[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019067123A1 - Liquéfaction de gaz naturel au moyen d'un procédé de détente à haute pression - Google Patents

Liquéfaction de gaz naturel au moyen d'un procédé de détente à haute pression Download PDF

Info

Publication number
WO2019067123A1
WO2019067123A1 PCT/US2018/047955 US2018047955W WO2019067123A1 WO 2019067123 A1 WO2019067123 A1 WO 2019067123A1 US 2018047955 W US2018047955 W US 2018047955W WO 2019067123 A1 WO2019067123 A1 WO 2019067123A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
stream
refrigerant stream
cooled
compressed
Prior art date
Application number
PCT/US2018/047955
Other languages
English (en)
Inventor
Fritz Pierre, Jr.
Original Assignee
Exxonmobil Upstream Research Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxonmobil Upstream Research Company filed Critical Exxonmobil Upstream Research Company
Priority to SG11202001875TA priority Critical patent/SG11202001875TA/en
Priority to EP18766444.6A priority patent/EP3688390A1/fr
Priority to AU2018342116A priority patent/AU2018342116B2/en
Priority to CA3076605A priority patent/CA3076605C/fr
Priority to JP2020517802A priority patent/JP6945732B2/ja
Publication of WO2019067123A1 publication Critical patent/WO2019067123A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0057Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0082Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0205Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0207Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as at least a three level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0219Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. using a deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • F25J1/025Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0263Details of the cold heat exchange system using different types of heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/60Natural gas or synthetic natural gas [SNG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/12Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios

Definitions

  • the disclosure relates generally to liquefied natural gas (LNG) production. More specifically, the disclosure relates to LNG production at high pressures.
  • LNG liquefied natural gas
  • the refrigerants used in liquefaction processes may comprise a mixture of components such as methane, ethane, propane, butane, and nitrogen in multi-component refrigeration cycles.
  • the refrigerants may also be pure substances such as propane, ethylene, or nitrogen in "cascade cycles. " Substantial volumes of these refrigerants with close control of composition are required. Further, such refrigerants may have to be imported and stored, which impose logistics requirements, especially for LNG production in remote locations.
  • some of the components of the refrigerant may be prepared, typically by a distillation process integrated with the liquefaction process.
  • gas expanders to provide the feed gas cooling, thereby eliminating or reducing the logistical problems of refrigerant handling, is seen in some instances as having advantages over refrigerant-based cooling.
  • the expander system operates on the principle that the refrigerant gas can be allowed to expand through an expansion turbine, thereby performing work and reducing the temperature of the gas. The low temperature gas is then heat exchanged with the feed gas to provide the refrigeration needed.
  • the power obtained from cooling expansions in gas expanders can be used to supply part of the main compression power used in the refrigeration cycle.
  • the typical expander cycle for making LNG operates at the feed gas pressure, typically under about 6,895 kPa (1,000 psia).
  • Supplemental cooling is typically needed to fully liquefy the feed gas and this may be provided by additional refrigerant systems, such as secondary cooling and/or sub-cooling loops.
  • additional refrigerant systems such as secondary cooling and/or sub-cooling loops.
  • U. S. Pat. No. 6,412,302 and U. S. Pat. No. 5,916,260 present expander cycles which describe the use of nitrogen as refrigerant in the sub-cooling loop.
  • U. S. Patent Application US2009/0217701 introduced the concept of using high pressure within the primary cooling loop to eliminate the need for external refrigerant and improve efficiency, at least comparable to that of refrigerant-based cycles currently in use.
  • the high pressure expander process (HPXP), disclosed in U. S. Patent Application US2009/0217701, is an expander cycle which uses high pressure expanders in a manner distinguishing from other expander cycles.
  • a portion of the feed gas stream may be extracted and used as the refrigerant in either an open loop or closed loop refrigeration cycle to cool the feed gas stream below its critical temperature.
  • a portion of LNG boil-off gas may be extracted and used as the refrigerant in a closed loop refrigeration cycle to cool the feed gas stream below its critical temperature.
  • This refrigeration cycle is referred to as the primary cooling loop.
  • the primary cooling loop is followed by a sub-cooling loop which acts to further cool the feed gas.
  • the refrigerant is compressed to a pressure greater than 1 ,500 psia, or more preferably, to a pressure of approximately 3,000 psia.
  • the refrigerant is then cooled against an ambient cooling medium (air or water) prior to being near isentropically expanded to provide the cold refrigerant needed to liquefy the feed gas.
  • FIG. 1 depicts an example of a known HPXP liquefaction process 100, and is similar to one or more processes disclosed in U. S. Patent Application US2009/0217701.
  • an expander loop 102 i.e., an expander cycle
  • a sub-cooling loop 104 are used.
  • Feed gas stream 106 enters the HPXP liquefaction process at a pressure less than about 1 ,200 psia, or less than about 1 , 100 psia, or less than about 1,000 psia, or less than about 900 psia, or less than about 800 psia, or less than about 700 psia, or less than about 600 psia.
  • the pressure of feed gas stream 106 will be about 800 psia.
  • Feed gas stream 106 generally comprises natural gas that has been treated to remove contaminants using processes and equipment that are well known in the art.
  • a compression unit 108 compresses a refrigerant stream 109 (which may be a treated gas stream) to a pressure greater than or equal to about 1,500 psia, thus providing a compressed refrigerant stream 110.
  • the refrigerant stream 109 may be compressed to a pressure greater than or equal to about 1,600 psia, or greater than or equal to about 1,700 psia, or greater than or equal to about 1 ,800 psia, or greater than or equal to about 1,900 psia, or greater than or equal to about 2,000 psia, or greater than or equal to about 2,500 psia, or greater than or equal to about 3,000 psia, thus providing compressed refrigerant stream 110.
  • compressed refrigerant stream 110 is passed to a cooler 112 where it is cooled by indirect heat exchange with a suitable cooling fluid to provide a compressed, cooled refrigerant stream 114.
  • Cooler 112 may be of the type that provides water or air as the cooling fluid, although any type of cooler can be used.
  • the temperature of the compressed, cooled refrigerant stream 114 depends on the ambient conditions and the cooling medium used, and is typically from about 35 °F. to about 105 °F.
  • Compressed, cooled refrigerant stream 114 is then passed to an expander 116 where it is expanded and consequently cooled to form an expanded refrigerant stream 118.
  • Expander 116 is a work-expansion device, such as a gas expander, which produces work that may be extracted and used for compression.
  • Expanded refrigerant stream 118 is passed to a first heat exchanger 120, and provides at least part of the refrigeration duty for first heat exchanger 120. Upon exiting first heat exchanger 120, expanded refrigerant stream 118 is fed to a compression unit 122 for pressurization to form refrigerant stream 109.
  • Feed gas stream 106 flows through first heat exchanger 120 where it is cooled, at least in part, by indirect heat exchange with expanded refrigerant stream 118. After exiting first heat exchanger 120, the feed gas stream 106 is passed to a second heat exchanger 124. The principal function of second heat exchanger 124 is to sub-cool the feed gas stream. Thus, in second heat exchanger 124 the feed gas stream 106 is sub-cooled by sub-cooling loop 104 (described below) to produce sub-cooled stream 126. Sub-cooled stream 126 is then expanded to a lower pressure in expander 128 to form a liquid fraction and a remaining vapor fraction.
  • Expander 128 may be any pressure reducing device, including, but not limited to a valve, control valve, Joule Thompson valve, Venturi device, liquid expander, hydraulic turbine, and the like.
  • the sub-cooled stream 126 which is now at a lower pressure and partially liquefied, is passed to a surge tank 130 where the liquefied fraction 132 is withdrawn from the process as an LNG stream 134, which has a temperature corresponding to the bubble point pressure.
  • the remaining vapor fraction (flash vapor) stream 136 may be used as fuel to power the compressor units.
  • an expanded sub-cooling refrigerant stream 138 (preferably comprising nitrogen) is discharged from an expander 140 and drawn through second and first heat exchangers 124, 120. Expanded sub-cooling refrigerant stream 138 is then sent to a compression unit 142 where it is re-compressed to a higher pressure and warmed. After exiting compression unit 142, the re-compressed sub-cooling refrigerant stream 144 is cooled in a cooler 146, which can be of the same type as cooler 112, although any type of cooler may be used.
  • the re-compressed sub-cooling refrigerant stream is passed to first heat exchanger 120 where it is further cooled by indirect heat exchange with expanded refrigerant stream 118 and expanded sub-cooling refrigerant stream 138.
  • the re-compressed and cooled sub-cooling refrigerant stream is expanded through expander 140 to provide a cooled stream which is then passed through second heat exchanger 124 to sub-cool the portion of the feed gas stream to be finally expanded to produce LNG.
  • U. S. Patent Application US2010/0107684 disclosed an improvement to the performance of the HPXP through the discovery that adding external cooling to further cool the compressed refrigerant to temperatures below ambient conditions provides significant advantages which in certain situations justifies the added equipment associated with external cooling.
  • the HPXP embodiments described in the aforementioned patent applications perform comparably to alternative mixed external refrigerant LNG production processes such as single mixed refrigerant processes.
  • U. S. Patent Application 2010/0186445 disclosed the incorporation of feed compression up to 4,500 psia to the HPXP. Compressing the feed gas prior to liquefying the gas in the HPXP's primary cooling loop has the advantage of increasing the overall process efficiency. For a given production rate, this also has the advantage of significantly reducing the required flow rate of the refrigerant within the primary cooling loop which enables the use of compact equipment, which is particularly attractive for floating LNG applications. Furthermore, feed compression provides a means of increasing the LNG production of an HPXP train by more than 30% for a fixed amount of power going to the primary cooling and sub-cooling loops.
