[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019077688A1 - ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物の製造方法、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物の保存方法、ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物、並びにエポキシ樹脂硬化物の製造方法 - Google Patents

ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物の製造方法、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物の保存方法、ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物、並びにエポキシ樹脂硬化物の製造方法 Download PDF

Info

Publication number
WO2019077688A1
WO2019077688A1 PCT/JP2017/037604 JP2017037604W WO2019077688A1 WO 2019077688 A1 WO2019077688 A1 WO 2019077688A1 JP 2017037604 W JP2017037604 W JP 2017037604W WO 2019077688 A1 WO2019077688 A1 WO 2019077688A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
crystalline epoxy
liquid crystalline
glassy
resin composition
Prior art date
Application number
PCT/JP2017/037604
Other languages
English (en)
French (fr)
Inventor
慎吾 田中
智子 東内
丸山 直樹
福田 和真
竹澤 由高
房郎 北條
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020197022625A priority Critical patent/KR102481902B1/ko
Priority to JP2019529671A priority patent/JP6642768B2/ja
Priority to US16/477,353 priority patent/US10597485B2/en
Priority to CA3049751A priority patent/CA3049751A1/en
Priority to CN201780087640.2A priority patent/CN110446753A/zh
Priority to PCT/JP2017/037604 priority patent/WO2019077688A1/ja
Priority to EP17929246.1A priority patent/EP3549981B1/en
Publication of WO2019077688A1 publication Critical patent/WO2019077688A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/066Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with chain extension or advancing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3814Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2250/00Compositions for preparing crystalline polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate

Definitions

  • the present invention relates to a glassy liquid crystalline epoxy resin and a method for producing a glassy liquid crystalline epoxy resin composition, a liquid crystalline epoxy resin and a method for storing a liquid crystalline epoxy resin composition, a glassy liquid crystalline epoxy resin and a glassy liquid crystalline epoxy
  • the present invention relates to a resin composition, a liquid crystalline epoxy resin, a liquid crystalline epoxy resin composition, and a method of producing a cured epoxy resin.
  • Epoxy resins are used in various applications taking advantage of their excellent heat resistance.
  • studies on an epoxy resin having excellent thermal conductivity have been advanced.
  • An epoxy resin (hereinafter, also referred to as a liquid crystalline epoxy resin) which has a mesogenic structure in its molecule and shows liquid crystallinity when it is cured is known as an epoxy resin having excellent thermal conductivity.
  • liquid crystalline epoxy resins generally have higher viscosity and lower fluidity than other epoxy resins, and because they are in a crystallized state during storage, are inferior in moldability at the time of use (or are heated and melted before use) There is room for improvement in handleability for reasons such as
  • liquid crystalline epoxy resin having improved fluidity a liquid crystalline epoxy resin including one obtained by reacting an epoxy monomer having a mesogenic structure with a dihydric phenol compound to form a polymer is proposed (for example, Patent Document 1) reference).
  • the liquid crystalline epoxy resin described in Patent Document 1 improves the flowability by lowering the softening point of the liquid crystalline epoxy resin to a level of 100 ° C. or less, and achieves an improvement in handleability, but during storage There has been no study focusing on the improvement of handleability from the viewpoint of controlling the state of In view of the above situation, the present invention provides a glassy liquid crystalline epoxy resin excellent in handleability, a method of producing a glassy liquid crystalline epoxy resin composition, a method of storing a liquid crystalline epoxy resin and a liquid crystalline epoxy resin composition, a glassy liquid crystalline An object of the present invention is to provide an epoxy resin, a glassy liquid crystalline epoxy resin composition, a liquid crystalline epoxy resin and a liquid crystalline epoxy resin composition, and a method for producing a cured epoxy resin.
  • Means for solving the above problems include the following embodiments.
  • a method for producing a glassy liquid crystalline epoxy resin comprising the step of cooling the liquid crystalline epoxy resin and transferring it to a glassy state.
  • the manufacturing method of the glassy liquid crystalline epoxy resin composition provided with the process of cooling the liquid crystalline epoxy resin composition containing a ⁇ 2> liquid crystalline epoxy resin and a hardening
  • ⁇ 3> The method for producing a glassy liquid crystalline epoxy resin composition according to ⁇ 1>, wherein the liquid crystalline epoxy resin is a liquid liquid crystalline epoxy resin obtained by heating a glassy liquid crystalline epoxy resin.
  • the manufacturing method of the glassy liquid crystalline epoxy resin composition as described. ⁇ 5> The method for producing a glassy liquid crystalline epoxy resin according to ⁇ 1> or the method for producing a glassy liquid crystalline epoxy resin composition according to ⁇ 2>, wherein the glassy liquid state is transferred to a glass state at 0 ° C. or more .
  • save method of liquid crystalline epoxy resin provided with the process which cools ⁇ 6> liquid crystalline epoxy resin, and makes it change to a glass state.
  • save method of a liquid crystalline epoxy resin composition provided with the process of cooling the liquid crystalline epoxy resin composition containing a ⁇ 7> liquid crystalline epoxy resin and a hardening
  • the glassy liquid crystalline epoxy resin which has a ⁇ 8> liquid crystal structure.
  • a glassy liquid crystalline epoxy resin composition comprising a liquid crystalline epoxy resin and a curing agent and having a liquid crystal structure. The liquid crystalline epoxy resin which can be transferred to a ⁇ 10> glassy state.
  • a liquid crystalline epoxy resin having an inflection point on a heat flow curve obtained by differential scanning calorimetry DSC.
  • a method for producing a cured epoxy resin product comprising the steps of
  • a glassy liquid crystalline epoxy resin having excellent handleability, a method of producing a glassy liquid crystalline epoxy resin composition, a liquid crystalline epoxy resin, a method of storing a liquid crystalline epoxy resin composition, a glassy liquid crystalline epoxy resin And a glassy liquid crystalline epoxy resin composition, a liquid crystalline epoxy resin and a liquid crystalline epoxy resin composition, and a method for producing a cured epoxy resin.
  • the term “step” includes, in addition to steps independent of other steps, such steps as long as the purpose of the step is achieved even if it can not be clearly distinguished from other steps.
  • numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified.
  • particles corresponding to each component may contain a plurality of types.
  • the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term “layer” may mean that when the region in which the layer is present is observed, it is formed in only a part of the region, in addition to the case where the region is entirely formed. included.
  • epoxy compound means a compound having an epoxy group in the molecule.
  • Epoxy resin is a concept of capturing a plurality of epoxy compounds as an aggregate, and means an uncured state. A plurality of epoxy compounds constituting the epoxy resin may have the same or different molecular structures.
  • An “epoxy resin composition” means what contains an epoxy resin and components (a hardening agent, a filler, etc.) other than an epoxy resin.
  • the manufacturing method of the glassy liquid crystalline epoxy resin of the present disclosure includes a step (cooling step) of cooling the liquid crystalline epoxy resin and transferring it to a glass state.
  • the liquid crystalline epoxy resin is stored in a cooled state, but the liquid crystalline epoxy resin at this time is in a crystallized state.
  • the glassy liquid crystalline epoxy resin produced by the above method is in a glassy state during storage.
  • the glassy liquid crystalline epoxy resin tends to be more excellent in handleability (moldability) when the temperature is raised to the molding temperature, as compared with the liquid crystalline epoxy resin crystallized during storage. I found it to be. As a result, the product obtained from the glassy liquid crystalline epoxy resin tends to be superior to the product obtained using the liquid crystalline epoxy resin crystallized during storage, due to the characteristics such as the fracture toughness of the epoxy resin product. all right.
  • liquid crystalline epoxy resin crystallized during storage, good moldability can be obtained by heating at a temperature higher than the molding temperature in order to melt the crystallized liquid crystalline epoxy resin.
  • good formability can be obtained without such heating. For this reason, compared with the case where the conventional liquid crystalline epoxy resin is used, the effect which the productivity of an epoxy resin product improves can be anticipated.
  • liquid crystalline epoxy resin means an epoxy resin having a liquid crystal structure in a cured state.
  • glass-like liquid crystalline epoxy resin means an epoxy resin in a glass state and having a liquid crystal structure in the glass state.
  • Glass state means a non-crystalline (amorphous) solid state.
  • the glassy liquid crystalline epoxy resin produced by the above method has a liquid crystal structure in a glass state. Therefore, the liquid crystalline epoxy resin used in the above method has a liquid crystal structure in both a cured state and a glass state before curing.
  • the liquid crystal structure of the glassy liquid crystalline epoxy resin may be either a nematic structure or a smectic structure, but from the viewpoint of moldability (flowability etc.) during molding, a nematic structure closer to the liquid state is preferable.
  • the liquid crystal structure in the cured state and the liquid crystal structure in the glass state may be the same or different.
  • the liquid crystal structure in the cured state is preferably a smectic structure.
  • the glassy liquid crystalline epoxy resin may have a smectic liquid crystal structure in a cured state and a nematic liquid crystal structure in a glass state before curing.
  • Whether or not a liquid crystal structure is formed when the liquid crystalline epoxy resin is in a cured state or in a glass state can be determined by X-ray diffraction measurement described later, observation with a polarizing microscope, or the like.
  • the glassy liquid crystalline epoxy resin corresponds to a “glassy liquid crystalline epoxy resin” even if a crystal structure is formed in part of the epoxy resin.
  • Whether or not the liquid crystalline epoxy resin is transferred to the glass state can be confirmed by whether or not the liquid crystalline epoxy resin has a glass transition point (Tg).
  • Tg glass transition point
  • the confirmation method in particular of the presence or absence of a glass transition point is not restrict
  • the determination of the presence or absence of the glass transition point by DSC can be made based on whether or not an inflection point (step) exists on a heat flow curve obtained when the liquid crystalline epoxy resin is heated or cooled. If there is an inflection point on the heat flow curve, it can be determined that the glass transition point is at a temperature corresponding to the inflection point.
  • the inflection point on the heat flow curve may be present at either the temperature rise time or the temperature decrease time of the liquid crystalline epoxy resin, but from the viewpoint of the formability at the time of use, at least on the heat flow curve at the temperature fall time It is preferable to exist, and it is more preferable to exist on the heat flow curve at the time of temperature rising and temperature falling.
  • the liquid crystalline epoxy resin in the glass state has a crystal structure can be confirmed, for example, by using a polarizing microscope under crossed nicols. Or it can confirm by the X-ray-diffraction method mentioned later.
  • the liquid crystalline epoxy resin used in the above method is not particularly limited as long as it can be transferred to a glass state having a liquid crystal structure by cooling.
  • it may be a liquid crystalline epoxy resin described later.
  • the temperature (glass transition point) at which the liquid crystalline epoxy resin transitions to the glass state is not particularly limited. From the viewpoint of workability, the temperature is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, and still more preferably 10 ° C. or higher. From the viewpoint of storage stability, the temperature at which the liquid crystalline epoxy resin transitions to the glass state is preferably 50 ° C. or less, more preferably 45 ° C. or less, and still more preferably 40 ° C. or less .
  • the cooling conditions of the liquid crystalline epoxy resin in the cooling step are not particularly limited, but the crystal structure tends to be less easily formed in the glassy epoxy resin as the cooling rate is higher.
  • the cooling rate is, for example, preferably 5 ° C./min or more, more preferably 10 ° C./min or more, and still more preferably 20 ° C./min or more.
  • the cooling rate may be constant or variable from the start to the end of the cooling.
  • the liquid crystalline epoxy resin at the start of cooling may be in a liquid state or in a rubber state (solid state at a temperature higher than the glass transition temperature).
  • the method for producing a glassy liquid crystalline epoxy resin composition of the present disclosure comprises a step (cooling step) of cooling a liquid crystalline epoxy resin composition containing a liquid crystalline epoxy resin and a curing agent to convert it to a glassy state.
  • glassy liquid crystalline epoxy resin composition means an epoxy resin composition in a glass state and having a liquid crystal structure in the glass state.
  • glassy liquid crystalline epoxy resin composition in the description related to the method for producing the glassy liquid crystalline epoxy resin described above, “glassy liquid crystalline epoxy resin” is replaced with “glassy liquid crystalline epoxy resin composition You can refer to it after reading it as a thing.
  • the curing agent contained in the glassy liquid crystalline epoxy resin composition is not particularly limited, but may be a curing agent contained in the liquid crystalline epoxy resin composition described later.
  • the glassy liquid crystalline epoxy resin composition may contain components other than the curing agent such as a filler. These components are not particularly limited, but may be components contained in a liquid crystalline epoxy resin composition described later.
  • the liquid crystalline epoxy resin contained in the glassy liquid crystalline epoxy resin composition in the above method may be a liquid crystalline epoxy resin obtained by heating the glassy liquid crystalline epoxy resin. That is, for example, the temperature of a glassy liquid crystalline epoxy resin which has been stored is raised to a liquid state and mixed with a curing agent to prepare a liquid crystalline epoxy resin composition, which is then further cooled. It may be in the state of a glassy liquid crystalline epoxy resin composition. In this case, as the glassy liquid crystalline epoxy resin, one obtained from the outside or one prepared in advance may be used.
  • the method of storing a liquid crystalline epoxy resin of the present disclosure includes a step (cooling step) of cooling the liquid crystalline epoxy resin and transferring it to a glass state.
  • the liquid crystalline epoxy resin is cooled and stored in the liquid crystalline glass state.
  • the liquid crystalline epoxy resin stored by this method tends to be excellent in moldability at the time of molding as compared with the liquid crystalline epoxy resin stored in a crystallized state.
  • good formability can be obtained without passing through the heating step for melting the crystallized liquid crystalline epoxy resin.
  • the storage method after the liquid crystalline epoxy resin is cooled and transferred to the liquid crystalline glass state is not particularly limited. For example, it is preferable to preserve
  • the method of storing a liquid crystalline epoxy resin composition of the present disclosure includes a step (cooling step) of cooling a liquid crystalline epoxy resin composition containing a liquid crystalline epoxy resin and a curing agent to convert the liquid crystalline epoxy resin composition to a glass state.
  • the description on the method for producing the glassy liquid crystalline epoxy resin can be referred to.
  • the description of the liquid crystalline epoxy resin composition described later can be referred to.
  • the storage method after the liquid crystalline epoxy resin composition is cooled and transferred to the liquid crystalline glass state is not particularly limited. For example, it is preferable to preserve
  • the liquid crystalline epoxy resin composition is brought into the state of the glassy liquid crystalline epoxy resin composition, the liquid crystal structure and the glass are obtained even if the glassy liquid crystalline epoxy resin composition is stored at a temperature lower than its glass transition point. The state is maintained.
  • the glassy liquid crystalline epoxy resin of the present disclosure has a liquid crystal structure.
  • the liquid crystal structure possessed by the glassy liquid crystalline epoxy resin may be either a nematic structure or a smectic structure, but from the viewpoint of handleability (reduction of viscosity) during molding, a nematic structure closer to the liquid state is preferable.
  • the liquid crystal structure in the cured state and the liquid crystal structure in the glass state may be the same or different.
  • the liquid crystal structure in the cured state is preferably a smectic structure. Therefore, the glassy liquid crystalline epoxy resin may have a smectic liquid crystal structure in a cured state and a nematic liquid crystal structure in a glass state.
