WO2019078585A1 - 비반웅성 블소계 화합물 및 이를 포함하는 광중합성 조성물 - Google Patents
비반웅성 블소계 화합물 및 이를 포함하는 광중합성 조성물 Download PDFInfo
- Publication number
- WO2019078585A1 WO2019078585A1 PCT/KR2018/012194 KR2018012194W WO2019078585A1 WO 2019078585 A1 WO2019078585 A1 WO 2019078585A1 KR 2018012194 W KR2018012194 W KR 2018012194W WO 2019078585 A1 WO2019078585 A1 WO 2019078585A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon atoms
- acrylate
- compound
- isocyanate
- group
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
- C07C43/02—Ethers
- C07C43/03—Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
- C07C43/04—Saturated ethers
- C07C43/12—Saturated ethers containing halogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/028—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/245—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
Definitions
- the present application claims the benefit of priority based on Korean Patent Application No. 10-2017-0134212, October 16, 2017, and Korean Patent Application No. 201-20-0122648, October 15, 2018, The entire contents of which are incorporated herein by reference.
- the present invention relates to a non-bioactive fluorine compound having a specific chemical structure, a photopolymerizable composition containing the same, a hologram recording medium, an optical element, and a recording method of a hologram.
- a holographic recording medium (medium) generates a diffraction grating in the hologram recording layer through an exposure process, reads a change in refractive index in the recorded medium, and reads information.
- a photopolymer photopolymer can easily store an optical interference pattern in a hologram by photopolymerization of a low molecular monomer, it can be used as an optical lens, a mirror, a deflection mirror, a filter, a diffusing screen, a diffraction member, a light guide, A holographic optical element having functions of a mask and / or a mask, a medium of an optical memory system and a light diffusing plate, an optical wavelength splitter, a reflection type, and a transmission type color filter.
- the photopolymerizable composition for producing a hologram comprises a polymeric binder, a monomer, and a photoinitiator, and irradiates the photosensitive film containing the hologram recording layer prepared from such a composition with laser interference light to induce photopolymerization of the optional monomer.
- the polymerized portion has a higher refractive index than that of the non-polymerized portion, resulting in a refractive index modulation, and by this refractive index modulation A diffraction grating is generated.
- the refractive index modulation value n is influenced by the thickness of the photopolymerizable layer and diffraction efficiency (DE), and the angle selectivity becomes wider as the thickness becomes thinner.
- DE diffraction efficiency
- various attempts have been made to manufacture a photopolymerizable layer having a small thickness and a large refractive index modulation value, along with a demand for development of a material capable of maintaining a high diffraction efficiency and a stable hologram.
- the present invention aims to provide a non-reactive fluorinated compound having a specific chemical structure.
- the present invention also provides a hologram recording medium including a photopolymerizable layer having a small thickness and a high refractive index modulation value.
- the present invention also provides an optical element including a hologram recording medium.
- the present invention also provides a holographic recording method comprising selectively polymerizing a photo-polymerizable monomer contained in the photopolymerizable composition by electromagnetic radiation.
- the present invention provides a non-bioactive fluorinated compound represented by the following general formula (1) or (2).
- R1 and R2 each represent a terminal blocking group and are independently the same or different and each is an alkyl ester group having 1 to 10 carbon atoms or an alkyl ether group having 1 to 10 carbon atoms which is substituted or unsubstituted with a halogen atom;
- a and B are a single bond or an alkylene group having 1 to 5 carbon atoms
- R3 to R6 each independently represent hydrogen, a halogen atom or an alkyl group having 1 to 5 carbon atoms, at least one of R3 to R6 is a fluorine atom,
- n1 to n3 are each an integer of 1 to 5, and X is an alkylene group having 1 to 10 carbon atoms or an alkyl ether group having 1 to 10 carbon atoms.
- a hologram recording layer formed by the photopolymerizable composition is provided.
- the present specification also provides an optical element including the above-described hologram recording medium. Further, the present specification discloses a method for producing a hologram recording medium, which comprises irradiating actinic radiation to the above-mentioned hologram recording medium to selectively polymerize the photo- A hologram recording method is provided.
- (meth) acrylate is used as a concept including both methacrylate and acrylate.
- hologram means a recording medium on which optical information is recorded in the entire visible range and the near-ultraviolet range (300 to 800 nm) through an exposure process, for example, in-line Gabor), a hologram, an off-axis hologram, a pre-aperture holographic hologram, a white light transmission hologram ("rainbow hologram”), a Denisyuk hologram, a biaxial hologram, Is used as a concept that includes both a visual hologram such as an edge-literature hologram or a holographic stereogram.
- a non-bioactive fluorine compound represented by the following general formula (1) or (2).
- R 1 and R 2 are each a terminal blocking group and are each independently the same or different and is an alkyl ester group having 1 to 10 carbon atoms or an alkyl ether group having 1 to 10 carbon atoms which is substituted or unsubstituted with a halogen atom,
- a and B are each a hydrogen atom, a halogen atom, or an alkyl group having 1 to 5 carbon atoms
- R3 and R6 are the same or different and are each a hydrogen atom, a halogen atom, or an alkyl group having 1 to 5 carbon atoms, R3 Lt; 6 > is a fluorine atom,
- n1 to n3 are the number of repetition of repeating units and are an integer of 1 to 5
- X is alkylene having 1 to 10 carbon atoms
- black is alkylene group having 1 to 10 carbon atoms.
- non-bioactive means that the compound is not compatible with an acrylate-based polyol, an isocyanate, and a photopolymerizable monomer.
- alkyl ether group having 1 to 10 carbon atoms is used as a concept including both an alkoxy group (Alkyl-O-) and an alkylene oxide repeating unit (-Alkylene-O-).
- Such compounds may have a refractive index of less than about 1.45, preferably from about 1.30 to about 1.45, more preferably from about 1.30 to about 1.40, or from about 1.35 to about L40, Lt; / RTI > And, the compound may have a molecular weight of about 300 or more, more preferably about 300 to about 1,000, or about 550 to about 800.
- R3 to R6 are each independently the same or different from each other and represent hydrogen, a halogen atom, or an alkyl group having 1 to 5 carbon atoms, of which at least half consists of a fluorine atom.
- the above-mentioned non-bio-reactive fluorinated compound is preferably a compound represented by the formula
- the non-bioerogical fluorine compound has a fluorine substituent on the carbon constituting the ethylene glycol repeating unit in a form containing an ethylene glycol repeating unit and a blocking group at the terminal.
- These compounds may be prepared by reacting mono-, di-, tri-, tetra- or penta-ethyleneglycol containing 1 to 5 ethylene glycol repeating units containing fluorine as precursors, Can be made through a catalytic reaction that introduces a terminal blocking group into the hydroxy group of the compound.
- the temperature for introducing the ester group or the ether group into the blockade, the catalyst, and the like can be employed without any limitations that are generally used in the technical field to which the present invention belongs.
- an ester group is introduced into a terminal blocking group
- an acyl chloride compound and trimethylamine can be bonded using a base.
- a photoinitiator may be provided.
- the present inventors have found that a hologram formed from a photopolymerizable composition comprising a polymer matrix formed from a specific acrylate-based polyol and an isocyanate compound as described above exhibits greatly improved refractive index modulation values and diffraction efficiencies
- a hologram formed from a photopolymerizable composition comprising a polymer matrix formed from a specific acrylate-based polyol and an isocyanate compound as described above exhibits greatly improved refractive index modulation values and diffraction efficiencies
- the above-described non-protonic fluorine compound in addition to the matrix component, by maximizing the difference in refractive index between the exposed portion and the non-exposed portion, sensitivity to recording light is increased , And thus the recording efficiency can be remarkably increased.
- the polymer matrix may serve as a support for the final product, such as the photopolymerizable composition and the film produced therefrom,
- the refractive index can serve as a portion having a different refractive index to enhance the refraction.
- the polymer matrix may include a copolymerization product between an acrylate-based polyol and a compound containing at least one isocyanate group.
- the precursor of the polymer matrix may include a monomer or an oligomer forming the polymer matrix, and specifically, a compound containing the acrylate-based polyol and at least one isocyanate group.
- the acrylate-based polyol is preferably an alkyl acrylate having an alkyl group having 1 to 5 carbon atoms; And a repeating unit derived from a hydroxyalkyl acrylate having 1 to 5 carbon atoms in the alkyl group, and having an OH equivalent of about 1000 to about 2000 g / md and a weight average molecular weight of about 600,000 To about 800,000.
- alkyl acrylate component having 1 to 5 carbon atoms in the alkyl group as the monomer for constituting the above acrylate repeating unit examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate , Butyl (meth) acrylate, and pentyl (meth) acrylate.
- hydroxyalkyl acrylate monomer having 1 to 5 carbon atoms in the alkyl group examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) .
- the hydroxyalkyl acrylate may be used in an amount of about 1 to about 15 parts by weight based on 100 parts by weight of the alkyl acrylate in view of controlling the OH equivalent of the polyol, It may be most desirable to use as part.
- the compound containing at least one isocyanate group may be a known compound having an average of at least one NCO functional group per molecule or a condensate thereof, And may be a compound containing at least one isocyanate group.
- the isocyanate compound may be an aliphatic, cycloaliphatic, aromatic or aromatic aliphatic mono-isocyanate di-isocyanate, tri-isocyanate or poly-isocyanate; Or oligo- isocyanates of diisocyanates or triisocyanates having urethane, urea, carbodiimide, acyl urea, isocyanurate, allophanate, biuret, oxadiazinetrione, uretdione or iminooxadiazine dione structures Or poly-isocyanate.
- the compound containing at least one isocyanate group include at least one compound selected from butanetriene diisocyanate, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 1,8-diisocyanato-4- (isocyanatoethyl ) Octane, 2,2,4- and / or 2,4,4-trimethylnucleosamethylene diisocyanate, isomeric bis (4,4'-isocyanatocyclohexyl) methane and any of its common compound, isocyanatomethyl-1,8-octane diisocyanate, 1,4-cyclohexane nucleus xylene diisocyanate, isomers cycloalkyl nucleic acid di-diisocyanate, 1,4-phenylene diisocyanate, 2,4-and / Or 2,6- can be reacted with a diene compound such as rubrene diisocyan
- the polyol that forms the polymer matrix by counteracting the compound containing at least one isocyanate group may further include other diols, triols or polyols in addition to the acrylate-based polyols described above. More specifically, polyols which form a polymer matrix by reaction with a compound containing at least one isocyanate group, include aliphatic aromatic diols, triols or polyols having 2 to 20 carbon atoms; An alicyclic diol having 4 to 30 carbon atoms, a triol or a polyol, and an aromatic diol, a triol or a polyol having 6 to 30 carbon atoms.
- the isocyanate compound in view of the matrix crosslinking control of the polyol component and the isocyanate component, may be used in an amount of about 5 to about 50 parts by weight based on 100 parts by weight of the acrylate-based polyol, About 10 to about 30 parts by weight may be used.
- the photopolymerizable composition may further include a polyol other than the acrylate-based polyol to more easily control the crosslinking point in the polymer matrix of the hologram and further increase the degree of crosslinking of the polymer matrix.
- the hologram produced from the photopolymerizable composition of this embodiment can have a high refractive index modulation value and diffraction efficiency even in a thin thickness range.
- diols examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4- Glycol, 2-ethyl-2-butylpropanediol, trimethylpentanediol, diethyloctanediol positional isomer, 1,3-butylene glycol, a cyclic nucleic acid diol, 1,4-cyclohexanedic acid dimethanol, , 1,2- and 1,4-cyclohexanediyl, hydrogenated bisphenol A (2,2-bis (4-hydroxycyclohexyl) propane), 2,2- Dimethyl-3-hydroxypropionate.
- triols examples include trimethyl ether, trimethylol propane, and glycerol.
- Suitable highly functional alcohols are ditrimethyl propane, pentaerythritol, dipentaerythritol or sorbic acid.
- the polyol also includes aliphatic and cycloaliphatic polyols of relatively high molecular weight, such as polyester polyols, such as polyether polyols, polycarbonate polyols, hydroxy-functional acrylic resins, hydroxy-functional polyurethanes, Functional epoxy resin and the like can be used.
- polyester polyols such as polyether polyols, polycarbonate polyols, hydroxy-functional acrylic resins, hydroxy-functional polyurethanes, Functional epoxy resin and the like can be used.
