[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019077672A1 - Vacuum valve control method - Google Patents

Vacuum valve control method Download PDF

Info

Publication number
WO2019077672A1
WO2019077672A1 PCT/JP2017/037453 JP2017037453W WO2019077672A1 WO 2019077672 A1 WO2019077672 A1 WO 2019077672A1 JP 2017037453 W JP2017037453 W JP 2017037453W WO 2019077672 A1 WO2019077672 A1 WO 2019077672A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum valve
vacuum
pressure
opening
valve
Prior art date
Application number
PCT/JP2017/037453
Other languages
French (fr)
Japanese (ja)
Inventor
永井 秀明
慧 岩本
Original Assignee
株式会社ブイテックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイテックス filed Critical 株式会社ブイテックス
Priority to KR1020207005475A priority Critical patent/KR102277953B1/en
Priority to JP2018508257A priority patent/JP6311087B1/en
Priority to PCT/JP2017/037453 priority patent/WO2019077672A1/en
Publication of WO2019077672A1 publication Critical patent/WO2019077672A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • G05D16/2026Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means with a plurality of throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K51/00Other details not peculiar to particular types of valves or cut-off apparatus
    • F16K51/02Other details not peculiar to particular types of valves or cut-off apparatus specially adapted for high-vacuum installations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure

Definitions

  • the present invention relates to a control method of a vacuum valve for keeping the pressure in a vacuum chamber constant.
  • a thin film on a wafer semiconductor substrate such as silicon
  • a wafer semiconductor substrate such as silicon
  • CVD chemical vapor deposition
  • an etching means for masking the necessary portions of the film with a resist and etching away the unnecessary portions by corrosion, and an ashing means for removing the unnecessary resist after etching with ozone or plasma are used.
  • an inert gas such as Ar (argon) is introduced into a vacuum chamber in which a substrate is disposed, a high frequency voltage is applied at a predetermined degree of vacuum to generate plasma, and a target which is a material collides.
  • the deposited material is attached to the substrate to form a thin film.
  • the gas is supplied into the vacuum chamber, in order to improve the quality of the product, it is necessary to control the pressure in the vacuum chamber with high accuracy so as to maintain a predetermined degree of vacuum.
  • a vacuum pump is attached to the exhaust port of the vacuum chamber via a vacuum valve, and the gas flow rate is controlled by the degree of opening of the vacuum valve to keep the pressure in the vacuum chamber constant.
  • the invention of a pressure control method for obtaining a set exhaust gas amount by performing feedback control to follow the set pressure is also disclosed.
  • Patent No. 5111519 gazette
  • the vacuum valve includes a butterfly valve that adjusts the opening degree by rotating the valve body through the rotary shaft through the exhaust port, and a pen that adjusts the opening degree by rotating the valve body like a pendulum and overlapping the exhaust port
  • a drool valve etc.
  • the butterfly valve requires a short time from full open to full close, if the discharge adheres to the rotary shaft passing through the exhaust port even when fully open, the opening and closing operation may be hindered.
  • the pendroll valve the rotary shaft does not pass through the exhaust port, but it takes time from full open to full close.
  • the pendrol valve as the inner diameter of the exhaust port increases, the amount of movement of the valve body also increases, so the time required for movement also increases.
  • an object of the present invention is to provide a control method of a vacuum valve which reduces the time until the target pressure in the vacuum chamber is reached by the operation of the vacuum valve.
  • a vacuum pump is attached to an exhaust port of a vacuum chamber via a vacuum valve, and gas supply is started with the vacuum valve closed.
  • Control method for controlling the pressure in the vacuum chamber to a target pressure wherein the pressure data in the vacuum chamber and the opening data of the vacuum valve for bringing the pressure to the target pressure in advance are measured in time series
  • a range which can be regarded as unchanged from one in the fully open state of the valve is specified, and the vacuum bag at the threshold set in the range is specified.
  • the threshold value is set within a range of 5% of the change of the conductance.
  • the vacuum pump is attached to the exhaust port of the vacuum chamber via the vacuum valve, and the vacuum chamber is closed to start the gas supply with the vacuum valve closed.
  • a pressure control controller for controlling to a target pressure, which measures, in time series, pressure data in the vacuum chamber and opening data of a vacuum valve for bringing the pressure into the target pressure in advance; the pressure data; From the opening data, a calculation unit that calculates the conductance representing the flowability of the gas relative to the opening of the vacuum valve, and the change in the conductance can be regarded as not changing from that in the fully open state of the vacuum valve
  • An acquisition unit for specifying a range and acquiring an indicated opening degree of the vacuum valve at a threshold set within the range; When the inside of the chamber is set to the target pressure, the vacuum valve is not fully opened but the instruction opening degree is opened to start gas exhaust, the stable opening degree of the vacuum valve for the gas flow rate is maintained, and the target pressure is maintained. And a control unit.
  • the vacuum valve according to the present invention is characterized by being controlled by the pressure control controller.
  • the instruction opening degree is slightly closed rather than the full opening, so that the reciprocation from the instruction opening degree to the full opening to return to the instruction opening degree It is possible to eliminate the unnecessary operation associated with the above, and to shorten the time until the opening of the vacuum valve is stabilized and the target pressure is maintained.
  • FIG. 1 is a view for explaining the operation of the valve in the method of controlling a vacuum valve, wherein (a) shows a state where the valve is fully open, and (b) shows an opening degree of 50% or more and less than 100%. Indicates the state of
  • the vacuum system 100 is a pressure control system for setting the inside of the vacuum chamber 110 to a predetermined degree of vacuum, and a vacuum pump 300 (see FIG. 1) via the vacuum valve 200 at the exhaust port 120 of the vacuum chamber 110. 2) is attached.
  • a pendroll valve is used as the vacuum valve 200 is shown.
  • the pendrol valve has a valve body 210 of a size slightly larger than the exhaust port 120, an arm 220 for rotating the valve body 210, and a rotation shaft 230 serving as a fulcrum of rotation of the arm 220.
  • the valve body 210 completely overlaps the exhaust port 120 at (the opening degree 0%), and the vacuum chamber 110 is sealed, and the valve body 210 does not overlap the exhaust port 120 at the fully open position (opening degree 100%). Moving.
  • the opening degree is larger than 0% (for example, 5%)
  • the fully closed position is set.
  • valve body 210 of the vacuum valve 200 With the valve body 210 of the vacuum valve 200 in the fully closed position, supply of gas into the vacuum chamber 110 is started, and the opening degree of the vacuum valve 200 is adjusted to maintain the target pressure in the vacuum chamber 110. Thus, the flow rate of gas discharged from the exhaust port 120 is controlled.
  • the vacuum valve 200 is rotated from the fully closed position to the fully open position to discharge the gas as shown in FIG. It is kept fully open until it falls below the maximum emission according to the When the pressure in the vacuum chamber 110 is lowered to limit the flow rate of the discharged gas, the vacuum valve 200 is swung to adjust the degree of opening as shown in (b). And if it becomes a target pressure, the position of the valve body 210 will also be stabilized.
  • FIG. 2 is a block diagram showing a pressure control system to which a control method of a vacuum valve is applied.
  • FIG. 3 is a block diagram of a pressure control controller in which a method of controlling a vacuum valve is implemented.
  • the pressure control controller 400 is not included in the dashed line, and the vacuum system 100 includes the pressure control controller 400.
  • the pressure control controller 400 is used to control the flow rate of gas discharged to the vacuum pump 300. By controlling the opening degree, the pressure in the vacuum chamber 110 is maintained constant.
  • the mass flow 500 may be used, and the mass flow controller 510 may measure the flow rate of the gas 520 and control the flow rate to a predetermined flow rate (for example, 50 sccm).
  • a predetermined flow rate for example, 50 sccm.
  • the flow rate of the gas to be discharged is not necessarily the same as the flow rate of the supplied gas 520.
  • the pressure controller 400 measures the pressure in the vacuum chamber 110 with the vacuum gauge 130, and drives the open / close mechanism of the vacuum valve 200 so that the opening degree corresponds to the flow rate of the gas to be discharged to achieve the target pressure.
  • the pressure controller 400 is also referred to as an APC (Adaptive Pressure Control) controller.
  • emitted can be estimated if the opening degree of the vacuum valve 200 is detected.
  • the pressure controller 400 has an inflowing gas flow rate estimation unit 410, a correction unit 420, an opening degree calculation unit 430, a motor control unit 440, a conductance table generation unit 450, a pressure gain calculation unit 460, and the like. .
  • the inflowing gas flow rate estimation unit 410 detects the degree of opening of the vacuum valve 200 and estimates the gas flow rate discharged from the vacuum valve 200. Then, the pressure in the virtual vacuum chamber 110 is calculated based on the estimated exhaust gas flow rate, and the gas flowing into the vacuum valve 200 is actually calculated from the difference with the pressure in the vacuum chamber 110 measured by the vacuum gauge 130. Estimate the flow rate.
  • the correction unit 420 first uses a pressure value obtained by passing a pressure command value set as a target pressure through a first-order lag filter, and a pressure value obtained by removing noise from the measurement value of the vacuum gauge 130 via the first-order lag filter. Determine the pressure deviation. Then, a correction value for obtaining the exhaust gas flow rate is calculated based on the pressure deviation by PID control.
  • the opening degree calculation unit 430 sets, as the exhaust gas flow rate, a value obtained by applying the correction value calculated by the correction unit 420 to the inflow gas flow rate estimated by the inflowing gas flow rate estimation unit 410. Then, by calculating the conductance at the set exhaust gas flow rate, the opening degree of the vacuum valve 200 for obtaining the pressure instruction value is calculated.
  • the conductance (sccm / Pa) is represented by the gas flow rate (sccm) discharged from the exhaust port 120 with respect to the pressure (Pa) in the vacuum chamber 110, regarding the ease of gas flow at each opening of the vacuum valve 200. It shall be.
  • the unit of pressure may be mTorr.
  • the motor control unit 440 drives the motor of the open / close mechanism in order to set the vacuum valve 200 to the opening degree calculated by the opening degree calculation unit 430.
  • the opening degree of the vacuum valve 200 is detected by a sensor or the like, and is fed back to the inflowing gas flow rate estimation unit 410. Further, the pressure in the vacuum chamber 110 is also measured by the vacuum gauge 130, and is fed back to the inflowing gas flow rate estimation unit 410 and the correction unit 420.
  • the pressure controller 400 causes the opening degree calculation unit 430 to calculate how much conductance is necessary to discharge a predetermined gas flow rate, and the motor control unit 440 sets a vacuum valve at a position (opening degree) that meets the required conductance. Control is performed to stop the valve body 210 of 200.
  • the vacuum valve 200 when the inside of the vacuum chamber 110 is set to a target pressure, the vacuum valve 200 is not fully opened and then the stable opening degree corresponding to the conductance is not set, but the instruction opening degree is opened to a certain degree without going to full opening.
  • the operation time of the valve body 210 until it is maintained at the target pressure is shortened.
  • FIG. 4 is a graph showing the chamber pressure and the valve opening measured in advance for executing the control method of the vacuum valve.
  • FIG. 5 is a graph showing the conductance characteristic with respect to the valve opening degree calculated in advance for executing the control method of the vacuum valve.
  • the pressure controller 400 learns the conductance characteristic and uses it to control the vacuum valve 200.
  • the pressure control controller 400 measures in advance the pressure data 600 in the vacuum chamber 110 and the opening degree data 610 of the vacuum valve 200 for making it the target pressure.
  • the flow rate of gas flowing into the vacuum chamber 110 is controlled to a predetermined amount by the mass flow 500 and mass flow controller 510.
  • the opening data 610 may be large (for example, 100%), and when it is desired to increase the pressure data 600 (for example, 1200 Pa or more), the opening The data 610 may be small (for example, 20% or less).
  • a conductance 620 indicating the flowability of the gas with respect to the opening degree of the vacuum valve 200 is calculated. For example, if the opening data 610 is small (for example, 10%), the discharge of gas is suppressed, and if the opening data 610 is large (for example, 100%), the discharge of gas is promoted. When the opening degree data 610 becomes larger than 50%, the change of the conductance 620 becomes smaller.
  • variation of the calculated conductance 620 specifies a range that can be regarded as not changing from that in the fully opened state of the vacuum valve 200, and the opening degree data 610 of the vacuum valve 200 at the threshold 630 set within that range. Acquire as an indication opening.
  • the threshold value 630 is set to be 2% lower than the conductance 620 when the opening data 610 is 100%. It will be 70%, and it should be taken as the indicated opening degree. In addition, it is preferable to make the range which can be regarded as not changing into 5% or less.
  • FIG. 6 is a graph showing the results when the vacuum valve control method is executed, where (a) is the case where the indicated opening is 100% and (b) is the case where the indicated opening is 70% . As shown in FIG. 6, in a case where the pressure value 660 in the vacuum chamber 110 is about 1400 Pa and the opening value 670 of the vacuum valve 200 is about 20% when the target pressure 640 is about 7 Pa. is there.
  • the pressure controller 400 reduces the pressure value 660a at a stretch.
  • the valve 200 is instructed to be fully opened, and the opening value 670a is increased to 100%.
  • the pressure value 660a decreases as the flow rate of gas exhausted from the vacuum chamber 110 increases, and when it falls below the target pressure 640, the pressure control controller 400 controls the vacuum valve 200 to suppress the flow rate of discharged gas. Is instructed to close, and the opening value 670a decreases.
  • the opening value 670a of the vacuum valve 200 is also adjusted and gradually stabilized (about 40% in this example) ). At this time, it took about 9 seconds until the target pressure 640 was reached.
  • the pressure control controller 400 first instructs the opening degree value 670b of the vacuum valve 200 to be 70%.
  • the flow rate of the gas exhausted from the vacuum chamber 110 is almost the same level as in the case where the instruction opening degree 650a is 100%.
  • the pressure value 660b decreases due to the increased gas flow rate discharged from the vacuum chamber 110, and when the pressure value 660b falls below the target pressure 640, the pressure control controller 400 controls the vacuum valve 200 to suppress the discharged gas flow rate. Is instructed to close, and the opening value 670b decreases.
  • the opening value 670b of the vacuum valve 200 is also adjusted and gradually stabilized. At this time, it takes about 8 seconds to reach the target pressure 640, which is about 1 second shorter than the case where the indicated opening degree 650a is 100%.
  • valve body 210 of the vacuum valve 200 When the valve body 210 of the vacuum valve 200 has a large weight, it takes time to turn in a pendulum shape from a state close to full close to a state close to full open, so move to a stable opening that becomes the target pressure 640 Affects the time until By shortening even one second, it is possible to greatly reduce the time of work that is repeated thousands of times a day.
  • the instruction opening degree is slightly closed rather than the full opening, so that the reciprocation from the instruction opening degree to the full opening returns to the instruction opening degree.
  • the unnecessary operation accompanying the above can be eliminated, and the time until the opening of the vacuum valve 200 is stabilized and the target pressure is maintained can be shortened.
  • Example of this invention was described, it is not limited to these.
  • the present invention can be applied not only to pendroll valves but also to butterfly valves and the like.
  • Vacuum system pressure control system
  • 110 Vacuum chamber
  • Exhaust port 130 Vacuum gauge
  • Vacuum gauge Vacuum valve (pend roll valve)
  • Valve body 220 Arm 230: Rotary shaft
  • Vacuum pump 400 Pressure control controller (APC controller)
  • 410 Inflow gas flow rate estimation unit
  • 420 Correction unit
  • Opening calculation unit 440 Motor control unit 500: Mass flow 510: Mass flow controller 520: Gas 600: Pressure data 610: Opening data 620: Conductance 630: Threshold 640: Target Pressure 650: indicated opening 660: pressure value 670: opening value