  • the glassy liquid crystalline epoxy resin corresponds to a “glassy liquid crystalline epoxy resin” even if a crystal structure is formed in part of the epoxy resin.
  • the glassy liquid crystalline epoxy resin is in a glassy state can be confirmed by whether or not it has a glass transition point (Tg).
  • Tg glass transition point
  • the confirmation method in particular of the presence or absence of a glass transition point is not restrict
  • the glassy liquid crystalline epoxy resin has a crystal structure can be confirmed, for example, by using a polarizing microscope under crossed nicols. Or it can confirm by the X-ray-diffraction method mentioned later.
  • the glassy liquid crystalline epoxy resin of the present disclosure may be produced by cooling the liquid crystalline epoxy resin according to the method for producing a glassy liquid crystalline epoxy resin described above.
  • a liquid crystalline epoxy resin in this case for example, a liquid crystalline epoxy resin described later may be used.
  • the glassy liquid crystalline epoxy resin composition of the present disclosure includes a liquid crystalline epoxy resin and a curing agent, and has a liquid crystal structure.
  • glassy liquid crystalline epoxy resin may be changed to “glassy liquid crystalline epoxy resin composition” You can refer after reading.
  • the glassy liquid crystalline epoxy resin composition of the present disclosure may include the liquid crystalline epoxy resin of the present disclosure described later as a liquid crystalline epoxy resin. Moreover, you may further contain components, such as a filler and a hardening accelerator, as needed. For details of the curing agent and other components contained in the glassy liquid crystalline epoxy resin composition, the description on the glassy liquid crystalline epoxy resin composition described later can be referred to.
  • the liquid crystalline epoxy resin of the present disclosure can be converted to the glass state. Whether or not the liquid crystalline epoxy resin can be transferred to the glass state can be confirmed by whether or not the liquid crystalline epoxy resin has a glass transition point (Tg). Whether or not the liquid crystalline epoxy resin has a glass transition point (Tg) can be confirmed by, for example, whether or not an inflection point exists on a heat flow curve obtained by differential scanning calorimetry (DSC) .
  • DSC differential scanning calorimetry
  • the liquid crystalline epoxy resin of the present disclosure may have an inflection point on a heat flow curve obtained by differential scanning calorimetry (DSC).
  • the liquid crystalline epoxy resin of the present disclosure has a liquid crystal structure when converted to the glass state.
  • the liquid crystal structure of the liquid crystalline epoxy resin converted to the glass state may be either a nematic structure or a smectic structure, but from the viewpoint of handling at the time of molding (reduction of viscosity), the nematic structure closer to the liquid state is preferable.
  • the liquid crystalline epoxy resin may have the same or different liquid crystal structure in the cured state and in the glass state before curing.
  • the liquid crystal structure in the cured state is preferably a smectic structure. Therefore, the liquid crystalline epoxy resin may have a smectic liquid crystal structure in a cured state and a nematic liquid crystal structure in a glass state before curing.
  • the liquid crystal structure in a glass state before curing is preferably a nematic structure from the viewpoint of formability.
  • Whether or not a liquid crystal structure is formed when the liquid crystalline epoxy resin is in a cured state or in a glass state can be determined by X-ray diffraction measurement described later, observation with a polarizing microscope, or the like.
  • the liquid crystalline epoxy resin corresponds to the “liquid crystalline epoxy resin” even when the crystalline structure is partially formed when the liquid crystalline epoxy resin is in the glass state.
  • the liquid crystalline epoxy resin may be transformed to a glass state by cooling.
  • the cooling conditions in this case can be referred to the details of the cooling step in the method of manufacturing the glassy liquid crystalline epoxy resin described above.
  • liquid crystalline epoxy resin As a liquid crystalline epoxy resin, what contains the liquid crystalline epoxy compound which has a mesogenic structure in a molecule
  • the liquid crystalline epoxy compound having a mesogenic structure in the molecule may be one kind alone or two or more kinds having different molecular structures.
  • an epoxy compound that does not correspond to the liquid crystalline epoxy compound may be included as long as the above-described effects can be obtained.
  • the mesogenic structure of the liquid crystalline epoxy compound includes biphenyl structure, terphenyl structure, terphenyl related structure, anthracene structure, phenylbenzoate structure, cyclohexylbenzoate structure, azobenzene structure, stilbene structure, derivatives of these, and mesogen structure thereof A structure in which two or more are linked via a linking group is mentioned.
  • the epoxy compound having a mesogenic structure has a property of forming a higher-order structure in a cured product obtained by curing it.
  • “high-order structure” is a state in which molecules of an epoxy compound are oriented in a resin matrix (a portion derived from an epoxy resin and a cured product in a cured product and excluding a filler etc.) It means the state which is arranged by. For example, it means a state in which a crystal structure or a liquid crystal structure exists in a resin matrix. Such crystal structure or liquid crystal structure can be confirmed directly by, for example, observation with a polarizing microscope under crossed nicols or X-ray scattering.
  • the presence of the crystal structure or the liquid crystal structure reduces the change of the storage elastic modulus of the resin with respect to the temperature, and therefore the existence of the crystal structure or the liquid crystal structure is confirmed indirectly by measuring the change of the storage modulus with the temperature. it can.
  • Examples of highly ordered higher-order structures derived from mesogenic structures include nematic structures and smectic structures.
  • the nematic structure is a liquid crystal structure having only the orientational order in which the long axis of the molecule is oriented in a uniform direction.
  • the smectic structure is a liquid crystal structure having an order of one-dimensional position in addition to the alignment order and having a layer structure of a constant period.
  • the same periodic structure of the smectic structure forms a combined domain.
  • Whether or not the periodic structure in the resin matrix contains a smectic structure can be determined by, for example, X-ray diffraction measurement using a CuK ⁇ 1 ray at a tube voltage of 40 kV, a tube current of 20 mA, and 2 ⁇ of 0.5 ° to 30 °. Can be determined by confirming whether or not a diffraction peak exists in the range of 1 ° to 10 ° of 2 ⁇ . When the above diffraction peak is present, it is determined that the periodic structure in the resin matrix contains a smectic structure.
  • the X-ray diffraction measurement can be performed, for example, using an X-ray analyzer manufactured by Rigaku Corporation.
  • the proportion of the periodic structure containing the smectic structure in the resin matrix is preferably 60% by volume or more of the entire resin matrix, from the viewpoint of thermal conductivity, It is more preferable that it is 80 volume% or more.
  • the ratio of the periodic structure of the smectic structure to the entire resin matrix can be simply measured, for example, by polishing the cured product to a thickness of 50 ⁇ m and observing it with a polarization microscope. Specifically, the cured product is polished to a thickness of 50 ⁇ m, and the area of the periodic structure of the smectic structure is measured by observation with a polarizing microscope (for example, product name of Nikon Corporation: “OPTIP HOT 2-POL”), and polarization is performed.
  • the ratio of the periodic structure of the smectic structure to the entire resin matrix can be simply measured by determining the percentage of the area of the entire field of view observed with a microscope.
  • the resin matrix preferably includes a periodic structure having a periodic length of 2.0 nm or more and less than 4.0 nm. By including this periodic structure, it is possible to increase the regularity of the resin matrix and to exhibit higher toughness.
  • the length of one cycle in the periodic structure was obtained by performing X-ray diffraction of the cured product under the following conditions using a wide-angle X-ray diffractometer (for example, product name of “RINT Inc .: RINT 2500 HL”) It can be obtained by converting the diffraction angle by the following Bragg's equation.
  • the type of the liquid crystalline epoxy compound is not particularly limited, but as the molecular weight is larger, the liquid crystalline epoxy resin tends to be easily converted to the glass state. Therefore, for example, the molecular weight of the liquid crystalline epoxy compound is preferably 300 or more, more preferably 400 or more, and still more preferably 500 or more. From the viewpoint of viscosity, the molecular weight of the liquid crystalline epoxy compound is preferably 10000 or less, more preferably 7500 or less, and still more preferably 5000 or less.
  • a cured product containing a resin matrix in which a smectic structure is formed tends to be superior in fracture toughness to a cured product containing a resin matrix in which a nematic structure is formed because domains of the smectic structure play a role of dispersing stress. Therefore, it is preferable to use a liquid crystalline epoxy compound which forms a smectic structure in a cured state from the viewpoint of improving fracture toughness.
  • liquid crystalline epoxy compound which forms a smectic structure in a cured state
  • a liquid crystalline epoxy compound represented by the following general formula (I) can be mentioned.
  • the liquid crystalline epoxy compounds represented by the following general formula (I) may be used alone or in combination of two or more.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 1 to R 4 are each independently preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, more preferably a hydrogen atom or a methyl group, and still more preferably a hydrogen atom.
  • 2 to 4 of R 1 to R 4 be a hydrogen atom, more preferably 3 or 4 be a hydrogen atom, and it is further preferable that all 4 be a hydrogen atom.
  • one of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms
  • at least one of R 1 and R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
  • the details of the liquid crystalline epoxy compound represented by the general formula (I) are described in, for example, JP-A-2011-74366.
  • the liquid crystalline epoxy resin comprises a polymer of liquid crystalline epoxy compounds.
  • Liquid crystalline epoxy compounds having a mesogenic group in the molecule generally tend to be easily crystallized as compared with other epoxy compounds.
  • the liquid crystalline epoxy compound By making the liquid crystalline epoxy compound into a multimeric state, the liquid crystalline epoxy compound has a high molecular weight, crystallization is suppressed, and it tends to be in a glassy state when cooled.
  • the liquid crystalline epoxy resin contains a polymer of a liquid crystalline epoxy compound
  • it may contain only a polymer of a liquid crystalline epoxy compound or may further contain a liquid crystalline epoxy compound which is not in the form of a polymer. From the viewpoint of workability, it is preferable to contain both the liquid crystalline epoxy compound and the multimer of the liquid crystalline epoxy compound.
  • liquid crystalline epoxy compounds As a multimer of liquid crystalline epoxy compounds, two or more liquid crystalline epoxy compounds (which may be the same as or different from each other) react with a compound having two or more functional groups capable of reacting with an epoxy group. Reaction products obtained by
  • a liquid crystalline epoxy resin containing a reaction product obtained by reacting two or more liquid crystalline epoxy compounds and a compound having two or more functional groups capable of reacting with an epoxy group is also referred to as “prepolymer”.
  • compounds having two or more functional groups capable of reacting with epoxy groups are also referred to as "prepolymerizing agents”.
  • the type of prepolymerizing agent is not particularly limited, but is preferably a compound having two or more hydroxyl groups or amino groups, and more preferably a compound having two or more hydroxyl groups.
  • the prepolymerizing agents may be used alone or in combination of two or more.
  • the prepolymerizing agent is a dihydroxybenzene compound having a structure in which two hydroxyl groups are bonded to one benzene ring, a structure in which two amino groups are bonded to one benzene ring
  • it is at least 1 sort (s) selected from the group which consists of a diamino biphenyl compound which it has.
  • dihydroxybenzene compounds include 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), 1,4-dihydroxybenzene (hydroquinone), and derivatives thereof.
  • diaminobenzene compounds include 1,2-diaminobenzene, 1,3-diaminobenzene, 1,4-diaminobenzene, derivatives thereof and the like.
  • dihydroxybiphenyl compounds include 3,3′-dihydroxybiphenyl, 3,4′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl, derivatives thereof and the like.
  • diaminobiphenyl compounds examples include 3,3′-diaminobiphenyl, 3,4′-diaminobiphenyl, 4,4′-diaminobiphenyl, derivatives of these, and the like.
  • the derivatives of the above compounds include compounds in which a substituent such as an alkyl group having 1 to 8 carbon atoms is bonded to the benzene ring of each compound.
  • 1,4-dihydroxybenzene, 1,4-diaminobenzene, 4,4'-dihydroxybiphenyl and 4,4'-dihydroxybiphenyl and 4,4'-dihydroxybiphenyl as a prepolymerization agent '-Diaminobiphenyl is preferred.
  • the molecular structure of the polymer obtained by reacting this with the liquid crystalline epoxy compound tends to be linear. . For this reason, it is considered that the stacking property of the molecules is high and it is easy to form a smectic structure in the cured product.
  • reaction product of the liquid crystalline epoxy compound and the prepolymerizing agent examples include liquid crystalline epoxy compounds having structures represented by the following general formulas (II-A) to (II-D).
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 and R 6 each independently represent carbon It shows the alkyl group of the numbers 1 to 8.
  • n and m each independently represent an integer of 0 to 4;
  • Each X independently represents -O- or -NH-.
  • a preferred embodiment of R 1 ⁇ R 4 are the same as the preferred embodiment of R 1 ⁇ R 4 in the general formula (I).
  • reaction products (dimers) of two liquid crystalline epoxy compounds and one prepolymerizing agent include liquid crystalline epoxy compounds represented by the following general formulas (III-A) to (III to F) Can be mentioned.
  • Formula (III-A) ⁇ R 1 in (III ⁇ F) ⁇ R 6 , n, the definition of m and X have the general formula (II-A) R 1 in the ⁇ (II-D) ⁇ R 6, n , M and the definition of X, and the preferable range is also the same.
  • the epoxy compounds having the structures represented by the general formulas (II-A) to (II-D) and the epoxy compounds represented by the general formulas (III-A) to (III to F) are, for example, the general formulas described above It can be obtained by reacting a liquid crystalline epoxy compound having a structure represented by (1) with a prepolymerizing agent.
  • the method for obtaining the liquid crystalline epoxy resin in the prepolymer state is not particularly limited.
  • it can be obtained by preparing a mixture containing a liquid crystalline epoxy compound as a raw material, a prepolymerizing agent, and, if necessary, components such as a reaction solvent and a reaction catalyst, and reacting the mixture.
  • the ratio of the reaction product of the liquid crystalline epoxy compound and the prepolymerizing agent in the prepolymer and the unreacted liquid crystalline epoxy compound is the mixing ratio of the liquid crystalline epoxy compound as the raw material and the prepolymerizing agent, the reaction conditions, etc. Can be controlled by
