[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019077253A1 - Cuve etanche et thermiquement isolante a plusieurs zones - Google Patents

Cuve etanche et thermiquement isolante a plusieurs zones Download PDF

Info

Publication number
WO2019077253A1
WO2019077253A1 PCT/FR2018/052561 FR2018052561W WO2019077253A1 WO 2019077253 A1 WO2019077253 A1 WO 2019077253A1 FR 2018052561 W FR2018052561 W FR 2018052561W WO 2019077253 A1 WO2019077253 A1 WO 2019077253A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
zone
module
panel
foam
Prior art date
Application number
PCT/FR2018/052561
Other languages
English (en)
Inventor
Mohamed Sassi
Gery Canler
Cédric Morel
Sébastien DELANOE
Bruno Deletre
Raphaël PRUNIER
Nicolas SARTRE
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1771108A external-priority patent/FR3072758B1/fr
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to EP18797016.5A priority Critical patent/EP3698079A1/fr
Priority to JP2020521982A priority patent/JP7082662B2/ja
Priority to AU2018353475A priority patent/AU2018353475B2/en
Priority to SG11202003487YA priority patent/SG11202003487YA/en
Priority to RU2020113164A priority patent/RU2753857C1/ru
Priority to KR1020207014066A priority patent/KR102614343B1/ko
Priority to CN201880076772.XA priority patent/CN111417816B/zh
Priority to US16/754,516 priority patent/US11480298B2/en
Publication of WO2019077253A1 publication Critical patent/WO2019077253A1/fr
Priority to PH12020550867A priority patent/PH12020550867A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks, with membranes, for storing and / or transporting fluid, such as a cryogenic fluid.
  • Watertight and thermally insulating membrane tanks are used in particular for the storage of liquefied natural gas (LNG), which is stored at atmospheric pressure at about -163 ° C. These tanks can be installed on the ground or on a floating structure. In the case of a floating structure, the tank may be intended for the transport of liquefied natural gas or to receive liquefied natural gas used as fuel for the propulsion of the floating structure.
  • LNG liquefied natural gas
  • a supporting structure such as the double hull of a vessel for the transport of liquefied natural gas.
  • such tanks comprise a multilayer structure successively presenting, in the direction of the thickness from the outside to the inside of the tank, a secondary thermal insulation barrier retained to the supporting structure, a secondary waterproofing membrane. resting against the secondary thermal insulation barrier, a primary thermal insulation barrier resting against the secondary waterproofing membrane and a primary waterproofing membrane resting against the primary thermal insulation barrier and intended to be in contact with the gas liquefied natural matter contained in the tank.
  • the document FR2867831 describes a sealed and thermally insulating tank comprising a thermal insulation barrier formed of juxtaposed insulating boxes. These boxes have a cover plate and a bottom plate held at a distance by carrier struts plates and sides of said boxes. These insulating boxes are filled with insulating gasket and form a substantially flat support surface to support a sealed membrane of the tank. Such insulating boxes have a significant resistance to constraints in the tank but the carrier struts plates and the sides of the boxes form areas of higher thermal conductivity limiting the thermal insulation properties of said boxes.
  • the document WO2013124556 describes a sealed and thermally insulating tank in which a thermal insulation barrier is formed of a plurality of juxtaposed insulating blocks. These insulating blocks comprise successively in a thickness direction of the tank wall a bottom plate, a lower structural insulating foam, an intermediate plate, an upper structural insulating foam and a cover plate. In these insulating blocks, the plates are kept at a distance from each other in the direction of thickness of the vessel wall by the structural insulating foam.
  • An idea underlying the invention is to provide a sealed and thermally insulating tank by combining several types of insulation of natures and / or different structures while maintaining a waterproof membrane carried substantially uniformly and continuously.
  • an idea underlying the invention is to manage the thickness variation phenomena between areas of the tank having different behaviors.
  • an idea underlying the invention is to create a smooth transition between insulating modules of a first zone having a first operational behavior in the thickness and insulating modules of a second zone having a second operational behavior. in the thickness when subjected to pressure and / or temperature variations generating a thickness differential in the vessel wall.
  • the invention provides a sealed and thermally insulating tank for storing a fluid integrated in a supporting structure, in which a tank wall comprises in a thickness direction:
  • a secondary heat-insulating barrier and a primary heat-insulating barrier consisting of juxtaposed insulating modules, an insulating module comprising a cover panel, a bottom panel and an insulating lining interposed between the bottom panel and the cover panel, a primary waterproof membrane resting on the primary thermally insulating barrier, and
  • the vessel wall comprising in a direction of length:
  • the insulating modules comprise spacers developing in the thickness direction of the tank wall between the cover panel and the bottom panel of said insulating modules, said spacers being distributed on the surface of the cover panel and of the bottom panel so that the bottom panel and the cover panel of said insulating modules are kept at a distance from each other by said spacers,
  • the insulation pad of the insulating modules comprises a structural insulating foam interposed between the cover panel and the bottom panel on the surface of the cover panel and the bottom panel so that the cover panel of said insulating modules is kept away from the bottom panel by said structural insulating foam,
  • the insulating modules are constituted in such a way that the vessel wall in the said transition zone has at least one parameter chosen from the thermal contraction coefficient and the modulus of elasticity in the thickness direction of the vessel wall whose value is between the value of said at least one parameter of the first zone of the vessel wall in the thickness direction of the vessel wall and the value of said at minus one parameter of the second zone of the vessel wall in the thickness direction of the vessel wall.
  • the operational behavior of the vessel wall in the thickness direction can be essentially characterized by two physical properties which are the thermal contraction coefficient, which qualifies the response of the vessel wall. temperature variations, and modulus of elasticity in the thickness direction that qualifies the response of the vessel wall to pressures.
  • the value of said at least one parameter in the direction of thickness of the tank wall of the insulating modules of the first zone is substantially determined by the value of said at least one parameter along said thickness direction of the spacers , bottom panel and cover panel.
  • the operational contraction behavior in the thickness, determined by at least one parameter chosen from the thermal contraction coefficient and the elastic modulus in the thickness, of an insulating module comprising spacers distributed on the surface. of the cover panel and bottom panel is mainly determined by the operational contraction behavior in the thickness of the supporting struts, cover panels and bottom panels.
  • the value of said at least one parameter in the direction of thickness of the tank wall of the insulating modules of the second zone is substantially determined by the value of said at least one parameter along said thickness direction of the structural insulating foam, bottom panel and cover panel.
  • the operational contraction behavior in the thickness, determined by at least one parameter chosen from the thermal contraction coefficient and the elastic modulus in the thickness, of an insulating module comprising a structural insulating foam distributed on the surface of the cover panel and the bottom panel is mainly determined by the operational contraction behavior in the thickness of the structural insulating foam and the cover and bottom panels.
  • the characteristics such as the thermal contraction coefficient and the modulus of elasticity in the thickness are not the same for these different insulating modules.
  • the sealed and thermally insulating tank according to the invention advantageously makes it possible to limit the presence of steps between the thermally insulating barriers of said zones by virtue of the presence of a transition zone between the first zone and the second zone of the tank wall.
  • such a tank may comprise one or more of the following characteristics.
  • the insulating modules of the second zone have a coefficient of thermal contraction in the direction of the thickness of the wall of the tank higher than the thermal contraction coefficient of the insulating modules of the first zone in the direction of the thickness of the wall of the tank.
  • the insulating modules of the transition zone are constituted so that the vessel wall in said transition zone has a coefficient of thermal contraction in the thickness direction of the vessel wall between the coefficient of thermal contraction of the first zone of the vessel wall in the thickness direction of the vessel wall and the thermal contraction coefficient of the second zone of the vessel wall in the thickness direction of the vessel wall.
  • the insulating modules of the first zone have a modulus of elasticity in the direction of the thickness of the wall of the tank higher than the modulus of elasticity of the insulating modules of the second zone in the direction the thickness of the wall of the tank.
  • the insulating modules of the transition zone are constituted so that the vessel wall in said transition zone has a modulus of elasticity in the thickness direction of the vessel wall between the module of the transition zone. elasticity of the first zone of the vessel wall in the thickness direction of the vessel wall and the modulus of elasticity of the second zone of the vessel wall in the thickness direction of the vessel wall.
  • the first zone corresponds to a zone of the tank wall that is heavily stressed and the second zone corresponds to a zone of the tank wall that is less stressed.
  • the first zone of the tank wall is an area in which the waterproof membrane or membranes are fixed relative to the supporting structure.
  • the first zone is an area of the vessel wall in which at least one waterproof membrane is anchored to the support structure.
  • the first zone is, for example, an angle zone of the tank, a gas dome, a liquid dome or a zone for fixing a support leg for a pump.
  • the second zone is located in a central portion of the vessel wall.
  • the sealed and thermally insulating tank according to the invention advantageously allows to present good characteristics resistance to stress in highly stressed areas and good insulation characteristics.
  • the spacers of the insulating modules of the first zone can be made in many ways.
  • the spacers of the insulating modules of the first zone form sides of said insulating modules so that said insulating modules are caissons having one or more internal spaces delimited by the spacers, the bottom panel and the cover panel. .
  • the insulating lining is arranged in the at least one internal space.
  • the spacers of the insulating modules of the first zone comprise carrying pillars arranged between the bottom panel and the cover panel.
  • the spacers of the insulating modules of the first zone comprise spacer plates developing between the bottom panel and the cover panel.
  • the spacers comprise spacers such as above in combination between the bottom panel and the module cover panel.
  • the insulating lining of the insulating modules of the first zone is a non-carrier or non-structural insulating lining such as perlite, glass wool, aerogels or other, or even their mixtures.
  • the insulating lining arranged in the internal space or spaces of the boxes is a non-structural insulating lining such as perlite, glass wool, aerogels or other, or even their mixtures.
  • the structural insulating foam is a polyurethane foam.
  • this structural insulating foam is a high density foam, for example with a density greater than 100 Kg / m 3 , preferably greater than or equal to 120 Kg / m 3, in particular equal to 210 Kg / m 3 .
  • the structural insulating foam is a reinforced foam, for example reinforced by fibers such as glass fibers.
  • the bottom panel is a plywood panel.
  • the cover panel is a plywood panel.
  • the spacers also develop with a component in a plane perpendicular to the thickness direction of the vessel wall, that is to say in a direction oblique to the direction of thickness.
  • the first zone is arranged on all or part of a perimeter of the wall.
  • the insulating modules of the transition zone comprise
  • first insulating module arranged in the secondary thermally insulating barrier, the first insulating module having a first value of said at least one parameter in the thickness direction of the vessel wall, and
  • a second insulating module arranged in the primary thermally insulating barrier, the second insulating module having a second value of said at least one parameter in the thickness direction of the vessel wall, the first insulating module and the second insulating module being superimposed in the direction of the thickness of the tank wall.
  • the tank is simple to perform.
  • the transition zone can be achieved using standardized insulating modules that can be integrated in a simple way to thermally insulating barriers.
  • the difference in value of said at least one parameter between the transition zone and the first and second zones of the vessel wall is simple to achieve, this difference in value of said at least one parameter simply resulting from the superimposition of two modules. separate insulators.
  • the thermal contraction coefficient of the first insulating module in the thickness direction of the vessel wall is between the thermal contraction coefficient in said thickness direction of the insulating modules of the secondary thermally insulating barrier of the first zone and the thermal contraction coefficient in said thickness direction of the insulating modules of the secondary thermally insulating barrier of the second zone zone included.
  • the modulus of elasticity of the first insulating module in the thickness direction of the vessel wall is between the modulus of elasticity in the said direction of thickness of the insulating modules of the secondary thermally insulating barrier of the first zone and the modulus of elasticity along said thickness direction of the insulating modules of the secondary thermally insulating barrier of the second included zone.
  • the thermal contraction coefficient of the first insulating module according to said thickness direction is equal to the coefficient of thermal contraction according to said thickness direction of the insulating modules of the first zone.
  • the modulus of elasticity of the first insulating module in said thickness direction is equal to the modulus of elasticity along said thickness direction of the insulating modules of the first zone.
  • the coefficient of thermal contraction according to said thickness direction of the first insulating module is greater than the thermal contraction coefficient according to said direction of thickness of the insulating modules of the first zone.
  • the modulus of elasticity along said thickness direction of the first insulating module is smaller than the modulus of elasticity along said thickness direction of the insulating modules of the first zone.
  • the thermal contraction coefficient of the second insulating module in the thickness direction of the vessel wall is between the thermal contraction coefficient according to said thickness direction of the insulating modules of the primary thermal insulating barrier of the the first zone and the thermal contraction coefficient along said thickness direction of the insulating modules of the primary thermally insulating barrier of the second included zone.
  • the modulus of elasticity of the second insulating module in the thickness direction of the vessel wall is between the modulus of elasticity along said thickness direction of the insulating modules of the primary thermally insulating barrier of the first zone and the modulus of elasticity along said thickness direction of the insulating modules of the primary thermally insulating barrier of the second included zone.
  • the thermal contraction coefficient of the second insulating module in said thickness direction is equal to the thermal contraction coefficient in said thickness direction of the insulating modules of the second zone.
  • the modulus of elasticity of the second insulating module in said thickness direction is equal to the modulus of elasticity along said thickness direction of the insulating modules of the second zone.
  • the thermal contraction coefficient along said thickness direction of the second insulating module is smaller than the thermal contraction coefficient along said thickness direction of the insulating modules of the second zone.
  • the modulus of elasticity in said thickness direction of the second insulating module is greater than the modulus of elasticity in said thickness direction of the insulating modules of the second zone.
  • the thermal contraction coefficient in the thickness direction of the tank wall of the first insulating module is smaller than the thermal contraction coefficient in said thickness direction of the second insulating module.
  • the modulus of elasticity in the thickness direction of the vessel wall of the first insulating module is greater than the modulus of elasticity in said thickness direction of the second insulating module.
  • one of the first insulating module and the second insulating module comprises spacers developing in a thickness direction of the vessel wall between the cover panel and the bottom panel of said insulating module, said spacers being distributed on the surface of the bottom panel and the cover panel so that the bottom panel and the cover panel of said insulating module are kept at a distance from each other by said spacers, and
  • the other one of the first insulating module and the second insulating module comprises a structural insulating foam interposed between the cover panel and the bottom panel on the surface of the cover panel and the bottom panel so that the cover panel of said another insulating module is kept away from the bottom panel of said other insulating module by said structural insulating foam.
  • the insulating modules of the transition zone have structures similar to the insulating modules of the first and second zones.
  • the insulating modules of the transition zone are simple to manufacture and do not require the use of insulating modules having a structure distinct from those of the other zones of the tank wall.
  • the insulating modules used to manufacture the tank wall can thus be standardized for the different zones of the tank wall.
  • the first insulating module is identical to the insulating modules of the second zone, for example identical to the insulating modules of the primary thermally insulating barrier or the secondary thermally insulating barrier of the second zone of the vessel wall.
  • the second module is identical to the insulating modules of the first zone, for example identical to the insulating modules of the primary thermally insulating barrier or the secondary thermally insulating barrier of the first zone of the vessel wall.
  • said other one of the first insulating module and the second insulating module is jointly developed in the transition zone and in the second zone of the vessel wall.
  • said other one of the first insulating module and the second insulating module is an insulating module of the primary thermally insulating barrier.
  • said other one of the first insulating module and the second insulating module is the second insulating module.
  • said one of the first insulating module and the second insulating module jointly develop in the transition zone and in the first zone of the vessel wall.
  • said one of the first insulating module and the second insulating module is an insulating module of the secondary thermally insulating barrier.
  • said one of the first insulating module and the second insulating module is the first insulating module.
  • the value of said at least one parameter of the other one of the first insulating module and the second insulating module is less than the value of said at least one parameter of one of the first insulating module and the second module. insulating.
  • the first zone corresponds to an angle zone of the vessel comprising a connecting ring
  • the transition zone is directly adjacent to the connection ring
  • the second insulation module comprises an insulating foam. interposed between the cover panel and the bottom panel on the surface of the cover panel and the bottom panel so that the cover panel of said other insulating module is kept away from the bottom panel of said other insulating module by said foam structural insulation.
  • the first insulating module comprises spacers developing in a direction of thickness of the tank wall between the cover panel and the bottom panel of said insulating module, said spacers being distributed on the surface of the panel. bottom and cover panel so that the bottom panel and the cover panel of said insulating module are held at a distance from each other by said spacers.
  • the insulating modules of the transition zone comprise:
  • a third insulating module arranged in the secondary thermally insulating barrier, the third insulating module being closer to the second zone than the first insulating module and having a third value of the said at least one parameter in the thickness direction of the vessel wall;
  • a fourth insulating module arranged in the primary thermally insulating barrier, the fourth insulating module being closer to the second zone than the second insulating module and having a fourth value of said at least one parameter in the thickness direction of the vessel wall,
  • the third value of said at least one parameter of the third insulating module is between the first value of said at least one parameter of the first insulating module and the second value of said at least one parameter of the second insulating module.
  • the third insulation module is a mixed module comprising an intermediate panel arranged between the bottom panel and the cover panel, the insulating lining comprising a lower lining arranged between the intermediate panel and the bottom panel and a lining arranged between the intermediate panel and the cover panel, the mixed module having a coefficient of thermal expansion between the thermal expansion coefficient of an insulating module of the first zone and the coefficient of thermal expansion of an insulating module of the second zone.
  • the fourth insulating module is identical to the second insulating module, so that the fourth value of said at least one parameter is equal to the second value of said at least one parameter.
  • the insulating modules of the transition zone comprise a third insulating module (arranged in the secondary thermally insulating barrier, the third insulating module being closer to the second zone than the first insulating module and having a third value of said at least one parameter according to the thickness direction of the vessel wall, and wherein the second insulating module extends over the entire length of the transition zone in primary heat-insulating barrier, the third value of said at least one parameter of the third isolating module being between the first value of said at least one parameter of the first insulating module and the second value of said at least one parameter of the second insulating module.
  • the transition zone has a coefficient of thermal contraction in the thickness direction of the vessel wall increasing in the length direction of the vessel wall from the first zone towards the second zone of the tank wall.
  • the transition zone has a modulus of elasticity in the direction of thickness of the vessel wall decreasing in the direction of length of the vessel wall from the first zone towards the second zone of the vessel wall.
  • the primary thermally insulating barrier and the secondary thermal insulating barrier comprise a plurality of insulating modules in the transition zone.
  • the insulating modules of the primary thermally insulating barrier and / or the secondary thermally insulating barrier located in the transition zone have thermal contraction coefficients in the thickness direction of the separate vessel wall.
  • the insulating modules of the primary thermally insulating barrier and / or the secondary thermally insulating barrier located in the transition zone have elastic moduli in the direction of thickness of the separate vessel wall.
  • an insulating module located in the transition zone close to the first zone has a thermal contraction coefficient in said thickness direction less than the thermal contraction coefficient in said thickness direction of an insulating module located in the transition zone in the same thermally insulating barrier and farther away from the first zone.
  • an insulating module located in the transition zone close to the first zone has a modulus of elasticity in said direction of thickness greater than the modulus of elasticity in said thickness direction of an insulating module located in the transition zone in the same thermally insulating barrier and farther away from the first zone.
  • the transition zone subdivides into a plurality of small steps the difference generated by the difference in behavior between the insulating modules of the first zone and the insulating modules of the second zone.
  • Such subdivision makes it possible to provide a support surface for the sealed membranes having a satisfactory flatness.
  • the gap between the first zone and the second zone is subdivided into a plurality of small amplitude steps, such small amplitude steps not degrading the performance and life of the sealed membranes.
  • a such a transition zone using separate insulating modules to achieve a gentle slope is simple to achieve.
  • the coefficient of thermal contraction in the direction of thickness of the vessel wall in the transition zone increases continuously continuously from the first zone towards the second zone.
  • the modulus of elasticity in the direction of thickness of the vessel wall in the transition zone decreases continuously progressively from the first zone towards the second zone.
  • an insulation module of the transition zone comprises a structural insulating foam interposed between the cover panel and the bottom panel on the surface of the cover panel and the bottom panel of said insulating module so that the panel cover of said insulating module is kept away from the bottom panel of said insulating module by said structural insulating foam, said structural insulating foam having a thermal contraction coefficient in the thickness direction of the bottom wall lower than the contraction coefficient in said thickness direction of the structural insulating foam of the second zone.
  • the structural insulating foam of said insulating module of the transition zone comprises a first portion of structural insulating foam and a second portion of structural insulating foam, the first portion of structural insulating foam being closer to the first zone than the second portion of structural foam, the first portion of structural insulating foam having a thermal contraction coefficient in the thickness direction of the vessel lower than the thermal contraction coefficient of the second structural insulating foam portion in said thickness direction.
  • an insulation module of the transition zone comprises a structural insulating foam interposed between the cover panel and the bottom panel on the surface of the cover panel and the bottom panel of said insulating module so that the panel cover of said insulating module is kept at a distance from the bottom panel of said insulating module by said structural insulating foam, said structural insulating foam having a modulus of elasticity in the thickness direction of the tank wall greater than the modulus of elasticity in said thickness direction of the structural insulating foam of the second zone.
  • the structural insulating foam of said insulating module of the transition zone comprises a first portion of structural insulating foam and a second portion of structural insulating foam, the first portion of structural insulating foam being closer to the first zone than the second portion of structural foam, the first portion of structural insulating foam having a modulus of elasticity in the direction of thickness of the tank greater than the modulus of elasticity of the second portion of structural insulating foam in said thickness direction.
  • Such a module is simple to implement because it uses materials of the same nature to generate a gradual change in the thermal contraction coefficient and / or the modulus of elasticity in the thickness direction of the vessel wall.
  • the structural insulating foam of said module is a fiber-reinforced polyurethane foam, the first portion of structural insulating foam having a fiber orientation in a thickness direction of the vessel wall and the second portion of foam structural insulation having a fiber orientation perpendicular to the thickness direction of the vessel wall.
  • the thickness of the first portion decreases progressively from the first zone towards the second zone and the thickness of the second portion increases progressively from the first zone toward the second zone.
  • the insulating modules of the transition zone comprise a mixed module comprising an intermediate panel arranged between the bottom panel and the cover panel, the insulating lining comprising a lower lining arranged between the intermediate panel and the panel. bottom and an upper liner arranged between the intermediate panel and the lid panel.
  • the first insulating module is a mixed module.
  • the mixed module comprises bearing struts developing in a direction of thickness of the tank wall between the intermediate panel and one of the bottom panel and the cover panel, said spacers being distributed on the surface of the intermediate panel and said one of the bottom panel and the cover panel so that the intermediate panel and said one of the bottom panel and the cover panel are kept at a distance from each other by said carrier struts,