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

A vacuum valve control method in which a vacuum pump is attached to an exhaust port of a vacuum chamber via a vacuum valve, and the pressure in the vacuum chamber is adjusted to a target pressure after initiating a supply of gas to the vacuum chamber with the vacuum valve closed, said vacuum valve control method comprising: a measurement step for measuring, in advance, internal pressure data of the vacuum chamber at selected times, and also measuring, in advance, data of the degree of opening of the vacuum valve at the selected times; a calculation step for calculating, from the measured pressure data and the measured data of the degree of opening of the vacuum valve, a conductance indicating the ease with which the gas flows, as a function of the degree of opening of the vacuum valve; and an acquisition step for identifying a range of degrees of opening of the vacuum valve at which the calculated conductance is substantially the same as when the vacuum valve is fully opened, and acquiring a targeted degree of opening of the vacuum valve that is within the identified range of degrees of opening and that corresponds to a set threshold value. When the pressure in the vacuum chamber is to be adjusted to the target pressure, gas discharge is initiated with the vacuum valve set to the targeted degree of opening, instead of with the vacuum valve fully opened, and then the vacuum valve is gradually set to a degree of opening that ensures stable gas flow so that the target pressure is achieved and maintained.

Description

真空バルブの制御方法Control method of vacuum valve
 本発明は、真空チャンバ内の圧力を一定に保つための真空バルブの制御方法に関する。 The present invention relates to a control method of a vacuum valve for keeping the pressure in a vacuum chamber constant.
 半導体素子、太陽電池、液晶などの製造における各種プロセスでは、ウエハ(シリコン等の半導体基板)やガラス基板などに真空蒸着、スパッタリング、CVD(化学気相成長)等により薄膜を形成する手段や、薄膜の必要部分をレジストでマスクし、不要部分を腐食作用により削り取るエッチング手段や、エッチング後に不要となったレジストをオゾンやプラズマにより除去するアッシング手段などが用いられる。 In various processes in the production of semiconductor devices, solar cells, liquid crystals, etc., means for forming a thin film on a wafer (semiconductor substrate such as silicon) or glass substrate by vacuum deposition, sputtering, CVD (chemical vapor deposition) or the like, For example, an etching means for masking the necessary portions of the film with a resist and etching away the unnecessary portions by corrosion, and an ashing means for removing the unnecessary resist after etching with ozone or plasma are used.
 例えば、スパッタリング装置では、基板が配置された真空チャンバ内にAr(アルゴン)等の不活性ガスを導入し、所定の真空度で高周波電圧を印加してプラズマを発生させ、材料であるターゲットに衝突させることにより、叩き出された材料を当該基板に付着させて薄膜を形成する。 For example, in a sputtering apparatus, an inert gas such as Ar (argon) is introduced into a vacuum chamber in which a substrate is disposed, a high frequency voltage is applied at a predetermined degree of vacuum to generate plasma, and a target which is a material collides. The deposited material is attached to the substrate to form a thin film.
 真空チャンバ内にはガスが供給されるが、製品の品質を向上させるためには、所定の真空度が維持されるよう、真空チャンバ内の圧力制御を精度良く行う必要がある。真空チャンバの排気口には真空バルブを介して真空ポンプが取り付けられ、真空バルブの開度によってガス流量を制御することで、真空チャンバ内の圧力を一定に保つ。特許文献1に記載されているように、設定圧力に追従させるフィードバック制御を行って設定排出ガス量を得る圧力制御方法の発明も開示されている。 Although the gas is supplied into the vacuum chamber, in order to improve the quality of the product, it is necessary to control the pressure in the vacuum chamber with high accuracy so as to maintain a predetermined degree of vacuum. A vacuum pump is attached to the exhaust port of the vacuum chamber via a vacuum valve, and the gas flow rate is controlled by the degree of opening of the vacuum valve to keep the pressure in the vacuum chamber constant. As described in Patent Document 1, the invention of a pressure control method for obtaining a set exhaust gas amount by performing feedback control to follow the set pressure is also disclosed.
 圧力制御においては、真空バルブを閉じた真空チャンバ内にガス供給が開始されて圧力が高くなった状態から、圧力を下げて目標の圧力で安定させる場合、まず排気口から一気にガスを排出しようとして真空バルブが全開する。真空チャンバ内の圧力が下がってくると排出するガス流量を抑えるために真空バルブを閉じていき、目標の圧力になると真空バルブの開度も安定する。 In pressure control, when the pressure is lowered and stabilized at the target pressure from the state where the gas supply is started in the vacuum chamber with the vacuum valve closed and the pressure becomes high, first try to exhaust the gas from the exhaust port at a stretch The vacuum valve is fully open. When the pressure in the vacuum chamber decreases, the vacuum valve is closed to reduce the flow rate of the exhausted gas, and when the target pressure is reached, the degree of opening of the vacuum valve is also stabilized.
特許第5111519号公報Patent No. 5111519 gazette
 真空バルブには、排気口に回転軸を通して弁体を回転させることで開度を調整するバタフライバルブや、弁体を振り子のように回動させて排気口に重ねることで開度を調整するペンドロールバルブなどがある。バタフライバルブは、全開から全閉までに要する時間は短いが、全開しても排気口に通っている回転軸に排出物が付着すると、開閉動作に支障が生じる可能性がある。それに対し、ペンドロールバルブは、回転軸は排気口を通らないが、全開から全閉までに時間を要する。ペンドロールバルブの場合、排気口の内径が大きくなるほど、弁体の移動量も多くなるので、移動に要する時間も増えてしまう。 The vacuum valve includes a butterfly valve that adjusts the opening degree by rotating the valve body through the rotary shaft through the exhaust port, and a pen that adjusts the opening degree by rotating the valve body like a pendulum and overlapping the exhaust port There is a drool valve etc. Although the butterfly valve requires a short time from full open to full close, if the discharge adheres to the rotary shaft passing through the exhaust port even when fully open, the opening and closing operation may be hindered. On the other hand, in the pendroll valve, the rotary shaft does not pass through the exhaust port, but it takes time from full open to full close. In the case of the pendrol valve, as the inner diameter of the exhaust port increases, the amount of movement of the valve body also increases, so the time required for movement also increases.
 そこで、本発明は、真空バルブの動作によって真空チャンバ内を目標の圧力にするまでの時間を短縮する真空バルブの制御方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a control method of a vacuum valve which reduces the time until the target pressure in the vacuum chamber is reached by the operation of the vacuum valve.
 上記の課題を解決するために、本発明である真空バルブの制御方法は、真空チャンバの排気口に真空バルブを介して真空ポンプが取り付けられ、前記真空バルブを閉じた状態でガスの供給を開始した前記真空チャンバ内を目標の圧力に制御する真空バルブの制御方法であって、予め前記真空チャンバ内の圧力データとそれを目標の圧力にするための真空バルブの開度データを時系列で計測する計測ステップと、計測した前記圧力データ及び前記開度データから、前記真空バルブの開度に対するガスの流れやすさを表すコンダクタンスを算出する算出ステップと、算出した前記コンダクタンスの変化分が、前記真空バルブの全開状態におけるものから変化していないとみなせる範囲を特定し、その範囲内で設定された閾値における前記真空バルブの指示開度を取得する取得ステップと、を有し、前記真空チャンバ内を目標の圧力にする際に、前記真空バルブを全開ではなく前記指示開度まで開いてガスの排気を開始し、ガス流量に対する前記真空バルブの安定開度にしていき目標の圧力で維持する、ことを特徴とする。 In order to solve the above problems, in the method of controlling a vacuum valve according to the present invention, a vacuum pump is attached to an exhaust port of a vacuum chamber via a vacuum valve, and gas supply is started with the vacuum valve closed. Control method for controlling the pressure in the vacuum chamber to a target pressure, wherein the pressure data in the vacuum chamber and the opening data of the vacuum valve for bringing the pressure to the target pressure in advance are measured in time series Calculation step of calculating the conductance representing the flowability of the gas relative to the opening degree of the vacuum valve from the measured pressure data and the opening degree data, and the change in the calculated conductance is the vacuum A range which can be regarded as unchanged from one in the fully open state of the valve is specified, and the vacuum bag at the threshold set in the range is specified. Obtaining an instruction opening degree of the vacuum chamber, and setting the pressure in the vacuum chamber to a target pressure, opening the vacuum valve not to full opening but to the instruction opening degree to start gas exhaust; A stable opening of the vacuum valve with respect to a gas flow rate is maintained at a target pressure.
