[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019080316A1 - 服务机器人全自动故障分析方法及其装置 - Google Patents

服务机器人全自动故障分析方法及其装置

Info

Publication number
WO2019080316A1
WO2019080316A1 PCT/CN2017/116667 CN2017116667W WO2019080316A1 WO 2019080316 A1 WO2019080316 A1 WO 2019080316A1 CN 2017116667 W CN2017116667 W CN 2017116667W WO 2019080316 A1 WO2019080316 A1 WO 2019080316A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
fault
service robot
module
fault analysis
Prior art date
Application number
PCT/CN2017/116667
Other languages
English (en)
French (fr)
Inventor
张贯京
葛新科
王海荣
张红治
周亮
Original Assignee
深圳市前海安测信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市前海安测信息技术有限公司 filed Critical 深圳市前海安测信息技术有限公司
Publication of WO2019080316A1 publication Critical patent/WO2019080316A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0213Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics

Definitions

  • the invention relates to the technical field of robot fault diagnosis, in particular to a method and a device for automatically detecting faults of a service robot.
  • the object of the present invention is to provide a full-automatic fault analysis method and device for a service robot, aiming at solving the technical problem that the service robot automatic fault analysis cannot be quickly and conveniently realized due to the diversity of the service robot and the particularity of the use environment.
  • the present invention provides a service robot automatic fault analysis apparatus, which is operated in a service robot, which includes a memory, a microcontroller, a display, and a plurality of sensors, each sensor according to a sensor type and a sensor setting.
  • the location of the service robot is automatically numbered, and the automatic fault analysis device for the service robot includes a startup start determination module, a timing module, a failure analysis startup module, an information transmission module, an information acquisition module, a failure analysis module, and a failure prompt module, wherein:
  • the booting start determining module is configured to determine whether the service robot is in a booting state
  • the timing module is configured to determine whether the timing time reaches a preset period
  • the failure analysis startup module is configured to send a failure analysis start signal to the information sending module when the service robot is in a startup state or when the timing time reaches a preset period;
  • the information sending module is configured to sequentially send a corresponding fault analysis signal to the corresponding sensor according to the unique number of the sensor when receiving the fault analysis start signal;
  • the information collection module is configured to acquire surrounding environment information collected by the sensor according to the fault analysis signal
  • the fault analysis module is configured to determine a fault cause of the sensor according to the surrounding environment information collected by the sensor, and determine a fault diagnosis result of the sensor according to the fault type of the fault cause;
  • the fault prompting module is configured to store the fault diagnosis result of each sensor in a memory, and display a fault diagnosis result of each sensor on the display, where the fault diagnosis result includes the unique number of the sensor and the collected surroundings Environmental information, the cause of the failure, and the type of failure.
  • the sensor type of each sensor, the position of the sensor setting, and the unique numbered relationship table are pre-stored in the database of the memory; the relationship table of the unique number of each sensor, the type of the fault, and the cause of the fault is pre-stored in the database of the memory. .
  • the fault analysis module is specifically configured to determine the fault cause of the sensor according to the surrounding environment information collected by the sensor and the reference environment information of the sensor, according to the unique number of each sensor stored in the database, the type of the fault, and the cause of the fault.
  • the table matches the fault type of the current sensor.
  • the reference environment information collected by each sensor under normal conditions is pre-stored in a database of the memory.
  • the boot-up determination module is specifically configured to detect whether a power supply voltage of the microcontroller is abruptly changed. If the power supply voltage is abrupt, determine that the service robot is in a startup state; if the power supply voltage does not change, determine The service robot is in a use state.
  • the present invention also provides a service robot automatic fault analysis method, the service robot comprising a memory, a microcontroller, a display and a plurality of sensors, each sensor having a unique number according to the sensor type and the position of the sensor setting, the service
  • the robot automatic fault analysis method includes the following steps:
  • the corresponding fault analysis signal is sequentially sent to the corresponding sensor
  • the fault diagnosis results of each sensor are stored in the memory, and the fault diagnosis result of each sensor is displayed on the display.
  • the sensor type of each sensor, the position of the sensor setting, and the unique numbered relationship table are pre-stored in the database of the memory; the relationship table of the unique number of each sensor, the type of the fault, and the cause of the fault is pre-stored in the database of the memory. .
  • the step of determining the fault diagnosis result of the sensor specifically includes: surrounding environment information collected by the sensor and the sensor
  • the reference environment information determines the cause of the fault of the sensor, and matches the fault type of the current sensor according to the unique number of each sensor stored in the database, the type of the fault, and the relationship table of the fault cause.
  • the reference environment information collected by each sensor under normal conditions is pre-stored in a database of the memory.
  • the method for determining whether the service robot is in a startup state is: detecting whether a power supply voltage of the microcontroller is abruptly changed, and if the power supply voltage is abrupt, determining that the service robot is in a startup state; if the power supply voltage is not When a mutation occurs, it is judged that the service robot is in a use state.
  • the automatic fault analysis method and device for the service robot of the present invention adopts the above technical solution, and achieves the following technical effects: the embodiment of the present invention performs fault analysis on the service robot when the service robot is started, During the use of the service robot, the fault analysis signal is periodically sent to the sensor of the service robot, the surrounding environment information collected by the sensor according to the fault analysis signal and the reference environment information are used to determine the fault cause of the sensor, and the fault type of the sensor is matched to determine the fault diagnosis result of the sensor.
  • the fault diagnosis result is stored in the memory for querying, and the fault diagnosis result of each sensor is displayed on the display for the user or the manager to view the current fault condition of the service robot, and timely processed, so that the service robot can realize the full range
  • the failure analysis is not limited by time and space, and the cost is low and the efficiency is high, which improves the service life and availability of the service robot and enhances the user experience.
  • FIG. 1 is a schematic diagram of an operating environment of a preferred embodiment of a service robot automatic fault analysis apparatus according to the present invention
  • FIG. 2 is a flow chart of a preferred embodiment of a fully automated fault analysis method for a service robot of the present invention.
  • the present invention provides a method and apparatus for fully automatic fault analysis of a service robot.
  • FIG. 1 is a schematic diagram of an operating environment of a preferred embodiment of a service robot automatic fault analysis apparatus according to the present invention.
  • the service robot automatic fault analysis apparatus 10 runs in the service robot 1, and the service robot 1 further includes a robot body (not shown), a sensor 12, a microcontroller 16, a memory 14, and a communication interface. 18 and display 20.