  • the insulating gasket arranged between the intermediate panel and the other one of the bottom panel and the cover panel comprises a structural insulating foam distributed on the surface of the intermediate panel and the said other one of the bottom panel and the cover panel so that the intermediate panel and said other one of the bottom panel and the cover panel are held apart by said structural insulating foam.
  • the intermediate panel develops in a plane inclined with respect to the bottom panel and the cover panel.
  • the thermal contraction coefficient of the mixed module increases progressively in the length direction of the vessel wall from the first zone of the vessel wall towards the second zone of the vessel wall and / or the modulus of elasticity. of the mixed module progressively decreases in the length direction of the vessel wall from the first zone of the vessel wall towards the second zone of the vessel wall.
  • the mixed module has a thermal contraction coefficient in the direction of thickness of the vessel wall increasing progressively from the first zone towards the second zone of the vessel wall and / or a modulus of elasticity in the direction thickness of the vessel wall decreasing progressively from the first zone towards the second zone of the vessel wall.
  • the intermediate panel is remote from an edge of the mixed module located close to one of the first zone and the second zone. According to one embodiment, the intermediate panel is remote from one of the bottom panel and the cover panel of the mixed module.
  • the primary and secondary waterproof membranes consist essentially of metal strips extending in the length direction and having raised longitudinal edges, the raised edges of two adjacent metal strips being welded in pairs so as to form expansion bellows allowing a deformation of the waterproof membrane in a direction perpendicular to the direction of length.
  • the primary and / or secondary waterproofing membranes comprise corrugated metal plates.
  • the angle of the vessel comprises a primary anchoring wing and a secondary anchoring wing, a first end of said anchor wings being anchored to the supporting structure and a second end of said anchoring wings. being sealingly welded to the corresponding sealing membrane.
  • the primary waterproofing membrane comprises corrugations extending perpendicular to the raised edges and arranged in line with the first zone.
  • the secondary waterproof membrane consists essentially of metal strips extending in the direction of length and having raised longitudinal edges, the raised edges of two adjacent metal strips being welded in pairs so as to form bellows expansion device allowing a deformation of the watertight membrane in a direction perpendicular to the length direction, wherein the angle of the vessel comprises a secondary anchoring wing, a first end of said anchor wing being anchored to the supporting structure and a second end of said anchor wing being sealingly welded to the secondary sealing membrane, and wherein the primary waterproofing membrane comprises corrugated metal plates.
  • Such a tank can be part of an onshore storage facility, for example to store LNG or be installed in a floating structure, coastal or deepwater, including a LNG carrier, a floating unit of Storage and Regasification (FSRU), a floating production and remote storage unit (FPSO) and others.
  • FSRU floating unit of Storage and Regasification
  • FPSO floating production and remote storage unit
  • the invention also provides a vessel for transporting a cold liquid product having a double hull and a aforementioned tank disposed in the double hull.
  • the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage facility to or from the vessel vessel.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating storage facility. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
  • the invention also provides an insulating module comprising a cover panel, a bottom panel and an insulating gasket interposed between the bottom panel and the cover panel, said insulating module further comprising an arranged intermediate panel. between the bottom panel and the cover panel and separating the insulating module at an upper part and a lower part, the insulating lining having a bottom lining arranged between the intermediate panel and the bottom panel and an upper lining arranged between the intermediate panel and the cover panel, said insulating module having at least one parameter selected from the thermal contraction coefficient and the modulus of elasticity in the thickness direction of the vessel wall, the value of which is distinct between the top of the insulating module and the lower part of the insulating module.
  • said insulating module comprises carrying struts developing in a thickness direction of the tank wall between the intermediate panel and at least one of the bottom panel and the cover panel, said struts being distributed on the surface of the intermediate panel and said at least one of the bottom panel and the cover panel so that the intermediate panel and the at least one of the bottom panel and the cover panel are kept at a distance from each other by said carrier struts,
  • the insulating gasket arranged between the intermediate panel and at least one of the bottom panel and the cover panel having a structural insulating foam distributed over the surface of the intermediate panel and said at least one of the panel. and the cover panel so that the intermediate panel and said at least one of the bottom panel and the cover panel are spaced apart by said structural insulating foam.
  • the intermediate panel develops in a plane inclined with respect to the bottom panel and the cover panel.
  • one of the upper liner and the lower liner is a fiber-reinforced polyurethane foam having fiber orientation in a thickness direction of the vessel wall and the other of the lower liner and the upper liner is a fiber-reinforced polyurethane foam having a fiber orientation perpendicular to the thickness direction of the vessel wall.
  • the inclined intermediate panel is remote from an edge of the insulating module so that the lower lining or the upper lining forms the entire thickness of the insulating lining of the insulating module at said edge.
  • the side of the inclined intermediate panel closest to the bottom panel is remote from the bottom panel.
  • the insulating lining is constituted by the only lower lining at the bottom panel, thus providing a uniform structure advantageously offering good mechanical strength, for example for fixing an element of an anchoring member to the panel of bottom of the insulation module.
  • FIG. 1 is a very diagrammatic representation of a sealed and thermally insulating tank wall comprising two structurally distinct zones in two distinct states of tank loading, vacuum at ambient temperature of 20 ° C. and filled with LNG at -163. ° C;
  • FIG. 2 is a schematic representation of a sealed and thermally insulating tank wall according to one embodiment of the invention comprising two structurally distinct zones between which is arranged a transition zone in two tank loading states, vacuum at room temperature of 20 ° C and filled with LNG at -163 ° C;
  • FIG. 3 is a schematic representation of a sealed and thermally insulating tank wall according to a first embodiment of the invention
  • FIG. 4 is a schematic representation of a sealed and thermally insulating tank wall according to a second embodiment of the invention.
  • FIG. 5 is a detailed representation of the sealed and thermally insulating tank wall according to the second embodiment
  • FIGS. 6 to 8 are diagrammatic representations of sealed and thermally insulating vessel walls according to alternative embodiments of a third embodiment of the invention.
  • FIG. 9 is a schematic representation of a sealed and thermally insulating tank wall according to a fourth embodiment of the invention.
  • FIG. 10 is a detailed representation of the sealed and thermally insulating tank wall according to the fourth embodiment.
  • Figures 1 1 and 12 are schematic representations of sealed and thermally insulated vessel walls according to alternative embodiments of a fifth embodiment of the invention;
  • FIG. 13 is a detailed representation of the sealed and thermally insulating tank wall according to the fifth embodiment;
  • FIG. 14 is an illustration of an insulating module of the transition zone of FIG. 13;
  • FIG. 15 is a schematic representation of a sealed and thermally insulating tank wall according to a sixth embodiment of the invention.
  • Fig. 16 is a detailed representation of the sealed and thermally insulating tank wall according to the sixth embodiment.
  • FIG. 17 is an illustration of an insulating module of the transition zone of FIG. 16;
  • FIG. 18 is a schematic representation of a transverse wall of a sealed and thermally insulating tank comprising a first zone, a transition zone and a second zone according to the invention
  • Figure 19 is a schematic cutaway representation of a tank of LNG tanker and a loading / unloading terminal of this tank.
  • Fig. 20 is a detailed representation of the sealed and thermally insulating tank wall according to a seventh embodiment.
  • a sealed and thermally insulating tank for transporting LNG comprises a plurality of tank walls defining an internal space for the storage of LNG.
  • Each tank wall comprises, from the outside to the inside of the tank, a secondary thermal insulation barrier 1, a secondary waterproofing membrane 2, a primary thermal insulation barrier 3 and a primary waterproofing membrane 4 intended to be in contact with a cryogenic fluid contained in the tank.
  • the secondary thermal insulation barrier 1, hereinafter secondary insulating barrier 1 comprises secondary insulating blocks 5. These secondary insulating blocks 5 are juxtaposed and anchored to a carrier structure 6 by secondary retaining members, for example studs or couplers welded to the supporting structure 6. These secondary insulating blocks 5 form a secondary support surface on which the secondary sealing membrane 2 is retained.
  • primary thermally insulating barrier 3 hereinafter primary insulating barrier 3
  • primary insulating barrier 3 comprises primary insulating blocks 7. These primary insulating blocks 7 are juxtaposed and retained on the secondary sealing membrane 2 by primary retaining members. These primary insulating blocks 7 form a primary support surface on which the primary waterproofing membrane 4 is retained.
  • the supporting structure 6 can in particular be a self-supporting metal sheet or, more generally, any type of rigid partition having suitable mechanical properties.
  • the supporting structure 6 may in particular be formed by the hull or the double hull of a ship.
  • the supporting structure 6 has a plurality of walls defining the general shape of the vessel, usually a polyhedral shape.
  • the secondary and primary insulating blocks 7 have substantially a rectangular parallelepiped shape. These secondary and primary insulating blocks 7 each comprise an insulating lining layer 8 interposed between a bottom plate 9 and a cover plate 10.
  • FIG. 1 illustrates the behavior of two zones of a tank wall comprising insulating blocks 5, 7 having different structures.
  • a first zone 11 and a second zone 12 of the sealed and thermally insulating tank wall are shown schematically.
  • the first zone 1 1 of the tank wall illustrated on the right side of FIG. 1 represents a zone of the tank wall subjected to high stresses in the tank.
  • the second zone 12 of the tank wall illustrated on the left-hand part of FIG. 1 represents a zone of the tank wall subjected to lesser stresses in the tank.
  • the first zone 1 1 comprises insulating blocks 5, 7 having good resistance to stress and the second zone 12 comprises insulating blocks 5, 7 having a lower stress resistance but better insulation properties thermal.
  • the insulating blocks 5, 7 of the first zone 1 1 comprise spacers developing in the direction of thickness of the tank wall between the cover plate 10 and the bottom plate 9 of said insulating blocks 5, 7. These spacers are distributed on the surface of the cover plate 10 and the bottom plate 9 so that the bottom plate 9 and the cover plate 10 of said insulating blocks 5, 7 are kept at a distance from each other by said spacers. Preferably, these spacers are distributed over the entire surface of the cover plate 10 and the bottom plate 9. Due to the presence of spacers and their distribution distributed between the bottom plate 9 and the cover plate 10, the mechanical strength in the thickness direction of the insulating blocks 5, 7 of the first zone is mainly determined by the spacers.
  • the behavior of the insulating blocks 5, 7 of the first zone in the thickness direction is mainly determined by the thermal contraction coefficient of the spacers which is of the order of 4 to 10 ⁇ 10 -6 K -1 when the latter are plywood.
  • the insulating gasket 8 does not participate or little in maintaining distance of the bottom plates and cover.
  • Such insulating lining 8 is for example glass wool, perlite, or low-density polymer foam, for example having a density of between 30 and 40 Kg / m 3 .
  • Such insulating blocks 5, 7 of the first zone 11 may be made in many ways.
  • the spacers can take many forms such as for example the form of spacer plate, bearing pillars, lateral sides of the insulating blocks 5, 7 etc.
  • the insulating blocks 5, 7 of the first zone may be made in the form of caissons comprising lateral edges and carrier strut plates between the bottom plates 9 and the cover plate 10.
  • the insulating gasket 8 of such blocks is housed in internal spaces delimited by the lateral edges and the supporting struts between the bottom plate and the cover plate.
  • the documents FR2798358, FR2867831, FR2877639 and FR2683786 describe embodiments of such insulating blocks 5, 7 of the first zone in the form of boxes.
  • the insulating blocks 5, 7 of the first zone may comprise bearing pillars, the bottom plate 9 and the cover plate 10 being held at a distance by these bearing pillars developing in the thickness direction of said insulating blocks.
  • Such bearing pillars are distributed distributed between the bottom plate 9 and the cover plate 10 to ensure evenly the spacing between the bottom plates and cover.
  • Embodiments of such blocks comprising carrying pillars are for example described in documents WO2016097578, FR2877638 and WO2013017773.
  • the insulating blocks 5, 7 of the second zone 12 comprise an insulating gasket 8 in the form of structural insulating foam interposed between the cover plate 10 and the bottom plate 9 on the surface of the cover plate 10 and the bottom plate 9.
  • this structural insulating foam is interposed between the cover plate 10 and the bottom plate 9 over substantially the entire surface of the cover plate 10 and the bottom plate 9
  • the cover plate 10 of said blocks insulators 5, 7 of the second zone 12 is kept away from the bottom plate 9 by said structural insulating foam.
  • Such structural insulating foam has, in the direction of the wall thickness of the tank, a thermal contraction coefficient higher than the thermal contraction coefficient of the spacers in said direction of the wall thickness of the tank.
  • such a structural insulating foam has, in the direction of the thickness of the wall of the tank, a modulus of elasticity lower than the modulus of elasticity of the spacers in said direction of the thickness of the wall. tank.
  • Such structural insulating foam can take many forms, this structural insulating foam having the function, in addition to its thermal insulation function, to keep the bottom plates 9 and lid at a distance 10.
  • the strength in the thickness direction of the insulating blocks 5, 7 of the second zone 12 is mainly determined by the characteristics of the structural insulating foam. Insulating blocks 5, 7 comprising such a structural insulating foam can take many forms.
  • such blocks 5, 7 of the second zone may comprise a polyurethane foam structurally capable of keeping the bottom plate and the cover plate at a distance.
  • the structural insulating foam is for example a polyurethane foam reinforced with fiberglass or aramid having a density of 120 to 140 Kg / m 3 .
  • the structural insulating foam may also be a high density reinforced polyurethane foam having a density greater than or equal to 170 Kg / m 3 , preferably equal to 210 Kg / m 3 .
  • Such insulating blocks 5, 7 are for example described in the document FR28131 1 1.
  • the documents WO2013124556 and WO2013017781 describe insulating blocks 5, 7 comprising a layer of structural insulating foam interposed between and now remotely holding a bottom plate. and a cover plate.
  • the insulating blocks 5, 7 of the second zone 12 may have point reinforcing zones. However, with the exception of these punctual reinforcement zones, the bottom and bottom plates of the insulating blocks of these documents are kept at a distance mainly by the structural insulating foam.
  • the insulating blocks 5, 7 of the second zone 12 may comprise corner pillars for reinforcing the anchoring zones of the insulating block 5, 7. However, these corner pillars constitute singular singular zones, the bottom plate 9 and the cover plate 10 being mainly held at a distance by the structural insulating foam.
  • the document WO2013017781 describes an exemplary embodiment of such insulating blocks 5, 7 of the second zone 12 comprising corner pillars.
  • the documents indicated above also give other details on the manufacture of sealed and thermally insulating tanks, in particular on the secondary and secondary waterproofing membranes 4, the anchoring members of the insulating barriers 1, 3.
  • Possible embodiments of the sealing membranes, based on corrugated metal sheets, are also described in WO2016 / 046487, WO2013004943 or WO2014057221.
  • the insulating blocks 5, 7 of the first zone 1 1 have good characteristics of resistance to stress due to the spacers. However, these spacers also form places of greater thermal conductivity between the bottom plate 9 and the cover plate 10.
  • the insulating blocks 5, 7 of the second zone 12 have good thermal insulation properties, better than those of the first zone 1 1. However, these insulating blocks 5, 7 of the second zone 12 have a resistance to stress. less than that of the insulating blocks 5, 7 of the first zone 1.
  • the first zone 1 1 is adjacent to an angle of the tank and the second zone 12 is disposed in the central part of the wall.
  • the insulating blocks in the tank are subject to different constraints depending on their location.
  • the insulating blocks arranged in the corner areas of the tank, namely the first zone January 1 are generally subjected to higher stresses than the insulating blocks located in the flat areas of the tank, namely the second zone 12.
  • the first zone 1 1 may be adjacent to a portion of the tank wall where the sealing membranes must be interrupted, for example a portion of the tank wall traversed by a pipe, in particular a channeling a gas dome, a portion of the tank wall traversed by a support leg, for example for a pump, or a portion of the vessel wall at the end of a liquid dome.
  • a pipe or a support foot for a pump Portions of the tank wall traversed by a pipe or a support foot for a pump are for example described in WO2014128381. Indeed, in these specific areas of the tank, the insulating blocks can also be subjected to high stresses.
  • the type of insulating blocks has been adapted to areas of the tank in which said insulating blocks are arranged, and more particularly to the stresses that said insulating blocks must undergo in these areas.
  • Such an arrangement of the insulating blocks in the tank makes it possible to obtain an optimized tank both from a thermal insulation point of view and from a point of view of resistance to stresses.
  • the use of insulating blocks having different structures and materials causes operational differences in the operation of said insulating blocks, in particular in compression, in creep, in dimensional deviation in the thickness of the insulating blocks, under the effect of thermal changes. , hydrostatic and hydrodynamic pressure in the tank etc.
  • FIG. 1 illustrates these two zones 11, 12 in the context of an empty vessel at ambient temperature, for example 20 ° C.
  • the lower part of FIG. 1 illustrates these two zones 11, 12 in the context of a tank full of LNG at -163 ° C.
  • the first zone 11 and the second zone 12 have the same thickness at ambient temperature in order to provide a flat support surface for the sealing membranes 2, 4.
  • thermal contraction coefficient is used with reference to the coefficient of thermal contraction of an element in the direction of thickness of the vessel wall.
  • the first zone 11 and the second zone 12 Due to the different structure of the insulating blocks 5, 7, the first zone 11 and the second zone 12 have different thermal contraction coefficients, different stiffnesses, different creep resistance, and so on. In other words, the first zone 1 1 and the second zone 12 behave differently under thermal loads, cargo, sloshing, etc.
  • the first zone 11 and the second zone 12 have different thickness changes when the tank is filled with LNG.
  • a step 13 in the thickness direction of the tank wall appears between the first zone 1 1 and the second zone 12 when the tank is filled with LNG as illustrated in the lower part of FIG. 1.
  • This step 13 is particularly important at the level of the primary support surface supporting the primary sealing membrane 4 of the This step 13 is generated by the difference in thickness change of the two insulating barriers 1 and 3.
  • a primary insulation barrier 3 of 230mm thickness and a secondary insulating barrier 1 of 300mm thick we can observe a step 13 of up to about 8 to 12mm mainly under the joint effects of sloshing and thermal contraction for two thirds and minority under the combined effect of cargo pressure and creep.
  • the waterproofing membranes 2, 4 have an optimal operation in a plane geometry and may have weaknesses under excessive steps. This is why thermally insulating barriers of the prior art use insulating blocks having similar structures on the entire surface of the vessel walls. This problem is particularly present in the case of waterproof membranes in invar strips with raised edges, even if it is also less important in the context of waterproof membranes with corrugated metal sheets.
  • FIG. 2 is a schematic representation illustrating the principle of a tank wall in which the thermally insulating barriers 1, 3 comprise insulating blocks 5, 7 arranged according to the stresses experienced in the tank while having a support surface adapted to the support of the sealing membranes 2, 4. Many embodiments are described more specifically below with reference to Figures 3 to 17 to implement such a tank wall.
  • the tank wall illustrated in FIG. 2 comprises, in a manner analogous to the tank wall described with reference to FIG. 1, a first zone 1 1 and a second zone 12 comprising insulating blocks 5, 7 having different structures.
  • the vessel wall also comprises a transition zone 14 interposed between the first zone 11 and the second zone 12.
  • This transition zone 14 comprises insulating blocks 5, 7 selected so that said transition zone 14 exhibits an intermediate compression behavior between the compression behavior of the first zone 1 1 and the compression behavior of the second zone 12.
  • the insulating blocks 5, 7 of the transition zone 14 are selected to be flush with the insulating blocks 5, 7 of the first and second zones 11, 12 when the tank is empty at temperature. to provide a flat support surface for the waterproofing membranes.
  • the insulating blocks 5, 7 of the transition zone 14 are also selected so that the transition zone 14 has a thickness between the thickness of the first zone 1 1 and the thickness of the second zone 12 when the tank is full of LNG as shown in the lower part of Figure 2 .
  • the insulating blocks 5, 7 of the transition zone 14 are selected so that the thermal contraction coefficient of the transition zone 14 is between the thermal contraction coefficient of the first zone 1 1 and the thermal contraction coefficient of the second zone 12.
  • the insulating blocks 5, 7 of the transition zone 14 can also be selected according to other characteristics.
  • the insulating blocks 5, 7 of the transition zone 14 can be selected according to their stiffness at impact, for example to take into account the effects of sloshing of the liquid contained in the tank (called “sloshing" in English). ).
  • These insulating blocks 5, 7 of the transition zone 14 can also be selected according to their stiffness in static compression to take into account the pressure related to the weight of the liquid contained in the tank. Other characteristics such as the Young's modulus in compression or the resistance to creep over time can also be taken into account.
  • the description made with regard to the thermal contraction coefficient applies by analogy to the modulus of elasticity of the zones of the vessel wall.
  • the first zone 1 1 has a modulus of elasticity greater than the modulus of elasticity of the second zone 12 and the transition zone has a modulus of elasticity between the modulus of elasticity of the first zone 11 and the modulus of elasticity.
  • the modulus of elasticity of the transition zone 14 can decrease from the first zone 11 towards the second zone 12.
  • the insulating blocks 5, 7 of the transition zone are selected so that the transition zone 14 has an intermediate compression behavior between the compression behavior of the first and second zones 11, 12 and that the The thickness of the transition zone 14 is between the thickness of the first zone 11 and the thickness of the second zone 12 when the tank is full of LNG.
  • Such a transition zone 14 allows a smooth transition between the first zone 1 1 and the second zone 12.
  • the step 13 between the first zone 1 1 and the second zone 12 is subdivided into a first step 15 and a second step 16 of reduced sizes.
  • the first step 15 is located between the first zone 1 1 and the transition zone 14 and the second step 16 is located between the transition zone 14 and the second zone 12.
  • the tank wall thus no longer has a large step 13 such as illustrated in Figure 1 which could degrade the waterproofing membranes 2, 4 while having areas whose strength and insulation properties are adapted to the stresses in the tank.
  • Steps 15, 16 of smaller sizes are understood to mean steps of lesser size than step 13 between the first zone 11 and the second zone 12.
  • the first zone 1 1 comprises, in the primary insulating barrier 3 and in the secondary insulating barrier 1, structurally similar insulating blocks 5, 7.
  • the second zone 12 comprises, in the primary insulating barrier 3 and in the secondary insulating barrier 1, structurally similar insulating blocks 5, 7.
  • a primary insulating block 7 and a secondary insulating block 5 of the first zone 11 and the second zone 12 are illustrated in FIGS. 3 to 17 and 20, the first zone 11 and the second zone 12 may comprise one or a plurality of primary insulating blocks 7 and secondary 5 juxtaposed according to the desired dimensions of said first zone 1 1 and second zone 12.
  • Figure 3 illustrates a first embodiment of the transition zone 14 in a vessel wall.
  • the transition zone 14 comprises a secondary insulating block 5 and a primary insulating block 7 superimposed.
  • the secondary insulating block 5 of the transition zone 14 is identical to the secondary insulating blocks 5 of the first zone 1 1.
  • the primary insulating block 7 of the transition zone 14 is identical to the primary insulating blocks 7 of the second zone 12. Consequently, the thermal contraction coefficient of the transition zone 14 is the sum of the thermal contraction coefficients of a secondary insulating block 5 of the first zone 1 1 and of a primary insulating block 7 of the second zone.
  • the thermal contraction coefficient of the transition zone 14 is between the thermal contraction coefficient of the first zone 1 1 and the thermal contraction coefficient of the second zone 12.
  • This first embodiment has the advantage of being simple to implement since it uses standardized insulating blocks 5, 7 of the first zone 1 1 and the second zone 12 to form the transition zone 14.
  • This first embodiment of FIG. The embodiment thus makes it possible to subdivide the step 13 of the primary support surface into two steps 15, 16 of reduced sizes.
  • the primary insulating block 7 of the transition zone 14 is identical to the primary insulating blocks 7 of the first zone 1 1 and the secondary insulating block 5 of the transition zone 14 is identical to the secondary insulation blocks 5 of the second zone 12.
  • This variant also makes it possible to obtain a simple transition zone 14 to be produced by using insulating blocks 5, 7 identical to the insulating blocks 5, 7 of the first zone 11 and of the second zone 12 while providing a transition zone 14 dividing the step 13 between the first zone 1 1 and the second zone 12 in steps 15, 16 acceptable for the primary waterproofing membrane 4.
  • FIG. 4 illustrates a second embodiment of the transition zone 14.
  • the transition zone 14 comprises a secondary insulating block 5 identical to the secondary blocks 5 of the first zone 11.
  • the primary insulating barrier 3 of the transition zone 14 is formed by a primary insulating block 7 jointly developing in the transition zone 14 and in the second zone 12.
  • a secondary end insulator block 17 of the second zone 12 has a similar structure but smaller dimensions than the other secondary insulating blocks 5 of the second zone 12.
  • a primary end insulating block 18 of the second zone 12 resting on the secondary end insulating block 17 has a projecting portion 19 projecting towards the first zone 1 1 beyond the secondary end insulating block 17.
  • This projecting portion 18 rests on the secondary insulating block 5 of the transition 14. In other words, this projecting portion 19 forms the primary insulating barrier 3 in the transition zone 14.
  • the transition zone 14 is thus formed on the one hand of the secondary insulating block 5 identical to the secondary insulating blocks 5 of the first zone 1 1 and, on the other hand, of the projecting portion 19 of the primary primary insulating block 17 of the second zone 12.
  • the transition zone 14 therefore has a thermal contraction coefficient identical to the thermal contraction coefficient of the transition zone 14 described with respect to the first embodiment of FIG.
  • the primary insulating barrier 3 does not present a step 16 between the transition zone 14 and the second zone 12.
