identifier (SRB0 or SRB1, where SRB1 is used as an example, the SRB identifier is optional. If the SRB is not indicated, the subsequent hop count randomly selects the SRB or directly selects the SRB1.
  • the identification information of the RN3 is not further described in the embodiment of the present application, and then mapped to the adaptation layer or the RLC layer entity corresponding to the SRB1 between the RN3 and the RN2, respectively.
  • the uplink signaling frame after the processing of the RLC layer, the MAC layer, and the PHY layer of the RN3 and the RN2 is transmitted to the PHY layer of the RN2; after receiving the uplink signaling frame, the RN2 passes the PHY layer and the MAC of the RN3 and the RN3 respectively.
  • the terminal device identifier and the SRB identifier in the adaptation layer are identified, and then mapped to the adaptation layer or the RLC layer entity corresponding to the SRB1 between the RN2 and the RN1, respectively.
  • the uplink signaling frame after the processing of the RLC layer, the MAC layer, and the PHY layer, which is peered by the RN2 and the RN1, is transmitted to the PHY layer of the RN1 node; after receiving the uplink signaling frame, the RN1 node passes the PHY layer of the RN1 and the RN2 respectively.
  • the processing of the MAC layer, the RLC layer, and the adaptation layer is performed by identifying the terminal device identifier and the SRB identifier in the adaptation layer, and mapping to the adaptation layer or the RLC layer entity corresponding to the SRB1 between the RN1 and the base station, respectively.
  • the uplink signaling frame after the processing of the RLC layer, the MAC layer, and the PHY layer, which is peered by the RN1 and the base station is transmitted to the PHY layer of the base station.
  • the base station After receiving the uplink signaling frame, the base station processes the PHY layer, the MAC layer, the RLC layer, and the adaptation layer, and then reads the adaptation layer to identify the identifier of the terminal device (the terminal device ID or the CRNTI of the terminal device). Then, the corresponding uplink signaling frame is sent to the corresponding PDCP entity, and then sent to the corresponding RRC entity.
  • the RRC message is an RRC connection reconfiguration complete message or other RRC message that has been encrypted by the PDCP
  • the PDCP entity first applies the decryption key corresponding to the terminal device after the corresponding data frame is sent to the PDCP entity corresponding to the terminal device.
  • the PDCP PDU is parsed and then sent to the corresponding RRC entity.
  • the uplink RRC message transmission process shown in FIG. 18 can also be transmitted on the DRB between the RN3 and the RN2, the RN2 and the RN1, the RN1 and the base station, and the radio bearer between the relay device and the radio of the base station and the relay device.
  • the difference between the bearer and the radio bearer between the terminal device and the last hop relay device is the DRB.
  • the difference between the RRC message is that the RRC message is mapped to the DRB between the RN2 and the RN1, the RN1 and the base station.
  • the RRC message is transmitted in the form of data, which is similar to the packet transmission process of the following user plane, and will not be described here.
  • the process of transmitting the downlink RRC message sent by the base station to the RN1, the RN2, and the RN3 is similar to the process of the base station transmitting the downlink RRC message to the terminal device, except that the number of hops is different.
  • the line identified as 2 in FIG. 18 represents the RRC message transmission procedure between the base station and RN2, the line labeled 1 indicates the RRC message transmission procedure between the base station and RN1; the line identified as 3 indicates the base station and The transmission process of the RRC message between RN3.
  • the process of the RN sending the uplink RRC message to the eNB may also be referred to the process in which the terminal device sends the uplink RRC message to the base station, but the hop count is different. I will not repeat them here.
  • the process of the RN3 transmitting the uplink RRC message to the base station may be the inverse process of the line 3 as identified in FIG. 18, and the process of the RN2 sending the uplink RRC message to the base station may be the inverse process of the line 2 as identified in FIG.
  • the process by which the base station sends the uplink RRC message may be the inverse of line 1 as identified in FIG.
  • the line identified as 4 in FIG. 19 the downlink data packet of the base station passes through the SDAP layer (adding service type information (QoS flow ID, session ID) in the header), and the processing of the PDCP layer, generates a PDCP PDU; and then adds an adaptation layer.
  • the identifier of the terminal device and the bearer information (DRB ID) are added to the header of the adaptation layer, and the data frames processed by the RLC layer, the MAC layer, and the PHY layer of the base station are respectively transmitted to the PHY layer of the RN1.
  • the adaptation layer may also add terminal device service type information (QoS flow ID, session ID identifier), indication information (such as the identifier of the relay device or the identifier list of the relay device, the hop count, the identifier of the base station, etc.) . It should be noted that the adaptation layer may also have no indication information. If the adaptation layer does not have indication information, the relay device that receives the uplink signaling is forwarded to the base station by default when uplinking.
  • terminal device service type information QoS flow ID, session ID identifier
  • indication information such as the identifier of the relay device or the identifier list of the relay device, the hop count, the identifier of the base station, etc.
  • the RN1 After receiving the data frame sent by the base station, the RN1 processes the PHY layer, the MAC layer, the RLC layer, and the adaptation layer, which are peered with the base station by the RN1, and then identifies the terminal device, the service type, and the bearer information from the adaptation layer, and simultaneously Identifying the next hop relay node that needs to be forwarded according to the indication information in the adaptation layer, and then mapping the terminal equipment service to the DRB corresponding to the RN1 and the RN2, that is, mapping to the DRB corresponding to the RN1 to the RN2.
  • the processed data frames of the adaptation layer, the RLC layer, the MAC layer, and the PHY layer, which are respectively RN1 and RN2, are transmitted to the PHY layer of the RN2.
  • the RN2 After receiving the data frame, the RN2 processes the PHY layer, the MAC layer, the RLC layer, and the adaptation layer, which are peered with the RN1 by the RN2, and then identifies the terminal device, the service type, and the bearer information from the adaptation layer, and according to the adaptation.
  • the indication information in the layer identifies the next hop relay node to be forwarded to, and then maps the terminal equipment service to the DRB corresponding to the RN2 and the RN3, that is, the adaptation layer corresponding to the DRB between the RN2 and the RN3.
  • the RN3 After receiving the data frame, the RN3 processes the PHY layer, the MAC layer, the RLC layer, and the adaptation layer, which are peered with the RN2 by the RN3, and then identifies the terminal device, the service type, and the bearer information from the adaptation layer, and according to the adaptation.
  • the indication information in the layer identifies the target terminal device, and then maps the terminal device service to the DRB corresponding to the RN3 and the terminal device, that is, the entity that is mapped to the RLC layer corresponding to the DRB between the RN3 and the terminal device, respectively
  • the data frame after the processing of the adaptation layer, the RLC layer, the MAC layer, and the PHY layer of the RN3 and the terminal device is delivered to the PHY layer of the terminal device.
  • the terminal device After receiving the data frame, the terminal device processes the PHY layer, the MAC layer, and the RLC layer, and then maps the terminal device service to the PDCP entity corresponding to the terminal device, and then sends the data to the corresponding SDAP entity.
  • the uplink adopts the implicit configuration mode
  • the mapping relationship between the Uu interface and the Un interface of the terminal device is adopted, and the received mapping relationship is also adopted for the transmission of the uplink data packet.
  • the base station sends the mapping relationship between the session ID, the QoS flow ID, and the DRB of the terminal device to the terminal device before the data transmission, and the terminal device performs the uplink data transmission according to the mapping relationship and the QoS requirement. Mapping.
  • the terminal device adds an adaptation layer for indicating the terminal device.
  • the service information that is, the uplink data packet of the terminal device is processed by the SDAP and the PDCP, and then the PDCP PDU is generated, and then the adaptation layer header is added, and the identification information and service type information of the terminal device are added in the adaptation layer header, and then the terminal is respectively passed through the terminal.
  • the RLC layer, the MAC layer, and the PHY layer of the device are processed and passed to the PHY layer of the RN3.
  • the RN3 After processing by the PHY layer, the MAC layer, the RLC layer, and the adaptation layer, the RN3 identifies the service information of the terminal device through the adaptation layer, and then According to the Qos flow ID in the service information, it is mapped to the corresponding DRB transmission between RN3 and RN2.
  • the process of transmitting the downlink data packet sent by the base station to the RN1, the RN2, and the RN3 is similar to the process of the base station transmitting the downlink data packet to the terminal device, except that the number of hops is different.
  • the process of the base station sending the downlink data packet to the terminal device which is not described herein again.
  • the line labeled 2 in FIG. 19 indicates the downlink data packet transmission process between the base station and the RN 2
  • the line labeled 1 indicates the transmission process of the downlink data packet between the base station and the RN 1
  • the line identified as 3 indicates the base station. The transmission process of the downlink data packet with the RN3.
  • the process in which each RN sends an uplink data packet to the base station may also refer to the process in which the terminal device sends an uplink data packet to the base station.
  • the RN3 sends the uplink data to the base station.
  • the process of the packet may be an inverse process of the line identified as 3 in FIG. 19, and the process of the RN2 transmitting the uplink data packet to the base station may be an inverse process of the line identified as 2 in FIG. 19, and the process of the RN1 transmitting the uplink data packet to the base station may be performed.
  • the reverse process of the line identified as 1 in FIG. 19 is not described herein again.
  • FIG. 20 shows a schematic diagram of uplink signaling transmission of the control plane in the L2 and L3 hybrid protocol stack architecture.
  • the uplink signaling transmission of the control plane can be referred to L2 in FIG. 18 above.
  • the process of the uplink signaling transmission in the architecture is not described here.
  • the downlink signaling transmission process in the hybrid protocol stack architecture can be referred to the downlink signaling transmission process in the L2 architecture in FIG. I will not repeat them here.
  • FIG. 21 shows a user plane transmission process under the L2 and L3 hybrid protocol stack architecture. Since the user plane of the L2 and L3 hybrid protocol stack architecture adopts the user plane of the L2 architecture, the uplink transmission of the user plane is performed.
  • the downlink transmission and the downlink transmission refer to the process of the uplink transmission and the downlink transmission of the user plane in the L2 architecture described in the foregoing embodiment, and details are not described herein again.
  • the foregoing embodiment describes a process in which data or signaling of a terminal device is forwarded between a multi-hop relay device during forwarding of data of a base station or signaling to a terminal device or between relay devices.
  • the part of the embodiment may be implemented separately, that is, the part of the embodiment may not be implemented after the steps S101 to S104 or may not be based on the base station.
  • Each of the incoming relay devices is executed after the process of configuring the resource configuration information for the newly accessed relay device, or may not be performed after the process of paging the terminal device by the base station through the connected relay devices, when the multi-hop relay is performed.
  • the process of selecting a radio bearer is implemented separately, the multiple relay devices are already connected to the base station, and may access the base station in the manner described in steps S101 to S104, or may access the base station in other manners. This is not limited.
  • the signaling encryption of the control plane is between the relay devices, and the data encryption of the user plane is the base station and the terminal device. End-to-end, therefore, as shown in Figure 22, after RN3 acquires KRN3, the terminal device also deducts KRN3.
  • the encryption algorithm used can also be directly decided by RN3.
  • RN3 for the control plane is L3 architecture, RN3 and The encryption of the control plane signaling between the terminal devices can be directly used by KRN3, but for the data encryption of the user plane, the base station does not know the encryption algorithm used by KRN3 and RN3, and thus cannot perform end-to-end data encryption. Therefore, the following The method for the data plane base station to learn the end-to-end encryption key and the encryption algorithm will be introduced. Therefore, as a possible implementation manner, the method provided by the application further includes:
  • the first relay device selects an encryption algorithm for the terminal device.
  • the first relay device sends a sixth message to the base station, and sends an identifier of the encryption algorithm to the terminal device.
  • the sixth message includes an identifier of the encryption algorithm and a third identifier of the terminal device, where the encryption algorithm is used for the base station and the target device. Data encryption between.
  • the third identifier of the terminal device may be the same identifier as the second identifier of the terminal device, or the third identifier may be the same as the first identifier when the target device is the terminal device.
  • the first relay device may select an encryption algorithm for the terminal device from multiple pre-configured encryption algorithms.
  • the sixth message may be sent by using the RRC message between the first relay device and the base station, or may be sent by other new messages, which is not limited in this application.
  • the encryption key of the first relay device is sent by the core network to the first relay device by using the base station.
  • the base station can parse and obtain the encryption key of the first relay device.
  • end-to-end encryption of the data between the base station and the terminal device can be implemented.
  • the method provided by the application further includes:
  • the first relay device receives the fifth indication information sent by the base station, and the encryption algorithm, where the fifth indication information is used to send the identifier of the encryption algorithm to the terminal device.
  • the fifth indication information is similar to the indication information in other embodiments of the present application, and details are not described herein again.
  • the encryption algorithm may be an identifier of the encryption algorithm, or may be other identifier information that may indicate the encryption algorithm, which is not limited in the embodiment of the present application.
  • the third indication information may be carried in at least one layer of the adaptation layer, the RLC layer, the MAC layer, and the PHY layer; for the L2 and L3 hybrid architecture, the third indication information may be carried in At least one layer of the RRC layer, the PDCP layer, the adaptation layer, the RLC layer, the MAC layer, and the PHY layer, wherein in the hybrid protocol stack architecture, if the third indication information is carried in the adaptation layer, it means An adaptation layer is added to the control plane architecture in the hybrid protocol stack architecture, similar to the control plane of the L2 architecture, such as adding an adaptation layer below the PDCP layer.
  • the first relay device sends the identifier of the encryption algorithm to the terminal device according to the fifth indication information, where the encryption algorithm is used to encrypt data between the base station and the terminal device.
  • the encryption key of the first relay device is sent by the core network to the first relay device by using the base station.
  • the base station can parse and obtain the encryption key of the first relay device.
  • end-to-end encryption of the data between the base station and the terminal device can be implemented.
  • the method provided by the application further includes:
  • the first relay device receives a seventh message sent by the base station, where the seventh message includes a sixth indication information and an encryption key configured for the second relay device or the terminal device, where the seventh indication information is used to indicate that the encryption key is to be encrypted.
  • the key is sent to the second relay device or the terminal device.
  • the fifth indication information is similar to the indication information in other embodiments of the present application, and details are not described herein again.
  • the third indication information may be carried in at least one layer of the adaptation layer, the RLC layer, the MAC layer, and the PHY layer; for the L2 and L3 hybrid architecture, the third indication information may be carried in At least one layer of the RRC layer, the PDCP layer, the adaptation layer, the RLC layer, the MAC layer, and the PHY layer, wherein in the hybrid protocol stack architecture, if the third indication information is carried in the adaptation layer, it means An adaptation layer is added to the control plane architecture in the hybrid protocol stack architecture, similar to the control plane of the L2 architecture, such as adding an adaptation layer below the PDCP layer.
  • the first relay device determines that the device indicated by the seventh indication information is not the first relay device, and then sends the encryption key to the second relay device or the terminal device.
  • the first relay device may forward the multiple relay devices between the first relay device and the terminal device, or For the forwarding process, refer to the foregoing embodiment, which is not limited by the foregoing.
  • the present application only takes the terminal device as the encryption algorithm, and the implementation process of selecting the encryption algorithm for the next hop relay of the first relay device or other relay devices is also applicable to the foregoing selection of the terminal device.
  • the process of the encryption algorithm all the indication information related to the terminal device is replaced by the related information of the relay device, and the details are not described herein again.
  • steps S125 and S126; S123 and S124 are two different implementation manners for the first relay device to select an encryption algorithm for the terminal device. It can be understood that in the actual process, steps S125 and S126; S123 and S124 may be implemented separately, that is, when S125 and S126 are separately implemented; S123 and S124 may not implement the above steps S101 to S104 or may not configure resource configuration for the newly accessed relay device based on the base station accessing each relay device.
  • the process may be performed not based on the process of the base station paging the terminal device through the connected relay devices, or the implementation of the process of selecting the radio bearer by the multi-hop relay device, and S125 and S126 are separately implemented;
  • the terminal device and the multiple relay devices are connected to the base station, and the base station may be accessed in the manner described in steps S101 to S104, or may be accessed by using other methods. limited.
  • the present application is only described in steps S125 and S126; S123 and S124 are performed after the above-mentioned S101-S104 or after S101-S110, or after S101-S121, and do not constitute a limitation of the present application.
  • the base station accesses the base station by using the first relay device, and assigns the first identifier and the forwarding to the access relay device.
  • the RRC wireless connection request scenario, the resource configuration information scenario, the terminal device paging scenario, the radio bearer selection scenario, and each implementation scenario in the encryption process scenario may be implemented separately.
  • any of the multiple implementation scenarios Two or more implementation scenarios may also be combined, which is not limited in this application.
  • the scenario or process to which the method provided by the present application is applicable includes, but is not limited to, the following: an L2 architecture and a relay under the L2 and L3 hybrid protocol stack architecture as a process of accessing a base station of a terminal device, and a relay as a relay site forwarding base station/ Signaling or data procedures of the terminal equipment, and radio resource allocation procedures, paging procedures, and the like in a multi-hop scenario.
  • the indication information such as the first indication information, the second indication information, and the third indication information in the present application may be added in the RRC signaling, and the foregoing various types of indication information are provided because the L2 architecture has an adaptation layer. It can also be added in the adaptation layer. Therefore, when the hybrid protocol stack architecture also has an adaptation layer, the above various types of indication information can also be added in the adaptation layer.
  • each network element such as the first device.
  • each network element such as the first device.
  • it includes hardware structures and/or software modules corresponding to the execution of the respective functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may perform the division of the function module on the first device according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner. The following is an example of dividing each functional module by using corresponding functions:
  • FIG. 23 shows a possible structural diagram of the first device involved in the above embodiment.
  • the first device includes: a receiving unit 101 and a transmitting unit 102.
  • the receiving unit 101 is configured to support the first device to perform steps S103, S112, S113, S119, S127, and S129 in the foregoing embodiment.
  • the sending unit 102 is configured to support the first device to perform steps S104, S106, S108, S110, S116, S120, S124, S126 and S128 in the above embodiment.
  • the first device provided by the present application further includes: an allocating unit 103, which is configured to support the first device to perform S103 in the foregoing embodiment; the processing unit is further configured to determine, in the step S104, according to the first indication information. Whether the target device is the first relay device, S115, and determining whether the candidate device belongs to the TA in the next hop relay device of the first relay device; S117 (S1171, S1172), S122, S123. And/or other processes for the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional description of the corresponding functional modules, and details are not described herein again.
  • the receiving unit 101 in the present application may be a receiver of the first device, and the sending unit 102 may be a transmitter of the first device, and the transmitter may be integrated with the receiver of the first device.
  • a particular transceiver may also be referred to as a communication interface, and the allocation unit 103 and processing unit 104 may be integrated on a processor of the first device.
  • FIG. 24 shows a possible logical structure diagram of the first device involved in the above embodiment.
  • the first device includes a processing module 112 and a communication module 113.
  • the processing module 112 is configured to perform control management on the first device action.
  • the processing module 112 is configured to support the first device to perform step S103 in the foregoing embodiment, and determine, according to the first indication information, whether the target device in step S104 is the first.
  • the communication module 113 is configured to support the first device to execute S103, S112, S113, S119, S127, S129, S104, S106, S108, S110, S116, S120, S124, S126 and S128 in the above embodiment. And/or other processes performed by the first device for the techniques described herein.
  • the first device may further include a storage module 111 for storing program codes and data of the first device.
  • the processing module 112 may be a processor or a controller, such as a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, Hardware components or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • the communication module 113 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 111 can be a memory.
  • the processing module 112 is the processor 120
  • the communication module 113 is the communication interface 130 or the transceiver
  • the storage module 111 is the memory 140
  • the first device involved in the present application may be the device shown in FIG.
  • the communication interface 130, the processor 120, and the memory 140 are mutually connected by a bus 110; the bus 110 may be a PCI bus or an EISA bus or the like.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 25, but it does not mean that there is only one bus or one type of bus.
  • the memory 140 is configured to store program codes and data of the first device.
  • the communication interface 130 is configured to support the first device to communicate with other devices (for example, the second relay device or the base station or the terminal device), and the processor 120 is configured to support the first device to execute the program code and data stored in the memory 140 to implement the present An information transmission method provided by the application.
  • a computer storage medium stores instructions.
  • the first device When it is run on the first device, the first device performs step S103 in the embodiment, and determines the step according to the first indication information. Whether the target device in S104 is the first relay device, S115, and determining whether the candidate device in the next hop relay device of the first relay device belongs to TA, S117 (specifically, may be S1171, S1172), S122 , S123.
  • the communication module 113 is configured to support the first device to execute S103, S112, S113, S119, S127, S129, S104, S106, S108, S110, S116, S120, S124, S126, and S128 in the above embodiment. And/or other processes performed by the first device for the techniques described herein.
  • a computer program product storing instructions, when executed on the first device, causing the first device to perform step S103 in the embodiment, determining according to the first indication information Whether the target device in step S104 is the first relay device, S115, and determining whether the candidate device in the next hop relay device of the first relay device belongs to TA, S117 (specifically, may be S1171, S1172), S122, S123.
  • the communication module 113 is configured to support the first device to execute S103, S112, S113, S119, S127, S129, S104, S106, S108, S110, S116, S120, S124, S126, and S128 in the above embodiment. And/or other processes performed by the first device for the techniques described herein.
  • the embodiment of the present application provides a communication system, including a base station, at least one user equipment, and at least one first device as shown in any one of FIG. 23 to FIG. 25, wherein the base station is configured to perform the foregoing embodiment.
  • a step performed by the base station for example, a step of transmitting and receiving information about the first device and the core network device
  • the terminal device being configured to perform the steps performed by the terminal device in the above embodiment, for example, receiving information sent by the first device
  • the first device is configured to perform the steps performed by the first device in the above embodiment.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信息传输方法和设备,涉及无线通信技术领域,用以解决现有技术中仅支持单跳中继(RN)入网所引起的无法满足未来网络的需求的问题。在该方法中,第一设备接收基站发送的第一消息,该第一消息包括第一指示信息和系统信息,第一指示信息用于确定是否广播系统信息;第一设备根据第一指示信息确定需要广播系统信息,广播系统信息。本申请通过基站第一消息中携带第一指示信息,这样第一设备在接收到第一消息后,便可以根据第一指示信息确定广播系统信息,这样便于接收到系统信息的目标设备通过该系统信息接入基站中,实现多跳中继组网,本申请提供的方法可以适用于组建多跳中继网络。