  • the compounding ratio of the liquid crystalline epoxy compound to the prepolymerizing agent is, for example, a ratio of the number of epoxy groups of the whole liquid crystalline epoxy compound to the number of functional groups of the whole prepolymerizing agent (the number of epoxy groups / the number of functional groups) is 100/5 to 100/50.
  • the blending ratio may be such as 100% to 100/30.
  • the liquid crystalline epoxy resin composition of the present disclosure contains a liquid crystalline epoxy resin and a curing agent, and can be converted to the glass state.
  • liquid crystalline epoxy resin composition of this indication After reading "liquid crystalline epoxy resin” in “the liquid crystalline epoxy resin composition” in the description regarding the liquid crystalline epoxy resin of this indication mentioned above, it can refer.
  • the liquid crystalline epoxy resin composition of the present disclosure may further contain components such as a filler and a curing accelerator, if necessary.
  • the liquid crystal epoxy resin may be the liquid crystalline epoxy resin of the present disclosure described above.
  • the content of the liquid crystalline epoxy resin in the liquid crystalline epoxy resin composition is preferably 5% by volume to 40% by volume in the total solid content of the liquid crystalline epoxy resin composition, from the viewpoint of formability, and 10% by volume
  • the content is more preferably 35% by volume, further preferably 15% by volume to 35% by volume, and particularly preferably 15% by volume to 30% by volume.
  • the volume basis content ratio of the liquid crystalline epoxy monomer to the total solid content of the liquid crystalline epoxy resin composition is a value determined by the following equation.
  • Content ratio (volume%) (Aw / Ad) / ((Aw / Ad) + (Bw / Bd) + (Cw / Cd)) ⁇ 100 of the liquid crystalline epoxy resin to the total solid content
  • each variable is as follows.
  • Aw mass composition ratio (mass%) of liquid crystalline epoxy resin
  • Bw mass composition ratio of the curing agent (mass%)
  • Cw mass composition ratio (% by mass) of other optional components (excluding the solvent)
  • Ad Specific gravity of liquid crystalline epoxy resin
  • Bd Specific gravity of curing agent
  • Cd Specific gravity of other optional components (excluding solvent)
  • the curing agent contained in the liquid crystalline epoxy resin composition is not particularly limited as long as it is a compound capable of curing reaction with the liquid crystalline epoxy resin.
  • Specific examples of the curing agent include amine curing agents, acid anhydride curing agents, phenol curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, blocked isocyanate curing agents, and the like.
  • the curing agent may be used alone or in combination of two or more.
  • an amine curing agent or a phenol curing agent is preferable, and an amine curing agent is more preferable, from the viewpoint of effectively forming a high-order structure in a cured product of the liquid crystalline epoxy resin composition.
  • Examples of the amine curing agent include linear aliphatic polyamines, cyclic aliphatic polyamines, aliphatic aromatic amines, aromatic amines and the like. Among them, aromatic amines are preferred from the viewpoint of formation of higher order structure. Examples of the aromatic amine include meta-phenylenediamine, diaminodiphenylmethane, diaminonaphthalene, diaminodiphenyl sulfone and the like. Among these, diaminodiphenyl sulfone is preferable from the viewpoint of formation of higher order structure, and 3,3-diaminodiphenyl sulfone is more preferable from the viewpoint of improvement of fracture toughness.
  • the content of the curing agent in the liquid crystalline epoxy resin composition can be set in consideration of the type of the curing agent, the physical properties of the liquid crystalline epoxy resin, and the like. Specifically, for example, the ratio (the number of functional groups / the number of epoxy groups) of the number of functional groups of the entire curing agent (the number of active hydrogens in the case of an amine curing agent) to the number of epoxy groups of the entire liquid crystalline epoxy resin is 0.005 to 5 Preferably, the amount is 0.01 to 3, more preferably 0.5 to 1.5.
  • the amount of the curing agent is such that the ratio of the number of functional groups of the entire curing agent to the number of epoxy groups of the entire liquid crystalline epoxy resin is 0.005 or more, the curing speed of the liquid crystalline epoxy resin tends to be improved. If the amount is such, the curing reaction tends to be able to be controlled more properly.
  • the liquid crystalline epoxy resin composition may contain a filler.
  • a filler carbon fibers, ceramic fibers, rubber fibers, carbon particles, ceramic particles, rubber particles and the like can be used from the viewpoint of strength and toughness.
  • the content of the filler is preferably 10% by mass or more in the total solid content of the liquid crystalline epoxy resin composition, more preferably 20% by mass to 90% by mass, and 30% by mass to 80% by mass. It is further preferred that
  • the liquid crystalline epoxy resin composition may further contain another epoxy compound other than the liquid crystalline epoxy compound.
  • Other epoxy compounds include glycidyl ethers of phenol compounds such as bisphenol A, bisphenol F, bisphenol S, phenol novolac, cresol novolac, resorcinol novolac; glycidyl ethers of alcohol compounds such as butanediol, polyethylene glycol and polypropylene glycol; phthalic acid And glycidyl esters of carboxylic acid compounds such as isophthalic acid and tetrahydrophthalic acid; active hydrogens bonded to nitrogen atoms such as aniline and isocyanuric acid substituted with glycidyl groups; vinylcyclohexene obtained by epoxidizing an olefin bond in the molecule Epoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxy)
  • the liquid crystalline epoxy resin composition contains another epoxy compound other than the liquid crystalline epoxy compound
  • the content thereof is not particularly limited.
  • the liquid crystalline epoxy compound when it is 1, it is preferably 0.3 or less, more preferably 0.2 or less, and 0.1 or less. More preferably, it is an amount.
  • the epoxy resin composition may further contain a curing accelerator, a sizing agent, a coupling agent, a dispersing agent, an elastomer, a solvent, and the like as required.
  • the method for producing a liquid crystalline epoxy resin cured product according to the present disclosure comprises the above glassy liquid crystalline epoxy resin or glassy liquid crystalline epoxy resin composition, the glassy liquid crystalline epoxy resin or the glassy liquid crystalline epoxy resin composition Comprises the step of heating at a temperature at which the curing reaction occurs (curing step).
  • the epoxy resin or epoxy resin composition in the glassy state before curing since the epoxy resin or epoxy resin composition in the glassy state before curing is used, it is excellent in handleability at the time of molding as compared with the epoxy resin or epoxy resin composition in the crystallized state before curing. There is. For this reason, the liquid crystalline epoxy resin cured product tends to be more excellent due to properties such as fracture toughness.
  • the method since it is not necessary to perform heating for melting the crystal structure of the crystallized epoxy resin before the curing step, improvement in productivity of the cured epoxy resin product can be expected.
  • the method may be such that no heating is applied to melt the crystalline structure of the epoxy resin prior to the curing step.
  • the above method may include a step (forming step) of forming the glassy liquid crystalline epoxy resin or the glassy liquid crystalline epoxy resin composition before the curing step.
  • the forming step can be carried out, for example, by heating a glassy liquid crystalline epoxy resin or a glassy liquid crystalline epoxy resin composition to a temperature higher than its glass transition point to be in a formable state.
  • the molding method is not particularly limited, and can be selected from general methods of liquid crystalline epoxy resin.
  • the epoxy resin cured product produced by the above method can be used for various applications.
  • it can be suitably used for packaging materials included in various electric and electronic devices, sports goods, bodies of moving bodies such as automobiles, train cars, and aircrafts, construction materials, and the like.
  • the epoxy resin cured product produced by the above method may be used as a composite material containing the epoxy resin cured product and a reinforcing material.
  • the material of the reinforcing material contained in the composite material is not particularly limited, and can be selected according to the application of the composite material.
  • Specific examples of the reinforcing material include glass, aromatic polyamide resins (eg, Kevlar (registered trademark)), ultrahigh molecular weight polyethylene, alumina, boron nitride, aluminum nitride, mica, silicon and the like.
  • the shape of the reinforcing material is not particularly limited, and examples thereof include fibrous and particulate (filler).
  • the reinforcing material contained in the composite material may be one kind alone or two or more kinds.
  • the form of the composite material is not particularly limited.
  • it may have at least one cured product-containing layer containing a cured epoxy resin and at least one reinforcing material-containing layer containing a reinforcing material.
  • the cured product-containing layer may contain a reinforcing material
  • the reinforcing material-containing layer may contain a cured epoxy resin product.
  • Example 1 (Preparation of liquid crystalline epoxy resin and evaluation of glass transition)
  • Epoxy compound 1 (4- ⁇ 4- (2,3-epoxypropoxy) phenyl ⁇ cyclohexyl 4- (2,3-epoxypropoxy) benzoate, compound represented by the general formula (I)) having liquid crystallinity
  • a liquid crystalline epoxy resin in a prepolymer state (hereinafter referred to as “Resin 1”) by prereacting with a 4, 4-biphenol as a prepolymerizing agent at a molar ratio of 10 / 2.5 (epoxy compound 1 / prepolymerizing agent)
  • Resin 1 A liquid crystalline epoxy resin in a prepolymer state
  • 4-biphenol as a prepolymerizing agent at a molar ratio of 10 / 2.5
  • epoxy compound 1 / prepolymerizing agent Also referred to as
  • DSC was performed to determine whether Resin 1 could be transferred to the glassy state. Specifically, after the resin 1 is heated to 180 ° C. and cooled to -20 ° C. with a cooling rate of 1 ° C./min, 5 ° C./min, 10 ° C./min or 200 ° C./min, then -20 ° C. The sample was examined for the presence of an inflection point (glass transition point) on a heat flow curve obtained when the temperature was increased from 10 ° C. to 180 ° C. at 10 ° C./min.
  • FIGS. 1 (a) to (d) A case where the inflection point is recognized on the heat flow curve of at least one of the cooling time and the temperature rising time is shown in Table 1 as A, and the case where it is not recognized is shown as B. Also, the heat flow curves obtained are shown in FIGS. 1 (a) to (d). As shown in FIGS. 1 (a) to 1 (d), in any case, an inflection point was recognized on the heat flow curve of at least one of cooling and temperature rising.
  • Phase structure The phase structure of Resin 1 at ⁇ 20 ° C. was examined by observation with a polarizing microscope under cross nicol. The results are shown in Table 1.
  • a curing agent (3,3-diaminodiphenyl sulfone) was added to resin 1 (cooling to -20 ° C. at a cooling rate of 200 ° C./min and heating to 180 ° C.) to prepare an epoxy resin composition.
  • the amount of the curing agent was adjusted such that the ratio of the number of epoxy groups in the entire resin 1 to the number of active hydrogens in the entire curing agent was 1: 1.
  • a cured product was produced by heating this epoxy resin composition at 180 ° C. for 2 hours.
  • Example 2 An epoxy resin composition was prepared and a cured product was produced in the same manner as in Example 1 except that Resin 1 (cooling rate to -20 ° C. at a cooling rate of 10 ° C./min and heating to 180 ° C.) was used. Whether the glass transition of the resin 1 is possible, the phase structure at ⁇ 20 ° C., the moldability of the epoxy resin composition, the fracture toughness value of the cured product, the presence or absence of the smectic structure, and the cycle length are shown in Table 1.
  • Example 3 An epoxy resin composition was prepared and a cured product was produced in the same manner as in Example 1 except that Resin 1 (cooling rate to -20 ° C. at a cooling rate of 5 ° C./min and heating to 180 ° C.) was used. Whether the glass transition of the resin 1 is possible, the phase structure at ⁇ 20 ° C., the moldability of the epoxy resin composition, the fracture toughness value of the cured product, the presence or absence of the smectic structure, and the cycle length are shown in Table 1.
  • Example 4 An epoxy resin composition was prepared and a cured product was produced in the same manner as in Example 1 except that Resin 1 (cooling rate to -20 ° C. at a cooling rate of 1 ° C./min and heating to 180 ° C.) was used. Whether the glass transition of the resin 1 is possible, the phase structure at ⁇ 20 ° C., the moldability of the epoxy resin composition, the fracture toughness value of the cured product, the presence or absence of the smectic structure, and the cycle length are shown in Table 1.
  • Example 5 The epoxy compound 1 is changed to an epoxy compound 2 (1- (3-methyl-4-oxiranylmethoxyphenyl) -4- (oxiranylmethoxyphenyl) -1-cyclohexene) having liquid crystallinity to be prepolymer ((1) An epoxy resin composition was prepared in the same manner as in Example 1 except that resin 2 was cooled to ⁇ 20 ° C. at a cooling rate of 10 ° C./min and heated up to 180 ° C. to prepare a cured product.
  • Comparative Example 1 The same procedure as in Example 1 was repeated except that the epoxy compound 1 and the prepolymerizing agent were not reacted (Resin 3, cooled to -20 ° C at a cooling rate of 200 ° C / min, and then heated to 180 ° C).
  • the epoxy resin composition was prepared, and a cured product was produced. Whether the glass transition of the resin 3 is possible, the phase structure at ⁇ 20 ° C., the moldability of the epoxy resin composition, the fracture toughness value of the cured product, the presence or absence of the smectic structure, and the cycle length are shown in Table 1.
  • Comparative Example 2 Bisphenol A epoxy resin (“JER 828” from Mitsubishi Chemical Corporation, resin 4, cooled to ⁇ 20 ° C. at a cooling rate of 200 ° C./min, heated to 180 ° C.) without liquid crystallinity instead of resin 1)
  • An epoxy resin composition was prepared in the same manner as in Example 1 except that used, to prepare a cured product.
  • the phase structure of Resin 4 at ⁇ 20 ° C., the moldability of the epoxy resin composition, the fracture toughness value of the cured product, the presence or absence of the smectic structure, and the cycle length are shown in Table 1.
  • evaluation by DSC was not implemented.
  • Comparative Example 3 An epoxy resin composition was prepared and a cured product was produced in the same manner as in Comparative Example 2 except that the cooling rate of the resin 4 was changed to 10 ° C./min.
  • the phase structure of Resin 4 at ⁇ 20 ° C., the moldability of the epoxy resin composition, the fracture toughness value of the cured product, the presence or absence of the smectic structure, and the cycle length are shown in Table 1.
  • Nematic ' is a structure that is more ordered than a normal nematic structure and less ordered than a smectic structure, or is a mixed state of a nematic structure and a smectic structure.
  • the epoxy resin composition of the example converted to the glass state by cooling was excellent in moldability.
  • the fracture toughness value of the cured product was also good, which is considered to be due to the good moldability of the epoxy resin composition.
  • Examples 1 to 3 showing a nematic structure in a glass state were more excellent in moldability than the other Examples 4 and 5, and the fracture toughness value of the cured product was also good.
  • Comparative Example 1 in which the epoxy compound was not reacted with the prepolymerizing agent crystallized on cooling without transition to the glass state.
  • the moldability and the fracture toughness value of the cured product were inferior to those of the examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