  • the present disclosure provides a method for liquefying a feed gas stream rich in methane using a system having first and second heat exchanger zones, where the method comprises the following steps: providing the feed gas stream at a pressure less than 1 ,200 psia; providing a compressed refrigerant stream with a pressure greater than or equal to 1 ,500 psia; cooling the compressed refrigerant stream by indirect heat exchange with an ambient temperature air or water, to produce a compressed, cooled refrigerant stream; directing the compressed, cooled refrigerant stream to the second heat exchanger zone to additionally cool the compressed, cooled refrigerant stream below ambient temperature to produce a compressed, additionally cooled refrigerant stream; expanding the compressed, additionally cooled refrigerant stream in at least one work producing expander, thereby producing an expanded, cooled refrigerant stream; passing the expanded, cooled refrigerant stream through the first heat exchanger zone to form a first warm refrigerant stream, wherein the first warm refrigerant stream
  • the present disclosure also provides a system for liquefying a feed gas stream rich in methane, the system having first and second heat exchanger zones.
  • a feed gas stream at a pressure less than 1,200 psia is provided.
  • a compressed refrigerant stream is provided with a pressure greater than or equal to 1 ,500 psia.
  • a cooler is configured to cool the compressed refrigerant stream by indirect heat exchange with an ambient temperature air or water, to produce a compressed, cooled refrigerant stream.
  • At least one heat exchanger is provided within the second heat exchanger zone, the compressed, cooled refrigerant stream being directed to the at least one heat exchanger within the second heat exchanger zone to additionally cool the compressed, cooled refrigerant stream below ambient temperature and thereby produce a compressed, additionally cooled refrigerant stream.
  • At least one work producing expander is arranged to expand the compressed, additionally cooled refrigerant stream, thereby producing an expanded, cooled refrigerant stream.
  • At least one heat exchanger is provided within the first heat exchanger zone.
  • the expanded, cooled refrigerant stream passes through the at least one heat exchanger in the first heat exchanger zone to form a first warm refrigerant stream, wherein the first warm refrigerant stream has a temperature that is cooler, by at least 5 °F, than the highest fluid temperature within the first heat exchanger zone.
  • the feed gas stream passes through the first heat exchanger zone to cool at least part of the feed gas stream by indirect heat exchange with the expanded, cooled refrigerant stream, thereby forming a liquefied gas stream.
  • At least a portion of the first warm refrigerant stream is directed to the second heat exchanger zone to cool by indirect heat exchange the compressed, cooled refrigerant stream, thereby forming a second warm refrigerant stream.
  • a compressor is configured to compress the second warm refrigerant stream to produce the compressed refrigerant stream.
  • the present disclosure also provides a method for liquefying a feed gas stream rich in methane, where the method comprises the following steps: providing the feed gas stream at a pressure less than 1,200 psia; compressing the feed gas stream to a pressure of at least 1,500 psia to form a compressed gas stream; cooling the compressed gas stream by indirect heat exchange with an ambient temperature air or water, to form a cooled, compressed gas stream; expanding the cooled, compressed gas stream in at least one work producing expander to a pressure that is less than 2,000 psia and no greater than the pressure to which the gas stream was compressed, to thereby form a chilled gas stream; providing a compressed refrigerant stream with a pressure greater than or equal to 1,500 psia; cooling the compressed refrigerant stream by indirect heat exchange with an ambient temperature air or water, to produce a compressed, cooled refrigerant stream; directing the compressed, cooled refrigerant stream to a second heat exchanger zone, to additionally cool the compressed, cooled
  • the disclosure also provides a system for liquefying a feed gas stream rich in methane and having a pressure less than 1 ,200 psia.
  • the system comprises: a compressor for compressing the feed gas stream to a pressure of at least 1,500 psia, to form a compressed gas stream; a cooler for cooling the compressed gas stream by indirect heat exchange with an ambient temperature air or water, to form a cooled, compressed gas stream; at least one work producing expander for expanding the cooled, compressed gas stream to a pressure that is less than 2,000 psia and no greater than the pressure to which the gas stream was compressed, to thereby form a chilled gas stream; a compressed refrigerant stream with a pressure greater than or equal to 1,500 psia; a refrigerant cooler for cooling the compressed refrigerant stream by indirect heat exchange with an ambient temperature air or water, to produce a compressed, cooled refrigerant stream; a heat exchanger zone through which the compressed, cooled refrigerant stream is directed to
  • Figure 1 is a schematic diagram of a system for LNG production according to known principles.
  • Figure 2 is a schematic diagram of a system for LNG production according to disclosed aspects.
  • Figure 3 is a schematic diagram of a system for LNG production according to disclosed aspects.
  • Figure 4 is a schematic diagram of a system for LNG production according to disclosed aspects.
  • Figure 5 is a schematic diagram of a system for LNG production according to disclosed aspects.
  • Figure 6 is a schematic diagram of a system for LNG production according to disclosed aspects.
  • Figure 7 is a schematic diagram of a system for LNG production according to disclosed aspects.
  • Figure 8 is a schematic diagram of a system for LNG production according to disclosed aspects.
  • Figure 9 is a schematic diagram of a system for LNG production according to disclosed aspects.
  • Figure 10 is a flowchart of a method according to aspects of the disclosure.
  • Figure 11 is a flowchart of a method according to aspects of the disclosure.
  • Figure 12 is a flowchart of a method according to aspects of the disclosure.
  • compression unit means any one type or combination of similar or different types of compression equipment, and may include auxiliary equipment, known in the art for compressing a substance or mixture of substances.
  • a “compression unit” may utilize one or more compression stages.
  • Illustrative compressors may include, but are not limited to, positive displacement types, such as reciprocating and rotary compressors for example, and dynamic types, such as centrifugal and axial flow compressors, for example.
  • gas is used interchangeably with "vapor,” and is defined as a substance or mixture of substances in the gaseous state as distinguished from the liquid or solid state.
  • liquid means a substance or mixture of substances in the liquid state as distinguished from the gas or solid state.
  • heat exchange area means any one type or combination of similar or different types of equipment known in the art for facilitating heat transfer.
  • a “heat exchange area” may be contained within a single piece of equipment, or it may comprise areas contained in a plurality of equipment pieces. Conversely, multiple heat exchange areas may be contained in a single piece of equipment.
  • hydrocarbon is an organic compound that primarily includes the elements hydrogen and carbon, although nitrogen, sulfur, oxygen, metals, or any number of other elements can be present in small amounts. As used herein, hydrocarbons generally refer to components found in natural gas, oil, or chemical processing facilities.
  • natural gas means a gaseous feedstock suitable for manufacturing
  • Natural gas may include gas obtained from a crude oil well (associated gas) or from a gas well (non-associated gas).
  • the disclosure describes a process/method and system for liquefying natural gas and other methane-rich gas streams to produce liquefied natural gas (LNG) and/or other liquefied methane-rich gases.
  • the primary cooling loop is segmented into two heat exchanger zones. Within the first heat exchanger zone, the primary cooling loop refrigerant is used to liquefy the feed gas. Within the second heat exchanger zone, all or a portion of the primary cooling loop refrigerant is used to cool the high pressure primary cooling loop refrigerant prior to expansion of the refrigerant. The first heat exchanger zone is physically separate from second heat exchanger zone.
  • the heat exchanger type of the first heat exchanger zone is different from the heat exchanger type of the second heat exchanger zone.
  • One advantage of having two separate heat exchanger zones is that the types of heat exchangers in the two zones can be different from each other.
  • the type of heat exchanger(s) used in the first exchanger zone may include a brazed aluminum heat exchanger
  • the type of heat exchanger(s) used in the second heat exchanger zone may be include a printed circuit heat exchanger. It is in the first exchanger zone where more the 90% of the heat transfer needed to liquefy the feed gas occurs. Using the less expensive brazed aluminum heat exchanger here reduces project cost.
  • the significantly more expensive printed circuit heat exchanger may be used in the second heat exchanger zone because it can operate at the required 3,000 psia pressure of the high pressure refrigerant.
  • the use of a printed circuit heat exchanger in the second heat exchanger zone does not significantly impact overall proj ect cost since it is a relatively small heat exchanger. This is because the heat transfer duty within the second heat exchanger zone is significantly smaller than that of the first heat exchanger zone.
  • Both heat exchanger zones may comprise multiple heat exchangers.