Description

一种信息传输方法和设备
本申请要求于2017年10月27日提交中国专利局、申请号为201711023741.1、申请名称为“一种信息传输方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种信息传输方法和设备。
背景技术
第五代移动通信(fifth-generation mobile communication system,5G)相较于第四代移动通信系统(The fourth generation mobile communication system,4G)对网络各项性能指标要求更为严苛。例如,容量指标提升1000倍,更广的覆盖需求、超高可靠超低时延等。一方面,由于高频载波频率资源丰富,因此,在热点区域,为满足5G超高容量需求,通常利用高频小站组网愈发流行。为了解决高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广的问题,通常需要部署大量密集的小站,但是,大量密集部署小站便会导致光纤回传的代价很高,施工难度大,因此需要经济便捷的回传方案;另一方面,从广覆盖需求的角度出发,在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高,也需要设计灵活便利的接入方案和回传方案。因此,为解决上述问题无线中继(Relay)技术将接入链路(Access Link)和回传链路(Backhaul Link)皆采用无线传输方案,以避免光纤部署。
长期演进(Long Term Evolution,LTE)R10中引入了中继技术,如图1所示L3协议栈架构下,在传统网络结构下的宿主基站(Donor eNB,DeNB)和终端设备之间引入中继节点(Relay Node,RN),新增的RN和DeNB之间通过无线连接。具体的,如图1所示,RN通过Backhaul Link接入DeNB,RN通过Access Link与终端设备通信。其中,终端设备可以将中继小区作为一个可接入的独立小区,RN可以直接调度中继小区中的终端设备,处于DeNB覆盖范围的终端设备也可以直接接入宿主小区。
但是,R10Relay仅支持简单的单跳RN的部署场景,且仅介绍了L3协议栈架构(以下简称:L3架构)下单跳RN的入网过程,对于其他协议栈架构(例如,L2协议栈架构(以下简称L2架构),L2和L3混合协议栈架构(以下将简称为:混合协议栈架构))下RN的入网过程以及多跳RN场景并未涉及,这样便无法满足未来网络更加多样化的需求。
发明内容
本申请提供一种信息传输方法和设备,用以解决现有技术中仅支持单跳RN入网所引起的无法满足未来网络的需求的问题。
为了解决上述技术问题,本申请采用以下技术方案:
第一方面,本申请实施例提供一种信息传输方法,包括:第一设备接收基站发送的包括第一指示信息和系统信息的第一消息,该第一指示信息用于指示第一设备是否广播系统信息;第一设备根据第一指示信息确定需要广播所述系统信息,则广播系统信息。
本申请提供一种信息传输方法,通过基站向已接入基站的第一设备发送第一消息,并在该第一消息中携带第一指示信息,这样第一设备在接收到第一消息之后,便可以根据第一指示信息确定是否需要广播系统信息,当第一设备确定需要广播系统信息时,则广播系统信息,这样接收到第一设备广播的系统信息的设备,例如,目标设备,便可以根据该系统信息通过第一设备接入到基站中,由此实现目标设备通过第一设备接入基站的过程,此外,当该方法应用于基站和终端设备之间存在多个(包括两个)中继设备时,可以使得基站和终端设备之间的多个中继设备中每个中继设备通过上述方案基于各自已接入的上一跳中继设备接入基站中,从而可以在终端设备和基站通过部署多个中继设备,从而可以形成多跳中继的网络架构,既可以满足了日益增长的通信需求,也可以折中运营商的成本,例如,避免了在一些偏远地区提供网络覆盖。
结合第一方面,在第一方面的第一种可能的实现方式中,第一指示信息为第一指示符,第一指示符用于指示第一设备广播该系统信息,通过在第一消息中携带第一指示符和系统信息,这样第一设备在解析第一消息之后,便可以根据第一指示符确定需要广播系统信息,从而对系统信息进行广播。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,本申请实施例提供的方法还包括:在目标设备的随机接入过程中第一设备为目标设备分配目标设备的第一标识(例如,该第一标识可以为CRNTI),该第一标识用于在第一小区中识别目标设备,该第一小区为第一设备在随机接入过程中所接入到的小区;第一设备向基站发送第二标识,以及转发目标设备发送的第二消息,该第二消息用于请求建立基站和目标设备之间的无线资源控制RRC连接。可以理解的是,在实际过程中,在目标设备的随机接入过程中,第一设备还为目标设备分配上行资源,第二消息为目标设备在上行资源上向第一设备发送的,当目标设备接收到系统信息之后,便可以在随机接入过程中,通过已接入基站的第一设备将目标设备请求建立基站和目标设备之间的无线资源控制RRC连接的第二消息发送给基站,这样基站在接收到第二消息后,便可以建立基站和目标设备之间的RRC连接,这时,目标设备便可以成功的接入基站中。
结合第一方面至第一方面的第二种可能的实现方式中的任一项,在第一方面的第三种可能的实现方式中,本申请提供的方法还包括:第一设备接收基站发送的第三消息,该第三消息包括资源配置信息以及用于确定资源配置信息传输到的目标设备的第二指示信息;第一设备根据第二指示信息确定目标设备不是第一设备,将资源配置信息发送给目标设备。利用目标设备和基站之间的多跳架构,使得基站向目标设备配置的资源配置信息可以通过多跳传输转发到目标设备。
结合第一方面至第一方面的第三种可能的实现方式中的任一项,在第一方面的第四种可能的实现方式中,资源配置信息包括第一资源配置信息和第二资源配置信息,其中,第一配置信息用于配置目标设备的分组数据汇聚层协议PDCP层和业务数据适配协议SDAP层中的至少一项;第二配置信息用于配置目标设备的无线链路控制RLC层和媒体接入控制MAC层和物理PHY层中的至少一项;或者,第一资源配置信息由基站成,第二资源配置信息由基站或者第一设备生成,可以理解的是,当第二资源配置信息由第一设备生成时,第一设备将生成的第二资源配置信息发送给基站。在目标 设备接入基站之后,通过基站为目标设备配置第一资源配置信息和第二资源配置信息可以便于目标设备及时更新无线资源配置,该方式适用于L2架构,也同样适用于混合协议栈架构,由于本申请提供的方法还适用于L2架构,在L2架构下,第一设备具有RLC层和媒体接入控制MAC层和物理PHY层中的至少一项,因此可以第一设备可以生成第二资源配置信息,但是在L2架构下第一设备作为中继时才具有RRC层,因此,只能转发基站发送的第二资源配置信息给下一跳设备,例如,目标设备,故当第一设备生成第二资源配置信息之后,第一设备可以作为终端设备将第二资源配置信息发送给基站,并在基站的指示下,将该第二资源配置信息以中继站的形式转发给目标设备,通过这种方式使得第二资源配置信息的生成方式多样化,也同样使得本申请提供的方案适用于不同协议栈架构。
结合第一方面至第一方面的第四种可能的实现方式中的任一项,在第一方面的第五种可能的实现方式中,第一设备接收基站发送的用于指示第一设备在寻呼时隙PO寻呼跟踪区TA中的终端设备的第四消息;第一设备确定第一设备属于该TA,则第一设备在寻呼时隙PO寻呼TA中的终端设备;或者第一设备确定第一设备的下一跳设备中存在候选设备属于该TA,则向候选设备发送第五消息,该第五消息用于指示在该PO寻呼TA中的终端设备。当终端设备通过多跳中继设备接入基站,且终端设备从连接态变为空闲态时,在基站需要寻呼终端设备时,基站并不确定终端设备接入了哪个中继设备,因此基站可以通过向已接入基站的至少一个中继设备发送第四消息,以通过该至少一个中继设备在指定的PO实现对终端设备的寻呼。
结合第一方面至第一方面的第五种可能的实现方式中的任一项,在第一方面的第六种可能的实现方式中,本申请提供的方法在第一设备确定第一设备属于TA,则第一设备在寻呼时隙PO寻呼TA中的终端设备之前,本申请提供的方法还包括:第四消息中至少携带寻呼PO,第一设备在所述寻呼时隙PO寻呼所述TA中的所述终端设备之前,本申请提供的方法还包括:第一设备从第四消息中确定寻呼PO;或者,第四消息中包括终端设备的第二标识,特定于终端设备的非连续接收周期和特定于小区的非连续接收周期,第一设备在所述寻呼时隙PO寻呼所述TA中的所述终端设备之前,本申请提供的方法还包括:第一设备根据第二标识,特定于终端设备的非连续接收周期和特定于小区的非连续接收周期,确定寻呼PO。这样可以使得第一设备确定寻呼PO的方式更加灵活。
结合第一方面至第一方面的第六种可能的实现方式中的任一项,在第一方面的第七种可能的实现方式中,第一设备接收基站发送的第四消息,该第四消息包括寻呼PO、终端设备的标识以及第三指示信息,该第三指示信息用于指示将寻呼PO以及终端设备的第二标识发送给目标设备;第一设备根据第三指示信息,向目标设备发送寻呼PO以及终端设备的第二标识,这种方式适用于基站知道被寻呼终端设备所在的TA即为目标设备所在的TA,因此,当基站需要寻呼终端设备时,可以直接通过第一设备将寻呼终端设备的第二标识以及PO发送给目标设备。
结合第一方面至第一方面的第七种可能的实现方式中的任一项,在第一方面的第八种可能的实现方式中,本申请提供的方法还包括:第一设备和基站之间的信令无线承载SRB中携带第四指示信息,该第四指示信息用于指示当前传输时间单元上在该 SRB上传输的是系统信息或第四消息,通过在SRB上携带第四指示信息,具体的该第四指示信息携带在基站与第一设备对等协议栈的适配层中,这样第一设备便可以在SRB上根据第四指示信息区分出当前传输时间单元在SRB上传输的是系统信息还是寻呼消息,从而正确的从SRB上解析相应的内容。
结合第一方面至第一方面的第八种可能的实现方式中的任一项,在第一方面的第九种可能的实现方式中,第一设备确定第一设备与基站之间的无线承载与第一设备与目标设备之间的无线承载具有的关联关系,第一设备与目标设备之间无线承载与业务信息具有的关联关系,和第一设备与基站之间无线承载与业务信息具有的关联关系中的至少一个关联关系,该至少一个关联关系用于第一设备确定传输目标数据包的指定无线承载,该目标数据包可以是基站发送给第一设备的,也可以是终端设备发送给第一设备的,第一设备通过确定该至少一个关联关系,可以便于在接收到目标数据包之后,从多个无线承载中选择出指定无线承载用于传输目标数据包。
结合第一方面至第一方面的第九种可能的实现方式中的任一项,在第一方面的第十种可能的实现方式中,该至少一个关联关系由基站生成之后发送给第一设备,或者该至少一个关联关系由第一设备的上一跳中继设备生成之后发送给第一设备。
结合第一方面至第一方面的第十种可能的实现方式中的任一项,在第一方面的第十一种可能的实现方式中,目标设备为终端设备,本申请提供的方法还包括:第一设备为目标设备选择加密算法,第一设备向基站发送第六消息以及向目标设备发送加密算法的标识,该第六消息包括加密算法的标识以及目标设备的第三标识,其中,加密算法用于对基站和目标设备之间传输的数据加密。通过第一设备为目标设备选择加密算法,并将所选择的加密算法的标识发送给基站和终端设备,这样基站和终端设备便可以确定基站和目标设备之间传输的数据加密方式。
结合第一方面至第一方面的第十一种可能的实现方式中的任一项,在第一方面的第十二种可能的实现方式中,目标设备为终端设备,本申请提供的方法还包括:第一设备接收基站发送的第五指示信息以及加密算法,该第五指示信息用于指示将加密算法的标识发送给目标设备;第一设备根据第五指示信息,将加密算法的标识发送给目标设备,该加密算法用于对基站和目标设备之间传输的数据加密。基站选择加密算法之后,利用和终端设备之间的多跳中继架构,将所选择的加密算法发送给终端设备,这样终端设备便可以按照基站所选择的加密算法对基站和目标设备之间传输的数据加密。
相应的,第二方面,本申请实施例提供的本申请还提供了一种信息传输装置,该信息传输装置可以实现第一方面的任一种实现方式所描述的信息传输方法。例如,该装置可以是第一设备,或者为设置在第一设备中的芯片,其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该信息传输装置可以包括处理器和存储器。该处理器被配置为支持该信息传输装置执行上述第一方面所描述的信息传输方法中相应的功能。存储器用于与处理器耦合,其保存该信息传输装置必要的程序(指令)和数据。另外该信息传输装置还可以包括通信接口,用于支持该信息传输装置与其他网元(例如,基站或下一跳信息传输装置或终端设备)之间的通信,该通信接口可以是收发器。
在第二方面的一种可能的设计中,该信息传输装置可以包括:接收单元和发送单元。其中,接收单元用于接收基站发送的第一消息,该第一消息包括第一指示信息和系统信息,该第一指示信息用于指示第一设备是否广播系统信息;第一设备根据第一指示信息确定需要广播系统信息,则广播系统信息。
结合第二方面,在第二方面的第一种可能的实现方式中,本申请提供的信息传输装置,还包括:分配单元,用于在目标设备的随机接入过程中,为目标设备分配目标设备的第一标识,该第一标识用于在目标设备的随机接入过程接入的小区中识别该目标设备;发送单元,还用于向基站发送第一标识,以及转发目标设备发送的第二消息,其中,第二消息用于请求建立基站与目标设备之间的无线资源控制RRC连接。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,接收单元,还用于接收基站发送的第三消息,第三消息包括资源配置信息以及第二指示信息,第二指示信息用于确定资源配置信息传输到的目标设备;本申请提供的装置还包括:处理单元,用于根据第一指示信息确定目标设备是不是第一设备,发送单元,还用于在处理单元确定目标设备不是第一设备,将资源配置信息发送给目标设备。
结合第二方面至第二方面的第二种可能的实现方式中的任一项,在第二方面的第三种可能的实现方式中,资源配置信息包括第一资源配置信息和第二资源配置信息,接收单元,还用于接收由基站生成的第一资源配置信息和第二资源配置信息,其中,第一资源配置信息用于配置目标设备的分组数据汇聚层协议PDCP层和业务数据适配协议SDAP层中的至少一项;第二资源配置信息用于配置目标设备的无线链路控制RLC层和媒体接入控制MAC层和物理PHY层中的至少一项;或者,接收单元,还用于接收由基站生成的第一资源配置信息,以及接收基站发送的由第一设备生成的第二资源配置信息,其中,处理单元,还用于生成第二资源配置信息,发送单元,还用于在处理单元生成第二资源配置信息之后将该第二资源配置信息发送给基站。
结合第二方面至第二方面的第三种可能的实现方式中的任一项,在第二方面的第四种可能的实现方式中,目标设备为终端设备,接收单元,还用于接收基站发送的用于指示在寻呼时隙PO寻呼跟踪区TA中的终端设备的第四消息,处理单元,还用于在确定第一设备属于TA,则在寻呼时隙PO寻呼该TA中的终端设备;或者,发送单元,还用于在处理单元确定第一设备的下一跳设备中存在候选设备属于该TA,则向候选设备发送第五消息,该第五消息用于指示在PO寻呼TA中的终端设备。
结合第二方面至第二方面的第四种可能的实现方式中的任一项,在第二方面的第五种可能的实现方式中,第四消息中至少携带寻呼PO,处理单元,还用于从第四消息中确定寻呼PO;或者第四消息中包括终端设备的第二标识、特定于终端设备的非连续接收周期和特定于小区的非连续接收周期,处理单元,还用于根据第二标识、特定于终端设备的非连续接收周期和特定于小区的非连续接收周期,确定寻呼PO。
结合第二方面至第二方面的第五种可能的实现方式中的任一项,在第二方面的第六种可能的实现方式中,目标设备为终端设备,接收单元,还用于接收基站发送的第四消息,该第四消息包括寻呼PO、终端设备的标识以及第三指示信息,该第三指示信息用于指示第一设备将寻呼PO以及终端设备的标识发送给目标设备;发送单元,还 用于向目标设备发送寻呼PO以及终端设备的标识。
结合第二方面至第二方面的第六种可能的实现方式中的任一项,在第二方面的第七种可能的实现方式中,第一设备和基站之间的信令无线承载SRB中携带第四指示信息,第四指示信息用于指示当前传输时间单元上在SRB上传输的是系统信息或第四消息。
结合第二方面至第二方面的第七种可能的实现方式中的任一项,在第二方面的第八种可能的实现方式中,处理单元,还用于确定第一设备与基站之间的无线承载和第一设备与目标设备之间的无线承载具有的关联关系,第一设备与目标设备之间无线承载与业务信息具有的关联关系,和第一设备与基站之间无线承载与业务信息具有的关联关系中的至少一个关联关系,至少一个关联关系用于第一设备确定传输目标数据包的指定无线承载。
结合第二方面至第二方面的第八种可能的实现方式中的任一项,在第二方面的第九种可能的实现方式中,接收单元,还用于接收基站生成的至少一个关联关系。或者,接收单元,还用于接收由第一设备的上一跳中继设备生成的至少一个关联关系。
结合第二方面至第二方面的第九种可能的实现方式中的任一项,在第二方面的第十种可能的实现方式中,目标设备为终端设备,处理单元,还用于为目标设备选择加密算法;发送单元,还用于向基站发送第六消息以及向目标设备发送加密算法的标识,第六消息包括加密算法的标识以及目标设备的第三标识,其中,该加密算法用于对基站和目标设备之间的数据加密。
结合第二方面至第二方面的第十种可能的实现方式中的任一项,在第二方面的第十一种可能的实现方式中,接收单元,还用于接收基站发送的第五指示信息以及加密算法,该第五指示信息用于指示将加密算法的标识发送给目标设备;发送单元,还用于根据第五指示信息,将加密算法的标识发送给目标设备,该加密算法用于对基站和目标设备之间的数据加密。
第三方面,本申请提供一种第一设备,应用于目标设备通过第一设备接入基站的过程中,该第一设备包括:存储器、收发器和至少一个处理器,存储器中存储有指令,存储器、收发器和至少一个处理器通过线路互联,收发器用于执行第一方面或第一方面任一可选实现方式中,在第一设备侧进行消息收发的操作;至少一个处理器调用指令,执行第一方面或第一方面任一可选实现方式中的在第一设备侧进行的消息处理或控制操作。
第四方面,本申请提供一种计算机存储介质,计算机可读存储介质中存储有指令,当指在第一设备上运行时,使得第一设备执行上述第一方面或第一方面的任意一种可能的实现方式中所描述的信息传输方法。
第五方面,本申请提供一种包含指令的计算机程序产品,计算机程序产品中存储有指令,当其在第一设备上运行时,使得第一设备执行上述第一方面或第一方面的任意一种可能的实现方式中所描述的信息传输方法。
本申请第六方面,提供一种芯片系统,可应用于第一设备中,该芯片系统包括:至少一个处理器,存储器和接口电路,存储器、接口电路和至少一个处理器通过线路互联,至少一个存储器中存储有指令;指令被处理器执行,以执行第一方面或第一方 面任一可选的实现方式中第一设备的操作。
本申请第七方面,提供一种通信系统,该通信系统包括基站、至少一个如上述第二方面或第三方面提供的第一设备、以及终端设备。
本申请实施例所提供的方案,可以充分利用已接入基站的第一设备,转发基站的第一指示信息和系统信息,完成其他中继设备(例如,目标设备)或者终端设备通过第一设备接入基站的过程,例如,利用已接入基站的第一设备转发第一指示信息和系统信息,实现第一设备的下一跳设备接入基站的过程,从而可以在用户设备和基站通过部署多个中继设备,既可以满足了日益增长的通信需求,也可以折中运营商的成本,例如,避免了在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高的问题,本申请实施例还提供了相应的设备及系统。
附图说明
图1为现有技术中提供的一种单跳网络架构示意图;
图2为现有技术中提供的一种R10Relay的控制面协议栈架构示意图;
图3为现有技术中提供的一种R10Relay的用户面协议栈架构示意图;
图4为本申请实施例提供的一种多跳网络架构示意图;
图5为本申请实施例提供的一种基站的结构示意图;
图6为本申请实施例提供的又一种多跳网络架构示意图;
图7为本申请实施例提供的一种多跳网络架构下L2协议栈的控制面协议栈架构示意图;
图8为本申请实施例提供的一种多跳网络架构下L2协议栈的用户面协议栈架构示意图;
图9为本申请实施例提供的一种多跳网络架构下L3协议栈的控制面协议栈架构示意图;
图10为本申请实施例提供的一种多跳网络架构下L3协议栈的用户面协议栈架构示意图;
图11为本申请实施例提供的又一种多跳网络架构下L3协议栈的控制面协议栈架构示意图;
图12为本申请实施例提供的又一种多跳网络架构下L3协议栈的用户面协议栈架构示意图;
图13为本申请实施例提供的一种信息传输方法的流程示意图一;
图14为本申请实施例提供的一种信息传输方法的流程示意图二;
图15为本申请实施例提供的一种信息传输方法的流程示意图三;
图16为本申请实施例提供的一种信息传输方法的流程示意图四;
图17为本申请实施例提供的一种承载映射示意图;
图18为本申请实施例提供的一种L2架构的控制面传输流程示意图;
图19为本申请实施例提供的一种L2架构的用户面传输流程示意图;
图20为本申请实施例提供的一种混合协议栈架构下的控制面传输流程示意图;
图21为本申请实施例提供的一种混合协议栈架构下的用户面传输流程示意图;
图22为本申请实施例提供的一种中继设备间密钥配置流程示意图;
图23为本申请实施例提供的一种第一设备的结构示意图一;
图24为本申请实施例提供的一种第一设备的结构示意图二;
图25为本申请实施例提供的一种第一设备的结构示意图三。
具体实施方式
本申请描述的系统架构及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对于本申请提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中“的(英文:of)”,相应的“(英文corresponding,relevant)”和“对应的(英文:corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
如图2所示,图2示出了现有R10Relay的控制面协议栈架构,应用于如图1所示的网络结构中,如图2所示,终端设备(以终端设备为例)的协议栈包括非接入(non-access stratum,NAS)层、无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(Packet Data Convergence Protocol,PDCP)层、无线链路控制(Radio Link Control,RLC)层、媒体接入控制(Media Access Control,MAC)层以及物理层(physical layer,PHY),中继设备包括与终端设备对等的第一协议栈以及与基站对等的第二协议栈,其中,第一协议栈包括由上至下的RRC层、PDCP层、RLC层、MAC层以及PHY层,第二协议栈包括由上至下的S1应用协议(S1 Application Protocol,S1AP)层、流控制传输协议(Stream Control Transmission Protocol,SCTP)层、网际协议(internet protocol,IP)层、PDCP层、RLC层、MAC层以及PHY层。基站包括与中继设备的第二协议栈对等的第三协议栈以及与核心网设备(例如,长期演进(Long Term Evolution,LTE)中的移动性管理实体(mobility management entity,MME))对等的第四协议栈,其中,第三协议栈包括由上至下的S1AP层、SCTP层、IP层、PDCP层、RLC层、MAC层以及PHY层,第四协议栈包括由上至下的S1AP层、SCTP层、IP层、L(Layer)2以及L1层,核心网设备的协议栈包括NAS层、S1AP层、SCTP层、IP层、L2层以及L1层。其中,L1层为物理层,L2层为数据链路层。例如,L1层为开放式互联通信参考模型(open system interconnection reference model,OSI)定义的物理层,L2层为OSI定义的数据链路层(date link layer,DLL)。
如图3所示,图3示出了R10Relay的用户面协议栈架构中,终端设备的协议栈包括应用(Application,App)层、传输控制协议(Transmission Control Protocol,TCP)/用户数据报协议(User Datagram Protocol,UDP)层、IP层、PDCP层、RLC层、MAC层以及PHY层,中继设备包括与终端设备对等的第五协议栈以及与基站对等的第六协议栈。其中,第五协议栈包括由上至下的PDCP层、RLC层、MAC层和PHY层,第六协议栈包括由上至下的GPRS隧道协议用户面部分(GPRS Tunneling Protocol-User Plane,GTP-U)层、用户数据报协议(User datagram protocol,UDP)层、IP层、PDCP层、RLC层、MAC层以及PHY层;基站包括与第六协议栈对等的第七协议栈以及与核心网设备对等的第八协议栈,其中,第七协 议栈包括由上至下的GTP-U层、UDP层、IP层、PDCP层、RLC层、MAC层以及PHY层,第八协议栈包括由上至下的GTP-U层、UDP层、IP层、L2层以及L1层,核心网设备的协议栈包括与第八协议栈对等的GTP-U层、UDP层、IP层、L2层以及L1层。
