[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019065856A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2019065856A1
WO2019065856A1 PCT/JP2018/035988 JP2018035988W WO2019065856A1 WO 2019065856 A1 WO2019065856 A1 WO 2019065856A1 JP 2018035988 W JP2018035988 W JP 2018035988W WO 2019065856 A1 WO2019065856 A1 WO 2019065856A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pipe
compressor
valve
heat exchanger
Prior art date
Application number
PCT/JP2018/035988
Other languages
French (fr)
Japanese (ja)
Inventor
竹上 雅章
覚 阪江
巌 篠原
東 近藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018108009A external-priority patent/JP6508394B2/en
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2019065856A1 publication Critical patent/WO2019065856A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present invention relates to a refrigeration system.
  • the refrigeration system disclosed in Patent Document 1 is configured to perform air conditioning in the room with the air conditioning unit and to perform refrigeration / refrigeration in the cold storage with the cold installation unit.
  • a plurality of compressors, a heat source side heat exchanger, and a plurality of use side heat exchangers are connected to the refrigeration system.
  • the plurality of compressors include an air conditioning side compressor corresponding to the air conditioning unit and a cooling side compressor corresponding to the cooling unit.
  • the plurality of usage-side heat exchangers include an indoor heat exchanger of the air conditioning unit and a refrigeration heat exchanger of the cooling unit. In a cooling operation with a refrigeration system, the refrigerant is condensed in the heat source side heat exchanger, and at the same time, a refrigeration cycle in which the indoor heat exchanger and the cold storage heat exchanger become the evaporator is performed.
  • the refrigerant compressed by the plurality of compressors is condensed by the heat source side heat exchanger, and is then sent to the indoor heat exchanger and the refrigeration heat exchanger.
  • the indoor heat exchanger the refrigerant absorbs heat from indoor air and evaporates.
  • the refrigerant evaporated in the indoor heat exchanger is drawn into the air-conditioning side compressor and compressed again.
  • the refrigeration heat exchanger the refrigerant absorbs heat from the air in the storage and evaporates.
  • the refrigerant evaporated in the refrigeration heat exchanger is sucked into the refrigeration side compressor and compressed again.
  • the evaporation temperature or the evaporation pressure of the refrigerant in the indoor heat exchanger becomes higher than the evaporation temperature or the evaporation pressure of the refrigerant in the cold storage heat exchanger.
  • the suction pressure of the air-conditioning side compressor that sucks the refrigerant of the indoor heat exchanger is higher than the suction pressure of the cooling-side compressor that sucks the refrigerant of the cold storage heat exchanger.
  • coolant liquid refrigerant
  • the injection circuit has one main pipe connected to the liquid line, and a plurality of branch pipes branched from the main pipe and connected to the plurality of compressors.
  • an injection operation of introducing the refrigerant into each compressor is performed.
  • the refrigerant having flowed through the main pipe is branched to each branch pipe and then introduced into the middle portion (during compression) of each compressor. Thereby, it can suppress that the temperature of the discharge refrigerant
  • a flow control valve is connected to the main pipe, and an expansion valve is connected to each branch pipe.
  • the amount of refrigerant introduced into each compressor can be individually adjusted by adjusting the opening degree of the flow control valve and each expansion valve in the injection operation.
  • the present invention has been made by focusing on such problems, and is to simplify valve control in the injection operation.
  • the first aspect is a refrigerant in which a plurality of compressors (13a, 13b, 13c), at least one radiator (12), and at least one evaporator (22, 32) are connected, and a refrigeration cycle is performed.
  • the present invention is directed to a refrigeration system provided with a circuit (2), and the refrigerant circuit (2) includes a refrigerant in a liquid line (60) between the radiator (12) and the evaporator (22, 32).
  • An injection circuit (81) for performing an injection operation to be introduced into the compressor (13a, 13b, 13c) is connected, and the injection circuit (81) is connected to the liquid line (60) and an expansion valve (78).
  • main pipe (77) having a branch) from the outlet end of the main pipe (77) to be respectively connected to the plurality of compressors (13a, 13b, 13c), each having a flow control valve (82a, 82b, 82c) and a plurality of branch pipes (81a, 81b, 81c) are provided. Maintaining a flow control valve (82a, 82b, 82c) corresponding to a predetermined compressor (13a, 13b, 13c) among the plurality of compressors (13a, 13b, 13c) at a predetermined fixed opening degree, A control unit (100) is provided to adjust the opening degree of the expansion valve (78) and the remaining flow control valves (82a, 82b, 82c).
  • the injection operation is performed in the refrigeration cycle.
  • a flow rate control valve (a) is connected to a branch pipe (81a, 81b, 81c) corresponding to a predetermined compressor (13a, 13b, 13c) of the plurality of compressors (13a, 13b, 13c).
  • 82a, 82b, 82c) are maintained at a predetermined fixed opening. Therefore, it is not necessary to appropriately adjust or control the opening degree of the flow rate control valve (82a, 82b, 82c).
  • the opening degree of the expansion valve (78) and the opening degree of the remaining flow control valves (82a, 82b, 82c) are adjusted so as to adjust the temperatures of the refrigerant discharged from the compressors (13a, 13b, 13c). It is adjusted. That is, even if the opening degree of the flow rate control valve (82a, 82b, 82c) corresponding to a certain compressor (13a, 13b, 13c) is maintained at the fixed opening degree, the expansion valve (78) of the main pipe (77) is opened. By adjusting the degree, the temperature of the refrigerant discharged from the compressor (13a, 13b, 13c) can be adjusted.
  • the opening degree of the remaining flow rate control valves (82a, 82b, 82c) the discharge of the compressor (13a, 13b, 13c) corresponding to the remaining flow rate control valves (82a, 82b, 82c)
  • the temperature of the refrigerant can also be adjusted. Therefore, in the control according to the present invention, the number of valves to be controlled can be substantially reduced as compared with the conventional method, and valve control can be simplified.
  • control unit (100) corresponds to the flow control valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the highest temperature of the discharged refrigerant. Is maintained at the predetermined fixed opening degree.
  • the opening degree of the flow rate adjusting valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the highest temperature of the discharged refrigerant is maintained at the fixed opening degree.
  • the compressor (13a, 13b, 13c) having the highest discharge temperature among the plurality of compressors (13a, 13b, 13c) needs to introduce a liquid refrigerant. Therefore, the opening degree of the flow rate adjusting valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the maximum temperature of the discharged refrigerant is opened at the fixed opening degree.
  • the refrigerant can be reliably introduced into the compressors (13a, 13b, 13c).
  • the adjustment of the discharge temperature of the compressor (13a, 13b, 13c) is performed by the expansion valve (78).
  • the controller (100) is a flow control valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the highest temperature of the discharged refrigerant. It is a freezing device characterized by maintaining the above-mentioned predetermined opening to the maximum.
  • the opening degree of the flow rate adjusting valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the highest temperature of the discharged refrigerant is maintained at the maximum opening degree.
  • the compressor (13a, 13b, 13c) having the highest discharge temperature among the plurality of compressors (13a, 13b, 13c) needs to introduce a large amount of liquid refrigerant. For this reason, the opening degree of the flow rate control valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) in which the temperature of the discharged refrigerant is maximum is taken as the maximum opening degree.
  • the temperature of the refrigerant discharged to the compressors (13a, 13b, 13c) can be rapidly reduced.
  • the flow rate control valves (82a, 82b, 82c) corresponding to the compressors (13a, 13b, 13c) in which the temperature of the discharged refrigerant is not maximum individually adjust the degree of opening.
  • the refrigerant whose flow rate is adjusted by the expansion valve (78) and the flow rate control valves (82a, 82b, 82c) is introduced into the compressor (13a, 13b, 13c) in which the temperature of the discharged refrigerant is not maximum.
  • the refrigerants evaporated at different evaporation pressures of the plurality of evaporators (22, 32) are different in the compressor (13a, 13a, 13b, 13c) is characterized in that a refrigeration cycle is performed, which is inhaled respectively.
  • the fifth aspect is characterized in that one evaporator (22) is connected to the refrigerant circuit (2) in any one of the first to third aspects.
  • the expansion valve (78) and the remaining flow control valves (82a, 82a, 82c, 82c) are fixedly opened while the flow control valves (82a, 82b, 82c) corresponding to certain compressors (13a, 13b, 13c) have fixed openings.
  • the opening degree of 82b, 82c By adjusting the opening degree of 82b, 82c), the temperature of the refrigerant discharged from each compressor (13a, 13b, 13c) can be brought close to the target temperature while substantially reducing the number of valves to be controlled. . Thereby, the control of the injection operation can be simplified.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing a refrigerant flow during cooling and cooling operation in the refrigeration system of FIG.
  • FIG. 3 is a diagram showing the flow of the refrigerant during the first heating and cooling operation in the refrigeration system of FIG.
  • FIG. 4 is a diagram showing a refrigerant flow during the second heating and cooling operation in the refrigeration system of FIG.
  • FIG. 5 is a diagram showing the flow of the refrigerant during the third heating and cooling operation in the refrigeration system of FIG.
  • FIG. 6 is a diagram showing a flow of refrigerant that defrosts the refrigeration heat exchanger in the reverse cycle during cooling in the refrigeration system of FIG. 1.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing a refrigerant flow during cooling and cooling operation in the refrigeration system of FIG.
  • FIG. 7 is a diagram showing the flow of refrigerant that defrosts the refrigeration heat exchanger in the reverse cycle during heating in the refrigeration system of FIG. 1.
  • FIG. 8 is a block diagram showing a schematic configuration of a controller of the embodiment.
  • FIG. 9 is a flow chart for explaining control of three expansion valves in the injection operation.
  • FIG. 10 is a flow chart for explaining control of the flow control valve in the injection movement.
  • FIG. 11 is a refrigerant circuit diagram of a refrigeration apparatus according to a modification of the embodiment.
  • Embodiment of the Invention >> ⁇ Schematic Configuration of Refrigeration System>
  • the refrigeration system (1) according to the embodiment is provided in a cold storage warehouse and an office adjacent thereto, and performs refrigeration of goods and air conditioning of the room.
  • the refrigeration system (1) comprises an outdoor unit (10) installed outdoors, an indoor unit (20) for air conditioning the indoor space, and a refrigeration unit (30) for cooling the inside of the cold storage warehouse. And a controller (100).
  • the number of the indoor units (20) and the refrigeration unit (30) is not limited to one, and may be two or more. Then, these units are connected to constitute a refrigerant circuit (2).
  • the refrigerant circuit (2) is roughly divided into an air conditioning system circuit (2a) for air conditioning the room, and a cooling system circuit for cooling the inside of the cold storage unit (30) and the freezing unit (40). And (2b) are formed.
  • the outdoor unit (10) is provided with an outdoor circuit (11) as a heat source side circuit having an outdoor heat exchanger (12).
  • the indoor unit (20) is provided with an indoor circuit (21) (use side circuit) having an indoor heat exchanger (22).
  • the refrigeration unit (30) is provided with a refrigeration circuit (31) (use-side circuit) having a refrigeration heat exchanger (32).
  • the outdoor circuit (11) and the plurality of use side circuits (21, 31) are the first gas side communication pipe (51), the first liquid side communication pipe (52), the second gas side communication
  • the refrigerant circuit (2) is connected to each other by four connecting pipes (51 to 54) including the pipe (53) and the second liquid side connecting pipe (54), and a refrigerant circuit (2) performing a vapor compression refrigeration cycle is configured. .
  • One end of the first gas side connection pipe (51) is connected to the first gas side closing valve (71) of the outdoor circuit (11), and the other end is connected to the gas side end of the indoor circuit (21).
  • One end of the first liquid side communication pipe (52) is connected to the first liquid side closing valve (72) of the outdoor circuit (11), and the other end is connected to the liquid side end of the indoor circuit (21).
  • One end of the second gas side communication pipe (53) is connected to the second gas side closing valve (73) of the outdoor circuit (11), and the other end is connected to the gas side end of the refrigeration circuit (31) .