- the polyester polyol may be, for example, ethanediol, di-, tri- or tetraethylene glycol, 1,2-propanediol, di-, tri- or tetrapropyleneglycol, 1,3-propanediol, 1,3-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,6-nucleic acid diol, 2,2-dimethyl-1,3-propanediol, 1,4-dihydroxycyclo- , 1,4-dimethylolcyclo-nucleic acid, 1,8-octanediol, 1,10-decanediol, 1,12-dodecanediol or a mixture thereof, optionally using tri-
- higher functional polyols such as glycine
- other polyols such as succinic acid, glutaric acid, adipic acid, pimelic
- di- and polyhydroxy compounds of cyclic aliphatic and / or aromatic are also suitable as polyhydric alcohols for the preparation of polyester polyols.
- the free polycarboxylic acid it is also possible to use a polycarboxylic acid anhydride or polycarboxylate of lower alcohol or a polycarboxylate thereof, or a mixture thereof, in the production of polyester.
- Polyester polyols that can be used in the synthesis of the polymer matrix also include mono- or copolymers of lactones, which are preferably lactones such as butyrolactone, epsilon -caprolactone and / or methyl- epsilon -caprolactone Or with a suitable bifunctional and / or higher functional initiator molecule, such as the above-mentioned small molecular weight polyhydric alcohols, for example, polyester polyesters as lactosynthesis components.
- lactones which are preferably lactones such as butyrolactone, epsilon -caprolactone and / or methyl- epsilon -caprolactone Or with a suitable bifunctional and / or higher functional initiator molecule, such as the above-mentioned small molecular weight polyhydric alcohols, for example, polyester polyesters as lactosynthesis components.
- the polycarbonate having a hydroxyl group is also suitable as a polyhydroxy component for prepolymer synthesis, for example, a diol such as 1,4-butanediol and / or 1,6-nucleic acid diol and / or 3-methyl
- a diol such as 1,4-butanediol and / or 1,6-nucleic acid diol and / or 3-methyl
- diaryl carbonates such as diphenyl carbonate, dimethyl carbonate or phosgene.
- the polyether polyol which can be used for the synthesis of the polymer matrix may be, for example, a polyaddition product of styrene oxide, ethylene oxide, propylene oxide, tetrahydrofuran, butylene oxide and epichlorohydrin, Those obtained by polycondensation of polyhydric alcohols and polyhydric alcohols, amines and amino alcohols obtained by condensation of condensation products and graft products, and polyhydric alcohols or condensates thereof.
- the polyether polyols include a number-average molecular weight of between 1.5 and 6 and an OH functionality of 200 to 18000 g / mole, preferably an OH functionality of 1.8 to 4.0 and a number-average molecular weight of 600 to 8000 g / mole , Particularly preferably an OH functionality of from 1.9 to 3.1 and a number average molecular weight of from 650 to 4500 g / mol, Poly (propylene oxide), poly (ethylene oxide), and combinations thereof, or poly (tetrahydrofuran) in the form of block copolymers, and mixtures thereof.
- the photopolymerizable composition includes a non-reactive fluorinated compound represented by the following general formula (1) or (2).
- R @ 2 is a group of formula --NR @ 2 R @ 2,
- the end capping groups each independently represent the same or differently, halogen atoms, substituted or unsubstituted, an ether group in the alkyl group having 1 to 10 carbon atoms or an alkyl ester group having 1 to 10 carbon atoms in the, "
- a and B are a single bond or an alkylene group having 1 to 5 carbon atoms
- R3 to R6 each independently represent hydrogen, a halogen atom or an alkyl group having 1 to 5 carbon atoms, at least one of R3 to R6 is a fluorine atom,
- n1 to n3 each represent a repetition number of repeating units each of which is an integer of 1 to 5;
- X is alkylene of 1 to 10 carbon atoms; and
- black is alkylene group of 1 to 10 carbon atoms.
- the sensitivity to recording light can be increased, and thus the recording efficiency can be remarkably increased.
- the non-reactive fluorinated compound may have a refractive index of less than about 1.45, preferably about L30 to about 1.45, more preferably about
- the non-bio-reactive fluorine compound may be prepared by reacting the acrylate- Can serve to improve the dispersibility and flexibility of the isocyanate-based polymer matrix. That is, since the non-reactive fluorinated compound has no reactivity with respect to acrylate-based polyesters, isocyanates and other photoreactive monomers, the non-reactive fluorinated compounds may exist in the matrix while maintaining their inherent properties. Can be appropriately controlled so as to improve the photopolymerization efficiency at the time of exposure.
- the photoreactive monomer may include a polyfunctional (meth) acrylate monomer or a monofunctional (meth) acrylate monomer.
- the monomer is polymerized to increase the refractive index at a portion where the polymer is relatively present, and at the portion where the polymer binder is relatively present, the refractive index is relatively lowered, , And the diffraction grating is generated by such refractive index modulation.
- Examples of the photoreactive monomer include polyfunctional (meth) acrylate monomers having a refractive index of 1.5 or more.
- the multifunctional (meth) acrylate monomers having a refractive index of 1.5 or more include halogen atoms (bromine, iodine, etc.) ), Phosphorus (P), or an aromatic ring.
- Is not less than the refractive index of 1.5-functional (meth) acrylate monomer A more specific example of a "roneun bisphenol A modified diacrylate series, fluorene acrylate-based, bisphenol fluorene epoxy acrylate-based (such as HR6100, HR6060, HR6042 - Miwon ⁇ ), Halogenated epoxy acrylate series (HR1139, HR3362, etc. - Miwon).
- Another example of the above photo-labile monomers includes monofunctional (meth) acrylate monomers.
- the monofunctional (meth) acrylate monomer may include an ether bond and a fluorene functional group in the molecule.
- the monofunctional (meth) acrylate monomer examples include phenoxybenzyl (meth) acrylate, (meth) acrylate, benzyl (meth) acrylate, 2- (phenylcyano) ethyl (meth) acrylate, or biphenylmethyl (meth) acrylate.
- the optically maleic monomer may have a weight average molecular weight of 50 to 1000, or 200 to 600.
- the weight average molecular weight means the weight average molecular weight in terms of polystyrene measured by GPC method.
- the photopolymerizable composition of the embodiment includes a photoinitiator.
- the photoinitiator is a compound that is activated by light or actinic radiation and initiates polymerization of a compound containing a photoactive functional group, such as the photo-labile monomer.
- photoinitiator conventionally known photoinitiators can be used without any limitation, and specific examples thereof include a photo radical polymerization initiator and a photo cationic polymerization initiator. .
- photoradical polymerization initiator examples include imidazole derivatives, bisimidazole derivatives, N-arylglycine derivatives, organic azide compounds, titanocene, aluminate complexes, organic peroxides, N-alkoxypyridinium salts, And derivatives thereof.
- examples of the photo-radical polymerization initiator include 1,3-di (t-butyldioxycarbonyl) benzophenone, 3,3 ', 4,4'-tetrakis (t-butyldioxycarbonyl) benzophenone, 2-mercapto benzimidazole, bis (2,4,5-triphenyl) imidazole, 2,2-dimethoxy-1,2-diphenylethane-1 -one (product name: Irgacure 651 1 manufactured by BASF) -ketone (product name: Irgacure 184 7 manufactured by BASF), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (trade name: Irgacure 369 / , 4-cyclopentadiene-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole-1-phenyl) titanium (product name: Irgacure 784, manufactured by
- Examples of the cationic ion-generating initiator include diazonium salts, sulfonium salts, and iodonium salts, and examples thereof include sulfonic acid esters, imidosulfonates, dialkyl- ( ⁇ 6-benzene) ( ⁇ 5-cyclopentadienyl) iron ( ⁇ ), and the like can be given as examples of the silane-aluminum complex. Also, benzoin tosylate, 2,5-dinitrobenzyl tosylate, n-tolylphthalic acid imide and the like can be mentioned.
- the cationic polymerization More specific examples of the initiator include Cyracure UVI-6970, Cyracure UVI-6974 and Cyracure UVI-6990 (manufactured by Dow Chemical Co. in USA), Irgacure 264 and Irgacure 250 (manufactured by BASF) or CIT-1682 Soda) and the like.
- the photopolymerizable composition of this embodiment may contain one molecule (Type I)
- Type [pi] initiator may also be used.
- (Type I) systems for such free radical photopolymerisation are, for example, aromatic ketone compounds in combination with tertiary amines such as benzophenone, alkylbenzophenone, 4,4'-bis (dimethylamino) benzophenone (Michler's ) ≪ / RTI > ketones), anthrone and halogenated benzophenone or mixtures of this type.
- bis (type ⁇ ) initiator examples include benzoin and derivatives thereof, benzyl ketal, acylphosphine oxide such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bisacylphosphine oxide, phenylglycine (4-phenylthio) phenyl] octane-1,2-dione 2- (0-benzoyloxime) and alpha-aminopyrimidine -Hydroxyalkylphenone, and the like.
- acylphosphine oxide such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide
- bisacylphosphine oxide phenylglycine (4-phenylthio) phenyl] octane-1,2-dione 2- (0-benzoyloxime)
- alpha-aminopyrimidine -Hydroxyalkylphenone alpha-aminopyrimidine -Hydroxy
- the photopolymerizable composition comprises A) a polymer matrix or precursor thereof
- a photoinitiator of about 0.1 to about 10 parts by weight 0 / may include, preferably, the polymer matrix or precursor thereof from about 30 to about 70 parts by weight 0/0; The non-fluorine-based compound male half about 5 to about 35 parts by weight 0/0, the male flare monomer, about 20 to about 60 weight 0/0; And from about 0.1% to about 10% by weight of a photoinitiator.
- the photopolymerizable composition when the photopolymerizable composition further comprises an organic solvent, the content of the above-mentioned components is based on the total of these components (the sum of the components excluding the organic solvent).
- the photopolymerizable composition may further include a plasticizer.
- the plasticizer may play a role of controlling the melting point, flexibility, toughness, diffusion degree of the monomer, and processability of each component contained in the composition.
- Such plasticizers specifically include, for example, polyalkyl ether plasticizers including phthalate plasticizer : poly (ethylene oxide) methyl ether and the like, including dibutyl phthalate and the like, An alkylamide-based plasticizer containing ⁇ , N-dimethylformamide and the like, a cyclic nucleic acid dicarboxylic acid-based plasticizer including a cyclic nucleic acid dicarboxylic acid diisononyl ester, a phosphorus plasticizer including tributyl phosphate, And a citrate-based plasticizer.
- the plasticizer is distinguished from the solvent in that it remains in the holographic storage medium and controls the physical properties of each polymer component.
- the above-described non-biofunctional fluorine compound and plasticizer component can improve the flexibility of a polyurethane-based polymer matrix having a specific structure formed by the reaction of an acrylate-based polyol and an isocyanate, and in particular, It is possible to maximize the dispersibility of the photo-labile monomer in the photopolymerizable monomer and to directly increase the contrast of the hologram formed by diffusing into the vacancy in the interference pattern without directly participating in the polymerization of the photo- .
- the photopolymerizable composition may further include a photo-sensitizing dye.
- the photo-sensitizing dye acts as an enhancer dye for increasing or decreasing the photoinitiator. More specifically, the photoinitiator dye is stimulated by light irradiated to the photopolymer composition to serve as an initiator for initiating polymerization of the monomer and the crosslinking monomer can do.
- the photopolymerizable composition is a light sensitive dye 0.01. To 30 it can be included by weight 0/0, or from 0.05 to 20 parts by weight 0/0.
- the examples of the photosensitive dye are not limited to a wide variety, and a variety of commonly known compounds can be used.
- Specific examples of the light-sensitive dye include sulfonium derivatives of ceramidonine, new methylene blue, thioerythrosine triethylammonium, 6-acetylamino-2-methylserine But are not limited to, 6-acetylamino-2-methylceramidonin, eosin, erythrosine, rose bengal, thionine, baseic yellow, Pinacyanol chloride ), Rhodamine 6G, gallocyanine, ethyl violet, Victoria blue R, Celestine blue, QuinaldineRed : Crystal violet, (crystal violet), Brilliant Green (Brilliant Green), AstraZone (GI), orange G (dark red), pyronin Y, basic red 29, pyrylium iodide, safranin O, Cyanine, methylene blue, Azure A, or
- the photopolymerizable composition may further include an organic solvent.
- organic solvent include ketones, alcohols, acetates and ethers, and mixtures of two or more thereof.