  • the sensor 12, the memory 14, the communication interface 18, and the display 20 are electrically coupled to the microcontroller 16, respectively.
  • the sensor 12 is distributed on the robot body according to the application field of the service robot.
  • the sensor 12 is a core component of the service robot for collecting surrounding environment information of the service robot.
  • the normal operation of the sensor 12 can provide basic information for the operation of the service robot to ensure normal and stable operation of the service robot.
  • the sensor 12 of the service robot usually includes a camera, a microphone, a gyroscope, an acceleration sensor, an infrared sensor, a temperature and humidity sensor, etc., for respectively collecting image information, voice information, direction information, acceleration information, obstacle conditions, and temperature and humidity of the surrounding environment. Information, etc.
  • the microcontroller 16 can be a central processing unit (CPU), a microprocessor, a micro control unit chip (MCU), a data processing chip, or a control unit having data processing functions.
  • the memory 14 can be a read only memory ROM, an electrically erasable memory EEPROM or a flash memory FLASH.
  • the memory 14 is used to store pre-programmed computer program instructions that can be loaded and executed by the microcontroller 16 to service the robot to perform a fault analysis function.
  • the communication interface 18 may be a communication interface 18 supporting a remote communication protocol (such as TCP/IP protocol) or a short-range communication protocol (such as WIFI or Bluetooth, etc.) for transmitting fault diagnosis results to communicate with the service robot. Connected mobile terminals or unified management platform.
  • the display 20 is a display screen with a touch function for receiving information input by a user and displaying a failure analysis result for the user to view.
  • the service robot automatic fault analysis apparatus 10 includes, but is not limited to, a startup start determination module 100, a timing module 101, a failure analysis startup module 102, an information transmission module 103, an information collection module 104, and failure analysis.
  • Module 105 and fault prompt module 106 are included in the service robot automatic fault analysis apparatus 10.
  • a module referred to in the present invention refers to a series of computer program instructions that can be executed by the microcontroller 16 and that are capable of performing fixed functions, which are stored in the memory 14.
  • the boot-up determination module 100 is configured to determine whether the service robot is in a boot-on state. In order to ensure the normal operation of the service robot, the embodiment of the present invention performs a failure analysis after the service robot is started, that is, sends a failure analysis start signal to the information transmission module 103 when it is determined that the service robot is in the startup state.
  • the method for determining that the service robot is powered on is that the startup start determining module 100 detects whether the power supply voltage of the microcontroller 16 is abruptly changed. If a sudden change occurs, determining that the service robot is in a startup state; if no mutation occurs, The power supply voltage of the microcontroller 16 is always maintained at a high level, and then the service robot is judged to be in a use state. It can be understood that the occurrence of the mutation in the embodiment of the present invention means changing from a low level to a high level in a short time.
  • the timing module 101 is configured to determine whether the timing time reaches a preset period. In order to ensure that the service robot runs normally during use, the embodiment of the present invention sets the timing module 101, and sets a preset period, which may be fixedly set in the system, or may provide a preset period for the user through the display 20.
  • the settings interface is set by the user.
  • the timing module 101 can perform timing by acquiring the current system time.
  • the fault analysis startup module 102 is configured to send a failure analysis start signal to the information sending module 103 when the service robot is in a power-on state or when the time is up to a preset period.
  • the information sending module 103 is configured to sequentially send a corresponding fault analysis signal to the corresponding sensor 12 according to the unique number of the sensor 12 when receiving the fault analysis start signal, so as to test whether the surrounding environment information collected by the sensor 12 is Is a normal signal.
  • the service robot includes a plurality of sensors 12, and each sensor 12 is provided with a unique number depending on the type of sensor and the location of the sensor settings.
  • the sensor type of each sensor 12, the location of the sensor settings, and a uniquely numbered relationship table are pre-stored in a database of the memory 14.
  • a relationship table of the unique number of each sensor 12, the type of failure, and the cause of the failure is stored in advance in the database of the memory 14.
  • the fault analysis signals sent by different sensor types are different. For example, when the unique number is the camera located at the head of the service robot, the sent fault analysis signal is a control signal for controlling the camera to rotate 360 degrees, for the camera to rotate 360 degrees. Photos of the surrounding environment.
  • the information collection module 104 is configured to acquire surrounding environment information collected by the sensor 12 . After receiving the fault analysis signal, each sensor 12 collects surrounding environmental information to obtain surrounding environment information collected by the sensor 12, and sends the environmental information to the fault analysis module 105.
  • the fault analysis module 105 is configured to determine the fault cause of the sensor 12 according to the surrounding environment information collected by the sensor 12, and match the fault type of the sensor 12 according to the fault cause to determine the fault diagnosis result of the sensor 12.
  • the reference environment information collected by each sensor 12 under normal conditions is pre-stored in the database of the memory 14, and the cause of the failure of the sensor 12 is determined according to the surrounding environment information collected by the sensor 12 and the reference environment information of the sensor 12.
  • the fault type of the current sensor 12 is matched according to the unique number of each sensor 12 stored in the database, the type of fault, and the relationship table of the cause of the fault.
  • the fault prompting module 106 is configured to store the fault diagnosis result in the memory 14 and display it on the display 20 for the user or the administrator to view the current fault condition of the service robot and process it in time.
  • the fault diagnosis result includes a unique number of each sensor 12 of the service robot, collected surrounding environment information, a cause of the fault, and a fault type.
  • the embodiment of the invention analyzes the fault of the service robot when the service robot is turned on, and periodically sends a fault analysis signal to the sensor of the service robot during the use of the service robot, and obtains the surrounding environment information collected by the sensor according to the fault analysis signal and the reference environment information.
  • the cause of the fault of the sensor, and matching the fault type of the sensor determine the fault diagnosis result of the sensor, store the fault diagnosis result in the memory for inquiry, and display the fault diagnosis result of each sensor on the display for the user or manager to view
  • the current fault condition of the service robot is processed in time, so that the service robot can realize all-round fault analysis, which is free from time and space constraints, low cost and high efficiency, improves the service life and availability of the service robot, and enhances the user's Experience.
  • FIG. 2 is a flow chart of a preferred embodiment of the automatic fault analysis method for the service robot of the present invention.