由于R10Relay中只支持层3(Layer3,L3)协议栈架构(以下将简称为:L3架构)的场景下入网过程,对于其他协议栈架构,如L2协议栈架构(以下将简称为:L2架构)的场景没有涉及,而对于多跳无线中继网络下,L3架构的多跳组网时延要大于L2架构的多跳组网时延,因此L2架构的多跳组网场景的研究也是需要考虑的。
图4给出了一种通信系统示意图,该通信系统可以包括:至少一个基站100(仅示出1个)、与基站100连接的一个或多个终端设备200(仅示出1个)以及位于基站100和终端设备200之间的多个中继节点(Relay Node,RN),例如,在图4中所示出的RN301、RN302、RN30n。其中,n为大于或等于2的整数。
其中,RN与终端设备200和基站100之间均使用无线连接。示例性,RN与基站100之间的无线接口为Un接口,例如,RN301与基站100之间的无线接口为Un接口,各个RN之间的无线接口为Un接口,例如,RN301和RN302之间的无线接口为Un接口。基站的下一跳RN(例如,RN301)与基站100之间的链路称为回传链路(Backhaul Link),终端设备200与其相连接的RN或基站100之间的接口为Uu接口,终端设备200和基站/RN之间的链路称为接入链路(Access Link),例如,终端设备200与其上一跳RN302之间的链路。
其中,RN用于在基站100和终端设备200之间中转数据和信令。基站100通常还可以作为宿主(Donor)基站,新空口或5G(New Radio,NR)系统中该宿主基站可以为(Donor gNodeB,DgNB),在LTE系统中该宿主基站可以为(Donor eNodeB,DeNB),当然,宿主基站还可以简称为:gNB或者eNB。
在实际通信过程中,RN作为一个基站,在接入认证和执行一些安全功能时,却是作为一个终端设备进行处理。当RN作为一个终端设备时,RN可以像终端设备一样接入无线网络。终端设备在接入时网络侧会对终端设备进行用户的鉴权认证和密钥协定(Authentication and Key Agreement,AKA),在LTE系统中该过程也称为演进分组系统(Evolved Packet System,EPS)。
通常,RN对于其服务的终端设备充当一个基站的角色,而对于为RN服务的基站则充当一个终端设备的角色。例如,在如图4所示的架构中,在下行传输过程中,核心网设备发送的下行数据先到达基站100,然后再由基站100传递给该基站100的下一跳RN(例如,RN301),下一跳RN再通过与终端设备200之间的RN(例如,RN302)传输至终端设备200,上行则反之。
基站100可以是和终端设备200通信的设备,基站100可以是中继站或接入点等。基站100可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的3G基站(NodeB,NB),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。基站100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。基站100还可以是5G网络中的网络设备或未来演进网络中的网络设备,例如下一代基站(NR NodeB,gNB),还可以是可穿戴设备或车载设备等。
由于未来接入网可以采用云无线接入网(cloud radio access network,C-RAN)架构来实现,一种可能的方式是将传统基站的协议栈架构和功能分割为两部分,一部分称为集中单元(central unit,CU),另一部分称为分布单元(distributed unite,DU),而CU和DU的实际部署方式比较灵活,例如多个基站的CU部分集成在一起,组成一个规模较大的功能实体。如图5所示,以接入网为基站为例,基站100可以被拆分为一个CU和至少一个DU,所述CU与每个DU通过F1接口相连,其中,所述CU用于实现所述基站的RRC层和PDCP层功能,所述DU用于实现所述基站的RLC层,MAC层和PHY层功能。
如图5所示,CU和DU可以根据无线网络的协议层划分,例如CU用于实现分组数据汇聚层协议(Packet Data Convergence Protocol,PDCP)及位于PDCP层之上的无线资源控制(Radio Resource Control,RRC)的功能。DU用于实现PDCP以下的协议层,例如无线链路控制(Radio Link Control,RLC)和媒体接入控制(Medium Access Control,MAC)以及物理层(physical layer,PHY)等的功能。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
终端设备200可以是用户设备(User Equipment,UE)、接入终端(Access Terminal)、用户单元(User Unit)、用户站(User Station)、移动站(Mobile Station)、移动台(Mobile)、远方站(Remote Station)、远程终端(Remote Terminal)、移动设备(Mobile Equipment)、用户终端(User Terminal)、无线通信设备(Wireless Telecom Equipment)、用户代理(User Agent)、用户装备(User Equipment)或用户装置。该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(例如网络切片)进行通信,也可以与另一终端设备进行通信,如设备对设备(Device to Device,D2D)或机器对机器(Machine to Machine,M2M)场景下的通信。终端设备可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(station,STA),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代(fifth-Generation,5G)通信网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺 寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
如图6所示,图6给出了本申请另一种通信系统示意图,图6与图4的区别在于,在图4中由RN301和RN302构成多跳的通信系统架构,而图6中还引入了至少一个RN303(图6中仅示出了一个),该RN303与基站100之间无线连接,RN303并中转基站100的数据和信令至RN302,或者RN303中转终端设备200的数据和信令至基站100,以构成多跳多链路的通信系统架构。
需要说明的是,图4和图6仅是本申请所使用的通信系统架构的一个示意,在实际通信过程中还可以包括更多或者更复杂的通信系统架构。
可选的,在图4和图6所示的架构中,本申请可以定义基站的跳数为0,按照从基站100到终端设备200的方向,在基站100和终端设备200之间每增加一个中继设备,该中继设备的跳数就增加一跳,当所增加的中继设备与其他中继设备不在一条支路时,支路的跳数也增加一跳,例如,在如图4所示的架构中,RN301到基站的跳数为1,RN302到基站的跳数为2,在如图6所示的架构中,RN303到基站的跳数为1,但是RN303和RN301位于不同的通信链路,例如,RN301位于通信链路1中,RN303位于通信链路2中。
本申请中的术语“多个”是指两个或两个以上。
本申请中的术语“第一”、“第二”等仅是为了区分不同的对象,并不对其顺序进行限定。例如,第一资源配置信息和第二资源配置信息仅仅是为了区分不同的资源配置信息,并不对其先后顺序进行限定。
在介绍本申请提供的方案之前,首先介绍本申请所涉及到的协议栈架构:具体的以下将结合如图7至图12详细介绍:
具体的,如图7所示,图7示出了本申请的L2架构的控制面协议栈,图7中以基站和终端设备之间存在三个中继设备(例如,RN1、RN2以及RN3)为例介绍L2架构的控制面协议栈,如图7所示,对于终端设备而言,该终端设备的控制面协议栈由上至下依次包括:NAS层,RRC层,PDCP层,RLC层,MAC层和PHY层;对于RN3而言,该RN3控制面协议栈架构包括与终端设备对等的第九协议栈以及与RN2对等的第十协议栈,其中,第九协议栈由上至下依次包括:与终端设备对等的RLC层,MAC层以及PHY层,第十协议栈由上至下依次包括:NAS层、RRC层以及PDCP层、适配(Adaptation)层、RLC层、MAC层以及PHY层;对于RN2以及RN1而言,其所具有的协议栈具体可以参见RN3以及图7,本申请在此不再赘述。基站的控制面协议栈结构包括与RN1的第十协议栈对等的第十一协议栈以及与核心网设备对等的第十二协议栈,其中,第十一协议栈由上至下包括:RRC层、PDCP层、Adaptation层、RLC层、MAC层以及PHY层,第十二协议栈由上至下包括:下一代应用协议(Next Generation Appliation Protocol,NG AP)层、SCTP层、IP层以及L1/L2层;核心网设备的协议栈包括NAS层、NG AP层、SCTP层、IP层、L1/L2层。
需要说明的是,在L2架构下,每个中继设备(例如,如图7所示的RN1、RN2以及RN3)作为终端设备通过Uu接口连接基站或者上一跳的中继设备(例如,RN2的上一跳中继设备为RN1)时,每个中继设备与基站或者各自的上一跳中继设备之间具有NAS层,RRC层与PDCP层;而当每个中继设备作为Relay通过Un接口连接基站或者各自的上一跳中继设备时, 中继设备与基站之间可以不具有NAS层、RRC层和PDCP层。Uu接口和Un接口可以是现有接口,也可以通过某个新的接口替换,本申请实施例不限定。
具体的,在图7中,虚框中的协议层表示:当中继设备作为终端设备接入到基站的时候所具有的协议层(例如,NAS层、RRC层以及PDCP层),当中继设备作为Relay转发基站或者终端设备的数据的时候可以不具有。
综上所述,在L2架构中,由于基站和终端设备均有RRC层,因此,终端设备接入或者中继设备作为终端设备接入时,其RRC消息终结于基站,基站上的PDCP层的配置是特定于终端设备的,即每个终端设备分别对应一个PDCP层配置,基站上的RLC层、MAC层、PHY层是特定于中继设备的,即每个中继设备分别对应一个RLC层、MAC层、PHY层。此外,中继设备和基站之间具有Adaptation层,该Adaptation层的功能主要包括添加或识别终端设备的标识、确定终端设备的RRC消息在中继设备和基站之间的无线承载映射。可选地,该适配层在中继设备作为Relay转发数据时存在,当中继设备作为终端设备接入时可以不存在。
如图8所示,图8示出了本申请的L2架构的用户面,如图8所示,对于终端设备而言,该终端设备的用户面协议栈由上至下包括:IP层、SDAP层、PDCP层、RLC层、MAC层以及PHY层,RN3包括与终端设备的协议栈对等的第十三协议栈,以及与RN2的协议栈对等的第十四协议栈,其中,第十三协议栈包括由上至下的RLC层、MAC层以及PHY层,第十四协议栈包括由上至下的IP层、SDAP层、PDCP层、Adaptation层、RLC层、MAC层以及PHY层,RN2和RN1所具有的用户面协议栈,可以参见图8以及RN3的协议栈,本申请在此不再赘述。基站包括与RN1的第十四协议栈对等的第十五协议栈和与核心网设备的协议栈对等的第十六协议栈,其中,第十五协议栈包括由上至下的SDAP层、PDCP层、Adaptation层、RLC层、MAC层以及PHY层,第十六协议栈包括由上至下的GTP层、UDP层、IP层以及L1/L2层,核心网设备的协议栈包括IP层、GTP层、UDP层、IP层以及L1/L2层。
综上,终端设备和基站之间的SDAP层是特定于每个终端设备的一个会话(session)的,即每个终端设备的一个session对应一个SDAP层,终端的不同会话对应不同的SDAP。其中Adaptation层用于添加或识别终端设备的标识、Uu接口的数据无线承载DRB的标识,该Adaptation层用于执行终端设备的数据在中继设备和基站之间的承载映射。
具体的,在图8中,虚框中的协议层表示:当中继设备作为终端设备接入到基站或者其上一跳中继设备时,该中继设备具有该虚框中的协议层(例如,IP层、SDAP层、PDCP层以及Adaptation层),当中继设备作为Relay节点转发数据时,中继设备可以不具备虚框中的协议层。终端设备接入以及中继设备作为终端设备接入时,中继设备/终端设备的PDCP层和SDAP层和基站的PDCP层和SDAP层对等,且特定于每个终端设备的一个承载,即PDCP层和SDAP层与一个终端设备的一个承载对应,一个终端设备的不同承载对应不同的PDCP层和SDAP层。基站上的RLC层、MAC层、PHY层特定于每个中继设备,和Relay侧的RLC、MAC层、PHY是对等层。此外,中继设备和基站之间定义了一个Adaptation层,该Adaptation层的功能如上所述,本申请在此不再赘述。该Adaptation层在中继设备作为Relay节点转发数据的时候存在,当中继设备作为终端设备接入的时候可以不存在。
如图9所示,图9示出了一种L3架构的控制面协议栈架构,图9和图7的共同点在于:L2和L3架构下的控制面中,终端设备具有相同的协议栈,核心网设备具有相同的协议栈,区 别点在于:在L3架构的控制面中中继设备(例如,RN1、RN2和RN3)的第九协议栈之上由上之下依次具有RRC层以及PDCP层,中继设备与基站对等的RLC层之上由上至下依次还具有NAS层、NG AP层、SCTP层、IP层、PDCP层,基站与中继设备(例如,RN1)对等的RLC层由上之下依次是NG AP层、SCTP层、IP层、PDCP层。具体的,在图9中,虚框中的协议层表示:当中继设备作为终端设备接入到基站或者接入其上一跳中继设备时,该中继设备具有该虚框中的协议层(例如,NAS层),同时,图9中的中继设备的NG AP层、SCTP层和IP层还需要使用RRC层来代替,其对等的上一跳中继设备的协议层即NG AP层、SCTP层和IP层也需要使用RRC层来代替;当中继设备作为Relay节点转发数据时,中继设备可以不具备虚框中的协议层。
因此,在L3架构的控制面中,终端设备发送的RRC消息通过依次各个中继设备(例如,RN3、RN2和RN1)之后,生成NG AP消息,并由中继设备将该NG AP消息通过基站发送给核心网设备。
如图10所示,图10示出了一种L3架构的用户面协议栈架构,图10和图8的共同点在于,混合协议栈架构下的用户面中终端设备的协议栈相同,核心网设备的协议栈相同,基站与核心网设备对等的协议栈相同,区别点在于:L3架构下中继设备与终端设备对等的协议栈在RLC层之上还包括PDCP层以及SDAP层,中继设备与基站对等的协议栈在RLC层之上还包括PDCP层、IP层、UDP层以及GTP层,基站与中继设备对等的协议栈在RLC层之上还包括PDCP层、IP层、UDP层以及GTP层。具体的,在图10中,虚框中的协议层表示:当中继设备作为终端设备接入到基站或者其上一跳中继设备时,该中继设备具有该虚框中的协议层(例如,IP层),同时,图10中的中继设备的IP层、UDP层以及GTP层还需要使用SDAP层来代替,其对等的上一跳中继设备的协议层即IP层、UDP层以及GTP层也需要使用SDAP层来代替;当中继设备作为Relay节点转发数据的时候,中继设备可以不具备虚框中的协议层。
因此,在L3架构下的用户面中,Relay和基站之间接口上,一个终端设备的一个会话对应一个GTP隧道,终端设备的不同会话对应不同的GTP隧道,一个GTP隧道承载在一个RN的一个DRB承载上,支持多个终端设备不同QoS业务的汇聚功能。
如图11所示,图11示出了本申请提供的另一种L3架构的控制面协议栈架构,该图11与图9的区别点在于:中继设备与基站对等的协议栈中,将图9所示的SCTP以及IP层由RRC层代替,基站与中继设备对等的协议栈中,图9所示的SCTP层以及IP层由RRC层代替。
在图11中,终端设备的RRC消息发送给中继设备之后,由中继设备生成NG AP消息,并将NG AP消息承载在中继设备的RRC消息中发送给基站,基站将收到的NG AP消息proxy给NG_CN。
如图12所示,图12示出了本申请提供的另一种L3架构的用户面协议栈架构,该图12与图10的区别点在于:中继设备与基站对等的协议栈中使用如图12所示的Adaptation层替换图10中的GTP层、UDP层以及IP层,基站与中继设备对等的协议栈中使用图12中的Adaptation层替换图10中的GTP层、UDP层以及IP层。
可以理解的是,图7至图12中以多跳中继设备为例来介绍协议栈架构,可以理解的是,上述协议栈在实际中也适用于单跳中继设备的场景(即终端设备和基站之间存在一个中继设备),因此,如图7至图12中在终端设备和基站之间存在一个中继设备的协议栈,例如, 可以省略如图7至图12中的RN3和RN2的协议栈。
本申请实施例提供的信息传输方法适用于L2架构,以及混合协议栈架构。其中,混合协议栈架构是指:该混合协议栈架构的控制面使用L3的协议栈的控制面协议栈架构(例如,可以使用如图9或者如图11所示的控制面协议栈架构),用户面使用如图8所示的L2架构的用户面协议栈架构。
需要说明的是,本申请中的第一设备可以为中继设备,目标设备可以为接入第一设备的下一跳中继设备,也可以为接入基站的用户设备。
以下为介绍本申请,现以第一设备为第一中继设备,目标设备为第二中继设备为例详细介绍两个中继设备如何接入基站的实施例,以形成多跳组网架构。
如图13示,本申请提供了一种信息传输方法的交互示意图,包括:
S101、基站生成系统信息。
可选地,该系统信息包括SIB1(system information block,SIB系统信息块1)和SIB2,SIB1和SIB2内容类似现有技术,本实施例不再赘述。
S102、基站向第一中继设备发送第一消息,该第一消息中携带第一指示信息以及系统信息,其中,该第一指示信息用于指示第一中继设备是否广播系统信息。
作为一种可能的实现方式,第一指示信息可以为指示符,其中,该指示符用于指示第一中继设备是否广播系统信息。
可选的,该指示符可以为第一指示符,该第一指示符用于指示第一中继设备广播系统信息,或者该指示符可以为第二指示符,该第二指示符用于指示第一设备不广播系统信息,也即第二指示符指示第一中继设备自己使用系统信息。
示例性的,该第一指示符可以为1,第二指示符可以为0。当然,本申请中第一指示符和第二指示符还可以为其他参数本申请对此不限定。
需要说明的是,一方面,由于第一中继设备可以是基站直连的一个设备,例如,第一中继设备为如图4所示的RN301,在这种情况下,基站可以直接将第一消息通过专有信令如RRC消息发送给第一中继设备。
另一方面,基站和第一中继设备之间也可能存在至少一个已接入的中继设备,例如,第一中继设备为如图4所示的RN302,那么在RN302和基站之间还存在RN301。因此,当基站将第一消息发送给RN302时,需通过RN301的转发才能实现,作为一种可能的实现方式,本申请提供方法在S101之后,还包括:基站向第一中继设备的上一跳设备发送第九指示信息、第一指示信息以及系统信息,该第九指示信息用于指示第一指示信息和系统信息传输到的第一中继设备。第一中继设备的上一跳中继设备在确定第九指示信息所指示的第一中继设备不是自己时,通过第一消息将第一指示信息和系统信息发送给第一中继设备。
作为一种示例,第九指示信息可以为第一中继设备的标识,第一中继设备到基站的跳数中的至少一项。
可选的,该第九指示信息可以为第一中继设备的标识,或第一中继设备到基站的跳数,或者,第一中继设备到基站的跳数和第一中继设备的标识,其中,第一中继设备的标识用于识别第一中继设备,所述第一中继设备的标识可以是一个也可以是一组,具体的,如果第一中继设备到基站之间包括多个中继设备,那么所述第九指示信息就是中间所有的中继设备的标识。
具体的,一方面,第一中继设备的上一跳中继设备(以下简称:第一跳设备)可以判断第九指示信息所指示的第一中继设备的标识与第一跳设备的标识是否一致;第一跳设备在确定第九指示信息所指示的第一中继设备的标识与第一跳设备的标识一致时,第一跳设备确定系统信息和第一指示信息是发送给自己,因此,第一跳设备可以分析处理系统信息,例如根据第一指示信息确定是否广播系统信息。
当第一跳设备确定第一中继设备的标识与第一跳设备的标识不一致时,第一跳设备确定第一指示信息和系统信息不是发送给自己的,因此,第一跳设备便可以将该系统信息以及第一指示信息发送给第一中继设备。这样,第一中继设备,便可以根据第一指示信息确定是否需要广播该系统信息,并在确定需要广播该系统信息后,广播系统信息。
另一方面,第一跳设备还可以根据第一中继设备到基站的跳数判断第一指示信息和系统信息是否发送给自己,具体判断过程可以参见依据第一中继设备的标识的过程,本申请在此不再赘述。
示例性的,以第一中继设备为图4所示的RN301为例,那么第一中继设备到基站的跳数为1,可以理解的是,在第一中继设备为如图6所示的RN303时,第九指示信息还可以为第一中继设备所在的通信链路的标识以及第一中继设备到基站的跳数。
可选的,在L2架构下,本申请中的第一指示信息可以携带在适配层中,在L2和L3混合协议栈架构下,本申请中步骤S102中的第一指示信息可以携带在RRC消息中或者可以携带在控制面协议栈的适配层中。可选地,该适配层可以增加在PDCP层下。
本申请中基站可以通过专有信令(例如,Rnreconfiguration消息)向第一中继设备发送该第一消息,也可以通过其他现有的RRC消息或者新的消息发送,本申请实施例不限定。
可选的,第一消息中还包括子帧配置,用于指示第一中继设备在子帧时隙上广播系统信息。
需要说明的是,本申请中在基站向第一中继设备发送第一消息之前,第一中继设备已接入基站中,本申请对第一中继设备接入基站的方式不做限定。
S103、第一中继设备接收基站发送的第一消息。
S104、第一中继设备根据第一指示信息确定需要广播系统信息,则第一中继设备广播系统信息。
可选的,第一中继设备确定第一消息包括第一指示符,则确定需要广播系统信息;第一中继设备确定第一消息中不包括第一指示符或者第一消息中携带第二指示符,则确定不需要广播系统信息。
可选地,第一指示符和第二指示符可以复用第一消息中相同比特位置。
具体的,第一中继设备接收到基站发送的第一消息中的系统信息后,一方面,所述基站发送的系统信息对于不同的中继设备是不同的,即所述系统信息是当基站获知是中继设备接入时,基站将不同于自己广播的系统信息在第一消息中发送给所述第一中继设备,在此场景下,第一消息中可以包括第一指示信息,从而使得第一中继设备知道所述系统信息是否需要广播给其他其他设备(例如,中继设备或者终端设备)还是自己应用该系统信息。
另一方面,所述基站发送的系统信息对于所有中继设备都相同,在此场景下,第一消息中可以不包括第一指示信息,即接收到所述系统信息的中继设备只需广播该系统信息即可,或者第一中继设备既广播该系统信息的同时也可以应用该系统信息,再或者第一中继 设备应用该系统信息。
可选的,第一消息中可进一步携带资源配置,步骤S104具体可以通过以下方式实现:第一中继设备根据第一指示信息确定第一中继设备需要广播系统信息,第一中继设备在所述资源配置所指示的传输时间单元(例如子帧或时隙)上广播系统信息。
需要说明的是,由于在L2的控制面协议栈架构中,如图7所示,当第一中继设备作为终端设备接入到基站时,第一中继设备可以不具备RRC层与PDCP层,所以在L2架构下,第一中继设备不生成系统信息,第一中继设备可以转发基站生成的系统信息。
此外,在混合协议栈架构中,由于混合协议栈架构的控制面为如图9或者如图11所示的协议栈架构,当第一中继设备作为终端设备接入到基站中时,第一中继设备具备RRC层与PDCP层,因此,在该混合协议栈架构下,第一中继设备可以生成系统信息,当第一中继设备自己生成系统信息时,步骤S101至S103可以省略。
当上述步骤S101至S103适用于混合协议栈架构时,上述系统信息可以是基站生成共有的系统信息(例如,common SI)后,发送给第一中继设备的,第一中继设备在该共有的系统信息中更改或增加部分信息之后生成新的系统信息(例如,minimal SI)再发送给第二中继设备,该共有的系统信息可以是有关基站或基站和中继设备共有的相关信息。
此外,系统信息可以是基站通过RN reconfiguration消息发送给第一中继设备的,也可以通过其他现有的RRC消息或者新消息,本申请实施例不限定。
可选的,在混合协议栈架构下,上述步骤S102中的第一消息中也可以不增加第一指示信息,即第一中继设备在接收到系统信息后,由第一中继设备自己决定是否广播系统信息,具体的,第一中继设备可以自己决策更改该系统信息,并决策是否广播更改后的系统信息。
需要说明的是,当第二中继设备不是第一中继设备的下一跳中继设备时,则步骤S104具体可以通过以下方式实现:
第一中继设备向该第一中继设备的下一跳中继设备发送第八消息,该第八消息携带第一指示信息以及系统信息。第一中继设备的下一跳设备对该第八消息进行转发,或者该第一中继设备与第二中继设备之间的多个中继设备依次转发该第八消息,直到将该系统信息转发到第二中继设备。
具体的,本申请中的系统信息用于第二中继设备确定该基站对应的小区是如何配置的,从而接入该小区并在该小区内正确的工作,也即第二中继设备可以在接收到该系统信息后向第一中继设备发送随机接入请求(即消息1),以请求接入基站中。
综上步骤S101至S104在第一中继设备广播的系统信息之后,若第一中继设备下存在多个第二中继设备,则多个第二中继设备在需要接入基站时,便可以根据系统信息通过第一中继设备接入基站,以形成多跳中继架构。
本申请提供一种信息传输方法,通过基站向已接入基站的第一中继设备发送第一消息,并在该第一消息中携带第一指示信息,这样第一中继设备在接收到第一消息之后,便可以根据第一指示信息确定是否广播系统信息,当第一中继设备确定需要广播该系统信息时,第一中继设备可以将该系统信息广播出去,这样使得其他设备,例如接收到第一中继设备广播的系统信息的第二中继设备可以通过该系统信息接入到基站中,由此实现第二中继设备通过第一中继设备接入基站的过程,此外,当该方法应用于基站和终端设备之间的多个中继设备时,可以使得基站和终端设备之间的多个中继设备中每个中继设备均通过上述方 案基于各自已接入的上一跳中继设备接入基站中,从而可以在用户设备和基站通过部署多个中继设备,以形成多跳中继的网络架构,既可以满足了日益增长的通信需求,也可以折中运营商的成本,此外,无线中继(Relay)技术旨在扩展小区的覆盖范围,减少通信中的死角地区,平衡负载,转移热点地区的业务,节省终端设备的发射功率。因此,通过部署多跳中继设备可以降低在一些偏远地区提供网络覆盖所产生的成本。
作为本申请另一种可能的实现方式,在实际过程中,第二中继设备在根据系统信息通过第一中继设备接入基站的过程,如图14所示,可以通过以下方式实现:
S105、在第二中继设备的随机接入过程中,第一中继设备为第二中继设备分配第一标识,该第一标识用于在第二中继设备的随机接入过程中所接入的小区中识别第二中继设备。
作为一种示例,该第二中继设备的第一标识可以为小区无线网络临时标识(Cell Radio Network Tempory Identity,CRNTI),当然,在未来的NR中该第一标识还可以为其他用于在第二中继设备的随机接入过程中所接入的小区中识别第二中继设备的标识。
可选的,第一中继设备可以通过以下方式为第二中继设备分配第一标识:
一方面,第一中继设备从基站为第一中继设备预配置的多个第一标识中选择一个第一标识作为第二中继设备的第一标识,并将所选择的第一标识发送给基站。
另一方面,第一中继设备将第二中继设备发送的消息1发送给基站,第一中继设备接收基站通过专有信令发送的第一标识,该第一标识由基站在接收到消息1后,为第二中继设备分配的。
再一方面,第一中继设备为第二中继设备分配第一标识,第一中继设备将第一标识以及第一中继设备的标识发送给基站。
作为一种可选的实现方式,本申请中第二中继设备的随机接入过程是指:第二中继设备读取系统信息,并向第一中继设备发起随机接入请求,该随机接入请求中携带第二中继设备随机选择的一个前导码(preamble)。
可以理解的是,第一中继设备在第二中继设备的随机接入过程中还为第二中继设备分配上行资源,该上行资源可以用于第二中继设备向第一中继设备发送上行消息。例如,该上行消息可以为RRC连接消息,该上行消息中携带第二中继设备的标识(例如,临时移动台标识(Temporary Mobile Subscriber Identity,TMSI))作为竞争解决标识。
S106、第一中继设备向基站发送该第一标识以及转发第二中继设备发送的第二消息,其中,第二消息用于请求建立基站和第二中继设备之间的无线资源控制RRC连接。
可选的,该第二消息可以为RRC连接请求(RRCconnectionrequest)消息。在步骤S106中第一中继设备还可以将第一中继设备的标识信息发送给基站,这样基站可以根据第一中继设备的标识信息确定第二中继设备的第一标识是由第一中继设备分配的,以及确定第二中继设备位于第一中继设备的下一跳,此外,还可以确定RRC连接是为第二中继设备建立的。
可以理解的是,当第一中继设备通过将第二中继设备发送的消息1发送给基站以确定第二中继设备的第一标识时,步骤S106中第一中继设备可以省略将第一中继节点标识和CRNTI发给基站的过程。
可选的,一方面,第一中继设备可以将该第二消息通过基站和第一中继设备之间的指定信令无线承载(Signaling Radio Bearer,SRB)传输,即第一中继设备将第二消息携带在 基站与第一中继设备之间的RRC消息中传输,如携带在RRC连接重配置完成消息RRCconnectionreconfigurationcomplete消息,或者其他现有SRB消息或者新的SRB消息中传输,本申请实施例不限定。
可选的,第一中继设备可以将该第二消息通过基站与第一中继设备之间的指定数据无线承载(Data Radio Bearer,DRB)传输,即第一中继设备将第二消息映射到第一中继设备与基站之间的指定DRB中传输,其中,指定DRB以及指定SRB的具体确定方式将在下述实施例中介绍。
此外,在基站接收到该第一中继设备发送的第二消息之后,本申请提供的方法还包括:
S107、基站向第一中继设备发送RRC连接建立消息。
S108、第一中继设备将该RRC连接建立消息发送给第二中继设备。
S109、第二中继设备向第一中继设备发送RRC连接建立完成消息,即(消息5,MSG5)
S110、第一中继设备转发RRC连接建立完成消息到基站。
此外,在基站接收到RRC连接建立完成消息后,基站生成initial UE message消息并发送到核心网设备,该initial UE message消息中携带一个RN指示信息,用于指示核心网设备是RN接入。
具体的,经过上述步骤S101至S110第二中继设备便成功接入到基站中,在第二中继设备接入基站之后的NAS层、AS层的安全认证与激活,最后建立承载具体可以参考现有技术中的方案,本申请在此不再赘述。
需要说明的是,本申请中是以步骤S105至S110在步骤S101至S104之后执行为例进行说明,在实际过程中,第一中继设备为待接入的下一跳中继设备分配第一标识的过程以及转发待接入的下一跳中继设备的RRC连接建立消息的过程可以单独执行,也即在实际过程中本申请的步骤S105至S110可以作为一个单独的实施例实施,在步骤S105至S110可以作为一个单独的实施例实施时,其仍然适用于如图3或图4所示的架构,当步骤S105至S110单独执行时,该第二中继设备或者第一中继设备的下一跳中继设备已采用如S101至S104的方式通过第一中继设备接入基站或者采用其他的方式通过第一中继设备接入基站中,或者,该第二中继设备或者第一中继设备的下一跳中继设备已采用其它方式通过第一中继设备接入基站或者采用其他的方式通过第一中继设备接入基站中,本申请实施例不限定。
在第二中继设备通过第一中继设备接入基站之后,第二中继设备的下一跳中继设备,例如,如图14所示的第三中继设备,该第三中继设备可以通过已接入的第二中继设备接入基站,以及通过第三中继设备接入基站的终端设备,其同样可以采用上述方式通过与第一中继设备之间具有的一个或多个中继设备接入到基站,具体的接入过程均与第二中继设备接入基站的过程相同,或类似,本申请在此不再赘述。可以理解的是,当第二中继设备的下一跳中继设备或者终端设备需要通过第二中继设备接入基站时,第二中继设备所起的作用与上述步骤S101至S104或者S105至S110中第一中继设备所起的作用相同。
作为本申请提供的另一个实施例,如图15所示,当第二中继设备与基站之间形成多跳中继架构之后,基站可以基于已形成的多跳中继设备触发对第二中继设备的RRC连接重配置消息以及RN重配置信息,具体的,作为本申请另一个实施例,如图15所示,在第二中继设备已通过第一中继设备接入基站的架构中,基站基于多跳架构为第二中继设备配置资源配置信息的过程具体可以通过以下方式实现:
S111、基站向第一中继设备发送第三消息,该第三消息包括资源配置信息以及第二指示信息,该第二指示信息用于确定资源配置信息传输到的第二中继设备。
作为一种实现方式,本申请中第三消息通过第一中继设备与基站之间的SRB1传输,即第三消息携带在第一中继设备和基站之间的RRC消息中传输。例如,携带在RRC连接重配置(RRC connection reconfiguration)消息,或者其他现有SRB消息或者新的SRB消息中,本申请实施例不限定。
可选的,第一中继设备可以将该第三消息通过基站与第一中继设备之间的DRB传输,即第一中继设备将第二消息映射到第一中继设备与基站之间的DRB中传输给基站。
可选的,该第二指示信息可以包括第二中继设备的标识以及第二中继设备到基站的跳数中的至少一项,也可以理解的是,该第二指示信息与上述步骤中第九指示信息为同一个指示信息,只是在不同的消息中该第九指示信息或第二指示信息所指示的具体含义存在差异。当然也可以认为,该第九指示信息或第二指示信息在第一消息中时,用于指示系统信息传输到的第二中继设备,当该第九指示信息或第二指示信息在第三消息中时,用于指示资源配置信息发送到的第二中继设备。
可选的,该第二指示信息可以为第二中继设备的标识,或第二中继设备到基站的跳数,或者,第二中继设备到基站的跳数和第二中继设备的标识,其中,第二中继设备的标识用于识别第二中继设备。即,在此场景下,所述第二中继设备的标识在所属基站下是唯一的,也就是说如果第二中继设备到基站之间包括多个中继设备,那么所述中继设备可以唯一识别所述第二中继设备的标识。
可选的,所述第二中继设备的标识可以是一组中继设备标识列表,具体的,如果第二中继设备到基站之间包括多个中继设备,那么所述第二指示信息就是中间所有的中继设备的标识列表,或跳数列表,或者中继设备的标识列表和跳数列表。例如,第二中继设备为RN3为例,所述第二中继设备到基站之间具有RN2和RN1两个中继设备,那么第二指示信息就是为一个标识列表,包括:RN1的标识、RN2的标识、RN3的标识,或者,第二指示信息为一个标识列表和跳数列表,包括:RN1的标识(1跳)、RN2的标识(2跳)、RN3的标识(3跳),其中RN1的标识为可选。
需要说明的是,本实施例是以目标设备为第二中继设备为例来介绍的,如果目标设备为终端设备,则所述第二指示信息包括终端设备的第三标识、终端设备和基站之间所有中继设备的标识列表和跳数列表中的至少一项。
S112、第一中继设备接收基站发送的第三消息。
S113、第一中继设备根据第二指示信息确定第二中继设备不是第一中继设备,将资源配置信息发送给第二中继设备。
具体的,步骤S113中,第二中继设备可以为第一中继设备的下一跳设备,此时,第一中继设备可以直接将该资源配置信息发送给第二中继设备,当该第二中继设备与第一中继设备之间存在多个已接入基站的其他中继设备时,第一中继设备可以通过其他中继设备依次将该资源配置信息转发给第二中继设备,具体的,第一中继设备可以向其他中继设备中为第一中继设备的下一跳中继设备发送第九消息,该第九消息的内容与第三消息的内容相同,本申请对此不进行限定。
具体的,一方面,该资源配置信息包括由基站生成的第一资源配置信息和由基站生成 的第二资源配置信息,其中,第一配置信息用于配置第二中继设备的PDCP层和SDAP层的至少一层;第二配置信息用于配置第二中继设备的RLC层和MAC层和PHY层的至少一层。
由于无论在L2架构还是混合协议栈架构中,第一中继设备作为终端设备时,均具有RRC层与PDCP层,也即第一中继设备作为终端设备时可以生成第二资源配置信息,也可以接收由基站发送的第二资源配置信息,因此,在L2架构和混合协议栈架构中,第一中继设备可以作为Relay转发基站生成的第一资源配置信息和第二资源配置信息。
另一方面,该资源配置信息包括由基站生成的第一资源配置信息和由中继设备生成的第二资源配置信息,所述中继设备为第一中继设备或者是第二中继设备的上一跳或者上几跳中继设备(下面以中继设备为第一中继设备为例来介绍),其中,第二资源配置信息由第一中继设备生成之后发送给基站。由于在L2架构中,中继设备均具有RLC层和MAC层和PHY层中的至少一项,因此,第二资源配置信息可以由第一中继设备生成,但是在L2架构下由于第一中继设备作为Realy接入时,第一中继设备可以不具RRC层与PDCP层,第一中继设备作为Realy接入时不可以直接将生成的第二资源配置信息发送给其下一跳中继设备,因此,第一中继设备可以将生成的第二资源配置信息先发送给基站,并由基站通过第一中继设备作为中继站点转发给其下一跳的中继设备。其中,第一中继设备生成的第二资源配置信息可以通过第一中继设备与基站之间的DRB或者SRB传输给基站,并由基站再通过第一中继设备转发给第二中继设备。基站通过第一中继设备转发第二资源配置信息和第一资源配置信息时,在携带第二资源配置信息和第一资源配置信息的配置消息中增加指示信息,该指示信息用于指示第二资源配置信息和第一资源配置信息是配置给目标中继设备的,该指示消息中可以是目标中继设备的标识和目标中继设备到基站的跳数中的至少一项。
需要说明的是,由于在L2架构下,第一中继设备作为终端设备时具有RRC层与PDCP层,而作为Relay时不具有RRC层与PDCP层,因此第一中继设备可以转发第一资源配置信息,可以生成或者修改第二资源配置信息,其中,当所述第二资源配置信息是基站配置的场景下,第一中继设备可以修改第二资源配置信息;在L2和L3混合协议栈架构中,第一中继设备具有RRC层与PDCP层,因此第一中继设备可以转发第一资源配置信息,也可以生成或者修改第一资源配置信息;可以转发第二资源配置信息,也可以生成或修改第二资源配置信息,其中,当所述第二资源配置信息是基站配置的场景下,第一中继设备可以修改第二资源配置信息。
可选的,在L2架构下,本申请中的第二指示信息可以携带在适配层、RLC层、MAC层以及PHY层的至少一层中;对于L2和L3混合架构,所述第二指示信息可以携带在RRC层、PDCP层、适配层、RLC层、MAC层以及PHY层的至少一层中。
可选的,基站也可以直接生成两个RRC消息,该两个RRC消息中的一个RRC消息1未加密,该RRC消息1用于中间中继设备,例如,第一中继设备增加修改RLC层和MAC层和PHY层的中的至少一项配置。即第一中继设备接收到RRC消息1之后,增加修改对第二中继设备的RLC层和MAC层和PHY层的配置后再发送给第二中继设备。该两个RRC消息中的另一个RRC消息2是加密的,包括PDCP层或SDAP层的配置,第一中继设备收到RRC消息2之后,直接将RRC消息2转发给第二中继设备,以使得第二中继设备解析该RRC消息2之后获取PDCP层和SDAP层的配置中的至少一项。
其中,RRC消息1和RRC消息2中都需要包括一个指示信息,用于指示RRC消息是配置 给目标RN,指示消息中可以是目标RN的标识和目标RN到基站的跳数中的至少一项。
另外,RRC消息中还需要指示当前传输时间单元上向第一中继设备发送的是RRC消息1还是RRC消息2,具体可以是协商后的第三指示符或者第四指示符来指示。例如,第三指示符可以为0,第四指示符可以为1,本申请实施例不限定。
需要说明的是,当每个中继设备的第二配置信息均可以由基站生成,也可以由每个中继设备各自所接入的上一跳中继设备生成,当每个中继设备的第二资源配置信息由各自所接入的上一跳中继设备生成时,各自所接入的上一跳中继设备均需要将生成的第二资源配置信息先发送给基站(具体的,每一跳中继设备向上一跳中继设备发送第二资源配置信息时,携带一个第七指示信息,该第七指示信息用于指示将第二资源配置信息发送到基站,以及该第二资源配置信息与被配置该第二资源配置信息的中继设备的标识),再由基站携带在配置信息中由上一跳中继设备转发给各自的下一跳中继设备。
需要说明的是,一方面,本申请中是以步骤S111至S113基于步骤S101至S110执行为例进行说明,并不构成对本申请的限定,在实际过程中,基站为第一中继设备的下一跳中继设备分配资源配置信息的过程可以单独作为一个实施例实施,也即在实际过程中本申请的步骤S111至S113可以单独执行。当S111至S113单独执行时,其适用于如图3或如图4所示的架构,即在基站通过多跳中继设备为所接入的中继设备配置资源配置信息的场景中,该多个中继设备已通过接入基站的第一中继设备接入至基站中,本申请对各个中继设备如何接入基站的方式不限定,例如可以采用如S101至S104的方式通过第一中继设备接入基站或者采用其他的方式。
当然,S111至S113也可以在步骤S101至S104之后执行,即S101至S104以及S111至S113作为一个实施例,或者在步骤S105至S110之后执行,即S105至S110和S111至S113作为一个实施例。
上述步骤S101至S104主要介绍了第二中继设备通过已接入基站的第一中继设备如何接入基站,步骤S105至S110主要介绍了基站如何基于第二中继设备和基站之间的多跳中继设备为第二中继设备发送资源配置信息的过程,可以理解的是:在实际过程中,终端设备也可以通过第二中继设备、第一中继设备接入基站,而终端设备通过第二中继设备以及第一中继设备接入基站的过程可以参见上述实施例中第二中继设备作为终端设备的通过第一中继设备接入基站的过程,本申请在此不再赘述。应当理解的是,当终端设备需要通过多个中继设备接入基站时,该多个中继设备应已通过上述方式接入基站中。
在终端设备通过多跳的中继设备(例如,如图4所示的RN302、RN301)接入基站的场景中,当终端设备从连接态(Connect)进入空闲态(Idle)之后,基站并不知道终端设备连接的是哪个中继设备,此时如果网络侧有业务则需要寻呼(Paging)终端设备,那么基站可以利用终端设备和基站之间已建立的多个中继设备实现对终端设备的寻呼。因此,以下将介绍基站通过多跳中继设备对终端设备的寻呼过程:
作为本申请的另一个实施例,本申请提供的方法如图16所示,还包括:
S114、基站向第一中继设备发送第四消息,该第四消息用于指示第一中继设备在寻呼时隙(Paging Occasion,PO)寻呼跟踪区(Tracking Area,TA)中的终端设备。
具体的,当网络侧(例如,核心网设备)需要对终端设备进行寻呼时,核心网设备向基站发送寻呼消息。
作为一种可能的实现方式,核心网设备会向终端设备所在的跟踪区列表(Tracking Area List,TAList)(该TAList包括TA,以及TA更新流程登记等)内的全部基站发送寻呼消息,寻呼消息中携带有终端设备的第二标识(例如,S-TMSI)以及跟踪区标识(Tracking Area Identity,TAI)等信息。
其中,终端设备的第二标识用于确定被寻呼终端设备,TAI用于确定被寻呼终端设备所在的TA。
因此,当基站接收到核心网设备发送的寻呼消息后,可以将该寻呼消息通过其下的中继设备转发给终端设备以实现对终端设备的寻呼,但是通常情况下,会存在以下三种寻呼情况:
第一种情况:每个节点(例如,基站,第一中继设备,第二中继设备)可以具有其下每一跳中继设备所在的TA。示例性的,基站可以具有第一中继设备所在的TA,第一中继设备可以具有第二中继设备所在的TA,第二中继设备可以具有终端设备所在的TA。
第二种情况:每个节点可以具有其下所有中继设备所在的TA。示例性的,基站可以具有第一中继设备、第二中继设备所在的TA,第一中继设备可以确定第二中继设备所在的TA。
第三种情况:每个节点并不具有其所包括的中继设备所在的TA。
由于上述三种情况,基站通过中继设备寻呼终端设备的过程存在差异,因此,以下将详细各种情况下基站和第一中继设备的处理过程:
第一种情况:例如,在如图4所示的架构中,基站100只知道RN301所在的TA1,RN301知道RN302所在的TA2,而基站100寻呼的终端设备200位于TA2。
则步骤S114具体可以通过以下方式实现:
S1141、基站向该基站的下一跳中继设备中的第一中继设备发送第四消息。
示例性的,基站向RN301发送第四消息。
可以理解的是,步骤S1141中第一中继设备所在的TA至少包括终端设备所在的TA,也即终端设备所在的TA位于该第一中继设备所在的TA中,因此,在S1141之前,还包括:
基站根据具有的其下一跳中每个中继设备所在的TA,从中确定至少包括终端设备所在的TA的目标TA,该目标TA为第一中继设备所在的TA。
S115、第一中继设备确定第一中继设备属于该TA,则第一中继设备在寻呼时隙PO寻呼TA中的终端设备。
具体的,该第一中继设备中具有该第一中继设备所在的TA,在第一种情况下,第一中继设备也可以存储有第一中继设备的下一跳中继设备所在的TA。
S116、第一中继设备确定第一中继设备的下一跳设备中存在候选设备属于TA,则向候选设备发送第五消息,该第五消息用于指示在PO寻呼TA中的终端设备。
可以理解的是,在步骤S116中,第一中继设备存在至少一个下一跳中继设备。
作为一种可能的实现方式:该第五消息中可以携带被寻呼终端设备的第二标识、寻呼时隙以及TAI。
作为另一种可能的实现方式:该第五消息中可以携带用于计算寻呼时隙的参数(例如,终端设备的第二标识、特定于终端设备的非连续接收周期和特定于小区的非连续接收周期)以及TAI,候选设备可以根据第五消息中携带的第二标识、特定于终端设备的非连续接收周期和特定于小区的非连续接收周期,确定寻呼PO。
具体的,基站将用于计算寻呼时隙的参数以及TAI发送给第一中继设备,第一中继设备确定第一中继设备的TA不是TAI所指示的TA,则第一中继设备在确定候选设备之后将用于计算寻呼时隙的参数以及TAI携带在第五消息中发送给候选设备。
示例性的,RN301确定RN302所在的TA即为被寻呼终端设备所在的TA,则RN301将寻呼PO以及被寻呼终端设备的第二标识发送给RN302。
或者,又一示例,RN301确定RN302所在的TA即为被寻呼终端设备所在的TA,则RN301将用于计算寻呼时隙的参数发送给RN302。
此外,由于第一中继设备也可能不具有其下一跳中继设备的TA,因此,当第一中继设备确定第一中继设备的下一跳设备中不存在候选设备属于TA(由于每一个中继设备可以确定其下一跳设备所在的TA,当其下一跳设备所在的TA与终端设备所在的TA不同时,下一跳设备与终端设备之间的中继设备的TA也可能会与终端设备所在的TA相同)或者第一中继设备不具有其下一跳中继设备的TA,则可以向第一中继设备的所有下一跳设备发送被寻呼终端设备的第二标识、寻呼时隙以及TAI(或者用于计算寻呼时隙的参数),以由第一中继设备的下一跳中继设备继续确定转发对终端设备的寻呼消息,直到第一中继设备与终端设备之间的所有中继设备确定被寻呼终端设备所在的TA不属于每个中继设备的TA,则第一中继设备可以向基站返回寻呼失败等消息,以便基站重新发起对终端设备的寻呼。
可选的,在本申请的步骤S115之前,本申请提供的方法还包括:
S117、第一中继设备确定寻呼时隙。
由于在实际过程中,基站向第一中继设备发送的第四消息中可能携带寻呼时隙,也可能携带用于计算寻呼时隙的参数,第四消息的内容不同,导致第一中继设备确定寻呼时隙的方式存在差异,因此,本申请现结合不同的情况,详细介绍步骤S117具体实现过程:
一方面,在基站向第一中继设备发送的第四消息中携带寻呼PO时,步骤S117具体可以通过以下方式实现:
S1171、第一中继设备从第四消息中确定寻呼PO。
具体的,第四消息中携带寻呼PO、TAI以及被寻呼终端设备的第二标识。
另一方面,在基站向第一中继设备发送的第四消息中携带用于第一中继设备确定寻呼时隙的参数时,例如,第四消息中包括第二标识(例如,临时移动用户识别码(S-Temporary Mobile Subscriber Identity,S-TMSI),或者国际移动用户识别码(International Mobile Subscriber Identity,IMSI))、特定于(specific)终端设备的非连续接收(Discontinuous Reception,DRX)非连续接收)周期和特定于小区的非连续接收周期,其中,第二标识用于指示寻呼终端设备时终端设备的标识,本申请提供的步骤S117具体可以通过如下方式实现:
S1172、第一中继设备根据第二标识、特定于终端设备的非连续接收周期和特定于小区的非连续接收周期,确定寻呼PO。
可以理解的是,本申请中仅是以第一中继设备为例介绍第一中继设备如何确定寻呼时隙的方式,在实际过程中,通常情况下第一中继设备确定被寻呼第二标识所在的TA和第一中继设备所在的TA不同时,第一中继设备通常会向其下一跳中继设备(第二中继设备)发送第五消息,此时,第五消息中可以直接携带寻呼PO,也可以携带第二标识、特定于终端设备的非连续接收周期和特定于小区的非连续接收(Cell Specific DRX)周期,以便第二 中继设备确定寻呼时隙,具体的确定寻呼PO的方式参见第一中继设备,本申请在此不再赘述。
此外,第二中继设备在确定其所在的TA与第二标识所在的TA不同时,其转发对第二标识的寻呼消息的过程也可以参见第一中继设备,本申请对此不进行限定。
第二种情况:例如,在如图4所示的架构中,基站100知道RN301所在的TA1,以及RN302所在的TA2,基站100寻呼的终端设备200位于TA2。
作为本申请的另一个实施例,本申请提供的方法,还包括:
S118、基站向第一中继设备发送第四消息,该第四消息包括寻呼PO、终端设备的第二标识以及第三指示信息,第三指示信息用于指示第一中继设备将寻呼PO以及终端设备的第二标识发送给第三中继设备。
具体的,第三指示信息中还可以携带第三中继设备的标识或者第三中继设备到基站的跳数中的至少一项,第三中继设备的标识具体可以参见上述实施例中的描述,本申请对此不限定。
可选的,该第三指示信息可以为第三中继设备的标识,或第三中继设备到基站的跳数,或者,第三中继设备到基站的跳数和第三中继设备的标识,其中,第三中继设备的标识用于识别第三中继设备。即在此场景下:所述第三中继设备的标识在所属基站下是唯一的,也就是说如果第三中继设备到基站之间包括很多中继设备,那么所述中继设备都可以唯一识别所述第三中继设备的标识。
可选的,所述第三中继设备的标识可以是一组中继设备标识列表,具体的,如果第三中继设备到基站之间包括很多中继设备,那么所述第三指示信息就是中间所有的中继设备的标识列表,或跳数列表,或者中继设备的标识列表和跳数列表。例如,第三中继设备为RN3为例,所述第三中继设备到基站之间具有RN2和RN1两个中继设备,那么第三指示信息就是为一个标识列表,包括:RN1的标识、RN2的标识、RN3的标识,或者,第三指示信息为一个标识列表和跳数列表,包括:RN1的标识(1跳)、RN2的标识(2跳)、RN3的标识(3跳),其中RN1的标识为可选。
需要说明的是,本实施例是以目标设备为第三中继设备为例来介绍的,如果目标设备为终端设备,则所述第三指示信息包括终端设备的标识(例如,可以为第二标识或第三标识)、终端设备和基站之间所有中继设备的标识列表和跳数列表中的至少一项。
可选的,在L2架构下,本申请中的第三指示信息可以携带在适配层、RLC层、MAC层以及PHY层的至少一层中;对于L2和L3混合架构,所述第三指示信息可以携带在RRC层、PDCP层、适配层、RLC层、MAC层以及PHY层的至少一层中,其中对于混合协议栈架构中,如果所述第三指示信息携带在适配层中,那么混合协议栈架构中的控制面架构中也可以增加适配层,类似L2架构的控制面,如PDCP层下面增加适配层。
S119、第一中继设备接收基站发送的第四消息。
S120、第一中继设备根据第三指示信息,向第三中继设备发送寻呼PO以及终端设备的第二标识。
作为一种实现方式,本申请中的步骤S120可以通过以下方式实现:第一中继设备确定第三指示信息所指示的第三中继设备不是第一中继设备,则第一中继设备向第三中继设备发送寻呼PO以及终端设备的第二标识;此外,当第一中继设备确定第三中 继设备不是其下一跳中继设备时,第一中继设备可以通过第三中继设备与第一中继设备之间的中继设备将向第三中继设备发送寻呼PO以及终端设备的第二标识转发给第三中继设备,此时第一中继设备还需要向第三中继设备与第一中继设备之间的中继设备发送第三中继设备的标识。
S121、第三中继设备在寻呼PO寻呼终端设备的第二标识所指示的终端设备。
具体的,上述实施例中寻呼时隙PO,TAI,中继设备的标识,终端设备的第二标识,特定于终端设备的非连续接收周期和特定于小区的非连续接收周期中的至少一项可以由基站通过第一中继设备与第三中继设备之间的SRB传输或者DRB传输,或者新的SRB和DRB中传输,本申请实施例不限定。
可选的,当基站通过第一中继设备与第三中继设备之间的SRB(也可以为DRB)传输时,对于L2架构,适配层中增加PO、TAI、RN标识、终端设备的第二标识、特定于终端设备的非连续接收周期和特定于小区的非连续接收周期中的至少一项。
对于混合协议栈架构下,适配层或者RRC层或者PDCP层增加PO、TAI、RN标识、终端设备的第二标识、特定于终端设备的非连续接收周期和特定于小区的非连续接收周期中的至少一项。其中,在混合协议栈架构下,如果某一个参数通过适配层携带,那么在混合协议栈架构中的控制面架构中增加适配层,类似L2架构的控制面,如PDCP层下面增加适配层。
在第三种情况下:与第一种情况的区别在于:基站向其所有的下一跳中继设备均发送第四消息,例如,在如图6所示的架构中,基站向RN301和RN302均发送第四消息,那么此时步骤S1141中的第一中继设备为基站具有的下一跳中继设备中的任意一个,因此,第一中继设备对终端设备的寻呼可以参见上述第一种情况,本申请在此不再赘述。
可以理解的是,当基站不知道其下一跳中继设备中每个中继设备所在的TA时,基站的下一跳中继设备(例如,第一中继设备)可以知道该下一跳中继设备的下一跳的TA(例如,第一中继设备知道第二中继设备所在的TA),在这种情况下,第一中继设备可以采用PO、终端设备的第二标识、TAI的方式通知下一跳中继设备对终端设备进行寻呼,也可以采用上述S1141中的方式通知下一跳中继设备对终端设备进行寻呼。
此外,基站的下一跳中继设备(例如,第一中继设备)也可以不知道该下一跳中继设备的下一跳的TA(例如,第一中继设备不知道第二中继设备所在的TA),那么第一中继设备可以向其所有的下一跳中继设备发送用于指示在寻呼PO寻呼TA中的终端设备的方式通知其所有的下一跳中继设备对终端设备进行寻呼。
需要说明的是,在L2架构下,由于第一中继设备作为Relay通过Un接口连接基站时,没有RRC层与PDCP层,因此,在L2架构下,第一中继设备只能接收并转发基站发送的针对终端设备的寻呼消息,具体的,针对终端设备的寻呼时隙、第三中继设备的标识以及TAI均可以携带在基站与第一中继设备对等的协议栈的适配层中,并通过基站与第一中继设备之间的SRB或者DRB传输给第一中继设备。当第一中继设备将寻呼时隙PO和TAI和第三中继设备的标识中的至少一项(或被寻呼终端设备的第二标识、终端设备的第二标识、特定于终端设备的第二标识的非连续接收周期和特 定于小区的非连续接收周期、TAI)转发给其下一跳中继设备时,第一中继设备可以通过与其下一跳中继设备之间的SRB或者DRB传输该寻呼时隙PO和TAI和第三中继设备的标识中的至少一项(或被寻呼终端设备的第二标识、终端设备的第二标识、特定于终端设备的非连续接收周期和特定于小区的非连续接收周期、TAI),并在与第下一跳设备对等的协议栈的适配层中携带寻呼时隙PO和TAI和第三中继设备的标识中的至少一项(或被寻呼终端设备的第二标识、终端设备的第二标识、特定于终端设备的非连续接收周期和特定于小区的非连续接收周期、TAI)。
还需要说明的是,在混合协议栈架构下,由于第一中继设备作为Relay通过Un接口连接基站时具有RRC层与PDCP层,因此与L2架构不同的是,当寻呼消息在基站与中继设备之间传输的时候,终端设备的寻呼时隙、第三中继设备的标识(或被寻呼终端设备的第二标识、终端设备的第二标识、特定于终端设备的非连续接收周期和特定于小区的非连续接收周期、TAI)可以携带在基站与第一中继设备对等的协议栈的适配层中,也可以携带在基站与第一中继设备对等的RRC协议层或者PDCP协议层中,如携带在RRC消息中,并通过基站与第一中继设备之间的SRB或者DRB传输给第一中继设备。
还需要说明的是,如果所述寻呼消息是通过SRB传输时(如RRC消息),并且所述系统信息也是通过SRB传输时,再或者寻呼消息和系统信息是通过同一个DRB传输时,那么对于L2架构,基站需要在适配层中需要增加一个指示,用于指示所述SRB或者DRB是用于传输寻呼信息还是系统信息;对于混合协议栈架构,基站可以在适配层,PDCP层或者RRC层的至少一层中增加一个指示,用于指示所述SRB或者DRB是用于传输寻呼信息还是系统信息。
需要说明的是:步骤S114至S121介绍了基站如何通过基站和终端设备之间的多跳中继设备对终端设备的寻呼过程,在实际过程中该步骤S114至S121可以单独执行,也可以在步骤S101至S104之后实施(即步骤S101至S104和S114至S121可以作为一个实施例),或者在S101至S113之后实施(即步骤S101至S113和S114至S121可以作为一个实施例),或者在单独实施完S105至S110之后再实施(即步骤S105至S110和S114至S121可以作为一个实施例),也可以在单独执行完S111至S113之后再实施(即步骤S111至S113和S114至S121可以作为一个实施例),本申请仅以步骤S114至S121基于步骤S101至S113之后执行为例进行说明(如图16所示),在实际过程中,当基站在多跳中继场景下基于多跳中继设备对终端设备的寻呼过程单独实施时,该终端设备以及终端设备和基站之间的多个中继设备已采用如S101至S104的方式通过第一中继设备接入基站或者采用其他的方式通过第一中继设备接入基站中,在基站通过多跳中继设备寻呼终端设备的场景下,本申请对终端设备以及终端设备和基站之间的多个中继设备如何接入基站的过程不进行限定。
在实际过程中,第一中继设备与基站、第一中继设备与第二中继设备、第二中继设备与终端设备之间可能存在多个无线承载,例如,SRB或者DRB。
如图17所示,图17中以无线承载为DRB为例,示例性的,RN1与基站之间的DRB包括DRB1、DRB2以及DRB3,RN1与RN2之间的DRB包括DRB1、DRB2以及DRB3。因此,在下行传输(即基站向终端设备发送的数据或者信息)过程中,基 站在向终端设备发送信令或者业务数据时,也需要根据从NG处获取的信息将其映射在指定的下行无线承载(即基站向终端设备或者其下一跳中继设备发送信令或者数据时的无线承载,或者中继设备向中继设备的下一跳中继设备发送信令或者数据时的无线承载)上,此外,各个中继设备在转发基站的数据或者信令(例如,RRC消息、寻呼消息)到终端设备时,也需要确定将数据或信令映射在哪个下行无线承载上,在上行传输(即终端设备向基站发送的数据或者信令)过程中,终端设备也需要确定将数据或者信令映射在哪个上行无线承载(即终端设备向基站发送信令或者数据时的无线承载)上,各个中继设备在转发终端设备的数据或者信令到基站的过程中也需要确定将数据或者信令映射在哪个上行无线承载上。因此,作为本申请提供的一种实现方式,本申请提供的方法还包括:
S122、第一中继设备确定第一中继设备与基站之间的无线承载和第一中继设备与第二中继设备之间的无线承载具有的关联关系,第一中继设备与第二中继设备之间无线承载与业务信息具有的关联关系,和第一中继设备与基站之间无线承载与业务信息具有的关联关系中的至少一个关联关系,至少一个关联关系用于第一中继设备确定传输目标数据包的指定无线承载。
其中,该至少一个关联关系可以由基站生成之后发送给第一中继设备,或者至少一个关联关系由第一中继设备的上一跳中继设备生成之后发送给第一中继设备。
作为一种可能的实现方式,如果至少一个关联关系是由基站生成的,那么关联关系可以直接通过基站的RRC消息发送给第一中继设备。
可选的,所述RRC消息中包括一个第八指示信息,该第八指示信息中包括第一中继设备的标识和第一中继设备到基站的跳数中至少一项,该第八指示信息用于指示所述关联关系是用于第一中继设备的。
可选的,该第八指示信息可以为第一中继设备的标识,或第一中继设备到基站的跳数,或者,第一中继设备到基站的跳数和第一中继设备的标识,其中,第一中继设备的标识用于识别第一中继设备。即,在此场景下,所述第一中继设备的标识在所属基站下是唯一的,也就是说如果第一中继设备到基站之间包括很多中继设备,那么所述中继设备都可以唯一识别所述第一中继设备的标识。
可选的,该第八指示信息中可以是一组中继设备标识列表,具体的,如果第一中继设备到基站之间包括很多中继设备,那么所述第八指示信息就是中间所有的中继设备的标识列表,或跳数列表,或者中继设备的标识列表和跳数列表。例如,第一中继设备为RN3为例,所述第一中继设备到基站之间具有RN2和RN1两个中继设备,那么第八指示信息就是为一个标识列表,包括:RN1的标识、RN2的标识、RN3的标识,或者,第八指示信息为一个标识列表和跳数列表,包括:RN1的标识(1跳)、RN2的标识(2跳)、RN3的标识(3跳),其中RN1的标识为可选。
作为另一种可能的实现方式,如果至少一个关联关系是由第一中继设备的上一跳中继设备生成(此种情况适用于第一中继设备的上一跳不是基站,而是中继设备的场景),那么对于混合协议栈架构的情况下,该关联关系可以直接由第一中继设备的上一跳中继设备通过RRC消息发送给第一中继设备;对于L2架构的情况下,第一中继设备的上一跳中继设备可以把所述至少一个关联关系添加在适配层中发送给第一中继 设备,或者,所述第一中继设备的上一跳中继设备可以先把所述至少一个关联关系发送给基站,由基站通过RRC消息发送给所述第一中继设备的上一跳中继设备,并由第一中继设备的上一跳中继设备转发给第一中继设备,可选的,所述RRC消息中包括一个第八指示信息,该第八指示信息中包括第一中继设备的标识或者第一中继设备到基站的跳数中的至少一项,该第八指示信息用于指示关联关系是用于第一中继设备的;例如,当第一中继设备不是基站的下一跳中继设备时,例如,第一中继设备为图17中的RN3,则该第一中继设备中的至少一个关联关系可以由RN2生成。
可选的,在L2架构下,本申请中的第八指示信息可以携带在适配层、RLC层、MAC层以及PHY层的至少一层中。对于混合协议栈架构,所述第八指示信息可以携带在RRC层、PDCP层、适配层、RLC层、MAC层以及PHY层的至少一层中,其中对于混合协议栈架构中,如果第八指示信息携带在适配层中,那么可以在混合协议栈架构中的控制面架构中增加适配层,例如,可以参考L2架构的控制面,在PDCP层下面增加适配层。
示例性的,如图17所示,RN1确定RN1与基站之间的DRB1与RN1与RN2之间的DRB2之间具有的关联关系。
例如,以下行数据传输为例:当RN1在RN1与基站之间的DRB1上接收到基站发送的下行数据时,RN1便可以根据该关联关系,从RN1与RN2之间具有的多个DRB中选择DRB2用于传输基站发送的下行数据。可以理解的是,本申请在此仅以无线承载为DRB为例,在实际过程中,该无线承载还可以为SRB,只不过SRB用于传输控制信息或者信令,此外,RN2和RN3如何选择DRB传输数据的过程均可以参考上述RN1选择DRB的过程,本申请在此不再赘述。
具体的,对于上行数据传输而言,终端设备如何选择DRB将上行数据传输至RN3、RN3如何选择DRB将上行数据传输至RN2,以及RN如何选择DRB传输上行数据至RN1,以及RN1如何选择DRB传输数据到基站的过程均可以参考上述RN1在下行数据传输时如何选择DRB的过程,本申请在此不再赘述。
可以理解的是,本申请中上行指终端设备向基站发送的数据包或者信令,下行指基站向终端设备发送的数据包或者信令。
现结合下行数据包传输详细介绍核心网向终端设备传输的下行数据包通过各个中继设备的数据承载映射的数据传输过程:
如图17所示,核心网设备将终端设备业务通过每个终端设备的一个session的GTP隧道从新一代核心网(New Generation Core,NGC)发送到基站;基站从NG接口(基站与NGC之间的接口)的GTP隧道中提取终端设备的业务,并根据NG接口GTP隧道头字段中携带的终端设备的QoS流标识(QoS flow ID),获知传输的终端设备业务类型。在如图19所示的协议栈架构中,基站将终端设备业务经过SDAP层、PDCP层和Adaptation层处理后,即基站根据终端设备业务的session ID或Qos flow ID与无线承载的标识之间的关联关系,基站将终端设备业务映射到基站与RN1之间的多个DRB中与终端设备业务关联的DRB ID所指示的DRB上传输。
具体的,基站把DRB ID添加到适配层中,可选的,基站也可以把session ID、Qos flow ID以及具体的服务质量(Quality of Service,Qos)信息、服务质量等级标识(QoS Classification Identifier,QCI)添加到适配层中,RN1从基站处收到终端设备的下行数据包 之后,解析适配层,读取出相关终端设备业务信息。
需要注意的是,如果上行数据包传输采用显示配置方式,则基站需要将终端设备业务信息(例如,session ID、Qos flow ID)和无线承载(例如,Qos flow ID和DRB ID之间的关联关系)的关联关系发送给下一跳中继设备,例如RN1以及每一跳中继设备需要将终端设备业务信息和无线承载之间的关联关系发送给各自的下一跳中继设备。关联关系可以携带在基站与RN1之间的RRC消息中。
具体的,RN1从适配层中读取出终端设备的业务信息以及终端设备标识,并根据业务信息中携带的终端设备的Qos flow ID以及session ID标识,获知传输的终端设备业务类型。
本申请中中继设备可以具有决策无线承载映射关系的能力,也可以不具有决策无线承载映射关系的能力,因此,一方面,中继设备不具有决策无线承载映射关系,那么RN1在获取到终端设备的业务信息之后,根据Qos信息将Qos flow映射到RN1与RN2之间的第一DRB上,其中,第一DRB为RN1和RN2之间的多个DRB中的任意一个。
需要说明的是,当中继设备可以自己决策承载映射关系时,RN1仍然可以根据基站配置的至少一个关联关系确定第一DRB,此时,第一DRB由RN1接收下行数据包的数据无线承载的标识和基站配置的至少一个关联关系确定,例如,RN1在基站和RN1之间的DRB1上接收下行数据包,而基站和RN1之间的DRB1与RN1与RN2之间的DRB2之间具有关联关系,那么RN1所确定第一DRB可以为RN1与RN2之间的DRB2。
另一方面,当中继设备不具有决策承载映射关系时,RN1可以根据基站与RN1的协议栈对等的适配层中携带的上一跳传输时所使用的无线承载的标识信息(例如,DRB ID),然后RN1从RN1和RN2之间的多个DRB中随机选择一个DRB,将终端设备的业务映射到随机选择的DRB上并传输给RN2。
此外,又一方面,当中继设备不具有决策承载映射关系时,若该基站与RN1的协议栈对等的适配层中携带的无线承载的标识信息指示的是基站和RN1之间的DRB的标识,那么RN1可以结合基站配置的关联关系,确定DRB映射到RN1和RN2之间的哪个DRB上,即确定与DRB的标识所指示的DRB具有关联关系的位于RN1和RN2之间的DRB。
具体的,对于下行数据包传输,RN3从适配层中提取出终端设备业务,并根据适配层中携带的终端设备的Qos flow ID、session ID标识以及终端设备的标识,获知传输的终端设备业务类型。在中继设备可以具有决策映射关系的情况下,RN3根据Qos信息把Qos flow映射到RN3与终端设备之间的任意一个DRB上。
经过上述步骤,RN1将下行数据包传输至RN2处,而RN2和RN3之间无线承载的映射过程与RN1和RN2之间无线承载的映射过程,以及RN2和RN3之间无线承载的映射过程类似,具体可以参考RN1和RN2之间无线承载的映射过程,本申请在此不再赘述。
可以理解的是,通过上述类似的步骤RN2将下行数据包传输至RN3处,在中继设备不决定映射关系的前提下,则RN3根据适配层中携带的DRB ID,将下行数据包映射到RN3与终端设备之间由DRB ID信息指示的DRB上,具体的,可以RN3可以任意映射,也可以根据基站或者RN3的上一跳中继设备配置的关联关系来映射。
需要注意的是,如果上行采用显示配置方式,那么每个中继设备的上一跳中继设备还需要将终端设备业务信息与无线承载之间的映射关系发送给各自的下一跳中继设备,例如,对于终端设备而言,RN3需要将Qos flow ID和DRB ID的映射关系发送给终端设备。映射关 系可以是RN3生成后通知基站,然后由基站通过RRC消息发送至终端设备(具体RRC消息发送的过程参见前面描述的信令转发方式,即L2架构信令面以及L2和L3混合协议栈架构下控制面的信令转发方式,此处不再赘述),或者映射关系直接是基站提前通过RRC消息配置到终端设备的,在此不做限定。
以下将介绍L2架构下上行数据包(即终端设备发送给基站的数据包)从终端设备到基站的承载映射过程:
方案一:以显式配置方式介绍Uu接口(终端设备到RN3之间的接口)与RN3和RN2之间的接口的映射,也即终端设备与RN3之间的数据无线承载与RN3和RN2之间的数据无线承载映射:
终端设备根据基站或者RN3配置的终端设备业务信息和数据无线承载信息(例如,可以为Qos flow ID和DRB ID)之间的映射关系,将终端设备业务映射到终端设备和RN3之间由DRB ID所确定的DRB上发送给RN3。
RN3在接收到终端设备发送的业务之后,将该业务映射在RN3与RN2之间的第一DRB上传输给RN2。
具体的,RN3确定第一DRB的过程如下:
当中继设备可以决定映射关系时:
一方面,RN3根据Uu接口的DRB对应逻辑信道优先级(logical channel priority)选择RN3与RN2之间的第一DRB映射,并将接收到终端设备发送的上行数据包映射到第一DRB上。
另一方面,RN3根据终端设备的业务信息,如Qos参数中的Qos flow ID来选择RN3与RN2之间的第一DRB映射,Qos flow ID需要在终端设备发送上行数据包的时候,在PDCP层下标识Qos flow ID的信息,具体的终端设备可以在PDCP层下增加一个适配层,适配层中增加终端设备的业务信息,即Qos flow ID信息,那么RN3与终端设备对等层也需要增加一个适配层用于解析Qos flow ID信息。
当中继设备具有决策映射关系的能力时:即中继设备的无线承载映射关系可以由基站或者上一跳中继设备以及运维管理和维护系统(Operation,Administration and Maintenance,OAM)配置:
一方面,RN3根据基站为RN3配置的DRB映射关系(该映射关系为终端设备和RN3之间的DRB与RN3和RN2之间的DRB)从RN3与RN2之间的多个DRB中选择一个DRB作为第一DRB。
另一方面,RN3根据基站为RN3配置的业务信息与DRB的映射关系(即终端设备和RN3之间的Qos flow与RN3和RN2之间的DRB之间的映射关系),以及终端设备的业务,从RN3与RN2之间的多个DRB中选择一个DRB作为第一DRB。
在此,RN3首先要获取终端设备的业务信息,例如:Qos flow ID,Qos flow ID,以及在终端设备发送上行数据包的时候,在PDCP层添加Qos flow ID的信息,具体的终端设备可以在PDCP层下增加一个适配层,适配层中增加终端设备的业务信息,例如Qos flow ID,那么RN3与终端设备对等层也增加一个适配层用于解析Qos flow ID信息。
又一方面,OAM为RN3配置映射关系的具体过程可以参考基站为RN3配置关联关系的过程,本申请在此不再赘述。
需要说明的是,RN3和RN2之间的无线承载映射过程与RN2和RN1之间的无线承载映射过程,或,RN2和RN1之间的无线承载映射过程与RN1和基站之间的无线承载映射过程,均可以参考RN3和RN2之间的无线承载映射过程,本申请在此不再赘述。
方案二:以隐式配置(reflective mapping)方式介绍Uu接口与RN3和RN2之间的无线承载映射过程,也即终端设备与RN3之间的数据无线承载与RN3和RN2之间的数据无线承载映射:当终端设备通过中继设备接收到基站发送的下行数据包时,若终端设备确定在第二DRB(RN3与终端设备之间的DRB)上接收到下行数据包,那么,终端设备在传输上行数据包的时候将所述上行数据包映射在第二DRB上并传输给RN3。在这种实施方式下,可选的,还可以要求基站向终端设备发送下行数据包时,在SDAP层增加Qos flow ID标识,以便终端设备收到下行数据包,解析出终端设备的Qos信息,从而在进行上行传输时确定用于进行上行传输的DRB承载。
可以理解的是,在上行传输过程中,各个中继设备在转发终端设备的业务时,也可以基于基站向终端设备进行下行传输时的DRB。即一个中继设备的上一跳中继设备向该中继设备进行下行传输时采用的DRB,与该中继设备向其上一跳中继设备进行上行传输时所采用的DRB相同。
示例性的,基站向RN1进行下行传输时采用DRB1承载数据,那么RN1与基站进行上行传输时,依然可以采用DRB1承载向基站发送的上行数据,RN1向RN2进行下行传输时采用DRB2承载数据,那么RN2与RN1进行上行传输时,依然可以采用DRB3承载向RN1发送的上行数据。
需要说明的是,上述以中继设备之间的无线承载、基站与中继设备的无线承载以及终端设备和上一跳中继设备之间的无线承载为DRB为例介绍无线承载映射关系,在实际过程中,中继设备之间的无线承载、基站与中继设备的无线承载以及终端设备和上一跳中继设备之间的无线承载还可以为SRB,该中继设备之间的SRB映射、基站与中继设备的SRB映射以及终端设备和上一跳中继设备之间的SRB映射过程可以参见DRB的映射过程,只是在SRB映射时,隐式配置过程中,将根据基站向中继设备发送下行信息或者下行信令的SRB确定中继设备向基站发送上行信息或者上行信令的SRB。
下述将介绍终端设备通过多跳中继设备与基站进行通信的过程中信令是如何传输的,具体的,终端设备与基站之间的各种传输消息(例如,RRC消息)如何通过各个中继设备依次传输至基站或者基站向终端设备发送的寻呼消息、系统信息如何通过各个中继设备依次传输至终端设备,其中,RRC消息可以是RRC连接建立消息,也可以是RRC连接重配置消息,或者是其他现有的RRC消息,本申请对此不进行限定。
以下以终端设备发送给基站或者基站发送给终端设备的RRC消息是承载在RN1、RN2以及RN3之间的SRB上传输为例:
下行信令(基站向终端设备发送的信令)传输过程,本申请以下行信令为下行RRC消息为例,可以理解的是,上述实施例中所涉及到的基站向终端设备发送的各种消息,例如,系统信息、寻呼消息等的传输过程均可以作为下行信令,其传输过程与下行RRC消息的传输过程类似,本申请后续不再赘述:
如图18所示,图18以L2架构下控制面的下行RRC消息的传输为例,如图18中标识为4的线条。具体的,基站的下行RRC消息发送到PDCP层之后,生成PDCP PDU,然后在适配 层增加适配层报头,该适配层报头中增加终端设备的标识信息(如,终端设备ID、终端设备CRNTI等,或者其他可以识别终端设备的标识,本申请实施例在此不限定)、信令无线承载信息(例如,SRB0或者SRB1)以及指示信息(如中继设备的标识或者中继设备的标识列表或者中继设备到基站的跳数等,或者其他可以识别中继设备的标识信息,本申请实施例在此不限定),分别通过基站的RLC层、MAC层、PHY层的处理之后得到下行信令帧,基站将得到的下行信令帧传递到RN1与基站对等的协议栈的PHY层。RN1收到下行信令帧后分别通过RN1与基站对应的PHY层、MAC层、RLC层、适配层的处理之后,从适配层中识别出相关信息(如前述指示信息、无线承载信息等),然后根据指示信息识别出所述信令消息的下一跳转发节点,然后根据上述信令无线承载信息,将下行信令帧映射到RN1与RN2之间的SRB(例如,上述信令无线承载信息指示的是SRB1,下述均以信令无线承载信息指示的是SRB1为例介绍)对应的适配层或者RLC层的实体上,分别通过RN1与RN2对等的适配层、RLC层、MAC层、PHY层的处理之后的下行信令帧三传递给RN2的PHY层。RN2将经过RN1处理之后下行信令帧后分别通过RN2与RN1对等的PHY层、MAC层、RLC层、适配层的处理后,从适配层中识别出相关信息(如指示信息、承载信息等),然后根据指示信息识别出所述信令消息的下一跳转发节点,然后再将下行信令帧映射到RN2到RN3之间的SRB1对应的适配层或者RLC层的实体上,分别通过RN2与RN3对等的适配层、RLC层、MAC层、PHY层的处理之后的下行信令帧传递给RN3的PHY层。RN3收到RN2发送的下行信令帧后分别通过RN3与RN2对等的PHY层、MAC层、RLC层、适配层的处理后,从适配层中的指示信息中识别出所述信令消息的目标节点是发送给终端设备的,即将下行信令帧映射到RN3到终端设备之间的SRB1对应的RLC层的实体上,分别通过RN3与终端设备对等的RLC层、MAC层、PHY层的处理之后的下行信令帧传递给终端设备的PHY层。终端设备收到RN3发送的下行信令帧后分别通过PHY层、MAC层、RLC层处理后,然后把对应的下行信令帧(下行RRC消息)发送给终端设备对应的PDCP实体,继而发送给对应的RRC实体,随后终端设备的RRC实体完成RRC配置。
可选的,如果RRC消息是经过PDCP加密过的RRC消息,则对应的信令帧(RRC连接请求消息)发送给终端设备对应的PDCP实体之后,PDCP实体首先应用终端设备对应的解密密钥解析PDCP PDU,然后再发送给对应的RRC实体。
上行信令(即终端设备向基站发送的信令)传输过程,仍以上行RRC消息为例,即如图18所示的标识为4的线条的逆过程:
终端设备的上行RRC消息送到PDCP层之后,生成PDCP PDU,然后分别通过终端设备的RLC层、MAC层、PHY层的处理之后得到上行信令帧,终端设备将上行信令帧传递到RN3的PHY层;RN3收到上行信令帧后分别通过RN3与终端设备对等的PHY层、MAC层、RLC层的处理后,增加Adaptation报头,Adaptation报头中增加终端设备的标识信息、指示信息(如中继设备的标识或者中继设备的标识列表、跳数、基站的标识等,所述Adaptation报头中也可以不具有指示信息,如果Adaptation报头中不具有指示信息,则收到上行信令的中继设备将上行RRC消息转发至基站)、SRB标识(SRB0或者SRB1,此处以SRB1为例介绍,所述SRB标识是可选,如果没有指示SRB,则后面跳数随机选择SRB或者直接选择SRB1,本申请实施例不再赘述)以及RN3的标识信息,然后再映射到RN3到RN2之间的SRB1对应的适配层或者RLC层的实体上,分别通过RN3与RN2对等的RLC层、MAC层、PHY层的处 理之后的上行信令帧传递给RN2的PHY层;RN2收到上行信令帧后分别通过RN2与RN3对等的PHY层、MAC层、RLC层、适配层的处理后,通过识别适配层中的终端设备标识与SRB标识,然后再映射到RN2到RN1之间的SRB1对应的适配层或者RLC层的实体上,分别通过RN2与RN1对等的RLC层、MAC层、PHY层的处理之后的上行信令帧传递给RN1节点的PHY层;RN1节点收到上行信令帧后分别通过RN1与RN2对等的PHY层、MAC层、RLC层、适配层的处理后,通过识别适配层中的终端设备标识与SRB标识,映射到RN1到基站之间的SRB1对应的适配层或者RLC层的实体上,分别通过RN1与基站对等的RLC层、MAC层、PHY层的处理之后的上行信令帧传递给基站的PHY层。
基站收到上行信令帧后分别通过PHY层、MAC层、RLC层、适配层的处理后,通过读取适配层以识别出终端设备的标识(终端设备ID或者终端设备的CRNTI),然后把对应的上行信令帧发送给对应的PDCP实体,继而发送给对应的RRC实体。可选的,如果RRC消息是RRC连接重配置完成消息等其他经过PDCP加密过的RRC消息,则对应的数据帧发送给终端设备对应的PDCP实体之后,PDCP实体首先应用终端设备对应的解密密钥解析PDCP PDU,然后再发送给对应的RRC实体。
此外,图18所示的上行RRC消息传输过程还可以在RN3与RN2、RN2与RN1、RN1与基站之间的DRB上传输,与中继设备之间的无线承载、基站与中继设备的无线承载以及终端设备和上一跳中继设备之间的无线承载为DRB为例介绍无线承载映射关系的区别在于:RRC消息是通过映射到RN2与RN1、RN1与基站之间的DRB传输,即作为RRC消息作为数据的形式来传输,类似下述用户面的数据包传输过程,此处不再赘述。
具体的,当RN1、RN2以及RN3作为终端设备接入时,基站向RN1、RN2以及RN3发送的下行RRC消息的传输过程与基站向终端设备发送下行RRC消息的过程类似,只是转发跳数不同,具体可以参见上述描述的基站向终端设备发送下行RRC消息的过程,本申请在此不再赘述。示例性的,在图18中标识为2的线条表示基站与RN2之间的RRC消息传输过程,标识为1的线条表示基站与RN1之间的RRC消息传输过程;标识为3的线条表示基站与RN3之间的RRC消息的传输过程。
具体的,当RN1、RN2以及RN3作为终端设备接入时,各个RN向基站发送上行RRC消息的过程也可以参见上述终端设备向基站发送上行RRC消息的过程,只是转发的跳数不同,本申请在此不再赘述。示例性的,RN3向基站发送上行RRC消息的过程可以为如图18标识的线条3的逆过程,RN2向基站发送上行RRC消息的过程可以为如图18标识的线条2的逆过程,RN1向基站发送上行RRC消息的过程可以为如图18标识的线条1的逆过程。
以下将结合图19介绍L2协议栈的用户面架构下,终端设备与基站之间的数据通过RN3、RN2以及RN1的用户面传输过程:
对于下行数据包的传输而言:
如图19中标识为4的线条:基站的下行数据包经过SDAP层(报头中增加业务类型信息(QoS flow ID、session ID))、PDCP层的处理之后,生成PDCP PDU;然后增加适配层报头,适配层报头中增加终端设备的标识、承载信息(DRB ID),分别通过基站的RLC层、MAC层、PHY层的处理之后的数据帧传递到RN1的PHY层。
可选的,适配层也可以增加终端设备业务类型信息(QoS flow ID、session ID标识),指示信息(如中继设备的标识或者中继设备的标识列表、跳数、基站的标识等)。需要说 明的是,适配层中也可以不具有指示信息,如果适配层中不具有指示信息,这样在上行传输时,收到上行信令的中继设备默认转发至基站)。
RN1收到基站发送的数据帧后分别通过RN1与基站对等的PHY层、MAC层、RLC层、适配层的处理后,然后从适配层识别出终端设备以及业务类型和承载信息,同时根据适配层中的指示信息识别出需要转发到的下一跳中继节点,然后将该终端设备业务映射到RN1与RN2对应的DRB上传输,即映射到RN1到RN2之间的DRB对应的适配层或者RLC层的实体上,分别通过RN1与RN2对等的适配层、RLC层、MAC层、PHY层的处理之后的数据帧传递给RN2的PHY层。
RN2收到数据帧后分别通过RN2与RN1对等的PHY层、MAC层、RLC层、适配层的处理后,然后从适配层识别出终端设备以及业务类型和承载信息,同时根据适配层中的指示信息识别出需要转发到的下一跳中继节点,然后将该终端设备业务映射到RN2与RN3对应的DRB上传输,即映射到RN2到RN3之间的DRB对应的适配层或者RLC层的实体上,分别通过RN2与RN3对等的适配层、RLC层、MAC层、PHY层的处理之后的数据帧传递给RN3节点的PHY层。
RN3收到数据帧后分别通过RN3与RN2对等的PHY层、MAC层、RLC层、适配层的处理后,然后从适配层识别出终端设备以及业务类型和承载信息,同时根据适配层中的指示信息识别出目标终端设备,然后将该终端设备业务映射到RN3与终端设备对应的DRB上传输,即映射到RN3到终端设备之间的DRB对应的RLC层的实体上,分别通过RN3与终端设备对等的适配层、RLC层、MAC层、PHY层的处理之后的数据帧传递给终端设备的PHY层。
终端设备收到数据帧后分别通过PHY层、MAC层、RLC层的处理后,然后将该终端设备业务映射到终端设备对应的PDCP实体上,继而发送给对应的SDAP实体。
可选的,如果上行采用隐式配置方式,则终端设备的Uu接口与Un接口的承载映射关系,对于上行数据包的传输也采用所接收到的映射关系。否则,如果上行采用显示配置方式,则基站要在数据传输之前把终端设备的session ID、QoS flow ID和DRB的映射关系发给终端设备,终端设备按照映射关系和Qos需求进行上行数据传输的承载映射。
对于上行数据包的传输而言,即如图19所示的标识为4的线条的逆过程,具体可以参见上述下行数据包的传输的过程,本申请在此不再赘述。
与下行数据包的传输过程不同的是,终端设备的上行数据包传输过程中,当上行数据包承载映射采用中继设备确定的映射关系时,终端设备会增加一个适配层用于指示终端设备的业务信息,即终端设备的上行数据包经过SDAP、PDCP处理后,生成PDCP PDU,然后增加适配层报头,适配层报头中增加终端设备的标识信息、业务类型信息等,然后分别通过终端设备的RLC层、MAC层、PHY层处理后传递到RN3的PHY层,RN3分别通过PHY层、MAC层、RLC层以及适配层处理后,通过适配层识别出终端设备的业务信息,然后根据业务信息中的Qos flow ID映射到RN3和RN2之间对应的DRB上传输。
具体的,当RN1、RN2以及RN3作为终端设备接入时,基站向RN1、RN2以及RN3发送的下行数据包的传输过程与基站向终端设备发送下行数据包的过程类似,只是转发跳数不同,具体可以参见上述描述的基站向终端设备发送下行数据包的过程,本申请在此不再赘述。
此外,在图19中标识为2的线条表示基站与RN2之间的下行数据包传输过程,标识为1 的线条表示基站与RN1之间的下行数据包的传输过程;标识为3的线条表示基站与RN3之间的下行数据包的传输过程。
具体的,当RN1、RN2以及RN3作为终端设备接入时,各个RN向基站发送上行数据包的过程也可以参见上述终端设备向基站发送上行数据包的过程,具体的,RN3向基站发送上行数据包的过程可以为如图19标识为3的线条的逆过程,RN2向基站发送上行数据包的过程可以为如图19标识为2的线条的逆过程,RN1向基站发送上行数据包的过程可以为如图19标识为1的线条的逆过程,本申请在此不再赘述。
此外,如图20所示,图20中示出了L2和L3混合协议栈架构下,控制面的上行信令传输示意图,具体的,该控制面的上行信令传输可以参见上述图18中L2架构下的上行信令传输过程,本申请在此不再赘述,具体的,该混合协议栈架构下的下行信令传输过程可以参见上述图18中L2架构下的下行信令传输过程,本申请在此不再赘述。
如图21所示,图21示出了L2和L3混合协议栈架构下,用户面的传输过程,由于L2和L3混合协议栈架构的用户面采用L2架构的用户面,因此用户面的上行传输和下行传输均可以参见上述实施例中描述的L2架构下用户面的上行传输和下行传输的过程,本申请在此不再赘述。
需要说明的是:上述实施例介绍了多跳中继设备之间在转发基站的数据或者信令到终端设备的过程中或者中继设备之间在转发终端设备的数据或信令到基站的过程中如何选择无线承载的过程,可以理解的是,在实际过程中,该部分实施例可以单独实施,也即该部分实施例可以不基于上述步骤S101至S104之后实施或者可以不基于基站通过已接入的各个中继设备为新接入的中继设备配置资源配置信息过程之后执行,也可以不基于基站通过已接入的各个中继设备寻呼终端设备的过程之后执行,当多跳中继设备如何选择无线承载的过程单独实施时,该多个中继设备已接入基站中,可以采用如步骤S101至S104所描述的方式接入基站,也可以通过其他的方式接入基站,本申请对此不进行限定。
由于在混合协议栈架构下,即当控制面为L3的情况下,用户面是L2的情况下,控制面的信令加密是中继设备间的,而用户面的数据加密是基站和终端设备间端到端的,因此,如图22所示,RN3获取到KRN3之后,终端设备也会推演出KRN3,所使用的加密算法也可以由RN3直接决策,那么对于控制面是L3的架构,RN3和终端设备之间的控制面信令的加密直接使用KRN3即可,但对于用户面的数据加密此时基站并不知道KRN3以及RN3使用的加密算法,从而无法进行端到端的数据加密,因此,下面将介绍数据面基站如何获知端到端的加密密钥以及加密算法,因此,作为一种可能的实现方式,本申请提供的方法还包括:
S123、第一中继设备为终端设备选择加密算法。
S124、第一中继设备向基站发送第六消息以及向终端设备发送加密算法的标识,第六消息包括加密算法的标识以及终端设备的第三标识,其中,加密算法用于对基站和目标设备之间的数据加密。
其中,终端设备的第三标识可以和终端设备的第二标识为同一个标识,或者在目标设备为终端设备时,第三标识可以和第一标识相同。
具体的,第一中继设备可以从预配置的多个加密算法中为终端设备选择一个加密算法。
具体的,第六消息可以通过第一中继设备到基站之间的RRC消息发送,也可以通过其他新的消息发送,本申请不限定。
具体的,第一中继设备的加密密钥是核心网通过基站发送给第一中继设备的,在此过程中,基站可以解析获取第一中继设备的加密密钥。在基站获取到加密密钥以及加密算法之后,即可以实现对基站和终端设备之间的数据进行端到端的加密。
作为本申请另一种可能的实现方式,本申请提供的方法还包括:
S125、第一中继设备接收基站发送的第五指示信息以及加密算法,第五指示信息用于指示将加密算法的标识发送给终端设备。
具体的,所述第五指示信息与本申请其他实施例中的指示信息类似,这里不再赘述。
具体的,加密算法可以是加密算法的标识,也可以是其他可以指示加密算法的标识信息,本申请实施例不限定。
具体的,对于L2架构,所述第三指示信息可以携带在适配层、RLC层、MAC层以及PHY层的至少一层中;对于L2和L3混合架构,所述第三指示信息可以携带在RRC层、PDCP层、适配层、RLC层、MAC层以及PHY层的至少一层中,其中对于混合协议栈架构中,如果所述第三指示信息携带在适配层中,那么就意味着混合协议栈架构中的控制面架构中增加适配层,类似L2架构的控制面,如PDCP层下面增加适配层。
S126、第一中继设备根据第五指示信息,将加密算法的标识发送给终端设备,加密算法用于对基站和终端设备之间的数据加密。
具体的,第一中继设备的加密密钥是核心网通过基站发送给第一中继设备的,在此过程中,基站可以解析获取第一中继设备的加密密钥。在基站获取到加密密钥以及加密算法之后,即可以实现对基站和终端设备之间的数据进行端到端的加密。
此外,本申请提供的方法还包括:
S127、第一中继设备接收基站发送的第七消息,该第七消息包括第六指示信息以及为第二中继设备或者终端设备配置的加密密钥,第七指示信息用于指示将加密密钥发送给第二中继设备或者终端设备。
具体的,所述第五指示信息与本申请其他实施例中的指示信息类似,本申请在此不再赘述。
具体的,对于L2架构,所述第三指示信息可以携带在适配层、RLC层、MAC层以及PHY层的至少一层中;对于L2和L3混合架构,所述第三指示信息可以携带在RRC层、PDCP层、适配层、RLC层、MAC层以及PHY层的至少一层中,其中对于混合协议栈架构中,如果所述第三指示信息携带在适配层中,那么就意味着混合协议栈架构中的控制面架构中增加适配层,类似L2架构的控制面,如PDCP层下面增加适配层。
S128、第一中继设备确定第七指示信息所指示的设备不是第一中继设备时,则将加密密钥发送给第二中继设备或者终端设备。
可以理解的是,第一中继设备将加密密钥转发给第二中继设备或者终端设备时,可以通过第一中继设备与终端设备之间具有的多个中继设备来转发,也可以通过第一中继设备与第二中继设备之间具有的多个中继设备来转发,具体的转发过程可以参见上述实施例,本申请对此不进行限定。
可以理解的是,本申请仅以为终端设备选择加密算法为例,当为第一中继设备的下一跳中继设或者其他中继设备选择加密算法的实施过程同样适用于上述为终端设备选择加密算法的过程,此时,所有与终端设备相关的指示信息便用中继设备的相关指示信息替代, 本申请在此不再赘述。
需要说明的是:上述步骤S125和S126;S123和S124为第一中继设备为终端设备选择加密算法的两种不同实现方式,可以理解的是,在实际过程中,步骤S125和S126;S123和S124可以单独实施,即在单独实施S125和S126;S123和S124时可以不实施上述步骤S101至S104或者可以不基于基站通过已接入的各个中继设备为新接入的中继设备配置资源配置信息过程之后执行,也可以不基于基站通过已接入的各个中继设备寻呼终端设备的过程之后执行,或者多跳中继设备如何选择无线承载的过程的实施,在单独实施S125和S126;S123和S124时,终端设备和多个中继设备已接入基站中,可以采用如步骤S101至S104所描述的方式接入基站,也可以通过其他的方式接入基站,本申请对此不进行限定。本申请仅是以步骤S125和S126;S123和S124在上述S101-S104之后或者S101-S110之后,或者S101-S121之后实施为例进行说明,并不构成对本申请方案的限制。
需要说明的是,本申请中所涉及到的几个实施场景,例如,基站如何通过第一中继设备使得其他中继设备接入基站的场景,为接入中继设备分配第一标识以及转发RRC无线连接请求的场景,资源配置信息的场景,对终端设备寻呼的场景,无线承载的选择场景,加密过程的场景中每个实施场景均可以单独实施,当然,该多个实施场景中任意两个或两个以上的实施场景也可以组合,本申请对此不进行限定。
本申请提供的方法所适用于的场景或过程,包括但不限于以下:L2架构以及L2和L3混合协议栈架构下的Relay作为终端设备的接入基站的过程,以及Relay作为中继站点转发基站/终端设备的信令或数据过程,以及在多跳场景下的无线资源分配过程、寻呼过程等。
需要说明的是,本申请中第一指示信息、第二指示信息、以及第三指示信息等指示信息,可以通过添加在RRC信令中,由于L2架构具有适配层,因此上述各类指示信息还可以添加在适配层中,因此,当混合协议栈架构也具有适配层时,上述各类指示信息也可以添加在适配层中。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如第一设备。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明:
在采用集成的单元的情况下,图23示出了上述实施例中所涉及的第一设备的一种可能的结构示意图。第一设备包括:接收单元101和发送单元102。其中,接收单元101用于支持第一设备执行上述实施例中的步骤S103,S112,S113,S119,S127以及S129。发送单元102用于支持第一设备执行上述实施例中的步骤S104,S106,S108,S110,S116,S120, S124,S126以及S128。此外,本申请提供的第一设备还包括:分配单元103,该分配单元103用于支持第一设备执行上述实施例中的S103;处理单元,还用于根据第一指示信息确定步骤S104中的目标设备是否为第一中继设备,S115,以及确定第一中继设备的下一跳中继设备中是否存在候选设备属于TA;S117(S1171、S1172),S122,S123。和/或用于本文所描述的技术的其它过程。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用硬件实现的基础上,本申请中的接收单元101可以为第一设备的接收器,发送单元102可以为第一设备的发送器,该发送器通常可以和第一设备的接收器集成在一起用作收发器,具体的收发器还可以称为通信接口,分配单元103和处理单元104可以集成在第一设备的处理器上。
在采用集成的单元的情况下,图24示出了上述实施例中所涉及的第一设备的一种可能的逻辑结构示意图。第一设备包括:处理模块112和通信模块113。处理模块112用于对第一设备动作进行控制管理,例如,处理模块112用于支持第一设备执行上述实施例中的步骤S103,根据第一指示信息确定步骤S104中的目标设备是否为第一中继设备,S115,以及确定第一中继设备的下一跳中继设备中是否存在候选设备属于TA,S117(具体的,可以为S1171、S1172),S122,S123。通信模块113用于支持第一设备执行上述实施例中的S103,S112,S113,S119,S127,S129,S104,S106,S108,S110,S116,S120,S124,S126以及S128。和/或用于本文所描述的技术的其他由第一设备执行的过程。第一设备还可以包括存储模块111,用于存储第一设备的程序代码和数据。
其中,处理模块112可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块113可以是收发器、收发电路或通信接口等。存储模块111可以是存储器。
当处理模块112为处理器120,通信模块113为通信接口130或收发器时,存储模块111为存储器140时,本申请所涉及的第一设备可以为图25所示的设备。
其中,通信接口130、处理器120以及存储器140通过总线110相互连接;总线110可以是PCI总线或EISA总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图25中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,存储器140用于存储第一设备的程序代码和数据。通信接口130用于支持第一设备与其他设备(例如,第二中继设备或者基站或者终端设备)通信,处理器120用于支持第一设备执行存储器140中存储的程序代码和数据以实现本申请提供的一种信息传输方法。
又一方面,提供一种计算机存储介质,计算机可读存储介质中存储有指令,当其在第一设备上运行时,使得第一设备执行实施例中的步骤S103,根据第一指示信息确定步骤S104中的目标设备是否为第一中继设备,S115,以及确定第一中继设备的下一跳中继设备中是否存在候选设备属于TA、S117(具体的,可以为S1171、S1172)、S122、S123。通信模块113用于支持第一设备执行上述实施例中的S103、S112、S113、S119、S127、S129、S104、S106、S108、S110、S116、S120、S124、S126以及S128。和/或用于本文所描述的 技术的其他由第一设备执行的过程。
另一方面,提供一种包含指令的计算机程序产品,计算机程序产品中存储有指令,当其在第一设备上运行时,使得第一设备执行实施例中的步骤S103、根据第一指示信息确定步骤S104中的目标设备是否为第一中继设备、S115、以及确定第一中继设备的下一跳中继设备中是否存在候选设备属于TA、S117(具体的,可以为S1171、S1172)、S122、S123。通信模块113用于支持第一设备执行上述实施例中的S103、S112、S113、S119、S127、S129、S104、S106、S108、S110、S116、S120、S124、S126以及S128。和/或用于本文所描述的技术的其他由第一设备执行的过程。
此外,本申请实施例提供一种通信系统,包括基站、至少一个用户设备以及至少一个如图23至如图25中任一个所示的第一设备,其中,基站用于执行上述实施例中的由基站执行的步骤,例如,发送和接收第一设备以及核心网设备的相关信息的步骤,终端设备用于执行上述实施例中由终端设备所执行的步骤,例如,接收第一设备发送的信息的相关操作,第一设备用于执行上述实施例中由第一设备所执行的步骤。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本 技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (25)