  • a method for liquefying a gas stream includes: (a) providing the gas stream at a pressure less than 1,200 psia; (b) providing a compressed refrigerant with a pressure greater than or equal to 1 ,500 psia; (c) cooling the compressed refrigerant by indirect heat exchange with an ambient temperature air or water to produce a compressed, cooled refrigerant; (d) directing the compressed, cooled refrigerant to a second heat exchanger zone to additionally cool the compressed, cooled refrigerant below ambient temperature to produce a compressed, additionally cooled refrigerant; (e) expanding the compressed, additionally cooled refrigerant in at least one work producing expander thereby producing an expanded, cooled refrigerant; (f) passing the expanded, cooled refrigerant through a first heat exchanger zone to form a first warm refrigerant, whereby the first warm refrigerant has a temperature that is cooler, by at least 5
  • a method for liquefying a gas stream includes: (a) providing the gas stream at a pressure less than 1,200 psia; (b) compressing the gas stream to a pressure of at least 1 ,500 psia to form a compressed gas stream; (c) cooling the compressed gas stream by indirect heat exchange with an ambient temperature air or water to form a compressed, cooled gas stream; (d) expanding the compressed, cooled gas stream in at least one work producing expander to a pressure that is less than 2,000 psia and no greater than the pressure to which the gas stream was compressed, to thereby form a chilled gas stream; (e) providing a compressed refrigerant with a pressure greater than or equal to 1,500 psia (f) cooling the compressed refrigerant by indirect heat exchange with an ambient temperature air or water to produce a compressed, cooled refrigerant (g) directing the compressed, cooled refrigerant to a second heat exchanger zone to additionally cool the compressed, cooled refrig
  • a method for liquefying a gas stream includes: (a) providing the gas stream at a pressure less than 1,200 psia; (b) providing a refrigerant stream at near the same pressure of the gas stream; (c) mixing the gas stream with the refrigerant stream to form a second gas stream; (d) compressing the second gas stream to a pressure of at least 1,500 psia to form a compressed second gas stream; (e) cooling the compressed second gas stream by indirect heat exchange with an ambient temperature air or water to form a compressed, cooled second gas stream; (f) directing the compressed, cooled second gas stream to a second heat exchanger zone to additionally cool the compressed, cooled second gas stream below ambient temperature to produce a compressed, additionally cooled second gas stream; (g) expanding the compressed, additionally cooled second gas stream in at least one work producing expander to a pressure that is less than 2,000 psia and no greater than the pressure to which the second gas stream was compressed, to thereby form an expanded
  • aspects of the disclosure may include the additional steps of compressing the gas stream to a pressure no greater than 1,600 psia and then cooling the compressed gas stream by indirect heat exchange with an ambient temperature air or water prior to directing the gas stream to the first heat exchanger zone. Aspects of the disclosure may also include the additional steps of cooling the gas stream to a temperature below the ambient by indirect heat exchange within an external cooling unit prior to directing the gas stream to the first heat exchanger zone. Aspects of the disclosure may also include the additional steps of cooling the compressed, cooled refrigerant to a temperature below the ambient temperature by indirect heat exchange with an external cooling unit prior to directing the compressed, cooled refrigerant to the second heat exchanger zone. These described additional steps may be employed singularly or in combination with each other.
  • aspects of the disclosure have several advantages over the known liquefaction processes, in which feed compression is required to significantly improve the efficiency of the HPXP. In contrast, the efficiency of the disclosed aspects is more than 16% greater than the efficiency for a comparable configuration according to known liquefaction processes. Aspects of the disclosure may have the additional advantage of allowing significant feed compression (greater than 1 ,500 psia) without requiring the use of high cost main cryogenic heat exchangers for the first heat exchanger zone. Feed compression by the disclosed method may provide a means of increasing the LNG production of an HPXP train by more than 25% for a fixed amount of power going to the primary cooling and sub-cooling loops.
  • FIG. 2 is a schematic diagram that illustrates a liquefaction system 200 according to an aspect of the disclosure.
  • the liquefaction system 200 includes a primary cooling loop 202, which may also be called an expander loop.
  • the liquefaction system also includes a sub- cooling loop 204, which is a closed refrigeration loop preferably charged with nitrogen as the sub-cooling refrigerant.
  • an expanded, cooled refrigerant stream 205 is directed to a first heat exchanger zone 201 where it exchanges heat with a feed gas stream 206 to form a first warm refrigerant stream 208.
  • a portion of the first warm refrigerant 208 is directed to a second heat exchanger zone 210 where, in one or more heat exchangers 210a, it exchanges heat with a compressed, cooled refrigerant stream 212 to additionally cool the compressed, cooled refrigerant stream and form a second warm refrigerant stream 209 and a compressed, additionally cooled refrigerant stream 213.
  • the one or more heat exchangers 210a may be of a printed circuit heat exchanger type, a shell and tube heat exchanger type, or a combination thereof.
  • the heat exchanger types within the second heat exchanger zone may have a design pressure of greater than 1,500 psia, or more preferably, a design pressure of greater than 2,000 psia, or more preferably, a design pressure of greater than 3,000 psia.
  • the portion of the first warm refrigerant stream 208 directed to the second heat exchanger zone 210 has a temperature that is cooler by at least 5 °F, or more preferably, cooler by at least 10 °F, or more preferably, cooler by at least 15 °F, than the highest fluid temperature within the first heat exchanger zone 201.
  • the portion of the first warm refrigerant stream 208 that may remain within the first heat exchanger zone (as shown by reference number 208a) further exchanges heat with the feed gas stream to form a third warm refrigerant stream 214.
  • the second warm refrigerant stream 209 from the second heat exchanger zone 210 may be combined with the third warm refrigerant stream 214 from the first heat exchanger zone 201 to produce a fourth warm refrigerant stream 216.
  • the fourth warm refrigerant stream is compressed in one or more compression units 218, 220 to a pressure greater than 1,500 psia, or more preferably, to a pressure of approximately 3,000 psia, to form a compressed refrigerant stream 222.
  • the compressed refrigerant stream 222 is then cooled against an ambient cooling medium (air or water) in a cooler 224 to produce the compressed, cooled refrigerant stream 212.
  • Cooler 224 may be similar to cooler 112 as previously described.
  • the compressed, additionally cooled refrigerant stream 213 is near isentropically expanded in an expander 226 to produce the expanded, cooled refrigerant stream 205.
  • Expander 226 may be a work- expansion device, such as a gas expander, which produces work that may be extracted and used for compression.
  • the first heat exchanger zone 201 may include a plurality of heat exchanger devices, and in the aspects shown in Figure 2, the first heat exchanger zone includes first and second main heat exchangers 232, 234, and a sub-cooling heat exchanger 236 exchange heat with the expanded, cooled refrigerant 205.
  • heat exchangers may be of a brazed aluminum heat exchanger type, a plate fin heat exchanger type, a spiral wound heat exchanger type, or a combination thereof.
  • an expanded sub-cooling refrigerant stream 238 (preferably comprising nitrogen) is discharged from an expander 240 and drawn through sub-cooling heat exchanger 236 and second and first main heat exchangers 234, 232. Expanded sub-cooling refrigerant stream 238 is then sent to a compression unit 242 where it is re-compressed to a higher pressure and warmed.
  • the re- compressed sub-cooling refrigerant stream 244 is cooled in a cooler 246, which can be of the same type as cooler 224, although any type of cooler may be used.
  • a cooler 246, which can be of the same type as cooler 224, although any type of cooler may be used.
  • the re- compressed sub-cooling refrigerant stream is passed through first and second main heat exchangers 232, 234 where it is further cooled by indirect heat exchange with part or all of the warm refrigerant stream 208 and expanded sub-cooling refrigerant stream 238.
  • the re-compressed and cooled sub-cooling refrigerant stream is expanded through expander 240 to provide the expanded sub-cooled refrigerant stream 238 that is re-cycled through the first heat exchanger zone as described herein.
  • the feed gas stream 206 is cooled, liquefied and sub-cooled in the first heat exchanger zone 201 to produce a sub-cooled gas stream 248.
  • Sub-cooled gas stream 248 is then expanded to a lower pressure in expander 250 to form a liquid fraction and a remaining vapor fraction.
  • Expander 250 may be any pressure reducing device, including but not limited to a valve, control valve, Joule Thompson valve, Venturi device, liquid expander, hydraulic turbine, and the like.