  • the service robot automatic fault analysis method is applied to the service robot automatic fault analysis device 10, and various method steps of the service robot automatic fault analysis method pass the computer software program.
  • the computer software program is in the form of computer program instructions and stored in a computer readable storage medium (eg, memory 14), which may include: a read only memory 14, a random access memory 14, a magnetic or optical disk, etc., the computer
  • the program instructions can be loaded by the processor and perform the following steps S11 to S15.
  • step S10 it is determined whether the service robot is in the power-on state.
  • step S12 is performed; when the service robot is in the running state, step S11 is performed.
  • the boot-up determination module 100 determines whether the service robot is in a boot-on state. In order to ensure the normal operation of the service robot, the embodiment of the present invention performs a failure analysis after the startup of the service robot, that is, when it is determined that the service robot is in the startup state, step S12 is performed.
  • the method for determining that the service robot is powered on is that the startup start determination module 100 detects whether the power supply voltage of the microcontroller 16 is abruptly changed. If the power supply voltage is abrupt, the service robot is determined to be in a startup state; if the power supply voltage is not A sudden change occurs, that is, the power supply voltage of the microcontroller 16 is always maintained at a high level, and the service robot is judged to be in a use state.
  • step S11 is performed. It can be understood that the occurrence of the mutation in the embodiment of the present invention means changing from a low level to a high level in a short time.
  • step S11 it is determined whether the timing time reaches the preset period. When the timing time reaches the preset period, step S12 is performed; when the timing time does not reach the preset period, step S11 is performed.
  • the timing module 101 determines whether the timing time reaches a preset period. In order to ensure that the service robot operates normally during use, the embodiment of the present invention periodically performs fault analysis on the service robot.
  • the preset period may be fixedly set in the system, or the preset time setting interface may be provided to the user through the display 20 for the user to set.
  • the timing module 101 can perform timing by acquiring the current system time.
  • step S12 a failure analysis start signal is sent.
  • the fault analysis initiation module 102 sends a failure analysis initiation signal to the information transmission module 103.
  • step S13 upon receiving the fault analysis start signal, the corresponding fault analysis signal is sequentially transmitted to the corresponding sensor 12 according to the unique number of the sensor 12.
  • the information sending module 103 sequentially transmits the corresponding fault analysis signal to the corresponding sensor 12 according to the unique number of the sensor 12.
  • the service robot includes a plurality of sensors 12, and each sensor 12 is provided with a unique number depending on the type of sensor and the location of the sensor settings.
  • the sensor type of each sensor 12, the location of the sensor settings, and a uniquely numbered relationship table are pre-stored in a database of the memory 14.
  • a relationship table of the unique number of each sensor 12, the type of failure, and the cause of the failure is stored in advance in the database of the memory 14.
  • Step S14 Acquire ambient environment information collected by the sensor 12 according to the fault analysis signal.
  • the information collection module 104 acquires surrounding environment information collected by the sensor 12 according to the fault analysis signal. After receiving the fault analysis signal, each sensor 12 collects surrounding environmental information to obtain surrounding environment information collected by the sensor 12, and sends the environmental information to the fault analysis module 105.
  • the fault analysis signals sent by different sensor types are different. For example, when the unique number is the camera located at the head of the service robot, the sent fault analysis signal is a control signal for controlling the camera to rotate 360 degrees, for the camera to rotate 360 degrees. Photos of the surrounding environment.
  • Step S15 determining the cause of the fault of the sensor 12 according to the surrounding environment information collected by the sensor 12, and matching the fault type of the sensor 12 according to the fault cause, and determining the fault diagnosis result of the sensor 12.
  • the fault analysis module 105 determines the cause of the fault of the sensor 12 according to the surrounding environment information collected by the sensor 12, and matches the fault type of the sensor 12 according to the fault cause, and determines the fault diagnosis result of the sensor 12.
  • the reference environment information collected by each sensor 12 under normal conditions is pre-stored in the database of the memory 14, and the cause of the failure of the sensor 12 is determined according to the surrounding environment information collected by the sensor 12 and the reference environment information of the sensor 12.
  • the fault type of the current sensor 12 is matched according to the unique number of each sensor 12 stored in the database, the type of fault, and the relationship table of the cause of the fault.
  • step S16 the fault diagnosis result is stored in the memory 14 and displayed on the display 20.
  • the fault prompting module 106 stores the fault diagnosis result in the memory 14, stores the fault diagnosis result in the memory 14, and displays the fault diagnosis result of each sensor 12 on the display 20 for the user or the manager. View the current fault condition of the service robot and process it in time.
  • the fault diagnosis result includes a unique number of each sensor 12 of the service robot, collected surrounding environment information, a cause of the fault, and a fault type.
  • the embodiment of the invention analyzes the fault of the service robot when the service robot is turned on, and periodically sends a fault analysis signal to the sensor of the service robot during the use of the service robot, and obtains the surrounding environment information collected by the sensor according to the fault analysis signal and the reference environment information.
  • the cause of the fault of the sensor, and matching the fault type of the sensor determine the fault diagnosis result of the sensor, store the fault diagnosis result in the memory for inquiry, and display the fault diagnosis result of each sensor on the display for the user or manager to view
  • the current fault condition of the service robot is processed in time, so that the service robot can realize all-round fault analysis, which is free from time and space constraints, low cost and high efficiency, improves the service life and availability of the service robot, and enhances the user's Experience.
  • the automatic fault analysis method and device for the service robot of the present invention adopts the above technical solution, and achieves the following technical effects: the embodiment of the present invention performs fault analysis on the service robot when the service robot is started, During the use of the service robot, the fault analysis signal is periodically sent to the sensor of the service robot, the surrounding environment information collected by the sensor according to the fault analysis signal and the reference environment information are used to determine the fault cause of the sensor, and the fault type of the sensor is matched to determine the fault diagnosis result of the sensor.
  • the fault diagnosis result is stored in the memory for querying, and the fault diagnosis result of each sensor is displayed on the display for the user or the manager to view the current fault condition of the service robot, and timely processed, so that the service robot can realize the full range
  • the failure analysis is not limited by time and space, and the cost is low and the efficiency is high, which improves the service life and availability of the service robot and enhances the user experience.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