  • this step 16 present in the first embodiment is advantageously absorbed by the primary end insulating block 18 jointly developing in the transition zone 14 and in the second zone 12, the latter having a flat support surface inclined between the transition zone 4 and the second zone 12.
  • FIG. 5 illustrates one possible embodiment of the second embodiment of FIG. 4.
  • the first zone 1 1 is an area of tank wall angle.
  • This angle of the tank comprises insulating blocks 5, 7 in the form of plywood boxes delimiting an internal space filled with an insulating lining such as perlite. Carrying struts are arranged distributed in the internal space of the boxes to provide the caissons good resistance to stress. Boxes of similar structure are used to produce the primary thermally insulating barrier and the secondary thermally insulating barrier.
  • the second zone consists of insulating blocks 5, 7 comprising an insulating gasket 8 in the form of structural insulating foam arranged between the bottom plate 9 and the cover plate 10.
  • These insulating blocks 5, 7 further comprise an intermediate plate 20 housed in the insulating gasket 8, said insulating gasket 8 thus comprising an upper insulating foam 21 arranged between the cover plate 10 and the intermediate plate 20 and a lower insulating foam 22 arranged between the intermediate plate 20 and the bottom plate 9.
  • the foam upper insulation 21 and the lower insulating foam 22 are for example a polyurethane foam having a density of 130 Kg / m 3 .
  • the secondary insulating block 5 of the second zone 12 is for example a secondary insulating block as described in the document WO2014096600.
  • the primary insulating block 7 of the second zone 12 is for example a primary insulating block as described in WO2013124556.
  • the secondary and secondary sealing membranes 2 are here produced by Invar strips with raised edges, for example of a dimension of 500 mm.
  • the raised edges of two adjacent Invar strips are welded in pairs on solder supports anchored in the cover plate 10 of the insulating blocks 5, 7 forming the support surface on which said Invar strips rest.
  • a connecting ring comprises primary and secondary anchoring wings 23, one end of which is welded to the supporting structure 6 and the other end is welded to the end of the respectively primary 4 and secondary 2 waterproofing membrane in order to anchor said primary and secondary sealing membranes 2 to the supporting structure 6.
  • Such a connecting ring is for example described in the document FR2798358, the document WO8909909 or the document WO2015007974.
  • the connecting ring consists solely of secondary anchoring wings 23, one end of which is welded to the supporting structure 6 and the other end is welded to the end of the waterproofing membrane. secondary 2 to anchor said secondary waterproofing membrane 2 to the carrier structure 6.
  • the primary sealing membrane 4 advantageously comprises a portion of a membrane comprising corrugations 24.
  • Such corrugations 24 develop along the steps 15, 16.
  • These corrugations 24 are for example made by means of a corrugated metal sheet such as those described in the document FR2691520.
  • This corrugated metal sheet is interposed between one end of the invar strips of the primary waterproofing membrane 4 and the primary anchoring flange 23 of the connecting ring.
  • Different non-illustrated metal parts may also be interposed between the corrugated metal sheet and the primary anchoring wing 23, for example a corner angle forming the edge of the primary sealing membrane 4 at the angle of tank.
  • FIG. 5 shows by way of illustration a first zone 1 1 comprising, on the one hand, insulating blocks 5, 7 in the connection ring and, on the other hand, a block primary insulation 7 and a secondary insulating block 5 out of the connecting ring.
  • This configuration is advantageous because the primary insulating block 7 and the secondary insulating block 5 of the first zone 11 located outside the connection ring contribute to the good resistance of the connection ring in the angle of the tank and the welds between the connecting ring and the membranes.
  • this first zone could comprise only the insulating blocks located in the connecting ring so that the transition zone 14 would be directly adjacent to the connecting ring.
  • FIGS. 6 to 8 illustrate a third embodiment of the transition zone 14.
  • This third embodiment differs from the first embodiment in that the transition zone 14 comprises at least one distinct insulating block 26 of the insulating blocks 5, 7 or 7 of the first zone 11 and the second zone 12. This or these separate insulating blocks 26 have a thermal contraction coefficient between the thermal contraction coefficients of the adjacent insulating blocks 5, 7 in the corresponding insulating barrier 1, 3.
  • the transition zone 14 comprises a secondary insulating block 5 identical to the secondary insulating block 5 of the first zone 11 and a separate insulating block 26 arranged in the primary insulating barrier 1.
  • This distinct insulating block 26 constitutes a primary insulating block 7 of the transition zone 14 having a thermal contraction coefficient comprised between the thermal contraction coefficient of the primary insulating blocks 7 of the first zone 11 and the second zone 12.
  • the transition zone 14 comprises a primary insulating block 7 identical to the primary insulating blocks 7 of the second zone 12 and a separate insulating block 26 arranged in the secondary insulating barrier 1.
  • This separate insulating block 26 constitutes a secondary insulating block 5 of the transition zone 14 having a thermal contraction coefficient between the thermal contraction coefficient of the secondary insulating blocks 5 of the first zone 11 and the second zone 12.
  • the transition zone 14 comprises two distinct insulating blocks 26 superimposed. These distinct insulating blocks 26 constitute a primary insulating block 7 and a secondary insulating block 5 of the transition zone, both having similar structures and a thermal contraction coefficient included between those insulating blocks 5, 7 adjacent to the first zone 11 and the second zone 12.
  • the distinct insulating blocks 26 of the transition zone 14 in this third embodiment are, for example, insulating blocks comprising a cover plate 10 and a bottom plate 9 remotely maintained by a separate structural insulating foam 27, this structural insulating foam. distinct 27 being different from the structural insulating foam of the insulating blocks 5, 7 of the second zone 12.
  • the insulating blocks 5, 7 of the second zone 12 may comprise a polyurethane foam having a density of 130 Kg / m 3 while the separate structural insulating foam 27 is a reinforced polyurethane foam having a density of 210 Kg / m 3 .
  • the transition zone 14 has a thermal contraction coefficient between the thermal contraction coefficient of the first zone 1 1 and the thermal contraction coefficient of the second zone 12.
  • FIG. 9 illustrates a fourth embodiment of the transition zone 14.
  • the transition zone 14 comprises a plurality of primary insulating blocks 7 and a plurality of secondary insulating blocks 5.
  • This embodiment allows to subdivide the transition zone 14 into several sub-zones each having distinct thermal contraction coefficients and thus to subdivide the step 13 between the first zone 11 and the second zone 12 in a plurality of steps of reduced size.
  • the transition zone 14 is divided into a first subarea 28 and a second subarea 29.
  • the first subarea 28 is contiguous with the first zone 11 and the second subarea 28 is contiguous. of the second zone 12.
  • the first sub-zone 28 of the transition zone 14 comprises a secondary insulating block 5 identical to the secondary insulating blocks 5 of the first zone 11 and a primary insulating block 7 identical to the primary insulating blocks 7 of the second zone 12.
  • this first subarea 28 is made according to the first embodiment described above with reference to FIG.
  • the second subarea 29 of the transition zone 14 comprises a primary insulating block 7 identical to the primary insulating blocks 7 of the second zone 12.
  • the secondary insulating block 5 of the second subarea 29 is a mixed secondary insulating block 30.
  • This mixed secondary insulating block 30 presents a thermal contraction coefficient between the thermal contraction coefficient of the secondary insulating block 5 of the first zone 1 1 and the thermal contraction coefficient of the secondary insulating block 5 of the second zone 12.
  • the second subfield 29 has a coefficient of thermal contraction between the thermal contraction coefficient of the first subarea 28 and the thermal contraction coefficient of the second zone 12.
  • the step 14 between the first zone 1 and the second zone 12 is subdivided into a first step separating the first zone 1 1 and the first subarea 28, a second step separating the first subarea 28 and the second subarea 29 and a third step separating the second subarea 29 and the second zone 12.
  • the mixed secondary insulating block 30 comprises an upper element 31 and a lower element 32 superimposed in the direction of the thickness.
  • the mixed secondary insulating block 30 comprises, for example, a lower element 32 formed by the bottom plate 9 and a lower structural insulating lining 33 and an upper element 31 formed by an insulating box.
  • Such an insulating box comprises an intermediate plate 34 and the cover plate 10 held at a distance by spacers bearing similarly to the insulating blocks 5, 7 of the first zone January 1.
  • the upper member 31 can be made by means of a structural insulating foam having a density greater than the density of the structural insulating foam of the secondary insulating blocks 5 of the second zone 12.
  • the lower member 32 is a box and the upper member 31 comprises a structural insulating foam.
  • the respective thicknesses of the upper element 31 and the lower element 32 are adapted to the desired thermal contraction coefficient of the mixed secondary insulating block 30.
  • FIG. 10 is an illustration of an embodiment of the fourth embodiment of FIG. 9.
  • the first zone 1 1 and the second zone 12 are made in a similar manner to the first and second zones 11, 12 described above with respect to FIG.
  • the first subarea 28 of the transition zone 14 comprises a secondary insulating block 5 in the form of a box identical to the secondary insulating blocks 5 of the first zone 11.
  • the primary insulating block 7 of the first subarea 28 comprises a high density reinforced polyurethane foam 35 having a density greater than the density of the structural insulating foam of the primary insulating blocks 7 of the second zone 12 so that the first zone 28 of the transition zone 14 has a coefficient of thermal contraction greater than the thermal contraction coefficient of the first zone 1 1 but lower than the thermal contraction coefficient of the second zone 12.
  • the primary insulating block 7 of the transition zone 14 may further comprise an intermediate plate 20 housed in the high density reinforced polyurethane foam 35, said high density reinforced polyurethane foam 35 being thus arranged between the cover plate 10 and the intermediate plate 20 and between the intermediate plate 20 and the bottom plate 9.
  • the second sub-zone 29 of the transition zone 14 comprises a mixed secondary insulating block 30.
  • This second sub-zone 29 comprises a primary insulating block 7 identical to the primary insulating block 7 of the first sub-zone 28.
  • the mixed secondary insulating block 30 presents a lower element 32 of structural insulating foam identical to the structural insulating foam of the secondary insulating blocks 5 of the second zone 12.
  • the upper element 31 of the mixed secondary insulating block 30 is a box having a structure similar to the structure of the secondary insulating blocks 5 of the first zone 1 1.
  • the mixed secondary insulating block 30 has a thermal contraction coefficient between the thermal contraction coefficient of the secondary insulating block 5 of the first sub-zone 28 and the thermal contraction coefficient of the secondary insulating blocks. 5 of the second zone 12. Consequently, the second sub-zone 29 of the transition zone 1 4 shows a coefficient of thermal contraction between the thermal contraction coefficient of the first subarea 28 of the transition zone 14 and the thermal contraction coefficient of the second zone 12.
  • FIGS. 11 and 12 schematically illustrate a fifth embodiment of the transition zone 14.
  • the secondary insulating block 5 of the transition zone 14 is identical to the insulating block secondary 5 of the first zone 1 1.
  • the primary insulating block 7 of the transition zone 14 is a mixed primary insulating block 36.
  • this mixed primary insulating block 36 comprises an upper element 37 and a lower element 38 superimposed and having different structures and coefficients of thermal contraction.
  • the mixed primary insulating block 36 of the fifth embodiment differs from the mixed secondary insulating block 30 of the fourth embodiment in that the interface between the lower element 38 and the upper element 37 of said mixed primary insulating block 36 is inclined relative to the bottom plates 9 and cover 10.
  • the lower element 38 of the mixed primary insulating block 36 has a thickness gradually decreasing from the first zone 1 1 towards the second zone 12 and the upper element 37 has a thickness increasing progressively from the first zone 1 1 towards the second zone 12.
  • the thermal contraction coefficient of the lower element 38 is smaller than the thermal contraction coefficient of the upper element 37 so that the thermal contraction coefficient of the mixed primary insulating block 36 increases progressively from the first zone 1 1 direc second zone 12.
  • This fifth embodiment advantageously makes it possible to reduce the steps between the transition zone 14 and the first and second zones 11, 12, the mixed primary insulating block 36 absorbing part of the thickness differential between the first zone 11 and the first zone. second zone 12 during its deformation due to its progressive modification of its coefficient of thermal contraction.
  • the inclination of the interface is reversed so that the thickness of the upper element 37 decreases progressively from the first zone 1 1 towards the second zone 12 and the thickness of the the lower element 38 progressively increases from the first zone 11 towards the second zone 12.
  • the thermal contraction coefficient of the upper element 37 is smaller than the thermal contraction coefficient of the lower element 38.
  • the upper 37 and lower 38 elements are dimensioned so that the thickness of the mixed primary insulating block 36 is constant at ambient temperature in the tank.
  • the lower element 38 is a box delimited in a thickness direction of the vessel wall by the bottom plate 9 of the mixed primary insulating block 36 and by an intermediate plate 39.
  • the intermediate plate 39 is inclined relative to the bottom plate 9 so that the thickness of said box decreases from the first zone 1 1 towards the second zone 12.
  • This box has bearing struts now remote the bottom plate 9 of the mixed primary insulating block 36 is the intermediate plate 39.
  • the upper element 37 comprises a structural insulating foam interposed between the intermediate plate 39 and the cover plate 10 of the mixed primary insulating element 36.
  • this structural insulating foam is identical to the structural insulating foam of the blocks. primary insulators 7 of the second zone 12.
  • the mixed primary insulating block 36 has a coefficient of thermal contraction progressively increasing since the first zone 1 1 in the direction of the second zone 12. More particularly, the thermal contraction coefficient of the mixed primary insulating block 36 is identical to the contraction coefficient. thermal insulation of a primary insulating block 7 of the first zone 1 1 on the side of said first zone 1 1 and gradually increases towards the second zone 12 until substantially reach the value of the thermal contraction coefficient of a primary insulating block 7 of the second zone 12.
  • the lower element 38 of the mixed primary insulating block 36 has a thermal contraction coefficient comprised between the thermal contraction coefficient of the primary insulating blocks 7 of the first zone 11 and the contraction coefficient. thermal insulation of the primary insulating blocks 7 of the second zone 12.
  • the lower element 38 is formed by means of a high density structure 40 insulating foam whose thermal contraction coefficient is lower than the thermal contraction coefficient of the structural insulating foam primary insulating blocks 7 of the second zone 12.
  • the upper element 37 of said mixed primary insulating block 36 is in this variant identical to the upper element 37 of the mixed primary insulating block 36 described with reference to FIG. that is to say with a structural insulating foam identical to the structural insulating foam of the second zone 12.
  • the lower element 38 of the mixed primary insulating block 36 is a box as described above with reference to FIG. 11 and the upper element 37 of said mixed insulating block 36 comprises a structural insulating foam of which the density is greater than the density of the structural insulating foam of the primary insulating blocks 7 of the second zone 12.
  • FIG. 13 is an illustration of an embodiment of the fifth embodiment of one of FIGS. 11 or 12.
  • FIG. 14 is an illustration of an insulating module of the transition zone of FIG. 13.
  • FIG. 15 schematically illustrates a sixth embodiment of the transition zone 14.
  • the primary insulating block 7 of the transition zone 14 in this sixth present embodiment a coefficient of thermal contraction which decreases progressively from the first zone 11 towards the second zone 12.
  • the gradual decrease of the thermal contraction coefficient of the primary insulating block 7 of the transition zone 14 is achieved by the use of structural foam blocks having distinct thermal contraction coefficients in said primary insulating block 7.
  • the primary insulating block 7 of the transition zone comprises a structural insulating foam now spaced apart from the bottom plate 9 and the cover plate 10.
  • This structural insulating foam has two portions, a first portion 41 located close to the first zone 1 1 and a second portion 42 located near the second zone 12.
  • the interface between the first portion 41 and the second portion 42 has at least one step 43 in the thickness direction of the primary insulating block 7 of the transition zone 14. This step 43 allows a gradual decrease in the thickness of the first portion 41 and a gradual increase in the thickness of the second portion 42 from the first zone 1 1 towards the second zone 12.
  • the first portion 41 of structural insulating foam has a thermal contraction coefficient lower than the thermal contraction coefficient of the second portion 42.
  • the primary insulating block 7 of the transition zone 14 has a thermal contraction coefficient increasing from the first zone 1 1 towards the second zone 12.
  • FIG. 16 is an illustration of an embodiment of the sixth embodiment of FIG. 15.
  • FIG. 17 is an illustration of an insulating module of the transition zone of FIG. 15.
  • the first portion 41 and FIG. the second portion 42 are made using a polyurethane foam reinforced by the presence of fibers such as glass fibers.
  • the polyurethane foam of the first portion 41 is arranged so that the fibers are oriented in the direction of thickness of the primary insulating block 7, as illustrated by the arrows 44.
  • the polyurethane foam of the second portion 42 is arranged so that the fibers are oriented in a direction perpendicular to the thickness direction of the primary insulating block 7, as illustrated by the arrows 45. Such an arrangement is similar to stairs of a staircase formed by the first portion 41 and the second portion 42.
  • the first portion 41 of fiber-oriented polyurethane foam according to the thickness of the primary insulating block 7 has, for example, a thermal contraction coefficient of the order of 25 ⁇ 10 -6 K -1 at 27 ⁇ 10 -6 K -1 for 10 % by weight of fiberglass while the second portion 42 made of polyurethane foam fibers oriented perpendicularly to the thickness of the primary insulating block 7 has for example a thermal contraction coefficient of the order of 60.10 "6 K " 1 .
  • Another method for obtaining thermal contraction coefficients between the first portion 41 and the second portion 42 could be to modify the fiber content and its nature in the polyurethane foam to adjust the coefficient of thermal contraction between 15 and 60 ⁇ 10 -6 K "1 .
  • the first zone 1 1 is arranged on all the edges of the vessel walls, the second zone 12 on all the central portions of the vessel walls and the transition zone 14 between all the first and second zones 1 1 , 12 walls of vats.
  • FIG. 18 is a schematic representation of a transverse wall of a sealed and thermally insulating tank comprising a first zone, a transition zone and a second zone according to the invention arranged according to this embodiment.
  • Fig. 20 is an illustration of the sealed and thermally insulating tank wall according to a seventh embodiment.
  • the first zone 1 1 is a tub wall angle zone comprising insulating blocks 5, 7 in the form of plywood boxes delimiting an internal space filled with an insulating gasket such as perlite or glass wool. Carrying struts are arranged distributed in the internal space of the boxes to provide the caissons good resistance to stress.
  • the first zone 1 1 is located at the connecting ring and the insulating blocks 5, 7 are located in the connecting ring.
  • the second zone 12 consists of insulating blocks 5, 7 comprising an insulating gasket 8 in the form of structural insulating foam arranged between the bottom plate 9 and the cover plate 10.
  • These insulating blocks 5, 7 furthermore comprise an intermediate plate 20 housed in the insulating lining 8, said insulating lining 8 thus comprising an upper insulating foam 21 arranged between the cover plate 10 and the intermediate plate 20 and a lower insulating foam 22 arranged between the intermediate plate 20 and the bottom plate 9.
  • Upper insulating foam 21 and the lower insulating foam 22 are for example a polyurethane foam having a density of 130 Kg / m 3 .
  • the secondary insulating block 5 of the second zone 12 is for example a secondary insulating block as described in the document WO2014096600.
  • the primary insulating block 7 of the second zone 12 is, for example, a primary insulating block as described in the document WO2013124556.
  • the first subarea 28 of the transition zone 14 comprises a secondary insulating block 5 in the form of a box identical to the secondary insulating blocks 5 of the first zone 11.
  • the primary insulating block 7 of the first subarea 28 comprises a high density reinforced polyurethane foam 35 having a density greater than the density of the structural insulating foam of the primary insulating blocks 7 of the second zone 12 so that the first zone 28 of the transition zone 14 has a coefficient of thermal contraction greater than the thermal contraction coefficient of the first zone 1 1 but lower than the thermal contraction coefficient of the second zone 12.
  • the primary insulating block 7 of the transition zone 14 comprises in this embodiment a intermediate plate 20 housed in the high density reinforced polyurethane foam 35, said high density reinforced polyurethane foam 35 thus being arranged between the cover plate 10 and the intermediate plate 20 and between the intermediate plate 20 and the bottom plate 9 .
  • the second sub-zone 29 of the transition zone 14 comprises a mixed secondary insulating block 30.
  • This second sub-zone 29 comprises a primary insulating block 7 identical to the primary insulating block 7 of the first sub-zone 28.
  • the mixed secondary insulating block 30 presents a lower element 32 of structural insulating foam identical to the structural insulating foam of the secondary insulating blocks 5 of the second zone 12.
  • the upper element 31 of the mixed secondary insulating block 30 is a box having a structure similar to the structure of the secondary insulating blocks 5 of the first zone 1 1.
  • the mixed secondary insulating block 30 has a thermal contraction coefficient between the thermal contraction coefficient of the secondary insulating block 5 of the first sub-zone 28 and the thermal contraction coefficient of the secondary insulating blocks. 5 of the second zone 12. Consequently, the second sub-zone 29 of the transition zone 1 4 shows a coefficient of thermal contraction between the thermal contraction coefficient of the first subarea 28 of the transition zone 14 and the thermal contraction coefficient of the second zone 12.
  • the primary waterproof membrane 4 is composed of corrugated metal plates.
  • These corrugated metal plates are for example stainless steel whose thickness is about 1.2 mm and 3 m by 1 m.
  • the rectangular-shaped metal plate comprises a first series of parallel waves, said low, extending in a direction y from one edge to another of the sheet and a second series of parallel corrugations, said high, s' extending in a direction x from one edge to the other of the metal sheet.
  • the x and y directions of the series of undulations are perpendicular.
  • the corrugations are, for example, protruding on the side of the inner face of the metal sheet 1, intended to be placed in contact with the fluid contained in the tank.
  • the edges of the metal plate are here parallel to the corrugations.
  • the terms "high” and “low” have a relative meaning and mean that the undulations, said low, have a height lower than the undulations, say high.
  • the corrugations may have the same height.
  • the metal plate has between the corrugations a plurality of planar surfaces. Part of the waves may be located between the insulating blocks 7 or remain on the plane portions of the insulating blocks 7.
  • the metal plate has a node area.
  • the knot area has a central portion having an apex projecting inwardly or outwardly of the vessel. Furthermore, the central portion is bordered, on the one hand, by a pair of concave corrugations formed in the peak of the high undulation and, on the other hand, by a pair of recesses 8 into which the low corrugation penetrates. .
  • a primary waterproof membrane has been described above in which the corrugations are continuous at the intersections between the two series of corrugations.
  • the primary waterproof membrane may also have two sets of mutually perpendicular corrugations with discontinuities of certain undulations at intersections between the two series. For example, the interrupts are alternately distributed in the first series of undulations and the second series of undulations and, within a series of undulations, the interruptions of one undulation are shifted by one wave step by relative to the interruptions of an adjacent parallel ripple.
  • This type of waterproof membrane composed of corrugated plates being less sensitive to the walking phenomenon during the thermal contraction of the thermally insulating barriers 1, 3 and more resistant to stress, it is not necessary as in the embodiment of FIG. 10 placing in the first zone a primary insulating block 7 and a secondary insulating block 5 outside the connection ring.
  • the first zone 1 1 consists solely of the insulating blocks 5, 7 in the connection ring.
  • the transition zone 14 is then directly adjacent to the connecting ring.
  • the first zone 1 1 may also be a gas dome, a gas dome, or a fixing zone of a support leg for a pump.
  • the first zone 1 1 is then all around the support foot and the secondary membrane 2 is fixed to an anchoring wing 23 of the fixing area.
  • the transition zone 14 then extends all around the first zone 1 1.
  • the technique described above for producing a tank can be used in different types of tanks, for example to form an LNG tank in a land installation or in a floating structure such as a LNG tank or other.
  • a cut-away view of a LNG tanker 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double shell 72.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal for transferring a cargo of LNG to or from the tank 71.
  • FIG. 19 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising a movable arm 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73.
  • the movable arm 74 can be adapted to all the jigs of LNG.
  • a link pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG tank 70 from or to the shore facility 77.
  • This comprises liquefied gas storage tanks 80 and connecting lines 81 connected by the underwater line 76 to the loading or unloading station 75.
  • the underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station. 0 unloading 75 and the onshore installation 77 over a large distance, for example 5 km, which keeps the LNG tanker 70 at a great distance from the coast during the loading and unloading operations.
  • pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.
  • the above examples have a vessel wall having insulating barriers forming substantially planar support surfaces in a vacuum vessel and having thickness differentials between different areas of the vessel walls when the vessel is loaded with LNG.
  • the arrangement could be reversed so that the vessel walls have thickness differentials in a vacuum vessel and planar support surfaces when the vessel is loaded with LNG.
  • transition zone can be combined with each other, for example in the context of a transition zone comprising a plurality of primary and secondary insulation blocks 5 so as to generate a plurality sou-zones of the transition zone 14 whose thermal contraction coefficients are increasing from the first zone 1 1 towards the second zone 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Cuve dans laquelle une paroi de cuve comporte une barrière isolante secondaire, une barrière isolante primaire, une membrane étanche primaire et une membrane étanche secondaire, la paroi de cuve comportant : une première zone (11) dans laquelle des modules isolants comportent des entretoises se développant selon une direction d'épaisseur de la paroi de cuve entre un panneau de couvercle et un panneau de fond desdits modules isolants, une deuxième zone (12) dans laquelle un panneau de couvercle des modules isolants est maintenu à distance d'un panneau de fond par une mousse isolante structurelle, une zone de transition (14) intercalée entre la première zone et la deuxième zone, ladite zone de transition présentant un coefficient de contraction thermique et/ou un module d'élasticité dans la direction d'épaisseur de la paroi de cuve compris entre celui de la première zone et celui de la deuxième zone.