  • One end of the second liquid side communication pipe (54) is connected to the second liquid side closing valve (74) of the outdoor circuit (11), and the other end is connected to the liquid side end of the refrigeration circuit (31) .
  • the outdoor unit (10) is installed outdoors, and has the outdoor circuit (11) and an outdoor casing (10a) accommodating the outdoor circuit (11).
  • the outdoor circuit (11) includes the outdoor heat exchanger (12), a compression mechanism (13), an outdoor expansion valve (14) (expansion mechanism), a receiver (15), and an oil separator (16).
  • the first, second and third four-way selector valves (17, 18, 19) (switching mechanism) and the above-mentioned four closing valves (71, 72, 73, 74) are provided.
  • the compression mechanism (13) has first to third compressors (13a, 13b, 13c).
  • the first to third compressors (13a, 13b, 13c) are all hermetic scroll compressors in which a fixed scroll and a movable scroll are engaged to form a compression chamber.
  • suction ports (not shown) are opened at the suction positions of the compression chambers, and discharge ports (not shown) are open at the discharge positions.
  • a port (not shown) is open.
  • the first compressor (cooling side compressor) (13a) and the third compressor (air conditioning side compressor) (13c) are variable displacement compressors. That is, the rotational speeds of the first compressor (13a) and the third compressor (13c) are configured to be variable by inverter control.
  • the second compressor (13b) is a fixed displacement compressor having a constant rotational speed, and is mainly used for assisting the first compressor (13a), but for assisting the third compressor (13c) It can also be used for
  • the second compressor (13b) may be a variable displacement compressor.
  • a suction pipe (55) is connected to the suction side of the first to third compressors (13a, 13b, 13c), and a discharge pipe (56) is connected to the discharge side.
  • the discharge pipe (56) is provided with a high pressure switch (110) for urgently stopping the compressor (13a, 13b, 13c) under abnormal high pressure.
  • the inflow side of the suction pipe (55) branches into a first inflow branch pipe (55a) and a second inflow branch pipe (55b).
  • the first inflow branch pipe (55a) is connected to the second gas side shut-off valve (73) via the third four-way selector valve (19), while the second inflow branch pipe (55b) is connected to the second four path It is connected to the second port (P2) of the switching valve (18).
  • the first inflow branch pipe (55a) and the second inflow branch pipe (55b) are connected to each other by the inflow communication pipe (66), and the third communication compressor (air conditioning side compressor) is connected to the inflow communication pipe (66).
  • a pressure control valve (67) (flow rate control valve) is provided which can adjust the amount of refrigerant drawn in (13c) and the amount of refrigerant drawn in the first compressor (cooling side compressor) (13a).
  • the suction pipe (55) has a first outflow branch pipe (55c) (first suction branch pipe), a second outflow branch pipe (55d) (second suction branch pipe), and a third outflow branch pipe (55e) on the outflow side. ) (The third suction branch pipe).
  • the first outflow branch pipe (55c) is connected to the suction side end of the first compressor (13a)
  • the second outflow branch pipe (55d) is connected to the suction side end of the second compressor (13b)
  • the third outflow branch pipe (55e) is connected to the suction side end of the third compressor (13c).
  • the inflow side of the discharge pipe (56) branches into a first inflow branch pipe (56a), a second inflow branch pipe (56b), and a third inflow branch pipe (56c).
  • the first inflow branch pipe (56a) is connected to the discharge side end of the first compressor (13a)
  • the second inflow branch pipe (56b) is connected to the discharge side end of the second compressor (13b)
  • the third inflow branch pipe (56c) is connected to the discharge side end of the third compressor (13c).
  • the first to third inflow branch pipes (56a, 56b, 56c) are respectively provided with check valves (CV1, CV2, CV3).
  • the discharge pipe (56) has an outflow side branched into a first outflow branch pipe (56d), a second outflow branch pipe (56e), and a third outflow branch pipe (56f).
  • the first outflow branch pipe (56d) is connected to the first port (P1) of the first four-way selector valve (17), and the second outflow branch pipe (56e) is connected to the first one of the second four-way selector valve (18).
  • the third outflow branch pipe (56f) is connected to the port (P1), and is connected to the first port (P1) of the third four-way selector valve (19).
  • the oil separator (16) is provided in the middle of the discharge pipe (56).
  • the oil separator (16) separates the lubricating oil mixed with the refrigerant discharged from the first to third compressors (13a, 13b, 13c), and the lubricating oil is separated from the first to third compressors (13a, 13a, 13c). Return to 13b, 13c).
  • the lubricating oil separated from the refrigerant in the oil separator (16) is introduced into the inflow end of an injection pipe (81) described later via an oil return pipe (50) connected to the oil separator (16). It will be returned to the side.
  • the oil return pipe (50) is provided with a flow control valve (48).
  • the first, second and third four-way selector valves (17, 18, 19) communicate the first port (P1) with the third port (P3) and the second port (P2) with the fourth port (P4). And the first port (P1) communicates with the fourth port (P4) and the second port (P2) communicates with the third port (P3). Switching to the second state (indicated by the broken line in FIG. 1).
  • the refrigeration system can perform various operations by the switching operation of the first, second and third four-way selector valves (17, 18, 19).
  • a first outflow branch pipe (56d) is connected to a first port (P1) of the first four-way selector valve (17).
  • the second port (P2) of the first four-way selector valve (17) is connected to the third port (P3) of the second four-way selector valve (18).
  • the third port (P3) of the first four-way selector valve (17) is connected to the first gas side shut-off valve (71) via a refrigerant pipe.
  • the fourth port (P4) of the first four-way selector valve (17) is connected to the gas side end of the outdoor heat exchanger (12) via the outdoor gas pipe (58).
  • a second outflow branch pipe (56e) is connected to a first port (P1) of the second four-way selector valve (18).
  • the second port (P2) of the second four-way selector valve (18) is connected to the second inflow branch pipe (55b) as described above.
  • the third port (P3) of the second four-way selector valve (18) is connected to the second port (P2) of the first four-way selector valve (17) as described above.
  • the fourth port (P4) of the second four-way selector valve (18) is a closed port that is closed.
  • a third outflow branch pipe (56f) is connected to a first port (P1) of the third four-way selector valve (19).
  • the second port (P2) of the third four-way selector valve (19) is connected to the first inflow branch pipe (55a).
  • the third port (P3) of the third four-way selector valve (19) is a refrigerant inflow pipe to the receiver (15) via the connection pipe (65) provided with the on-off valve (64). It is connected to the four liquid pipe (79), and the fourth port (P4) of the third four-way selector valve (19) is connected to the second gas side closing valve (73) via the refrigerant pipe.
  • the outdoor heat exchanger (12) is a fin-and-tube type heat exchanger, and an outdoor fan (12a) is provided in the vicinity.
  • heat exchange is performed between the refrigerant flowing inside and the outside air blown by the outdoor fan (12a).
  • the outdoor fan (12a) is accommodated in the outdoor casing (10a) together with the outdoor circuit (11).
  • the outdoor heat exchanger (12) has a liquid side end connected to the top of the receiver (15) via a first liquid pipe (59).
  • the bottom of the receiver (15) is provided with a freeze protection pipe (57) at the bottom of the outdoor heat exchanger (12) and a subcooling heat exchanger (76) connected to the freeze protection pipe (57). It is connected to the second liquid side shut-off valve (74) via the two liquid pipe (60). Further, a portion of the second liquid pipe (60) between the antifreeze pipe (57) and the subcooling heat exchanger (76) is connected to the first liquid side shut-off valve (72) through the third liquid pipe (62). )It is connected to the.
  • An outdoor expansion valve (14) is provided in the first liquid pipe (59).
  • the outdoor expansion valve (14) is configured by an electronic expansion valve whose opening degree can be adjusted.
  • the first liquid pipe (59) and the third liquid pipe (62) are provided with check valves (CV4, CV5), respectively.
  • the check valve (CV4) of the first liquid pipe (59) allows the refrigerant to flow from the outdoor heat exchanger (12) to the top of the receiver (15) and prevents the refrigerant from flowing in the reverse direction.
  • the check valve (CV5) of the third liquid pipe (60) allows the refrigerant to flow from the antifreeze pipe (57) toward the first liquid side shut-off valve (72) and prevents the refrigerant from flowing in the reverse direction Do.
  • a bypass pipe (61) is provided between the first liquid pipe (59) and the second liquid pipe (60).
  • One end of the bypass pipe (61) is connected to the upstream side of the check valve (CV4) in the first liquid pipe (59), and the other end is upstream of the check valve (CV9) in the second liquid pipe (60). It is connected to the.
  • the bypass pipe (61) is provided with a check valve (CV8) to allow the flow of the refrigerant toward the outdoor heat exchanger (12) and to prohibit the flow of the refrigerant in the reverse direction.
  • a check valve (CV9) for inhibiting the flow of
  • the subcooling heat exchanger (76) includes a high pressure side flow passage (76a) and a low pressure side flow passage (76b).
  • the refrigerant flowing in the high pressure side flow passage (76a) and the low pressure side flow passage (76b) exchanges heat so that the refrigerant in the high pressure side flow passage (76a) is supercooled. It is configured.
  • the low pressure side flow passage (76b) constitutes a part of a main pipe (77) of an injection pipe (81) which will be described in detail later.
  • a fourth liquid pipe (79) is provided between the downstream side of the check valve (CV5) of the second liquid pipe (60) and the downstream side of the check valve (CV4) of the first liquid pipe (59) It is done.
  • the fourth liquid pipe (79) is provided with a check valve (CV6).
  • the check valve (CV6) allows the flow of the refrigerant from the second liquid pipe (60) to the first liquid pipe (59), and prevents the flow of the refrigerant in the reverse direction.
  • the outdoor circuit (11) is provided with a refrigerant return pipe (80) during reverse cycle defrost operation.
  • a refrigerant return pipe (80) is connected between the second liquid side closing valve (74) and the bypass pipe (61), and the other end is a first liquid pipe (59) in the fourth liquid pipe (79).
  • connection piping (65) are connected.
  • the refrigerant return pipe (80) is provided with a check valve (CV10) which allows the flow of the refrigerant toward the receiver (15) and prohibits the flow of the refrigerant in the reverse direction.
  • the injection pipe (81) includes a main pipe (77) connected to the second liquid pipe (60) which is a liquid line, and three branch pipes (81a, 81b, 81c) branched from the outflow end of the main pipe (77) Have.
  • An expansion valve (78) is connected to the upstream side of the low pressure side flow passage (76b) of the main pipe (77).
  • the expansion valve (78) is constituted by an electronic expansion valve whose opening degree is variable.
  • the expansion valve (78) regulates the flow rate of the refrigerant flowing through the main pipe (77).
  • the three branch pipes are composed of a first branch pipe (81a), a second branch pipe (81b), and a third branch pipe (81c).
  • the outflow end of each branch pipe (81a, 81b, 81c) is connected to each intermediate pressure port of the corresponding compressor (13a, 13b, 13c).
  • Each intermediate pressure port communicates with each compression chamber of the corresponding compressor (13a, 13b, 13c).
  • the first branch pipe (81a) is connected to the intermediate pressure port of the first compressor (13a)
  • the second branch pipe (81b) is connected to the intermediate pressure port of the second compressor (13b)
  • the third branch pipe (81c) is connected to the intermediate pressure port of the third compressor (13c).
  • the first flow control valve (82a) for the first branch pipe (81a), the second flow control valve (82b) for the second branch pipe (81b), and the third flow rate for the third branch pipe (81c) are connected respectively.
  • Each flow rate control valve (82a, 82b, 82c) is constituted by an electronic expansion valve whose opening degree is variable.
  • Each branch pipe (81a, 81b, 81c) constitutes an injection circuit for introducing a gas refrigerant from the subcooling heat exchanger (76) into the compression chamber at an intermediate pressure of each compressor (13a, 13b, 13c) .