本发明公开一种服务机器人全自动故障分析方法及其装置,该方法包括步骤:当服务机器人为开机启动状态时或当计时时间到达预设周期时,发送故障分析启动信号;在接收到故障分析启动信号时,根据传感器的唯一编号,依次发送对应的故障分析信号至对应的传感器;获取传感器采集的周围环境信息;根据传感器采集的周围环境信息判断传感器的故障原因,根据故障原因匹配传感器的故障类型,确定该传感器的故障诊断结果;将故障诊断结果存储于存储器中,并将每个传感器的故障诊断结果显示在显示器上。实施本发明,能够快速便捷实现服务机器人的故障分析,提高服务机器人的寿命及可用性,提升用户的体验。

Description

服务机器人全自动故障分析方法及其装置 技术领域
本发明涉及机器人故障诊断技术领域,尤其涉及一种服务机器人全自动故障分析方法及其装置。
背景技术
随着全球服务机器人市场的快速增长,服务机器人的应用范围越来越广,主要从事维护保养、修理、运输、清洗、保安、救援、监护等工作。近年来在医疗服务领域的应用尤为广泛,服务机器人在代替人力劳作的作用日渐显著。但由于长时间地工作,故障会不可避免地发生在传感器及其他部件上,存在安全隐患。因此,对服务机器人进行故障诊断就变得尤为重要,及时发现并报告故障,能够更好的为人类服务,减少不必要的损失。现有针对机器人的故障诊断方案都是针对工业机器人设计的固定的故障诊断装置,但由于服务机器人的多样性以及使用环境,不方便经常在固定的故障诊断装置上进行故障诊断,因此,现有的技术方案对于服务机器人的故障诊断并不适用。
基于此,有必要设计一种服务机器人全自动故障分析方法及其装置,不用针对每种服务机器人设计专门的故障诊断装置,成本低且效率高。
技术问题
本发明的目的在于提供一种服务机器人全自动故障分析方法及其装置,旨在解决由于服务机器人的多样性以及使用环境的特殊性,无法快速便捷实现服务机器人全自动故障分析的技术问题。
技术解决方案
为实现上述目的,本发明提供一种服务机器人全自动故障分析装置,运行于服务机器人中,所述服务机器人包括存储器、微控制器、显示器和多个传感器,每个传感器根据传感器类型以及传感器设置的位置设置有唯一编号,所述服务机器人全自动故障分析装置包括开机启动判断模块、计时模块、故障分析启动模块、信息发送模块、信息采集模块、故障分析模块以及故障提示模块,其中:
所述开机启动判断模块,用于判断所述服务机器人是否为开机启动状态;
所述计时模块,用于判断计时时间是否到达预设周期;
所述故障分析启动模块,用于当服务机器人为开机启动状态时或当计时时间到达预设周期时,发送故障分析启动信号至信息发送模块;
所述信息发送模块,用于在接收到故障分析启动信号时,根据传感器的唯一编号,依次发送对应的故障分析信号至对应的传感器;
所述信息采集模块,用于获取传感器根据所述故障分析信号采集的周围环境信息;
所述故障分析模块,用于根据传感器采集的周围环境信息判断传感器的故障原因,根据故障原因匹配传感器的故障类型确定该传感器的故障诊断结果;
所述故障提示模块,用于将每个传感器的故障诊断结果存储于存储器中,并将每个传感器的故障诊断结果显示在显示器上,所述故障诊断结果包括该传感器的唯一编号、采集的周围环境信息、故障原因以及故障类型。
优选地,每个传感器的传感器类型、传感器设置的位置以及唯一编号的关系表预先存储于存储器的数据库中;每个传感器的唯一编号、故障类型以及故障原因的关系表预先存储于存储器的数据库中。
优选地,所述故障分析模块具体用于根据传感器采集的周围环境信息以及该传感器的基准环境信息判断传感器的故障原因,根据数据库中存储的每个传感器的唯一编号、故障类型以及故障原因的关系表匹配当前传感器的故障类型。
优选地,每个传感器在正常情况下采集的基准环境信息预先存储于存储器的数据库中。
优选地,所述开机启动判断模块具体用于侦测微控制器的电源电压是否发生突变,若电源电压发生突变,则判断所述服务机器人为开机启动状态;若电源电压未发生突变,则判断所述服务机器人为使用状态。
本发明还提供一种服务机器人全自动故障分析方法,所述服务机器人包括存储器、微控制器、显示器和多个传感器,每个传感器根据传感器类型以及传感器设置的位置设置有唯一编号,所述服务机器人全自动故障分析方法包括如下步骤:
当服务机器人为开机启动状态时或当计时时间到达预设周期时,发送故障分析启动信号;
在接收到故障分析启动信号时,根据传感器的唯一编号,依次发送对应的故障分析信号至对应的传感器;
获取传感器根据所述故障分析信号采集的周围环境信息;
根据传感器采集的周围环境信息判断传感器的故障原因,根据故障原因匹配传感器的故障类型确定该传感器的故障诊断结果;
将每个传感器的故障诊断结果存储于存储器中,并将每个传感器的故障诊断结果显示在显示器上。
优选地,每个传感器的传感器类型、传感器设置的位置以及唯一编号的关系表预先存储于存储器的数据库中;每个传感器的唯一编号、故障类型以及故障原因的关系表预先存储于存储器的数据库中。
优选地,所述根据传感器采集的周围环境信息判断传感器的故障原因,根据故障原因匹配传感器的故障类型,确定该传感器的故障诊断结果的步骤具体包括:根据传感器采集的周围环境信息以及该传感器的基准环境信息判断传感器的故障原因,根据数据库中存储的每个传感器的唯一编号、故障类型以及故障原因的关系表匹配当前传感器的故障类型。
优选地,每个传感器在正常情况下采集的基准环境信息预先存储于存储器的数据库中。
优选地,判断所述服务机器人是否为开机启动状态的方式为:侦测微控制器的电源电压是否发生突变,若电源电压发生突变,则判断所述服务机器人为开机启动状态;若电源电压未发生突变,则判断所述服务机器人为使用状态。
有益效果
相较于现有技术,本发明所述服务机器人全自动故障分析方法及其装置采用上述技术方案,达到了如下技术效果:本发明实施例通过在开启服务机器人时对服务机器人进行故障分析,在服务机器人使用期间,定期向服务机器人的传感器发送故障分析信号,获取传感器根据故障分析信号采集的周围环境信息以及基准环境信息判断传感器的故障原因,并匹配传感器的故障类型,确定传感器的故障诊断结果,将故障诊断结果存储于存储器中以便查询,并将每个传感器的故障诊断结果显示在显示器上供使用者或管理者查看服务机器人当前的故障情况,并及时处理,使得服务机器人能够实现全方位的故障分析,并不受时间和空间的限制,成本低且效率高,提高了服务机器人的寿命及可用性,同时提升用户的体验。