  1. 一种信息传输方法,其特征在于,包括:
    第一设备接收基站发送的第一消息,所述第一消息包括第一指示信息和系统信息,所述第一指示信息用于指示所述第一设备是否广播系统信息;
    所述第一设备根据所述第一指示信息确定需要广播所述系统信息,则广播所述系统信息。
  2. 根据权利要求1所述的一种信息传输方法,其特征在于,所述方法还包括:
    在目标设备的随机接入过程中,所述第一设备为所述目标设备分配所述目标设备的第一标识,所述第一标识用于在所述目标设备的随机接入过程接入的小区中识别所述目标设备,其中,所述目标设备为接收到所述系统信息的设备;
    所述第一设备向所述基站发送所述第一标识,以及转发所述目标设备发送的第二消息,其中,所述第二消息用于请求建立所述基站和所述目标设备之间的无线资源控制RRC连接。
  3. 根据权利要求1或2所述的一种信息传输方法,其特征在于,所述方法还包括:
    所述第一设备接收所述基站发送的第三消息,所述第三消息包括资源配置信息以及第二指示信息,所述第二指示信息用于确定所述资源配置信息传输到的所述目标设备;
    所述第一设备根据所述第二指示信息确定所述目标设备不是所述第一设备,将所述资源配置信息发送给所述目标设备。
  4. 根据权利要求3所述的一种信息传输方法,其特征在于,所述资源配置信息包括第一资源配置信息和第二资源配置信息,其中,所述第一配置信息用于配置所述目标设备的分组数据汇聚层协议PDCP层和业务数据适配协议SDAP层中的至少一项;所述第二配置信息用于配置所述目标设备的无线链路控制RLC层和媒体接入控制MAC层和物理PHY层中的至少一项;其中,
    所述第一资源配置信息由所述基站生成,所述第二资源配置信息由所述基站或所述第一设备生成。
  5. 根据权利要求1-4任一项所述的一种信息传输方法,其特征在于,所述目标设备为终端设备,所述方法还包括:
    所述第一设备接收所述基站发送的第四消息,所述第四消息用于指示在寻呼时隙PO寻呼跟踪区TA中的所述终端设备;
    所述第一设备确定所述第一设备属于所述TA,则所述第一设备在所述寻呼时隙PO寻呼所述TA中的所述终端设备;或者,
    所述第一设备确定所述第一设备的下一跳设备中存在候选设备属于所述TA,则向所述候选设备发送第五消息,所述第五消息用于指示在所述PO寻呼所述TA中的所述终端设备。
  6. 根据权利要求5所述的一种信息传输方法,其特征在于,
    所述第四消息中至少携带所述寻呼PO,其中,所述第一设备在所述寻呼时隙PO寻呼所述TA中的所述终端设备之前,所述方法还包括:所述第一设备从所述第四消息中确定所述寻呼PO;或者,
    所述第四消息包括所述终端设备的第二标识、特定于所述终端设备的非连续接收周期和特定于小区的非连续接收周期,其中,所述第一设备在所述寻呼时隙PO寻呼所述TA中的所述终端设备之前,所述方法还包括:所述第一设备根据所述第二标识、所述特定于所述终端设备的非连续接收周期和特定于小区的非连续接收周期,确定所述寻呼PO。
  7. 根据权利要求1-4任一项所述的一种信息传输方法,其特征在于,所述目标设备为终端设备,所述方法还包括:
    所述第一设备接收所述基站发送的第四消息,所述第四消息包括寻呼PO、所述终端设备的第二标识以及第三指示信息,所述第三指示信息用于指示将所述寻呼PO以及所述终端设备的第二标识发送给所述目标设备;
    所述第一设备根据所述第三指示信息,向所述目标设备发送所述寻呼PO以及所述终端设备的第二标识。
  8. 根据权利要求1-7任一项所述的一种信息传输方法,其特征在于,所述第一设备和所述基站之间的信令无线承载SRB中携带第四指示信息,所述第四指示信息用于指示当前传输时间单元上在所述SRB上传输的是系统信息或第四消息。
  9. 根据权利要求1-8任一项所述的一种信息传输方法,其特征在于,所述方法还包括:
    所述第一设备确定所述第一设备与所述基站之间的无线承载和所述第一设备与所述目标设备之间的无线承载具有的关联关系,所述第一设备与所述目标设备之间无线承载与业务信息具有的关联关系,和所述第一设备与所述基站之间无线承载与业务信息具有的关联关系中的至少一个关联关系。
  10. 根据权利要求9所述的一种信息传输方法,其特征在于,所述至少一个关联关系由所述基站生成之后发送给所述第一设备,或者所述至少一个关联关系由所述第一设备的上一跳中继设备生成之后发送给所述第一设备。
  11. 根据权利要求1-10任一项所述的一种信息传输方法,其特征在于,所述目标设备为终端设备,所述方法还包括:
    所述第一设备为所述目标设备选择加密算法;
    所述第一设备向所述基站发送第六消息以及向所述目标设备发送所述加密算法的标识,所述第六消息包括所述加密算法的标识以及所述目标设备的第三标识,其中,所述加密算法用于对所述基站和所述目标设备之间的数据加密。
  12. 根据权利要求1-10任一项所述的一种信息传输方法,其特征在于,所述目标设备为终端设备,所述方法还包括:
    所述第一设备接收所述基站发送的第五指示信息以及加密算法,所述第五指示信息用于指示将所述加密算法的标识发送给所述目标设备;
    所述第一设备根据所述第五指示信息,将所述加密算法的标识发送给所述目标设备,所述加密算法用于对所述基站和所述目标设备之间的数据加密。
  13. 一种第一设备,其特征在于,包括:
    接收器,用于接收基站发送的第一消息,所述第一消息包括第一指示信息和系统信息,所述第一指示信息用于指示所述第一设备是否广播系统信息;
    处理器,用于根据所述第一指示信息确定是否广播系统信息;
    发送器,用于在所述处理器确定需要广播所述系统信息时,广播所述系统信息。
  14. 根据权利要求13所述的一种第一设备,其特征在于,所述处理器,还用于在目标设备的随机接入过程中,所述第一设备为所述目标设备分配所述目标设备的第一标识,所述第一标识用于在所述目标设备的随机接入过程中所接入的小区中识别所述目标设备,其中,所述目标设备为接收到所述系统信息的设备;
    所述发送器,还用于向所述基站发送所述第一标识,以及转发所述目标设备发送的第二消息,其中,所述第二消息用于请求建立所述基站和所述目标设备之间的无线资源控制RRC连接。
  15. 根据权利要求13或14所述的一种第一设备,其特征在于,所述接收器,还用于接收所述基站发送的第三消息,所述第三消息包括资源配置信息以及第二指示信息,所述第二指示信息用于确定所述资源配置信息传输到的所述目标设备;
    所述发送器,还用于在所述处理器根据所述第二指示信息确定所述目标设备不是所述第一设备,将所述资源配置信息发送给所述目标设备。
  16. 根据权利要求15所述的一种第一设备,其特征在于,所述资源配置信息包括第一资源配置信息和第二资源配置信息,其中,所述第一配置信息用于配置所述目标设备的分组数据汇聚层协议PDCP层和业务数据适配协议SDAP层中的至少一项;所述第二配置信息用于配置所述目标设备的无线链路控制RLC层和媒体接入控制MAC层和物理PHY层中的至少一项;
    其中,所述第一资源配置信息由所述基站生成,所述第二资源配置信息由所述基站或所述第一设备生成。
  17. 根据权利要求13-16任一项所述的一种第一设备,其特征在于,所述目标设备为终端设备,所述接收器,还用于接收所述基站发送的第四消息,所述第四消息用于指示在寻呼时隙PO寻呼跟踪区TA中的所述终端设备;
    所述处理器,还用于确定所述第一设备属于所述TA,则在所述寻呼时隙PO寻呼所述TA中的所述终端设备;或者,
    所述发送器,还用于在所述处理器确定所述第一设备的下一跳设备中存在候选设备属于所述TA,则向所述候选设备发送第五消息,所述第五消息用于指示在所述PO寻呼所述TA中的所述终端设备。
  18. 根据权利要求17所述的一种第一设备,其特征在于,所述第四消息中至少携带所述寻呼PO,所述处理器,还用于从所述第四消息中确定所述寻呼PO;或者,
    所述第四消息中包括所述终端设备的第二标识、特定于所述终端设备的非连续接收周期和特定于小区的非连续接收周期,所述处理器,还用于根据所述第二标识、所述特定于所述终端设备的非连续接收周期和特定于小区的非连续接收周期,确定所述寻呼PO。
  19. 根据权利要求13-16任一项所述的一种第一设备,其特征在于,所述目标设备为终端设备,所述接收器,还用于接收所述基站发送的第四消息,所述第四消息包括寻呼PO、所述终端设备的第二标识以及第三指示信息,所述第三指示信息用于指示将所述寻呼PO以及所述终端设备的第二标识发送给所述目标设备;
    所述发送器,还用于根据所述第三指示信息,向所述目标设备发送所述寻呼PO以及所述终端设备的第二标识。
  20. 根据权利要求13-19任一项所述的一种第一设备,其特征在于,所述第一设备和所述第二设备之间的信令无线承载SRB中携带第四指示信息,所述第四指示信息用于指示当前传输时间单元上在所述SRB上传输的是系统信息或第四消息。
  21. 根据权利要求13-20任一项所述的一种第一设备,其特征在于,所述处理器,还用于确定所述第一设备与所述基站之间的无线承载和所述第一设备与所述目标设备之间的无线承载具有的关联关系,所述第一设备与所述目标设备之间无线承载与业务信息具有的关联关系,和所述第一设备与所述基站之间无线承载与业务信息具有的关联关系中的至少一个关联关系。
  22. 根据权利要求21所述的一种第一设备,其特征在于,所述接收器,还用于接收由所述基站生成的所述至少一个关联关系,或者所述接收器,还用于接收由所述第一设备的上一跳第一设备生成的至少一个关系。
  23. 根据权利要求13-22任一项所述的一种第一设备,其特征在于,所述目标设备为终端设备,所述处理器,还用于为所述目标设备选择加密算法;
    所述发送器,还用于向所述基站发送第六消息以及向所述目标设备发送所述加密算法的标识,所述第六消息包括所述加密算法的标识以及所述目标设备的第三标识,其中,所述加密算法用于对所述基站和所述目标设备之间的数据加密。
  24. 根据权利要求13-22任一项所述的一种第一设备,其特征在于,所述目标设备为终端设备,所述接收器,还用于接收所述基站发送的第五指示信息以及加密算法,所述第五指示信息用于指示将所述加密算法的标识发送给所述目标设备;
    所述发送器,还用于根据所述第五指示信息,将所述加密算法的标识发送给所述目标设备,所述加密算法用于对所述基站和所述目标设备之间的数据加密。
  25. 一种计算机可读存储介质,其特征在于,应用于第一设备中,该计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得如权利要求1至12任一项所述的一种信息传输方法被执行。
PCT/CN2018/111234 2017-10-27 2018-10-22 一种信息传输方法和设备 WO2019080800A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18869521.7A EP3687222B1 (en) 2017-10-27 2018-10-22 Information transmission method and device
US16/854,630 US20200252853A1 (en) 2017-10-27 2020-04-21 Information transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711023741.1A CN109729566B (zh) 2017-10-27 2017-10-27 一种信息传输方法和设备
CN201711023741.1 2017-10-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/854,630 Continuation US20200252853A1 (en) 2017-10-27 2020-04-21 Information transmission method and device