Description

Cuve étanche et thermiquement isolante à plusieurs zones
Domaine technique
L'invention se rapporte au domaine des cuves, étanches et thermiquement isolantes, à membranes, pour le stockage et/ou le transport de fluide, tel qu'un fluide cryogénique.
Des cuves étanches et thermiquement isolantes à membranes sont notamment employées pour le stockage de gaz naturel liquéfié (GNL), qui est stocké, à pression atmosphérique, à environ -163°C. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d'un ouvrage flottant, la cuve peut être destinée au transport de gaz naturel liquéfié ou à recevoir du gaz naturel liquéfié servant de carburant pour la propulsion de l'ouvrage flottant.
Arrière-plan technologique
Dans l'état de la technique, il est connu des cuves étanches et thermiquement isolantes pour le stockage de gaz naturel liquéfié, intégrées dans une structure porteuse, telle que la double coque d'un navire destiné au transport de gaz naturel liquéfié. Généralement, de telles cuves comportent une structure multicouche présentant successivement, dans le sens de l'épaisseur depuis l'extérieur vers l'intérieur de la cuve, une barrière d'isolation thermique secondaire retenue à la structure porteuse, une membrane d'étanchéité secondaire reposant contre la barrière d'isolation thermique secondaire, une barrière d'isolation thermique primaire reposant contre la membrane d'étanchéité secondaire et une membrane d'étanchéité primaire reposant contre la barrière d'isolation thermique primaire et destinée à être en contact avec le gaz naturel liquéfié contenu dans la cuve.
Le document FR2867831 décrit une cuve étanche et thermiquement isolante comportant une barrière d'isolation thermique formée de caissons isolants juxtaposés. Ces caissons présentent une plaque de couvercle et une plaque de fond maintenues à distance par des plaques d'entretoises porteuses et des cotés desdits caissons. Ces caissons isolants sont remplis de garniture isolante et forment une surface de support sensiblement plane pour supporter une membrane étanche de la cuve. De tels caissons isolants présentent une résistance importante aux contraintes dans la cuve mais les plaques d'entretoises porteuses et les côtés des caissons forment des zones de plus forte conductivité thermique limitant les propriétés d'isolation thermique desdits caissons.
Le document WO2013124556 décrit une cuve étanche et thermiquement isolante dans laquelle une barrière d'isolation thermique est formée d'une pluralité de blocs isolants juxtaposés. Ces blocs isolants comportent successivement selon une direction d'épaisseur de la paroi de cuve une plaque de fond, une mousse isolante structurelle inférieure, une plaque intermédiaire, une mousse isolante structurelle supérieure et une plaque de couvercle. Dans ces blocs isolants, les plaques sont maintenues à distance les unes des autres selon la direction d'épaisseur de la paroi de cuve par la mousse isolante structurelle.
Résumé
Une idée à la base de l'invention est de réaliser une cuve étanche et thermiquement isolante en mariant plusieurs types d'isolation de natures et/ou structures différentes tout en conservant une membrane étanche portée de manière sensiblement uniforme et continue.
Ainsi, une idée à la base de l'invention est de gérer les phénomènes de variation d'épaisseur entre des zones de la cuve présentant des comportements différents. Pour cela, une idée à la base de l'invention est de créer une transition douce entre des modules isolants d'une première zone présentant un premier comportement opérationnel dans l'épaisseur et des modules isolants d'une deuxième zone présentant un deuxième comportement opérationnel dans l'épaisseur lorsqu'ils sont soumis à des variations de pression et/ou de température générant un différentiel d'épaisseur dans la paroi de cuve.
Selon un mode de réalisation, l'invention fournit une cuve étanche et thermiquement isolante de stockage d'un fluide intégrée dans une structure porteuse, dans laquelle une paroi de cuve comporte dans une direction d'épaisseur :
une barrière thermiquement isolante secondaire et une barrière thermiquement isolante primaire constituées de modules isolants juxtaposés, un module isolant comportant un panneau de couvercle, un panneau de fond et une garniture isolante intercalée entre le panneau de fond et le panneau de couvercle, une membrane étanche primaire reposant sur la barrière thermiquement isolante primaire, et
une membrane étanche secondaire reposant sur la barrière thermiquement isolante secondaire,
la paroi de cuve comportant dans une direction de longueur :
une première zone dans laquelle les modules isolants comportent des entretoises se développant selon la direction d'épaisseur de la paroi de cuve entre le panneau de couvercle et le panneau de fond desdits modules isolants, lesdites entretoises étant distribuées sur la surface du panneau de couvercle et du panneau de fond de sorte que le panneau de fond et le panneau de couvercle desdits modules isolants sont maintenus à distance l'un de l'autre par lesdites entretoises,
une deuxième zone dans laquelle la garniture isolante des modules isolants comporte une mousse isolante structurelle intercalée entre le panneau de couvercle et le panneau de fond sur la surface du panneau de couvercle et du panneau de fond de sorte que le panneau de couvercle desdits modules isolants est maintenu à distance du panneau de fond par ladite mousse isolante structurelle,
une zone de transition intercalée entre la première zone et la deuxième zone, dans laquelle les modules isolants sont constitués de manière que la paroi de cuve dans ladite zone de transition présente au moins un paramètre choisi parmi le coefficient de contraction thermique et le module d'élasticité dans la direction d'épaisseur de la paroi de cuve dont la valeur est comprise entre la valeur dudit au moins un paramètre de la première zone de la paroi de cuve dans la direction d'épaisseur de la paroi de cuve et la valeur dudit au moins un paramètre de la deuxième zone de la paroi de cuve dans la direction d'épaisseur de la paroi de cuve.
Une idée à la base de l'invention est que le comportement opérationnel de la paroi de cuve dans la direction d'épaisseur peut être essentiellement caractérisé par deux propriétés physiques qui sont le coefficient de contraction thermique, qui qualifie la réponse de la paroi de cuve aux variations de température, et le module d'élasticité dans la direction d'épaisseur qui qualifie la réponse de la paroi de cuve aux pressions. Selon un mode de réalisation, la valeur dudit au moins un paramètre selon la direction d'épaisseur de la paroi de cuve des modules isolants de la première zone est substantiellement déterminé par la valeur dudit au moins un paramètre selon ladite direction d'épaisseur des entretoises, du panneau de fond et du panneau de couvercle. En d'autres termes, le comportement opérationnel en contraction dans l'épaisseur, déterminé par au moins un paramètre choisi parmi le coefficient de contraction thermique et le module élastique dans l'épaisseur, d'un module isolant comportant des entretoises distribuées sur la surface du panneau de couvercle et du panneau de fond est principalement déterminé par le comportement en contraction opérationnel dans l'épaisseur des entretoises porteuses, des panneaux de couvercle et des panneaux de fond.
Selon un mode de réalisation, la valeur dudit au moins un paramètre selon la direction d'épaisseur de la paroi de cuve des modules isolants de la deuxième zone est substantiellement déterminé par la valeur dudit au moins un paramètre selon ladite direction d'épaisseur de la mousse isolante structurelle, du panneau de fond et du panneau de couvercle. En d'autres termes, le comportement en contraction opérationnel dans l'épaisseur, déterminé par au moins un paramètre choisi parmi le coefficient de contraction thermique et le module élastique dans l'épaisseur, d'un module isolant comportant une mousse isolante structurelle distribuée sur la surface du panneau de couvercle et du panneau de fond est principalement déterminé par le comportement en contraction opérationnel dans l'épaisseur de la mousse isolante structurelle et des panneaux de couvercle et de fond. Ainsi, les caractéristiques telles que le coefficient de contraction thermique et le module d'élasticité dans l'épaisseur ne sont pas les mêmes pour ces différents modules isolants.
La cuve étanche et thermiquement isolante selon l'invention permet avantageusement de limiter la présence de marches entre les barrières thermiquement isolantes desdites zones grâce à la présence d'une zone de transition entre la première zone et la deuxième zone de la paroi de cuve.
Selon des modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes.
Selon un mode de réalisation, les modules isolants de la deuxième zone présentent un coefficient de contraction thermique dans le sens de l'épaisseur de la paroi de la cuve plus élevé que le coefficient de contraction thermique des modules isolants de la première zone dans le sens de l'épaisseur de la paroi de la cuve.
Selon un mode de réalisation, les modules isolants de la zone de transition sont constitués de manière que la paroi de cuve dans ladite zone de transition présente un coefficient de contraction thermique dans la direction d'épaisseur de la paroi de cuve compris entre le coefficient de contraction thermique de la première zone de la paroi de cuve dans la direction d'épaisseur de la paroi de cuve et le coefficient de contraction thermique de la deuxième zone de la paroi de cuve dans la direction d'épaisseur de la paroi de cuve.
Selon un mode de réalisation, les modules isolants de la première zone présentent un module d'élasticité dans le sens de l'épaisseur de la paroi de la cuve plus élevé que le module d'élasticité des modules isolants de la deuxième zone dans le sens de l'épaisseur de la paroi de la cuve.
Selon un mode de réalisation, les modules isolants de la zone de transition sont constitués de manière que la paroi de cuve dans ladite zone de transition présente un module d'élasticité dans la direction d'épaisseur de la paroi de cuve compris entre le module d'élasticité de la première zone de la paroi de cuve dans la direction d'épaisseur de la paroi de cuve et le module d'élasticité de la deuxième zone de la paroi de cuve dans la direction d'épaisseur de la paroi de cuve.
Selon un mode de réalisation, la première zone correspond à une zone de la paroi de cuve fortement sollicitée et la deuxième zone correspond à une zone de la paroi de cuve moins sollicitée. Selon un mode de réalisation, la première zone de la paroi de cuve est une zone dans laquelle la ou les membranes étanches sont fixes par rapport à la structure porteuse. Selon un mode de réalisation, la première zone est une zone de la paroi de cuve dans laquelle au moins membrane étanche est ancrée sur la structure porteuse. Selon un mode de réalisation, la première zone est, par exemple, une zone d'angle de la cuve, un dôme gaz, un dôme liquide ou encore une zone de fixation d'un pied de support pour une pompe. Selon un mode de réalisation, la deuxième zone est située dans une portion centrale de la paroi de cuve.
Grâce à ces caractéristiques, la cuve étanche et thermiquement isolante selon l'invention permet avantageusement de présenter de bonnes caractéristiques de résistance aux contraintes dans les zones fortement sollicitées et de bonnes caractéristiques d'isolation.
Selon des modes de réalisation, les entretoises des modules isolants de la première zone peuvent être réalisées de nombreuses manières.
Selon un mode de réalisation, les entretoises des modules isolants de la première zone forment des côtés desdits modules isolants de sorte que lesdits modules isolants sont des caissons présentant un ou plusieurs espaces internes délimités par les entretoises, le panneau de fond et le panneau de couvercle. Selon un mode de réalisation, la garniture isolante est agencée dans le ou lesdits espaces internes. Selon un mode de réalisation, les entretoises des modules isolants de la première zone comportent des piliers porteurs agencés entre le panneau de fond et le panneau de couvercle. Selon un mode de réalisation, les entretoises des modules isolants de la première zone comportent des plaques entretoises se développant entre le panneau de fond et le panneau de couvercle. Selon un mode de réalisation, les entretoises comportent des entretoises telles que ci-dessus en combinaison entre le panneau de fond et le panneau de couvercle des modules.
Selon un mode de réalisation, la garniture isolante des modules isolants de la première zone est une garniture isolante non porteuse ou non structurelle telle que de la perlite, de la laine de verre, des aérogels ou autres voire leurs mélanges.
Selon un mode de réalisation, la garniture isolante agencée dans le ou les espaces internes des caissons est une garniture isolante non structurelle telle que de la perlite, de la laine de verre, des aérogels ou autres voire leurs mélanges.
Selon un mode de réalisation, la mousse isolante structurelle est une mousse de polyuréthane. Selon un mode de réalisation, cette mousse isolante structurelle est une mousse haute densité, par exemple avec une densité supérieure à 100 Kg/m3, de préférence supérieure ou égale à 120 Kg/m3, notamment égale à 210 Kg/m3.
Selon un mode de réalisation, la mousse isolante structurelle est une mousse renforcée, par exemple renforcée par des fibres telles que des fibres de verre. Selon un mode de réalisation, le panneau de fond est un panneau de contreplaqué. Selon un mode de réalisation, le panneau de couvercle est un panneau de contreplaqué.
Selon un mode de réalisation, les entretoises se développent aussi avec une composante dans un plan perpendiculaire à la direction d'épaisseur de la paroi de cuve, c'est-à-dire selon une direction oblique par rapport à la direction d'épaisseur.
Selon un mode de réalisation, la première zone est agencée sur tout ou partie d'un pourtour de la paroi.
Selon un mode de réalisation, les modules isolants de la zone de transition comportent
un premier module isolant agencé dans la barrière thermiquement isolante secondaire, le premier module isolant présentant une première valeur dudit au moins un paramètre selon la direction d'épaisseur de la paroi de cuve, et
un deuxième module isolant agencé dans la barrière thermiquement isolante primaire, le deuxième module isolant présentant une deuxième valeur dudit au moins un paramètre selon la direction d'épaisseur de la paroi de cuve, le premier module isolant et le deuxième module isolant étant superposés dans le sens de l'épaisseur de la paroi de cuve.
Grâce à ces caractéristiques, la cuve est simple à réaliser. En effet, la zone de transition peut être réalisée à l'aide de modules isolants standardisés qui peuvent être intégrés de façon simple aux barrières thermiquement isolantes. En outre, la différence de valeur dudit au moins un paramètre entre la zone de transition et les première et deuxième zones de la paroi de cuve est simple à réaliser, cette différence de valeur dudit au moins un paramètre résultant simplement de la superposition de deux modules isolants distincts. En particulier, il est possible de superposer un module isolant de la première zone et un module isolant de la deuxième zone pour former la zone de transition.
Selon un mode de réalisation, le coefficient de contraction thermique du premier module isolant selon la direction d'épaisseur de la paroi de cuve est compris entre le coefficient de contraction thermique selon ladite direction d'épaisseur des modules isolants de la barrière thermiquement isolante secondaire de la première zone et le coefficient de contraction thermique selon ladite direction d'épaisseur des modules isolants de la barrière thermiquement isolante secondaire de la deuxième zone inclus.
Selon un mode de réalisation, le module d'élasticité du premier module isolant selon la direction d'épaisseur de la paroi de cuve est compris entre le module d'élasticité selon ladite direction d'épaisseur des modules isolants de la barrière thermiquement isolante secondaire de la première zone et le module d'élasticité selon ladite direction d'épaisseur des modules isolants de la barrière thermiquement isolante secondaire de la deuxième zone inclus.
Selon un mode de réalisation, le coefficient de contraction thermique du premier module isolant selon ladite direction d'épaisseur est égal au coefficient de contraction thermique selon ladite direction d'épaisseur des modules isolants de la première zone.
Selon un mode de réalisation, le module d'élasticité du premier module isolant selon ladite direction d'épaisseur est égal au module d'élasticité selon ladite direction d'épaisseur des modules isolants de la première zone.
Selon un mode de réalisation, le coefficient de contraction thermique selon ladite direction d'épaisseur du premier module isolant est supérieur au coefficient de contraction thermique selon ladite direction d'épaisseur des modules isolants de la première zone.
Selon un mode de réalisation, le module d'élasticité selon ladite direction d'épaisseur du premier module isolant est inférieur au module d'élasticité selon ladite direction d'épaisseur des modules isolants de la première zone.
Selon un mode de réalisation, le coefficient de contraction thermique du deuxième module isolant selon la direction d'épaisseur de la paroi de cuve est compris entre le coefficient de contraction thermique selon ladite direction d'épaisseur des modules isolants de la barrière thermiquement isolante primaire de la première zone et le coefficient de contraction thermique selon ladite direction d'épaisseur des modules isolants de la barrière thermiquement isolante primaire de la deuxième zone inclus. Selon un mode de réalisation, le module d'élasticité du deuxième module isolant selon la direction d'épaisseur de la paroi de cuve est compris entre le module d'élasticité selon ladite direction d'épaisseur des modules isolants de la barrière thermiquement isolante primaire de la première zone et le module d'élasticité selon ladite direction d'épaisseur des modules isolants de la barrière thermiquement isolante primaire de la deuxième zone inclus.
Selon un mode de réalisation, le coefficient de contraction thermique du deuxième module isolant selon ladite direction d'épaisseur est égal au coefficient de contraction thermique selon ladite direction d'épaisseur des modules isolants de la deuxième zone.
Selon un mode de réalisation, le module d'élasticité du deuxième module isolant selon ladite direction d'épaisseur est égal au module d'élasticité selon ladite direction d'épaisseur des modules isolants de la deuxième zone.
Selon un mode de réalisation, le coefficient de contraction thermique selon ladite direction d'épaisseur du deuxième module isolant est inférieur au coefficient de contraction thermique selon ladite direction d'épaisseur des modules isolants de la deuxième zone.
Selon un mode de réalisation, le module d'élasticité selon ladite direction d'épaisseur du deuxième module isolant est supérieur au module d'élasticité selon ladite direction d'épaisseur des modules isolants de la deuxième zone.
Selon un mode de réalisation, le coefficient de contraction thermique selon la direction d'épaisseur de la paroi de cuve du premier module isolant est inférieur au coefficient de contraction thermique selon ladite direction d'épaisseur du deuxième module isolant.
Selon un mode de réalisation, le module d'élasticité selon la direction d'épaisseur de la paroi de cuve du premier module isolant est supérieur au module d'élasticité selon ladite direction d'épaisseur du deuxième module isolant.
Selon un mode de réalisation :
l'un parmi le premier module isolant et le deuxième module isolant comporte des entretoises se développant selon une direction d'épaisseur de la paroi de cuve entre le panneau de couvercle et le panneau de fond dudit module isolant, lesdites entretoises étant distribuées sur la surface du panneau de fond et du panneau de couvercle de sorte que le panneau de fond et le panneau de couvercle dudit module isolant sont maintenus à distance l'un de l'autre par lesdites entretoises, et
- l'autre parmi le premier module isolant et le deuxième module isolant comporte une mousse isolante structurelle intercalée entre le panneau de couvercle et le panneau de fond sur la surface du panneau de couvercle et du panneau de fond de sorte que le panneau de couvercle dudit autre module isolant est maintenu à distance du panneau de fond dudit autre module isolant par ladite mousse isolante structurelle.
Grâce à ces caractéristiques, les modules isolants de la zone de transition présentent des structures analogues aux modules isolants des première et deuxième zones. Ainsi, les modules isolants de la zone de transition sont simples à fabriquer et ne nécessitent pas l'utilisation de modules isolants ayant une structure distincte de ceux des autres zones de la paroi de cuve. Les modules isolants utilisés pour fabriquer la paroi de cuve peuvent ainsi être standardisés pour les différentes zones de la paroi de cuve.
Selon un mode de réalisation, le premier module isolant est identique aux modules isolants de la deuxième zone, par exemple identique aux modules isolants de la barrière thermiquement isolante primaire ou de la barrière thermiquement isolante secondaire de la deuxième zone de la paroi de cuve.
Selon un mode de réalisation, le deuxième module est identique aux modules isolants de la première zone, par exemple identique aux modules isolants de la barrière thermiquement isolante primaire ou de la barrière thermiquement isolante secondaire de la première zone de la paroi de cuve.
Selon un mode de réalisation, ledit autre parmi le premier module isolant et le deuxième module isolant se développe conjointement dans la zone de transition et dans la deuxième zone de la paroi de cuve.
Selon un mode de réalisation, ledit autre parmi le premier module isolant et le deuxième module isolant est un module isolant de la barrière thermiquement isolante primaire. Autrement dit, ledit autre parmi le premier module isolant et le deuxième module isolant est le deuxième module isolant. Selon un mode de réalisation, ledit un parmi le premier module isolant et le deuxième module isolant se développe conjointement dans la zone de transition et dans la première zone de la paroi de cuve.
Selon un mode de réalisation, ledit un parmi le premier module isolant et le deuxième module isolant est un module isolant de la barrière thermiquement isolante secondaire. Autrement dit, ledit un parmi le premier module isolant et le deuxième module isolant est le premier module isolant.
Selon un mode de réalisation, la valeur dudit au moins un paramètre de l'autre parmi le premier module isolant et le deuxième module isolant est inférieure à la valeur dudit au moins un paramètre de l'un parmi le premier module isolant et le deuxième module isolant.
Selon un mode de réalisation, la première zone correspond à une zone d'angle de la cuve comprenant un anneau de raccordement, et la zone transition est directement adjacente à l'anneau de raccordement, et dans laquelle le deuxième module isolant comporte une mousse isolante structurelle intercalée entre le panneau de couvercle et le panneau de fond sur la surface du panneau de couvercle et du panneau de fond de sorte que le panneau de couvercle dudit autre module isolant est maintenu à distance du panneau de fond dudit autre module isolant par ladite mousse isolante structurelle.
Selon un mode de réalisation, le premier module isolant comporte des entretoises se développant selon une direction d'épaisseur de la paroi de cuve entre le panneau de couvercle et le panneau de fond dudit module isolant, lesdites entretoises étant distribuées sur la surface du panneau de fond et du panneau de couvercle de sorte que le panneau de fond et le panneau de couvercle dudit module isolant sont maintenus à distance l'un de l'autre par lesdites entretoises.
Selon un mode de réalisation, les modules isolants de la zone de transition comportent :
- un troisième module isolant agencé dans la barrière thermiquement isolante secondaire, le troisième module isolant étant plus proche de la deuxième zone que le premier module isolant et présentant une troisième valeur dudit au moins un paramètre selon la direction d'épaisseur de la paroi de cuve,
- un quatrième module isolant agencé dans la barrière thermiquement isolante primaire, le quatrième module isolant étant plus proche de la deuxième zone que le deuxième module isolant et présentant une quatrième valeur dudit au moins un paramètre selon la direction d'épaisseur de la paroi de cuve,
et dans laquelle la troisième valeur dudit au moins un paramètre du troisième module isolant est comprise entre la première valeur dudit au moins un paramètre du premier module isolant et la deuxième valeur dudit au moins un paramètre du deuxième module isolant.
Selon un mode de réalisation, le troisième module isolant est un module mixte comportant un panneau intermédiaire agencé entre le panneau de fond et le panneau de couvercle, la garniture isolante comportant une garniture inférieure agencée entre le panneau intermédiaire et le panneau de fond et une garniture supérieure agencée entre le panneau intermédiaire et le panneau de couvercle, le module mixe ayant un coefficient de dilatation thermique compris entre le coefficient de dilatation thermique d'un module isolant de la première zone et le coefficient de dilatation thermique d'un module isolant de la deuxième zone.
Selon un mode de réalisation, le quatrième module isolant est identique au deuxième module isolant, de sorte que la quatrième valeur dudit au moins un paramètre est égale à la deuxième valeur dudit au moins un paramètre.
Selon un mode de réalisation, les modules isolants de la zone de transition comportent un troisième module isolant (agencé dans la barrière thermiquement isolante secondaire, le troisième module isolant étant plus proche de la deuxième zone que le premier module isolant et présentant une troisième valeur dudit au moins un paramètre selon la direction d'épaisseur de la paroi de cuve, et dans laquelle le deuxième module isolant s'étend sur toute la longueur de la zone de transition dans barrière thermiquement isolante primaire, la troisième valeur dudit au moins un paramètre du troisième module isolant étant comprise entre la première valeur dudit au moins un paramètre du premier module isolant et la deuxième valeur dudit au moins un paramètre du deuxième module isolant.
Selon un mode de réalisation, la zone de transition présente un coefficient de contraction thermique selon la direction d'épaisseur de la paroi de cuve augmentant dans la direction de longueur de la paroi de cuve depuis la première zone en direction de la deuxième zone de la paroi de cuve.
Selon un mode de réalisation, la zone de transition présente un module d'élasticité selon la direction d'épaisseur de la paroi de cuve diminuant dans la direction de longueur de la paroi de cuve depuis la première zone en direction de la deuxième zone de la paroi de cuve.
Selon un mode de réalisation, la barrière thermiquement isolante primaire et la barrière thermiquement isolante secondaire comportent une pluralité de modules isolants dans la zone de transition.
Selon un mode de réalisation, les modules isolants de la barrière thermiquement isolante primaire et/ou de la barrière thermiquement isolante secondaire situés dans la zone de transition présentent des coefficients de contraction thermique selon la direction d'épaisseur de la paroi de cuve distincts.
Selon un mode de réalisation, les modules isolants de la barrière thermiquement isolante primaire et/ou de la barrière thermiquement isolante secondaire situés dans la zone de transition présentent des modules d'élasticité selon la direction d'épaisseur de la paroi de cuve distincts.
Selon un mode de réalisation, un module isolant situé dans la zone de transition proche de la première zone présente un coefficient de contraction thermique selon ladite direction d'épaisseur inférieur au coefficient de contraction thermique selon ladite direction d'épaisseur d'un module isolant situé dans la zone de transition dans la même barrière thermiquement isolante et plus éloigné de la première zone.
Selon un mode de réalisation, un module isolant situé dans la zone de transition proche de la première zone présente un module d'élasticité selon ladite direction d'épaisseur supérieur au module d'élasticité selon ladite direction d'épaisseur d'un module isolant situé dans la zone de transition dans la même barrière thermiquement isolante et plus éloigné de la première zone.
Grâce à ces caractéristiques, la zone de transition subdivise en une pluralité de petites marches l'écart généré par la différence de comportement entre les modules isolants de la première zone et les modules isolants de la deuxième zone. Une telle subdivision permet de fournir une surface de support pour les membranes étanche présentant une planéité satisfaisante. En particulier, l'écart entre la première zone et la deuxième zone est subdivisée en une pluralité de marches de petite amplitude, de telles marches de petite amplitude ne dégradant pas les performances et la durée de vie des membranes étanches. En outre, une telle zone de transition utilisant des modules isolants distincts pour réaliser une pente douce est simple à réaliser.
Selon un mode de réalisation, le coefficient de contraction thermique selon la direction d'épaisseur de la paroi de cuve dans la zone de transition augmente de façon continûment progressive depuis la première zone en direction de la deuxième zone.
Selon un mode de réalisation, le module d'élasticité selon la direction d'épaisseur de la paroi de cuve dans la zone de transition diminue de façon continûment progressive depuis la première zone en direction de la deuxième zone.
Selon un mode de réalisation, un module isolant de la zone de transition comporte une mousse isolante structurelle intercalée entre le panneau de couvercle et le panneau de fond sur la surface du panneau de couvercle et du panneau de fond dudit module isolant de sorte que le panneau de couvercle dudit module isolant est maintenu à distance du panneau de fond dudit module isolant par ladite mousse isolante structurelle, ladite mousse isolante structurelle présentant un coefficient de contraction thermique selon la direction d'épaisseur de la paroi de cuve plus faible que le coefficient de contraction thermique selon ladite direction d'épaisseur de la mousse isolante structurelle de la deuxième zone.
Selon un mode de réalisation, la mousse isolante structurelle dudit module isolant de la zone de transition comporte une première portion de mousse isolante structurelle et une deuxième portion de mousse isolante structurelle, la première portion de mousse isolante structurelle étant plus proche de la première zone que la deuxième portion de mousse structurelle, la première portion de mousse isolante structurelle présentant un coefficient de contraction thermique selon la direction d'épaisseur de la cuve inférieur au coefficient de contraction thermique de la deuxième portion de mousse isolante structurelle selon ladite direction d'épaisseur.