附图说明
图1为本发明服务机器人全自动故障分析装置较佳实施例的运行环境示意图;
图2是本发明服务机器人全自动故障分析方法优选实施例的流程图。
本发明目的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的最佳实施方式
为更进一步阐述本发明为达成上述目的所采取的技术手段及功效,以下结合附图及较佳实施例,对本发明的具体实施方式、结构、特征及其功效进行详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为实现本发明目的,本发明提供了一种服务机器人全自动故障分析方法及其装置。
参考图1所示,图1为本发明服务机器人全自动故障分析装置较佳实施例的运行环境示意图。
本发明提供的服务机器人全自动故障分析装置10运行于服务机器人1中,所述服务机器人1还包括,机器人本体(图中未示出)、传感器12、微控制器16、存储器14、通讯接口18和显示器20。所述传感器12、存储器14、通讯接口18和显示器20分别与所述微控制器16电连接。所述传感器12根据服务机器人的应用领域分布设置于机器人本体上。传感器12是服务机器人的核心部件,用于采集服务机器人的周围环境信息,传感器12的正常运行能够为服务机器人的运行提供基础信息,保证服务机器人正常稳定运行。服务机器人的传感器12通常包括摄像头、麦克风、陀螺仪、加速度传感器、红外传感器、温湿度传感器等,用于分别采集周围环境的图像信息、语音信息、方向信息、加速度信息、障碍物情况以及温湿度信息等。
在本实施例中,所述微控制器16可以为一种中央处理器(CPU)、微处理器、微控制单元芯片(MCU)、数据处理芯片、或者具有数据处理功能的控制单元。所述存储器14可以为一种只读存储器ROM,电可擦写存储器EEPROM或快闪存储器FLASH等存储器。所述存储器14用于存储预先编制的计算机程序指令,该计算机程序指令能够被微控制器16加载并执行以便服务机器人完成故障分析功能。所述通讯接口18可以为支持远程通信协议(例如TCP/IP协议)也可以是支持近程通信协议(例如WIFI或蓝牙等)的通讯接口18,用于将故障诊断结果发送至与服务机器人通讯连接的移动终端或统一管理平台。所述显示器20为带有触摸功能的显示屏,用于接收用户输入的信息,以及显示故障分析结果供用户查看。
在本实施例中,所述服务机器人全自动故障分析装置10包括,但不仅限于,开机启动判断模块100、计时模块101、故障分析启动模块102、信息发送模块103、信息采集模块104、故障分析模块105以及故障提示模块106。本发明所称的模块是指一种能够被所述微控制器16执行并且能够完成固定功能的一系列计算机程序指令段,其存储在存储器14中。
所述开机启动判断模块100,用于判断所述服务机器人是否为开机启动状态。为了确保服务机器人开机正常运行,本发明实施例在服务机器人开机启动后进行一次故障分析,即在判断出所述服务机器人为开机启动状态时发送故障分析启动信号至信息发送模块103。判断所述服务机器人开机启动的方式为,开机启动判断模块100侦测微控制器16的电源电压是否发生突变,若发生突变,则判断所述服务机器人为开机启动状态;若未发生突变,即所述微控制器16的电源电压一直保持高电平,则判断所述服务机器人为使用状态。可以理解地,本发明实施例所述发生突变是指从低电平在较短时间内变为高电平。
所述计时模块101,用于判断计时时间是否到达预设周期。为了确保服务机器人在使用期间正常运行,本发明实施例设置了计时模块101,且设置了预设周期,所述预设周期可以固定设置于系统中,也可以通过显示器20为用户提供预设周期设置界面供用户设置。所述计时模块101可以通过获取当前的系统时间进行计时。
所述故障分析启动模块102,用于当服务机器人为开机启动状态时或当计时时间到达预设周期时,发送故障分析启动信号至信息发送模块103。
所述信息发送模块103,用于在接收到故障分析启动信号时,根据传感器12的唯一编号,依次发送对应的故障分析信号至对应的传感器12,以便测试所述传感器12采集的周围环境信息是否为正常信号。在本发明实施例中,服务机器人包括多个传感器12,且每个传感器12根据传感器类型以及传感器设置的位置设置有唯一编号。每个传感器12的传感器类型、传感器设置的位置以及唯一编号的关系表预先存储于存储器14的数据库中。每个传感器12的唯一编号、故障类型以及故障原因的关系表预先存储于存储器14的数据库中。具体地,不同的传感器类型发送的故障分析信号不同,例如当唯一编号为位于服务机器人头部的摄像头时,发送的故障分析信号为控制摄像头旋转360度的控制信号,以供摄像头旋转360度采集周围的环境照片。
所述信息采集模块104,用于获取传感器12采集的周围环境信息。每个传感器12在接收到故障分析信号后,采集周围的环境信息,以获取该传感器12采集的周围环境信息,并将该环境信息发送至故障分析模块105。
所述故障分析模块105,用于根据传感器12采集的周围环境信息判断传感器12的故障原因,根据故障原因匹配传感器12的故障类型,确定该传感器12的故障诊断结果。在本实施例中,每个传感器12在正常情况下采集的基准环境信息预先存储于存储器14的数据库中,根据传感器12采集的周围环境信息以及该传感器12的基准环境信息判断传感器12的故障原因,根据数据库中存储的每个传感器12的唯一编号、故障类型以及故障原因的关系表匹配当前传感器12的故障类型。
所述故障提示模块106,用于将故障诊断结果存储于存储器14中,并显示在显示器20上,以供使用者或管理者查看服务机器人当前的故障情况,并及时处理。所述故障诊断结果包括该服务机器人每个传感器12的唯一编号、采集的周围环境信息、故障原因以及故障类型。
本发明实施例通过在开启服务机器人时对服务机器人进行故障分析,在服务机器人使用期间,定期向服务机器人的传感器发送故障分析信号,获取传感器根据故障分析信号采集的周围环境信息以及基准环境信息判断传感器的故障原因,并匹配传感器的故障类型,确定传感器的故障诊断结果,将故障诊断结果存储于存储器中以便查询,并将每个传感器的故障诊断结果显示在显示器上供使用者或管理者查看服务机器人当前的故障情况,并及时处理,使得服务机器人能够实现全方位的故障分析,并不受时间和空间的限制,成本低且效率高,提高了服务机器人的寿命及可用性,同时提升用户的体验。