液晶性エポキシ樹脂を冷却してガラス状態に転移させる工程を備える、ガラス状液晶性エポキシ樹脂の製造方法。

Description

ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物の製造方法、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物の保存方法、ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物、並びにエポキシ樹脂硬化物の製造方法
 本発明は、ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物の製造方法、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物の保存方法、ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物、並びにエポキシ樹脂硬化物の製造方法に関する。
 エポキシ樹脂は、その優れた耐熱性を活かして種々の用途に用いられている。近年では、エポキシ樹脂を用いたパワーデバイスの実使用温度の高温化等を受けて、熱伝導性に優れるエポキシ樹脂の検討が進められている。
 分子内にメソゲン構造を有し、硬化すると液晶性を示すエポキシ樹脂(以下、液晶性エポキシ樹脂ともいう)は、熱伝導性に優れるエポキシ樹脂として知られている。しかしながら、液晶性エポキシ樹脂は一般に他のエポキシ樹脂に比べて粘度が高く流動性に劣る、保存時に結晶化した状態であるために使用時の成形性に劣る(又は使用前に加熱して溶融させる必要がある)等の理由から取り扱い性に向上の余地がある。
 流動性を改善した液晶性エポキシ樹脂としては、メソゲン構造を有するエポキシモノマーと2価フェノール化合物とを反応させて多量体化したものを含む液晶性エポキシ樹脂が提案されている(例えば、特許文献1参照)。
国際公開第2016-104772号
 特許文献1に記載された液晶性エポキシ樹脂は、液晶性エポキシ樹脂の軟化点を100℃以下のレベルにまで低下させることで流動性を高め、取り扱い性の向上を達成しているが、保存時の状態を制御するという観点から取り扱い性の向上に着目した検討はなされていない。
 本発明は上記状況に鑑み、取り扱い性に優れるガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物の製造方法、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物の保存方法、ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物、並びにエポキシ樹脂硬化物の製造方法を提供することを課題とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>液晶性エポキシ樹脂を冷却してガラス状態に転移させる工程を備える、ガラス状液晶性エポキシ樹脂の製造方法。
<2>液晶性エポキシ樹脂と硬化剤とを含む液晶性エポキシ樹脂組成物を冷却してガラス状態に転移させる工程を備える、ガラス状液晶性エポキシ樹脂組成物の製造方法。
<3>前記液晶性エポキシ樹脂が、ガラス状液晶性エポキシ樹脂を加熱して得られる液状の液晶性エポキシ樹脂である、<1>に記載のガラス状液晶性エポキシ樹脂組成物の製造方法。
<4>前記ガラス状液晶性エポキシ樹脂又は前記ガラス状液晶性エポキシ樹脂組成物がネマチック構造を有する、<1>に記載のガラス状液晶性エポキシ樹脂の製造方法又は<2>若しくは<3>に記載のガラス状液晶性エポキシ樹脂組成物の製造方法。
<5>0℃以上でガラス状態に転移させる、<1>に記載のガラス状液晶性エポキシ樹脂の製造方法又は<2>若しくは<3>に記載のガラス状液晶性エポキシ樹脂組成物の製造方法。
<6>液晶性エポキシ樹脂を冷却してガラス状態に転移させる工程を備える、液晶性エポキシ樹脂の保存方法。
<7>液晶性エポキシ樹脂と、硬化剤とを含む液晶性エポキシ樹脂組成物を冷却してガラス状態に転移させる工程を備える、液晶性エポキシ樹脂組成物の保存方法。
<8>液晶構造を有する、ガラス状液晶性エポキシ樹脂。
<9>液晶性エポキシ樹脂と硬化剤とを含み、液晶構造を有する、ガラス状液晶性エポキシ樹脂組成物。
<10>ガラス状態に転移可能である、液晶性エポキシ樹脂。
<11>示差走査熱量測定(DSC)により得られるヒートフロー曲線上に変曲点が存在する、液晶性エポキシ樹脂。
<12>液晶性エポキシ樹脂と硬化剤とを含み、ガラス状態に転移可能である、液晶性エポキシ樹脂組成物。
<13>液晶性エポキシ樹脂と硬化剤とを含み、示差走査熱量測定(DSC)により得られるヒートフロー曲線上に変曲点が存在する、液晶性エポキシ樹脂組成物。
<14><1>に記載の方法により製造されるガラス状液晶性エポキシ樹脂、<2>若しくは<3>に記載の方法により製造されるガラス状液晶性エポキシ樹脂組成物、<8>に記載のガラス状液晶性エポキシ樹脂、又は<9>に記載のガラス状液晶性エポキシ樹脂組成物を、前記ガラス状液晶性エポキシ樹脂又は前記ガラス状液晶性エポキシ樹脂組成物が硬化反応を生じる温度で加熱する工程を備える、エポキシ樹脂硬化物の製造方法。
 本発明によれば、取り扱い性に優れるガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物の製造方法、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物の保存方法、ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物、並びにエポキシ樹脂硬化物の製造方法が提供される。
実施例で調製した液晶性エポキシ樹脂について行った示差走査熱量測定(Differential scanning calorimetry、DSC)の結果を示す図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「エポキシ化合物」とは、分子中にエポキシ基を有する化合物を意味する。「エポキシ樹脂」とは、複数のエポキシ化合物を集合体として捉える概念であって硬化していない状態のものを意味する。エポキシ樹脂を構成する複数のエポキシ化合物は、分子構造が同じであっても異なっていてもよい。「エポキシ樹脂組成物」とは、エポキシ樹脂とエポキシ樹脂以外の成分(硬化剤、充填材等)とを含有するものを意味する。
<ガラス状液晶性エポキシ樹脂の製造方法>
 本開示のガラス状液晶性エポキシ樹脂の製造方法は、液晶性エポキシ樹脂を冷却してガラス状態に転移させる工程(冷却工程)を備える。
 一般に、液晶性エポキシ樹脂は冷却した状態で保存されるが、このときの液晶性エポキシ樹脂は結晶化した状態となっている。これに対して上記方法により製造されるガラス状液晶性エポキシ樹脂は、保存時にガラス状態となっている。
 本発明者らの検討の結果、ガラス状液晶性エポキシ樹脂は、保存時に結晶化している液晶性エポキシ樹脂に比べ、成形時の温度まで昇温したときの取り扱い性(成形性)により優れる傾向にあることがわかった。その結果、ガラス状液晶性エポキシ樹脂から得られる製品は、保存時に結晶化している液晶性エポキシ樹脂を用いて得られる製品に比べ、エポキシ樹脂製品の破壊靭性等の特性により優れる傾向にあることがわかった。
 なお、保存時に結晶化している液晶性エポキシ樹脂であっても結晶化した液晶性エポキシ樹脂を溶融させるために成形温度よりも高い温度での加熱を行うことで良好な成形性が得られるが、ガラス状液晶性エポキシ樹脂を用いることでこのような加熱を行わなくても良好な成形性が得られる。このため、従来の液晶性エポキシ樹脂を用いる場合に比べてエポキシ樹脂製品の生産性が向上する効果が期待できる。
 本開示において「液晶性エポキシ樹脂」とは、硬化した状態で液晶構造を有するエポキシ樹脂を意味する。「ガラス状液晶性エポキシ樹脂」とは、ガラス状態であり、かつガラス状態で液晶構造を有するエポキシ樹脂を意味する。「ガラス状態」とは、結晶化していない(非晶質の)固体の状態を意味する。
 上記方法により製造されるガラス状液晶性エポキシ樹脂は、ガラス状態で液晶構造を有する。従って、上記方法で使用する液晶性エポキシ樹脂は、硬化した状態と、硬化前のガラス状態の両方において、液晶構造を有する。
 ガラス状液晶性エポキシ樹脂が有する液晶構造は、ネマチック構造とスメクチック構造のいずれであってもよいが、成形時の成形性(流動性等)の観点からは液体の状態により近いネマチック構造が好ましい。
 ガラス状液晶性エポキシ樹脂は、硬化した状態における液晶構造とガラス状態における液晶構造とが同じであっても異なっていてもよい。硬化物の靭性の観点からは、硬化した状態における液晶構造はスメクチック構造であることが好ましい。従って、ガラス状液晶性エポキシ樹脂は、硬化した状態における液晶構造がスメクチック構造であり、硬化前のガラス状態における液晶構造がネマチック構造であるものであってもよい。
 液晶性エポキシ樹脂が硬化した状態又はガラス状態であるときに液晶構造が形成されているか否かは、後述するX線回折測定、偏光顕微鏡による観察等により判断することができる。
 本開示では、上述した効果が得られるのであればガラス状液晶性エポキシ樹脂の一部に結晶構造が形成されている状態であっても「ガラス状液晶性エポキシ樹脂」に該当するものとする。
 液晶性エポキシ樹脂がガラス状態に転移するか否かは、液晶性エポキシ樹脂がガラス転移点(Tg)を有するか否かによって確認することができる。ガラス転移点の有無の確認方法は特に制限されないが、例えば、示差走査熱量測定(Differential scanning calorimetry、DSC)により行うことができる。
 DSCによるガラス転移点の有無の判断は、液晶性エポキシ樹脂の昇温時又は降温時に得られるヒートフロー曲線上に変曲点(段差)が存在するか否かにより行うことができる。ヒートフロー曲線上に変曲点が存在する場合は、変曲点に相当する温度にガラス転移点を有すると判断できる。
 なお、ヒートフロー曲線上に突出したピークが存在する場合は、結晶相から液晶相又は液相への転移(又はその逆)、液晶相から他の液晶相への転移、液晶相から液相への転移(又はその逆)等の、ガラス状態への転移以外の相変化が生じていると判断できる。
 ヒートフロー曲線上の変曲点は、液晶性エポキシ樹脂の昇温時と降温時のいずれに存在していてもよいが、使用時の成形性の観点からは少なくとも降温時のヒートフロー曲線上に存在していることが好ましく、昇温時と降温時の両方のヒートフロー曲線上に存在していることがより好ましい。
 ガラス状態の液晶性エポキシ樹脂が結晶構造を有しているか否かは、例えば、直交ニコル下での偏光顕微鏡を用いて確認することができる。あるいは、後述するX線回折法により確認することができる。
 上記方法において使用する液晶性エポキシ樹脂は、冷却により液晶構造を有するガラス状態に転移しうるものであれば特に制限されない。例えば、後述する液晶性エポキシ樹脂であってもよい。
 液晶性エポキシ樹脂がガラス状態に転移するときの温度(ガラス転移点)は、特に制限されない。作業性の観点からは、0℃以上であることが好ましく、5℃以上であることがより好ましく、10℃以上であることがさらに好ましい。保存安定性の観点からは、液晶性エポキシ樹脂がガラス状態に転移するときの温度は50℃以下であることが好ましく、45℃以下であることがより好ましく、40℃以下であることがさらに好ましい。
 冷却工程における液晶性エポキシ樹脂の冷却条件は特に制限されないが、冷却速度が大きいほどガラス状エポキシ樹脂中に結晶構造が形成されにくい傾向にある。冷却速度は、例えば、5℃/分以上であることが好ましく、10℃/分以上であることがより好ましく、20℃/分以上であることがさらに好ましい。冷却速度は、冷却の開始から終了まで一定であっても変動してもよい。また、冷却開始時の液晶性エポキシ樹脂は、液体の状態であってもゴム状態(ガラス転移点よりも高い温度で固体の状態)であってもよい。
<ガラス状液晶性エポキシ樹脂組成物の製造方法>
 本開示のガラス状液晶性エポキシ樹脂組成物の製造方法は、液晶性エポキシ樹脂と硬化剤とを含む液晶性エポキシ樹脂組成物を冷却してガラス状態に転移させる工程(冷却工程)を備える。
 本開示において「ガラス状液晶性エポキシ樹脂組成物」とは、ガラス状態であり、かつガラス状態で液晶構造を有するエポキシ樹脂組成物を意味する。
 本開示のガラス状液晶性エポキシ樹脂組成物の製造方法の詳細については、上述したガラス状液晶性エポキシ樹脂の製造方法に関する記載において「ガラス状液晶性エポキシ樹脂」を「ガラス状液晶性エポキシ樹脂組成物」に読み替えたうえで参照できる。
 ガラス状液晶性エポキシ樹脂組成物に含まれる硬化剤は特に制限されないが、後述する液晶性エポキシ樹脂組成物に含まれる硬化剤であってもよい。ガラス状液晶性エポキシ樹脂組成物は、フィラー等の硬化剤以外の成分を含んでもよい。これらの成分は特に制限されないが、後述する液晶性エポキシ樹脂組成物に含まれる成分であってもよい。
 上記方法においてガラス状液晶性エポキシ樹脂組成物に含まれる液晶性エポキシ樹脂は、ガラス状液晶性エポキシ樹脂を加熱して得られる液状の液晶性エポキシ樹脂であってもよい。すなわち、例えば、ガラス状液晶性エポキシ樹脂の状態で保存されていたものを昇温して液体の状態にし、硬化剤と混合して液晶性エポキシ樹脂組成物を調製し、これをさらに冷却してガラス状液晶性エポキシ樹脂組成物の状態にしてもよい。この場合、ガラス状液晶性エポキシ樹脂としては外部から入手したものを用いても、自前で調製したものを用いてもよい。
<液晶性エポキシ樹脂の保存方法>
 本開示の液晶性エポキシ樹脂の保存方法は、液晶性エポキシ樹脂を冷却してガラス状態に転移させる工程(冷却工程)を備える。
 上記方法では、液晶性エポキシ樹脂を冷却して液晶性を有するガラス状態で保存する。この方法により保存された液晶性エポキシ樹脂は、結晶化した状態で保存されている液晶性エポキシ樹脂に比べて成形時の成形性に優れる傾向にある。また、結晶化した液晶性エポキシ樹脂を溶融するための加熱工程を経なくても良好な成形性を得ることができる。
 上記方法における液晶性エポキシ樹脂及び冷却工程の詳細については、上述したガラス状液晶性エポキシ樹脂の製造方法又は後述する液晶性エポキシ樹脂に関する記載を参照できる。
 液晶性エポキシ樹脂を冷却して液晶性を有するガラス状態に転移させた後の保存方法は、特に制限されない。例えば、液晶性エポキシ樹脂のガラス転移点以下の温度で保存することが好ましい。なお、液晶性エポキシ樹脂がガラス状液晶性エポキシ樹脂の状態になった後は、ガラス状液晶性エポキシ樹脂をそのガラス転移点より低い温度で保存しても液晶構造とガラス状態が維持される。
<液晶性エポキシ樹脂組成物の保存方法>
 本開示の液晶性エポキシ樹脂組成物の保存方法は、液晶性エポキシ樹脂と、硬化剤とを含む液晶性エポキシ樹脂組成物を冷却してガラス状態に転移させる工程(冷却工程)を備える。
 上記方法における液晶性エポキシ樹脂及び冷却工程の詳細については、上述したガラス状液晶性エポキシ樹脂の製造方法に関する記載を参照できる。液晶性エポキシ樹脂組成物の詳細については、後述する液晶性エポキシ樹脂組成物に関する記載を参照できる。
 液晶性エポキシ樹脂組成物を冷却して液晶性を有するガラス状態に転移させた後の保存方法は、特に制限されない。例えば、液晶性エポキシ樹脂組成物のガラス転移点以下の温度で保存することが好ましい。なお、液晶性エポキシ樹脂組成物がガラス状液晶性エポキシ樹脂組成物の状態になった後は、ガラス状液晶性エポキシ樹脂組成物をそのガラス転移点より低い温度で保存しても液晶構造とガラス状態が維持される。
<ガラス状液晶性エポキシ樹脂>
 本開示のガラス状液晶性エポキシ樹脂は、液晶構造を有する。
 ガラス状液晶性エポキシ樹脂が有する液晶構造は、ネマチック構造とスメクチック構造のいずれであってもよいが、成形時の取り扱い性(粘度低減)の観点からは液体の状態により近いネマチック構造が好ましい。
 ガラス状液晶性エポキシ樹脂は、硬化した状態における液晶構造とガラス状態における液晶構造とが同じであっても異なっていてもよい。硬化物の靭性の観点からは、硬化した状態における液晶構造はスメクチック構造であることが好ましい。従って、ガラス状液晶性エポキシ樹脂は、硬化した状態における液晶構造がスメクチック構造であり、ガラス状態における液晶構造がネマチック構造であるものであってもよい。