Selon un mode de réalisation, un module isolant de la zone de transition comporte une mousse isolante structurelle intercalée entre le panneau de couvercle et le panneau de fond sur la surface du panneau de couvercle et du panneau de fond dudit module isolant de sorte que le panneau de couvercle dudit module isolant est maintenu à distance du panneau de fond dudit module isolant par ladite mousse isolante structurelle, ladite mousse isolante structurelle présentant un module d'élasticité selon la direction d'épaisseur de la paroi de cuve plus important que le module d'élasticité selon ladite direction d'épaisseur de la mousse isolante structurelle de la deuxième zone.
Selon un mode de réalisation, la mousse isolante structurelle dudit module isolant de la zone de transition comporte une première portion de mousse isolante structurelle et une deuxième portion de mousse isolante structurelle, la première portion de mousse isolante structurelle étant plus proche de la première zone que la deuxième portion de mousse structurelle, la première portion de mousse isolante structurelle présentant un module d'élasticité selon la direction d'épaisseur de la cuve supérieur au module d'élasticité de la deuxième portion de mousse isolante structurelle selon ladite direction d'épaisseur.
Un tel module est simple à réaliser car il utilise des matériaux de même nature pour générer un changement progressif du coefficient de contraction thermique et/ou du module d'élasticité selon la direction d'épaisseur de la paroi de cuve.
Selon un mode de réalisation, la mousse isolante structurelle dudit module est une mousse de polyuréthane renforcée de fibre, la première portion de mousse isolante structurelle présentant une orientation des fibres selon une direction d'épaisseur de la paroi de cuve et la deuxième portion de mousse isolante structurelle présentant une orientation des fibres perpendiculaire à la direction d'épaisseur de la paroi de cuve.
Selon un mode de réalisation, l'épaisseur de la première portion diminue progressivement depuis la première zone en direction de la deuxième zone et l'épaisseur de la deuxième portion augmente progressivement depuis la première zone en direction de la deuxième zone.
Selon un mode de réalisation, les modules isolants de la zone de transition comportent un module mixte comportant un panneau intermédiaire agencé entre le panneau de fond et le panneau de couvercle, la garniture isolante comportant une garniture inférieure agencée entre le panneau intermédiaire et le panneau de fond et une garniture supérieure agencée entre le panneau intermédiaire et le panneau de couvercle.
Selon un mode de réalisation, le premier module isolant est un module mixte. Selon un mode de réalisation, le module mixte comporte des entretoises porteuses se développant selon une direction d'épaisseur de la paroi de cuve entre le panneau intermédiaire et l'un parmi le panneau de fond et le panneau de couvercle, lesdites entretoises étant distribuées sur la surface du panneau intermédiaire et dudit un parmi le panneau de fond et le panneau de couvercle de sorte que le panneau intermédiaire et ledit un parmi le panneau de fond et le panneau de couvercle sont maintenus à distance l'un de l'autre par lesdites entretoises porteuses,
Selon un mode de réalisation, la garniture isolante agencée entre le panneau intermédiaire et l'autre parmi le panneau de fond et le panneau de couvercle comporte une mousse isolante structurelle distribuée sur la surface du panneau intermédiaire et dudit autre parmi le panneau de fond et le panneau de couvercle de sorte que le panneau intermédiaire et ledit autre parmi le panneau de fond et le panneau de couvercle sont maintenus à distance par ladite mousse isolante structurelle.
Selon un mode de réalisation, le panneau intermédiaire se développe dans un plan incliné par rapport au panneau de fond et au panneau de couvercle. Ainsi, le coefficient de contraction thermique du module mixte augmente progressivement dans la direction de longueur de la paroi de cuve depuis la première zone de la paroi de cuve en direction de la deuxième zone de la paroi de cuve et/ou le module d'élasticité du module mixte diminue progressivement dans la direction de longueur de la paroi de cuve depuis la première zone de la paroi de cuve en direction de la deuxième zone de la paroi de cuve.
Ainsi, le module mixte présente un coefficient de contraction thermique selon la direction d'épaisseur de la paroi de cuve augmentant progressivement depuis la première zone en direction de la deuxième zone de la paroi de cuve et/ou un module d'élasticité selon la direction d'épaisseur de la paroi de cuve diminuant progressivement depuis la première zone en direction de la deuxième zone de la paroi de cuve .
Selon un mode de réalisation, le panneau intermédiaire est distant d'un bord du module mixte situé proche de l'une parmi la première zone et la deuxième zone. Selon un mode de réalisation, le panneau intermédiaire est distant de l'un parmi le panneau de fond et le panneau de couvercle du module mixte.
Selon un mode de réalisation, les membranes étanches primaires et secondaires sont essentiellement constituées de bandes métalliques s'étendant dans la direction de longueur et présentant des bords longitudinaux relevées, les bords relevés de deux bandes métalliques adjacentes étant soudés deux à deux de manière à former de soufflets de dilatation autorisant une déformation de la membrane étanche dans une direction perpendiculaire à la direction de longueur. Selon un mode de réalisation, les membranes d'étanchéité primaire et/ou secondaire comporte des plaques métalliques ondulées.
Selon un mode de réalisation, l'angle de la cuve comporte une aile d'ancrage primaire et une aile d'ancrage secondaire, une première extrémité desdites ailes d'ancrage étant ancrée à la structure porteuse et une deuxième extrémité desdites ailes d'ancrage étant soudée de manière étanche à la membrane d'étanchéité correspondante.
Selon un mode de réalisation, la membrane d'étanchéité primaire comporte des ondulations s'étendant perpendiculairement aux bords relevés et disposées au droit de la première zone.
Selon un mode de réalisation, la membrane étanche secondaire est essentiellement constituée de bandes métalliques s'étendant dans la direction de longueur et présentant des bords longitudinaux relevées, les bords relevés de deux bandes métalliques adjacentes étant soudés deux à deux de manière à former de soufflets de dilatation autorisant une déformation de la membrane étanche dans une direction perpendiculaire à la direction de longueur, dans laquelle l'angle de la cuve comporte une aile d'ancrage secondaire, une première extrémité de ladite aile d'ancrage étant ancrée à la structure porteuse et une deuxième extrémité de ladite aile d'ancrage étant soudée de manière étanche à la membrane d'étanchéité secondaire, et dans laquelle la membrane étanche primaire comporte des plaques métalliques ondulées.
Une telle cuve peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres.
Selon un mode de réalisation, l'invention fournit également un navire pour le transport d'un produit liquide froid comportant une double coque et une cuve précitée disposée dans la double coque.
Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Selon un mode de réalisation, l'invention fournit également un module isolant comportant un panneau de couvercle, un panneau de fond et une garniture isolante intercalée entre le panneau de fond et le panneau de couvercle, ledit module isolant comportant en outre un panneau intermédiaire agencé entre le panneau de fond et le panneau de couvercle et séparant le module isolant en une partie supérieure et une partie inférieure, la garniture isolante comportant une garniture inférieure agencée entre le panneau intermédiaire et le panneau de fond et une garniture supérieure agencée entre le panneau intermédiaire et le panneau de couvercle, ledit module isolant présentant au moins un paramètre choisi parmi le coefficient de contraction thermique et le module d'élasticité dans la direction d'épaisseur de la paroi de cuve dont la valeur est distincte entre la partie supérieure du module isolant et la partie inférieure du module isolant.
Selon un mode de réalisation, ledit module isolant comporte des entretoises porteuses se développant selon une direction d'épaisseur de la paroi de cuve entre le panneau intermédiaire et au moins l'un parmi le panneau de fond et le panneau de couvercle, lesdites entretoises étant distribuées sur la surface du panneau intermédiaire et dudit au moins un parmi le panneau de fond et le panneau de couvercle de sorte que le panneau intermédiaire et ledit au moins un parmi le panneau de fond et le panneau de couvercle soient maintenus à distance l'un de l'autre par lesdites entretoises porteuses,
Selon un mode de réalisation, la garniture isolante agencée entre le panneau intermédiaire et au moins l'un parmi le panneau de fond et le panneau de couvercle comportant une mousse isolante structurelle distribuée sur la surface du panneau intermédiaire et dudit au moins un parmi le panneau de fond et le panneau de couvercle de sorte que le panneau intermédiaire et ledit au moins un parmi le panneau de fond et le panneau de couvercle sont maintenus à distance par ladite mousse isolante structurelle.
Selon un mode de réalisation, le panneau intermédiaire se développe dans un plan incliné par rapport au panneau de fond et au panneau de couvercle.
Selon un mode de réalisation, l'une parmi la garniture supérieure et la garniture inférieure est une mousse de polyuréthane renforcée de fibre présentant une orientation des fibres selon une direction d'épaisseur de la paroi de cuve et l'autre parmi la garniture inférieure et la garniture supérieure est une mousse de polyuréthane renforcée de fibre présentant une orientation des fibres perpendiculaire à la direction d'épaisseur de la paroi de cuve.
Selon un mode de réalisation, le panneau intermédiaire incliné est distant d'un bord du module isolant de sorte que la garniture inférieure ou la garniture supérieure forme toute l'épaisseur de la garniture isolante du module isolant au niveau dudit bord. Ce mode de réalisation permet de réaliser ledit bord avec une résistance importante en évitant la présence d'une couche de garniture inférieure ou de garniture supérieure de faible épaisseur et pouvant se dégrader.
Selon un mode de réalisation, le côté du panneau intermédiaire incliné le plus proche du panneau de fond est distant du panneau de fond. Ainsi, la garniture isolante est constituée par la seule garniture inférieure au niveau du panneau de fond, offrant ainsi une structure uniforme offrant avantageusement une bonne résistance mécanique par exemple pour la fixation d'un élément d'un organe d'ancrage sur le panneau de fond du module isolant.
Brève description des figures
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
• La figure 1 est une représentation très schématique d'une paroi de cuve étanche et thermiquement isolante comportant deux zones structurellement distinctes dans deux états distincts de chargement de la cuve, à vide à température ambiante de 20°C et remplie de GNL à -163°C ;
• La figure 2 est une représentation schématique d'une paroi de cuve étanche et thermiquement isolante selon un mode de réalisation de l'invention comportant deux zones structurellement distinctes entre lesquelles est agencée une zone de transition dans deux états de chargement de la cuve, à vide à température ambiante de 20°C et remplie de GNL à -163°C ;
• La figure 3 est une représentation schématique d'une paroi de cuve étanche et thermiquement isolante selon un premier mode de réalisation de l'invention ;
• La figure 4 est une représentation schématique d'une paroi de cuve étanche et thermiquement isolante selon un deuxième mode de réalisation de l'invention ;
· La figure 5 est une représentation détaillée de la paroi de cuve étanche et thermiquement isolante selon le deuxième mode de réalisation ;
• Les figures 6 à 8 sont des représentations schématiques de parois de cuves étanches et thermiquement isolantes selon des variantes de réalisation d'un troisième mode de réalisation de l'invention ;
• La figure 9 est une représentation schématique d'une paroi de cuve étanche et thermiquement isolante selon un quatrième mode de réalisation de l'invention ;
• La figure 10 est une représentation détaillée de la paroi de cuve étanche et thermiquement isolante selon le quatrième mode de réalisation ; • Les figures 1 1 et 12 sont des représentations schématiques de de parois de cuves étanches et thermiquement isolantes selon des variantes de réalisation d'un cinquième mode de réalisation de l'invention ; « La figure 13 est une représentation détaillée de la paroi de cuve étanche et thermiquement isolante selon le cinquième mode de réalisation ;
• La figure 14 est une illustration d'un module isolant de la zone de transition de la figure 13 ; « La figure 15 est une représentation schématique d'une paroi de cuve étanche et thermiquement isolante selon un sixième mode de réalisation de l'invention ;
• La figure 16 est une représentation détaillée de la paroi de cuve étanche et thermiquement isolante selon le sixième mode de réalisation ;
• La figure 17 est une illustration d'un module isolant de la zone de transition de la figure 16 ;
• La figure 18 est une représentation schématique d'une paroi transversale de cuve étanche et thermiquement isolante comportant une première zone, une zone de transition et une deuxième zone selon l'invention ;
• La figure 19 est une représentation schématique écorchée d'une cuve de navire méthanier et d'un terminal de chargement/déchargement de cette cuve. · La figure 20 est une représentation détaillée de la paroi de cuve étanche et thermiquement isolante selon un septième mode de réalisation.
Description détaillée de modes de réalisation
En référence à la figure 1 , on va décrire une paroi de cuve étanche et thermiquement isolante selon un mode de réalisation utile à la compréhension de l'invention. Une cuve étanche et thermiquement isolante pour le transport de GNL comporte une pluralité de parois de cuve délimitant un espace interne destiné au stockage du GNL. Chaque paroi de cuve comporte, depuis l'extérieur vers l'intérieur de la cuve, une barrière d'isolation thermique secondaire 1 , une membrane d'étanchéité secondaire 2, une barrière d'isolation thermique primaire 3 et une membrane d'étanchéité primaire 4 destinée à être en contact avec un fluide cryogénique contenu dans la cuve.
La barrière d'isolation thermique secondaire 1 , ci-après barrière isolante secondaire 1 , comporte des blocs isolants secondaires 5. Ces blocs isolants secondaires 5 sont juxtaposés et ancrés à une structure porteuse 6 par des organes de retenue secondaires, par exemple des goujons ou des coupleurs soudés à la structure porteuse 6. Ces blocs isolants secondaires 5 forment une surface de support secondaire sur laquelle est retenue la membrane d'étanchéité secondaire 2.
De même, la barrière thermiquement isolante primaire 3, ci-après barrière isolante primaire 3, comporte des blocs isolants primaires 7. Ces blocs isolants primaires 7 sont juxtaposés et retenus sur la membrane d'étanchéité secondaire 2 par des organes de retenue primaires. Ces blocs isolants primaires 7 forment une surface de support primaire sur laquelle est retenue la membrane d'étanchéité primaire 4.
La structure porteuse 6 peut notamment être une tôle métallique autoporteuse ou, plus généralement, tout type de cloison rigide présentant des propriétés mécaniques appropriées. La structure porteuse 6 peut notamment être formée par la coque ou la double coque d'un navire. La structure porteuse 6 comporte une pluralité de parois définissant la forme générale de la cuve, habituellement une forme polyédrique.
Les blocs isolants secondaires 5 et primaires 7 présentent sensiblement une forme de parallélépipède rectangle. Ces blocs isolants secondaires 5 et primaires 7 comportent chacun une couche de garniture isolante 8 intercalée entre une plaque de fond 9 et une plaque de couvercle 10.
La figure 1 illustre le comportement de deux zones d'une paroi de cuve comportant des blocs isolant 5, 7 ayant des structures différentes. Sur cette figure 1 , une première zone 1 1 et une deuxième zone 12 de la paroi de cuve étanche et thermiquement isolante sont représentées schématiquement. La première zone 1 1 de la paroi de cuve illustrée sur la partie droite de la figure 1 représente une zone de la paroi de cuve soumise à de fortes contraintes dans la cuve. La deuxième zone 12 de la paroi de cuve illustrée sur la partie gauche de la figure 1 représente une zone de la paroi de cuve soumise à des contraintes moindres dans la cuve.
Dans la suite de la description, la première zone 1 1 comporte des blocs isolants 5, 7 présentant une bonne résistance aux contraintes et la deuxième zone 12 comporte des blocs isolants 5, 7 présentant une résistance aux contraintes moindre mais de meilleures propriétés d'isolation thermique.
Les blocs isolants 5, 7 de la première zone 1 1 comportent des entretoises se développant selon la direction d'épaisseur de la paroi de cuve entre la plaque de couvercle 10 et la plaque de fond 9 desdits blocs isolants 5, 7. Ces entretoises sont distribuées sur la surface de la plaque de couvercle 10 et de la plaque de fond 9 de sorte que la plaque de fond 9 et la plaque de couvercle 10 desdits blocs isolants 5, 7 sont maintenues à distance l'une de l'autre par lesdites entretoises. De préférence, ces entretoises sont distribuées sur toute la surface de la plaque de couvercle 10 et de la plaque de fond 9. Du fait de la présence des entretoises et de leur répartition de façon distribuée entre la plaque de fond 9 et la plaque de couvercle 10, la résistance mécanique selon la direction d'épaisseur des blocs isolants 5, 7 de la première zone est principalement déterminée par les entretoises. Sur le même principe le comportement des blocs isolants 5, 7 de la première zone dans la direction d'épaisseur est principalement déterminé par le coefficient de contraction thermique des entretoises qui est de l'ordre 4 à 10.10"6 K"1 lorsque ces dernières sont en contreplaqué. Autrement dit, la garniture isolante 8 ne participe pas ou peu au maintien à distance des plaques de fond et de couvercle. Une telle garniture isolante 8 est par exemple de la laine de verre, de la perlite, ou encore de la mousse polymère basse densité, par exemple présentant une densité comprise entre 30 et 40 Kg/m3.
De tels blocs isolants 5, 7 de la première zone 1 1 peuvent être réalisés de nombreuses manières. En particulier, les entretoises peuvent prendre de nombreuses formes comme par exemple la forme de plaque d'entretoises, de piliers porteurs, de côtés latéraux des blocs isolants 5, 7 etc. Par exemples, les blocs isolants 5, 7 de la première zone peuvent être réalisés sous la forme de caissons comportant des bords latéraux et des plaques d'entretoises porteuses entre les plaques de fond 9 et de couvercle 10. La garniture isolante 8 de tels blocs est logée dans des espaces internes délimités par les bords latéraux et les entretoises porteuses entre la plaque de fond et la plaque de couvercle. Les documents FR2798358, FR2867831 , FR2877639 et FR2683786 décrivent des modes de réalisation de tels blocs isolants 5, 7 de la première zone sous la forme de caissons.
De même, les blocs isolants 5, 7 de la première zone peuvent comporter des piliers porteurs, la plaque de fond 9 et la plaque de couvercle 10 étant maintenues à distance par ces piliers porteurs se développant selon la direction d'épaisseur desdits blocs isolants. De tels piliers porteurs sont répartis de façon distribuée entre la plaque de fond 9 et la plaque de couvercle 10 afin d'assurer de façon uniforme l'écartement entre les plaques de fond et de couvercle. Des modes de réalisation de tels blocs comportant des piliers porteurs sont par exemple décrits dans les documents WO2016097578, FR2877638 et WO2013017773.
Les blocs isolants 5, 7 de la deuxième zone 12 comportent une garniture isolante 8 sous forme de mousse isolante structurelle intercalée entre la plaque de couvercle 10 et la plaque de fond 9 sur la surface de la plaque de couvercle 10 et de la plaque de fond 9. De préférence, cette mousse isolante structurelle est intercalée entre la plaque de couvercle 10 et la plaque de fond 9 sur sensiblement toute la surface de la plaque de couvercle 10 et de la plaque de fond 9 Ainsi, la plaque de couvercle 10 desdits blocs isolants 5, 7 de la deuxième zone 12 est maintenue à distance de la plaque de fond 9 par ladite mousse isolante structurelle. Une telle mousse isolante structurelle présente, dans le sens de l'épaisseur de la paroi de la cuve, un coefficient de contraction thermique plus élevé que le coefficient de contraction thermique des entretoises dans ledit sens de l'épaisseur de la paroi de la cuve. De même, une telle mousse isolante structurelle présente, dans le sens de l'épaisseur de la paroi de la cuve, un module d'élasticité plus faible que le module d'élasticité des entretoises dans ledit sens de l'épaisseur de la paroi de la cuve.
Une telle mousse isolante structurelle peut prendre de nombreuses formes, cette mousse isolante structurelle ayant pour fonction, en plus de sa fonction d'isolation thermique, de maintenir à distance les plaques de fond 9 et de couvercle 10. Ainsi, la résistance mécanique selon la direction d'épaisseur des blocs isolants 5, 7 de la deuxième zone 12 est principalement déterminée par les caractéristiques de la mousse isolante structurelle. Des blocs isolants 5, 7 comportant une telle mousse isolante structurelle peuvent prendre de nombreuses formes.
Par exemple, de tels blocs 5, 7 de la deuxième zone peuvent comporter une mousse de polyuréthane structurellement apte à maintenir à distance la plaque de fond et la plaque de couvercle. La mousse isolante structurelle est par exemple une mousse de polyuréthane renforcée par de la fibre de verre ou d'aramide présentant une densité de 120 à 140 Kg/m3. La mousse isolante structurelle peut également être une mousse de polyuréthane renforcée à haute densité présentant une densité supérieure ou égale à 170 Kg/m3, de préférence égale à 210 Kg/m3. De tels blocs isolants 5, 7 sont par exemple décrits dans le document FR28131 1 1. De même, les documents WO2013124556 et WO2013017781 décrivent des blocs isolants 5, 7 comportant une couche de mousse isolante structurelle intercalée entre et maintenant à distance une plaque de fond et une plaque de couvercle.
Les blocs isolants 5, 7 de la deuxième zone 12 peuvent présenter des zones de renforcements ponctuels. Cependant, à l'exception de ces zones de renforcement ponctuel, les plaques de fond et de couvercle des blocs isolants de ces documents sont maintenues à distance principalement par la mousse isolante structurelle. Par exemple, les blocs isolants 5, 7 de la deuxième zone 12 peuvent comporter des piliers d'angle permettant de renforcer les zones d'ancrage du bloc isolant 5, 7. Cependant, ces piliers d'angle constituent des zones singulières ponctuelles, la plaque de fond 9 et la plaque de couvercle 10 étant principalement maintenues à distance par la mousse isolante structurelle. Le document WO2013017781 décrit un exemple de réalisation de tels blocs isolants 5, 7 de la deuxième zone 12 comportant des piliers d'angles.
Les documents indiqués ci-dessus donnent également d'autres détails sur la fabrication de cuves étanches et thermiquement isolantes, notamment sur les membranes d'étanchéité secondaire 2 et primaire 4, les organes d'ancrage des barrières isolantes 1 , 3. D'autres exemples de réalisation possibles des membranes d'étanchéité, à base de tôles métalliques ondulées, sont également décrits dans le document WO2016/046487, le document WO2013004943 ou encore le document WO2014057221. Les blocs isolants 5, 7 de la première zone 1 1 présentent de bonnes caractéristiques de résistance aux contraintes du fait des entretoises. Cependant, ces entretoises forment également des endroits de plus grande conductivité thermique entre la plaque de fond 9 et la plaque de couvercle 10.
Inversement, les blocs isolants 5, 7 de la deuxième zone 12 présentent de bonnes propriétés d'isolation thermique, meilleures que celles de la première zone 1 1. Cependant, ces blocs isolants 5, 7 de la deuxième zone 12 présentent une résistance aux contraintes moindre que celle des blocs isolants 5, 7 de la première zone 1 .
De préférence, la première zone 1 1 est adjacente à un angle de la cuve et la deuxième zone 12 est disposée dans la partie centrale de la paroi. En effet, les blocs isolants dans la cuve sont soumis à des contraintes différentes selon leur localisation. En particulier, les blocs isolants agencés dans les zones d'angles de la cuve, à savoir la première zone 1 1 , sont généralement soumis à de plus forte contraintes que les blocs isolants localisés dans les zones planes de la cuve, à savoir la deuxième zone 12.
Dans un mode de réalisation non représenté, la première zone 1 1 peut être adjacente à une portion de la paroi de cuve où les membranes d'étanchéité doivent être interrompues, par exemple une portion de la paroi de cuve traversée par une canalisation, notamment une canalisation d'un dôme gaz, une portion de la paroi de cuve traversée par un pied de support, par exemple pour une pompe, ou une portion de la paroi de cuve à l'extrémité d'un dôme liquide. Des portions de paroi de cuve traversées par une canalisation ou un pied de support pour une pompe sont par exemple décrites dans le document WO2014128381. En effet, dans ces zones spécifiques de la cuve, les blocs isolants peuvent également être soumis à de fortes contraintes.
Grâce à la disposition de la figure 1 , on a adapté le type de blocs isolants aux zones de la cuve dans lesquelles lesdits blocs isolants sont agencés, et plus particulièrement aux contraintes que lesdits blocs isolants doivent subir dans ces zones. Un tel agencement des blocs isolants dans la cuve permet d'obtenir une cuve optimisée tant d'un point de vue isolation thermique que d'un point de vue résistance aux contraintes. Cependant, l'utilisation de blocs isolants ayant des structures et matériaux différents entraîne des différences opérationnelles de fonctionnement desdits blocs isolants, en particulier en compression, en fluage, en écart dimensionnelle dans l'épaisseur des blocs isolants, sous l'effet des changements thermique, de la pression hydrostatique et hydrodynamique dans la cuve etc.
La partie supérieure de la figure 1 illustre ces deux zones 1 1 , 12 dans le cadre d'une cuve vide à température ambiante, par exemple 20°C. La partie inférieure de la figure 1 illustre ces deux zones 1 1 , 12 dans le cadre d'une cuve pleine de GNL à -163°C.
La première zone 1 1 et la deuxième zone 12 présentent une épaisseur identique à température ambiante afin de fournir une surface de support plane pour les membranes d'étanchéité 2, 4.
Dans la suite de la description, l'expression coefficient de contraction thermique est utilisée en référence au coefficient de contraction thermique d'un élément selon la direction d'épaisseur de la paroi de cuve.
Du fait de la structure différente des blocs isolants 5, 7, la première zone 11 et la deuxième zone 12 présentent des coefficients de contraction thermique différents, des raideurs différentes, une résistance au fluage différente, etc. Autrement dit, la première zone 1 1 et la deuxième zone 12 se comportent différemment sous les chargements thermiques, cargo, sloshing etc.
En conséquence, la première zone 1 1 et la deuxième zone 12 présentent des changements d'épaisseur différents lorsque la cuve est remplie de GNL. Ainsi, si la première zone 1 1 et la deuxième zone 12 présentent une épaisseur identique lorsque la cuve est vide comme illustrée sur la partie supérieure de la figure 1 , une marche 13 selon la direction d'épaisseur de la paroi de cuve apparaît entre la première zone 1 1 et la deuxième zone 12 lorsque la cuve est remplie de GNL comme illustré sur la partie inférieure de la figure 1. Cette marche 13 est particulièrement importante au niveau de la surface de support primaire supportant la membrane d'étanchéité primaire 4 du fait que cette marche 13 est générée par le différentiel de changement d'épaisseur des deux barrières isolantes 1 et 3. Par exemple, dans le cas d'une première zone comportant des blocs isolants sous forme de caissons en contreplaqué et une deuxième zone comportant des blocs isolants en mousse structurelle, une barrière isolante primaire 3 de 230mm d'épaisseur et une barrière isolante secondaire 1 de 300mm d'épaisseur, on peut observer une marche 13 pouvant atteindre environ 8 à 12mm principalement sous les effets conjoints du sloshing et de la contraction thermique pour deux tiers et minoritairement sous l'effet combiné de la pression cargo et du fluage.
Or, les membranes d'étanchéité 2, 4 ont un fonctionnement optimal dans une géométrie plane et peuvent présenter des fragilités sous des marches excessives. C'est pourquoi les barrières thermiquement isolantes de l'art antérieur utilisent des blocs isolants présentant des structures similaires sur toute la surface des parois de cuve. Cette problématique est particulièrement présente dans le cadre de membranes étanches en bandes d'Invar à bords relevées, même si elle se pose également de manière moindre dans le cadre de membranes étanches à tôles métalliques ondulées.
La figure 2 est une représentation schématique illustrant le principe d'une paroi de cuve dans laquelle les barrières thermiquement isolantes 1 , 3 comportent des blocs isolants 5, 7 agencés en fonction des contraintes subies dans la cuve tout en présentant une surface de support adaptée au supportage des membranes d'étanchéité 2, 4. De nombreux modes de réalisation sont décrits plus précisément ci-après en regard des figures 3 à 17 afin de mettre en œuvre une telle paroi de cuve.
La paroi de cuve illustrée sur la figure 2 comporte de façon analogue à la paroi de cuve décrite en regard de la figure 1 une première zone 1 1 et une deuxième zone 12 comportant des blocs isolants 5, 7 ayant des structures différentes. La paroi de cuve comporte également une zone de transition 14 intercalée entre la première zone 11 et la deuxième zone 12. Cette zone de transition 14 comporte des blocs isolants 5, 7 sélectionnés pour que ladite zone de transition 14 présente un comportement en compression intermédiaire entre le comportement en compression de la première zone 1 1 et le comportement en compression de la deuxième zone 12.
Comme illustré sur la partie supérieure de la figure 2, les blocs isolants 5, 7 de la zone de transition 14 sont sélectionnés pour affleurer avec les blocs isolants 5, 7 des première et deuxième zones 1 1 , 12 lorsque la cuve est vide à température ambiante afin de fournir une surface de support plane pour les membranes d'étanchéité. Cependant, les blocs isolants 5, 7 de la zone de transition 14 sont également sélectionnés de sorte que la zone de transition 14 présente une épaisseur comprise entre l'épaisseur de la première zone 1 1 et l'épaisseur de la deuxième zone 12 lorsque la cuve est pleine de GNL comme illustré sur la partie inférieure de la figure 2.