如图2所示,图2是本发明服务机器人全自动故障分析方法优选实施例的流程图。请同时参照图1,在本实施例中,所述服务机器人全自动故障分析方法应用于服务机器人全自动故障分析装置10中,该服务机器人全自动故障分析方法的各种方法步骤通过计算机软件程序来实现,该计算机软件程序以计算机程序指令的形式并存储于计算机可读存储介质(例如存储器14)中,存储介质可以包括:只读存储器14、随机存储器14、磁盘或光盘等,所述计算机程序指令能够被处理器加载并执行如下步骤S11至步骤S15。
步骤S10,判断服务机器人是否为开机启动状态,当服务机器人为开机启动状态时,执行步骤S12;当服务机器人为运行状态时,执行步骤S11。
具体地,开机启动判断模块100判断服务机器人是否为开机启动状态。为了确保服务机器人开机正常运行,本发明实施例在服务机器人开机启动后进行一次故障分析,即在判断出所述服务机器人为开机启动状态时执行步骤S12。判断所述服务机器人开机启动的方式为,开机启动判断模块100侦测微控制器16的电源电压是否发生突变,若电源电压发生突变,则判断所述服务机器人为开机启动状态;若电源电压未发生突变,即所述微控制器16的电源电压一直保持高电平,则判断所述服务机器人为使用状态。在判断出所述服务机器人为使用状态时,执行步骤S11。可以理解地,本发明实施例所述发生突变是指从低电平在较短时间内变为高电平。
步骤S11,判断计时时间是否到达预设周期,当计时时间到达预设周期时,执行步骤S12;当计时时间未到达预设周期时,执行步骤S11。
具体地,计时模块101判断计时时间是否到达预设周期。为了确保服务机器人在使用期间正常运行,本发明实施例定期对服务机器人进行故障分析。所述预设周期可以固定设置于系统中,也可以通过显示器20为用户提供预设周期设置界面供用户设置。所述计时模块101可以通过获取当前的系统时间进行计时。
步骤S12,发送故障分析启动信号。
具体地,当计时时间到达预设周期时或当服务机器人为开机启动状态时,故障分析启动模块102发送故障分析启动信号至信息发送模块103。
步骤S13,在接收到故障分析启动信号时,根据传感器12的唯一编号,依次发送对应的故障分析信号至对应的传感器12。
具体地,信息发送模块103在接收到故障分析启动信号时,根据传感器12的唯一编号,依次发送对应的故障分析信号至对应的传感器12。在本发明实施例中,服务机器人包括多个传感器12,且每个传感器12根据传感器类型以及传感器设置的位置设置有唯一编号。每个传感器12的传感器类型、传感器设置的位置以及唯一编号的关系表预先存储于存储器14的数据库中。每个传感器12的唯一编号、故障类型以及故障原因的关系表预先存储于存储器14的数据库中。
步骤S14,获取传感器12根据所述故障分析信号采集的周围环境信息。
具体地,信息采集模块104获取传感器12根据所述故障分析信号采集的周围环境信息。每个传感器12在接收到故障分析信号后,采集周围的环境信息,以获取该传感器12采集的周围环境信息,并将该环境信息发送至故障分析模块105。具体地,不同的传感器类型发送的故障分析信号不同,例如当唯一编号为位于服务机器人头部的摄像头时,发送的故障分析信号为控制摄像头旋转360度的控制信号,以供摄像头旋转360度采集周围的环境照片。
步骤S15,根据传感器12采集的周围环境信息判断传感器12的故障原因,根据故障原因匹配传感器12的故障类型,确定该传感器12的故障诊断结果。
具体地,故障分析模块105根据传感器12采集的周围环境信息判断传感器12的故障原因,根据故障原因匹配传感器12的故障类型,确定该传感器12的故障诊断结果。在本实施例中,每个传感器12在正常情况下采集的基准环境信息预先存储于存储器14的数据库中,根据传感器12采集的周围环境信息以及该传感器12的基准环境信息判断传感器12的故障原因,根据数据库中存储的每个传感器12的唯一编号、故障类型以及故障原因的关系表匹配当前传感器12的故障类型。
步骤S16,将故障诊断结果存储于存储器14中,并显示在显示器20上。
具体地,故障提示模块106将故障诊断结果存储于存储器14中,将故障诊断结果存储于存储器14中,并将每个传感器12的故障诊断结果显示在显示器20上,以供使用者或管理者查看服务机器人当前的故障情况,并及时处理。所述故障诊断结果包括该服务机器人每个传感器12的唯一编号、采集的周围环境信息、故障原因以及故障类型。
本发明实施例通过在开启服务机器人时对服务机器人进行故障分析,在服务机器人使用期间,定期向服务机器人的传感器发送故障分析信号,获取传感器根据故障分析信号采集的周围环境信息以及基准环境信息判断传感器的故障原因,并匹配传感器的故障类型,确定传感器的故障诊断结果,将故障诊断结果存储于存储器中以便查询,并将每个传感器的故障诊断结果显示在显示器上供使用者或管理者查看服务机器人当前的故障情况,并及时处理,使得服务机器人能够实现全方位的故障分析,并不受时间和空间的限制,成本低且效率高,提高了服务机器人的寿命及可用性,同时提升用户的体验。
本领域技术人员可以理解,上述实施方式中各种方法的全部或部分步骤可以通过相关程序指令完成,该程序可以存储于计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘或光盘等。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,均同理包括在本发明的专利保护范围内。
工业实用性
相较于现有技术,本发明所述服务机器人全自动故障分析方法及其装置采用上述技术方案,达到了如下技术效果:本发明实施例通过在开启服务机器人时对服务机器人进行故障分析,在服务机器人使用期间,定期向服务机器人的传感器发送故障分析信号,获取传感器根据故障分析信号采集的周围环境信息以及基准环境信息判断传感器的故障原因,并匹配传感器的故障类型,确定传感器的故障诊断结果,将故障诊断结果存储于存储器中以便查询,并将每个传感器的故障诊断结果显示在显示器上供使用者或管理者查看服务机器人当前的故障情况,并及时处理,使得服务机器人能够实现全方位的故障分析,并不受时间和空间的限制,成本低且效率高,提高了服务机器人的寿命及可用性,同时提升用户的体验。