  • the discharge piping (56) includes discharge temperature sensors (111a, 111b, 111c) for detecting the temperatures of the refrigerant discharged from the compressors (13a, 13b, 13c), and the compressors (13a, 13b, 13c). And a discharge pressure sensor (112) for detecting the pressure of the discharge refrigerant.
  • the discharge temperature sensors (111a, 111b, 111c) correspond to the first discharge temperature sensor (111a) corresponding to the first compressor (13a) and the second discharge temperature sensor (111) corresponding to the second compressor (13b).
  • the suction pipe (55) is provided with a suction temperature sensor (113) for detecting the temperature of the suction refrigerant of each of the compressors (13a, 13b, 13c).
  • the suction pipe (55) includes a first suction pressure sensor (114a) for detecting the pressure of refrigerant drawn from the first compressor (13a) and the second compressor (13b), and a suction of the third compressor (13c).
  • a second suction pressure sensor (114b) is provided to detect the pressure of the refrigerant.
  • an outdoor temperature sensor (115) for detecting the outdoor air temperature outside the room is provided.
  • a first temperature sensor (118) is provided at the liquid side end of the outdoor heat exchanger (12).
  • the main pipe (77) is provided with an intermediate pressure sensor (117).
  • the second liquid pipe (60) is provided with a pressure sensor (119) for detecting the pressure of the receiver (15). The detection values of these sensors are input to a controller (100) described later.
  • the indoor unit (20) is installed indoors and has an indoor circuit (21) and an indoor casing (20a) that accommodates the indoor circuit (21).
  • the indoor circuit (21) has a gas side end connected to the first gas side communication pipe (51) and a liquid side end connected to the first liquid side communication pipe (52).
  • the indoor heat exchanger (22) and the indoor expansion valve (23) (expansion mechanism) are provided in the indoor circuit (21) in order from the gas side end.
  • the indoor heat exchanger (22) is constituted by a cross fin type fin-and-tube heat exchanger, and an indoor fan (22a) is provided in the vicinity.
  • the indoor fan (22a) is housed in the indoor casing (20a) together with the indoor circuit (21). In the indoor heat exchanger (22), heat exchange is performed between the refrigerant flowing inside and the indoor air blown by the indoor fan (22a).
  • the indoor expansion valve (23) is constituted by an electronic expansion valve whose opening degree can be adjusted.
  • an indoor temperature sensor (121) for detecting the temperature of the indoor air is provided in the vicinity of the indoor heat exchanger (22).
  • a heat transfer pipe of the indoor heat exchanger (22) is provided with a second temperature sensor (122). Further, an evaporation temperature sensor (123) is provided in the vicinity of the gas side end of the indoor circuit (21).
  • the refrigeration unit (30) has the refrigeration circuit (31) and a refrigerator (30a) for accommodating the refrigeration circuit (31).
  • the gas side end is connected to the first branch gas pipe (53a) of the second gas side communication pipe (53), and the liquid side end is the second liquid side communication pipe It is connected to the first branched liquid pipe (54a) of (54).
  • the refrigeration circuit (31) is provided with a refrigeration heat exchanger (32) and a refrigeration expansion valve (33) (expansion mechanism) in this order from the gas side end.
  • the cold storage heat exchanger (32) is constituted by a cross fin type fin-and-tube heat exchanger, and an internal fan (32a) is provided in the vicinity.
  • the internal fan (32a) is housed in the refrigerator (30a) together with the circuit for refrigeration (31).
  • the cold storage expansion valve (33) is constituted by an electronic expansion valve whose opening degree can be adjusted.
  • an in-compartment temperature sensor (131) for detecting the temperature of the in-compartment air is provided in the vicinity of the cold storage heat exchanger (32).
  • the evaporation temperature sensor (132) is provided in the heat transfer tube of the refrigeration heat exchanger (32).
  • a gas temperature sensor (133) is provided in the vicinity of the gas side end of the refrigeration circuit (31).
  • the controller (100) (control unit) is configured using a microcomputer and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer.
  • the controller (100) controls each device of the refrigeration system (1).
  • Each operation of the refrigeration system (1) is switched by control of each device by the controller (100).
  • the refrigeration system (1) performs a cooling operation to cool the room with the indoor unit (20) and a heating operation to heat the room with the indoor unit (20).
  • the cooling operation includes cooling the room air by the indoor unit (20) and simultaneously cooling the air in the cold storage unit (30) and the freezing unit (40).
  • the heating operation includes a first heating / cooling operation, a second heating / cooling operation, and a third heating / cooling operation.
  • the outdoor heat exchanger (12) is substantially stopped and, at the same time, the inside air is cooled by the refrigeration unit (30).
  • the outdoor heat exchanger (12) becomes a radiator (condenser) and simultaneously cools the air in the cold storage by the refrigeration unit (30).
  • the outdoor heat exchanger (12) becomes an evaporator and at the same time, the refrigeration unit (30) cools the air in the cold storage.
  • the defrosting operation for defrosting the refrigeration heat exchanger (32) of the refrigeration unit (30) is executed respectively.
  • the controller (100) includes an input unit (101), an arithmetic unit (102), a determination unit (103), and an output unit (104).
  • a signal indicating the detection value of each sensor or the state of each device is input to the input unit (101). More specifically, in the input section (101) of the present embodiment, the detected value (discharge pressure (Pd)) of the discharge pressure sensor (112) and the detected value (first discharge) of the first discharge temperature sensor (111a) The refrigerant temperature (Td1), the detected value of the second discharge temperature sensor (111b) (second discharged refrigerant temperature (Td2)), and the detected value of the third discharged temperature sensor (111c) (third discharged refrigerant temperature (Td3) ) Is input.
  • discharge pressure (Pd)) of the discharge pressure sensor (112) and the detected value (first discharge) of the first discharge temperature sensor (111a) The refrigerant temperature (Td1), the detected value of the second discharge temperature sensor (111b) (second discharged refrigerant temperature (Td2)), and the detected value of the third discharged temperature sensor (111c) (third discharged refrigerant temperature (Td3) ) Is
  • the detection value (first suction pressure (Ps1)) of the first suction pressure sensor (114a) and the detection value (second suction pressure (PS2) of the second suction pressure sensor (114b) And the detection value (injection pressure (PI)) of the pressure sensor (117) are input.
  • the calculation unit (102) obtains an index for adjusting the opening degree of the expansion valve (78) based on the detection value of each sensor. Specifically, the calculation unit (102) calculates the discharge refrigerant of each compressor (13a, 13b, 13c) based on the discharge refrigerant temperature (Td1, Td2, T3) and the saturation temperature of the discharge pressure (Pd). The degree of superheat (discharge superheat) is calculated.
  • the determination unit (103) compares each discharge refrigerant temperature (Td1, Td2, Td3), discharge superheat degree, and a predetermined set value, and the expansion valve (78) or each flow control valve (82a, 82b, 82c) Control the opening degree of
  • each operation mode of the cooling / cooling operation, the first heating / cooling operation, the second heating / cooling operation, and the third heating / cooling operation is switched by switching the four-way switching valves (17, 18, 19). To be executed.
  • the cooling operation shown in FIG. 2 is an operation for cooling the indoor unit (20) and cooling the refrigeration unit (30).
  • the controller (100) switches the first and second four-way selector valves (17, 18) to the second state, switches the third four-way selector valve (19) to the first state, and the outdoor expansion valve (14). It controls to a fully open state and adjusts the opening degree of a refrigeration expansion valve (33) and an indoor expansion valve (23) suitably. Further, the on-off valve (64) and the pressure control valve (67) are controlled to be fully closed.
  • the refrigerant circulates as follows.
  • the refrigerant compressed by the first to third compressors (13a, 13b, 13c) merges in the discharge pipe (56) and then the lubricating oil is separated in the oil separator (16), and the first four-way selector valve (17) and the outdoor gas pipe (58) to flow into the outdoor heat exchanger (12).
  • the refrigerant releases heat to the outdoor air and condenses.
  • the liquid refrigerant condensed in the outdoor heat exchanger (12) flows into the receiver (15) through the first liquid pipe (59) and is stored in the receiver (15).
  • the liquid refrigerant stored in the receiver (15) flows out of the receiver (15) and passes through the antifreeze pipe (57), and the second liquid pipe (60) is subjected to the first liquid side shut-off valve (72) and the second It diverts towards the liquid side shutoff valve (74). At that time, the liquid refrigerant passes through the subcooling heat exchanger (76).
  • the high pressure liquid refrigerant flows into the high pressure side flow passage (76a) of the subcooling heat exchanger (76).
  • the second liquid pipe (60) branches to the main pipe (77) to pass through the expansion valve (78). The refrigerant that has been depressurized in) flows in.
  • the refrigerant flowing in the low pressure side flow passage (76b) exchanges heat with the high pressure liquid refrigerant flowing in the high pressure side flow passage (76a) and evaporates, while the high pressure liquid refrigerant in the high pressure side flow passage (76a) is evaporated on the low pressure side
  • the heat is released to the refrigerant of the flow path (76 b) to be a supercooled state.
  • the refrigerant that has passed through the second liquid side shut-off valve (74) flows into the second liquid side communication pipe (54).
  • the refrigerant that has passed through the first liquid side shut-off valve (72) flows into the first liquid side communication pipe (52).
  • the evaporated refrigerant in the low pressure side channel (76b) flows into the injection pipe (81).
  • the liquid refrigerant flowing into the second liquid side communication pipe (54) flows into the refrigeration circuit (31) of the refrigeration unit (30).
  • the liquid refrigerant that has flowed into the refrigeration circuit (31) is depressurized by the refrigeration expansion valve (33) and then flows into the refrigeration heat exchanger (32).
  • the refrigeration heat exchanger (32) the refrigerant absorbs heat from the air in the storage and evaporates. As a result, the internal air is cooled.
  • the refrigerant evaporated in the refrigeration heat exchanger (32) flows from the refrigeration circuit (31) into the second gas side communication pipe (53). After passing through the second gas side shut-off valve (73), the refrigerant flows into the first inflow branch pipe (55a) of the suction pipe (55) through the third four-way selector valve (19).
  • the liquid refrigerant that has flowed into the first liquid side communication pipe (52) is reduced in pressure by the indoor expansion valve (23), and then flows into the indoor heat exchanger (22).
  • the indoor heat exchanger (22) the refrigerant absorbs heat from room air and evaporates. As a result, the room air is cooled.
  • the refrigerant evaporated in the indoor heat exchanger (22) passes through the first gas side connection pipe (51), the first four-way selector valve (17), and the second four-way selector valve (18) and 55) flows into the second inflow branch pipe (55b).
  • the refrigerant flowing into the injection pipe (81) is branched to the first to third branch pipes (81a, 81b, 81c), and then the middle of the corresponding first to third compressors (13a, 13b, 13c)
  • the pressure is introduced into the compression chamber.
  • the discharge gas temperature of the first to third compressors (13a, 13b, 13c) decreases.
  • the lubricating oil separated from the refrigerant discharged from the first to third compressors (13a, 13b, 13c) in the oil separator (16) is returned to the injection pipe (81) through the oil return pipe (50) Be done.
  • the first heating and cooling operation shown in FIG. 3 is an operation for heating the indoor unit (20) and cooling the refrigeration unit (30) without using the outdoor heat exchanger (12).
  • the cooling capacity (heat of evaporation) of the cold storage unit (30) and the heating capacity (heat of condensation) of the indoor unit (20) are balanced, and 100% heat recovery is performed.
  • the controller (100) switches the first four-way selector valve (17) and the third four-way selector valve (19) to the first state and switches the second four-way selector valve (18) to the second state to perform outdoor expansion.
  • the valve (14) is controlled to the fully closed state
  • the refrigeration expansion valve (33) is controlled to the predetermined opening degree
  • the opening degree of the indoor expansion valve (23) is controlled to the fully opened state.
  • the opening degree of the pressure control valve (67) is controlled to be fully open
  • the on-off valve (64) is controlled to be fully closed.
  • the refrigerant circulates as follows.