 また、前記真空バルブの制御方法において、前記閾値は、前記コンダクタンスの変化分が5%の範囲内で設定される、ことを特徴とする。 Further, in the control method of the vacuum valve, the threshold value is set within a range of 5% of the change of the conductance.
 また、本発明である真空バルブの圧力制御コントローラは、真空チャンバの排気口に真空バルブを介して真空ポンプが取り付けられ、前記真空バルブを閉じた状態でガスの供給を開始した前記真空チャンバ内を目標の圧力に制御する圧力制御コントローラであって、予め前記真空チャンバ内の圧力データとそれを目標の圧力にするための真空バルブの開度データを時系列で計測する部と、前記圧力データ及び前記開度データから、前記真空バルブの開度に対するガスの流れやすさを表すコンダクタンスを算出する算出部と、前記コンダクタンスの変化分が、前記真空バルブの全開状態におけるものから変化していないとみなせる範囲を特定し、その範囲内で設定された閾値における前記真空バルブの指示開度を取得する取得部と、前記真空チャンバ内を目標の圧力にする際に、前記真空バルブを全開ではなく前記指示開度まで開いてガスの排気を開始し、ガス流量に対する前記真空バルブの安定開度にしていき目標の圧力で維持する制御部と、を有する、ことを特徴とする。 In the pressure control controller of the vacuum valve according to the present invention, the vacuum pump is attached to the exhaust port of the vacuum chamber via the vacuum valve, and the vacuum chamber is closed to start the gas supply with the vacuum valve closed. A pressure control controller for controlling to a target pressure, which measures, in time series, pressure data in the vacuum chamber and opening data of a vacuum valve for bringing the pressure into the target pressure in advance; the pressure data; From the opening data, a calculation unit that calculates the conductance representing the flowability of the gas relative to the opening of the vacuum valve, and the change in the conductance can be regarded as not changing from that in the fully open state of the vacuum valve An acquisition unit for specifying a range and acquiring an indicated opening degree of the vacuum valve at a threshold set within the range; When the inside of the chamber is set to the target pressure, the vacuum valve is not fully opened but the instruction opening degree is opened to start gas exhaust, the stable opening degree of the vacuum valve for the gas flow rate is maintained, and the target pressure is maintained. And a control unit.
 また、本発明である真空バルブは、前記圧力制御コントローラで制御される、ことを特徴とする。 The vacuum valve according to the present invention is characterized by being controlled by the pressure control controller.
 本発明によれば、真空チャンバの圧力制御において、最初に真空バルブを開くときに全開よりも若干閉じた指示開度にすることで、指示開度から全開して指示開度に戻るまでの往復に伴う無駄な動作を省き、真空バルブの開度が安定して目標の圧力が維持されるまでの時間を短縮することができる。 According to the present invention, in the pressure control of the vacuum chamber, when the vacuum valve is initially opened, the instruction opening degree is slightly closed rather than the full opening, so that the reciprocation from the instruction opening degree to the full opening to return to the instruction opening degree It is possible to eliminate the unnecessary operation associated with the above, and to shorten the time until the opening of the vacuum valve is stabilized and the target pressure is maintained.
本発明である真空バルブの制御方法における弁体の動作を説明する図である。It is a figure explaining operation | movement of the valve body in the control method of the vacuum valve which is this invention. 本発明である真空バルブの制御方法が適用される圧力制御系を示すブロック図である。It is a block diagram showing a pressure control system to which a control method of a vacuum valve which is the present invention is applied. 本発明である真空バルブの制御方法が実行される圧力制御コントローラのブロック図である。It is a block diagram of a pressure control controller in which the control method of the vacuum valve which is the present invention is carried out. 本発明である真空バルブの制御方法を実行するにあたり予め計測したチャンバ圧力とバルブ開度を示すグラフである。It is a graph which shows the chamber pressure and valve-opening degree which were beforehand measured in performing the control method of the vacuum valve which is this invention. 本発明である真空バルブの制御方法を実行するにあたり予め算出したバルブ開度に対するコンダクタンス特性を示すグラフである。It is a graph which shows the conductance characteristic to the valve-opening degree beforehand calculated in performing the control method of the vacuum valve which is the present invention. 本発明である真空バルブの制御方法を実行したときの結果を示すグラフである。It is a graph which shows the result when the control method of the vacuum valve which is this invention is implemented.
 以下に、本発明の実施形態について図面を参照して詳細に説明する。なお、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, what has the same function attaches | subjects the same code | symbol, and description of the repetition may be abbreviate | omitted.
 まず、本発明である真空バルブの制御方法について説明する。図1は、真空バルブの制御方法における弁体の動作を説明する図であり、(a)は弁体が全開した状態を示し、(b)は弁体の開度が50%以上100%未満の状態を示す。 First, the control method of the vacuum valve which is this invention is demonstrated. FIG. 1 is a view for explaining the operation of the valve in the method of controlling a vacuum valve, wherein (a) shows a state where the valve is fully open, and (b) shows an opening degree of 50% or more and less than 100%. Indicates the state of
 図1に示すように、真空システム100は、真空チャンバ110内を所定の真空度にするための圧力制御系であり、真空チャンバ110の排気口120に真空バルブ200を介して真空ポンプ300(図2参照)が取り付けられる。なお、本実施例においては、真空バルブ200としてペンドロールバルブを使用した例を示す。 As shown in FIG. 1, the vacuum system 100 is a pressure control system for setting the inside of the vacuum chamber 110 to a predetermined degree of vacuum, and a vacuum pump 300 (see FIG. 1) via the vacuum valve 200 at the exhaust port 120 of the vacuum chamber 110. 2) is attached. In the present embodiment, an example in which a pendroll valve is used as the vacuum valve 200 is shown.
 ペンドロールバルブは、排気口120より一回り大きいサイズの弁体210、弁体210を回動させるためのアーム220、及びアーム220の回動の支点となる回転軸230を有し、全閉位置(開度0%)では弁体210が排気口120に対して完全に重なって真空チャンバ110が密閉され、全開位置(開度100%)では弁体210が排気口120と全く重ならない位置まで移動する。なお、開度が0%より大きくても(例えば5%)ガスが排出されなければ全閉位置とする。 The pendrol valve has a valve body 210 of a size slightly larger than the exhaust port 120, an arm 220 for rotating the valve body 210, and a rotation shaft 230 serving as a fulcrum of rotation of the arm 220. The valve body 210 completely overlaps the exhaust port 120 at (the opening degree 0%), and the vacuum chamber 110 is sealed, and the valve body 210 does not overlap the exhaust port 120 at the fully open position (opening degree 100%). Moving. In addition, even if the opening degree is larger than 0% (for example, 5%), if the gas is not discharged, the fully closed position is set.
 真空バルブ200の弁体210を全閉位置にした状態で真空チャンバ110内にガスの供給を開始し、真空チャンバ110内を目標の圧力で維持するために、真空バルブ200の開度を調節して排気口120から排出されるガス流量を制御する。 With the valve body 210 of the vacuum valve 200 in the fully closed position, supply of gas into the vacuum chamber 110 is started, and the opening degree of the vacuum valve 200 is adjusted to maintain the target pressure in the vacuum chamber 110. Thus, the flow rate of gas discharged from the exhaust port 120 is controlled.
 通常、真空チャンバ110内の圧力が高くなっている場合は、(a)のように真空バルブ200を全閉位置から全開位置まで回動させてガスを排出するが、ガス流量が排気口の内径に応じた最大排出量を下回るまでは全開状態が維持される。そして、真空チャンバ110内の圧力が下がって排出するガス流量を制限する場合は、(b)のように真空バルブ200を揺動させて開度を調整する。そして、目標の圧力になると、弁体210の位置も安定する。 Normally, when the pressure in the vacuum chamber 110 is high, the vacuum valve 200 is rotated from the fully closed position to the fully open position to discharge the gas as shown in FIG. It is kept fully open until it falls below the maximum emission according to the When the pressure in the vacuum chamber 110 is lowered to limit the flow rate of the discharged gas, the vacuum valve 200 is swung to adjust the degree of opening as shown in (b). And if it becomes a target pressure, the position of the valve body 210 will also be stabilized.
 図2は、真空バルブの制御方法が適用される圧力制御系を示すブロック図である。図3は、真空バルブの制御方法が実行される圧力制御コントローラのブロック図である。なお、図3において、一点鎖線内は圧力制御コントローラ400に含まれず、一点鎖線内と圧力制御コントローラ400を含むものが真空システム100である。 FIG. 2 is a block diagram showing a pressure control system to which a control method of a vacuum valve is applied. FIG. 3 is a block diagram of a pressure control controller in which a method of controlling a vacuum valve is implemented. In FIG. 3, the pressure control controller 400 is not included in the dashed line, and the vacuum system 100 includes the pressure control controller 400.