Claims (10)

  1. 一种服务机器人全自动故障分析装置,运行于服务机器人中,所述服务机器人包括存储器、微控制器、显示器和多个传感器,其特征在于,每个传感器根据传感器类型以及传感器设置的位置设置有唯一编号,所述服务机器人全自动故障分析装置包括开机启动判断模块、计时模块、故障分析启动模块、信息发送模块、信息采集模块、故障分析模块以及故障提示模块,其中:所述开机启动判断模块,用于判断所述服务机器人是否为开机启动状态;所述计时模块,用于判断计时时间是否到达预设周期;所述故障分析启动模块,用于当服务机器人为开机启动状态时或当计时时间到达预设周期时,发送故障分析启动信号至信息发送模块;所述信息发送模块,用于在接收到故障分析启动信号时,根据传感器的唯一编号,依次发送对应的故障分析信号至对应的传感器;所述信息采集模块,用于获取传感器根据所述故障分析信号采集的周围环境信息;所述故障分析模块,用于根据传感器采集的周围环境信息判断传感器的故障原因,根据故障原因匹配传感器的故障类型确定该传感器的故障诊断结果;所述故障提示模块,用于将每个传感器的故障诊断结果存储于存储器中,并将每个传感器的故障诊断结果显示在显示器上,所述故障诊断结果包括该传感器的唯一编号、采集的周围环境信息、故障原因以及故障类型。
  2. 如权利要求1所述的服务机器人全自动故障分析装置,其特征在于,每个传感器的传感器类型、传感器设置的位置以及唯一编号的关系表预先存储于存储器的数据库中;每个传感器的唯一编号、故障类型以及故障原因的关系表预先存储于存储器的数据库中。
  3. 如权利要求2所述的服务机器人全自动故障分析装置,其特征在于,所述故障分析模块具体用于根据传感器采集的周围环境信息以及该传感器的基准环境信息判断传感器的故障原因,根据数据库中存储的每个传感器的唯一编号、故障类型以及故障原因的关系表匹配当前传感器的故障类型。
  4. 如权利要求3所述的服务机器人全自动故障分析装置,其特征在于,每个传感器在正常情况下采集的基准环境信息预先存储于存储器的数据库中。
  5. 如权利要求1至4任一项所述的服务机器人全自动故障分析装置,其特征在于,所述开机启动判断模块具体用于侦测微控制器的电源电压是否发生突变,若电源电压发生突变,则判断所述服务机器人为开机启动状态;若电源电压未发生突变,则判断所述服务机器人为使用状态。
  6. 一种服务机器人全自动故障分析方法,所述服务机器人包括存储器、微控制器、显示器和多个传感器,其特征在于,每个传感器根据传感器类型以及传感器设置的位置设置有唯一编号,所述服务机器人全自动故障分析方法包括如下步骤:当服务机器人为开机启动状态时或当计时时间到达预设周期时,发送故障分析启动信号;在接收到故障分析启动信号时,根据传感器的唯一编号,依次发送对应的故障分析信号至对应的传感器;获取传感器根据故障分析信号采集的周围环境信息;根据传感器采集的周围环境信息判断传感器的故障原因,根据故障原因匹配传感器的故障类型确定该传感器的故障诊断结果;将每个传感器的故障诊断结果存储于存储器中,并将每个传感器的故障诊断结果显示在显示器上。
  7. 如权利要求6所述的服务机器人全自动故障分析方法,其特征在于,每个传感器的传感器类型、传感器设置的位置以及唯一编号的关系表预先存储于存储器的数据库中;每个传感器的唯一编号、故障类型以及故障原因的关系表预先存储于存储器的数据库中。
  8. 如权利要求7所述的服务机器人全自动故障分析方法,其特征在于,所述根据传感器采集的周围环境信息判断传感器的故障原因,根据故障原因匹配传感器的故障类型确定该传感器的故障诊断结果的步骤具体包括:根据传感器采集的周围环境信息以及该传感器的基准环境信息判断传感器的故障原因,根据数据库中存储的每个传感器的唯一编号、故障类型以及故障原因的关系表匹配当前传感器的故障类型。
  9. 如权利要求7所述的服务机器人全自动故障分析方法,其特征在于,每个传感器在正常情况下采集的基准环境信息预先存储于存储器的数据库中。
  10. 如权利要求6至9任一项所述的服务机器人全自动故障分析方法,其特征在于,判断所述服务机器人是否为开机启动状态的方式为:侦测微控制器的电源电压是否发生突变,若电源电压发生突变,则判断所述服务机器人为开机启动状态;若电源电压未发生突变,则判断所述服务机器人为使用状态。
PCT/CN2017/116667 2017-10-28 2017-12-15 服务机器人全自动故障分析方法及其装置 WO2019080316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711035828.0A CN107703922A (zh) 2017-10-28 2017-10-28 服务机器人全自动故障分析方法及其装置
CN201711035828.0 2017-10-28

Publications (1)