  • the sub-cooled stream 248, which is now at a lower pressure and partially liquefied, is passed to a surge tank 252 where the liquefied fraction 254 is withdrawn from the process as an LNG stream 256, which has a temperature corresponding to the bubble point pressure.
  • the remaining vapor fraction (flash vapor) stream 258 may be used as fuel to power the compressor units.
  • FIG. 3 is a schematic diagram that illustrates a liquefaction system 300 according to another aspect of the disclosure.
  • Liquefaction system 300 is similar to liquefaction system 200 and for the sake of brevity similarly depicted or numbered components may not be further described.
  • Liquefaction system 300 includes a primary cooling loop 302 and a sub-cooling loop 304.
  • Liquefaction system 300 also includes first and second heat exchanger zones 301, 310. In contrast with liquefaction system 200, all of the first warm refrigerant 308 is directed to the second heat exchanger zone 310 where, in one or more heat exchangers 310a, it exchanges heat with a compressed, cooled refrigerant stream 312 to form a second warm refrigerant 309.
  • the first warm refrigerant stream 308 has a temperature that is cooler by at least 5 °F, or more preferably, cooler by at least 10 °F, or more preferably, cooler by at least 15 °F, than the highest fluid temperature within the first heat exchanger zone.
  • the second warm refrigerant stream 309 may be compressed in one or more compressors 318, 320 to a pressure greater than 1,500 psia, or more preferably, to a pressure of approximately 3,000 psia, to thereby form a compressed refrigerant stream 322.
  • the compressed refrigerant stream 322 is then cooled against an ambient cooling medium (air or water) to produce the compressed, cooled refrigerant stream 312 that is directed to the second heat exchanger zone 310.
  • the compressed, additionally cooled refrigerant stream 313 is near isentropically expanded in an expander 326 to produce the expanded, cooled refrigerant stream 305.
  • the feed gas stream 306 is directed through the first heat exchange area 301 that includes a main heat exchanger 332 and a sub-cooling heat exchanger 336.
  • the number of main heat exchangers in first heat exchanger zone 301 may be reduced since all of the first warm refrigerant 308 is directed to the second heat exchanger zone 310.
  • an expanded sub-cooling refrigerant stream 338 (preferably comprising nitrogen) is discharged from an expander 340 and drawn through sub-cooling heat exchanger 336 and main heat exchanger 332. Expanded sub-cooling refrigerant stream 338 is then sent to a compression unit 342 where it is re-compressed to a higher pressure and warmed.
  • the re-compressed sub-cooling refrigerant stream 344 is cooled in a cooler 346, which can be of the same type as cooler 324, although any type of cooler may be used.
  • a cooler 346 which can be of the same type as cooler 324, although any type of cooler may be used.
  • the re-compressed sub-cooling refrigerant stream is passed through main heat exchanger 232 where it is further cooled by indirect heat exchange with part or all of the expanded, cooled refrigerant stream 305 and expanded sub-cooling refrigerant stream 338.
  • the re-compressed and cooled sub-cooling refrigerant stream is expanded through expander 340 to provide the expanded sub-cooled refrigerant stream 338 that is re-cycled through the first heat exchange area as described herein.
  • the feed gas stream 306 is cooled, liquefied and sub-cooled in the first heat exchanger zone 301 to produce a sub-cooled gas stream 348.
  • Sub-cooled gas stream 348 is then expanded to a lower pressure in expander 350 to form a liquid fraction and a remaining vapor fraction.
  • Expander 350 may be any pressure reducing device, including but not limited to a valve, control valve, Joule Thompson valve, Venturi device, liquid expander, hydraulic turbine, and the like.
  • the sub-cooled stream 348 which is now at a lower pressure and partially liquefied, is passed to a surge tank 352 where the liquefied fraction 354 is withdrawn from the process as an LNG stream 356, which has a temperature corresponding to the bubble point pressure.
  • the remaining vapor fraction (flash vapor) stream 358 may be used as fuel to power the compressor units.
  • FIG. 4 is a schematic diagram that illustrates a liquefaction system 400 according to another aspect of the disclosure.
  • Liquefaction system 400 is similar to liquefaction system 200, and for the sake of brevity similarly depicted or numbered components may not be further described.
  • Liquefaction system 400 includes a primary cooling loop 402 and a sub-cooling loop 404.
  • Liquefaction system 400 also includes first and second heat exchanger zones 401, 410.
  • the sub-cooling loop 404 is an open refrigeration loop where a portion 449 of the expanded, sub-cooled gas stream 448 is recycled and used as the sub- cooling refrigerant stream.
  • the portion 449 of the expanded, sub-cooled gas stream is directed through the first heat exchanger zone 401 as previously described before being compressed in a compressor 442, cooled in a cooler 446, and re-inserted into the feed gas stream 406.
  • This sub-cooling refrigerant stream may be one stream, as shown, or may comprise multiple streams at different pressures: for example, a portion of the expanded, sub- cooling gas stream - not to exceed 50% thereof- may be diverted and pass through one or more pressure reduction valves to reduce its pressure to a range of about 30 to 300 psia, to thereby produce one or more reduced pressure gas streams.
  • the reduced pressure gas streams may then be passed through the first heat exchanger zone as the sub-cooling refrigerant. Having multiple streams improves the efficiency of the sub-cooling process.
  • this sub- cooling loop may be configured to be a closed refrigeration loop.
  • FIG. 5 is a schematic diagram that illustrates a liquefaction system 500 according to another aspect of the disclosure.
  • Liquefaction system 500 is similar to liquefaction system 200 and for the sake of brevity similarly depicted or numbered components may not be further described.
  • Liquefaction system 500 includes a primary cooling loop 502 and a sub-cooling loop 504.
  • Liquefaction system 500 also includes first and second heat exchanger zones 501, 510.
  • Liquefaction system 500 stream includes the additional steps of compressing the feed gas stream 506 in a compressor 560 and then, using a cooler 562, cooling the compressed feed gas 561 with ambient air or water to produce a cooled, compressed feed gas stream 563. Feed gas compression may be used to improve the overall efficiency of the liquefaction process and increase LNG production.
  • FIG. 6 is a schematic diagram that illustrates a liquefaction system 600 according to still another aspect of the disclosure.
  • Liquefaction system 600 is similar to liquefaction system 300 and for the sake of brevity similarly depicted or numbered components may not be further described.
  • Liquefaction system 600 includes a primary cooling loop 602 and a sub- cooling loop 604.
  • Liquefaction system 600 also includes first and second heat exchanger zones 601, 610.
  • Liquefaction system 600 includes the additional step of chilling, in an external cooling unit 665, the feed gas stream 606 to a temperature below the ambient temperature to produce a chilled gas stream 667. The chilled gas stream 667 is then directed to the first heat exchanger zone 601 as previously described. Chilling the feed gas as shown in Figure 6 may be used to improve the overall efficiency of the liquefaction process and increase LNG production.
  • FIG. 7 is a schematic diagram that illustrates a liquefaction system 700 according to another aspect of the disclosure.
  • Liquefaction system 700 is similar to liquefaction system 200 and for the sake of brevity similarly depicted or numbered components may not be further described.
  • Liquefaction system 700 includes a primary cooling loop 702 and a sub-cooling loop 704.
  • Liquefaction system 700 also includes first and second heat exchanger zones 701, 710.
  • Liquefaction system 700 includes the additional step of chilling, using an external cooling unit 770, the compressed, cooled refrigerant 712 in the primary cooling loop 702 to a temperature below the ambient temperature, to thereby produce a compressed, chilled refrigerant 772.
  • the compressed, chilled refrigerant 772 is then directed to the second heat exchanger zone 710 as previously described.
  • Using an external cooling unit to further cool the compressed, cool refrigerant may be used to improve the overall efficiency of the process and increase LNG production.
  • FIG. 8 is a schematic diagram that illustrates a liquefaction system 800 according to another aspect of the disclosure.
  • Liquefaction system 800 is similar to liquefaction system 300 and for the sake of brevity similarly depicted or numbered components may not be further described.
  • Liquefaction system 800 includes a primary cooling loop 802 and a sub-cooling loop 804.
  • Liquefaction system 800 also includes first and second heat exchanger zones 801, 810.
  • the feed gas stream 806 is compressed in a compressor 860 to a pressure of at least 1 ,500 psia to form a compressed gas stream 861.
  • the compressed gas stream 861 is cooled by indirect heat exchange with an ambient temperature air or water to form a compressed, cooled gas stream 863.
  • the compressed, cooled gas stream 863 is expanded in at least one work producing expander 874 to a pressure that is less than 2,000 psia but no greater than the pressure to which the gas stream was compressed, to thereby form a chilled gas stream 876.