Publications (1)

Publication Number Publication Date
WO2019080800A1 true WO2019080800A1 (zh) 2019-05-02

Family

ID=66246795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111234 WO2019080800A1 (zh) 2017-10-27 2018-10-22 一种信息传输方法和设备

Country Status (4)

Country Link
US (1) US20200252853A1 (zh)
EP (1) EP3687222B1 (zh)
CN (1) CN109729566B (zh)
WO (1) WO2019080800A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021098804A1 (en) * 2019-11-19 2021-05-27 Huawei Technologies Co., Ltd. Methods, apparatus, and systems for ue cooperation with ue relaying

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116033603A (zh) * 2017-11-16 2023-04-28 中兴通讯股份有限公司 连接控制、业务处理方法及装置
WO2020027508A1 (en) * 2018-07-31 2020-02-06 Samsung Electronics Co., Ltd. Wireless node communication method and apparatus in wireless communication system
WO2020033965A1 (en) 2018-08-10 2020-02-13 Kyungmin Park Wireless backhaul link information
US11350305B2 (en) * 2019-01-09 2022-05-31 Samsung Electronics Co., Ltd. Method and apparatus for processing data in wireless communication system
CN110149137B (zh) * 2019-05-20 2021-11-26 和也健康科技有限公司 一种智能家居用信号中继方法
US11792686B2 (en) * 2019-06-19 2023-10-17 Qualcomm Incorporated High bandwidth low latency cellular traffic awareness
CN113412655A (zh) * 2019-06-21 2021-09-17 Oppo广东移动通信有限公司 一种信息传输方法及装置、网络设备、用户设备
CN110536474A (zh) * 2019-09-30 2019-12-03 中兴通讯股份有限公司 随机接入方法、装置、第一通信节点和第二通信节点
CN112770351B (zh) * 2019-10-21 2024-01-30 华为技术有限公司 通信方法、装置和系统
WO2021102815A1 (zh) * 2019-11-28 2021-06-03 华为技术有限公司 系统信息获取方法及装置
CN117793790A (zh) * 2020-03-16 2024-03-29 华为技术有限公司 数据传输的方法和装置
CN111432332B (zh) * 2020-03-31 2021-04-27 广东中安金狮科创有限公司 行人交通安全信息的快速传输方法及系统
CN113498193B (zh) * 2020-04-07 2024-07-09 华为技术有限公司 一种通信方法及设备
CN114339926B (zh) * 2020-09-30 2023-04-28 极米科技股份有限公司 终端操作模式转换的方法、终端、网络接入设备及介质
CN114666781A (zh) * 2020-12-23 2022-06-24 中国移动通信有限公司研究院 信息处理方法、装置、设备及存储介质
US20240056939A1 (en) * 2020-12-31 2024-02-15 Lenovo (Beijing) Limited Relaying information using one or more relays
CN112840951A (zh) * 2021-02-27 2021-05-28 广西壮族自治区农业科学院 一种灵芝孢子粉节水栽培方法及系统
CN113141673B (zh) * 2021-04-08 2023-03-17 成都极米科技股份有限公司 多链路系统中链路配置方法、设备、系统及存储介质
US11902260B2 (en) * 2021-08-02 2024-02-13 Cisco Technology, Inc. Securing control/user plane traffic
CN115349284A (zh) * 2022-06-28 2022-11-15 上海移远通信技术股份有限公司 无线通信的方法及装置
CN117560739A (zh) * 2022-08-04 2024-02-13 华为技术有限公司 通信方法、通信装置及通信系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483886A (zh) * 2008-01-10 2009-07-15 中兴通讯股份有限公司 多跳中继网络中的中继站广播消息传输方法
CN106604315A (zh) * 2016-12-21 2017-04-26 东软集团股份有限公司 消息传播方法及系统
CN107113916A (zh) * 2015-07-24 2017-08-29 松下电器(美国)知识产权公司 改进的接近服务中继ue激活

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7933236B2 (en) * 2005-10-27 2011-04-26 Nortel Networks Limited Methods and systems for a wireless routing architecture and protocol
KR101520697B1 (ko) * 2008-08-29 2015-05-21 엘지전자 주식회사 릴레이 시스템을 지원하기 위한 제어정보 전송방법
CN101754410B (zh) * 2008-12-19 2012-09-05 华为技术有限公司 网络的接入方法及装置
RU2491787C2 (ru) * 2009-04-28 2013-08-27 Хуавэй Текнолоджиз Ко., Лтд. Способ поискового вызова, способ обновления местоположения и устройство
CN103888931B (zh) * 2009-04-28 2017-07-07 华为技术有限公司 一种寻呼方法、位置更新方法及装置
KR101618782B1 (ko) * 2009-08-24 2016-05-12 엘지전자 주식회사 광대역 무선 접속 시스템에서 중계국의 기지국 시스템 정보 갱신 방법
WO2011047503A1 (en) * 2009-10-19 2011-04-28 Nokia Siemens Networks Oy Method and apparatus for provision of paging messages in relay network
US10412571B2 (en) * 2015-03-24 2019-09-10 Qualcomm Incorporated Configuration by eNB for D2D UE to network relay search

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483886A (zh) * 2008-01-10 2009-07-15 中兴通讯股份有限公司 多跳中继网络中的中继站广播消息传输方法
CN107113916A (zh) * 2015-07-24 2017-08-29 松下电器(美国)知识产权公司 改进的接近服务中继ue激活
CN106604315A (zh) * 2016-12-21 2017-04-26 东软集团股份有限公司 消息传播方法及系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Wireless relay in 5G NR", 3GPP TSG RAN3 #91BIS R3-160778, 15 April 2016 (2016-04-15), XP051083036 *
NOKIA: "On the wireless relay operation in NR", 3GPP TSG-RAN WG1 MEETING #85 RL-165031, 27 May 2016 (2016-05-27), XP051090124 *
QUALCOMM INCORPORATED: "Considerations on 5G relay requirements", 3GPP TSG RAN AD HOC RPA160054, 29 January 2016 (2016-01-29), pages 1 - 4, XP055594370 *
See also references of EP3687222A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021098804A1 (en) * 2019-11-19 2021-05-27 Huawei Technologies Co., Ltd. Methods, apparatus, and systems for ue cooperation with ue relaying
US11765616B2 (en) 2019-11-19 2023-09-19 Huawei Technologies Co., Ltd. Methods, apparatus, and systems for UE cooperation with UE relaying

Also Published As

Publication number Publication date
EP3687222A1 (en) 2020-07-29
EP3687222A4 (en) 2020-07-29
EP3687222B1 (en) 2023-07-19
CN109729566B (zh) 2021-01-29
CN109729566A (zh) 2019-05-07
US20200252853A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
CN109729566B (zh) 一种信息传输方法和设备
US11477703B2 (en) Method for establishing a fronthaul interface, method for performing access for a UE, method and apparatus for performing a handover for a UE, data forwarding method, user equipment and base station
JP6721090B2 (ja) ユーザー装置(ue)および方法
US9386480B2 (en) Systems and methods for providing LTE-based backhaul
KR101836021B1 (ko) 무선 근거리 네트워크에서 사용자 장비(ue)의 통신을 보안하기 위한 장치, 시스템 및 방법
CN113873587B (zh) 一种用于iab网络通信的方法及相关设备
CN108184249B (zh) 回程链路的信息传输方法及系统、代理设备、接入设备
CN102724666B (zh) 一种终端数据中继方法、装置和系统
TW201735715A (zh) 用於中繼傳輸的方法和裝置以及中繼終端設備
CN104349303B (zh) 设备到设备连接管理方法、装置及基站
CN112055423B (zh) 一种通信方法及相关设备
WO2020224597A1 (en) Pdn connection supports interworking to 5gs
US20160316394A1 (en) Systems and Methods for Providing LTE-Based Backhaul
WO2022082690A1 (zh) 群组切换的方法、装置和系统
US20220377541A1 (en) Key Management Method and Communication Apparatus
WO2022006863A1 (zh) 无线通信方法、终端设备和网络设备
CN117796000A (zh) 集成的接入和回传的通信装置以及方法
US20110158153A1 (en) System and method for terminal relay and relay terminal
WO2024027412A1 (zh) 通信方法、通信装置及通信系统
WO2023216018A1 (zh) 中继通信的方法及设备
CN118369977A (zh) 无线通信的方法、终端设备和网络设备
CN117320084A (zh) 一种通信方法及相关设备
CN118355728A (zh) Rrc消息的配置方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018869521

Country of ref document: EP

Effective date: 20200423