  • the refrigerant compressed by the first to third compressors (13a, 13b, 13c) merges in the discharge pipe (56) and then the lubricating oil is separated in the oil separator (16), and the first four-way selector valve (17) and the first gas side communication pipe (51) to flow into the indoor heat exchanger (22).
  • the refrigerant releases heat to room air and condenses.
  • the liquid refrigerant condensed in the indoor heat exchanger (22) flows through the first liquid side communication pipe (52).
  • the liquid refrigerant flowing through the first liquid side communication pipe (52) flows into the outdoor unit (10), and flows into the receiver (15) through the fourth liquid pipe (79).
  • the refrigerant of the receiver (15) passes through the antifreeze pipe (57), flows through the second liquid pipe (60), and further flows through the subcooling heat exchanger (76) into the second liquid side communication pipe (54) Do.
  • the liquid refrigerant flowing into the second liquid side communication pipe (54) flows into the refrigeration circuit (31) of the refrigeration unit (30).
  • the liquid refrigerant that has flowed into the refrigeration circuit (31) is depressurized by the refrigeration expansion valve (33) and then flows into the refrigeration heat exchanger (32).
  • the refrigeration heat exchanger (32) the refrigerant absorbs heat from the air in the storage and evaporates. As a result, the internal air is cooled.
  • the refrigerant evaporated in the refrigeration heat exchanger (32) flows from the refrigeration circuit (31) into the second gas side communication pipe (53). After passing through the second gas side shut-off valve (73), the refrigerant flows into the first inflow branch pipe (55a) of the suction pipe (55) through the third four-way selector valve (19).
  • the refrigerant flowing into the first inflow branch pipe (55a) of the suction pipe (55) as described above is the first outflow branch pipe (55c), the second outflow branch pipe (55d), and the third outflow branch pipe (55e). I divide into each). Then, the refrigerant that has flowed into the first to third outflow branch pipes (55c, 55d, 55e) is drawn into the corresponding first to third compressors (13a, 13b, 13c) and compressed.
  • the injection of the intermediate pressure refrigerant into the first to third compressors (13a, 13b, 13c) by the injection piping (81) in the first heating / cooling operation is basically performed similarly to the cooling / cooling operation.
  • the controller (100) switches the first four-way switching valve (17), the second four-way switching valve (18) and the third four-way switching valve (19) to the first state. Further, the outdoor expansion valve (14), the indoor expansion valve (23), and the cold storage expansion valve (33) are controlled to a predetermined opening degree. Also, the pressure control valve (67) is controlled to be fully open, and the on-off valve (64) is controlled to be fully closed in principle.
  • the refrigerant circulates as follows.
  • the refrigerant compressed by the first to third compressors (13a, 13b, 13c) is split into two after the lubricating oil is separated in the oil separator (16) after joining in the discharge piping (56) Do.
  • One of the branched refrigerant flows into the outdoor heat exchanger (12) through the second four-way selector valve (18), the first four-way selector valve (17) and the outdoor gas pipe (58), and the other is the first one. It flows into the indoor heat exchanger (22) through the four-way switching valve (17) and the first gas side connection pipe (51).
  • the refrigerant releases heat to the outdoor air and condenses.
  • the liquid refrigerant condensed by the outdoor heat exchanger (12) flows into the receiver (15).
  • the indoor heat exchanger (22) the refrigerant releases heat to room air and condenses.
  • the liquid refrigerant condensed in the indoor heat exchanger (22) flows through the first liquid side communication pipe (52).
  • the liquid refrigerant flowing through the first liquid side communication pipe (52) flows into the outdoor unit (10), and flows into the receiver (15) through the fourth liquid pipe (79).
  • the refrigerant joined at the receiver (15) passes through the antifreeze pipe (57), flows through the second liquid pipe (60), and further passes through the subcooling heat exchanger (76) to carry out the second liquid side communication pipe (54) Flow into
  • the liquid refrigerant flowing into the second liquid side communication pipe (54) flows into the refrigeration circuit (31) of the refrigeration unit (30).
  • the liquid refrigerant that has flowed into the refrigeration circuit (31) is depressurized by the refrigeration expansion valve (33) and then flows into the refrigeration heat exchanger (32).
  • the refrigeration heat exchanger (32) the refrigerant absorbs heat from the air in the storage and evaporates. As a result, the internal air is cooled.
  • the refrigerant evaporated in the refrigeration heat exchanger (32) flows from the refrigeration circuit (31) into the second gas side communication pipe (53). After passing through the second gas side shut-off valve (73), the refrigerant flows into the first inflow branch pipe (55a) of the suction pipe (55) through the third four-way selector valve (19).
  • the refrigerant that has flowed into the first inflow branch pipe (55a) of the suction pipe (55) as described above includes the first outflow branch pipe (55c), the second outflow branch pipe (55d), and the third outflow branch pipe ( Each is diverted to 55e). Then, the refrigerant that has flowed into the first to third outflow branch pipes (55c, 55d, 55e) is drawn into the corresponding first to third compressors (13a, 13b, 13c) and compressed.
  • the injection of the intermediate pressure refrigerant into the first to third compressors (13a, 13b, 13c) by the injection piping (81) in the second heating / cooling operation is basically performed similarly to the cooling / cooling operation.
  • ⁇ Third heating and cooling operation> In the third heating / cooling operation shown in FIG. 5, when the heating capacity of the indoor unit (20) runs short during the first heating / cooling operation, the outdoor unit (20) is used as an evaporator and the indoor unit (20) is used. Operation of cooling the refrigeration unit (30). That is, in the third heating and cooling operation, the cooling capacity (heat of evaporation) of the refrigeration unit (30) and the heating capacity (heat of condensation) of the indoor unit (20) are not balanced, and the evaporation heat that runs short is an outdoor heat exchanger Absorb in (12).
  • the controller (100) switches the first four-way switching valve (17) and the third four-way switching valve (19) to the first state, switches the second four-way switching valve (18) to the second state, and performs outdoor expansion Adjust the opening of the valve (14) appropriately. Further, the refrigeration expansion valve (33) is controlled to a predetermined opening degree, and the opening degree of the indoor expansion valve (23) is controlled to a fully open state. In addition, the opening degree of the on-off valve (64) and the pressure control valve (67) is controlled to the fully closed state.
  • the refrigerant circulates as follows.
  • the refrigerant compressed by the first to third compressors (13a, 13b, 13c) is joined in the discharge pipe (56) and then the lubricating oil is separated in the oil separator (16). It flows into the indoor heat exchanger (22) through the switching valve (17) and the first gas side connection pipe (51). In the indoor heat exchanger (22), the refrigerant releases heat to room air and condenses. The liquid refrigerant condensed in the indoor heat exchanger (22) flows through the first liquid side communication pipe (52).
  • the liquid refrigerant flowing through the first liquid side communication pipe (52) flows into the outdoor unit (10), and flows into the receiver (15) through the fourth liquid pipe (79).
  • the liquid refrigerant that has flowed into the receiver (15) flows out of the receiver (15), flows through the second liquid pipe (60), passes through the subcooling heat exchanger (76), and then the second liquid side communication pipe (54) And divert to the bypass pipe (61).
  • the liquid refrigerant flowing into the second liquid side communication pipe (54) flows into the refrigeration circuit (31) of the refrigeration unit (30).
  • the liquid refrigerant that has flowed into the refrigeration circuit (31) is depressurized by the refrigeration expansion valve (33) and then flows into the refrigeration heat exchanger (32).
  • the refrigeration heat exchanger (32) the refrigerant absorbs heat from the air in the storage and evaporates. As a result, the internal air is cooled.
  • the refrigerant evaporated in the refrigeration heat exchanger (32) flows from the refrigeration circuit (31) into the second gas side communication pipe (53). After passing through the second gas side shut-off valve (73), the refrigerant flows into the first inflow branch pipe (55a) of the suction pipe (55) through the third four-way selector valve (19).
  • the refrigerant flowing into the first inflow branch pipe (55a) of the suction pipe (55) as described above is branched into the first outflow branch pipe (55c) and the second outflow branch pipe (55d). Then, the refrigerant flowing into the first and second outflow branch pipes (55c, 55d) is sucked into the corresponding first and second compressors (13a, 13b) and compressed.
  • the liquid refrigerant that has flowed out of the receiver (15) and the subcooling heat exchanger (76) and then flows into the bypass pipe (61) is decompressed by the outdoor expansion valve (14), and then the outdoor heat exchanger (12 Flows into the In the outdoor heat exchanger (12), the refrigerant absorbs heat from the outdoor air and evaporates.
  • the refrigerant evaporated in the outdoor heat exchanger (12) is passed through the outdoor gas pipe (58), the first four-way selector valve (17) and the second four-way selector valve (18), and the second refrigerant in the suction piping (55). It flows into the inflow branch pipe (55b).
  • the refrigerant flowing into the second inflow branch pipe (55b) passes through the third outflow branch pipe (55e), is sucked into the third compressor (13c), and is compressed.
  • the controller (100) switches the first four-way selector valve (17), the second four-way selector valve (18) and the third four-way selector valve (19) to the second state, and fully opens the outdoor expansion valve (14). It controls to a state, adjusts the opening degree of a room expansion valve (23) suitably, and makes the opening degree of a refrigeration expansion valve (33) fully closed.
  • the controller (100) controls the on-off valve (64) to be fully closed and controls the pressure regulating valve (67) to be fully open.
  • the refrigerant circulates as follows.
  • the refrigerant compressed by the first to third compressors (13a, 13b, 13c) merges in the discharge pipe (56) and then the lubricating oil is separated in the oil separator (16), and the first outflow branch pipe ( It branches into 56d) and the 3rd outflow branch pipe (56f).
  • the refrigerant flowing through the first outflow branch pipe (56d) passes through the first four-way selector valve (17) and the outdoor gas pipe (58) to flow into the outdoor heat exchanger (12).
  • the refrigerant releases heat to the outdoor air and condenses.
  • the liquid refrigerant condensed in the outdoor heat exchanger (12) flows into the receiver (15) through the first liquid pipe (59) and is stored in the receiver (15).
  • the liquid refrigerant stored in the receiver (15) flows out of the receiver (15), passes through the antifreeze pipe (57), and passes through the third liquid pipe (62) to the first liquid side communication pipe (52). To flow.
  • the refrigerant flowing into the first liquid side communication pipe (52) is depressurized by the indoor expansion valve (23) and then flows into the indoor heat exchanger (22).
  • the indoor heat exchanger (22) the refrigerant absorbs heat from room air and evaporates. As a result, the room air is cooled.
  • the refrigerant evaporated in the indoor heat exchanger (22) passes through the first gas side connection pipe (51), the first four way selector valve (17) and the second four way selector valve (18), and is drawn to the suction piping (55). Flows into the second inflow branch pipe (55b).
  • the refrigerant flowing into the second inflow branch pipe (55b) of the suction pipe (55) as described above is the first outflow branch pipe (55c), the second outflow branch pipe (55d), and the third outflow branch pipe (55e). I divide into each). Then, the refrigerant that has flowed into the first to third outflow branch pipes (55c, 55d, 55e) is drawn into the corresponding first to third compressors (13a, 13b, 13c) and compressed.
  • the refrigerant circulates as follows.
  • the refrigerant compressed by the first to third compressors (13a, 13b, 13c) merges in the discharge pipe (56) and then the lubricating oil is separated in the oil separator (16), and the first outflow branch pipe ( It branches into 56d) and the 3rd outflow branch pipe (56f).
  • the refrigerant flowing through the first outflow branch pipe (56d) flows into the indoor heat exchanger (22) through the first four-way selector valve (17) and the first gas side connection pipe (51).
  • the indoor heat exchanger (22) the refrigerant releases heat to room air and condenses.
  • the liquid refrigerant condensed in the indoor heat exchanger (22) flows through the first liquid side communication pipe (52).
  • the liquid refrigerant flowing through the first liquid side communication pipe (52) flows into the outdoor unit (10), and flows into the receiver (15) through the fourth liquid pipe (79).