Selon un mode de réalisation préférentiel, les blocs isolants 5, 7 de la zone de transition 14 sont sélectionnés de sorte que le coefficient de contraction thermique de la zone de transition 14 soit compris entre le coefficient de contraction thermique de la première zone 1 1 et le coefficient de contraction thermique de la deuxième zone 12.
Les blocs isolants 5, 7 de la zone de transition 14 peuvent également être sélectionnés en fonction d'autres caractéristiques. Ainsi, les blocs isolants 5, 7 de la zone de transition 14 peuvent être sélectionné en fonction de leur raideur à l'impact, par exemple pour prendre en compte les effets de ballotement du liquide contenu dans la cuve (appelé « sloshing » en anglais). Ces blocs isolants 5, 7 de la zone de transition 14 peuvent également être sélectionnés en fonction de leur raideur en compression statique pour prendre en compte la pression liée au poids du liquide contenu dans la cuve. D'autres caractéristiques telles que le module de Young en compression ou encore la résistance au fluage dans le temps peuvent également être prises en compte.
Ainsi, dans un mode de réalisation, la description faite en regard du coefficient de contraction thermique s'applique par analogie au module d'élasticité des zones de la paroi de cuve. La première zone 1 1 présente un module d'élasticité supérieur au module d'élasticité de la deuxième zone 12 et la zone de transition présente un module d'élasticité compris entre le module d'élasticité de la première zone 1 1 et le module d'élasticité de la deuxième zone 12. En outre, le module d'élasticité de la zone de transition 14 peut diminuer depuis la première zone 11 en direction de la deuxième zone 12.
En tout état de cause, les blocs isolants 5, 7 de la zone de transition sont sélectionnés de sorte que la zone de transition 14 ait un comportement en compression intermédiaire entre le comportement en compression des première et deuxième zone 1 1 , 12 et que l'épaisseur de la zone de transition 14 soit comprise entre l'épaisseur de la première zone 1 1 et l'épaisseur de la deuxième zone 12 lorsque la cuve est pleine de GNL. Une telle zone de transition 14 permet une transition douce entre la première zone 1 1 et la deuxième zone 12. En effet, grâce à la zone de transition 14, la marche 13 entre la première zone 1 1 et la deuxième zone 12 est subdivisée en une première marche 15 et une deuxième marche 16 de tailles réduites. La première marche 15 est située entre la première zone 1 1 et la zone de transition 14 et la deuxième marche 16 est située entre la zone de transition 14 et la deuxième zone 12. La paroi de cuve ne présente ainsi plus de marche 13 importante telle qu'illustrée sur la figure 1 qui pourrait dégrader les membranes d'étanchéité 2, 4 tout en présentant des zones dont la résistance et les propriétés d'isolation sont adaptées aux contraintes dans la cuve. On entend par marches 15, 16 de tailles réduites des marches de taille moins importante que la marche 13 entre la première zone 1 1 et la deuxième zone 12.
Sur les figures 3 à 18 et 20, la première zone 1 1 comporte dans la barrière isolante primaire 3 et dans la barrière isolante secondaire 1 des blocs isolants 5, 7 structurellement analogues. Sur ces figures 3 à 18 et 20, la deuxième zone 12 comporte dans la barrière isolante primaire 3 et dans la barrière isolante secondaire 1 des blocs isolants 5, 7 structurellement analogue. Pour des questions de lisibilité des figures, seuls un bloc isolant primaire 7 et un bloc isolant secondaire 5 de la première zone 1 1 et de la deuxième zone 12 sont illustrés sur les figures 3 à 17 et 20, la première zone 1 1 et la deuxième zone 12 pouvant comporter un ou une pluralité de blocs isolants primaires 7 et secondaires 5 juxtaposés selon les dimensions souhaitées desdites première zone 1 1 et deuxième zone 12.
La figure 3 illustre un premier mode de réalisation de la zone de transition 14 dans une paroi de cuve. Dans ce premier mode de réalisation, la zone de transition 14 comporte un bloc isolant secondaire 5 et un bloc isolant primaire 7 superposés. Le bloc isolant secondaire 5 de la zone de transition 14 est identique aux blocs isolants secondaire 5 de la première zone 1 1. Le bloc isolant primaire 7 de la zone de transition 14 est identique aux blocs isolants primaire 7 de la deuxième zone 12. En conséquence, le coefficient de contraction thermique de la zone de transition 14 est la somme des coefficients de contraction thermique d'un bloc isolant secondaire 5 de la première zone 1 1 et d'un bloc isolant primaire 7 de la deuxième zone. Ainsi, le coefficient de contraction thermique de la zone de transition 14 est compris entre le coefficient de contraction thermique de la première zone 1 1 et le coefficient de contraction thermique de la deuxième zone 12. Ce premier mode de réalisation présente l'avantage d'être simple à réaliser puisqu'il utilise des blocs isolants 5, 7 standardisés de la première zone 1 1 et de la deuxième zone 12 pour former la zone de transition 14. Ce premier mode de réalisation permet ainsi de subdiviser la marche 13 de la surface de support primaire en deux marches 15, 16 de tailles réduites.
Selon une variante non illustrée du premier mode de réalisation, le bloc isolant primaire 7 de la zone de transition 14 est identique aux blocs isolants primaire 7 de la première zone 1 1 et le bloc isolant secondaire 5 de la zone de transition 14 est identique aux blocs isolants secondaire 5 de la deuxième zone 12. Cette variante non illustrée permet également d'obtenir une zone de transition 14 simple à réaliser en utilisant des blocs isolants 5, 7 identiques aux blocs isolants 5, 7 de la première zone 1 1 et de la deuxième zone 12 tout en fournissant une zone de transition 14 subdivisant la marche 13 entre la première zone 1 1 et la deuxième zone 12 en des marches 15, 16 acceptables pour la membrane d'étanchéité primaire 4.
La figure 4 illustre un deuxième mode de réalisation de la zone de transition 14. Dans ce deuxième mode de réalisation, la zone de transition 14 comporte un bloc isolant secondaire 5 identique aux blocs secondaires 5 de la première zone 1 1 . Cependant, la barrière isolante primaire 3 de la zone de transition 14 est formée par un bloc isolant primaire 7 se développant conjointement dans la zone de transition 14 et dans la deuxième zone 12.
Un bloc isolant secondaire d'extrémité 17 de la deuxième zone 12 présente une structure analogue mais des dimensions inférieures aux autres blocs isolants secondaires 5 de la deuxième zone 12. Ainsi, un bloc isolant primaire d'extrémité 18 de la deuxième zone 12 reposant sur le bloc isolant secondaire d'extrémité 17 comporte une portion saillante 19 faisant saillie en direction de la première zone 1 1 au-delà du bloc isolant secondaire d'extrémité 17. Cette portion saillante 18 repose sur le bloc isolant secondaire 5 de la zone de transition 14. Autrement dit, cette portion saillante 19 forme la barrière isolante primaire 3 dans la zone de transition 14.
Dans ce deuxième mode de réalisation, la zone de transition 14 est ainsi constituée d'une part du bloc isolant secondaire 5 identique aux blocs isolants secondaires 5 de la première zone 1 1 et, d'autre part, de la portion saillante 19 du bloc isolant primaire d'extrémité 17 de la deuxième zone 12. La zone de transition 14 présente donc un coefficient de contraction thermique identique au coefficient de contraction thermique de la zone de transition 14 décrite en regard du premier mode de réalisation de la figure 3. Cependant, dans ce deuxième mode de réalisation, la barrière isolante primaire 3 ne présente pas de marche 16 entre la zone de transition 14 et la deuxième zone 12. En effet, cette marche 16 présente dans le premier mode de réalisation est avantageusement absorbée par le bloc isolant primaire d'extrémité 18 se développant conjointement dans la zone de transition 14 et dans la deuxième zone 12, celui-ci présentant une surface de support plane et inclinée entre la zone de transition 4 et la deuxième zone 12.
La figure 5 illustre une réalisation possible du deuxième mode de réalisation de la figure 4.
Sur cette figure, la première zone 1 1 est une zone d'angle de paroi de cuve. Un tel angle de cuve est décrit dans les documents FR2798358 ou WO2015007974 par exemples. Cet angle de la cuve comporte des blocs isolants 5, 7 sous forme de caissons en contreplaqué délimitant un espace interne rempli d'une garniture isolante telle que de la perlite. Des entretoises porteuses sont agencées de façon distribuée dans l'espace interne des caissons afin de procurer aux caissons une bonne résistance aux contraintes. Des caissons de structure analogue sont utilisés pour réaliser la barrière thermiquement isolante primaire et pour la barrière thermiquement isolante secondaire.
La deuxième zone est constituée de blocs isolants 5, 7 comportant une garniture isolante 8 sous forme de mousse isolante structurelle agencée entre la plaque de fond 9 et la plaque de couvercle 10. Ces blocs isolants 5, 7 comportent en outre une plaque intermédiaire 20 logée dans la garniture isolante 8, ladite garniture isolante 8 comportant ainsi une mousse isolante supérieure 21 agencée entre la plaque de couvercle 10 et la plaque intermédiaire 20 et une mousse isolante inférieure 22 agencée entre la plaque intermédiaire 20 et la plaque de fond 9. La mousse isolante supérieure 21 et la mousse isolante inférieure 22 sont par exemple une mousse de polyuréthane présentant une densité de 130 Kg/m3. Dans le mode de réalisation illustré sur la figure 5, le bloc isolant secondaire 5 de la deuxième zone 12 est par exemple un bloc isolant secondaire tel que décrit dans le document WO2014096600. Sur cette figure 5, le bloc isolant primaire 7 de la deuxième zone 12 est par exemple un bloc isolant primaire tel que décrit dans le document WO2013124556.
Les membranes d'étanchéité secondaire 2 et primaire 4 sont ici réalisées au moyen de bandes d'Invar à bords relevés, par exemple d'une dimension de 500 mm. Les bords relevés de deux bandes d'Invar adjacentes sont soudés deux à deux sur des supports de soudure ancrés dans la plaque de couvercle 10 des blocs isolants 5, 7 formant la surface de support sur laquelle repose lesdits bandes d'Invar. Un anneau de raccordement comporte des ailes d'ancrage 23 primaire et secondaire dont une extrémité est soudée à la structure porteuse 6 et l'autre extrémité est soudée à l'extrémité de la membrane d'étanchéité respectivement primaire 4 et secondaire 2 afin d'ancrer lesdites membranes d'étanchéités primaire 4 et secondaire 2 à la structure porteuse 6. Un tel anneau de raccordement est par exemple décrit dans le document FR2798358, le document WO8909909 ou encore le document WO2015007974.
Dans un autre mode de réalisation, l'anneau de raccordement est constitué uniquement d'ailes d'ancrage 23 secondaire dont une extrémité est soudée à la structure porteuse 6 et l'autre extrémité est soudée à l'extrémité de la membrane d'étanchéité secondaire 2 afin d'ancrer ladite membrane d'étanchéité secondaire 2 à la structure porteuse 6.
Afin d'améliorer l'absorption des marches 15, 16 liées aux différences de structure des blocs isolants 5, 7 entre les différentes zones 1 1 , 12, 14 de la paroi de cuve, la membrane d'étanchéité primaire 4 comporte avantageusement une portion de membrane comportant des ondulations 24. De telles ondulations 24 se développent le long des marches 15, 16. Ces ondulations 24 sont par exemple réalisées au moyen d'une tôle métallique ondulée telle que celles décrites dans le document FR2691520. Cette tôle métallique ondulée est intercalée entre une extrémité 25 des bandes d'Invar de la membrane d'étanchéité primaire 4 et l'aile d'ancrage 23 primaire de l'anneau de raccordement. Différentes pièces métalliques non illustrées peuvent également être intercalées entre la tôle métallique ondulée et l'aile d'ancrage 23 primaire, par exemple une cornière d'angle formant l'arête de la membrane d'étanchéité primaire 4 au niveau de l'angle de la cuve.
La figure 5 montre à titre illustratif une première zone 1 1 comportant d'une part des blocs isolants 5, 7 dans l'anneau de raccordement et, d'autre part, un bloc isolant primaire 7 et un bloc isolant secondaire 5 hors de l'anneau de raccordement. Cette configuration est avantageuse car le bloc isolant primaire 7 et le bloc isolant secondaire 5 de la première zone 1 1 situés hors de l'anneau de raccordement participent à la bonne tenue de l'anneau de raccordement dans l'angle de la cuve et des soudures entre l'anneau de raccordement et les membranes. Cependant, cette première zone pourrait ne comporter que les blocs isolants situés dans l'anneau de raccordement de sorte que la zone de transition 14 serait directement adjacente à l'anneau de raccordement.
Les figures 6 à 8 illustrent un troisième mode de réalisation de la zone de transition 14. Ce troisième mode de réalisation diffère du premier mode de réalisation en ce que la zone de transition 14 comporte au moins un bloc isolant distinct 26 des blocs isolants 5, 7 de la première zone 1 1 et de la deuxième zone 12. Ce ou ces blocs isolants distincts 26 présentent un coefficient de contraction thermique compris entre les coefficients de contraction thermique des blocs isolants 5, 7 adjacents dans la barrière isolante 1 , 3 correspondante.
Ainsi, sur la figure 6, la zone de transition 14 comporte un bloc isolant secondaire 5 identique au bloc isolant secondaire 5 de la première zone 1 1 et un bloc isolant distinct 26 agencé dans la barrière isolante primaire 1 . Ce bloc isolant distinct 26 constitue un bloc isolant primaire 7 de la zone de transition 14 présentant un coefficient de contraction thermique compris entre le coefficient de contraction thermique des blocs isolants primaires 7 de la première zone 1 1 et de la deuxième zone 12.
Inversement, sur la figure 7, la zone de transition 14 comporte un bloc isolant primaire 7 identique aux blocs isolant primaire 7 de la deuxième zone 12 et un bloc isolant distinct 26 agencé dans la barrière isolante secondaire 1. Ce bloc isolant distinct 26 constitue un bloc isolant secondaire 5 de la zone de transition 14 présentant un coefficient de contraction thermique compris entre le coefficient de contraction thermique des blocs isolants secondaire 5 de la première zone 1 1 et de la deuxième zone 12.
Sur la figure 8, la zone de transition 14 comporte deux blocs isolants distincts 26 superposés. Ces blocs isolants distincts 26 constituent un bloc isolant primaire 7 et un bloc isolant secondaire 5 de la zone de transition ayant tous les deux des structures analogues et un coefficient de contraction thermique compris entre ceux des blocs isolants 5, 7 adjacents de la première zone 11 et de la deuxième zone 12.
Les blocs isolants distincts 26 de la zone de transition 14 dans ce troisième mode de réalisation sont par exemple des blocs isolants comportant une plaque de couvercle 10 et une plaque de fond 9 maintenues à distance par une mousse isolante structurelle distincte 27, cette mousse isolante structurelle distincte 27 étant différente de la mousse isolante structurelle des blocs isolants 5, 7 de la deuxième zone 12. Par exemple, les blocs isolant 5, 7 de la deuxième zone 12 peuvent comporter une mousse de polyuréthane ayant une densité de 130 Kg/m3 alors que la mousse isolante structurelle distincte 27 est une mousse de polyuréthane renforcée qui présente une densité de 210 Kg/m3. Ainsi, la zone de transition 14 présente un coefficient de contraction thermique compris entre le coefficient de contraction thermique de la première zone 1 1 et le coefficient de contraction thermique de la deuxième zone 12.
La figure 9 illustre un quatrième mode de réalisation de la zone de transition 14. Dans ce quatrième mode de réalisation, la zone de transition 14 comporte une pluralité de blocs isolants primaire 7 et une pluralité de blocs isolants secondaires 5. Ce mode de réalisation permet de subdiviser la zone de transition 14 en plusieurs sous-zones présentant chacune des coefficients de contraction thermiques distincts et donc de subdiviser la marche 13 entre la première zone 1 1 et la deuxième zone 12 en une pluralité de marches de tailles réduites. Sur cette figure 9, la zone de transition 14 est divisée en une première sous-zone 28 et une deuxième sous-zone 29. La première sous-zone 28 est jointive de la première zone 1 1 et la deuxième sous-zone 28 est jointive de la deuxième zone 12.
La première sous-zone 28 de la zone de transition 14 comporte un bloc isolant secondaire 5 identique aux blocs isolants secondaires 5 de la première zone 1 1 et un bloc isolant primaire 7 identique aux blocs isolants primaires 7 de la deuxième zone 12. Autrement dit, cette première sous-zone 28 est réalisée selon le premier mode de réalisation décrit ci-dessus en regard de la figure 3.
La deuxième sous-zone 29 de la zone de transition 14 comporte un bloc isolant primaire 7 identique aux blocs isolants primaires 7 de la deuxième zone 12. Cependant, le bloc isolant secondaire 5 de la deuxième sous-zone 29 est un bloc isolant secondaire mixte 30. Ce bloc isolant secondaire mixte 30 présente un coefficient de contraction thermique compris entre le coefficient de contraction thermique du bloc isolant secondaire 5 de la première zone 1 1 et le coefficient de contraction thermique du bloc isolant secondaire 5 de la deuxième zone 12. Ainsi, la deuxième sous zone 29 présente un coefficient de contraction thermique compris entre le coefficient de contraction thermique de la première sous-zone 28 et le coefficient de contraction thermique de la deuxième zone 12. En conséquence, la marche 14 entre la première zone 1 et la deuxième zone 12 est subdivisée en une première marche séparant la première zone 1 1 et la première sous-zone 28, une deuxième marche séparant la première sous-zone 28 et la deuxième sous-zone 29 et une troisième marche séparant la deuxième sous-zone 29 et la deuxième zone 12.
Afin de présenter un coefficient de contraction thermique adapté, le bloc isolant secondaire mixte 30 comporte un élément supérieur 31 et un élément inférieur 32 superposés dans le sens de l'épaisseur. Le bloc isolant secondaire mixte 30 comporte par exemple un élément inférieur 32 formé par la plaque de fond 9 et une garniture isolante structurelle inférieure 33 et un élément supérieur 31 formé par un caisson isolant. Un tel caisson isolant comporte une plaque intermédiaire 34 et la plaque de couvercle 10 maintenues à distance par des entretoises porteuses de façon analogue aux blocs isolants 5, 7 de la première zone 1 1.
D'autres réalisations peuvent être mises en œuvre pour obtenir un bloc isolant secondaire mixte 30 dont le coefficient de contraction thermique est compris entre le coefficient de contraction thermique des blocs isolants secondaire 5 de la première zone 1 1 et de la deuxième zone 12. Selon un mode de réalisation, l'élément supérieur 31 peut être réalisé au moyen d'une mousse isolante structurelle présentant une densité supérieure à la densité de la mousse isolante structurelle des blocs isolants secondaire 5 de la deuxième zone 12. Dans un autre mode de réalisation, l'élément inférieur 32 est un caisson et l'élément supérieur 31 comporte une mousse isolante structurelle. Dans un mode de réalisation, les épaisseurs respectives de l'élément supérieur 31 et de l'élément inférieur 32 sont adaptées au coefficient de contraction thermique souhaité du bloc isolant secondaire mixte 30.
La figure 10 est une illustration d'une réalisation du quatrième mode de réalisation de la figure 9. Dans cette réalisation, la première zone 1 1 et la deuxième zone 12 sont réalisées de façon analogue aux premières et deuxièmes zones 1 1 , 12 décrites ci-dessus en regard de la figure 5.
La première sous-zone 28 de la zone de transition 14 comporte un bloc isolant secondaire 5 sous forme de caisson identique aux blocs isolants secondaires 5 de la première zone 1 1 . Le un bloc isolant primaire 7 de la première sous-zone 28 comporte une mousse de polyuréthane renforcée à haute densité 35 ayant une densité supérieure à la densité de la mousse isolante structurelle des blocs isolants primaires 7 de la deuxième zone 12 de sorte que la première sous zone 28 de la zone de transition 14 présente un coefficient de contraction thermique supérieur au coefficient de contraction thermique de la première zone 1 1 mais inférieur au coefficient de contraction thermique de la deuxième zone 12. Le bloc isolant primaire 7 de la zone de transition 14 peut comporter en outre une plaque intermédiaire 20 logée dans la mousse de polyuréthane renforcée à haute densité 35, ladite mousse de polyuréthane renforcée à haute densité 35 étant ainsi agencée entre la plaque de couvercle 10 et la plaque intermédiaire 20 et entre la plaque intermédiaire 20 et la plaque de fond 9.
La deuxième sous zone 29 de la zone de transition 14 comporte un bloc isolant secondaire mixte 30. Cette deuxième sous zone 29 comporte un bloc isolant primaire 7 identique au bloc isolant primaire 7 de la première sous zone 28. Le bloc isolant secondaire mixte 30 présente un élément inférieur 32 en mousse isolante structurelle identique à la mousse isolante structurelle des blocs isolants secondaire 5 de la deuxième zone 12. L'élément supérieur 31 du bloc isolant secondaire mixte 30 est un caisson présentant une structure analogue à la structure des blocs isolants secondaires 5 de la première zone 1 1. Ainsi, le bloc isolant secondaire mixte 30 présente un coefficient de contraction thermique compris entre le coefficient de contraction thermique du bloc isolant secondaire 5 de la première sous zone 28 et le coefficient de contraction thermique des blocs isolants secondaire 5 de la deuxième zone 12. En conséquence, la deuxième sous zone 29 de la zone de transition 14 présente un coefficient de contraction thermique compris entre le coefficient de contraction thermique de la première sous zone 28 de la zone de transition 14 et le coefficient de contraction thermique de la deuxième zone 12.
Les figures 1 1 et 12 illustrent schématiquement un cinquième mode de réalisation de la zone de transition 14. Dans ce cinquième mode de réalisation, le bloc isolant secondaire 5 de la zone de transition 14 est identique au bloc isolant secondaire 5 de la première zone 1 1. Le bloc isolant primaire 7 de la zone de transition 14 est un bloc isolant primaire mixte 36. De façon analogue au bloc isolant secondaire mixte 30, ce bloc isolant primaire mixte 36 comporte un élément supérieur 37 et un élément inférieur 38 superposés et présentant des structures et des coefficients de contraction thermique différents. Cependant, le bloc isolant primaire mixte 36 du cinquième mode de réalisation diffère du bloc isolant secondaire mixte 30 du quatrième mode de réalisation en ce que l'interface entre l'élément inférieur 38 et l'élément supérieur 37 dudit bloc isolant primaire mixte 36 est inclinée par rapport aux plaques de fond 9 et de couvercle 10. Autrement dit, l'élément inférieur 38 du bloc isolant primaire mixte 36 présente une épaisseur diminuant progressivement depuis la première zone 1 1 en direction de la deuxième zone 12 et l'élément supérieur 37 présente une épaisseur augmentant progressivement depuis la première zone 1 1 en direction de la deuxième zone 12. En outre, le coefficient de contraction thermique de l'élément inférieur 38 est inférieur au coefficient de contraction thermique de l'élément supérieur 37 de sorte que le coefficient de contraction thermique du bloc isolant primaire mixte 36 augmente progressivement depuis la première zone 1 1 en direction de la deuxième zone 12.
Ce cinquième mode de réalisation permet avantageusement de réduire les marches entre la zone de transition 14 et les première et deuxièmes zones 1 1 , 12, le bloc isolant primaire mixte 36 absorbant une partie du différentiel d'épaisseur entre la première zone 1 1 et la deuxième zone 12 lors de sa déformation du fait de sa modification progressive de son coefficient de contraction thermique.
Dans un mode de réalisation non illustré, l'inclinaison de l'interface est inversée de sorte que l'épaisseur de l'élément supérieur 37 diminue progressivement depuis la première zone 1 1 en direction de la deuxième zone 12 et que l'épaisseur de l'élément inférieur 38 augmente progressivement depuis la première zone 1 1 en direction de la deuxième zone 12. Dans ce mode de réalisation non illustré, le coefficient de contraction thermique de l'élément supérieur 37 est inférieur au coefficient de contraction thermique de l'élément inférieur 38.
Les éléments supérieur 37 et inférieur 38 sont dimensionnés de sorte que l'épaisseur du bloc isolant primaire mixte 36 est constante à température ambiante dans la cuve. Dans une première variante illustrée sur la figure 1 1 , l'élément inférieur 38 est un caisson délimité selon une direction d'épaisseur de la paroi de cuve par la plaque de fond 9 du bloc isolant primaire mixte 36 et par une plaque intermédiaire 39. La plaque intermédiaire 39 est inclinée par rapport à la plaque de fond 9 de sorte que l'épaisseur dudit caisson diminue depuis la première zone 1 1 en direction de la deuxième zone 12. Ce caisson comporte des entretoises porteuses maintenant à distance la plaque de fond 9 du bloc isolant primaire mixte 36 est la plaque intermédiaire 39.
L'élément supérieur 37 comporte une mousse isolante structurelle intercalée entre la plaque intermédiaire 39 et la plaque de couvercle 10 de l'élément isolant primaire mixte 36. Sur la figure 1 1 , cette mousse isolante structurelle est identique à la mousse isolante structurelle des blocs isolants primaire 7 de la deuxième zone 12.
Ainsi, le bloc isolant primaire mixte 36 présente un coefficient de contraction thermique croissant progressivement depuis la première zone 1 1 en direction de la deuxième zone 12. Plus particulièrement, le coefficient de contraction thermique du bloc isolant primaire mixte 36 est identique au coefficient de contraction thermique d'un bloc isolant primaire 7 de la première zone 1 1 du côté de ladite première zone 1 1 et augmente progressivement en direction de la deuxième zone 12 jusqu'à atteindre sensiblement la valeur du coefficient de contraction thermique d'un bloc isolant primaire 7 de la deuxième zone 12.
Dans une autre variante illustrée sur la figure 12, l'élément inférieur 38 du bloc isolant primaire mixte 36 présente un coefficient de contraction thermique compris entre le coefficient de contraction thermique des blocs isolants primaire 7 de la première zone 1 1 et le coefficient de contraction thermique des blocs isolants primaire 7 de la deuxième zone 12. Par exemple l'élément inférieur 38 est formé au moyen d'une mousse isolante structure haute densité 40 dont le coefficient de contraction thermique est inférieur au coefficient de contraction thermique de la mousse isolante structurelle des blocs isolants primaires 7 de la deuxième zone 12. L'élément supérieur 37 dudit bloc isolant primaire mixte 36 est dans cette variante identique à l'élément supérieur 37 du bloc isolant primaire mixte 36 décrit en regard de la figure 1 1 , c'est-à-dire avec une mousse isolante structurelle identique à la mousse isolante structurelle de la deuxième zone 12. Dans une variante non illustrée, l'élément inférieur 38 du bloc isolant primaire mixte 36 est un caisson tel que décrit ci-dessus en regard de la figure 1 1 et l'élément supérieur 37 dudit bloc isolant mixte 36 comporte une mousse isolante structurelle dont la densité est supérieure à la densité de la mousse isolante structurelle des blocs isolants primaires 7 de la deuxième zone 12.
La figure 13 est une illustration d'une réalisation du cinquième mode de réalisation de l'une des figures 1 1 ou 12. La figure 14 est une illustration d'un module isolant de la zone de transition de la figure 13.
La figure 15 illustre schématiquement un sixième mode de réalisation de la zone de transition 14. De façon analogue au bloc isolant primaire mixte 36 du cinquième mode de réalisation, le bloc isolant primaire 7 de la zone de transition 14 dans ce sixième mode de réalisation présente un coefficient de contraction thermique qui diminue progressivement depuis la première zone 1 1 en direction de la deuxième zone 12. Cependant, dans ce sixième mode de réalisation, la diminution progressive du coefficient de contraction thermique du bloc isolant primaire 7 de la zone de transition 14 est réalisée par l'utilisation de blocs de mousse structurelle présentant des coefficients de contraction thermique distincts dans ledit bloc isolant primaire 7.
Ainsi, le bloc isolant primaire 7 de la zone de transition comporte une mousse isolante structurelle maintenant à distance la plaque de fond 9 et la plaque de couvercle 10. Cette mousse isolante structurelle présente deux portions, une première portion 41 située proche de la première zone 1 1 et une deuxième portion 42 située proche de la deuxième zone 12. L'interface entre la première portion 41 et la deuxième portion 42 présente au moins une marche 43 dans la direction d'épaisseur du bloc isolant primaire 7 de la zone de transition 14. Cette marche 43 permet une diminution progressive de l'épaisseur de la première portion 41 et une augmentation progressive de l'épaisseur de la deuxième portion 42 depuis la première zone 1 1 en direction de la deuxième zone 12.
La première portion 41 de mousse isolante structurelle présente un coefficient de contraction thermique inférieur au coefficient de contraction thermique de la deuxième portion 42. Ainsi, le bloc isolant primaire 7 de la zone de transition 14 présente un coefficient de contraction thermique augmentant depuis la première zone 1 1 en direction de la deuxième zone 12. La figure 16 est une illustration d'une réalisation du sixième mode de réalisation de la figure 15. La figure 17 est une illustration d'un module isolant de la zone de transition de la figure 15. Sur ces figures, la première portion 41 et la deuxième portion 42 sont réalisées à l'aide d'une mousse de polyuréthane renforcée par la présence de fibres telles que des fibres de verre. Cependant, la mousse de polyuréthane de la première portion 41 est agencée de sorte que les fibres soient orientées selon la direction d'épaisseur du bloc isolant primaire 7, comme illustré par les flèches 44. La mousse de polyuréthane de la deuxième portion 42 est agencée de sorte que les fibres soient orientées selon une direction perpendiculaire à la direction d'épaisseur du bloc isolant primaire 7, comme illustré par les flèches 45. Un tel agencement s'apparente à des marches d'un escalier formées par la première portion 41 et la deuxième portion 42.
Cette différence d'orientation des fibres entre la première portion 41 et la deuxième portion 42 permet d'obtenir un coefficient de contraction thermique différent entre la première portion 41 et la deuxième portion 42 bien que la mousse de polyuréthane utilisée pour réaliser ces deux portions 41 et 42 soit la même. Ainsi, la première portion 41 en mousse de polyuréthane à fibres orientées selon l'épaisseur de bloc isolant primaire 7 présente par exemple un coefficient de contraction thermique de l'ordre de 25.10"6K"1 à 27.10"6K"1 pour 10% en masse de fibre de verre alors que la deuxième portion 42 en mousse de polyuréthane à fibres orientées perpendiculairement à l'épaisseur de bloc isolant primaire 7 présente par exemple un coefficient de contraction thermique de l'ordre de 60.10"6K"1.