- Such an organic solvent include ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetylacetone or isobutyl ketone; Alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butane, i-butanol or t-butanol; Ethyl acetate, i-propyl acetate, or polyethylene glycol monomethyl ether acetate; Ethers of tetrahydrofuran or propylene glycol monomethyl ether; Or a mixture of two or more of these.
- ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetylacetone or isobutyl ketone
- Alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butane, i-butanol or t-butan
- the organic solvent may be added to the photopolymerizable composition at the time when the respective components contained in the photopolymerizable composition are mixed, or may be added to the photopolymerizable composition while the components are dispersed or mixed in the organic solvent. If the content of the organic solvent in the photopolymerizable composition is too small, the flowability of the photopolymerizable composition may be lowered, resulting in defects such as streaks in the finally produced film. Also, when the organic solvent is excessively added, the solid content is lowered, and the coating and film formation are not layered, so that the physical properties and surface properties of the film may be deteriorated, and defects may occur during the drying and curing process . have. Accordingly, the photopolymerizable composition is a concentration of the total solid content of 1% to 70 parts by weight 0/0 by weight of the components contained or 2 to
- the photopolymerizable composition may further include other additives, a catalyst, and the like.
- the photopolymerizable composition may comprise a catalyst commonly known for promoting polymerization of the polymer matrix or the photo-labile monomer.
- the catalyst include tin octanoate, zinc octanoate, dibutyltin dilaurate, dimethylbis [0-oxoneodecyl) oxy] stannane, dimethyltin dicarboxylate, zirconium bis Eate), zirconium acetylacetonate or tertiary amines such as 1,4-diazabicyclo [2.2.2] octane, Diazabicyclo- nonane, diazabicyclo- decane, 1,1,3,3-tetramethylguanidine, 1,3,4,6,7,8-Nucleic acid hydro-1-methyl-2H-pyrimido (1,2 -a) pyrimidine, and the like.
- the use of the photopolymerizable composition of this embodiment can provide a hologram that can achieve a significantly improved refractive index modulation value and a high diffraction efficiency compared to a previously known hologram having a thinner thickness.
- the hologram recording medium can realize a refractive index modulation value (n) of 0.009 or more or 0.010 or more even at a thickness of 30 to 30 nm.
- the remaining components except for the compound containing at least one isocyanate group forming the polymer matrix or its precursor are homogeneously homogenized and mixed, and the compound containing at least one isocyanate group is later mixed with the catalyst to form a hologram You can prepare for the course.
- the photopolymerizable composition according to one embodiment of the present invention can be used without any limitation, such as a conventionally known stirrer, a stirrer, or a mixer, and the temperature in the mixing process is preferably 0 to 100 ° C it may be 10 to 80 ° C, particularly preferably 20 to 60 ° C.
- the remaining components other than the compound containing at least one isocyanate group forming the polymer matrix or its precursor are first homogeneously homogenized and mixed, and then, at the time of adding the compound containing at least one isocyanate group,
- the composition may be a liquid formulation that is cured at a temperature of 20 or more.
- the photopolymerization may be injected into a predetermined substrate or mold or coated.
- a method of introducing a visual hologram to a hologram recording medium manufactured from the photopolymerizable composition can be used without any limitations in a conventionally known method, and the method described in the holographic recording method of the embodiment to be described later is adopted as an example .
- a recording method of a hologram comprising the step of selectively irradiating the hologram recording medium with actinic radiation to selectively polymerize the optically maleic monomer.
- a visual hologram can be recorded on media provided through the process of shaking and curing the photopolymerizable composition, using known devices and methods under commonly known conditions.
- an optical element including a hologram recording medium can be provided.
- the optical element include a holographic optical element having a function of an optical lens, a mirror, a deflecting mirror, a filter, a diffusion screen, a diffraction member, a light guide, a waveguide, a projection screen and / A diffusion plate, a light wavelength splitter, a reflection type, and a transmission type color filter.
- An example of an optical element including a commercial hologram recording medium is a hologram display device.
- the hologram display device includes a light source unit, an input unit, an optical system, and a display unit.
- the light source unit irradiates a laser beam used for providing, recording, and reproducing three-dimensional image information of an object in an input unit and a display unit.
- the input unit is a part for preliminarily inputting three-dimensional image information of an object to be recorded on the display unit.
- three-dimensional information of an object such as the intensity and phase of light by space is stored in an electrically driven liquid crystal SLM Can be input, and the input range can be used at this time.
- the optical system may include a mirror, a polarizer, a universal splitter, a pan shutter, a lens, and the like.
- the optical system includes an input beam for transmitting a laser beam emitted from the light source unit to an input unit, It can be distributed by starting.
- the display unit receives three-dimensional image information of an object from an input unit, records the three-dimensional image information on an hologram plate composed of an optically addressed SLM (SLM), and reproduces a three-dimensional image of the object.
- SLM optically addressed SLM
- the three-dimensional image information of the object can be recorded through the interference between the input beam and the reference beam.
- the three-dimensional image information of the object recorded on the hologram plate can be reproduced as a three-dimensional image by the diffraction pattern generated by the read beam, and the erase beam can be used to quickly remove the formed diffraction pattern.
- the hologram plate can be moved between a position at which the 3D image is input and a position at which the 3D image is reproduced.
- a photopolymerizable composition capable of more easily providing a hologram recording layer having a thin thickness and a greatly improved refractive index modulation value and a high diffraction efficiency, a hologram recording medium including a hologram recording layer formed by the composition , An optical element including the hologram recording medium, and selectively polymerizing the photopropionic monomer contained in the composition by actinic radiation.
- the 589 nm refraction of the liquid product was measured to be 1.37 using an Abbe refractometer.
- a plasticizer tributyl phosphate, TBP, Sigma Aldrich
- a photo-polymerizable monomer (1 to 2 functional acrylate, HR6042, MIWON, refractive index: 1.600
- the non-bioactive fluorine compound is the non-bioactive fluorine compound
- Photoinitiator 1 (Ebecryl P-115, SK entis),
- Photoinitiator 2 (Borate V, Spectra group)
- Photoinitiator 3 (irgacure 250, BASF), and
- DBTDL dibutyltin dilaurate
- the above prepared photo-polymeric composition was coated with 7 ratios of triacetylcell of 80 ? Eta thickness on a TAC substrate using a meyer bar and cured at 40 ° C for 30 minutes.
- the sample was allowed to stand for at least 24 hours in a dark room under constant temperature and humidity conditions at about 25 ° C and about 50% relative humidity.
- the hologram recording medium coated surface prepared in each of the above-described embodiment and comparative example was laminated to a slide glass, and the laser was fixed so as to pass through the glass surface in advance during recording.
- 10 is the recording light intensity (mW / cin 2) and, PD is output quantity of the transmitted beam and the output quantity (mW / cuf) of the diffracted beam, PT is recorded a sample of the sample after recording (mW / ciif).
- Table 1 The measurement results are summarized in Table 1 below.
- the non-bioactive fluorinated compound prepared according to the present example was dissolved in a mixture of poly (isocyanate) and isophthalic acid It has been found that the photopolymer composition used with the maleic monomer can provide a hologram that achieves a high diffraction efficiency with a large refractive index modulation value (?) Compared to the comparative example.
- the plasticizer component and the non-bioactive fluorine compound of the present invention are used at the same time, due to securing the flowability of the components in the polymer matrix and the movement of the non-reactive low refractive materials (non-reactive fluorine compound and plasticizer) We can clearly see that sleeping efficiency can be achieved.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Holo Graphy (AREA)
Abstract
본 발명은, 아크릴레이트계 폴리올 및 1이상의 이소시아네이트기를 포함한 화합물 간의 반응 생성물을 포함하는 고분자 매트릭스 또는 이의 전구체; 광반응성 단량체; 특정 화학식으로 표시되는 비반응성 불소계 화합물 및 광개시제;를 포함하는 광중합성 조성물과 상기 조성물로부터 제조된 홀로그램 기록 매체와 상기 홀로그램 기록 매체를 포함한 광학 소자와 상기 광중합성 조성물을 이용한 홀로그램 기록 방법에 관한 것이다.
Description
【발명의 명칭】
비반웅성 불소계 화합물 및 이를 포함하는 광중합성 조성물
【기술분야】
관련 출원 (들ᅵ과의 상호 인용
본 출원은 2017년 10월 16일자 한국 특허 출원 제 10-2017-0134212 호 및 2018년 10월 15일자 한국 특허 출원 제 ίθ-2018-0122648 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 특정 화학 구조를 가지는 비반웅성 불소계 화합물, 이를 포함하는 광중합성 조성물, 홀로그램 기록 매체, 광학 소자, 및 홀로그램의 기록 방법에 관한 것이다. 【배경기술】
홀로그램 기록 매체 (holographic recording media, medium)는, 노광 과정을 통하여 홀로그램 기록층 내 회절 격자를 생성하고, 기록된 매체 내 굴절률의 변화를 읽어들여 정보를 판독한다.
광중합성 수지 (photopolymer)는, 저분자 단량체의 광중합에 의하여 광 간섭 패턴을 홀로그램으로 용이하게 저장할 수 있기 때문에, 광학 렌즈, 거울, 편향 거울, 필터, 확산 스크린, 회절 부재, 도광체, 도파관, 영사 스크린 및 /또는 마스크의 기능을 갖는 홀로그래픽 .광학 소자, 광메모리 시스템의 매질과 광확산판, 광파장 분할기, 반사형, 투과형 컬러필터 등 다양한 분야에 사용될 수 있다.
통상적으로 홀로그램 제조용 광중합성 조성물은 고분자 바인더, 단량체 및 광개시제를 포함하며, 이러한 조성물로부터 제조된 홀로그램 기록층을 포함하는 감광성 필름에 레이저 간섭광을 조사하여 선택적인 단량체의 광중합을 유도한다.
광중합 과정에서 단량체가 중합된 부분은 비중합부에 비해 굴절율이 높아지고, 이에 따라 굴절율 변조가 생기게 되며, 이러한 굴절율 변조에 의해서
회절 격자가 생성된다. 굴절율 변조값 n은 광중합성층의 두께와 회절효을 (DE)에 영향을 받으며, 각도 선택성은 두께가 얇을수록 넓어지게 된다. 최근에서는 높은 회절효율과 안정적으로 홀로그램을 유지할 수 있는 재료의 개발에 대한 요구와 함께, 얇은 두께를 가지면서도 굴절율 변조값이 큰 광중합성층의 제조를 위한 다양한 시도가 이루어지고 있다.
【발명의 상세한 설명】
【기술적 과제】
본 발명은, 특정 화학 구조를 가지는, 비반응성 불소계 화합물을 제공하고자 한다.
또한, 상기 비반웅성 불소계 화합물을 포함하며, 얇은 두께를 가지면서도 굴절율 변조값이 큰 광중합성춤을 보다 용이하게 제공할 수 있는 광중합성 조성물을 제공하고자 한다.
또한, 본 발명은 얇은 두께를 가지면서도 굴절율 변조값이 큰 광중합성층을포함한홀로그램 기록 매체를 제공하고자 한다.
또한, 본 발명은 홀로그램 기록 매체를 포함한 광학 소자를 제공하고자 한다.
또한, 본 발명은 전자기 방사선에 의해 상기 광중합성 조성물에 포함된 광반웅성 단량체를 선택적으로 중합시키는 단계를 포함하는, 홀로그래픽 기록 방법을 제공하고자 한다.
【기술적 해결방법】
본 명세서는, 하기 화학식 1 또는 2로 표시되는, 비반웅성 불소계 화합물을 제공한다.
하기 화학식 1 또는 2로 표시되는, 비반응성 불소계 화합물:
[화학식 1]
[화학식 2]
R^iC^R^O-C^R^^-X-iC^R^O-C^R^na-R2
상기 화학식 1 또는 2에서,
R1 및 R2는, 말단 봉쇄기로, 각각 독립적으로 동일하거나 상이하게, 할로겐 원자로 치환 또는 비치환된, 탄소수 1 내지 10의 알킬에스터기 또는 탄소수 1 내지 10의 알킬에터기이고;
A 및 B는, 단순 결합, 또는 탄소수 1 내지 5의 알킬렌 그룹이고,
R3 내지 R6은, 각각 독립적으로, 서로 동일하거나 상이하게, 수소, 할로겐 원자, 또는, 탄소수 1 내지 5의 알킬기로, R3 내지 R6 중 적어도 하나는 플루오르 원자이며,
nl 내지 n3는 반복 단위의 반복 수로, 각각 1 내지 5의 정수이고, X는, 탄소수 1 내지 10의 알킬렌, 혹은 탄소수 1 내지 10의 알킬에터기이다.