Publication Number Publication Date
WO2019080316A1 true WO2019080316A1 (zh) 2019-05-02

Family

ID=61177101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116667 WO2019080316A1 (zh) 2017-10-28 2017-12-15 服务机器人全自动故障分析方法及其装置

Country Status (2)

Country Link
CN (1) CN107703922A (zh)
WO (1) WO2019080316A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110376999A (zh) * 2019-07-15 2019-10-25 珠海格力智能装备有限公司 一种故障诊断方法、装置及示教器
CN111008315B (zh) * 2019-12-23 2024-03-01 美智纵横科技有限责任公司 故障数据处理方法、装置及扫地机器人
CN112954575A (zh) * 2021-01-28 2021-06-11 歌尔科技有限公司 一种无线耳机故障检测方法、故障检测设备及无线耳机
CN113110401B (zh) * 2021-05-21 2022-08-05 广东美房智高机器人有限公司 一种智能生成机器人故障解决方案的方法
CN114812652B (zh) * 2022-04-20 2024-03-26 松灵机器人(深圳)有限公司 一种割草机控制方法、装置、割草机以及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1794124A (zh) * 2005-11-04 2006-06-28 刘宗明 无人维护系统
US20070129009A1 (en) * 2005-12-01 2007-06-07 Electronics And Telecommunications Research Institute Fault management system using satellite telemetering technology and method thereof
CN202443328U (zh) * 2011-12-29 2012-09-19 沈阳新松机器人自动化股份有限公司 一种具有自我故障诊断功能的家用机器人
US20120296606A1 (en) * 2011-05-17 2012-11-22 International Business Machines Corporation Method, computer program, and system for performing interpolation on sensor data for high system availability
CN103558806A (zh) * 2013-11-13 2014-02-05 桂林正菱第二机床有限责任公司 一种数控机床的故障处理系统
CN104062967A (zh) * 2013-03-20 2014-09-24 广州汽车集团股份有限公司 启停系统的故障诊断方法及装置
CN105404281A (zh) * 2015-12-14 2016-03-16 湖南三一智能控制设备有限公司 工程机械的故障诊断装置及方法
CN105806640A (zh) * 2014-12-30 2016-07-27 广东美的制冷设备有限公司 空调器的故障诊断装置和诊断方法
CN107175691A (zh) * 2017-05-09 2017-09-19 温州市图盛科技有限公司 一种机器人在线故障检测及维护方法
CN107291044A (zh) * 2017-06-23 2017-10-24 深圳市盛路物联通讯技术有限公司 一种机床运行状态的智能监控方法及系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1794124A (zh) * 2005-11-04 2006-06-28 刘宗明 无人维护系统
US20070129009A1 (en) * 2005-12-01 2007-06-07 Electronics And Telecommunications Research Institute Fault management system using satellite telemetering technology and method thereof
US20120296606A1 (en) * 2011-05-17 2012-11-22 International Business Machines Corporation Method, computer program, and system for performing interpolation on sensor data for high system availability
CN202443328U (zh) * 2011-12-29 2012-09-19 沈阳新松机器人自动化股份有限公司 一种具有自我故障诊断功能的家用机器人
CN104062967A (zh) * 2013-03-20 2014-09-24 广州汽车集团股份有限公司 启停系统的故障诊断方法及装置
CN103558806A (zh) * 2013-11-13 2014-02-05 桂林正菱第二机床有限责任公司 一种数控机床的故障处理系统
CN105806640A (zh) * 2014-12-30 2016-07-27 广东美的制冷设备有限公司 空调器的故障诊断装置和诊断方法
CN105404281A (zh) * 2015-12-14 2016-03-16 湖南三一智能控制设备有限公司 工程机械的故障诊断装置及方法
CN107175691A (zh) * 2017-05-09 2017-09-19 温州市图盛科技有限公司 一种机器人在线故障检测及维护方法
CN107291044A (zh) * 2017-06-23 2017-10-24 深圳市盛路物联通讯技术有限公司 一种机床运行状态的智能监控方法及系统

Also Published As

Publication number Publication date
CN107703922A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
WO2019080316A1 (zh) 服务机器人全自动故障分析方法及其装置
RU2658501C2 (ru) Способ и прибор для идентификации типа электронного устройства, подключенного к интеллектуальной розетке
CA2968502C (en) Systems and methods for addressably programming a notification safety device
US10127622B2 (en) Image processing apparatus and robot system
WO2019062620A1 (zh) 考勤方法、装置以及考勤设备
US10186137B2 (en) System, methods and apparatus for a leak detector and monitor
WO2019080315A1 (zh) 服务机器人故障自诊断系统和方法
CN110612521A (zh) 经由单独的客户端设备的自动化助理接口的智能设备配置指导
JP2009133549A (ja) 空気調和機用の通信アダプタ及び空気調和機の制御プログラム更新システム
JP2007166577A5 (zh)
US20160147211A1 (en) Methods, systems, and devices for configuring facility system devices
CN107074377B (zh) 一种控制方法、装置、设备及无人机
JP6195628B2 (ja) 端末装置、制御装置、設置位置確認支援システム、設置位置設定支援システム、設置位置確認支援方法、設置位置設定支援方法、及び、プログラム
EP3349094A1 (en) Method for displaying content and electronic device thereof
US11497823B2 (en) Sterilization management device and methods for operating same
KR102314690B1 (ko) 디바이스의 통신 연결 방법 및 그 장치
JP6310643B2 (ja) エアーコンプレッサのユーザ支援システム及び方法
JP2017118233A5 (zh)
JP6510201B2 (ja) 給湯器リモートコントローラ及びプログラム
CN112076025B (zh) 一种纸尿裤报警装置与系统
KR20210101920A (ko) 서버 장치 및 그의 제어 방법
KR102371215B1 (ko) 배터리의 과충전을 방지하기 위한 방법 및 그 전자 장치
JP2007089897A5 (zh)
CN115480974A (zh) 设备接口的测试方法、设备、电子设备及存储介质
KR102468110B1 (ko) 전자 장치 및 이를 이용한 근거리 무선 통신에서 전자 장치의 전류 소모 감소 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17930154

Country of ref document: EP

Kind code of ref document: A1