Une autre méthode pour obtenir des coefficients de contraction thermique entre la première portion 41 et la deuxième portion 42 pourrait être de modifier le taux de fibres et sa nature dans la mousse de polyuréthane pour ajuster le coefficient de contraction thermique entre 15 et 60.10"6K"1.
Dans un mode de réalisation, la première zone 1 1 est agencée sur tous les bords des parois de cuve, la deuxième zone 12 sur toutes les portions centrales des parois de cuve et la zone de transition 14 entre toutes les première et deuxième zones 1 1 , 12 des parois de cuves. La figure 18 est une représentation schématique d'une paroi transversale de cuve étanche et thermiquement isolante comportant une première zone, une zone de transition et une deuxième zone selon l'invention agencées selon ce mode de réalisation. La figure 20 est une illustration de la paroi de cuve étanche et thermiquement isolante selon un septième mode de réalisation.
Dans le mode de réalisation illustré figure 20, la première zone 1 1 est une zone d'angle de paroi de cuve comportant des blocs isolants 5, 7 sous forme de caissons en contreplaqué délimitant un espace interne rempli d'une garniture isolante telle que de la perlite ou de la laine de verre. Des entretoises porteuses sont agencées de façon distribuée dans l'espace interne des caissons afin de procurer aux caissons une bonne résistance aux contraintes. La première zone 1 1 se situe donc au niveau de l'anneau de raccordement et des blocs isolants 5, 7 sont situés dans l'anneau de raccordement.
La deuxième zone 12 est constituée de blocs isolants 5, 7 comportant une garniture isolante 8 sous forme de mousse isolante structurelle agencée entre la plaque de fond 9 et la plaque de couvercle 10. Ces blocs isolants 5, 7 comportent en outre une plaque intermédiaire 20 logée dans la garniture isolante 8, ladite garniture isolante 8 comportant ainsi une mousse isolante supérieure 21 agencée entre la plaque de couvercle 10 et la plaque intermédiaire 20 et une mousse isolante inférieure 22 agencée entre la plaque intermédiaire 20 et la plaque de fond 9. La mousse isolante supérieure 21 et la mousse isolante inférieure 22 sont par exemple une mousse de polyuréthane présentant une densité de 130 Kg/m3. Dans le mode de réalisation illustré sur la figure 5, le bloc isolant secondaire 5 de la deuxième zone 12 est par exemple un bloc isolant secondaire tel que décrit dans le document WO2014096600. Sur cette figure 5, le bloc isolant primaire 7 de la deuxième zone 12 est par exemple un bloc isolant primaire tel que décrit dans le document WO2013124556.
La première sous-zone 28 de la zone de transition 14 comporte un bloc isolant secondaire 5 sous forme de caisson identique aux blocs isolants secondaires 5 de la première zone 1 1 . Le un bloc isolant primaire 7 de la première sous-zone 28 comporte une mousse de polyuréthane renforcée à haute densité 35 ayant une densité supérieure à la densité de la mousse isolante structurelle des blocs isolants primaires 7 de la deuxième zone 12 de sorte que la première sous zone 28 de la zone de transition 14 présente un coefficient de contraction thermique supérieur au coefficient de contraction thermique de la première zone 1 1 mais inférieur au coefficient de contraction thermique de la deuxième zone 12. Le bloc isolant primaire 7 de la zone de transition 14 comporte dans ce mode de réalisation une plaque intermédiaire 20 logée dans la mousse de polyuréthane renforcée à haute densité 35, ladite mousse de polyuréthane renforcée à haute densité 35 étant ainsi agencée entre la plaque de couvercle 10 et la plaque intermédiaire 20 et entre la plaque intermédiaire 20 et la plaque de fond 9.
La deuxième sous zone 29 de la zone de transition 14 comporte un bloc isolant secondaire mixte 30. Cette deuxième sous zone 29 comporte un bloc isolant primaire 7 identique au bloc isolant primaire 7 de la première sous zone 28. Le bloc isolant secondaire mixte 30 présente un élément inférieur 32 en mousse isolante structurelle identique à la mousse isolante structurelle des blocs isolants secondaire 5 de la deuxième zone 12. L'élément supérieur 31 du bloc isolant secondaire mixte 30 est un caisson présentant une structure analogue à la structure des blocs isolants secondaires 5 de la première zone 1 1. Ainsi, le bloc isolant secondaire mixte 30 présente un coefficient de contraction thermique compris entre le coefficient de contraction thermique du bloc isolant secondaire 5 de la première sous zone 28 et le coefficient de contraction thermique des blocs isolants secondaire 5 de la deuxième zone 12. En conséquence, la deuxième sous zone 29 de la zone de transition 14 présente un coefficient de contraction thermique compris entre le coefficient de contraction thermique de la première sous zone 28 de la zone de transition 14 et le coefficient de contraction thermique de la deuxième zone 12.
Comme illustré sur la figure 20, la membrane étanche primaire 4 est composée de plaques métalliques ondulées. Ces plaques métalliques ondulées sont par exemple en acier inoxydable dont l'épaisseur est d'environ 1 ,2 mm et de taille 3 m par 1 m. La plaque métallique de forme rectangulaire comporte une première série d'ondulations parallèles, dites basses, s'étendant selon une direction y d'un bord à l'autre de la tôle et une seconde série d'ondulations parallèles, dites hautes, s'étendant selon une direction x d'un bord à l'autre de la tôle métallique. Les directions x et y des séries d'ondulations sont perpendiculaires. Les ondulations sont, par exemple, saillantes du côté de la face interne de la tôle métallique 1 , destinée à être mise en contact avec le fluide contenu dans la cuve. Les bords de la plaque métallique sont ici parallèles aux ondulations. Notons que les termes «haute» et «basse» ont un sens relatif et signifient que les ondulations, dîtes basses, présentent une hauteur inférieure aux ondulations, dîtes hautes. Dans une variante, les ondulations peuvent avoir la même hauteur. La plaque métallique comporte entre les ondulations, une pluralité de surfaces planes. Une partie des ondes peut être localisée entre les blocs isolants 7 ou demeurer sur les parties planes des blocs isolant 7. Au niveau de chaque croisement entre une ondulation basse et une ondulation haute, la plaque métallique comporte une zone de nœud. La zone de nœud comporte une portion centrale présentant un sommet en saillie vers l'intérieur ou l'extérieur de la cuve. Par ailleurs, la portion centrale est bordée, d'une part, par une paire d'ondulations concaves formées dans la crête de l'ondulation haute et, d'autre part, par une paire de renfoncements 8 dans lesquels pénètre l'ondulation basse.
On a décrit ci-dessus une membrane étanche primaire dans laquelle les ondulations sont continues au niveau des intersections entre les deux séries d'ondulations. La membrane étanche primaire peut aussi présenter deux séries d'ondulations mutuellement perpendiculaires avec des discontinuités des certaines ondulations au niveau des intersections entre les deux séries. Par exemple, les interruptions sont réparties alternativement dans la première série d'ondulations et la deuxième série d'ondulations et, au sein d'une série d'ondulations, les interruptions d'une ondulation sont décalées d'un pas d'onde par rapport aux interruptions d'une ondulation parallèle adjacente.
Ce type de membrane étanche composée de plaques ondulées étant moins sensible au phénomène de marche lors de la contraction thermique des barrières thermiquement isolantes 1 , 3 et plus résistant aux sollicitations, il n'est pas nécessaire comme dans le mode de réalisation de la figure 10 de placer dans première zone un bloc isolant primaire 7 et un bloc isolant secondaire 5 hors de l'anneau de raccordement. De cette manière, la première zone 1 1 est constituée uniquement des blocs isolants 5, 7 dans l'anneau de raccordement. La zone de transition 14 est alors directement adjacente à l'anneau de raccordement.
Dans un mode de réalisation non illustré, la première zone 1 1 peut également être un dôme gaz, un dôme gaz, ou une zone de fixation d'un pied de support pour une pompe. Par exemple dans le cas de la zone de fixation d'un pied de support pour une pompe, la première zone 1 1 se trouve alors tout autour du pied de support et la membrane secondaire 2 est fixée à une aile d'ancrage 23 de la zone de fixation. La zone de transition 14 s'étend alors tout autour de la première zone 1 1. La technique décrite ci-dessus pour réaliser une cuve peut être utilisée dans différents types de réservoirs, par exemple pour constituer un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.
5 En référence à la figure 19, une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 10 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent 15 être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
La figure 19 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une 0 installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et 5 de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de 0 déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement. Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
Ainsi, les exemples ci-dessus présentent une paroi de cuve comportant des barrières isolantes formant des surfaces de support sensiblement planes dans une cuve à vide et présentant des différentiels d'épaisseurs entre différentes zones des parois de cuve lorsque la cuve est chargée en GNL. Cependant, l'agencement pourrait être inversé de sorte que les parois de cuves présentent des différentiels d'épaisseurs dans une cuve à vide et des surfaces de support planes lorsque la cuve est chargée en GNL.
En outre, les exemples de réalisation de la zone de transition donnés ci- dessus peuvent être combinés entre eux, par exemple dans le cadre d'une zone de transition comportant une pluralité de blocs isolants primaires 7 et secondaires 5 de manière à générer une pluralité de sou-zones de la zone de transition 14 dont les coefficients de contraction thermique sont croissants depuis la première zone 1 1 en direction de la deuxième zone 12.
L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1. Cuve étanche et thermiquement isolante de stockage d'un fluide intégrée dans une structure porteuse (6), dans laquelle une paroi de cuve comporte dans une direction d'épaisseur :
une barrière thermiquement isolante secondaire (1 ) et une barrière thermiquement isolante primaire (3) constituées de modules isolants (5, 7, 17, 18, 26, 30, 36) juxtaposés, un module isolant (5, 7, 17, 18, 26, 30, 36) comportant un panneau de couvercle (10), un panneau de fond (9) et une garniture isolante (8) intercalée entre le panneau de fond (9) et le panneau de couvercle (10),
une membrane étanche primaire (4) reposant sur la barrière thermiquement isolante primaire (3), et
une membrane étanche secondaire (2) reposant sur la barrière thermiquement isolante secondaire (1 ),
la paroi de cuve comportant dans une direction de longueur :
- une première zone (1 1 ) dans laquelle les modules isolants (5, 7) comportent des entretoises se développant selon la direction d'épaisseur de la paroi de cuve entre le panneau de couvercle (10) et le panneau de fond (9) desdits modules isolants (5, 7), lesdites entretoises étant distribuées sur la surface du panneau de couvercle (10) et du panneau de fond (9) de sorte que le panneau de fond (9) et le panneau de couvercle (10) desdits modules isolants (5, 7) sont maintenus à distance l'un de l'autre par lesdites entretoises,
- une deuxième zone (12) dans laquelle la garniture isolante (8) des modules isolants (5, 7) comporte une mousse isolante structurelle intercalée entre le panneau de couvercle (10) et le panneau de fond (9) sur la surface du panneau de couvercle (10) et du panneau de fond (9) de sorte que le panneau de couvercle (10) desdits modules isolants (5, 7) est maintenu à distance du panneau de fond (9) par ladite mousse isolante structurelle ,
- une zone de transition (14) intercalée entre la première zone (1 1 ) et la deuxième zone (12), dans laquelle les modules isolants (5, 7, 18, 26, 30, 36) sont constitués de manière que la paroi de cuve dans ladite zone de transition (14) présente au moins un paramètre choisi parmi le coefficient de contraction thermique et le module d'élasticité dans la direction d'épaisseur de la paroi de cuve dont la valeur est comprise entre la valeur dudit au moins un paramètre de la première zone (1 1 ) de la paroi de cuve dans la direction d'épaisseur de la paroi de cuve et la valeur dudit au moins un paramètre de la deuxième zone (12) de la paroi de cuve dans la direction d'épaisseur de la paroi de cuve.
2. Cuve étanche et thermiquement isolante selon la revendication 1 , dans laquelle la première zone (1 1 ) est agencée sur tout ou partie d'un pourtour de la paroi.
3. Cuve étanche et thermiquement isolante selon la revendication 1 , dans laquelle la première zone (1 1 ) est une zone d'angle de la cuve, un dôme gaz, un dôme liquide ou une zone de fixation d'un pied de support pour une pompe
4. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 3, dans laquelle les modules isolants (5, 7, 18, 26, 30, 36) de la zone de transition (14) comportent :
un premier module isolant (5, 26, 30) agencé dans la barrière thermiquement isolante secondaire (1 ), le premier module isolant (5,
26, 30) présentant une première valeur dudit au moins un paramètre selon la direction d'épaisseur de la paroi de cuve, et
un deuxième module isolant (7, 18, 26, 36) agencé dans la barrière thermiquement isolante primaire (3), le deuxième module isolant (7, 18, 26, 36) présentant une deuxième valeur dudit au moins un paramètre selon la direction d'épaisseur de la paroi de cuve, le premier module isolant (5, 26, 30) et le deuxième module isolant (7, 18, 26, 36) étant superposés dans le sens de l'épaisseur de la paroi de cuve.
5. Cuve étanche et thermiquement isolante selon la revendication 4, dans laquelle
l'un parmi le premier module isolant (5, 30) et le deuxième module isolant (7, 36) comporte des entretoises se développant selon une direction d'épaisseur de la paroi de cuve entre le panneau de couvercle (10) et le panneau de fond (9) dudit module isolant, lesdites entretoises étant distribuées sur la surface du panneau de fond (9) et du panneau de couvercle (10) de sorte que le panneau de fond (9) et le panneau de couvercle (10) dudit module isolant sont maintenus à distance l'un de l'autre par lesdites entretoises, et
- l'autre parmi le premier module isolant (5, 26) et le deuxième module isolant (7, 18, 26) comporte une mousse isolante structurelle intercalée entre le panneau de couvercle (10) et le panneau de fond
(9) sur la surface du panneau de couvercle (10) et du panneau de fond (9) de sorte que le panneau de couvercle (10) dudit autre module isolant est maintenu à distance du panneau de fond (9) dudit autre module isolant par ladite mousse isolante structurelle.
6. Cuve étanche et thermiquement isolante selon la revendication 5, dans laquelle la valeur dudit au moins un paramètre de l'autre parmi le premier module isolant (5, 26) et le deuxième module isolant (7, 18, 26) est inférieure à la valeur dudit au moins un paramètre de l'un parmi le premier module isolant (5, 30) et le deuxième module isolant (7, 36).
7. Cuve étanche et thermiquement isolante selon l'une des revendications 4 à 6, dans laquelle la première zone (1 1 ) correspond à une zone d'angle de la cuve comprenant un anneau de raccordement, et la zone transition (14) est directement adjacente à l'anneau de raccordement, le deuxième module isolant (7, 18, 26) comporte une mousse isolante structurelle intercalée entre le panneau de couvercle (10) et le panneau de fond (9) sur la surface du panneau de couvercle (10) et du panneau de fond (9) de sorte que le panneau de couvercle (10) dudit autre module isolant est maintenu à distance du panneau de fond (9) dudit autre module isolant par ladite mousse isolante structurelle.
8. Cuve étanche et thermiquement isolante selon la revendication 7, dans laquelle le premier module isolant comporte des entretoises se développant selon une direction d'épaisseur de la paroi de cuve entre le panneau de couvercle (10) et le panneau de fond (9) dudit module isolant, lesdites entretoises étant distribuées sur la surface du panneau de fond (9) et du panneau de couvercle (10) de sorte que le panneau de fond (9) et le panneau de couvercle (10) dudit module isolant sont maintenus à distance l'un de l'autre par lesdites entretoises.
9. Cuve étanche et thermiquement isolante selon la revendication 7 ou la revendication 8, dans laquelle les modules isolants (5, 7, 18, 26, 30, 36) de la zone de transition (14) comportent : - un troisième module isolant (26) agencé dans la barrière thermiquement isolante secondaire (1 ), le troisième module isolant étant plus proche de la deuxième zone (12) que le premier module isolant (5, 26, 30) et présentant une troisième valeur dudit au moins un paramètre selon la direction d'épaisseur de la paroi de cuve, - un quatrième module isolant (7, 18, 26, 36) agencé dans la barrière thermiquement isolante primaire (3), le quatrième module isolant (7, 18, 26, 36) étant plus proche de la deuxième zone (12) que le deuxième module isolant (7, 18, 26, 36) et présentant une quatrième valeur dudit au moins un paramètre selon la direction d'épaisseur de la paroi de cuve,
et dans laquelle la troisième valeur dudit au moins un paramètre du troisième module isolant (26) est comprise entre la première valeur dudit au moins un paramètre du premier module isolant (5, 26, 30) et la deuxième valeur dudit au moins un paramètre du deuxième module isolant (7, 18, 26, 36).
10. Cuve étanche et thermiquement isolante selon la revendication 9, dans laquelle le troisième module isolant (26) est un module mixte comportant un panneau intermédiaire (20) agencé entre le panneau de fond et le panneau de couvercle, la garniture isolante comportant une garniture inférieure agencée entre le panneau intermédiaire et le panneau de fond et une garniture supérieure agencée entre le panneau intermédiaire et le panneau de couvercle, le module mixte ayant un coefficient de dilatation thermique compris entre le coefficient de dilatation thermique d'un module isolant de la première zone (1 1 ) et le coefficient de dilatation thermique d'un module isolant de la deuxième zone (12).
1 1 . Cuve étanche et thermiquement isolante selon la revendication 9 ou la revendication 10, dans laquelle le quatrième module isolant (7, 18, 26, 36) est identique au deuxième module isolant (7, 18, 26, 36), de sorte que la quatrième valeur dudit au moins un paramètre est égale à la deuxième valeur dudit au moins un paramètre.
12. Cuve étanche et thermiquement isolante selon l'une des revendications 4 à 6, dans laquelle les modules isolants (5, 7, 18, 26, 30, 36) de la zone de transition (14) comportent un troisième module isolant (26) agencé dans la barrière thermiquement isolante secondaire (1 ), le troisième module isolant étant plus proche de la deuxième zone (12) que le premier module isolant (5, 26, 30) et présentant une troisième valeur dudit au moins un paramètre selon la direction d'épaisseur de la paroi de cuve, et dans laquelle le deuxième module isolant (7, 18, 26) s'étend sur toute la longueur de la zone de transition dans la barrière thermiquement isolante primaire (3), la troisième valeur dudit au moins un paramètre du troisième module isolant (26) étant comprise entre la première valeur du premier module isolant (5, 26, 30) dudit au moins un paramètre et la deuxième valeur dudit au moins un paramètre du deuxième module isolant (7, 18, 26, 36).
13. Cuve étanche et thermiquement isolante selon la revendication 5, dans laquelle ledit autre parmi le premier module isolant et le deuxième module isolant (18) se développe conjointement dans la zone de transition (14) et dans la deuxième zone (12) de la paroi de cuve.
14. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 13, dans laquelle la zone de transition (14) présente un coefficient de contraction thermique selon la direction d'épaisseur de la paroi de cuve augmentant dans la direction de longueur de la paroi de cuve depuis la première zone (1 1 ) en direction de la deuxième zone (12) de la paroi de cuve.
15. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 14, dans laquelle la zone de transition (14) présente un module d'élasticité selon la direction d'épaisseur de la paroi de cuve diminuant dans la direction de longueur de la paroi de cuve depuis la première zone (1 1 ) en direction de la deuxième zone (12) de la paroi de cuve.
16. Cuve étanche et thermiquement isolante selon la revendication 14, dans laquelle le coefficient de contraction thermique selon la direction d'épaisseur de la paroi de cuve dans la zone de transition (14) augmente de façon continûment progressive depuis la première zone (1 1 ) en direction de la deuxième zone (12).
17. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 16, dans laquelle un module isolant (7, 26) de la zone de transition (14) comporte une mousse isolante structurelle (27, 41 , 42) intercalée entre le panneau de couvercle (10) et le panneau de fond (9) sur la surface du panneau de couvercle (10) et du panneau de fond (9) dudit module isolant (7, 26) de sorte que le panneau de couvercle (10) dudit module isolant (7, 26) est maintenu à distance du panneau de fond (9) dudit module isolant par ladite mousse isolante structurelle (27, 41 , 42), ladite mousse isolante structurelle (27, 41 ) présentant un coefficient de contraction thermique selon la direction d'épaisseur de la paroi de cuve plus faible que le coefficient de contraction thermique selon ladite direction d'épaisseur de la mousse isolante structurelle de la deuxième zone (12).
18. Cuve étanche et thermiquement isolante selon la revendication 17, dans laquelle la mousse isolante structurelle (41 , 42) dudit module isolant (7) de la zone de transition comporte une première portion (41 ) de mousse isolante structurelle et une deuxième portion (42) de mousse isolante structurelle, la première portion (41 ) de mousse isolante structurelle étant plus proche de la première zone (1 1 ) que la deuxième portion (42) de mousse structurelle, la première portion (41 ) de mousse isolante structurelle présentant un coefficient de contraction thermique selon la direction d'épaisseur de la cuve inférieur au coefficient de contraction thermique de la deuxième portion (42) de mousse isolante structurelle selon ladite direction d'épaisseur.
19. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 16, dans laquelle un module isolant (7, 26) de la zone de transition (14) comporte une mousse isolante structurelle (27, 41 , 42) intercalée entre le panneau de couvercle (10) et le panneau de fond (9) sur la surface du panneau de couvercle (10) et du panneau de fond (9) dudit module isolant (7, 26) de sorte que le panneau de couvercle (10) dudit module isolant (7, 26) est maintenu à distance du panneau de fond (9) dudit module isolant par ladite mousse isolante structurelle (27, 41 , 42), ladite mousse isolante structurelle (27, 41 ) présentant un module d'élasticité selon la direction d'épaisseur de la paroi de cuve plus important que le module d'élasticité selon ladite direction d'épaisseur de la mousse isolante structurelle de la deuxième zone (12).
20. Cuve étanche et thermiquement isolante selon la revendication 19, dans laquelle la mousse isolante structurelle (41 , 42) dudit module isolant (7) de la zone de transition comporte une première portion (41 ) de mousse isolante structurelle et une deuxième portion (42) de mousse isolante structurelle, la première portion (41 ) de mousse isolante structurelle étant plus proche de la première zone (1 1 ) que la deuxième portion (42) de mousse structurelle, la première portion (41 ) de mousse isolante structurelle présentant un module d'élasticité selon la direction d'épaisseur de la cuve supérieur au module d'élasticité de la deuxième portion (42) de mousse isolante structurelle selon ladite direction d'épaisseur.
21 . Cuve étanche et thermiquement isolante selon la revendication 17 ou 19, dans laquelle la mousse isolante structurelle (41 , 42) dudit module (7) de la zone de transition est une mousse de polyuréthane renforcée de fibre, la première portion (41 ) de mousse isolante structurelle présentant une orientation des fibres selon une direction d'épaisseur de la paroi de cuve et la deuxième portion (42) de mousse isolante structurelle présentant une orientation des fibres perpendiculaire à la direction d'épaisseur de la paroi de cuve..
22. Cuve étanche et thermiquement isolante selon la revendication 15, dans laquelle l'épaisseur de la première portion (41 ) diminue progressivement depuis la première zone (1 1 ) en direction de la deuxième zone (12) et l'épaisseur de la deuxième portion augmente progressivement depuis la première zone (1 1 ) en direction de la deuxième zone (12).
23. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 20, dans laquelle les modules isolants de la zone de transition comportent un module mixte (30, 36) comportant un panneau intermédiaire (34, 39) agencé entre le panneau de fond (9) et le panneau de couvercle (10), la garniture isolante (8) comportant une garniture inférieure agencée entre le panneau intermédiaire (34, 39) et le panneau de fond (9) et une garniture supérieure agencée entre le panneau intermédiaire (34, 39) et le panneau de couvercle (10),
le module mixte (30, 36) comportant des entretoises porteuses se développant selon une direction d'épaisseur de la paroi de cuve entre le panneau intermédiaire (34, 39) et l'un parmi le panneau de fond (9) et le panneau de couvercle (10), lesdites entretoises étant distribuées sur la surface du panneau intermédiaire (34, 39) et dudit un parmi le panneau de fond (9) et le panneau de couvercle (10) de sorte que le panneau intermédiaire (34, 39) et ledit un parmi le panneau de fond (9) et le panneau de couvercle (10) sont maintenus à distance l'un de l'autre par lesdites entretoises porteuses,
la garniture isolante agencée entre le panneau intermédiaire (34, 39) et l'autre parmi le panneau de fond (9) et le panneau de couvercle (10) comportant une mousse isolante structurelle distribuée sur la surface du panneau intermédiaire (34, 39) et dudit autre parmi le panneau de fond (9) et le panneau de couvercle (10) de sorte que le panneau intermédiaire (34, 39) et ledit autre parmi le panneau de fond (9) et le panneau de couvercle (10) sont maintenus à distance par ladite mousse isolante structurelle.
24. Cuve étanche et thermiquement isolante selon la revendication 23, dans laquelle le panneau intermédiaire (39) se développe dans un plan incliné par rapport au panneau de fond (9) et au panneau de couvercle (10).
25. Cuve étanche et thermiquement isolante selon la revendication 23 ou la revendication 24, dans laquelle le panneau intermédiaire (39) est distant d'un bord du module mixte (36) situé proche de l'une parmi la première zone (1 1 ) et la deuxième zone (12).
26. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 25, dans laquelle les membranes étanches primaires et secondaires sont essentiellement constituées de bandes métalliques s'étendant dans la direction de longueur et présentant des bords longitudinaux relevées, les bords relevés de deux bandes métalliques adjacentes étant soudés deux à deux de manière à former de soufflets de dilatation autorisant une déformation de la membrane étanche dans une direction perpendiculaire à la direction de longueur, dans laquelle l'angle de la cuve comporte une aile d'ancrage (23) primaire et une aile d'ancrage secondaire, une première extrémité desdites ailes d'ancrage (23) étant ancrée à la structure porteuse (6) et une deuxième extrémité desdites ailes d'ancrage (23) étant soudée de manière étanche à la membrane d'étanchéité correspondante.
27. Cuve étanche et thermiquement isolante selon la revendication 26, dans laquelle la membrane d'étanchéité primaire comporte des ondulations s'étendant perpendiculairement aux bords relevés et disposées au droit de la première zone (1 1 ).
28. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 25, dans laquelle la membrane étanche secondaire (2) est essentiellement constituée de bandes métalliques s'étendant dans la direction de longueur et présentant des bords longitudinaux relevées, les bords relevés de deux bandes métalliques adjacentes étant soudés deux à deux de manière à former de soufflets de dilatation autorisant une déformation de la membrane étanche dans une direction perpendiculaire à la direction de longueur, dans laquelle l'angle de la cuve comporte une aile d'ancrage (23) secondaire, une première extrémité de ladite aile d'ancrage (23) étant ancrée à la structure porteuse (6) et une deuxième extrémité de ladite aile d'ancrage (23) étant soudée de manière étanche à la membrane d'étanchéité secondaire, et dans laquelle la membrane étanche primaire (4) comporte des plaques métalliques ondulées.
29. Navire (70) pour le transport d'un produit liquide froid, le navire comportant une double coque (72) et une cuve (71 ) selon l'une des revendications 1 à 28 disposée dans la double coque.
30. Procédé de chargement ou déchargement d'un navire (70) selon la revendication 29, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81 ) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71 ).
31. Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication 29, des canalisations isolées (73, 79, 76, 81 ) agencées de manière à relier la cuve (71 ) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
PCT/FR2018/052561 2017-10-20 2018-10-16 Cuve etanche et thermiquement isolante a plusieurs zones WO2019077253A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP18797016.5A EP3698079A1 (fr) 2017-10-20 2018-10-16 Cuve etanche et thermiquement isolante a plusieurs zones
JP2020521982A JP7082662B2 (ja) 2017-10-20 2018-10-16 複数の領域を持つ密閉断熱タンク
AU2018353475A AU2018353475B2 (en) 2017-10-20 2018-10-16 Sealed and thermally insulating tank with several areas
SG11202003487YA SG11202003487YA (en) 2017-10-20 2018-10-16 Sealed and thermally insulating tank with several areas
RU2020113164A RU2753857C1 (ru) 2017-10-20 2018-10-16 Герметичный и теплоизоляционный резервуар с несколькими областями
KR1020207014066A KR102614343B1 (ko) 2017-10-20 2018-10-16 복수의 영역을 갖는 밀폐 및 단열 탱크
CN201880076772.XA CN111417816B (zh) 2017-10-20 2018-10-16 具有若干区域的密封热绝缘罐
US16/754,516 US11480298B2 (en) 2017-10-20 2018-10-16 Sealed and thermally insulating tank with several areas
PH12020550867A PH12020550867A1 (en) 2017-10-20 2020-04-15 Sealed and thermally insulating tank with several areas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1771108 2017-10-20
FR1771108A FR3072758B1 (fr) 2017-10-20 2017-10-20 Cuve etanche et thermiquement isolante a plusieurs zones
FR1854890A FR3072760B1 (fr) 2017-10-20 2018-06-05 Cuve etanche et thermiquement isolante a plusieurs zones
FR1854890 2018-06-05