 本開示では、上述した効果が得られるのであればガラス状液晶性エポキシ樹脂の一部に結晶構造が形成されている状態であっても「ガラス状液晶性エポキシ樹脂」に該当するものとする。
 ガラス状液晶性エポキシ樹脂がガラス状態であるか否かは、ガラス転移点(Tg)を有するか否かによって確認することができる。ガラス転移点の有無の確認方法は特に制限されないが、例えば、上述したDSCにより行うことができる。
 ガラス状液晶性エポキシ樹脂が結晶構造を有しているか否かは、例えば、直交ニコル下での偏光顕微鏡を用いて確認することができる。あるいは、後述するX線回折法により確認することができる。
 本開示のガラス状液晶性エポキシ樹脂は、上述したガラス状液晶性エポキシ樹脂の製造方法により、液晶性エポキシ樹脂を冷却することで製造されたものであってもよい。この場合の液晶性エポキシ樹脂としては、例えば、後述する液晶性エポキシ樹脂を用いてもよい。
<ガラス状液晶性エポキシ樹脂組成物>
 本開示のガラス状液晶性エポキシ樹脂組成物は、液晶性エポキシ樹脂と、硬化剤とを含み、液晶構造を有する。
 本開示のガラス状液晶性エポキシ樹脂組成物の詳細については、上述した本開示のガラス状液晶性エポキシ樹脂に関する記載において「ガラス状液晶性エポキシ樹脂」を「ガラス状液晶性エポキシ樹脂組成物」に読み替えたうえで参照できる。
 本開示のガラス状液晶性エポキシ樹脂組成物は、液晶性エポキシ樹脂として後述する本開示の液晶性エポキシ樹脂を含むものであってもよい。また、必要に応じてフィラー、硬化促進剤等の成分をさらに含んでもよい。ガラス状液晶性エポキシ樹脂組成物に含まれる硬化剤及びその他の成分の詳細については、後述するガラス状液晶性エポキシ樹脂組成物に関する記載を参照できる。
<液晶性エポキシ樹脂>
 本開示の液晶性エポキシ樹脂は、ガラス状態に転移可能である。
 液晶性エポキシ樹脂がガラス状態に転移可能であるか否かは、液晶性エポキシ樹脂がガラス転移点(Tg)を有するか否かによって確認することができる。液晶性エポキシ樹脂がガラス転移点(Tg)を有するか否かは、例えば、示差走査熱量測定(DSC)により得られるヒートフロー曲線上に変曲点が存在するか否かによって確認することができる。DSCの詳細については、上述したガラス状液晶性エポキシ樹脂の製造方法における詳細を参照することができる。
 本開示の液晶性エポキシ樹脂は、示差走査熱量測定(DSC)により得られるヒートフロー曲線上に変曲点が存在するものであってもよい。
 本開示の液晶性エポキシ樹脂は、ガラス状態に転移したときに液晶構造を有する。ガラス状態に転移した液晶性エポキシ樹脂が有する液晶構造は、ネマチック構造とスメクチック構造のいずれであってもよいが、成形時の取り扱い性(粘度低減)の観点からは液体の状態により近いネマチック構造が好ましい。
 液晶性エポキシ樹脂は、硬化した状態における液晶構造と硬化前のガラス状態における液晶構造とが同種であっても異なっていてもよい。硬化物の靭性の観点からは、硬化した状態における液晶構造はスメクチック構造であることが好ましい。従って、液晶性エポキシ樹脂は、硬化した状態における液晶構造がスメクチック構造であり、硬化前のガラス状態における液晶構造がネマチック構造であるものであってもよい。硬化前のガラス状態における液晶構造は、成形性の観点から、ネマチック構造であることが好ましい。
 液晶性エポキシ樹脂が硬化した状態又はガラス状態であるときに液晶構造が形成されているか否かは、後述するX線回折測定、偏光顕微鏡による観察等により判断することができる。
 本開示では、上述した効果が得られるのであれば液晶性エポキシ樹脂がガラス状態のときに一部に結晶構造が形成される場合であっても「液晶性エポキシ樹脂」に該当するものとする。
 液晶性エポキシ樹脂は、冷却することによりガラス状態に転移するものであってもよい。この場合の冷却条件については、上述したガラス状液晶性エポキシ樹脂の製造方法における冷却工程の詳細を参照することができる。
 液晶性エポキシ樹脂としては、分子中にメソゲン構造を有する液晶性エポキシ化合物を含むものが挙げられる。分子中にメソゲン構造を有する液晶性エポキシ化合物は、1種のみでも分子構造の異なる2種以上であってもよい。また、上述した効果が得られるのであれば液晶性エポキシ化合物に該当しないエポキシ化合物を含んでもよい。
 液晶性エポキシ化合物が有するメソゲン構造としては、ビフェニル構造、ターフェニル構造、ターフェニル類縁構造、アントラセン構造、フェニルベンゾエート構造、シクロヘキシルベンゾエート構造、アゾベンゼン構造、スチルベン構造、これらの誘導体、及びこれらのメソゲン構造の2つ以上が結合基を介して結合した構造が挙げられる。メソゲン構造を有するエポキシ化合物は、これを硬化して得られる硬化物中に高次構造を形成する性質を有する。
 本開示において「高次構造」とは、樹脂マトリックス(硬化物のうちエポキシ樹脂と硬化物に由来する部分であり、フィラー等を除いた部分を意味する)中にエポキシ化合物の分子が配向した状態で配列している状態を意味する。例えば、樹脂マトリックス中に結晶構造又は液晶構造が存在する状態を意味する。このような結晶構造又は液晶構造は、例えば、直交ニコル下での偏光顕微鏡による観察又はX線散乱により、その存在を直接確認することができる。あるいは、結晶構造又は液晶構造が存在すると樹脂の貯蔵弾性率の温度に対する変化が小さくなるので、この貯蔵弾性率の温度に対する変化を測定することにより、結晶構造又は液晶構造の存在を間接的に確認できる。
 メソゲン構造に由来する規則性の高い高次構造としては、ネマチック構造、スメクチック構造等が挙げられる。ネマチック構造は分子の長軸が一様な方向を向いた状態の配向秩序のみを持つ液晶構造である。これに対し、スメクチック構造は配向秩序に加えて一次元の位置の秩序を持ち、一定周期の層構造を有する液晶構造である。また、スメクチック構造の同一の周期構造が集合したドメインを形成する。
 樹脂マトリックス中の周期構造がスメクチック構造を含んでいるか否かは、例えば、CuKα1線を用い、管電圧40kV、管電流20mA、2θが0.5°~30°の範囲でX線回折測定を行い、2θが1°~10°の範囲に回折ピークが存在するか否かを確認することで判断することができる。上記回折ピークが存在する場合には、樹脂マトリックス中の周期構造がスメクチック構造を含んでいると判断される。X線回折測定は、例えば、株式会社リガクのX線解析装置を用いて行うことができる。
 樹脂マトリックス中の周期構造がスメクチック構造を含んでいる場合、熱伝導率の観点からは、樹脂マトリックス中のスメクチック構造を含む周期構造の割合が樹脂マトリックス全体の60体積%以上であることが好ましく、80体積%以上であることがより好ましい。
 樹脂マトリックス全体に対するスメクチック構造の周期構造の割合は、例えば、硬化物を50μmの厚さに研磨して偏光顕微鏡で観察することにより、簡易的に測定することができる。具体的には、硬化物を50μmの厚さに研磨し、偏光顕微鏡(例えば、株式会社ニコンの製品名:「OPTIPHOT2-POL」)で観察してスメクチック構造の周期構造の面積を測定し、偏光顕微鏡で観察した視野全体の面積に対する百分率を求めることにより、樹脂マトリックス全体に対するスメクチック構造の周期構造の割合を簡易的に測定することができる。
 樹脂マトリックスは、周期長が2.0nm以上4.0nm未満の周期構造を含むことが好ましい。この周期構造を含むことで、樹脂マトリックスの規則性が高くなり、より高い靭性を発揮することが可能となる。
 周期構造における1周期の長さは、広角X線回折装置(例えば、株式会社リガクの製品名:「RINT2500HL」)を用いて、下記条件で硬化物のX線回折を行い、これにより得られた回折角度を、下記ブラッグの式により換算することにより得られる。
 (測定条件)
 ・X線源:Cu
 ・X線出力:50kV、250mA
 ・発散スリット(DS):1.0°
 ・散乱スリット(SS):1.0°
 ・受光スリット(RS):0.3mm
 ・走査速度:1.0°/分
 ブラッグの式:2dsinθ=nλ
 ここで、dは1周期の長さ、θは回折角度、nは反射次数、λはX線波長(0.15406nm)をそれぞれ示す。
 液晶性エポキシ化合物の種類は特に制限されないが、分子量が大きいほど液晶性エポキシ樹脂がガラス状態に転移しやすい傾向にある。従って、例えば、液晶性エポキシ化合物の分子量は300以上であることが好ましく、400以上であることがより好ましく、500以上であることがさらに好ましい。粘度の観点からは、液晶性エポキシ化合物の分子量は10000以下であることが好ましく、7500以下であることがより好ましく、5000以下であることがさらに好ましい。
 スメクチック構造が形成された樹脂マトリックスを含む硬化物は、スメクチック構造のドメインが応力を分散する役割を果たすため、ネマチック構造が形成された樹脂マトリックスを含む硬化物よりも破壊靭性に優れる傾向にある。従って、破壊靭性向上の観点からは硬化した状態でスメクチック構造を形成する液晶性エポキシ化合物を用いることが好ましい。
 硬化した状態でスメクチック構造を形成する液晶性エポキシ化合物としては、下記一般式(I)で表される液晶性エポキシ化合物が挙げられる。下記一般式(I)で表される液晶性エポキシ化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000001
 一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。R~Rはそれぞれ独立に、水素原子又は炭素数1~2のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることがさらに好ましい。また、R~Rのうちの2個~4個が水素原子であることが好ましく、3個又は4個が水素原子であることがより好ましく、4個すべてが水素原子であることがさらに好ましい。R~Rのいずれかが炭素数1~3のアルキル基である場合、R及びRの少なくとも一方が炭素数1~3のアルキル基であることが好ましい。
 一般式(I)で表される液晶性エポキシ化合物として具体的には、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート及び4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)-3-メチルベンゾエートからなる群より選択される少なくとも1種の液晶性エポキシ化合物が好ましい。一般式(I)で表される液晶性エポキシ化合物の詳細は、例えば、特開2011-74366号公報に記載されている。
 ある実施態様では、液晶性エポキシ樹脂は液晶性エポキシ化合物の多量体を含む。分子中にメソゲン基を有する液晶性エポキシ化合物は、その他のエポキシ化合物と比べると一般に結晶化し易い傾向にある。液晶性エポキシ化合物を多量体の状態にすることで液晶性エポキシ化合物が高分子量となり、結晶化が抑制され、冷却したときにガラス状態となりやすい傾向にある。
 液晶性エポキシ樹脂が液晶性エポキシ化合物の多量体を含む場合、液晶性エポキシ化合物の多量体のみを含んでいても、多量体の状態になっていない液晶性エポキシ化合物をさらに含んでいてもよいが、作業性の観点からは液晶性エポキシ化合物と、液晶性エポキシ化合物の多量体の両方を含むことが好ましい。
 液晶性エポキシ化合物の多量体としては、2つ以上の液晶性エポキシ化合物(互いに同じであっても異なっていてもよい)と、エポキシ基と反応しうる官能基を2つ以上有する化合物とが反応して得られる反応生成物が挙げられる。
 本開示では、2つ以上の液晶性エポキシ化合物と、エポキシ基と反応しうる官能基を2つ以上有する化合物とが反応して得られる反応生成物を含む液晶性エポキシ樹脂を「プレポリマー」とも称し、エポキシ基と反応しうる官能基を2つ以上有する化合物を「プレポリマー化剤」とも称する。
 プレポリマー化剤の種類は特に制限されないが、水酸基又はアミノ基を2つ以上有する化合物であることが好ましく、水酸基を2つ以上有する化合物であることがより好ましい。プレポリマー化剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 硬化物中にスメクチック構造を形成する観点からは、プレポリマー化剤は、2つの水酸基が1つのベンゼン環に結合した構造を有するジヒドロキシベンゼン化合物、2つのアミノ基が1つのベンゼン環に結合した構造を有するジアミノベンゼン化合物、ビフェニル構造を形成する2つのベンゼン環にそれぞれ1つの水酸基が結合した構造を有するジヒドロキシビフェニル化合物及びビフェニル構造を形成する2つのベンゼン環にそれぞれ1つのアミノ基が結合した構造を有するジアミノビフェニル化合物からなる群より選択される少なくとも1種であることが好ましい。
 ジヒドロキシベンゼン化合物としては、1,2-ジヒドロキシベンゼン(カテコール)、1,3-ジヒドロキシベンゼン(レゾルシノール)、1,4-ジヒドロキシベンゼン(ヒドロキノン)、これらの誘導体等が挙げられる。
 ジアミノベンゼン化合物としては、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、これらの誘導体等が挙げられる。
 ジヒドロキシビフェニル化合物としては、3,3’-ジヒドロキシビフェニル、3,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル、これらの誘導体等が挙げられる。
 ジアミノビフェニル化合物としては、3,3’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、これらの誘導体等が挙げられる。
 上記化合物の誘導体としては、各化合物のベンゼン環に炭素数1~8のアルキル基等の置換基が結合した化合物が挙げられる。
 エポキシ樹脂の硬化物中におけるスメクチック構造の形成し易さの観点からは、プレポリマー化剤としては1,4-ジヒドロキシベンゼン、1,4-ジアミノベンゼン、4,4’-ジヒドロキシビフェニル及び4,4’-ジアミノビフェニルが好ましい。これらの化合物は、ベンゼン環上の2つの水酸基又はアミノ基がパラ位の位置関係となっているため、これを液晶性エポキシ化合物と反応させて得られる多量体の分子構造が直線的になり易い。このため、分子のスタッキング性が高く、硬化物中にスメクチック構造を形成し易いと考えられる。
 液晶性エポキシ化合物とプレポリマー化剤の反応生成物の例としては、下記一般式(II-A)~(II-D)で表される構造を有する液晶性エポキシ化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 一般式(II-A)~(II-D)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表し、R及びRはそれぞれ独立に、炭素数1~8のアルキル基を示す。n及びmはそれぞれ独立に、0~4の整数を表す。Xはそれぞれ独立に、-O-又は-NH-を表す。R~Rの好ましい態様は、一般式(I)におけるR~Rの好ましい態様と同様である。
 2つの液晶性エポキシ化合物と1つのプレポリマー化剤との反応生成物(二量体)の例としては、下記一般式(III-A)~(III~F)で表される液晶性エポキシ化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 一般式(III-A)~(III~F)におけるR~R、n、m及びXの定義は、一般式(II-A)~(II-D)におけるR~R、n、m及びXの定義と同様であり、その好ましい範囲も同様である。
 一般式(II-A)~(II-D)で表される構造を有するエポキシ化合物と一般式(III-A)~(III~F)で表されるエポキシ化合物は、例えば、上述した一般式(1)で表される構造を有する液晶性エポキシ化合物とプレポリマー化剤とを反応させて得ることができる。
 プレポリマーの状態の液晶性エポキシ樹脂を得る方法は特に制限されない。例えば、原料となる液晶性エポキシ化合物と、プレポリマー化剤と、必要に応じて反応溶媒、反応触媒等の成分とを含む混合物を調製し、これを反応させることで得ることができる。
 プレポリマーにおける液晶性エポキシ化合物とプレポリマー化剤との反応生成物と、未反応の液晶性エポキシ化合物との割合は、原料となる液晶性エポキシ化合物とプレポリマー化剤の配合比、反応条件等によって制御できる。