  • the refrigerant flowing out of the subcooling heat exchanger (76) and flowing into the bypass pipe (61) is depressurized by the outdoor expansion valve (14), and then flows into the outdoor heat exchanger (12).
  • the outdoor heat exchanger (12) the refrigerant absorbs heat from the outdoor air and evaporates.
  • the refrigerant evaporated in the outdoor heat exchanger (12) is passed through the outdoor gas pipe (58), the first four-way selector valve (17) and the second four-way selector valve (18), and the second refrigerant in the suction piping (55). It flows into the inflow branch pipe (55b).
  • the refrigerant flowing into the second inflow branch pipe (55b) of the suction pipe (55) as described above is the first outflow branch pipe (55c), the second outflow branch pipe (55d), and the third outflow branch pipe (55e). I divide into each). Then, the refrigerant that has flowed into the first to third outflow branch pipes (55c, 55d, 55e) is drawn into the corresponding first to third compressors (13a, 13b, 13c) and compressed.
  • the temperature (also referred to as discharge temperature) of the refrigerant discharged from each of the compressors (13a, 13b, 13c) may hunting due to such valve control, and the discharge temperature may not converge to the target value.
  • simplification of valve control is achieved by performing control of an expansion valve (refer to Drawing 9) mentioned below, and control of an expansion valve (78) (refer to Drawing 10).
  • step ST11 whether the compressor (13a, 13b, 13c) corresponding to each flow control valve (82a, 82b, 82c) is in operation It judges whether or not. Then, when the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c) is stopped, the process proceeds to step ST12, and all the flow rate control valves (82a, 82b, 82c) It will be closed.
  • the first expansion valve (82a) when the first compressor (13a) is stopped, the first expansion valve (82a) is fully closed. On the other hand, when the first compressor (13a) is in operation, the first expansion valve (82a) is in the open state, and the control of step ST13 to step ST19 is performed.
  • the temperature of the refrigerant discharged from the compressor (13a, 13b, 13c) corresponding to the flow rate adjustment valve (82a, 82b, 82c) is the refrigerant discharged from the compressor (13a, 13b, 13c) during operation. It is determined whether or not it is the highest among the above. When this condition is satisfied, the flow rate control valves (82a, 82b, 82c) are maintained in the fully open state.
  • the temperature (Td1) of the refrigerant discharged from the first compressor (13a) is the refrigerant discharged from all the compressors (13a, 13b, 13c) The highest temperature among the temperatures (Td1, Td2, Td3) of In this case, the process proceeds to step ST14, and the first expansion valve (82a) is maintained in the fully open state.
  • the target flow control valve (82a, 82b, 82c) is made full open thru
  • the flow rate control valves (82a, 82b, 82c) may be maintained at a predetermined fixed opening degree, and may not necessarily be the full opening or the maximum opening degree.
  • any one of the flow rate control valves (82a, 82b, 82c) is fully opened.
  • the opening degree of the expansion valve (78) of the main pipe (77) is adjusted based on the discharge temperature of the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c).
  • the compressors (13a, 13b, 13c) are supplied.
  • the amount of refrigerant can be adjusted (details will be described later).
  • step ST13 when the temperature of the refrigerant discharged from the compressor (13a, 13b, 13c) corresponding to the flow rate adjustment valve (82a, 82b, 82c) is not the highest, the process proceeds to step ST15.
  • step S15 it is determined whether the superheating condition (whether the temperature of the refrigerant discharged from the compressor (13a, 13b, 13c) is excessively high) is determined. If it is determined in step ST15 that the overheat state has occurred, the process proceeds to step ST16, and the opening degree of the flow rate control valve (82a, 82b, 82c) becomes large. As a result, the amount of refrigerant supplied to the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c) is increased, and the overheat state can be eliminated.
  • condition 1 For example, the temperature of the refrigerant discharged from the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c) is a predetermined value (for example, 100.degree. C.)
  • Condition 2 higher than that, the refrigerant temperature of the discharge of the compressor (13a, 13b, 13c) corresponding to the flow rate adjustment valve (82a, 82b, 82c) is higher than a predetermined value (for example, 80.degree. C.).
  • Etc. are used. If one or both of the condition 1 and the condition 2 are satisfied, the process proceeds to step ST16.
  • step ST17 it is determined whether the wet condition (whether the refrigerant in the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c) is liquid rich).
  • the process proceeds to step ST18, and the opening degree of the flow rate adjustment valve (82a, 82b, 82c) becomes smaller.
  • the amount of refrigerant supplied to the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c) decreases, and the wet state can be eliminated.
  • condition 3 For example, the discharge refrigerant temperature of the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c) is higher than a predetermined value (for example, 50 ° C)
  • condition 4 the degree of superheat of the refrigerant discharged from the compressor (13a, 13b, 13c) corresponding to the flow control valve (82a, 82b, 82c) is smaller than a predetermined value (for example, 5 ° C) . If one or both of the condition 3 and the condition 4 are satisfied, the process proceeds to step ST18.
  • step ST19 the flow rate control valve (82a) is set such that the temperature of the refrigerant discharged from the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c) approaches a target value (for example, 90.degree. C.). , 82b, 82c) are controlled.
  • the flow control valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the highest discharge temperature is fully opened. It becomes.
  • the discharge temperature of the compressor (13a, 13b, 13c) corresponding to the other flow rate control valves (82a, 82b, 82c) approaches the target temperature, the other flow rate control valves (82a, 82b, 82c) Is adjusted.
  • the opening degree of the expansion valve (78) is adjusted for the compressor (13a, 13b, 13c) having the highest discharge temperature. Specifically, first, in step ST21 of FIG. 10, it is determined whether the compressor (13a, 13b, 13c) with the highest discharge temperature is the wet condition. As described above, since the flow rate control valves (82a, 82b, 82c) corresponding to the compressors (13a, 13b, 13c) with the highest discharge temperature are fully opened, the excess refrigerant is discharged from the compressors (13a, 13b). , 13c).
  • step ST21 when the wet condition is satisfied, the process proceeds to step ST22, and the opening degree of the expansion valve (78) decreases to a predetermined opening degree (for example, 50% to 80% of the current opening degree). Thereby, the wet state of the compressor (13a, 13b, 13c) can be quickly eliminated.
  • a predetermined opening degree for example, 50% to 80% of the current opening degree
  • step ST22 it is determined whether the compressor (13a, 13b, 13c) having the highest discharge temperature is in the superheating condition.
  • the process proceeds to step ST24, and the opening degree of the expansion valve (78) is increased by a predetermined opening degree (for example, 10 to 30 pulses). Thereby, the overheat state of this compressor (13a, 13b, 13c) can be eliminated promptly.
  • the heating condition in step ST22 is the same as that in step ST23 described above.
  • step ST25 the degree of opening of the expansion valve (78) such that the temperature (maximum discharge refrigerant temperature (Tdmax)) of the refrigerant discharged from the compressor (13a, 13b, 13c) approaches a target value (for example, 95 ° C.) Is controlled.
  • a target value for example, 95 ° C.
  • the flow control valves (82a, 82b, 82c) corresponding to the compressors (13a, 13b, 13c) having the highest discharge temperature are fully opened.
  • the opening degree of the expansion valve (78) is controlled so that the discharge temperature of the compressor (13a, 13b, 13c) approaches the target value.
  • the opening degree of the remaining flow rate control valves (82a, 82b, 82c) is controlled so that the discharge temperature of the remaining compressors (13a, 13b, 13c) approaches the target value.
  • the pressure of the injection pipe (81) is the detection value (injection pressure (PI)) of the pressure sensor (117), and the maximum pressure of the intermediate port of the operating compressor (13a, 13b, 13c)
  • the value (Pm) is, for example, a value obtained by multiplying the detection value (first suction pressure (Ps1)) of the first suction pressure sensor (114a) by a predetermined coefficient (1.3), for example, the second suction pressure sensor (114b)
  • the higher one of the values obtained by multiplying the predetermined detected value (second suction pressure (Ps2)) by the predetermined coefficient (1.3) can be used.
  • the lower limit value of the opening degree of the expansion valve (78) is set such that the injection pressure (PI) becomes higher than the maximum value (Pm) of the pressure of the intermediate port. Therefore, the above-described injection operation can be continued while preventing such backflow of the refrigerant.
  • the first flow control valve (82a) and the second flow control valve (82b) are fixedly opened, and the openings of the third flow control valve (82c) and the expansion valve (78) are adjusted.
  • the liquid refrigerant can not be evaporated sufficiently by the outdoor heat exchanger (12), and the degree of suction superheat of the refrigerant drawn into the compressor (13a, 13b, 13c) may be reduced.
  • the liquid refrigerant is introduced from the injection pipe (81) to the compressor (13a, 13b, 13c) despite the small degree of suction superheat of the drawn refrigerant, the refrigerant in the compressor (13a, 13b, 13c) becomes wet. It is easy to be in the state. In this case, the liquid refrigerant dissolves in the lubricating oil of the compressor (13a, 13b, 13c) and the lubricating oil is diluted.
  • the expansion valve (78) is fully closed or slightly opened in conjunction with the switching operation of each four-way switching valve (17, 18, 19). Thereby, it is possible to prevent the liquid refrigerant from being introduced from the injection pipe (81) to each compressor (3a, 13b, 13c) at the time of switching operation, and the refrigerant inside each compressor (3a, 13b, 13c) Can be avoided from becoming wet.
  • the flow control valve (82a, 82b, 82c) corresponding to one of the plurality of compressors (13a, 13b, 13c) is maintained at the fixed opening degree. Therefore, it is not necessary to appropriately adjust the opening degree of the flow rate control valve (82a, 82b, 82c).
  • the opening degree of the flow rate control valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the highest temperature of the discharged refrigerant is maintained at the maximum opening degree.
  • the compressor (13a, 13b, 13c) having the highest discharge temperature among the plurality of compressors (13a, 13b, 13c) needs to introduce a large amount of liquid refrigerant. Therefore, by maximizing the opening degree of the flow rate control valve (82a, 82b, 82c), the refrigerant can be promptly introduced into the compressor (13a, 13b, 13c).
  • a plurality of evaporators (22, 32) are connected to the refrigerant circuit (2), and the refrigerant evaporates at different temperatures in these evaporators (22, 32). A cycle is performed.
  • the refrigerant circuit (2) may not necessarily perform the different temperature evaporation type refrigeration cycle, and may be configured to have only one evaporator (32).
  • a plurality of (for example, two) compressors (first compressor (13a) and second compressor (13b)), 1
  • Two radiators for example, an outdoor heat exchanger (12)
  • one evaporator for example, a refrigeration heat exchanger (32)
  • the first compressor (13a) and the second compressor (13b) are individually configured to have variable capacities. That is, the rotational speeds of the first compressor (13a) and the second compressor (13b) are configured to be variable by inverter control.
  • the subcooling heat exchanger (76) is connected to the liquid pipe (90) of the refrigerant circuit (2).
  • the inflow pipe of the injection pipe (81) is connected to the liquid pipe (90).
  • a liquid pipe (90) is connected to the high pressure side flow passage (76a) of the subcooling heat exchanger (76).
  • the low pressure side flow passage (76b) of the subcooling heat exchanger (76) constitutes a part of the main pipe (77) of the injection pipe (81).
  • the first branch pipe (81a) of the injection pipe (81) is connected to the intermediate pressure port of the first compressor (13a), and the second branch pipe (79) of the injection pipe (81) is the second compressor (81). It is connected to the intermediate pressure port of 13 b).
  • An expansion valve (78) is connected to the upstream side of the low pressure side flow passage (76b) in the main pipe (77).
  • a first flow control valve (82a) is connected to the first branch pipe (81a).
  • the second flow control valve (82b) is connected to the second branch pipe (81b).
  • a first discharge temperature sensor (111a) is provided on the discharge side (first inflow branch pipe (56a)) of the first compressor (13a).
  • a second discharge temperature sensor (111b) is provided on the discharge side (second inflow branch pipe (56b)) of the second compressor (13b).