또한, 본 명세서는,
A)
i) OH 당량이 lOOOg/mol 이상이고, 중량 평균 분자량이 500,000 이상인, 아크릴레이트계 폴리올; 및
ii) 이소시아네이트 화합물;의 반웅 생성물을 포함하는;
고분자 매트릭스 또는 이의 전구체;
B) 상술한 비반웅성 불소계 화합물;
C) 광반응성 단량체; 및
D) 광 개시제를 포함하는, 광중합성 조성물을 제공한다. 또한, 본 명세서는,
상기 광중합성 조성물에 의해 형성되는 홀로그램 기록층을 포함하는, 홀로그램 기록 매체를 제공한다. 또한, 본 명세서는, 상술한 홀로그램 기록 매체를 포함하는, 광학 소자를 제공한다. 또한, 본 명세서는, 상술한 홀로그램 기록 매체에 활성 방사선을 조사하여, 광반웅성 단량체를 선택적으로 중합하는 단계를 포함하는,
홀로그램의 기록 방법을 제공한다. 본 명세서에서, (메트)아크릴레이트는 메타크릴레이트 또는 아크릴레이트를 모두 포함하는 개념으로 사용된다.
또한, 본 명세서에서, 홀로그램 (hologram)이라 함은, 노광 과정을 통하여 전체 가시 범위 및 근자외선 범위 (300-800 nm)에서 광학적 정보가 기록된 기록 매체를 의미하며, 예를 들어 인 -라인 (가버 (Gabor)) 홀로그램, 이축 (off-axis) 홀로그램, 완전 -천공 (f ll-aperture) 이전 홀로그램, 백색광 투과 홀로그램 ("무지개 홀로그램") , 데니슈크 (Denisyuk) 홀로그램, 이축 반사 홀로그램, 엣지- 리터러츄어 (edge-literature) 홀로그램 또는 홀로그래피 스테레오그램 (stereogram) 등의 시각적 홀로그램 (visual hologram)을 모두 포함하는 개념으로 사용된다. 이하, 본 발명을 상세하 설명한다. 먼저, 본 발명의 일 측면에 따르면, 하기 화학식 1 또는 2로 표시되는, 비반웅성 불소계 화합물이 제공된다.
하기 화학식 1 또는 2로 표시되는, 비반응성 불소계 화합물:
[화학식 1]
[화학식 2]
R'-(CR3R4-0-CR5R6)n2-X-(CR3R4-0-CR5R6)n3-R2
상기 화학식 1 또는 2에서,
R1 및 R2는, 말단 봉쇄기로, 각각 독립적으로 동일하거나 상이하게, 할로겐 원자로 치환 또는 비치환된, 탄소수 1 내지 10의 알킬에스터기 또는 탄소수 1 내지 10의 알킬에터기이고,
A 및 B는, 단순 결합, 또는 탄소수 1 내지 5의 알킬렌 그룹이고, R3 내지 R6은, 각각 독립적으로, 서로 동일하거나 상이하게, 수소, 할로겐 원자, 또는, 탄소수 1 내지 5의 알킬기로, R3 내지 R6 중 적어도 하나는 플루오르 원자이며,
nl 내지 π3는 반복 단위의 반복 수로, 각각 1 내지 5의 정수이고,
X는, 탄소수 1 내지 10의 알킬렌, 흑은 탄소수 1 내지 10의 알킬에터기이다.
본 명세서에서, 상기와 같은 화합물이 비반웅성이라 함은, 후술하는, 아크릴레이트계 폴리올, 이소시아네이트, 및 광반웅성 단량체 등과 반웅하지 않는다는 의미로 사용된다.
그리고, 본 명세서에서, 탄소수 1 내지 10의 알킬에터기라 함은, 알콕시 그룹 (Alkyl-O-)이나 알킬렌 옥시드 반복 단위 (-Alkylene-O-)를 모두 포함하는 개념으로 사용된다.
상기와 같은 화합물은, 그 특유의 화학 구조로 인하여, 굴절를이 약 1.45 미만, 바람직하게는, 약, 1.30 내지 약 1.45일 수 있으며, 더욱 바람직하게는 약 1.30 내지 약 1.40, 또는 약 1.35 내지 약 L40일 수 있다. 그리고, 상기 화합물은, 분자량이 약 300 이상인 것일 수 있으며, 더욱 바람직하게는 약 300 내지 약 1,000, 또는 약 550 내지 약 800일 수 있다. 상기 화학식에서, R3 내지 R6은, 각각 독립적으로, 서로 동일하거나 상이하게, 수소, 할로겐 원자, 또는, 탄소수 1 내지 5의 알킬기로, 그 중 절반 이상이 반드시 플루오르 원자로 구성된 것일 수 있다. 그리고, 상기 비반웅성 불소계 화합물은, 바람직하게는, 하가 화학식
3으로 표시되는 반복 단위를 포함하는 것일 수 있다.
[화학식 3]
-(CF2-0-CF2)- 상기 비반웅성 불소계 화합물은, 에틸렌 글리콜 반복 단위와, 말단에 봉쇄기를 포함하는 형태로, 에틸렌 글리콜 반복 단위를 구성하는 탄소에 반드시 플루오르 치환기를 가지게 된다. 이러한 화합물은, 플루오르를 포함하는 에틸렌 글리콜 반복 단위를, 1 내지 5개로 포함하는, 모노-, 디-, 트리-, 테트라-, 또는 펜타-에틸렌 글리콜 (fluorinated -ethyleneglycol)을 전구체로 하고, 해당 전구체 화합물의 히드록시기에, 말단 봉쇄기를 도입하는 촉매 반웅을 통해 만들어질 수 있다.
이 때, 에스터 그룹 혹은, 에테르 그룹을 봉쇄기로 도입하기 위한 온도, 및 촉매 등은, 본 발명이 속하는 기술 분야에서 일반적으로 사용되는 것을 별다른 제한 없이 채용할 수 있다. 구체적으로, 에스터 그룹을 말단 봉쇄기로 도입하는 경우, 아실 클로라이드 화합물과 트리메틸아민을 염기로 이용하여 결합시킬 수 있으며, 에테르 그룹을 말단 봉쇄기로 도입하는 경우, 알콕시 클로라이드 화합물과 NaH 등을 이용하여, 플루오르를 포함하는 에틸렌 글리콜 전구체에 봉쇄기로 결합시킬 수 있다. 또한, 발명의 일 구현예에 따르면,
A)
i) OH 당량이 1000g/mol 이상이고, 중량 평균 분자량이 500,000 이상인, 아크릴레이트계 폴리올; 및
ii) 이소시아네이트 화합물;의 반웅 생성물을 포함하는;
고분자 매트릭스 또는 이의 전구체;
B) 상술한 비반웅성 불소계 화합물;
C) 광반응성 단량체; 및
D) 광 개시제를 포함하는, 광중합성 조성물이 제공될 수 있다. 본 발명자들은, 상기와 같은 특정 아크릴레이트계 폴리을과 이소시아네이트 화합물로부터 형성되는 고분자 매트릭스를 포함한 광중합성 조성물로부터 형성되는 홀로그램이 보다 얇은 두께 범위에서도 이전에 알려진 홀로그램에 비하여 크게 향상된 굴절율 변조값 및 회절 효율을 구현할 수 있다는 점을 실험을 통하여 확인하였으며, 또한, 이러한 매트릭스 성분에 더하여 상술한 비반웅성 불소계 화합물을 사용하는 경우, 노광 부분과 비노광 부분의 굴절률 차이를 극대화 사킴으로써, 기록광에 대한 감도를 높이고, 이에 따라 기록 효율을 현저하게 상승시킬 수 있다는 점을 실험을 통하여 확인하고, 본 발명을 완성하였다. 상기 고분자 매트릭스는 상기 광중합성 조성물 및 이로부터 제조된 필름 등의 최종 제품의 지지체 역할을 할 수 있으며, 상기 광중합성
조성물로부터 형성된 홀로그램에서는 굴절률이 상이한 부분으로써 굴절를 변조를 높이는 역할을 할 수 있다.
상술한 바와 같이, 상기 고분자 매트릭스는 아크릴레이트계 폴리을 및 1 이상의 이소시아네이트기를 포함한 화합물 간의 반웅 생성물을 포함할 수 있다. 이에 따라, 상기 고분자 매트릭스의 전구체는 상기 고분자 매트릭스를 형성하는 단량체 또는 올리고머를 포함하고, 구체적으로 상기 아크릴레이트계 폴리을 및 1 이상의 이소시아네이트기를 포함한 화합물을 포함할 수 있다. 이소시아네이트-반웅성 성분으로 사용되는 폴리을은, 상술한 바와 같이, OH 당량이 1000g/mol 이상이고, 중량 평균 분자량이 500,000 이상인, 아크릴레이트계 폴리올을 사용하는 것이 바람직하다.
이 중에서도, 상기 아크릴레이트계 폴리올은, 알킬 그룹의 탄소수가 1 내지 5인 알킬 아크릴레이트; 및 알킬 그룹의 탄소수가 1 내지 5인 히드록시알킬 아크릴레이트로부터 유래된 반복 단위를 포함하는 화합물인 것이 더욱 바람직할 수 있으며, OH 당량이 약 1000 내지 약 2000g/md이고, 중량 평균 분자량이 약 600,000 내지 약 800,000인 것이 가장 바람직할 수 있다.
상술한 아크릴레이트계 반복 단위를 구성하기 위한 단량체로, 알킬 그룹의 탄소수가 1 내지 5인 알킬 아크릴레이트 성분으로는, 메틸 (메트)아크릴레이토, 에틸 (메트)아크릴레이트, 프로필 (메트)아크릴레이트, 부틸 (메트)아크릴레이트, 및 펜틸 (메트)아크릴레이트 등을 들 수 있다.
또한, 상기 알킬 그룹의 탄소수가 1 내지 5인, 히드록시알킬 아크릴레이트 단량체로는, 히드록시에틸 (메트)아크릴레이트, 히드록시프로필 (메트)아크릴레이트, 히드록시부틸 (메트)아크릴레이트 등을 들 수 있다.
이 때, 상기 히드록시알킬 아크릴레이트는, 상기 알킬 아크릴레이트 100중량부에 대하여, 약 1 내지 약 15 중량부로 사용하는 것이, 폴리올의 OH 당량 조절 측면에서 바람직할 수 있으며, 약 5 내지 약 10 중량부로 사용하는 것이 가장 바람직할 수 있다. 상기 1 이상의 이소시아네이트기를 포함한 화합물은 분자당 평균 1개 이상의 NCO 관능기를 갖는 공지의 화합물 또는 그의 흔합물일 수 있으며,
상기 1 이상의 이소시아네이트기를 포함한 화합물일 수 있다.
보다 구체적으로, 상기 이소시아네이트 화합물은 지방족, 고리지방족, 방향족 또는 방향지방족의 모노- 이소시아네이트 디- 이소시아네이트, 트리- 이소시아네이트 또는 폴리-이소시아네.이트; 또는 우레탄, 요소, 카르보디이미드, 아실요소, 이소시아누레이트, 알로파네이트, 뷰렛, 옥사디아진트리온, 우레트디온 또는 이미노옥사디아진디온 구조를 가지는 디-이소시아네이트 또는 트리이소시아네이트의 올리고-이소시아네이트 또는 폴리 -이소시아네이트;를 포함할 수 있다.
상기 1 이상의 이소시아네이트기를 포함한 화합물의 구체적인 예로는, 부탈렌 디이소시아네이트, 핵사메틸렌 디이소시아네이트 (HDI), 이소포론 디이소시아네이트 (IPDI), 1,8-디이소시아네이토 -4- (이소시아네이토쩨틸)옥탄, 2,2,4- 및 /또는 2,4,4-트리메틸핵사메틸렌 디이소시아네이트, 이성질체 비스 (4,4'- 이소시아네이토시클로핵실)메탄 및 임의의 요망되는 이성질체 함량을 갖는 그의 흔합물, 이소시아네이토메틸 -1,8-옥탄 디이소시아네이트, 1,4-시클로핵실렌 디이소시아네이트, 이성질체 시클로핵산디메틸렌 디이소시아네이트, 1,4-페닐렌 디이소시아네이트, 2,4- 및 /또는 2,6-를루엔 디이소시아네이트, 1,5-나프틸렌 디이소시아네이트, 2,4'- 또는 4,4'ᅳ디페닐메탄 디이소시아네이트 및 /또는 트리페닐메탄 4,4',4"-트리이소시아네이트 등을 들 수 있다.