Publications (1)

Publication Number Publication Date
WO2019077253A1 true WO2019077253A1 (fr) 2019-04-25

Family

ID=64109899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/052561 WO2019077253A1 (fr) 2017-10-20 2018-10-16 Cuve etanche et thermiquement isolante a plusieurs zones

Country Status (1)

Country Link
WO (1) WO2019077253A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021074435A1 (fr) 2019-10-18 2021-04-22 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
WO2021239432A1 (fr) 2020-05-27 2021-12-02 Gaztransport Et Technigaz Caisse autoporteuse convenant pour le soutien et l'isolation thermique d'une membrane étanche
FR3110950A1 (fr) 2020-05-26 2021-12-03 Gaztransport Et Technigaz Dispositif d’ancrage destine a retenir des blocs isolants
FR3118796A1 (fr) 2021-01-13 2022-07-15 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié
WO2022152794A1 (fr) 2021-01-13 2022-07-21 Gaztransport Et Technigaz Installation de stockage pour gaz liquefie
WO2022233907A1 (fr) 2021-05-05 2022-11-10 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié
FR3122718A1 (fr) 2021-05-05 2022-11-11 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié
FR3125323A1 (fr) 2021-07-19 2023-01-20 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié
FR3131360A1 (fr) 2021-12-23 2023-06-30 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié
RU2812589C1 (ru) * 2019-10-18 2024-01-30 Газтранспорт Эт Технигаз Герметичный и теплоизоляционный резервуар
FR3142528A1 (fr) 2022-11-29 2024-05-31 Gaztransport Et Technigaz Caisse autoporteuse convenant pour le soutien et l'isolation thermique d'une membrane étanche

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989009909A1 (fr) 1988-04-08 1989-10-19 Gaz-Transport Cuve etanche et thermiquement isolante perfectionnee, integree a la structure porteuse d'un navire
FR2683786A1 (fr) 1991-11-20 1993-05-21 Gaz Transport Cuve etanche et thermiquement isolante perfectionnee, integree a la structure porteuse d'un navire.
FR2691520A1 (fr) 1992-05-20 1993-11-26 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
FR2798358A1 (fr) 1999-09-14 2001-03-16 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire, a structure d'angle simplifiee
FR2813111A1 (fr) 2000-08-18 2002-02-22 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante aretes longitudinales ameliorees
FR2867831A1 (fr) 2004-03-17 2005-09-23 Gaz Transport & Technigaz Caisse autoporteuse en bois convenant pour le soutien et l'isolation thermique d'une membrane de cuve etanche
FR2877638A1 (fr) 2004-11-10 2006-05-12 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee a elements calorifuges resistants a la compression
FR2877639A1 (fr) 2004-11-10 2006-05-12 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee integree a la stucture porteuse d'un navire
WO2013004943A1 (fr) 2011-07-06 2013-01-10 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse
WO2013017781A1 (fr) 2011-08-01 2013-02-07 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
WO2013017773A2 (fr) 2011-08-01 2013-02-07 Gaztransport Et Technigaz Bloc isolant pour la fabrication d'une paroi de cuve
WO2013124556A1 (fr) 2012-02-20 2013-08-29 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante comportant une piece d'angle
WO2014057221A2 (fr) 2012-10-09 2014-04-17 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante comportant une membrane métallique ondulée selon des plis orthogonaux
WO2014096600A1 (fr) 2012-12-21 2014-06-26 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
WO2014128381A1 (fr) 2013-02-22 2014-08-28 Gaztransport Et Technigaz Paroi de cuve comportant un element traversant
WO2015001240A2 (fr) * 2013-07-02 2015-01-08 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante de stockage d'un fluide
WO2015007974A2 (fr) 2013-07-19 2015-01-22 Gaztransport Et Technigaz Structure d'angle pour cuve isolante et étanche
WO2016046487A1 (fr) 2014-09-26 2016-03-31 Gaztransport Et Technigaz Cuve étanche et isolante comportant un élément de pontage entre les panneaux de la barrière isolante secondaire
WO2016097578A2 (fr) 2014-12-15 2016-06-23 Gaztransport Et Technigaz Bloc isolant convenant pour realiser une paroi isolante dans une cuve etanche
WO2016166481A2 (fr) * 2015-04-15 2016-10-20 Gaztransport Et Technigaz Cuve équipée d'une paroi présentant une zone singulière au travers de laquelle passe un élément traversant

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989009909A1 (fr) 1988-04-08 1989-10-19 Gaz-Transport Cuve etanche et thermiquement isolante perfectionnee, integree a la structure porteuse d'un navire
FR2683786A1 (fr) 1991-11-20 1993-05-21 Gaz Transport Cuve etanche et thermiquement isolante perfectionnee, integree a la structure porteuse d'un navire.
FR2691520A1 (fr) 1992-05-20 1993-11-26 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
FR2798358A1 (fr) 1999-09-14 2001-03-16 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire, a structure d'angle simplifiee
FR2813111A1 (fr) 2000-08-18 2002-02-22 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante aretes longitudinales ameliorees
FR2867831A1 (fr) 2004-03-17 2005-09-23 Gaz Transport & Technigaz Caisse autoporteuse en bois convenant pour le soutien et l'isolation thermique d'une membrane de cuve etanche
FR2877638A1 (fr) 2004-11-10 2006-05-12 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee a elements calorifuges resistants a la compression
FR2877639A1 (fr) 2004-11-10 2006-05-12 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee integree a la stucture porteuse d'un navire
WO2013004943A1 (fr) 2011-07-06 2013-01-10 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse
WO2013017781A1 (fr) 2011-08-01 2013-02-07 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
WO2013017773A2 (fr) 2011-08-01 2013-02-07 Gaztransport Et Technigaz Bloc isolant pour la fabrication d'une paroi de cuve
WO2013124556A1 (fr) 2012-02-20 2013-08-29 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante comportant une piece d'angle
WO2014057221A2 (fr) 2012-10-09 2014-04-17 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante comportant une membrane métallique ondulée selon des plis orthogonaux
WO2014096600A1 (fr) 2012-12-21 2014-06-26 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
WO2014128381A1 (fr) 2013-02-22 2014-08-28 Gaztransport Et Technigaz Paroi de cuve comportant un element traversant
WO2015001240A2 (fr) * 2013-07-02 2015-01-08 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante de stockage d'un fluide
WO2015007974A2 (fr) 2013-07-19 2015-01-22 Gaztransport Et Technigaz Structure d'angle pour cuve isolante et étanche
WO2016046487A1 (fr) 2014-09-26 2016-03-31 Gaztransport Et Technigaz Cuve étanche et isolante comportant un élément de pontage entre les panneaux de la barrière isolante secondaire
WO2016097578A2 (fr) 2014-12-15 2016-06-23 Gaztransport Et Technigaz Bloc isolant convenant pour realiser une paroi isolante dans une cuve etanche
WO2016166481A2 (fr) * 2015-04-15 2016-10-20 Gaztransport Et Technigaz Cuve équipée d'une paroi présentant une zone singulière au travers de laquelle passe un élément traversant

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102437681B1 (ko) 2019-10-18 2022-08-30 가즈트랑스포르 에 떼끄니가즈 밀폐 및 단열 탱크
FR3102228A1 (fr) 2019-10-18 2021-04-23 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
KR20210110884A (ko) * 2019-10-18 2021-09-09 가즈트랑스포르 에 떼끄니가즈 밀폐 및 단열 탱크
RU2812589C1 (ru) * 2019-10-18 2024-01-30 Газтранспорт Эт Технигаз Герметичный и теплоизоляционный резервуар
JP2023508622A (ja) * 2019-10-18 2023-03-03 ギャズトランスポルト エ テクニギャズ 密閉断熱タンク
WO2021074435A1 (fr) 2019-10-18 2021-04-22 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
FR3110950A1 (fr) 2020-05-26 2021-12-03 Gaztransport Et Technigaz Dispositif d’ancrage destine a retenir des blocs isolants
FR3110949A1 (fr) 2020-05-26 2021-12-03 Gaztransport Et Technigaz Dispositif d’ancrage destine a retenir des blocs isolants
WO2021239432A1 (fr) 2020-05-27 2021-12-02 Gaztransport Et Technigaz Caisse autoporteuse convenant pour le soutien et l'isolation thermique d'une membrane étanche
FR3110952A1 (fr) 2020-05-27 2021-12-03 Gaztransport Et Technigaz Caisse autoporteuse convenant pour le soutien et l'isolation thermique d'une membrane étanche
CN114008375A (zh) * 2020-05-27 2022-02-01 气体运输技术公司 适于支撑密封膜并使其绝热的自支撑盒体
WO2022152794A1 (fr) 2021-01-13 2022-07-21 Gaztransport Et Technigaz Installation de stockage pour gaz liquefie
FR3118795A1 (fr) 2021-01-13 2022-07-15 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié
FR3118796A1 (fr) 2021-01-13 2022-07-15 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié
WO2022233907A1 (fr) 2021-05-05 2022-11-10 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié
FR3122718A1 (fr) 2021-05-05 2022-11-11 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié
FR3125323A1 (fr) 2021-07-19 2023-01-20 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié
WO2023001678A1 (fr) 2021-07-19 2023-01-26 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié
FR3131360A1 (fr) 2021-12-23 2023-06-30 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié
FR3142528A1 (fr) 2022-11-29 2024-05-31 Gaztransport Et Technigaz Caisse autoporteuse convenant pour le soutien et l'isolation thermique d'une membrane étanche

Similar Documents

Publication Publication Date Title
WO2019077253A1 (fr) Cuve etanche et thermiquement isolante a plusieurs zones
FR3072760B1 (fr) Cuve etanche et thermiquement isolante a plusieurs zones
FR3084645A1 (fr) Structure d'angle pour une cuve etanche et thermiquement isolante
EP3948060B1 (fr) Cuve étanche et thermiquement isolante
EP3114387B1 (fr) Cuve étanche et isolante comportant un élément de déflexion permettant l'écoulement de gaz au niveau d'un angle
EP3942219B1 (fr) Cuve étanche et thermiquement isolante
FR3102228A1 (fr) Cuve étanche et thermiquement isolante
FR3085199A1 (fr) Paroi de cuve etanche et thermiquement isolante
FR3082594A1 (fr) Cuve etanche et thermiquement isolante
WO2018167403A1 (fr) Cuve étanche et thermiquement isolante comportant un bouchon isolant de renfort
WO2021186049A1 (fr) Cuve étanche et thermiquement isolante
FR3094450A1 (fr) Cuve étanche et thermiquement isolante
WO2021094493A1 (fr) Cuve étanche et thermiquement isolante à joints isolants anti-convectifs
WO2021245091A1 (fr) Cuve étanche et thermiquement isolante intégrée dans une structure porteuse
WO2019145635A1 (fr) Cuve etanche et thermiquement isolante
WO2021013856A1 (fr) Membrane d'etancheite pour cuve etanche de stockage de fluide
WO2020079342A1 (fr) Paroi d'une cuve etanche et thermiquement isolante
WO2024125850A1 (fr) Cuve étanche et thermiquement isolante comportant un élément traversant
WO2024125849A1 (fr) Cuve étanche et thermiquement isolante comportant un élément traversant
WO2023036769A1 (fr) Installation de stockage pour gaz liquéfié
WO2023025501A1 (fr) Installation de stockage pour gaz liquéfié
WO2021018844A1 (fr) Cuve étanche et thermiquement isolante pour structure flottante
FR3141983A1 (fr) Paroi pour une cuve étanche et thermiquement isolante
WO2020089549A1 (fr) Installation de stockage pour gaz liquefie
WO2020058600A1 (fr) Installation de stockage pour gaz liquéfié

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521982

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018353475

Country of ref document: AU

Date of ref document: 20181016

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207014066

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018797016

Country of ref document: EP

Effective date: 20200520