  • a discharge pressure sensor (112) is provided on the discharge side (discharge pipe (56)) of the first compressor (13a) and the second compressor (13b).
  • the main pipe (77) is provided with a pressure sensor (117). Similar to the above embodiment, the degree of discharge superheat of the first compressor (13a) and the temperature of the discharge refrigerant of the second compressor, the degree of superheat of the discharge refrigerant, the pressure of the intermediate pressure port, etc. Is measurable.
  • the first compressor (13a) and the second compressor (13b) are driven, and the outdoor heat exchanger (12), for example, becomes a radiator (condenser), and a refrigeration heat exchanger ( A refrigeration cycle is performed in which 32) becomes an evaporator.
  • the injection operation is performed as in the above embodiment. That is, the first compressor (13a) and the second compressor (13b) are supplied with the refrigerant whose flow rate is adjusted by the flow rate control valves (82a, 82b). This is because the first compressor (13a) and the second compressor (13b) have different operating capacities or rotational speeds, so the amount of injection required for each of the compressors (13a, 13b) is different.
  • the injection operation of the first compressor (13a) and the second compressor (13b), it corresponds to the compressor (13a, 13b) with the highest temperature of the discharged refrigerant.
  • the opening degree of the flow rate adjustment valve (82a, 82b) is maintained at the maximum opening degree.
  • the opening degrees of the expansion valve (78) and the remaining flow control valves (82a, 82b) are adjusted so that the temperatures of the refrigerant discharged from the compressors (13a, 13b) approach the predetermined target temperature. .
  • the injection operation can be performed while reducing the substantial number of valves to be controlled.
  • the refrigeration system (1) of the above embodiment has an indoor unit (10) and a refrigeration unit (30).
  • the refrigeration system (1) may have a refrigeration unit that performs refrigeration inside the refrigerator.
  • the refrigeration system (1) may have a hot water supply unit, and may be configured to heat water with a hot water supply heat exchanger (radiator or condenser) of the hot water supply unit.
  • the end of the injection pipe (81) of the above embodiment is connected to the intermediate pressure port (intermediate pressure compression chamber) of the compressor (13a, 13b, 13c).
  • the end of the injection pipe (81) may be connected to the suction port of the compressor (13a, 13b, 13c) or to the suction pipe. That is, the injection pipe (81) may introduce the refrigerant in the liquid line to the suction side of the compressor (13a, 13b, 13c).
  • the number of compressors (13a, 13b, 13c) in the above embodiment is merely an example, and may be one, two, or four or more.
  • the refrigeration system (1) of the above embodiment is a so-called four-pipe system in which four connection pipes are provided, but it may be a so-called three-pipe system in which three connection pipes are provided.
  • the present invention is useful for refrigeration systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

One main pipe (77) connected to a liquid line (60) and having an expansion valve (78), and multiple branch pipes (81a, 81b, 81c) branching off from the outflow end of the main pipe (77) to connect to compressors (13a, 13b, 13c) and each having a flow adjustment valve (82a, 82b, 82c) are provided in an injection circuit (81). A control unit (100) is provided which, during an injection operation, maintains at a prescribed fixed opening degree the flow adjustment valves (82a, 82b, 82c) corresponding to prescribed compressors (13a, 13b, 13c) of the multiple compressors (13a, 13b, 13c), and adjusts the opening degrees of the compression valve (78) and the remaining flow adjustment valves (82a, 82b, 82c).

Description

冷凍装置Refrigeration system
  本発明は、冷凍装置に関する。 The present invention relates to a refrigeration system.
  従来より、冷媒回路を備えた冷凍装置が知られている。 Conventionally, a refrigeration system provided with a refrigerant circuit is known.
  特許文献1に開示された冷凍装置は、空調ユニットで室内の空調を行うと同時に、冷設ユニットで庫内の冷蔵/冷凍を行うように構成される。冷凍装置には、複数の圧縮機と、熱源側熱交換器と、複数の利用側熱交換器)とが接続される。複数の圧縮機は、空調ユニットに対応する空調側圧縮機と、冷設ユニットに対応する冷却側圧縮機とを含む。複数の利用側熱交換器は、空調ユニットの室内熱交換器と、冷設ユニットの冷蔵熱交換器とを含む。冷凍装置のある冷房運転では、熱源側熱交換器で冷媒が凝縮すると同時に、室内熱交換器及び冷蔵熱交換器が蒸発器となる冷凍サイクルが行われる。 The refrigeration system disclosed in Patent Document 1 is configured to perform air conditioning in the room with the air conditioning unit and to perform refrigeration / refrigeration in the cold storage with the cold installation unit. A plurality of compressors, a heat source side heat exchanger, and a plurality of use side heat exchangers are connected to the refrigeration system. The plurality of compressors include an air conditioning side compressor corresponding to the air conditioning unit and a cooling side compressor corresponding to the cooling unit. The plurality of usage-side heat exchangers include an indoor heat exchanger of the air conditioning unit and a refrigeration heat exchanger of the cooling unit. In a cooling operation with a refrigeration system, the refrigerant is condensed in the heat source side heat exchanger, and at the same time, a refrigeration cycle in which the indoor heat exchanger and the cold storage heat exchanger become the evaporator is performed.
  具体的に、この冷房運転では、複数の圧縮機で圧縮された冷媒が、熱源側熱交換器で凝縮した後、室内熱交換器と冷蔵熱交換器とに送られる。室内熱交換器では、冷媒が室内空気から吸熱して蒸発する。室内熱交換器で蒸発した冷媒は、空調側圧縮機に吸入されて再び圧縮される。冷蔵熱交換器では、冷媒が庫内空気から吸熱した蒸発する。冷蔵熱交換器で蒸発した冷媒は、冷蔵側圧縮機に吸入されて再び圧縮される。 Specifically, in the cooling operation, the refrigerant compressed by the plurality of compressors is condensed by the heat source side heat exchanger, and is then sent to the indoor heat exchanger and the refrigeration heat exchanger. In the indoor heat exchanger, the refrigerant absorbs heat from indoor air and evaporates. The refrigerant evaporated in the indoor heat exchanger is drawn into the air-conditioning side compressor and compressed again. In the refrigeration heat exchanger, the refrigerant absorbs heat from the air in the storage and evaporates. The refrigerant evaporated in the refrigeration heat exchanger is sucked into the refrigeration side compressor and compressed again.
  この冷房運転では、室内熱交換器の冷媒の蒸発温度ないし蒸発圧力が、冷蔵熱交換器の冷媒の蒸発温度ないし蒸発圧力よりも高くなる。換言すると、室内熱交換器の冷媒を吸入する空調側圧縮機の吸入圧力は、冷蔵熱交換器の冷媒を吸入する冷却側圧縮機の吸入圧力よりも高くなる。 In this cooling operation, the evaporation temperature or the evaporation pressure of the refrigerant in the indoor heat exchanger becomes higher than the evaporation temperature or the evaporation pressure of the refrigerant in the cold storage heat exchanger. In other words, the suction pressure of the air-conditioning side compressor that sucks the refrigerant of the indoor heat exchanger is higher than the suction pressure of the cooling-side compressor that sucks the refrigerant of the cold storage heat exchanger.
  また、同文献の冷凍装置の冷媒回路には、複数の圧縮機に冷媒(液冷媒)を導入するためのインジェクション回路が接続される。インジェクション回路は、液ラインに接続する1本の主管と、該主管から分岐して複数の圧縮機に接続する複数の分岐管とを有する。上述した冷房運転では、冷媒を各圧縮機へ導入するインジェクション動作が行われる。このインジェクション動作では、主管を流れた冷媒が、各分岐管へ分流した後、各圧縮機の中間部(圧縮途中)に導入される。これにより、各圧縮機の吐出冷媒の温度が過剰に高くなることを抑制できる。 Moreover, the injection circuit for introduce | transducing a refrigerant | coolant (liquid refrigerant) into several compressors is connected to the refrigerant circuit of the freezing apparatus of the literature. The injection circuit has one main pipe connected to the liquid line, and a plurality of branch pipes branched from the main pipe and connected to the plurality of compressors. In the cooling operation described above, an injection operation of introducing the refrigerant into each compressor is performed. In this injection operation, the refrigerant having flowed through the main pipe is branched to each branch pipe and then introduced into the middle portion (during compression) of each compressor. Thereby, it can suppress that the temperature of the discharge refrigerant | coolant of each compressor becomes high excessively.
特開2004-044921号公報JP, 2004-044921, A
  特許文献1に冷凍装置のインジェクション回路には、主管に流量調節弁が接続され、各分岐管に膨張弁がそれぞれ接続される。この構成では、インジェクション動作において、流量調節弁及び各膨張弁の開度をそれぞれ調節することで、各圧縮機に導入される冷媒の量を個別に調節できる。 In the injection circuit of the refrigeration system disclosed in Patent Document 1, a flow control valve is connected to the main pipe, and an expansion valve is connected to each branch pipe. In this configuration, the amount of refrigerant introduced into each compressor can be individually adjusted by adjusting the opening degree of the flow control valve and each expansion valve in the injection operation.
  しかし、このように、流量調節弁及び複数の膨張弁の全ての開度を細かく調節すると、インジェクション動作における弁の制御が複雑になる。その結果、各弁の制御に起因して、吐出冷媒の温度がハンチングする等の不具合を招くおそれがある。 However, fine adjustment of the opening degree of all of the flow control valve and the plurality of expansion valves in this way complicates control of the valve in the injection operation. As a result, due to the control of each valve, there is a possibility that a problem such as hunting of the temperature of the discharged refrigerant may occur.
  本発明は、このような課題に着目してなし得たものであり、インジェクション動作における弁制御を簡素化することである。 The present invention has been made by focusing on such problems, and is to simplify valve control in the injection operation.
  第1の態様は、複数の圧縮機(13a,13b,13c)と、少なくとも1つの放熱器(12)と、少なくとも1つの蒸発器(22,32)とが接続され、冷凍サイクルが行われる冷媒回路(2)を備えた冷凍装置を対象とし、前記冷媒回路(2)には、前記放熱器(12)と前記蒸発器(22,32)との間の液ライン(60)の冷媒を各圧縮機(13a,13b,13c)に導入するインジェクション動作を行うためのインジェクション回路(81)が接続され、前記インジェクション回路(81)には、前記液ライン(60)に接続するとともに膨張弁(78)を有する1つの主管(77)と、該主管(77)の流出端から分岐して前記複数の圧縮機(13a,13b,13c)にそれぞれ繋がるとともに、各々が流量調節弁(82a,82b,82c)を有する複数の分岐管(81a,81b,81c)とが設けられ、前記インジェクション動作において、前記複数の圧縮機(13a,13b,13c)のうち所定の圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)を所定の固定開度に維持するとともに、前記膨張弁(78)及び残りの流量調節弁(82a,82b,82c)の開度をそれぞれ調節する制御部(100)を備えていることを特徴とする。 The first aspect is a refrigerant in which a plurality of compressors (13a, 13b, 13c), at least one radiator (12), and at least one evaporator (22, 32) are connected, and a refrigeration cycle is performed. The present invention is directed to a refrigeration system provided with a circuit (2), and the refrigerant circuit (2) includes a refrigerant in a liquid line (60) between the radiator (12) and the evaporator (22, 32). An injection circuit (81) for performing an injection operation to be introduced into the compressor (13a, 13b, 13c) is connected, and the injection circuit (81) is connected to the liquid line (60) and an expansion valve (78). And one main pipe (77) having a branch) from the outlet end of the main pipe (77) to be respectively connected to the plurality of compressors (13a, 13b, 13c), each having a flow control valve (82a, 82b, 82c) and a plurality of branch pipes (81a, 81b, 81c) are provided. Maintaining a flow control valve (82a, 82b, 82c) corresponding to a predetermined compressor (13a, 13b, 13c) among the plurality of compressors (13a, 13b, 13c) at a predetermined fixed opening degree, A control unit (100) is provided to adjust the opening degree of the expansion valve (78) and the remaining flow control valves (82a, 82b, 82c).