한편, 상기 1 이상의 이소시아네이트기를 포함한 화합물과 반웅하여 고분자 매트릭스를 형성하는 폴라올은 상술한 아크릴레이트계 폴리올 이외에, 다른 종류의 디올, 트리올 또는 폴리올을 더 포함할 수 있다. 보다 구체적으로, 상기 1 이상의 이소시아네이트기를 포함한 화합물과 반웅하여 고분자 매트릭스를 형성하는 폴리을은, 2 내지 20 탄소수를 갖는 지방족 방향족 디올, 트리올 또는 폴리올; 4 내지 30 탄소수를 갖는 지환족 디올, 트리을 또는 폴리올; 및 6 내지 30 탄소수를 갖는 방향족 디올, 트리올 또는 폴리올;로 이루어진 군에서 선택된 1종 이상을 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 폴리올 성분과 이소시아네이트 성분의 매트릭스 가교성 조절 측면에서, 상기 아크릴레이트계 폴리올 100 중량부에 대하여, 상기 이소시아네이트 화합물은, 약 5 내지 약 50중량부로 사용될 수 있으며, 바람직하게는 약 10 내지 약 30중량부로 사용될 수 있다.
상술한 광중합성 조성물은 아크릴레아트계 폴리올 이외의 폴리올을 추가로 더 포함하여 홀로그램의 고분자 매트릭스 내에서의 가교점을 보다 용이하게 조절할 수 있고 상기 고분자 매트릭스의 가교도를 보다 높일 수 있는데, 이러한 경우에도 상기 구현예의 광중합성 조성물로부터 제조된 홀로그램은 얇은 두께 범위에서도 높은 굴절율 변조값 및 회절 효율을 가질 수 있다.
상기 디올의 예로는 에틸렌 글리콜, 디에틸렌 글리콜, 트리에틸렌 글리콜, 테트라에틸렌 글리콜, 디프로필렌 글리콜, 트리프로필렌 글리콜, 1,2- 프로판디올, 1,3-프로판디올, 1,4-부탄디올, 네오펜틸글리콜, 2-에틸 -2- 부틸프로판디올, 트리메틸펜탄디올, 디에틸옥탄디올 위치 이성질체, 1,3-부틸렌 글리콜, 씨클로핵산디올, 1,4-씨클로핵산디메탄올, 1,6-핵산디올, 1,2- 및 1,4- 씨클로헥산디을, 수소화 비스페놀 A (2,2-비스 (4-히드록시씨클로핵실)프로판), 2,2- 디메틸ᅳ 3-히드록시프로필, 2,2-디메틸 -3-히드록시프로피오네이트가 있다.
또한, 상기 트리올의 예로는 트라메틸을에탄, 트리메틸올프로판 또는 글리세를이 있다. 적합한 고도-관능성 알콜은 디트리메틸을프로판, 펜타에리트리를, 디펜타에리트리를 또는 소르비를이다.
또한, 상기 폴리을로는 비교적 큰 분자량의 지방족 및 고리지방족 폴리올, 예컨대 폴리에스테르 폴리을, 폴리에테르 폴리올, 폴리카르보네이트 폴리올, 히드록시-관능성 아크릴 수지, 히드록시-관능성 폴리우레탄, 히드록시ᅳ 관능성 에폭시 수지 등을 사용할 수 있다.
상기 폴리에스테르폴리올은 예를 들면 에탄디올, 디-, 트리- 또는 테트라에틸렌 글리콜, 1,2-프로판디올, 디-, 트리- 또는 테트라프로필렌 글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,3-부탄다을, 2,3-부탄디올, 1,5-펜탄디올, 1,6- 핵산디올, 2,2-디메틸 -1,3-프로판디올, 1,4-디히드록시씨클로핵산, 1,4- 디메틸올씨클로핵산, 1,8-옥탄디올, 1,10-데칸디올, 1,12-도데칸디올 또는 이들의 흔합물과 같은 다가 알콜을 사용하고, 임의로 트리쩨틸올프로판 또는 글리세를과 같이 더 높은 관능성의 폴리올을 동시에 사용하여, :예를 들면 숙신산, 글루타르산, 아디프산, 피멜산, 수베르산, 아젤라산, 세바크산, 노난디카르복실산, 데칸디카르복실산, 테레프탈산, 이소프탈산, 0-프탈산,
테트라히드로프탈산, 핵사히드로프탈산 또는 트리멜리트산, 및 산 무수물, 예컨대 0-프탈산 무수물, 트리멜리트산 무수물 또는 숙신산 무수물, 또는 이들의 흔합물과 같은 지방족, 고리지방족 또는 방향족의 디 - 또는 폴리카르복실산 또는 그의 무수물로부터 공지의 방식으로 제조될 수 있는 것과 같은, 선형 폴리에스테르 디올이다. 물론, 고리지방족 및 /또는 방향족의 디- 및 폴리히드록시 화합물 역시 폴리에스테르 폴리올의 제조를 위한 다가 알콜로서 적합하다. 유리 폴리카르복실산 대신, 저급 알콜의 상웅하는 폴리카르복실산 무수물 또는 상웅하는 폴리카르복실레이트, 또는 이들의 흔합물을 폴리에스테르 제조에 사용하는 것 역시 가능하다.
또한, 상기 고분자 매트릭스의 합성에 사용될 수 있는 폴리에스테르 폴리올로는 락톤의 단일- 또는 공중합체가 있으며, 이는 바람직하게는 부티로락톤, ε-카프로락톤 및 /또는 메틸 -ε-카프로락톤과 같은 락톤 또는 락톤 흔합물의, 예를 들면 폴리에스테르 폴리을용 합성 성분으로서 상기 언급된 작은 분자량의 다가 알콜과 같은 적합한 2관능성 및 /또는 더 높은 관능성의 개시제 분자와의 첨가 반웅에 의해 수득된다.
또한, 히드록실 기를 가지는 폴리카르보네이트 역시 예비중합체 합성을 위한 폴리히드록시 성분으로서 적합한데, 예를 들면 디올, 예컨대 1,4-부탄디올 및 /또는 1,6-핵산디올 및 /또는 3-메틸펜탄디올의, 디아릴 카르보네이트, 예컨대 디페닐 카르보네이:트, 디메틸 카르보네이트 또는 포스겐과의 반웅에 의해 제조될 수 있는 것들이다.
또한, 상기 고분자 매트릭스의 합성에 사용될 수 있는 폴리에테르 폴리올은 예를 들면 스티렌 옥시드, 에틸렌 옥시드, 프로필렌 옥시드, 테트라히드로퓨란, 부틸렌 옥시드, 에피클로로히드린의 다중첨가 생성물과 이들의 흔합 첨가생성물 및 그라프트 생성물, 그리고 다가 알콜 또는 이들의 흔합물의 축합에 의해 수득되는 폴리에테르 폴리올 및 다가 알콜, 아민 및 아미노 알콜와 알콕시화에 의해 수득되는 것들이다.
상기 폴리에테르 폴리올의 구체적인 예로는 1.5 내지 .6의 ΟΗ 관능도 및 200 내지 18000 g/몰 사이의 수 평균 분자량, 바람직하게는 1.8 내지 4.0의 OH 관능도 및 600 내지 8000 g/몰의 수 평균 분자량, 특히 바람직하게는 1.9 내지 3.1의 OH 관능도 및 650 내지 4500 g/몰의 수 평균 분자량을 가지는, 랜덤 또는
블록 공중합체 형태의 폴리 (프로필렌 옥시드), 폴리 (에틸렌 옥시드) 및 이들의 조합, 또는 폴리 (테트라히드로퓨란) 및 이들의 흔합물이다. 한편, 상기 광중합성 조성물은, 하기 화학식 1 또는 2로 표시되는, 비반응성 불소계 화합물을 포함한다.
하기 화학식 1 또는 2로 표시되는, 비반웅성 불소계 화합물:
[화학식 1]
[화학식 2]
R^iC^R^O-CR^^nz-X-iC^R^O-CR^^^-R2
상기 화학식 1 또는 2에서,
R1 및 R2는, 말단 봉쇄기로, 각각 독립적으로 동일하거나 상이하게, 할로겐 원자로 치환 또는 비치환된, 탄소수 1 내지 10의 알킬에스터기 또는 탄소수 1 내지 10의 알킬에터기이고, '
A 및 B는, 단순 결합, 또는 탄소수 1 내지 5의 알킬렌 그룹이고,
R3 내지 R6은, 각각 독립적으로, 서로 동일하거나 상이하게, 수소, 할로겐 원자, 또는, 탄소수 1 내지 5의 알킬기로, R3 내지 R6 중 적어도 하나는 플루오르 원자이며,
nl 내지 n3는 반복 단위의 반복 수로, 각각 1 내지 5의 정수이고, X는, 탄소수 1 내지 10의 알킬렌, 흑은 탄소수 1 내지 10의 알킬에터기이다.
상기 비반웅성 불소계 화합물을 사용하는 경우, 노광 부분과 비노광 부분의 굴절률 차이를 극대화 시킴으로써, 기록광에 대한 감도를 높이고, 이에 따라 기록 효율을 현저하게 상승시킬 수 있다.
상술한 바와 같이, 상기 비반응성 불소계 화합물은, 굴절률이 약 1.45 미만, 바람직하게는, 약, L30 내지 약 1.45일 수 있으며, 더욱 바람직하게는 약
1.30 내지 L40일 수 있는데, 이 경우, 광반웅성 단량체, 즉, 노광에 의해 정보를 기록하는, 기록 단량체와의 굴절를 차이를 극대화시킬 수 있으며, 이에 따라, 노광 감도를 현저히 상승시킬 수 있게 된다.
또한, 상기 비반웅성 불소계 화합물은, 상술한 아크릴레이트계 폴리을과
이소시아네이트 기반 고분자 매트릭스의 분산성 및 유연성을 향상시키는 역할을 할 수 있다. 즉, 상기 비반응성 불소계 화합물은, 아크릴레이트계 폴리을, 이소시아네이트, 기타 광반응성 단량체에 대한 반응성이 없기 때문에, 매트릭스 내에서 그 고유의 성질을 유지한 채로 존재할 수 있으며, 이러한 특성으로 각 고분자와 고분자 사이의 상호 작용을 적절히 조절하여, 노광 시, 광중합 효율을 향상시키는 역할을 할 수 있게 된다. 한편, 상기 광반응성 단량체는 다관능 (메트)아크릴레이트 단량체 또는 단관능 (메트)아크릴레이트 단량체를 포함할 수 있다.
상술한 바와 같이, 상기 광중합성 조성물의 광중합 과정에서 단량체가 중합되어 폴리머가 상대적으로 많이 존재하는 부분에서는 굴절율이 높아지고, 고분자 바인더가 상대적으로 많이 존재하는 부분에서는 굴절율이 상대적으로 낮아져서 굴절율 변조가 생기게 되며, 이러한 굴절율 변조에 의해서 회절 격자가 생성된다.
구체적으로, 상기 광반응성 단량체의 일 예로는 (메트)아크릴레이트계 α,β-블포화 카르복실산 유도책, 예컨대 (메트)아크릴레이트, (메트)아크릴아미드, (메트)아크릴로니트릴 또는 (메트)아크릴산 등이나, 또는 비닐기 (vinyl) 또는 씨올기 (thiol)를 포함한 화합물을 들 수 있다.
상기 광반응성 단량체의 일 예로 굴절율이 1.5 이상인 다관능 (메트)아크릴레이트 단량체를 들 수 있으며, 이러한 굴절율이 1.5 이상인 다관능 (메트)아크릴레이트 단량체는 Halogen 원자 (bromine, iodine 등), 황 (S), 인 (P), 또는 방향족 고리 (aromatic ring)을 포함할 수 있다.