  • the chilled gas stream 876 is then directed to the first heat exchanger zone 801 where a primary cooling refrigerant and a sub- cooling refrigerant are used to liquefy the chilled gas stream as previously described.
  • the sub-cooling loop 804 is a closed refrigeration loop preferably charged with nitrogen as the sub-cooling refrigerant stream.
  • an expanded, cooled refrigerant stream 805 is directed to the first heat exchanger zone 801 where it exchanges heat with the chilled gas stream 876 to form a first warm refrigerant stream 808.
  • the first warm refrigerant stream 808 is directed to the second heat exchanger zone 810 where it exchanges heat with a compressed, cooled refrigerant stream 825 to additionally cool the compressed, cooled refrigerant stream 825, thereby forming a second warm refrigerant stream 809 and a compressed, additionally cooled refrigerant stream 813.
  • the first warm refrigerant stream 808 has a temperature that is cooler by at least 5 °F, or more preferably, cooler by at least 10 °F, or more preferably, cooler by at least 15 °F, than the highest fluid temperature within the first heat exchanger zone 801.
  • the second warm refrigerant stream 809 is compressed to a pressure greater than 1,500 psia, or more preferably, to a pressure of approximately 3,000 psia, to form a compressed refrigerant stream 822.
  • the compressed refrigerant stream 822 is then cooled against an ambient cooling medium (air or water) in an external cooling unit 824 to produce the compressed, cooled refrigerant stream 825.
  • the compressed, additionally cooled refrigerant stream is near isentropically expanded in an expander 826 to produce the expanded, cooled refrigerant 805.
  • the chilled gas stream 876 is liquefied and sub- cooled in the first heat exchanger zone to produce a sub-cooled gas stream 848, which is further processed as previously disclosed.
  • FIG. 9 is a schematic diagram that illustrates a liquefaction system 900 according to yet another aspect of the disclosure.
  • Liquefaction system 900 contains similar structure and components with previously disclosed liquefaction systems and for the sake of brevity similarly depicted or numbered components may not be further described.
  • Liquefaction system 900 includes a primary cooling loop 902 and a sub-cooling loop 904.
  • Liquefaction system 900 also includes first and second heat exchanger zones 901, 910.
  • the feed gas stream 906 is mixed with a refrigerant stream 907 to produce a second feed gas stream 906a.
  • the second feed gas stream 906a is compressed to a pressure greater than 1,500 psia, or more preferably, to a pressure of approximately 3,000 psia, to form a compressed second gas stream 961.
  • the compressed second gas stream 961 is then cooled against an ambient cooling medium (air or water) to produce a compressed, cooled second gas stream 963.
  • the compressed, cooled second gas stream 963 is directed to the second heat exchanger zone 910 where it exchanges heat with a first warm refrigerant stream 908, to produce a compressed, additionally cooled second gas stream 913 and a second warm refrigerant stream 909.
  • the compressed, additionally cooled second gas stream 913 is expanded in at least one work producing expander 926 to a pressure that is less than 2,000 psia, but no greater than the pressure to which the second gas stream 906a was compressed, to thereby form an expanded, cooled second gas stream 980.
  • the expanded, cooled second gas stream 980 is separated into a first expanded refrigerant stream 905 and a chilled feed gas stream 906b.
  • the first expanded refrigerant stream 905 may be near isentropically expanded using an expander 982 to form a second expanded refrigerant stream 905a.
  • the chilled feed gas stream 906b is directed to the first heat exchanger zone 901 where a primary cooling refrigerant (i.e., the second expanded refrigerant stream 905a) and a sub-cooling refrigerant (from the sub-cooling loop 904) are used to liquefy the chilled gas stream 906b.
  • the sub-cooling loop 904 may be a closed refrigeration loop, preferably charged with nitrogen as the sub-cooling refrigerant.
  • the second expanded refrigerant stream 905a is directed to the first heat exchanger zone 901 where it exchanges heat with the chilled feed gas stream 906b to form the first warm refrigerant stream 908.
  • the first warm refrigerant stream 908 may have a temperature that is cooler by at least 5 °F, or more preferably, cooler by at least 10 °F, or more preferably, cooler by at least 15 °F, than the highest fluid temperature within the first heat exchanger zone 901.
  • the second warm refrigerant stream 909 is compressed in one or more compressors 918 and then cooled with an ambient cooling medium in an external cooling device 924 to produce the refrigerant stream 907.
  • the chilled feed gas stream 906b is liquefied and sub-cooled in the first heat exchanger zone 901 to produce a sub-cooled gas stream 948, which is processed as previously described to form LNG.
  • the primary refrigerant stream may comprise part of the feed gas stream, which in a preferred aspect may be primarily or nearly all methane. Indeed, it may be advantageous for the refrigerant in the primary cooling loop of all the disclosed aspects (i.e., Figures 2 through 9) be comprised of at least 85% methane, or at least 90% methane, or at least 95% methane, or greater than 95% methane. This is because methane may be readily available in various parts of the disclosed processes, and the use of methane may eliminate the need to transport refrigerants to remote LNG processing locations.
  • the refrigerant in the primary cooling loop 202 in Figure 2 may be taken through line 206a of the feed gas stream 206 if the feed gas is high enough in methane to meet the compositions as described above.
  • a boil-off gas stream 259 from an LNG storage tank 257 may be used to supply refrigerant for the primary cooling loop 202.
  • the feed gas stream is sufficiently low in nitrogen
  • part or all of the end flash gas stream 258 (which would then be low in nitrogen) may be used to supply refrigerant for the primary cooling loop 202.
  • any combination of line 206a, boil-off gas stream 259, and end flash gas stream 258 may be used to provide or even occasionally replenish the refrigerant in the primary cooling loop 202.
  • FIG. 10 is a flowchart of a method 1000 for liquefying a feed gas stream rich in methane using a system having first and second heat exchanger zones, where the method comprises the following steps: 1002, providing the feed gas stream at a pressure less than 1,200 psia; 1004, providing a compressed refrigerant stream with a pressure greater than or equal to 1,500 psia; 1006, cooling the compressed refrigerant stream by indirect heat exchange with an ambient temperature air or water, to produce a compressed, cooled refrigerant stream; 1008, directing the compressed, cooled refrigerant stream to the second heat exchanger zone to additionally cool the compressed, cooled refrigerant stream below ambient temperature to produce a compressed, additionally cooled refrigerant stream; 1010, expanding the compressed, additionally cooled refrigerant stream in at least one work producing expander, thereby producing an expanded, cooled refrigerant stream; 1012, passing the expanded, cooled refrigerant stream through the first heat exchanger zone to form a first warm
  • FIG. 11 is a flowchart of a method 1100 for liquefying a feed gas stream rich in methane, where the method comprises the following steps: 1102, providing the feed gas stream at a pressure less than 1,200 psia; 1104, compressing the feed gas stream to a pressure of at least 1,500 psia to form a compressed gas stream; 1106, cooling the compressed gas stream by indirect heat exchange with an ambient temperature air or water, to form a cooled, compressed gas stream; 1108, expanding the cooled, compressed gas stream in at least one work producing expander to a pressure that is less than 2,000 psia and no greater than the pressure to which the gas stream was compressed, to thereby form a chilled gas stream; 1110, providing a compressed refrigerant stream with a pressure greater than or equal to 1,500 psia; 1112, cooling the compressed refrigerant stream by indirect heat exchange with an ambient temperature air or water, to produce a compressed, cooled refrigerant stream; 1114, directing the compressed,
  • Figure 12 is a method 1200 for liquefying a feed gas stream rich in methane, where the method comprises the following steps: 1202, providing the feed gas stream at a pressure less than 1,200 psia; 1204, providing a refrigerant stream at near the same pressure of the feed gas stream; 1206, mixing the feed gas stream with the refrigerant stream to form a second gas stream; 1208, compressing the second gas stream to a pressure of at least 1,500 psia to form a compressed second gas stream; 1210, cooling the compressed second gas stream by indirect heat exchange with ambient temperature air or water, to form a compressed, cooled second gas stream; 1212, directing the compressed, cooled second gas stream to a second heat exchanger zone, to additionally cool the compressed, cooled second gas stream below ambient temperature, thereby producing a compressed, additionally cooled second gas stream; 1214, expanding the compressed, additionally cooled second gas stream in at least one work producing expander to a pressure that is less than 2,000 psia and no greater than the
  • the aspects described herein have several advantages over known technologies.
  • the described technology may greatly reduce the size and cost of systems that treat sour natural gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