  第1の態様では、冷凍サイクルにおいて、インジェクション動作が行われる。このインジェクション動作では、複数の圧縮機(13a,13b,13c)のうちの所定の圧縮機(13a,13b,13c)に対応する分岐管(81a,81b,81c)に接続される流量調節弁(82a,82b,82c)が所定の固定開度に維持される。このため、この流量調節弁(82a,82b,82c)の開度を適宜調節ないし制御する必要がない。 In the first aspect, the injection operation is performed in the refrigeration cycle. In this injection operation, a flow rate control valve (a) is connected to a branch pipe (81a, 81b, 81c) corresponding to a predetermined compressor (13a, 13b, 13c) of the plurality of compressors (13a, 13b, 13c). 82a, 82b, 82c) are maintained at a predetermined fixed opening. Therefore, it is not necessary to appropriately adjust or control the opening degree of the flow rate control valve (82a, 82b, 82c).
  一方、各圧縮機(13a,13b,13c)の吐出冷媒の各温度を調節するように、膨張弁(78)の開度、及び残りの流量調節弁(82a,82b,82c)の開度が調節される。つまり、ある圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)の開度を固定開度に維持したとしても、主管(77)の膨張弁(78)の開度を調節することで、この圧縮機(13a,13b,13c)の吐出冷媒の温度を調節できる。一方、残りの流量調節弁(82a,82b,82c)の開度を調節することで、該残りの流量調節弁(82a,82b,82c)に対応する圧縮機(13a,13b,13c)の吐出冷媒の温度も調節できる。従って、本発明に係る制御では、従来の方式と比較して、制御対象となる弁の数を実質的に減らすことができ、弁制御の簡素化を図ることができる。 On the other hand, the opening degree of the expansion valve (78) and the opening degree of the remaining flow control valves (82a, 82b, 82c) are adjusted so as to adjust the temperatures of the refrigerant discharged from the compressors (13a, 13b, 13c). It is adjusted. That is, even if the opening degree of the flow rate control valve (82a, 82b, 82c) corresponding to a certain compressor (13a, 13b, 13c) is maintained at the fixed opening degree, the expansion valve (78) of the main pipe (77) is opened. By adjusting the degree, the temperature of the refrigerant discharged from the compressor (13a, 13b, 13c) can be adjusted. On the other hand, by adjusting the opening degree of the remaining flow rate control valves (82a, 82b, 82c), the discharge of the compressor (13a, 13b, 13c) corresponding to the remaining flow rate control valves (82a, 82b, 82c) The temperature of the refrigerant can also be adjusted. Therefore, in the control according to the present invention, the number of valves to be controlled can be substantially reduced as compared with the conventional method, and valve control can be simplified.
  第2の態様は、第1の態様において、前記制御部(100)は、吐出冷媒の温度が最も高い圧縮機(13a,13b,13c)に対応する前記流量調節弁(82a,82b,82c)を前記所定の固定開度に維持することを特徴とする冷凍装置である。 In the second aspect, in the first aspect, the control unit (100) corresponds to the flow control valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the highest temperature of the discharged refrigerant. Is maintained at the predetermined fixed opening degree.
  第2の態様では、インジェクション動作において、吐出冷媒の温度が最も高い圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)の開度が固定開度に維持される。複数の圧縮機(13a,13b,13c)のうち最も吐出温度が高い圧縮機(13a,13b,13c)は、液冷媒を導入する必要がある。このため、吐出冷媒の温度が最大である圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)の開度を固定開度で開放する。これにより、この圧縮機(13a,13b,13c)に冷媒を確実に導入できる。一方、この圧縮機(13a,13b,13c)の吐出温度の調節は、膨張弁(78)によって行われる。また、吐出冷媒の温度が最大でない圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)は、固定開度とせずに、個別に開度を調節する。 In the second aspect, in the injection operation, the opening degree of the flow rate adjusting valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the highest temperature of the discharged refrigerant is maintained at the fixed opening degree. . The compressor (13a, 13b, 13c) having the highest discharge temperature among the plurality of compressors (13a, 13b, 13c) needs to introduce a liquid refrigerant. Therefore, the opening degree of the flow rate adjusting valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the maximum temperature of the discharged refrigerant is opened at the fixed opening degree. Thus, the refrigerant can be reliably introduced into the compressors (13a, 13b, 13c). On the other hand, the adjustment of the discharge temperature of the compressor (13a, 13b, 13c) is performed by the expansion valve (78). Further, the flow rate control valves (82a, 82b, 82c) corresponding to the compressors (13a, 13b, 13c) in which the temperature of the discharged refrigerant is not maximum individually adjust the opening degree without fixing the opening degree.
  第3の態様は、第2の態様において、前記制御部(100)は、吐出冷媒の温度が最も高い圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)の前記所定の開度を最大に維持することを特徴とする冷凍装置である。 According to a third aspect, in the second aspect, the controller (100) is a flow control valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the highest temperature of the discharged refrigerant. It is a freezing device characterized by maintaining the above-mentioned predetermined opening to the maximum.
  第3の態様では、インジェクション動作において、吐出冷媒の温度が最も高い圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)の開度が最大開度に維持される。複数の圧縮機(13a,13b,13c)のうち最も吐出温度が高い圧縮機(13a,13b,13c)は、液冷媒を多く導入する必要がある。このため、吐出冷媒の温度が最大である圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)の開度を最大開度とする。これにより、この圧縮機(13a,13b,13c)に吐出冷媒の温度を速やかに低減できる。また、吐出冷媒の温度が最大でない圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)は、個別に開度を調節する。吐出冷媒の温度が最大でない圧縮機(13a,13b,13c)には、膨張弁(78)及び流量調節弁(82a,82b,82c)で流量が調節された冷媒が導入される。 In the third aspect, in the injection operation, the opening degree of the flow rate adjusting valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the highest temperature of the discharged refrigerant is maintained at the maximum opening degree. . The compressor (13a, 13b, 13c) having the highest discharge temperature among the plurality of compressors (13a, 13b, 13c) needs to introduce a large amount of liquid refrigerant. For this reason, the opening degree of the flow rate control valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) in which the temperature of the discharged refrigerant is maximum is taken as the maximum opening degree. Thereby, the temperature of the refrigerant discharged to the compressors (13a, 13b, 13c) can be rapidly reduced. Further, the flow rate control valves (82a, 82b, 82c) corresponding to the compressors (13a, 13b, 13c) in which the temperature of the discharged refrigerant is not maximum individually adjust the degree of opening. The refrigerant whose flow rate is adjusted by the expansion valve (78) and the flow rate control valves (82a, 82b, 82c) is introduced into the compressor (13a, 13b, 13c) in which the temperature of the discharged refrigerant is not maximum.
  以上のような制御により、吐出冷媒の温度が最大である圧縮機(13a,13b,13c)には、比較的多くの冷媒を導入できる。逆に、吐出冷媒の温度が最大でない圧縮機(13a,13b,13c)には、比較的少ない量の冷媒をできる。従って、各圧縮機(13a,13b,13c)の吐出冷媒の温度を速やかに最適な範囲に近づけることができる。 By the control as described above, a relatively large amount of refrigerant can be introduced into the compressor (13a, 13b, 13c) in which the temperature of the discharge refrigerant is maximum. Conversely, a relatively small amount of refrigerant can be produced in the compressors (13a, 13b, 13c) in which the temperature of the discharged refrigerant is not maximum. Therefore, the temperature of the refrigerant discharged from each of the compressors (13a, 13b, 13c) can be quickly brought close to the optimum range.
  第4の態様は、第1乃至3のいずれか1つの態様において、上記冷媒回路(2)では、複数の蒸発器(22,32)の異なる蒸発圧力で蒸発した冷媒が異なる圧縮機(13a,13b,13c)にそれぞれ吸入される冷凍サイクルが行われること特徴とする。 According to a fourth aspect, in any one of the first to third aspects, in the refrigerant circuit (2), the refrigerants evaporated at different evaporation pressures of the plurality of evaporators (22, 32) are different in the compressor (13a, 13a, 13b, 13c) is characterized in that a refrigeration cycle is performed, which is inhaled respectively.
  第5の態様は、第1乃至第3のいずれか1つの態様において、冷媒回路(2)に1つの蒸発器(22)が接続されること特徴とする。 The fifth aspect is characterized in that one evaporator (22) is connected to the refrigerant circuit (2) in any one of the first to third aspects.
  本発明によれば、ある圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)を固定開度にしつつ、膨張弁(78)及び残りの流量調節弁(82a,82b,82c)の開度を調節することで、制御対象となる弁の数を実質的に減らしつつ、各圧縮機(13a,13b,13c)の吐出冷媒の温度を目標温度に近づけることができる。これにより、インジェクション動作の制御の簡素化を図ることができる。また、弁開度の細かい調節により、各圧縮機(13a,13b,13c)の吐出冷媒の温度がハンチングしてしまうことも回避できる。 According to the present invention, the expansion valve (78) and the remaining flow control valves (82a, 82a, 82c, 82c) are fixedly opened while the flow control valves (82a, 82b, 82c) corresponding to certain compressors (13a, 13b, 13c) have fixed openings. By adjusting the opening degree of 82b, 82c), the temperature of the refrigerant discharged from each compressor (13a, 13b, 13c) can be brought close to the target temperature while substantially reducing the number of valves to be controlled. . Thereby, the control of the injection operation can be simplified. In addition, it is possible to prevent the temperature of the refrigerant discharged from each compressor (13a, 13b, 13c) from hunting by finely adjusting the valve opening degree.
図1は、本発明の実施形態に係る冷凍装置の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to an embodiment of the present invention. 図2は、図1の冷凍装置における冷房冷却運転時の冷媒流れを示す図である。FIG. 2 is a view showing a refrigerant flow during cooling and cooling operation in the refrigeration system of FIG. 図3は、図1の冷凍装置における第1暖房冷却運転時の冷媒流れを示す図である。FIG. 3 is a diagram showing the flow of the refrigerant during the first heating and cooling operation in the refrigeration system of FIG. 図4は、図1の冷凍装置における第2暖房冷却運転時の冷媒流れを示す図である。FIG. 4 is a diagram showing a refrigerant flow during the second heating and cooling operation in the refrigeration system of FIG. 図5は、図1の冷凍装置における第3暖房冷却運転時の冷媒流れを示す図である。FIG. 5 is a diagram showing the flow of the refrigerant during the third heating and cooling operation in the refrigeration system of FIG. 図6は、図1の冷凍装置で冷房時に冷蔵熱交換器を逆サイクルでデフロストする冷媒の流れを示す図である。FIG. 6 is a diagram showing a flow of refrigerant that defrosts the refrigeration heat exchanger in the reverse cycle during cooling in the refrigeration system of FIG. 1. 図7は、図1の冷凍装置で暖房時に冷蔵熱交換器を逆サイクルでデフロストする冷媒の流れを示す図である。FIG. 7 is a diagram showing the flow of refrigerant that defrosts the refrigeration heat exchanger in the reverse cycle during heating in the refrigeration system of FIG. 1. 図8は、実施形態のコントローラの概略の構成を示すブロック図である。FIG. 8 is a block diagram showing a schematic configuration of a controller of the embodiment. 図9は、インジェクション動作における3つの膨張弁の制御を説明するためのフローチャートである。FIG. 9 is a flow chart for explaining control of three expansion valves in the injection operation. 図10は、インジェクション動における流量調節弁の制御を説明するためのフローチャートである。FIG. 10 is a flow chart for explaining control of the flow control valve in the injection movement. 図11は、実施形態の変形例に係る冷凍装置の冷媒回路図である。FIG. 11 is a refrigerant circuit diagram of a refrigeration apparatus according to a modification of the embodiment.
  以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments are essentially preferred examples, and are not intended to limit the scope of the present invention, its applications, or its applications.