 図2に示すように、真空システム100の圧力制御系においては、真空チャンバ110にガス520を供給しながら、圧力制御コントローラ400を用いて、真空ポンプ300へ排出されるガス流量を真空バルブ200の開度で制御することにより、真空チャンバ110内の圧力を一定に維持する。 As shown in FIG. 2, in the pressure control system of the vacuum system 100, while supplying the gas 520 to the vacuum chamber 110, the pressure control controller 400 is used to control the flow rate of gas discharged to the vacuum pump 300. By controlling the opening degree, the pressure in the vacuum chamber 110 is maintained constant.
 真空チャンバ110へのガス520の供給には、マスフロー500を使用し、マスフローコントローラ510でガス520の流量を計測して所定の流量(例えば、50sccm)となるように制御すれば良い。なお、真空チャンバ110内でガス520が反応等するため、供給したガス520の流量に対して、排出すべきガス流量が同じになるとは限らない。 To supply the gas 520 to the vacuum chamber 110, the mass flow 500 may be used, and the mass flow controller 510 may measure the flow rate of the gas 520 and control the flow rate to a predetermined flow rate (for example, 50 sccm). In addition, since the gas 520 reacts in the vacuum chamber 110, the flow rate of the gas to be discharged is not necessarily the same as the flow rate of the supplied gas 520.
 圧力制御コントローラ400は、真空チャンバ110内の圧力を真空計130で計測し、目標の圧力にするために排出すべきガス流量に応じた開度となるように、真空バルブ200の開閉機構を駆動させる。圧力制御コントローラ400は、APC(Adaptive Pressure Control)コントローラとも呼ばれる。なお、排出されるガス流量は、真空バルブ200の開度を検出すれば推定可能である。 The pressure controller 400 measures the pressure in the vacuum chamber 110 with the vacuum gauge 130, and drives the open / close mechanism of the vacuum valve 200 so that the opening degree corresponds to the flow rate of the gas to be discharged to achieve the target pressure. Let The pressure controller 400 is also referred to as an APC (Adaptive Pressure Control) controller. In addition, the gas flow rate discharged | emitted can be estimated if the opening degree of the vacuum valve 200 is detected.
 図3に示すように、圧力制御コントローラ400は、流入ガス流量推定部410、補正部420、開度計算部430、モータ制御部440、コンダクタンステーブル作成部450、及び圧力ゲイン計算部460などを有する。 As shown in FIG. 3, the pressure controller 400 has an inflowing gas flow rate estimation unit 410, a correction unit 420, an opening degree calculation unit 430, a motor control unit 440, a conductance table generation unit 450, a pressure gain calculation unit 460, and the like. .
 流入ガス流量推定部410は、まず、真空バルブ200の開度を検出し、真空バルブ200から排出されるガス流量を推定する。そして、推定された排出ガス流量に基づいて仮想の真空チャンバ110内の圧力を計算し、実際に真空計130で計測された真空チャンバ110内の圧力との差分から、真空バルブ200に流入するガス流量を推定する。 First, the inflowing gas flow rate estimation unit 410 detects the degree of opening of the vacuum valve 200 and estimates the gas flow rate discharged from the vacuum valve 200. Then, the pressure in the virtual vacuum chamber 110 is calculated based on the estimated exhaust gas flow rate, and the gas flowing into the vacuum valve 200 is actually calculated from the difference with the pressure in the vacuum chamber 110 measured by the vacuum gauge 130. Estimate the flow rate.
 補正部420は、まず、目標の圧力として設定された圧力指示値を一次遅れフィルタに通した圧力値と、真空計130の計測値に一次遅れフィルタを介してノイズを除去した圧力値とから、圧力偏差を求める。そして、PID制御により圧力偏差に基づいて排出ガス流量を得るための補正値を算出する。 The correction unit 420 first uses a pressure value obtained by passing a pressure command value set as a target pressure through a first-order lag filter, and a pressure value obtained by removing noise from the measurement value of the vacuum gauge 130 via the first-order lag filter. Determine the pressure deviation. Then, a correction value for obtaining the exhaust gas flow rate is calculated based on the pressure deviation by PID control.
 開度計算部430は、まず、流入ガス流量推定部410で推定された流入ガス流量に、補正部420で算出された補正値を適用したものを、排出ガス流量として設定する。そして、設定された排出ガス流量においてコンダクタンスを計算することにより、圧力指示値にするための真空バルブ200の開度を算出する。 First, the opening degree calculation unit 430 sets, as the exhaust gas flow rate, a value obtained by applying the correction value calculated by the correction unit 420 to the inflow gas flow rate estimated by the inflowing gas flow rate estimation unit 410. Then, by calculating the conductance at the set exhaust gas flow rate, the opening degree of the vacuum valve 200 for obtaining the pressure instruction value is calculated.
 なお、コンダクタンス(sccm/Pa)は、真空バルブ200の開度ごとにガスの流れやすさについて、真空チャンバ110内の圧力(Pa)に対する排気口120から排出されるガス流量(sccm)で表したものとする。圧力の単位は、mTorrを使用しても良い。 The conductance (sccm / Pa) is represented by the gas flow rate (sccm) discharged from the exhaust port 120 with respect to the pressure (Pa) in the vacuum chamber 110, regarding the ease of gas flow at each opening of the vacuum valve 200. It shall be. The unit of pressure may be mTorr.
 モータ制御部440は、真空バルブ200を開度計算部430で算出された開度にするために開閉機構のモータを駆動させる。なお、真空バルブ200の開度は、センサー等で検出し、流入ガス流量推定部410にフィードバックされる。また、真空チャンバ110内の圧力も、真空計130で計測し、流入ガス流量推定部410及び補正部420にフィードバックされる。 The motor control unit 440 drives the motor of the open / close mechanism in order to set the vacuum valve 200 to the opening degree calculated by the opening degree calculation unit 430. The opening degree of the vacuum valve 200 is detected by a sensor or the like, and is fed back to the inflowing gas flow rate estimation unit 410. Further, the pressure in the vacuum chamber 110 is also measured by the vacuum gauge 130, and is fed back to the inflowing gas flow rate estimation unit 410 and the correction unit 420.
 圧力制御コントローラ400は、開度計算部430で所定のガス流量を排出するためにどれくらいのコンダクタンスがあれば良いか算出し、モータ制御部440で必要なコンダクタンスに見合う位置(開度)で真空バルブ200の弁体210が停止するように制御する。 The pressure controller 400 causes the opening degree calculation unit 430 to calculate how much conductance is necessary to discharge a predetermined gas flow rate, and the motor control unit 440 sets a vacuum valve at a position (opening degree) that meets the required conductance. Control is performed to stop the valve body 210 of 200.
 ここで、真空チャンバ110内を目標の圧力にする際に、真空バルブ200を全開してからコンダクタンスに見合う安定開度にしていくのではなく、全開まで行かなくともある程度の指示開度まで開いてガスの排気を開始し、そこから真空バルブ200を安定開度にしていくことで、目標の圧力で維持されるまでの弁体210の動作時間を短縮する。 Here, when the inside of the vacuum chamber 110 is set to a target pressure, the vacuum valve 200 is not fully opened and then the stable opening degree corresponding to the conductance is not set, but the instruction opening degree is opened to a certain degree without going to full opening. By starting the exhaust of the gas and setting the vacuum valve 200 to a stable opening, the operation time of the valve body 210 until it is maintained at the target pressure is shortened.
 図4は、真空バルブの制御方法を実行するにあたり予め計測したチャンバ圧力とバルブ開度を示すグラフである。図5は、真空バルブの制御方法を実行するにあたり予め算出したバルブ開度に対するコンダクタンス特性を示すグラフである。圧力制御コントローラ400は、コンダクタンス特性をラーニングしておき、真空バルブ200の制御に用いる。 FIG. 4 is a graph showing the chamber pressure and the valve opening measured in advance for executing the control method of the vacuum valve. FIG. 5 is a graph showing the conductance characteristic with respect to the valve opening degree calculated in advance for executing the control method of the vacuum valve. The pressure controller 400 learns the conductance characteristic and uses it to control the vacuum valve 200.
 図4に示すように、まず、圧力制御コントローラ400は、予め真空チャンバ110内の圧力データ600とそれを目標の圧力にするための真空バルブ200の開度データ610を時系列で計測する。なお、真空チャンバ110内に流入するガス流量は、マスフロー500及びマスフローコントローラ510によって所定の量に制御される。 As shown in FIG. 4, first, the pressure control controller 400 measures in advance the pressure data 600 in the vacuum chamber 110 and the opening degree data 610 of the vacuum valve 200 for making it the target pressure. The flow rate of gas flowing into the vacuum chamber 110 is controlled to a predetermined amount by the mass flow 500 and mass flow controller 510.
 圧力データ600を低め(例えば、0Pa)にしたい場合は、開度データ610を大きく(例えば、100%)にすれば良く、圧力データ600を高め(例えば、1200Pa以上)にしたい場合は、開度データ610を小さく(例えば、20%以下)にすれば良い。 When it is desired to lower the pressure data 600 (for example, 0 Pa), the opening data 610 may be large (for example, 100%), and when it is desired to increase the pressure data 600 (for example, 1200 Pa or more), the opening The data 610 may be small (for example, 20% or less).