 液晶性エポキシ化合物とプレポリマー化剤の配合比は、例えば、液晶性エポキシ化合物全体のエポキシ基数とプレポリマー化剤全体の官能基数の比(エポキシ基数/官能基数)が100/5~100/50となる配合比であってもよく、100/10~100/30となる配合比であってもよい。
<液晶性エポキシ樹脂組成物>
 本開示の液晶性エポキシ樹脂組成物は、液晶性エポキシ樹脂と、硬化剤とを含み、ガラス状態に転移可能である。
 本開示の液晶性エポキシ樹脂組成物の詳細については、上述した本開示の液晶性エポキシ樹脂に関する記載において「液晶性エポキシ樹脂」を「液晶性エポキシ樹脂組成物」に読み替えたうえで参照できる。
 本開示の液晶性エポキシ樹脂組成物は、必要に応じてフィラー、硬化促進剤等の成分をさらに含んでもよい。液晶エポキシ樹脂は、上述した本開示の液晶性エポキシ樹脂であってもよい。
 液晶性エポキシ樹脂組成物における液晶性エポキシ樹脂の含有率は、成形性の観点から、液晶性エポキシ樹脂組成物の全固形分中の5体積%~40体積%であることが好ましく、10体積%~35体積%であることがより好ましく、15体積%~35体積%であることがさらに好ましく、15体積%~30体積%であることが特に好ましい。
 本開示において、液晶性エポキシ樹脂組成物の全固形分に対する液晶性エポキシモノマーの体積基準の含有率は、次式により求めた値とする。
 液晶性エポキシ樹脂の全固形分に対する含有率(体積%)={(Aw/Ad)/((Aw/Ad)+(Bw/Bd)+(Cw/Cd)}×100
 ここで、各変数は以下の通りである。
 Aw:液晶性エポキシ樹脂の質量組成比(質量%)
 Bw:硬化剤の質量組成比(質量%)
 Cw:その他の任意成分(溶媒を除く)の質量組成比(質量%)
 Ad:液晶性エポキシ樹脂の比重
 Bd:硬化剤の比重
 Cd:その他の任意成分(溶媒を除く)の比重
(硬化剤)
 液晶性エポキシ樹脂組成物に含まれる硬化剤は、液晶性エポキシ樹脂と硬化反応しうる化合物であれば特に制限されない。
 硬化剤の具体例としては、アミン硬化剤、酸無水物硬化剤、フェノール硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。硬化剤は1種を単独で用いても、2種以上を併用してもよい。
 液晶性エポキシ樹脂組成物の硬化物中に効果的に高次構造を形成する観点からは、硬化剤としてはアミン硬化剤又はフェノール硬化剤が好ましく、アミン硬化剤がより好ましい。
 アミン硬化剤としては、鎖状脂肪族ポリアミン、環状脂肪族ポリアミン、脂肪芳香族アミン、芳香族アミン等が挙げられる。中でも高次構造形成の観点からは、芳香族アミンが好ましい。芳香族アミンとしては、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノナフタレン、ジアミノジフェニルスルホン等が挙げられる。中でも高次構造形成の観点からはジアミノジフェニルスルホンが好ましく、破壊靭性向上の観点からは3,3-ジアミノジフェニルスルホンがより好ましい。
 液晶性エポキシ樹脂組成物における硬化剤の含有量は、硬化剤の種類、液晶性エポキシ樹脂の物性等を考慮して設定できる。
 具体的には、例えば、液晶性エポキシ樹脂全体のエポキシ基数に対する硬化剤全体の官能基数(アミン硬化剤の場合は活性水素数)の比(官能基数/エポキシ基数)が0.005~5となる量であることが好ましく、0.01~3となる量であることがより好ましく、0.5~1.5となる量であることがさらに好ましい。
 硬化剤の量が、液晶性エポキシ樹脂全体のエポキシ基数に対する硬化剤全体の官能基数の比が0.005以上となる量であると液晶性エポキシ樹脂の硬化速度が向上する傾向にあり、5以下となる量であると硬化反応をより適切に制御できる傾向にある。
(フィラー)
 液晶性エポキシ樹脂組成物は、フィラーを含有してもよい。フィラーとしては、強度、及び靭性の観点から、炭素繊維、セラミックス繊維、ゴム繊維、炭素粒子、セラミックス粒子、ゴム粒子等を用いることができる。
 フィラーの含有率は、液晶性エポキシ樹脂組成物の全固形分中に10質量%以上であることが好ましく、20質量%~90質量%であることがより好ましく、30質量%~80質量%であることがさらに好ましい。
(その他のエポキシ化合物)
 液晶性エポキシ樹脂組成物は、液晶性エポキシ化合物以外のその他のエポキシ化合物をさらに含有していてもよい。その他のエポキシ化合物としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールノボラック、クレゾールノボラック、レゾルシノールノボラック等のフェノール化合物のグリシジルエーテル;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール化合物のグリシジルエーテル;フタル酸、イソフタル酸、テトラヒドロフタル酸等のカルボン酸化合物のグリシジルエステル;アニリン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したもの;分子内のオレフィン結合をエポキシ化して得られるビニルシクロヘキセンエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ化合物;ビス(4-ヒドロキシ)チオエーテルのエポキシ化物;パラキシリレン変性フェノール樹脂、メタキシリレンパラキシリレン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、ナフタレン環含有フェノール樹脂等のフェノール樹脂のグリシジルエーテル;スチルベン型エポキシ化合物;ハロゲン化フェノールノボラック型エポキシ化合物など(但し、これらのうち液晶性エポキシ化合物に該当するものを除く)が挙げられる。液晶性エポキシ化合物以外のその他のエポキシ化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 液晶性エポキシ樹脂組成物が液晶性エポキシ化合物以外のその他のエポキシ化合物を含む場合、その含有量は特に制限されない。例えば、質量基準において、液晶性エポキシ化合物を1とした場合に、0.3以下となる量であることが好ましく、0.2以下となる量であることがより好ましく、0.1以下となる量であることがさらに好ましい。
(その他の成分)
 エポキシ樹脂組成物は、硬化促進剤、サイジング材、カップリング剤、分散剤、エラストマー、溶剤等を必要に応じてさらに含んでもよい。エポキシ樹脂組成物が溶剤を含む場合、硬化物中にスメクチック構造を効果的に形成する観点からは、溶剤の含有量は少ないほど好ましい。具体的には、例えば、エポキシ樹脂組成物全体の溶剤の含有率が10質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.1質量%以下であることが更に好ましい。
<エポキシ樹脂硬化物の製造方法>
 本開示の液晶性エポキシ樹脂硬化物の製造方法は、上述したガラス状液晶性エポキシ樹脂又はガラス状液晶性エポキシ樹脂組成物を、前記ガラス状液晶性エポキシ樹脂又は前記ガラス状液晶性エポキシ樹脂組成物が硬化反応を生じる温度で加熱する工程(硬化工程)を備える。
 上記方法では、硬化前にガラス状態であるエポキシ樹脂又はエポキシ樹脂組成物を使用するため、硬化前に結晶化した状態であるエポキシ樹脂又はエポキシ樹脂組成物に比べて成形時の取り扱い性に優れている。このため、得られる液晶性エポキシ樹脂硬化物は破壊靭性等の特性により優れる傾向にある。
 さらに上記方法では、硬化工程前に結晶化したエポキシ樹脂の結晶構造を溶融するための加熱を行う必要がないため、エポキシ樹脂硬化物の生産性の向上が期待できる。従って、上記方法は硬化工程前にエポキシ樹脂の結晶構造を溶融するための加熱を行わないものであってもよい。
 上記方法は、硬化工程の前にガラス状液晶性エポキシ樹脂又はガラス状液晶性エポキシ樹脂組成物を成形する工程(成形工程)を備えていてもよい。成形工程は、たとえば、ガラス状液晶性エポキシ樹脂又はガラス状液晶性エポキシ樹脂組成物をそのガラス転移点以上に加熱して成形可能な状態にして行うことができる。成形の方法は特に制限されず、液晶性エポキシ樹脂の一般的な手法から選択できる。
 上記方法により製造されるエポキシ樹脂硬化物は、種々の用途に使用することができる。例えば、各種の電気及び電子機器に含まれるパッケージ材、スポーツ用品、自動車、電車車両、航空機等の移動体のボディー、建材などに好適に用いることができる。
 上記方法により製造されるエポキシ樹脂硬化物は、エポキシ樹脂硬化物と、強化材と、を含む複合材料として用いるものであってもよい。
 複合材料に含まれる強化材の材質は特に制限されず、複合材料の用途等に応じて選択できる。強化材として具体的には、ガラス、芳香族ポリアミド系樹脂(例えば、ケブラー(登録商標))、超高分子量ポリエチレン、アルミナ、窒化ホウ素、窒化アルミニウム、マイカ、シリコン等が挙げられる。強化材の形状は特に制限されず、繊維状、粒子状(フィラー)等が挙げられる。複合材料に含まれる強化材は、1種のみでも2種以上であってもよい。
 複合材料の形態は、特に制限されない。例えば、エポキシ樹脂硬化物を含む少なくとも1つの硬化物含有層と、強化材を含む少なくとも1つの強化材含有層とを有するものであってもよい。この場合、硬化物含有層に強化材が含まれていてもよく、強化材含有層にエポキシ樹脂硬化物が含まれていてもよい。
 以下、上記実施形態を実施例により具体的に説明するが、上記実施形態はこれらの実施例に限定されるものではない。
<実施例1>
(液晶性エポキシ樹脂の調製とガラス転移可否の評価)
 液晶性を有するエポキシ化合物1(4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート、一般式(I)で表される化合物)と、プレポリマー化剤として4,4-ビフェノールとをモル比(エポキシ化合物1/プレポリマー化剤)を10/2.5として予め反応させ、プレポリマーの状態の液晶性エポキシ樹脂(以下、「樹脂1」ともいう)を作製した。
(ガラス転移の可否)
 樹脂1がガラス状態に転移可能か否かを調べるために、DSCを実施した。具体的には、樹脂1を180℃まで昇温した後に、冷却速度を1℃/分、5℃/分、10℃/分又は200℃/分として-20℃まで冷却した後、-20℃から180℃まで10℃/分で昇温したときに得られるヒートフロー曲線上の変曲点(ガラス転移点)の有無を調べた。冷却時と昇温時の少なくとも一方のヒートフロー曲線上に変曲点が認められた場合をA、認められなかった場合をBとして表1に示す。また、得られたヒートフロー曲線を図1(a)~(d)に示す。図1(a)~(d)に示すように、いずれの場合も冷却時と昇温時の少なくとも一方のヒートフロー曲線上に変曲点が認められた。
(相構造)
 樹脂1の-20℃での相構造を、クロスニコル下で偏光顕微鏡で観察して調べた。結果を表1に示す。
(エポキシ樹脂組成物の調製)
 樹脂1(冷却速度200℃/分で-20℃まで冷却後、180℃まで昇温)に硬化剤(3,3-ジアミノジフェニルスルホン)を加えてエポキシ樹脂組成物を調製した。硬化剤の量は、樹脂1全体のエポキシ基数と硬化剤全体の活性水素数との比が1:1となるように調整した。このエポキシ樹脂組成物を180℃で2時間加熱することにより、硬化物を作製した。
(成形性)
 エポキシ樹脂組成物を80℃に加熱した状態で、溶剤等を使用せずに基材に塗工する試験を行った。10回の塗工において8回以上の塗工が可能である場合をA、6回又は7回の塗工が可能である場合をB、1回~5回の塗工が可能である場合をC、溶剤等を使用しないと塗工ができないものをDと判定した。結果を表1に示す。
(破壊靭性値)
 エポキシ樹脂組成物の硬化物を3.75mm×7.5mm×33mmの直方体に切り出し、破壊靱性の評価用の試験片を作製した。この試験片について、ASTM D5045に基づいて3点曲げ測定を行って破壊靱性値(MPa・m1/2)を算出した。評価装置としては、曲げ試験機(インストロン5948、インストロン社)を用いた。結果を表1に示す。
(スメクチック構造の有無と周期長)
 エポキシ樹脂組成物の硬化物中におけるスメクチック構造の有無と周期長の長さ(nm)を上述した方法で調べた。結果を表1に示す。
<実施例2>
 樹脂1(冷却速度10℃/分で-20℃まで冷却後、180℃まで昇温)を用いたこと以外は実施例1と同様にしてエポキシ樹脂組成物を調製し、硬化物を作製した。
 樹脂1のガラス転移の可否と-20℃での相構造、エポキシ樹脂組成物の成形性、並びに硬化物の破壊靭性値、スメクチック構造の有無及び周期長を表1に示す。
<実施例3>
 樹脂1(冷却速度5℃/分で-20℃まで冷却後、180℃まで昇温)を用いたこと以外は実施例1と同様にしてエポキシ樹脂組成物を調製し、硬化物を作製した。
 樹脂1のガラス転移の可否と-20℃での相構造、エポキシ樹脂組成物の成形性、並びに硬化物の破壊靭性値、スメクチック構造の有無及び周期長を表1に示す。
<実施例4>
 樹脂1(冷却速度1℃/分で-20℃まで冷却後、180℃まで昇温)を用いたこと以外は実施例1と同様にしてエポキシ樹脂組成物を調製し、硬化物を作製した。
 樹脂1のガラス転移の可否と-20℃での相構造、エポキシ樹脂組成物の成形性、並びに硬化物の破壊靭性値、スメクチック構造の有無及び周期長を表1に示す。
<実施例5>
 エポキシ化合物1を、液晶性を有するエポキシ化合物2(1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(オキシラニルメトキシフェニル)-1-シクロヘキセン)に変更してプレポリマー(樹脂2、冷却速度10℃/分で-20℃まで冷却後、180℃まで昇温)を調製したこと以外は実施例1と同様にしてエポキシ樹脂組成物を調製し、硬化物を作製した。
 樹脂2のガラス転移の可否と-20℃での相構造、エポキシ樹脂組成物の成形性、並びに硬化物の破壊靭性値、スメクチック構造の有無及び周期長を表1に示す。
<比較例1>
 エポキシ化合物1とプレポリマー化剤と反応させなかったもの(樹脂3、冷却速度200℃/分で-20℃まで冷却後、180℃まで昇温)を用いたこと以外は実施例1と同様にしてエポキシ樹脂組成物を調製し、硬化物を作製した。
 樹脂3のガラス転移の可否と-20℃での相構造、エポキシ樹脂組成物の成形性、並びに硬化物の破壊靭性値、スメクチック構造の有無及び周期長を表1に示す。
<比較例2>
 樹脂1の代わりに液晶性を有しないビスフェノールA型エポキシ樹脂(三菱ケミカル株式会社の「jER828」、樹脂4、冷却速度200℃/分で-20℃まで冷却後、180℃まで昇温))を用いたこと以外は実施例1と同様にしてエポキシ樹脂組成物を調製し、硬化物を作製した。
 樹脂4の-20℃での相構造、エポキシ樹脂組成物の成形性、並びに硬化物の破壊靭性値、スメクチック構造の有無及び周期長を表1に示す。なお、樹脂4は液晶性を示さないことからDSCによる評価は実施しなかった。
<比較例3>
 樹脂4の冷却速度を10℃/分としたこと以外は比較例2と同様にしてエポキシ樹脂組成物を調製し、硬化物を作製した。
 樹脂4の-20℃での相構造、エポキシ樹脂組成物の成形性、並びに硬化物の破壊靭性値、スメクチック構造の有無及び周期長を表1に示す。
Figure JPOXMLDOC01-appb-T000004
  表1中のガラス転移可否の欄の「-」は、未測定を表す。周期長の欄の「-」は、その欄に該当する周期構造を形成していないことを表す。「ネマチック’」は通常のネマチック構造より秩序性の高く、かつスメクチック構造よりも秩序性が低い構造であるか、ネマチック構造とスメクチック構造とが混合した状態のいずれかであることを表す。
 表1に示されるように、冷却によりガラス状態に転移した実施例のエポキシ樹脂組成物は成形性に優れていた。また、硬化物の破壊靭性値も良好であったが、これはエポキシ樹脂組成物の良好な成形性に起因するものと考えられる。また、実施例の中でもガラス状態でネマチック構造を示す実施例1~3は、それ以外の実施例4、5に比べて成形性により優れ、硬化物の破壊靭性値も良好であった。
 エポキシ化合物をプレポリマー化剤と反応させなかった比較例1は、冷却するとガラス状態に転移せずに結晶化した。また、成形性と硬化物の破壊靭性値が実施例より劣っていた。
 液晶性を有しないエポキシ化合物を用いた比較例2と比較例3は、エポキシ樹脂組成物の成形性は良好であったが硬化物の破壊靭性値が著しく低かった。