L'invention concerne un procédé et un système de liquéfaction d'un courant de gaz d'alimentation à haute pression riche en méthane au moyen d'un système comportant des première et seconde zones d'échange de chaleur et un courant de fluide frigorigène comprimé. Le courant de fluide frigorigène comprimé est refroidi et dirigé vers la seconde zone d'échange de chaleur afin de le refroidir davantage en dessous de la température ambiante. Il est ensuite détendu et passé à travers la première zone d'échange de chaleur de manière à présenter une température plus froide, d'au moins 2,8 °C, par rapport à la plus haute température du fluide à l'intérieur de la première zone d'échange de chaleur. Le courant de gaz d'alimentation est passé à travers la première zone d'échange de chaleur afin de refroidir au moins une partie du courant par échange de chaleur indirect avec le courant de fluide frigorigène, formant ainsi un courant de gaz liquéfié. Au moins une partie du premier courant de fluide frigorigène tiède est dirigée vers la seconde zone d'échange de chaleur afin de refroidir le courant de fluide frigorigène, qui est comprimé.
PCT/US2018/047955 2017-09-29 2018-08-24 Liquéfaction de gaz naturel au moyen d'un procédé de détente à haute pression WO2019067123A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11202001875TA SG11202001875TA (en) 2017-09-29 2018-08-24 Natural gas liquefaction by a high pressure expansion process
EP18766444.6A EP3688390A1 (fr) 2017-09-29 2018-08-24 Liquéfaction de gaz naturel au moyen d'un procédé de détente à haute pression
AU2018342116A AU2018342116B2 (en) 2017-09-29 2018-08-24 Natural gas liquefaction by a high pressure expansion process
CA3076605A CA3076605C (fr) 2017-09-29 2018-08-24 Liquefaction de gaz naturel au moyen d'un procede de detente a haute pression
JP2020517802A JP6945732B2 (ja) 2017-09-29 2018-08-24 高圧膨張プロセスによる天然ガス液化