 図5に示すように、次に、計測した圧力データ600及び開度データ610から、真空バルブ200の開度に対するガスの流れやすさを表すコンダクタンス620を算出する。例えば、開度データ610が小さければ(例えば、10%)、ガスの排出が抑制され、開度データ610が大きければ(例えば、100%)、ガスの排出が促進される。なお、開度データ610が50%よりも大きくなると、コンダクタンス620の変化分は小さくなる。 As shown in FIG. 5, next, from the measured pressure data 600 and opening degree data 610, a conductance 620 indicating the flowability of the gas with respect to the opening degree of the vacuum valve 200 is calculated. For example, if the opening data 610 is small (for example, 10%), the discharge of gas is suppressed, and if the opening data 610 is large (for example, 100%), the discharge of gas is promoted. When the opening degree data 610 becomes larger than 50%, the change of the conductance 620 becomes smaller.
 さらに、算出したコンダクタンス620の変化分が、真空バルブ200の全開状態におけるものから変化していないとみなせる範囲を特定し、その範囲内で設定された閾値630における真空バルブ200の開度データ610を指示開度として取得する。 Further, the variation of the calculated conductance 620 specifies a range that can be regarded as not changing from that in the fully opened state of the vacuum valve 200, and the opening degree data 610 of the vacuum valve 200 at the threshold 630 set within that range. Acquire as an indication opening.
 例えば、変化していないとみなせる範囲を2%までとしたとき、閾値630を開度データ610が100%のときのコンダクタンス620から2%下がったところと設定すると、そのときの開度データ610は70%となり、それを指示開度とすれば良い。なお、変化していないとみなせる範囲は5%以内とすることが好ましい。 For example, assuming that the range which can be regarded as not changing is up to 2%, the threshold value 630 is set to be 2% lower than the conductance 620 when the opening data 610 is 100%. It will be 70%, and it should be taken as the indicated opening degree. In addition, it is preferable to make the range which can be regarded as not changing into 5% or less.
 図6は、真空バルブの制御方法を実行したときの結果を示すグラフであり、(a)は指示開度が100%の場合であり、(b)は指示開度が70%の場合である。図6に示すように、目標圧力640を約7Paとしたときに、真空チャンバ110内の圧力値660が約1400Paで、真空バルブ200の開度値670が約20%の状態から制御する例である。 FIG. 6 is a graph showing the results when the vacuum valve control method is executed, where (a) is the case where the indicated opening is 100% and (b) is the case where the indicated opening is 70% . As shown in FIG. 6, in a case where the pressure value 660 in the vacuum chamber 110 is about 1400 Pa and the opening value 670 of the vacuum valve 200 is about 20% when the target pressure 640 is about 7 Pa. is there.
 図6(a)のように指示開度650による制御をしない場合(すなわち、指示開度650aを100%にした場合)、まず、圧力値660aを一気に下げるために、圧力制御コントローラ400は、真空バルブ200を全開させるよう指示し、開度値670aが100%まで上がる。 As shown in FIG. 6A, when the control by the instruction opening 650 is not performed (that is, when the instruction opening 650a is set to 100%), first, the pressure controller 400 reduces the pressure value 660a at a stretch. The valve 200 is instructed to be fully opened, and the opening value 670a is increased to 100%.
 次に、真空チャンバ110から排出されるガス流量が多くなることで圧力値660aが下がっていき、目標圧力640を下回ると、圧力制御コントローラ400は、排出されるガス流量を抑えるために真空バルブ200を閉じるように指示し、開度値670aが下がっていく。 Next, the pressure value 660a decreases as the flow rate of gas exhausted from the vacuum chamber 110 increases, and when it falls below the target pressure 640, the pressure control controller 400 controls the vacuum valve 200 to suppress the flow rate of discharged gas. Is instructed to close, and the opening value 670a decreases.
 さらに、真空チャンバ110から排出されるガス流量を調整することで圧力値660aが目標圧力640に近づくと、真空バルブ200の開度値670aも調整されて徐々に安定する(この例では約40%)。このとき、目標圧力640になるまで約9秒であった。 Furthermore, when the pressure value 660a approaches the target pressure 640 by adjusting the gas flow rate discharged from the vacuum chamber 110, the opening value 670a of the vacuum valve 200 is also adjusted and gradually stabilized (about 40% in this example) ). At this time, it took about 9 seconds until the target pressure 640 was reached.
 図6(b)のように指示開度650bを70%にした場合、まず、圧力制御コントローラ400は、真空バルブ200の開度値670bを70%にするように指示する。なお、真空チャンバ110から排出されるガス流量は、指示開度650aが100%の場合とほとんど変わらないレベルである。 When the instruction opening degree 650b is set to 70% as shown in FIG. 6B, the pressure control controller 400 first instructs the opening degree value 670b of the vacuum valve 200 to be 70%. The flow rate of the gas exhausted from the vacuum chamber 110 is almost the same level as in the case where the instruction opening degree 650a is 100%.
 次に、真空チャンバ110から排出されるガス流量が多くなることで圧力値660bが下がっていき、目標圧力640を下回ると、圧力制御コントローラ400は、排出されるガス流量を抑えるために真空バルブ200を閉じるように指示し、開度値670bが下がっていく。 Next, the pressure value 660b decreases due to the increased gas flow rate discharged from the vacuum chamber 110, and when the pressure value 660b falls below the target pressure 640, the pressure control controller 400 controls the vacuum valve 200 to suppress the discharged gas flow rate. Is instructed to close, and the opening value 670b decreases.
 さらに、真空チャンバ110から排出されるガス流量を調整することで圧力値660bが目標圧力640に近づくと、真空バルブ200の開度値670bも調整されて徐々に安定する。このとき、目標圧力640になるまで約8秒であり、指示開度650aが100%の場合よりも約1秒短縮された。 Furthermore, when the pressure value 660b approaches the target pressure 640 by adjusting the flow rate of the gas discharged from the vacuum chamber 110, the opening value 670b of the vacuum valve 200 is also adjusted and gradually stabilized. At this time, it takes about 8 seconds to reach the target pressure 640, which is about 1 second shorter than the case where the indicated opening degree 650a is 100%.
 真空バルブ200の弁体210が大きく重量がある場合は、全閉に近い状態から全開に近い状態まで振子状に回動させるのに時間を要するため、目標圧力640となる安定開度に移動するまでの時間に影響する。1秒でも短縮されることで、1日に何千回と繰り返し行われる作業の時間を大きく短縮することができる。 When the valve body 210 of the vacuum valve 200 has a large weight, it takes time to turn in a pendulum shape from a state close to full close to a state close to full open, so move to a stable opening that becomes the target pressure 640 Affects the time until By shortening even one second, it is possible to greatly reduce the time of work that is repeated thousands of times a day.
 このように、真空チャンバ110の圧力制御において、最初に真空バルブ200を開くときに全開よりも若干閉じた指示開度にすることで、指示開度から全開して指示開度に戻るまでの往復に伴う無駄な動作を省き、真空バルブ200の開度が安定して目標の圧力が維持されるまでの時間を短縮することができる。 As described above, in the pressure control of the vacuum chamber 110, when the vacuum valve 200 is first opened, the instruction opening degree is slightly closed rather than the full opening, so that the reciprocation from the instruction opening degree to the full opening returns to the instruction opening degree. The unnecessary operation accompanying the above can be eliminated, and the time until the opening of the vacuum valve 200 is stabilized and the target pressure is maintained can be shortened.
 以上、本発明の実施例を述べたが、これらに限定されるものではない。例えば、ペンドロールバルブだけでなく、バタフライバルブ等にも適用することができる。 As mentioned above, although the Example of this invention was described, it is not limited to these. For example, the present invention can be applied not only to pendroll valves but also to butterfly valves and the like.
 100:真空システム(圧力制御系)
 110:真空チャンバ
 120:排気口
 130:真空計
 200:真空バルブ(ペンドロールバルブ)
 210:弁体
 220:アーム
 230:回転軸
 300:真空ポンプ
 400:圧力制御コントローラ(APCコントローラ)
 410:流入ガス流量推定部
 420:補正部
 430:開度計算部
 440:モータ制御部
 500:マスフロー
 510:マスフローコントローラ
 520:ガス
 600:圧力データ
 610:開度データ
 620:コンダクタンス
 630:閾値
 640:目標圧力
 650:指示開度
 660:圧力値
 670:開度値
100: Vacuum system (pressure control system)
110: Vacuum chamber 120: Exhaust port 130: Vacuum gauge 200: Vacuum valve (pend roll valve)
210: Valve body 220: Arm 230: Rotary shaft 300: Vacuum pump 400: Pressure control controller (APC controller)
410: Inflow gas flow rate estimation unit 420: Correction unit 430: Opening calculation unit 440: Motor control unit 500: Mass flow 510: Mass flow controller 520: Gas 600: Pressure data 610: Opening data 620: Conductance 630: Threshold 640: Target Pressure 650: indicated opening 660: pressure value 670: opening value