Claims (14)

  1.  液晶性エポキシ樹脂を冷却してガラス状態に転移させる工程を備える、ガラス状液晶性エポキシ樹脂の製造方法。
  2.  液晶性エポキシ樹脂と硬化剤とを含む液晶性エポキシ樹脂組成物を冷却してガラス状態に転移させる工程を備える、ガラス状液晶性エポキシ樹脂組成物の製造方法。
  3.  前記液晶性エポキシ樹脂が、ガラス状液晶性エポキシ樹脂を加熱して得られる液状の液晶性エポキシ樹脂である、請求項1に記載のガラス状液晶性エポキシ樹脂組成物の製造方法。
  4.  前記ガラス状液晶性エポキシ樹脂又は前記ガラス状液晶性エポキシ樹脂組成物がネマチック構造を有する、請求項1に記載のガラス状液晶性エポキシ樹脂の製造方法又は請求項2若しくは請求項3に記載のガラス状液晶性エポキシ樹脂組成物の製造方法。
  5.  0℃以上でガラス状態に転移させる、請求項1に記載のガラス状液晶性エポキシ樹脂の製造方法又は請求項2若しくは請求項3に記載のガラス状液晶性エポキシ樹脂組成物の製造方法。
  6.  液晶性エポキシ樹脂を冷却してガラス状態に転移させる工程を備える、液晶性エポキシ樹脂の保存方法。
  7.  液晶性エポキシ樹脂と、硬化剤とを含む液晶性エポキシ樹脂組成物を冷却してガラス状態に転移させる工程を備える、液晶性エポキシ樹脂組成物の保存方法。
  8.  液晶構造を有する、ガラス状液晶性エポキシ樹脂。
  9.  液晶性エポキシ樹脂と硬化剤とを含み、液晶構造を有する、ガラス状液晶性エポキシ樹脂組成物。
  10.  ガラス状態に転移可能である、液晶性エポキシ樹脂。
  11.  示差走査熱量測定(DSC)により得られるヒートフロー曲線上に変曲点が存在する、液晶性エポキシ樹脂。
  12.  液晶性エポキシ樹脂と硬化剤とを含み、ガラス状態に転移可能である、液晶性エポキシ樹脂組成物。
  13.  液晶性エポキシ樹脂と硬化剤とを含み、示差走査熱量測定(DSC)により得られるヒートフロー曲線上に変曲点が存在する、液晶性エポキシ樹脂組成物。
  14.  請求項1に記載の方法により製造されるガラス状液晶性エポキシ樹脂、請求項2若しくは請求項3に記載の方法により製造されるガラス状液晶性エポキシ樹脂組成物、請求項8に記載のガラス状液晶性エポキシ樹脂、又は請求項9に記載のガラス状液晶性エポキシ樹脂組成物を、前記ガラス状液晶性エポキシ樹脂又は前記ガラス状液晶性エポキシ樹脂組成物が硬化反応を生じる温度で加熱する工程を備える、エポキシ樹脂硬化物の製造方法。
PCT/JP2017/037604 2017-10-17 2017-10-17 ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物の製造方法、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物の保存方法、ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物、並びにエポキシ樹脂硬化物の製造方法 WO2019077688A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020197022625A KR102481902B1 (ko) 2017-10-17 2017-10-17 유리상 액정성 에폭시 수지 및 유리상 액정성 에폭시 수지 조성물의 제조 방법, 액정성 에폭시 수지 및 액정성 에폭시 수지 조성물의 보존 방법, 유리상 액정성 에폭시 수지 및 유리상 액정성 에폭시 수지 조성물, 액정성 에폭시 수지 및 액정성 에폭시 수지 조성물, 및 에폭시 수지 경화물의 제조 방법
JP2019529671A JP6642768B2 (ja) 2017-10-17 2017-10-17 ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物の製造方法、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物の保存方法、ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物、並びにエポキシ樹脂硬化物の製造方法
US16/477,353 US10597485B2 (en) 2017-10-17 2017-10-17 Production methods for glassy liquid-crystalline epoxy resin and glassy liquid-crystalline epoxy resin composition, storage methods for liquid-crystalline epoxy resin and liquid-crystalline epoxy resin composition, glassy liquid-crystalline epoxy resin and glassy liquid-crystalline epoxy resin composition, liquid-crystalline epoxy resin and liquid-crystalline epoxy resin composition, and production method for cured epoxy resin
CA3049751A CA3049751A1 (en) 2017-10-17 2017-10-17 Glassy liquid-crystalline epoxy resin compositions and methods for producing same
CN201780087640.2A CN110446753A (zh) 2017-10-17 2017-10-17 玻璃态液晶性环氧树脂及玻璃态液晶性环氧树脂组合物的制造方法、液晶性环氧树脂及液晶性环氧树脂组合物的保存方法、玻璃态液晶性环氧树脂及玻璃态液晶性环氧树脂组合物、液晶性环氧树脂及液晶性环氧树脂组合物、以及环氧树脂固化物的制造方法
PCT/JP2017/037604 WO2019077688A1 (ja) 2017-10-17 2017-10-17 ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物の製造方法、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物の保存方法、ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物、並びにエポキシ樹脂硬化物の製造方法
EP17929246.1A EP3549981B1 (en) 2017-10-17 2017-10-17 Production methods for glassy liquid-crystalline epoxy resin and glassy liquid-crystalline epoxy resin composition, storage methods for liquid-crystalline epoxy resin and liquid-crystalline epoxy resin composition, glassy liquid-crystalline epoxy resin composition, liquid-crystalline epoxy resin composition, and production method for cured epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/037604 WO2019077688A1 (ja) 2017-10-17 2017-10-17 ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物の製造方法、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物の保存方法、ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物、並びにエポキシ樹脂硬化物の製造方法

Publications (1)

Publication Number Publication Date
WO2019077688A1 true WO2019077688A1 (ja) 2019-04-25

Family

ID=66174359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037604 WO2019077688A1 (ja) 2017-10-17 2017-10-17 ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物の製造方法、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物の保存方法、ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物、並びにエポキシ樹脂硬化物の製造方法

Country Status (7)

Country Link
US (1) US10597485B2 (ja)
EP (1) EP3549981B1 (ja)
JP (1) JP6642768B2 (ja)
KR (1) KR102481902B1 (ja)
CN (1) CN110446753A (ja)
CA (1) CA3049751A1 (ja)
WO (1) WO2019077688A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070051A1 (ja) 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2018070052A1 (ja) * 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
PL443582A1 (pl) * 2023-01-26 2024-07-29 Politechnika Rzeszowska im. Ignacego Łukasiewicza Nowa żywica epoksydowa oraz sposób otrzymywania tej nowej żywicy epoksydowej
PL443580A1 (pl) * 2023-01-26 2024-07-29 Politechnika Rzeszowska im. Ignacego Łukasiewicza Nowy polimer, sposób otrzymywania tego nowego polimeru oraz jego zastosowanie

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233935A (ja) * 1990-08-01 1992-08-21 Bayer Ag エポキシド網目構造の製造用熱硬化性組成物、それらの製造方法およびそれらの使用
JP2011074366A (ja) 2009-09-03 2011-04-14 Sumitomo Chemical Co Ltd ジエポキシ化合物、該化合物を含む組成物及び該組成物を硬化して得られる硬化物
JP2016113540A (ja) * 2014-12-15 2016-06-23 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物及び金属基板
WO2016104772A1 (ja) 2014-12-26 2016-06-30 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、無機フィラー含有エポキシ樹脂組成物、樹脂シート、硬化物、及びエポキシ化合物
WO2017066929A1 (en) * 2015-10-21 2017-04-27 Dow Global Technologies Llc Modified epoxy resin and curable resin composition comprising same
WO2017145410A1 (ja) * 2016-02-25 2017-08-31 日立化成株式会社 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、成形物及び成形硬化物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720434A (ja) * 1993-06-30 1995-01-24 Nippon Oil Co Ltd 液晶性高分子フィルムの製造方法
JPH10504333A (ja) * 1994-07-26 1998-04-28 アクゾ ノーベル ナムローゼ フェンノートシャップ 液晶ガラス
JP3897281B2 (ja) 2000-11-17 2007-03-22 日本化薬株式会社 エポキシ樹脂組成物及びその硬化物
JP2006284735A (ja) * 2005-03-31 2006-10-19 Nippon Oil Corp 液晶フィルムおよび光学素子用積層フィルム
JP2008297499A (ja) * 2007-06-01 2008-12-11 Polymatech Co Ltd エポキシ樹脂成形体
JP2009214599A (ja) * 2008-03-07 2009-09-24 San Max Kk 作業用車両
JP2010241988A (ja) * 2009-04-08 2010-10-28 Nippon Kayaku Co Ltd エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP5962514B2 (ja) * 2011-01-19 2016-08-03 日立化成株式会社 液晶性樹脂組成物、放熱材料前駆体、bステージシート、プリプレグ、放熱材料、積層板、金属基板、プリント配線板、液晶性樹脂組成物の製造方法、放熱材料前駆体の製造方法及び放熱材料の製造方法
JP5729336B2 (ja) * 2012-03-21 2015-06-03 Tdk株式会社 エポキシ化合物、樹脂組成物、樹脂シート、積層板及びプリント配線板
JP2015048400A (ja) 2013-08-30 2015-03-16 学校法人 関西大学 エポキシ樹脂、エポキシ樹脂組成物およびエポキシ樹脂の製造方法
JP6540259B2 (ja) * 2015-06-18 2019-07-10 Dic株式会社 熱伝導材料用エポキシ樹脂組成物、その硬化物および電子部材
WO2018070051A1 (ja) * 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2018070052A1 (ja) * 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233935A (ja) * 1990-08-01 1992-08-21 Bayer Ag エポキシド網目構造の製造用熱硬化性組成物、それらの製造方法およびそれらの使用
JP2011074366A (ja) 2009-09-03 2011-04-14 Sumitomo Chemical Co Ltd ジエポキシ化合物、該化合物を含む組成物及び該組成物を硬化して得られる硬化物
JP2016113540A (ja) * 2014-12-15 2016-06-23 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物及び金属基板
WO2016104772A1 (ja) 2014-12-26 2016-06-30 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、無機フィラー含有エポキシ樹脂組成物、樹脂シート、硬化物、及びエポキシ化合物
WO2017066929A1 (en) * 2015-10-21 2017-04-27 Dow Global Technologies Llc Modified epoxy resin and curable resin composition comprising same
WO2017145410A1 (ja) * 2016-02-25 2017-08-31 日立化成株式会社 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、成形物及び成形硬化物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3549981A4
SZCZEPANIAK B. ET AL.: "Liquid Crystalline Epoxy Resins by Polyaddition of Diglycidyl Ether of 4, 4'-Dihydroxybiphenyl and bifunctional Aromatic Compounds", JOURNAL OF POLYMER SCIENCE PART A:POLYMER CHEMISTRY, vol. 36, 1998, pages 21 - 29, XP055589193, DOI: doi:10.1002/(SICI)1099-0518(19980115)36:1<21::AID-POLA5>3.0.CO;2-4 *

Also Published As

Publication number Publication date
KR20200062076A (ko) 2020-06-03
JPWO2019077688A1 (ja) 2019-11-14
JP6642768B2 (ja) 2020-02-12
KR102481902B1 (ko) 2022-12-26
EP3549981A1 (en) 2019-10-09
EP3549981A4 (en) 2020-05-06
US10597485B2 (en) 2020-03-24
CA3049751A1 (en) 2019-04-25
US20190375885A1 (en) 2019-12-12
EP3549981B1 (en) 2022-05-11
CN110446753A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
JP6891901B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
KR102481902B1 (ko) 유리상 액정성 에폭시 수지 및 유리상 액정성 에폭시 수지 조성물의 제조 방법, 액정성 에폭시 수지 및 액정성 에폭시 수지 조성물의 보존 방법, 유리상 액정성 에폭시 수지 및 유리상 액정성 에폭시 수지 조성물, 액정성 에폭시 수지 및 액정성 에폭시 수지 조성물, 및 에폭시 수지 경화물의 제조 방법
JP6635201B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
US11466119B2 (en) Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
JP6938888B2 (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物、熱伝導フィルム、及びエポキシ樹脂硬化物の製造方法
JP2018002809A (ja) エポキシ樹脂組成物、成形材前駆体、及び成形材
JP7095732B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及びその製造方法、複合材料、絶縁部材、電子機器、構造材料並びに移動体
TWI805693B (zh) 環氧樹脂、環氧樹脂組成物、環氧樹脂硬化物及複合材料
JP7003999B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7342852B2 (ja) エポキシ樹脂組成物、エポキシ樹脂フィルム、及びエポキシ樹脂フィルムの製造方法
JP7176308B2 (ja) 液晶性エポキシ樹脂組成物、液晶性エポキシ樹脂硬化物、複合材料、絶縁材料、電子機器、構造材料、及び移動体
JP7003998B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7243091B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7243093B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2019065126A (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2019159368A1 (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物、熱伝導フィルム、及びエポキシ樹脂硬化物の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019529671

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3049751

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017929246

Country of ref document: EP

Effective date: 20190701

NENP Non-entry into the national phase

Ref country code: DE