상기 굴절율이 1.5 이상인 다관능 (메트)아크릴레이트 단량체의 보다 구체적인 예'로는 bisphenol A modified diacrylate계열, fluorene acrylate 계열, bisphenol fluorene epoxy acrylate계열 (HR6100, HR6060, HR6042 등 - Miwon社), Halogenated epoxy acrylate계열 (HR1139, HR3362 등 - Miwon社) 등을 들 수 있다. 상기 광반웅성 단량체의 다른 일 예로 단관능 (메트)아크릴레이트 단량체를 들 수 있다. 상기 단관능 (메트)아크릴레이트 단량체는 분자 내부에 에테르 결합 및 플루오렌 작용기를 포함할 수 있으며, 이러한 단관능 (메트)아크릴레이트 단량체의 구체적인 예로는 페녹시 벤질 (메트)아크릴레이트,
o-페닐페놀 에틸렌 옥사이드 (메트)아크릴레이트, 벤질 (메트)아크릴레이트, 2- (페닐사이오)에틸 (메트)아크릴레이트, 또는 바이페닐메틸 (메트)아크릴레이트 등을 들 수 있다.
한편, 상기 광반웅성 단량체로는 50 내지 1000, 또는 200 내지 600 의 중량 평균 분자량을 가질 수 있다. 상기 중량 평균 분자량은 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 의미한다. 한편, 상기 구현예의 광중합성 조성물은 광개시제를 포함한다. 상기 광개시제는 빛 또는 화학방사선에 의해 활성화되는 화합물이며, 상기 광반웅성 단량체 등 광반웅성 작용기를 함유한 화합물의 중합을 개시한다.
상기 광개시제로는 통상적으로 알려진 광개시제를 큰 제한 없이 사용할 수 있으나, 이의 구체적인 예로는 광 라디칼 중합 개시제 및 광양이온 중합 개시제를 들 수 있다. .
상기 광 라디칼 중합 개시제의 구체적인 예로는, 이미다졸 유도체, 비스이미 다졸 유도체, N-아릴 글리신 유도체, 유기 아지드 화합물, 티타노센, 알루미네이트 착물, 유기 과산화물, N- 알콕시 피리디늄 염, 티옥산톤 유도체 등을 들 수 있다. 보다 구체적으로, 상기 광 라디칼 중합 개시제로는 l,3-di(t- butyldioxycarbonyl)benzophenone, 3 ,3 ',4,4 "-tetrakis(t-butyldioxycarbonyl)benzophenone, 3 -phenyl-5 -i soxazolone, 2-mercapto benzimidazole, bis(2,4,5-triphenyl)imidazole, 2,2- dimethoxy- 1 ,2-diphenylethane- 1 -one (제품명: Irgacure 651 1 제조사: BASF), 1-hydroxy- cyclohexyl-phenyl-ketone (제품명: Irgacure 184 7 제조사: BASF), 2-benzyl-2- dimethylamino- 1 -(4-morpholinophenyl)-butanone- 1 (제품명: Irgacure 369 / 게조사: BASF), 및 bis^5-2,4-cyclopentadiene-l-yl)-bis(2,6-difluoro-3-(lH-pyrrole-l-y phenyl)titanium (제품명 : Irgacure 784 제조사: BASF) 등을 들 수 있다.
상기 광양이온 증합 개시제로는, 디아조늄염 (diazonium salt), 설포늄염 (sulfonium salt), 또는 요오드늄 (iodonium salt)을 들 수 있고, 예를 들면 술폰산 에스테르, 이미드 술포 네이트, 디알킬 -4-히드록시 술포늄 염, 아릴 술폰산 -P-니트로 벤질 에스테르, 실라놀-알루미늄 착물, (η6- 벤젠) (η5-시클로 펜타디에닐)철 (Π) 등을 들 수 있다. 또한, 벤조인 토실레이트, 2,5-디니트로 벤질 토실레이트, Ν- 토실프탈산 이미드 등도 들 수 있다. 상기 광양이온 중합
개시제의 보다 구체적인 예로는, Cyracure UVI-6970, Cyracure UVI-6974 및 Cyracure UVI-6990 (제조사: Dow Chemical Co. in USA)이나 Irgacure 264 및 Irgacure 250 (제조사: BASF) 또는 CIT-1682 (제조사: Nippon Soda) 등의 시판 제품을 들 수 있다.
또한, 상기 구현예의 광중합성 조성물은 일분자 (유형 I) 또는 이분자
(유형 Π) 개시제를 사용할 수도 있다. 상기 자유 라디칼 광중합을 위한 (유형 I) 시스템은 예를 들면 3차 아민과 조합된 방향족 케톤 화합물, 예컨대 벤조페논, 알킬벤조페논, 4,4'-비스 (디메틸아미노)벤조페논 (미힐러 (Michler's) 케톤), 안트론 및 할로겐화 벤조페논 또는 상기 유형의 흔합물이다. 상기 이분자 (유형 Π) 개시제로는 벤조인 및 그의 유도체, 벤질 케탈, 아실포스파인 옥시드, 예컨대 2,4,6-트리메틸벤조일디페닐포스파인 옥시드, 비스아실로포스파인 옥시드, 페닐글리옥실 에스테르, 캄포퀴논, 알파 -아미노알킬페논, 알파-,알파- 디알콕사아세토페논, 1-[4- (페닐티오)페닐]옥탄 -1,2-디온 2-(0-벤조일옥심) 및 알파 -히드록시알킬페논 등을 들 수 ¾다.
상기 광중합성 조성물은 A) 상기 고분자 매트릭스 또는 이의 전구체 약
20 내지 약 80중량0 /0, B) 비반응성 불소계 화합물 약 5 내지 약 40중량0 /0; C) 상기 광반웅성 단량체 약 10 내지 약 70중량0 /0; 및 D) 광개시제 약 0.1 내지 약 10중량0 /。를 포함할 수 있으며, 바람직하게는, 상기 고분자 매트릭스 또는 이의 전구체 약 30 내지 약 70중량0 /0; 상기 비 반웅성 불소계 화합물 약 5 내지 약 35중량0 /0, 상기 광반웅성 단량체 약 20 내지 약 60중량0 /0; 및 광개시제 약 0.1 내지 약 10중량%;를 포함할 수 있다. 후술하는 바와 같이, 상기 광중합성 조성물이 유기 용매를 더 포함하는 경우, 상술한 성분들의 함량은 이들 성분의 총합 (유기 용매를 제외한 성분의 총합)을 기준으로 한다. 그리고, 발명의 일 실시예에 따르면, 상기 광중합성 조성물은 별도의 가소제를 더 포함할수 있다.
가소제는, 상기 조성물에 포함된 각 성분의 융점, 가요성, 인성, 단량체의 확산도, 및 가공성을 조절하는 역할을 할 수 있다. 이러한 가소제는, 구체적으로 예를 들면, 디부틸 프탈레이트 등을 포함하는, 프탈레이트계 가소제 : 폴리 (에틸렌 옥시드) 메틸 에테르 등을 포함하는, 폴리알킬에테르계 가소제,
Ν,Ν-디메틸포름아미드 등을 포함하는 알킬아미드계 가소제, 시클로핵산 디카르복실산 디이소노닐 에스터 등을 포함하는, 시클로핵산 디카르복실산계 가소제, 트리부틸 포스페이트 등을 포함하는, 인계 가소제, 및 시트레이트계 가소제 등을 들 수 있다. 가소제는 홀로그래피 저장 매체 중에 남아, 각 고분자 성분의 물성을조절한다는 측면에서, 용매와구별된다.
상기와 같은 가소제는, 특히 , 상술한 비반응성 블소계 화합물과 함께 사용되는 경우, 그 효과가 극대화될 수 있다. 구체적으로, 상술한 비반웅성 불소계 화합물과 가소제 성분은, 상술한 아크릴레이트계 폴리올과 이소시아네이트의 반응에 의해 형성되는, 특정 구조의 폴리우레탄 기반 고분자 매트릭스의 유연성을 향상시킬 수 있으며, 특히, 상기 매트릭스 내에서 광반웅성 단량체의 분산성을 극대화시키킬 수 있고, 노광에 의한 광반웅성 단량체의 중합에는 직접 관여하지 않아, 간섭 패턴에서 빈 곳으로 확산되어, 형성되는 홀로그램의 대비도 (constrast)를 크게 향상시킬 수 있게 된다. 한편, 상기 광중합성 조성물은 광감웅 염료를 더 포함할 수 있다. 상기 광감응 염료는 상기 광개시제를 증감시키는 증감 색소의 역할을 하는데, 보다 구체적으로 상기 광감웅 염료는 광중합체 조성물에 조사된 빛에 의하여 자극되어 모노머 및 가교 모노머의 중합을 개시하는 개시제의 역할도 함께 할 수 있다. 상기 광중합성 조성물은 광감웅 염료 0.01. 내지 30중량0 /0, 또는 0.05 내지 20중량0 /0포함할수 있다.
상기 광감응 염료의 예가 크게 한정되는 것은 아니며, 통상적으로 알려진 다양한 화합물을 사용할 수 있다. 상기 광감웅 염료의 구체적인 예로는, 세라미도닌의 술포늄 유도체 (sulfonium derivative), 뉴 메틸렌 블루 (new methylene blue), 티오에리트로신 트리에틸암모늄 (thioerythrosine triethylammonium), 6- 아세틸아미노 -2-메틸세라미도닌 (6-acetylamino-2-methylceramidonin), 에오신 (eosin), 에리트로신 (erythrosine), 로즈 벵갈 (rose bengal), 티오닌 (thionine), 베이직 옐로우 (baseic yellow), 피나시놀 클로라이드 (Pinacyanol chloride), 로다민 6G(rhodamine 6G), 갈로시아닌 (gallocyanine), 에틸 바이올렛 (ethyl violet), 빅토리아 블루 R(Victoria blue R), 셀레스틴 블루 (Celestine blue), 퀴날딘 레드 (QuinaldineRed): 크리스탈 바이올렛 (crystal violet), 브릴리언트 그린 (Brilliant Green), 아스트라존
오렌지 G(Astrazon orange G), 다로우 레드 (darrow red), 피로닌 Y(pyronin Y), 베이직 레드 29(basic red 29), 피릴륨 I(pyrylium iodide), 사프라닌 0(Safranin O), 시아닌, 메틸렌 블루, 아주레 A(Azure A), 또는 이들의 2이상의 조합을 들 수 있다.
상기 광중합성 조성물은 유기 용매를 더 포함할 수 있다. 상기 유기 용매의 비제한적인 예를 들면 케톤류, 알코올류, 아세테이트류 및 에테르류, 또는 이들의 2종 이상의 흔합물을 들 수 있다.
이러한 유기 용매의 구체적인 예로는, 메틸에틸케논, 메틸이소부틸케톤, 아세틸아세톤 또는 이소부틸케톤 등의 케톤류; 메탄올, 에탄올, n-프로판올, i- 프로판올, n-부탄을, i-부탄올, 또는 t-부탄올 등의 알코올류; 에틸아세테이트, i- 프로필아세테이트, 또는 폴리에틸렌글리콜 모노메틸에테르 아세테이트 등의 아세테이트류; 테트라하이드로퓨란 또는 프로필렌글라이콜 모노메틸에테르 둥의 에테르류; 또는 이들의 2종 이상의 흔합물을 들 수 있다.
상기 유기 용매는 상기 광중합성 조성물에 포함되는 각 성분들을 흔합하는 시기에 첨가되거나 각 성분들이 유기 용매에 분산 또는 흔합된 상태로 첨가되면서 상기 광중합성 조성물에 포함될 수 있다. 상기 광중합성 조성물 중 유기 용매의 함량이 너무 작으면, 상기 광중합성 조성물의 흐름성이 저하되어 최종 제조되는 필름에 줄무늬가 생기는 등 불량이 발생할 수 있다. 또한, 상기 유기 용매의 과량 첨가시 고형분 함량이 낮아져, 코팅 및 성막이 층분히 되지 않아서 필름의 물성이나 표면 특성이 저하될 수 있고, 건조 및 경화 과정에서 불량이 발생할 수. 있다. 이에 따라, 상기 광중합성 조성물은 포함되는 성분들의 전체 고형분의 농도가 1중량 % 내지 70중량0 /0, 또는 2 내지
50중량%가 되도록 유기 용매를 포함할 수 있다.