Claims (4)

  1.  真空チャンバの排気口に真空バルブを介して真空ポンプが取り付けられ、前記真空バルブを閉じた状態でガスの供給を開始した前記真空チャンバ内を目標の圧力に制御する真空バルブの制御方法であって、
     予め前記真空チャンバ内の圧力データとそれを目標の圧力にするための真空バルブの開度データを時系列で計測する計測ステップと、
     計測した前記圧力データ及び前記開度データから、前記真空バルブの開度に対するガスの流れやすさを表すコンダクタンスを算出する算出ステップと、
     算出した前記コンダクタンスの変化分が、前記真空バルブの全開状態におけるものから変化していないとみなせる範囲を特定し、その範囲内で設定された閾値における前記真空バルブの指示開度を取得する取得ステップと、を有し、
     前記真空チャンバ内を目標の圧力にする際に、前記真空バルブを全開ではなく前記指示開度まで開いてガスの排気を開始し、ガス流量に対する前記真空バルブの安定開度にしていき目標の圧力で維持する、
     ことを特徴とする真空バルブの制御方法。
    A control method of a vacuum valve, wherein a vacuum pump is attached to an exhaust port of the vacuum chamber via a vacuum valve, and the supply of gas is started with the vacuum valve closed, to control the inside of the vacuum chamber to a target pressure. ,
    Measuring in advance, in time series, pressure data in the vacuum chamber and opening data of a vacuum valve for setting the pressure data to a target pressure;
    Calculating, from the measured pressure data and the opening data, a conductance representing the flowability of the gas relative to the opening of the vacuum valve;
    An acquisition step of specifying a range in which the calculated change in the conductance can be regarded as not changing from that in the fully opened state of the vacuum valve, and acquiring the indicated opening degree of the vacuum valve at a threshold set within that range. And
    When the pressure in the vacuum chamber is set to the target pressure, the vacuum valve is not fully opened but the instruction opening degree is opened to start gas exhaust, the stable opening degree of the vacuum valve with respect to the gas flow rate, and the target pressure To maintain
    A control method of a vacuum valve characterized in that.
  2.  前記閾値は、前記コンダクタンスの変化分が5%の範囲内で設定される、
     ことを特徴とする請求項1に記載の真空バルブの制御方法。
    The threshold is set within a range of 5% of the change in the conductance.
    The control method of the vacuum valve of Claim 1 characterized by the above-mentioned.
  3.  真空チャンバの排気口に真空バルブを介して真空ポンプが取り付けられ、前記真空バルブを閉じた状態でガスの供給を開始した前記真空チャンバ内を目標の圧力に制御する圧力制御コントローラであって、
     予め前記真空チャンバ内の圧力データとそれを目標の圧力にするための真空バルブの開度データを時系列で計測する計測部と、
     前記圧力データ及び前記開度データから、前記真空バルブの開度に対するガスの流れやすさを表すコンダクタンスを算出する算出部と、
     前記コンダクタンスの変化分が、前記真空バルブの全開状態におけるものから変化していないとみなせる範囲を特定し、その範囲内で設定された閾値における前記真空バルブの指示開度を取得する取得部と、
     前記真空チャンバ内を目標の圧力にする際に、前記真空バルブを全開ではなく前記指示開度まで開いてガスの排気を開始し、ガス流量に対する前記真空バルブの安定開度にしていき目標の圧力で維持する制御部と、を有する、
     ことを特徴とする真空バルブの圧力制御コントローラ。
    A pressure control controller having a vacuum pump attached to an exhaust port of the vacuum chamber via a vacuum valve and controlling the inside of the vacuum chamber which has started supplying gas with the vacuum valve closed to a target pressure,
    A measurement unit which measures in advance the pressure data in the vacuum chamber and the opening data of the vacuum valve for bringing it to a target pressure;
    A calculation unit that calculates, from the pressure data and the opening data, a conductance that represents the flowability of the gas relative to the opening of the vacuum valve;
    An acquisition unit that specifies a range in which the change in the conductance can be regarded as not changing from that in the fully open state of the vacuum valve, and acquires the indicated opening degree of the vacuum valve at a threshold set within that range;
    When the pressure in the vacuum chamber is set to the target pressure, the vacuum valve is not fully opened but the instruction opening degree is opened to start gas exhaust, the stable opening degree of the vacuum valve with respect to the gas flow rate, and the target pressure And a controller to maintain the
    A vacuum valve pressure control controller characterized in that.
  4.  請求項3に記載の圧力制御コントローラで制御される、
     ことを特徴とする真空バルブ。
    It is controlled by the pressure control controller according to claim 3.
    A vacuum valve characterized by
PCT/JP2017/037453 2017-10-17 2017-10-17 Vacuum valve control method WO2019077672A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207005475A KR102277953B1 (en) 2017-10-17 2017-10-17 Control method of vacuum valve
JP2018508257A JP6311087B1 (en) 2017-10-17 2017-10-17 Vacuum valve control method
PCT/JP2017/037453 WO2019077672A1 (en) 2017-10-17 2017-10-17 Vacuum valve control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/037453 WO2019077672A1 (en) 2017-10-17 2017-10-17 Vacuum valve control method