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762565725P 2017-09-29 2017-09-29
US62/565,725 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019067123A1 true WO2019067123A1 (fr) 2019-04-04

Family

ID=63528910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/047955 WO2019067123A1 (fr) 2017-09-29 2018-08-24 Liquéfaction de gaz naturel au moyen d'un procédé de détente à haute pression

Country Status (7)

Country Link
US (1) US20190101327A1 (fr)
EP (1) EP3688390A1 (fr)
JP (1) JP6945732B2 (fr)
AU (1) AU2018342116B2 (fr)
CA (1) CA3076605C (fr)
SG (1) SG11202001875TA (fr)
WO (1) WO2019067123A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3075987A1 (fr) 2017-09-29 2019-04-04 Exxonmobil Upstream Research Company Liquefaction de gaz naturel par un processus d'expansion a haute pression

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1501730A1 (de) * 1966-05-27 1969-10-30 Linde Ag Verfahren und Vorrichtung zum Verfluessigen von Erdgas
US5916260A (en) 1995-10-05 1999-06-29 Bhp Petroleum Pty Ltd. Liquefaction process
US6412302B1 (en) 2001-03-06 2002-07-02 Abb Lummus Global, Inc. - Randall Division LNG production using dual independent expander refrigeration cycles
US20090217701A1 (en) 2005-08-09 2009-09-03 Moses Minta Natural Gas Liquefaction Process for Ling
US20100107684A1 (en) 2007-05-03 2010-05-06 Moses Minta Natural Gas Liquefaction Process
US20100122551A1 (en) * 2008-11-18 2010-05-20 Air Products And Chemicals, Inc. Liquefaction Method and System
US20100186445A1 (en) 2007-08-24 2010-07-29 Moses Minta Natural Gas Liquefaction Process
EP2629035A1 (fr) * 2010-10-13 2013-08-21 Mitsubishi Heavy Industries, Ltd. Procédé de liquéfaction, dispositif de liquéfaction et appareil de fabrication de gaz liquéfié flottant le comprenant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2631134A1 (de) * 1976-07-10 1978-01-19 Linde Ag Verfahren zur verfluessigung von luft oder lufthauptbestandteilen
EP2149769A1 (fr) * 2008-07-31 2010-02-03 BP Alternative Energy International Limited Séparation de dioxyde de carbone et d'hydrogène
KR20160133681A (ko) * 2015-05-13 2016-11-23 대우조선해양 주식회사 선박용 천연가스 액화 시스템

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1501730A1 (de) * 1966-05-27 1969-10-30 Linde Ag Verfahren und Vorrichtung zum Verfluessigen von Erdgas
US5916260A (en) 1995-10-05 1999-06-29 Bhp Petroleum Pty Ltd. Liquefaction process
US6412302B1 (en) 2001-03-06 2002-07-02 Abb Lummus Global, Inc. - Randall Division LNG production using dual independent expander refrigeration cycles
US20090217701A1 (en) 2005-08-09 2009-09-03 Moses Minta Natural Gas Liquefaction Process for Ling
US20100107684A1 (en) 2007-05-03 2010-05-06 Moses Minta Natural Gas Liquefaction Process
US20100186445A1 (en) 2007-08-24 2010-07-29 Moses Minta Natural Gas Liquefaction Process
US20100122551A1 (en) * 2008-11-18 2010-05-20 Air Products And Chemicals, Inc. Liquefaction Method and System
EP2629035A1 (fr) * 2010-10-13 2013-08-21 Mitsubishi Heavy Industries, Ltd. Procédé de liquéfaction, dispositif de liquéfaction et appareil de fabrication de gaz liquéfié flottant le comprenant

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANG HO-MYUNG ET AL: "Thermodynamic design of methane liquefaction system based on reversed-Brayton cycle", CRYOGENICS, vol. 49, no. 6, 1 January 2009 (2009-01-01), pages 226 - 234, XP085150681, ISSN: 0011-2275, DOI: 10.1016/J.CRYOGENICS.2008.08.006 *
MCLACHLAN: "EFFICIENT OPERATION OF LNG FROM THE OMAN LNG PROJECT", GAS, XX, XX, 1 January 2002 (2002-01-01), pages 1 - 8, XP009079005 *

Also Published As

Publication number Publication date
US20190101327A1 (en) 2019-04-04
JP2020535376A (ja) 2020-12-03
CA3076605C (fr) 2022-06-28
JP6945732B2 (ja) 2021-10-06
AU2018342116A1 (en) 2020-03-26
EP3688390A1 (fr) 2020-08-05
SG11202001875TA (en) 2020-04-29
CA3076605A1 (fr) 2019-04-04
AU2018342116B2 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
CA3079890C (fr) Liquefaction de gaz naturel par un procede d'expansion a haute pression utilisant de multiples compresseurs de turbodetendeur
US11892233B2 (en) Natural gas liquefaction by a high pressure expansion process
US12050056B2 (en) Managing make-up gas composition variation for a high pressure expander process
US11506454B2 (en) Heat exchanger configuration for a high pressure expander process and a method of natural gas liquefaction using the same
US11635252B2 (en) Primary loop start-up method for a high pressure expander process
AU2018342116B2 (en) Natural gas liquefaction by a high pressure expansion process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3076605

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018342116

Country of ref document: AU

Date of ref document: 20180824

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020517802

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018766444

Country of ref document: EP

Effective date: 20200429