상기 광중합성 조성물은 기타의 첨가제, 촉매 등을 더 포함할 수 있다. 예를 들어, 상기 광중합성 조성물은 상기 고분자 매트릭스나 광반웅성 단량체의 중합을 촉진하기 위하여 통상적으로 알려진 촉매를 포함할 수 있다. 상기 촉매의 예로는, 주석 옥타노에이트, 아연 옥타노에이트, 디부틸주석 디라우레이트, 디메틸비스 [0-옥소네오데실)옥시]스타난, 디메틸주석 디카르복실레이트, 지르코늄 비스 (에틸핵사노에이트), 지르코늄 아세틸아세토네이트 또는 3차 아민, 예컨대 1,4-디아자비씨클로 [2.2.2]옥탄,
디아자비씨클로노난, 디아자비씨클로운데칸, 1,1,3,3-테트라메틸구아니딘, 1,3,4,6,7,8-핵사히드로 -1-메틸 -2H-피리미도 (1,2-a)피리미딘 등을 들 수 있다. 한편, 발명의 다른 구현예에 따르면, 광중합성 조성물로부터 제조된 홀로그램 기록층을 포함하는, 홀로그램 기록 매체가 제공될 수 있다.
상술한 바와 같이, 상기 일 구현예의 광중합성 조성물을 사용하면, 보다 얇은 두께를 가지면서도 이전에 알려진 홀로그램에 비하여 크게 향상된 굴절율 변조값 및 높은 회절 효율을 구현할 수 있는 홀로그램이 제공될 수 있다.
상기 홀로그램 기록 매체는 내지 30 의 두께에서도 0.009 이상 또는 0.010 이상의 굴절율 변조값 (n)을 구현할 수 있다.
상기 일 구현예의 광중합성 조성물은 이에 포함되는 각각의 성분을 균일하게 흔합하고 20 이상의 온도에서 건조 및 경화를 한 이후에, 소정의 노광 과정을 거쳐서 전체 가시 범위 및 근자외선 영역 (300 내지 800 nm)에서의 광학적 적용을 위한홀로그램으로 제조될 수 있다.
상기 일 구현예의 광중합성 조성물 중 고분자 매트릭스 또는 이의 전구체를 형성하는 1 이상의 이소시아네이트기를 포함한 화합물을 제외한 나머지 성분을 우선 균질하고 흔합하고, 1 이상의 이소시아네이트기를 포함한 화합물을 추후에 촉매와 함께 흔합하여 홀로그램의 형성 과정을 준비할 수 있다.
상기 일 구현예의 광중합성 조성물은 이에 포함되는 각각의 성분의 흔합에는 통상적으로 알려진 흔합기, 교반기 또는 믹서 등을 별 다른 제한 없이 사용할 수 있으며, 상기 흔합 과정에서의 온도는 0 내지 100°C , 바람직하게는 10 내지 80°C , 특히 바람직하게는 20 내지 60°C일 수 있다.
한편, 상기 일 구현예의 광중합성 조성물 중 고분자 매트릭스 또는 이의 전구체를 형성하는 1 이상의 이소시아네이트기를 포함한 화합물을 제외한 나머지 성분을 우선 균질하고 흔합한 이후, 1 이상의 이소시아네이트기를 포함한 화합물을 첨가하는 시점에서 상기 광중합성 조성물은 20 이상의 온도에서 경화되는 액체 배합물이 될 수 있다.
상기 경화의 온도는 상기 '광중합성의 조성에 따라 달라질 수 있으며, 예를 들어 30 내지 180°C , 바람직하게는 40 내지 120°C , 특히 바람직하게는 50
내지 100 °C의 온도로 가열함으로써 촉진된다.
상기 경화시에는 상기 광중합성이 소정의 기판이나 몰드에 주입되거나 코팅이 된 상태일 수 있다.
한편, 상기 광중합성 조성물로부터 제조된 홀로그램 기록 매체에 시각적 홀로그램의 기톡하는 방법은 통상적으로 알려진 방법을 큰 제한 없이 사용할 수 있으며, 후술하는 구현예의 홀로그래픽 기록 방법에서 설명하는 방법을 하나의 예로 채용할 수 있다. 한편, 발명의 또 다른 구현예에 따르면, 상기 홀로그램 기록 매체에 활성 방사선을 조사하여, 광반웅성 단량체를 선택적으로 중합하는 단계를 포함하는, 홀로그램의 기록 방법이 제공될 수 있다. 상술한 바와 같이, 상기 광중합성 조성물을 흔합 및 경화하는 과정을 통해서 시각적 홀로그램이 기록되지 않는 상태의 매체를 제조할 수 있으며, 소정의 노출 과정을 통해서 상기 매체 상에 시각적 홀로그램를 기록할 수 있다. 상기 광중합성 조성물을 흔합 및 경화하는 과정을 통하여 제공되는 매체에, 통상적으로 알려진 조건 하에 공지의 장치 및 방법을 이용하여 시각적 홀로그램을 기록할 수 있다. 한편, 발명의 또 다른 구현예에 따르면, 홀로그램 기록 매체를 포함한 광학 소자가 제공될 수 있다.
상기 광학 소자의 구체적인 예로는 광학 렌즈, 거울, 편향 거울, 필터, 확산 스크린, 회절 부재, 도광체, 도파관, 영사 스크린 및 /또는 마스크의 기능을 갖는 홀로그래픽 광학 소자, 광메모리 시스템의 매질과 광확산판, 광파장 분할기, 반사형, 투과형 컬러필터 등을 들 수 있다.
상가 홀로그램 기록 매체를 포함한 광학 소자의 일 예로 홀로그램 디스플레이 장치를 들 수 있다.
상기 홀로그램 디스플레이 장치는 광원부, 입력부, 광학계 및 표시부를 포함한다. 상기 광원부는 입력부 및 표시부에서 물체의 3차원 영상 정보를 제공, 기록 및 재생하는데 사용되는 레이저빔을 조사하는 부분이다. 또한, 상기
입력부는 표시부에 기록할 물체의 3차원 영상 정보를 미리 입력하는 부분이며, 예를 들어, 전기 구동 액정 SLM(electrically addressed liquid crystal SLM) 에 공간별 빛의 세기와 위상과 같은 물체의 3차원 정보를 입력할 수 있고, 이때 입력범이 사용될 수 있다. 상기 광학계는 미러, 편광기, 범스플리터, 범셔터, 렌즈 등으로 구성될 수 있으며, 상기 광학계는 광원부에서 방출되는 레이저빔을 입력부로 보내는 입력빔, 표시부로 보내는 기록범, 기준범, 소거빔, 독출범 등으로 분배할 수 있다.
상기 표시부는 입력부로부터 물체의 3차원 영상 정보를 전달받아서 광학 구동 SLM(optically addressed SLM)으로 이루어진 홀로그램 플레이트에 기록하고, 물체의 3차원 영상을 재생할 수 있다. 이때, 입력빔과 기준빔의 간섭을 통하여 물체의 3차원 영상 정보를 기록할 수 있다. 상기 홀로그램 플레이트에 기록된 물체의 3차원 영상 정보는 독출빔이 생성하는 회절 패턴에 의해 3차원 영상으로 재생될 수 있고, 소거빔은 형성된 회절 패턴을 빠르게 제거하기 위해 사용될 수 있다. 한편, 상기 홀로그램 플레이트는 3차원 영상을 입력하는 위치와 재생하는 위치 사이에서 이동될 수 있다. 【발명의 효과】
본 발명에 따르면, 얇은 두께를 가지면서도 크게 향상된 굴절율 변조값 및 높은 회절 효율을 갖는 홀로그램 기록층을 보다 용이하게 제공할 수 있는 광중합성 조성물, 상기 조성물에 의해 형성된 홀로그램 기록층을 포함하는 홀로그램 기록 매체, 상기 홀로그램 기록 매체를 포함한 광학 소자, 활성 방사선에 의해 상기 조성물에 포함된 광반웅성 단량체를 선택적으로 중합시키는 단계를 포함하는 홀로그램 기록 방법이 제공될 수 있다. 【발명의 실시를 위한 형태】
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
<실시^ !>
비반웅성 불소계 화합물 1의 제조
1000ml 플라스크에 2,2*-((oxybis(l , 1 ,2,2-tetrafluoroethane-2, 1 - diyl))bis(oxy))bis(2,2-difluoroethan- 1 -ol) 20.51g을 넣어준 후, 테트라하이드로퓨란 500g에 녹여, 0°C에서 교반하면서 sodium hydride(60% dispersion in mineral oil) 4.40 g을 여러 차례에 걸쳐 조심스럽게 첨가하였다.
0 °C에서 20분간 교반한 후, 2-methoxyethoxymethyl chloride 12.50 ml를 천천히 dropping 하였다. 1H NMR로 반웅물이 모두 소모된 것이 확인하고, 감압하여 반웅 용매를 모두 제거하였다.
다아클로로메테인 300g으로 3회 추출하여 유기층을 모은 후 magnesium sulfate로 필터하고, 감압에 의해 다이클로로메테인을 모두 제거하여 순도 95% 이상의 액상 생성물 29g을 98%의 수율로 수득하였다.
아베 굴절계를 사용하여 상기 액상 생성물의 589nm굴절를 측정한 결과 1.37 로 측정되었다.
1,000 ml 플라스크에 2,2'-((oxybis(l,l,2,2-tetrafluoroethane-2,l- diyl))bis(oxy))bis(2,2-difluoroethan- 1 -ol) 12.30g을 넣고 테트라하이드로퓨란 300 ml에 희석시킨 후, 0 °C에서 교반하면서 hexanoyl chloride 16.77 ml를 dropwise로 주입한다.
20분 후, triethylamine 16.74 ml를 dropwise로 주입하고, ice-bath를 제거해 온도를 상온으로 서서히 올리면서 TLC로 반웅이 종결되는 것이 확인될 때까지 반웅을 진행시킨다.
반웅이 끝나면, 부산물로 생성된 triethylamine hydrochloride salt를 필터링으로 제거하고, 감압하여 용매 THF를 제거한후, 다이클로로메테인과 1N NaOH 수용액으로 3회 추출한다. 그 후, Ethyl acetate: n-haxane = 1: 20의 전개액 조건에서 컬럼 크로마토그래피를 실시하여, 순도 90%' 이상의 생성물을
수득한다. 아베 굴절계를 사용하여 상기
결과, L38 로 측정되었다.
2L자켓 반웅기에 메틸 아크릴레이트 34.5g, 부틸 아크릴레이트 57.5g, 4- 히드록시부틸 아크릴레이트 8g을 넣고, 에틸아세테이트 150g으로 희석하였다. 60 내지 70°C로 반웅 온도를 조절하고, 1시간 정도 교반을 진행하였다.
여기에, n-도데실 머캅탄 0.035g을 추가로 넣고, 30분 정도 더' 교반을 진행하였다.
이후, 중합 개시제로, 아조 -비스 -이소부티릴니트릴 (AIBN) 0.04g을 넣고, 상기 반응 온도에서 4시간 이상 중합을 진행하여 잔류 아크릴레이트 함량을 1% 미만이 될 때까지 유지하여, 중량 평균 분자량이 약 700,000, OH 당량 =1802g/OH mole인, 아크릴레이트계 폴리을을 제조하였다. 광반웅성 중합체 조성물 제조
조성물의 각 성분은 하기 표 1에 정리된 바와 같다.
상기에서 제조한 아크릴레이트계 폴리올,
광반웅성 단량체 (1~2관능성 아크릴레이트, HR6042, 미원, 굴절률 1.600) 가소제 (트리부틸 포스페이트, TBP, 시그마 알드리치),
상기에서 제조한 비반웅성 불소계 화합물,
염료 (safranin O, 시그마 알드리치)
광 개시제 l(Ebecryl P-115, SK entis),
광 개시제 2(Borate V, Spectra group)
광 개시제 3(irgacure 250, BASF), 및
용매 (메틸이소부틸케톤)를 흔합한 후,
를 흔합한 후,
페이스트 믹서로 10분 가량 교반하여, 투명한코팅액을 제조하였다. 여기에, 6관능 이소시아네이트 성분 (MFA-75X, Asahi Kasei, 자일렌에 75중량%로 희석)을 첨가하고, 5분간 더 교반을 진행하였다.
촉매인 디부틸 틴 디라우레이트 (DBTDL)을 0.01 lg 첨가하고, 1분 정도 교반하며, 반응을 진행시켜, 광반응성 중합체 조성물을 제조하였다. 홀로그램 기록 매체 제조
상기에서 제조된 광반웅성 중합체 조성물을, meyer bar를 이용하여, 80βη 두께의 트리아세틸셀를로오스 (TAC)기재에 7卿로 코팅하여, 40°C에서 30분간 경화하였다. 그리고, 약 25 °C 및 약 50%의 상대 습도의 항온 항습 조건 암실에서 샘플을 24시간 이상 방치하였다.