Publications (1)

Publication Number Publication Date
WO2019077672A1 true WO2019077672A1 (en) 2019-04-25

Family

ID=61901868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037453 WO2019077672A1 (en) 2017-10-17 2017-10-17 Vacuum valve control method

Country Status (3)

Country Link
JP (1) JP6311087B1 (en)
KR (1) KR102277953B1 (en)
WO (1) WO2019077672A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110543194A (en) * 2019-06-11 2019-12-06 北京北方华创微电子装备有限公司 pressure control device and semiconductor device
CN113741571A (en) * 2021-09-09 2021-12-03 北京卫星环境工程研究所 Pressure control system for covering normal pressure to high vacuum
CN114415747A (en) * 2021-12-21 2022-04-29 成都中科唯实仪器有限责任公司 Pressure adjusting method of vacuum adjusting valve
CN114542779A (en) * 2020-11-26 2022-05-27 株式会社岛津制作所 Vacuum valve and estimation device
CN115826636A (en) * 2023-02-16 2023-03-21 广州志橙半导体有限公司 Pressure control method and system of CVD (chemical vapor deposition) equipment
CN117646198A (en) * 2024-01-30 2024-03-05 浙江大学 Automatic control method and system for pressure of atomic-level-precision CVD equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102381679B1 (en) * 2021-09-13 2022-04-01 주식회사 씨맵 Auto pressure control vacuum plasma system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000163137A (en) * 1998-11-27 2000-06-16 Ckd Corp Vacuum pressure control system
WO2004109420A1 (en) * 2003-06-09 2004-12-16 Ckd Corporation Relative pressure control system and relative flow rate control system
WO2009072241A1 (en) * 2007-12-05 2009-06-11 Hitachi Zosen Corporation Method and device for controlling pressure of vacuum container
JP2010282243A (en) * 2009-06-02 2010-12-16 Hitachi Zosen Corp Simulation device for vacuum container

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111519B1 (en) 1969-01-18 1976-04-12

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000163137A (en) * 1998-11-27 2000-06-16 Ckd Corp Vacuum pressure control system
WO2004109420A1 (en) * 2003-06-09 2004-12-16 Ckd Corporation Relative pressure control system and relative flow rate control system
WO2009072241A1 (en) * 2007-12-05 2009-06-11 Hitachi Zosen Corporation Method and device for controlling pressure of vacuum container
JP2010282243A (en) * 2009-06-02 2010-12-16 Hitachi Zosen Corp Simulation device for vacuum container

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110543194A (en) * 2019-06-11 2019-12-06 北京北方华创微电子装备有限公司 pressure control device and semiconductor device
CN114542779A (en) * 2020-11-26 2022-05-27 株式会社岛津制作所 Vacuum valve and estimation device
CN114542779B (en) * 2020-11-26 2023-05-23 株式会社岛津制作所 Vacuum valve and estimating device
CN113741571A (en) * 2021-09-09 2021-12-03 北京卫星环境工程研究所 Pressure control system for covering normal pressure to high vacuum
CN113741571B (en) * 2021-09-09 2023-08-25 北京卫星环境工程研究所 Pressure control system for covering normal pressure to high vacuum
CN114415747A (en) * 2021-12-21 2022-04-29 成都中科唯实仪器有限责任公司 Pressure adjusting method of vacuum adjusting valve
CN114415747B (en) * 2021-12-21 2023-10-27 成都中科唯实仪器有限责任公司 Pressure regulating method of vacuum regulating valve
CN115826636A (en) * 2023-02-16 2023-03-21 广州志橙半导体有限公司 Pressure control method and system of CVD (chemical vapor deposition) equipment
CN117646198A (en) * 2024-01-30 2024-03-05 浙江大学 Automatic control method and system for pressure of atomic-level-precision CVD equipment
CN117646198B (en) * 2024-01-30 2024-04-23 浙江大学 Automatic control method and system for pressure of atomic-level-precision CVD equipment

Also Published As

Publication number Publication date
KR102277953B1 (en) 2021-07-16
KR20200031161A (en) 2020-03-23
JPWO2019077672A1 (en) 2019-11-21
JP6311087B1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6311087B1 (en) Vacuum valve control method
US7438534B2 (en) Wide range pressure control using turbo pump
JP6135475B2 (en) Gas supply apparatus, film forming apparatus, gas supply method, and storage medium
JP5111519B2 (en) Vacuum container pressure control method and pressure control apparatus
JP5943999B2 (en) Method and apparatus for processing a substrate using model-based control
KR102263899B1 (en) Substrate processing apparatus and method of manufacturing semiconductor device
TWI675937B (en) Substrate processing apparatus, gas supply method, substrate processing method, and film forming method
US10113235B2 (en) Source gas supply unit, film forming apparatus and source gas supply method
US9777377B2 (en) Film forming method and film forming device
JP7168329B2 (en) Optimized pressure regulation with vacuum valve for vacuum valve
KR20190070872A (en) Method of processing substrate, storage medium, and raw material gas supply device
US7155319B2 (en) Closed loop control on liquid delivery system ECP slim cell
JP2019165117A (en) Target opening estimator and pressure adjusting vacuum valve
US9880569B2 (en) Pressure control method for process chamber and pressure control device for process chamber
JP2008248395A (en) Plasma treating apparatus and pressure control method of plasma treating apparatus
US11835974B2 (en) Pressure regulated flow controller
TWI749652B (en) System and storage medium for determining cleaning process endpoint
US20240353873A1 (en) Pump and ventilation system for vacuum processes
WO2024057731A1 (en) Mass flow controller
JP2020009111A (en) Estimation device and pressure control valve
JP5302642B2 (en) Method for measuring the amount of source material in a chemical vapor deposition process
JP2021047474A (en) Flow rate control device and flow rate control method
JP2002363755A (en) Plasma treating apparatus and pressure control method of plasma treating apparatus
JP2019061536A (en) Processing chamber pressure control method and processing chamber pressure controller

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508257

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207005475

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928945

Country of ref document: EP

Kind code of ref document: A1