[실험예: 홀로그램 기록]
(1) 상기 실시에 및 비교예 각각에서 제조된 홀로그램 기록 매체 코팅면을 슬라이드 글라스에 라미네이트 하고, 기록 시 레이저가 유리면을 먼저 통과하도록 고정하였다.
(2) 두 간섭광 (참조광 및 물체광)의 간섭을 통해서 홀로그램을 기록하며, 투과형 기록은 두 빔을 샘플의 동일면에 입사하였다. 두 범의 입사각에 따라 회절 효율은 변하게 되며, 두 범의 입사각이 동일한 경우 non-slanted가 된다. non-slanted 기록은 두빔의 입사각이 법선 기준으로 동일하므로, 회절 격자는 필름에 수직하게 생성된다.
532nm 파장의 레이저를 사용하아 투과형 non-slanted 방식으로 기록 (2Θ=45°)하며, 하기 일반식 1로 회절 효율 (η)을 계산하였다.
[일반식 1]
PD + PT
상기 일반식 1에서, η은 회절 효율이고, PD는 기록후 샘플의 회절된 의 출력량 (mW/crf)이고, ΡΤ는 기록한 샘플의 투과된 빔의 출력량 (mW/cuf)이다. 투과형 홀로그램의 레이저 손실량 (Iloss)은 하기 일반식 2로부터 계산할
수 있다.
[일반식 2]
상기 일반식 2에서, 10는 기록광의 세기 (mW/cin2)이고, PD는 기록 후 샘플의 회절된 빔의 출력량 (mW/cuf)이고, PT는 기록한 샘플의 투과된 빔의 출력량 (mW/ciif)이다. 상기 측정 결과를 하기 표 1에 정리하였다. (단위 g)
【표 11
굴절를 변조
0.026 0.03 0.025 0.024 0.02 0.017 0.013 0.008 값 n
Iloss 0.29 0.25 0.15 0.35 0.20 0.17 0.10 0.09 코팅 두께 (/mi) 7 7 7 7 7 7 7 7 상기 표 1에 나타난 바와 같이 , 본원 실시예에 따라 제조된 비반웅성 불소계 화합물을, 폴리을, 이소시아네이트, 및 광반웅성 단량체와 함께 사용한 포토폴리머 조성물은, 비교예 대비 큰 굴절율 변조값 (Δ η)과 함께 높은 회절 효율을 구현하는 홀로그램을 제공할수 있다는 점을 확인할 수 있었다.
특히, 가소제 성분과 본원의 비반웅성 불소계 화합물을 동시에 사용하는 경우, 고분자 매트릭스 내 성분들의 유동성 확보 및 비반응성 저굴절 재료들 (비반응성 불소계화합물과 가소제)의 이동으로 인해, 더욱 높은 굴절율 변조값 및 희절 효율을 구현할 수 있다는 잠을 명확히 확인할 수 있었다.
Claims
[화학식 1]
R^A-CC^R^O-C^R^m-B-R2
[화학식 2]
R^CC^R^O-CR^ - -iC^R^O-C^R^^-R2
상기 화학식 1 또는 2에서,
R1 및 R2는, 말단 봉쇄기로, 각각 독립적으로 동일하거나 상이하게, 할로겐 원자로 치환 또는 비치환된, 탄소수 1 내지 10의 알킬에스터기 또는 탄소수 1 내지 10의 알킬에터기이고,
A 및 B는, 단순 결합, 또는 탄소수 1 내지 5의 알킬렌 그룹이고,
R3 내지 R6은, 각각 독립적으로, 서로 동일하거나 상이하게, 수소, 할로겐 원자, 또는, 탄소수 1 내지 5의 알킬기로, R3 내지 R6 중 적어도 하나는 플루오르 원자이며,
nl 내지 ιι3는 반복 단위의 반복 수로, 각각 1 내지 5의 정수이고,
X는, 탄소수 1 내지 10의 알킬렌, 흑은 탄소수 1 내지 10의 알킬에터기이다. 【청구항 2】
거 U항에 있어서,
굴절를의 1.45 미만인, 비반응성 불소계 화합물.
【청구항 3】
제 1항에 있어서,
분자량이 300 이상인, 비반응성 불소계 화합물.
【청구항 4】
게 1항에 있어서,
R3 내지 R6은, 각각 독립적으로, 서로 동일하거나 상이하게, 수소,
할로겐 원자, 또는, 탄소수 내지 5의 알킬기로,
그 중 절반 이상이 플루오르 원자인, 비반웅성 불소계 화합물.
【청구항 5】
제 1항에 있어서,
하기 화학식 3으로 표시되는 반복 단위를 포함하는, 비반웅성 불소계 화합물:
[화학식 3]
-(CF2-0-CF2)-
【청구항 6】
A)
i) OH 당량이 1000g/mol 이상이고, 중량 평균 분자량이 500,000 이상인, 아크릴레이트계 폴리올; 및
ii) 이소시아네이트 화합물;의 반웅 생성물을 포함히;는;
고분자 매트릭스 또는 이의 전구체;
B) 제 1항의 비반웅성 불소계 화합물;
C) 광반웅성.단량체; 및
D) 광 개시제를 포함하는, 광중합성 조성물.
【청구항 7】
제 6항에 있어서,
상기 아크릴레이트계 폴리올은, 알킬 그룹의 탄소수가 1 내지 5인 알킬 아크릴레이트; 및
알킬 그룹의 탄소수가 1 내지 5인 히드록시알킬 아크릴레이트로부터 유래된 반복 단위를 포함하는 화합물인, 광중합성 조성물.
【청구항 8]
제 6항에 있어서,
상기 아크릴레이트계 폴리올은,
OH 당량이 1000 내지 2000g/nu)l이고, 중량 평균 분자량이 600,000 내지 800,000인, 광중합성 조성물.
【청구항' 9】
제 6항에 있어서,
상기 광반웅성 단량체는 다관능 (메트)아크릴레이트 단량체 또는 단관능 (메트)아크릴레이트 단량체를 포함하는, 광중합성 조성물.
【청구항 10]
제 6항에 있어서,
상기 이소시아네이트 화합물은 지방족, 고리지방족, 방향족 또는 방향지방족의 모노- 이소시아네이트 디- 이소시아네이트, 트리- 이소시아네이트 또는 폴리 -이소시아네이트; 또는
우레탄, 요소, 카르보디이미드, 아실요소, 이소시아누레이트, 알로파네이트, 뷰렛, 옥사디아진트리온, 우레트디온 또는 이미노옥사디아진디온 구조를 가지는 디-이소시아네이트 또는 트리이소시아네이트의 올리고- 이소시아네이트 또는 폴리 -이소시아네이트;를 포함하는, 광중합성 조성물.
【청구항 111
제 6항에 있어서,
폴리올 성분으로, 상기 아크릴레이트계 폴리올 외에,
2 내지 20 탄소수를 갖는 지방족 방향족 디올, 트리올 또는 폴리올;
4 내지 30 탄소수를 갖는 지환족 디올, 트리올 또는 폴리올; 및
6 내지 30 탄소수를 갖는 방향족 디올, 트리을 또는 폴리올;로 이루어진 군에서 선택된 1종 이상을 더 포함하는, 광증합성 조성물.
【청구항 12】
제 6항에 있어서,
A) 상기 고분자 매트릭스 또는 이의 전구체 20 내지 80증량0 /0
B) 비반웅성 불소계 화합물 5 내지 40중량0 /0;
C)상기 광반웅성 단량체 10 내지 70중량%; 및
D) 광개시제 0.1 내지 10중량0 /0를 포함하는, 광중합성 조성물.
【청구항. 13】
제 6항에 있어서,
가소제를 더 포함하는, 광중합성 조성물.
【청구항 14】
거 16항의 광중합성 조성물에 의해 형성되는 홀로그램 기록층을 포함하는, 홀로그램 기록 매체.
【청구항 15】
제 14항의 홀로그램 기록 매체를 포함하는, 광학 소자. 【청구항 16】
제 14항의 홀로그램 기록 매체에 활성 방사선을 조사하여, 광반웅성 단량체를 선택적으로 중합하는 단계를 포함하는, 홀로그램의 기록 방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020541633A JP7005100B2 (ja) | 2017-10-16 | 2018-10-16 | 非反応性フッ素系化合物およびそれを含む光重合性組成物 |
CN201880067514.5A CN111247121B (zh) | 2017-10-16 | 2018-10-16 | 非反应性氟化合物和包含其的光聚合物组合物 |
US16/756,072 US11292888B2 (en) | 2017-10-16 | 2018-10-16 | Non-reactive fluoro compound and photopolymer composition comprising the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170134212 | 2017-10-16 | ||
KR10-2017-0134212 | 2017-10-16 | ||
KR10-2018-0122648 | 2018-10-15 | ||
KR1020180122648A KR102268129B1 (ko) | 2017-10-16 | 2018-10-15 | 비반응성 불소계 화합물 및 이를 포함하는 광중합성 조성물 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019078585A1 true WO2019078585A1 (ko) | 2019-04-25 |
Family
ID=66174188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/012194 WO2019078585A1 (ko) | 2017-10-16 | 2018-10-16 | 비반웅성 블소계 화합물 및 이를 포함하는 광중합성 조성물 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019078585A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3451908A (en) * | 1966-07-19 | 1969-06-24 | Montedison Spa | Method for preparing polyoxyperfluoromethylenic compounds |
KR0127859B1 (ko) * | 1985-11-08 | 1998-04-04 | . | 과플루오로폴리에테르의 제조방법 |
KR20030005988A (ko) * | 2001-07-11 | 2003-01-23 | 주식회사 흥인화학 | 저분자량의 불소계 화합물의 혼합물을 담체로 사용한셀롤로스 기재의 장기 보존제 |
WO2003072625A1 (en) * | 2002-02-28 | 2003-09-04 | Luvantix Co., Ltd. | Photocurable resin composition for optical waveguide and optical waveguide made of the same |
US20100024685A1 (en) * | 2008-07-29 | 2010-02-04 | Shin-Etsu Chemical Co., Ltd. | Fluorine-containing acrylate |
-
2018
- 2018-10-16 WO PCT/KR2018/012194 patent/WO2019078585A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3451908A (en) * | 1966-07-19 | 1969-06-24 | Montedison Spa | Method for preparing polyoxyperfluoromethylenic compounds |
KR0127859B1 (ko) * | 1985-11-08 | 1998-04-04 | . | 과플루오로폴리에테르의 제조방법 |
KR20030005988A (ko) * | 2001-07-11 | 2003-01-23 | 주식회사 흥인화학 | 저분자량의 불소계 화합물의 혼합물을 담체로 사용한셀롤로스 기재의 장기 보존제 |
WO2003072625A1 (en) * | 2002-02-28 | 2003-09-04 | Luvantix Co., Ltd. | Photocurable resin composition for optical waveguide and optical waveguide made of the same |
US20100024685A1 (en) * | 2008-07-29 | 2010-02-04 | Shin-Etsu Chemical Co., Ltd. | Fluorine-containing acrylate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11292888B2 (en) | Non-reactive fluoro compound and photopolymer composition comprising the same | |
JP6932416B2 (ja) | フォトポリマー組成物 | |
CN111699221B (zh) | 光聚合物组合物 | |
JP5909038B2 (ja) | 新規なホログラフィック媒体およびフォトポリマー | |
KR101640943B1 (ko) | 광학 소자 및 시각적 디스플레이용 광중합체 조성물 | |
TWI506049B (zh) | 具有高折射率和降低之雙鍵密度的丙烯酸胺基甲酸酯 | |
JP5793147B2 (ja) | 新規な非結晶化メタクリレート、その製造方法およびその使用 | |
CN111247181B (zh) | 光聚合物组合物 | |
CN111699437B (zh) | 光聚合物组合物 | |
KR20190072422A (ko) | 염료 화합물 및 포토폴리머 조성물 | |
CN109790235B (zh) | 光聚合物组合物 | |
WO2019078585A1 (ko) | 비반웅성 블소계 화합물 및 이를 포함하는 광중합성 조성물 | |
WO2019112358A1 (ko) | 포토폴리머 조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18868837 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020541633 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18868837 Country of ref document: EP Kind code of ref document: A1 |