 《発明の実施形態》
 〈冷凍装置の概略構成〉
  実施形態に係る冷凍装置(1)は、冷蔵倉庫及びそれらに隣接する事務所に設けられ、商品の冷蔵と室内の空調とを行うものである。
<< Embodiment of the Invention >>
<Schematic Configuration of Refrigeration System>
The refrigeration system (1) according to the embodiment is provided in a cold storage warehouse and an office adjacent thereto, and performs refrigeration of goods and air conditioning of the room.
  図1に示すように、冷凍装置(1)は、室外に設置される室外ユニット(10)と、室内空間を空調する室内ユニット(20)と、冷蔵倉庫の庫内を冷却する冷蔵ユニット(30)と、コントローラ(100)とを備えている。なお、室内ユニット(20)及び冷蔵ユニット(30)の数量は、1つに限らず、2つ以上であってもよい。そして、これらのユニットが接続されて冷媒回路(2)が構成されている。冷媒回路(2)には、大きく分けて、上記室内を空調するための空調系統回路(2a)と、上記冷蔵ユニット(30)及び冷凍ユニット(40)の庫内を冷却するための冷却系統回路(2b)とが形成されている。 As shown in FIG. 1, the refrigeration system (1) comprises an outdoor unit (10) installed outdoors, an indoor unit (20) for air conditioning the indoor space, and a refrigeration unit (30) for cooling the inside of the cold storage warehouse. And a controller (100). The number of the indoor units (20) and the refrigeration unit (30) is not limited to one, and may be two or more. Then, these units are connected to constitute a refrigerant circuit (2). The refrigerant circuit (2) is roughly divided into an air conditioning system circuit (2a) for air conditioning the room, and a cooling system circuit for cooling the inside of the cold storage unit (30) and the freezing unit (40). And (2b) are formed.
  室外ユニット(10)には、室外熱交換器(12)を有する熱源側回路としての室外回路(11)が設けられている。室内ユニット(20)には、室内熱交換器(22)を有する室内回路(21)(利用側回路)が設けられている。冷蔵ユニット(30)には、冷蔵熱交換器(32)を有する冷蔵用回路(31)(利用側回路)が設けられている。 The outdoor unit (10) is provided with an outdoor circuit (11) as a heat source side circuit having an outdoor heat exchanger (12). The indoor unit (20) is provided with an indoor circuit (21) (use side circuit) having an indoor heat exchanger (22). The refrigeration unit (30) is provided with a refrigeration circuit (31) (use-side circuit) having a refrigeration heat exchanger (32).
  冷凍装置(1)では、室外回路(11)と複数の利用側回路(21,31)が、第1ガス側連絡配管(51)、第1液側連絡配管(52)、第2ガス側連絡配管(53)、及び第2液側連絡配管(54)からなる4本の連絡配管(51~54)で互いに接続され、蒸気圧縮式の冷凍サイクルを行う冷媒回路(2)が構成されている。 In the refrigeration system (1), the outdoor circuit (11) and the plurality of use side circuits (21, 31) are the first gas side communication pipe (51), the first liquid side communication pipe (52), the second gas side communication The refrigerant circuit (2) is connected to each other by four connecting pipes (51 to 54) including the pipe (53) and the second liquid side connecting pipe (54), and a refrigerant circuit (2) performing a vapor compression refrigeration cycle is configured. .
  第1ガス側連絡配管(51)は、一端が室外回路(11)の第1ガス側閉鎖弁(71)に接続され、他端が室内回路(21)のガス側端に接続されている。第1液側連絡配管(52)は、一端が室外回路(11)の第1液側閉鎖弁(72)に接続され、他端が室内回路(21)の液側端に接続されている。第2ガス側連絡配管(53)は、一端が室外回路(11)の第2ガス側閉鎖弁(73)に接続され、他端が冷蔵用回路(31)のガス側端に接続されている。第2液側連絡配管(54)は、一端が室外回路(11)の第2液側閉鎖弁(74)に接続され、他端が冷蔵用回路(31)の液側端に接続されている。 One end of the first gas side connection pipe (51) is connected to the first gas side closing valve (71) of the outdoor circuit (11), and the other end is connected to the gas side end of the indoor circuit (21). One end of the first liquid side communication pipe (52) is connected to the first liquid side closing valve (72) of the outdoor circuit (11), and the other end is connected to the liquid side end of the indoor circuit (21). One end of the second gas side communication pipe (53) is connected to the second gas side closing valve (73) of the outdoor circuit (11), and the other end is connected to the gas side end of the refrigeration circuit (31) . One end of the second liquid side communication pipe (54) is connected to the second liquid side closing valve (74) of the outdoor circuit (11), and the other end is connected to the liquid side end of the refrigeration circuit (31) .
 〈室外ユニット〉
  室外ユニット(10)は、屋外に設置され、上記室外回路(11)と、該室外回路(11)を収容する室外ケーシング(10a)とを有している。室外回路(11)は、上記室外熱交換器(12)と、圧縮機構(13)と、室外膨張弁(14)(膨張機構)と、レシーバ(15)と、油分離器(16)と、第1,第2及び第3四路切換弁(17,18,19)(切換機構)と、上記の4つの閉鎖弁(71,72,73,74)とを備えている。
<Outdoor unit>
The outdoor unit (10) is installed outdoors, and has the outdoor circuit (11) and an outdoor casing (10a) accommodating the outdoor circuit (11). The outdoor circuit (11) includes the outdoor heat exchanger (12), a compression mechanism (13), an outdoor expansion valve (14) (expansion mechanism), a receiver (15), and an oil separator (16). The first, second and third four-way selector valves (17, 18, 19) (switching mechanism) and the above-mentioned four closing valves (71, 72, 73, 74) are provided.
  圧縮機構(13)は、第1~第3圧縮機(13a,13b,13c)を有している。第1~第3圧縮機(13a,13b,13c)は、いずれも固定スクロール及び可動スクロールが噛み合って圧縮室が形成される全密閉型のスクロール圧縮機である。第1~第3圧縮機(13a,13b,13c)では、各圧縮室の吸入位置において吸入ポート(図示省略)が開口し、吐出位置において吐出ポート(図示省略)が開口し、中間位置において中間ポート(図示省略)が開口している。 The compression mechanism (13) has first to third compressors (13a, 13b, 13c). The first to third compressors (13a, 13b, 13c) are all hermetic scroll compressors in which a fixed scroll and a movable scroll are engaged to form a compression chamber. In the first to third compressors (13a, 13b, 13c), suction ports (not shown) are opened at the suction positions of the compression chambers, and discharge ports (not shown) are open at the discharge positions. A port (not shown) is open.
  上記第1圧縮機(冷却側圧縮機)(13a)及び第3圧縮機(空調側圧縮機)(13c)は、可変容量型の圧縮機である。つまり、第1圧縮機(13a)及び第3圧縮機(13c)は、インバータ制御によって回転速度が可変に構成されている。一方、第2圧縮機(13b)は、回転速度が一定の固定容量型の圧縮機であり、主に第1圧縮機(13a)の補助に用いられるが、第3圧縮機(13c)の補助に用いることもできる。なお、第2圧縮機(13b)は、可変容量型の圧縮機であってもよい。また、上記第1~第3圧縮機(13a,13b,13c)には、吸入側に吸入配管(55)が接続される一方、吐出側に吐出配管(56)が接続されている。吐出配管(56)には、異常高圧時に圧縮機(13a,13b,13c)を緊急停止させるための高圧圧力スイッチ(110)が設けられている。 The first compressor (cooling side compressor) (13a) and the third compressor (air conditioning side compressor) (13c) are variable displacement compressors. That is, the rotational speeds of the first compressor (13a) and the third compressor (13c) are configured to be variable by inverter control. On the other hand, the second compressor (13b) is a fixed displacement compressor having a constant rotational speed, and is mainly used for assisting the first compressor (13a), but for assisting the third compressor (13c) It can also be used for The second compressor (13b) may be a variable displacement compressor. In addition, a suction pipe (55) is connected to the suction side of the first to third compressors (13a, 13b, 13c), and a discharge pipe (56) is connected to the discharge side. The discharge pipe (56) is provided with a high pressure switch (110) for urgently stopping the compressor (13a, 13b, 13c) under abnormal high pressure.
  吸入配管(55)は、流入側が第1流入分岐管(55a)と第2流入分岐管(55b)とに分岐している。第1流入分岐管(55a)は上記第2ガス側閉鎖弁(73)に第3四路切換弁(19)を介して接続される一方、第2流入分岐管(55b)は第2四路切換弁(18)の第2ポート(P2)に接続されている。第1流入分岐管(55a)と第2流入分岐管(55b)は、流入連通管(66)によって互いに接続され、流入連通管(66)には、上記第3圧縮機(空調側圧縮機)(13c)の吸入冷媒量と上記第1圧縮機(冷却側圧縮機)(13a)の吸入冷媒量を調整可能な圧力調整弁(67)(流量調整弁)が設けられている。 The inflow side of the suction pipe (55) branches into a first inflow branch pipe (55a) and a second inflow branch pipe (55b). The first inflow branch pipe (55a) is connected to the second gas side shut-off valve (73) via the third four-way selector valve (19), while the second inflow branch pipe (55b) is connected to the second four path It is connected to the second port (P2) of the switching valve (18). The first inflow branch pipe (55a) and the second inflow branch pipe (55b) are connected to each other by the inflow communication pipe (66), and the third communication compressor (air conditioning side compressor) is connected to the inflow communication pipe (66). A pressure control valve (67) (flow rate control valve) is provided which can adjust the amount of refrigerant drawn in (13c) and the amount of refrigerant drawn in the first compressor (cooling side compressor) (13a).
  また、吸入配管(55)は、流出側が第1流出分岐管(55c)(第1吸入分岐管)と第2流出分岐管(55d)(第2吸入分岐管)と第3流出分岐管(55e)(第3吸入分岐管)とに分岐している。第1流出分岐管(55c)は上記第1圧縮機(13a)の吸入側端に接続され、第2流出分岐管(55d)は上記第2圧縮機(13b)の吸入側端に接続され、第3流出分岐管(55e)は上記第3圧縮機(13c)の吸入側端に接続されている。 The suction pipe (55) has a first outflow branch pipe (55c) (first suction branch pipe), a second outflow branch pipe (55d) (second suction branch pipe), and a third outflow branch pipe (55e) on the outflow side. ) (The third suction branch pipe). The first outflow branch pipe (55c) is connected to the suction side end of the first compressor (13a), and the second outflow branch pipe (55d) is connected to the suction side end of the second compressor (13b), The third outflow branch pipe (55e) is connected to the suction side end of the third compressor (13c).
  吐出配管(56)は、流入側が第1流入分岐管(56a)と第2流入分岐管(56b)と第3流入分岐管(56c)とに分岐している。第1流入分岐管(56a)は上記第1圧縮機(13a)の吐出側端に接続され、第2流入分岐管(56b)は上記第2圧縮機(13b)の吐出側端に接続され、第3流入分岐管(56c)は上記第3圧縮機(13c)の吐出側端に接続されている。第1~第3流入分岐管(56a,56b,56c)には、それぞれに逆止弁(CV1,CV2,CV3)が設けられている。これらの逆止弁(CV1,CV2,CV3)は、第1~第3圧縮機(13a,13b,13c)から四路切換弁(17,18,19)へ向かう冷媒の流通を許容し、逆方向への冷媒の流通を阻止する。また、吐出配管(56)は、流出側が第1流出分岐管(56d)と第2流出分岐管(56e)と第3流出分岐管(56f)とに分岐している。第1流出分岐管(56d)は第1四路切換弁(17)の第1ポート(P1)に接続され、第2流出分岐管(56e)は第2四路切換弁(18)の第1ポート(P1)に接続され、第3流出分岐管(56f)は第3四路切換弁(19)の第1ポート(P1)に接続されている。 The inflow side of the discharge pipe (56) branches into a first inflow branch pipe (56a), a second inflow branch pipe (56b), and a third inflow branch pipe (56c). The first inflow branch pipe (56a) is connected to the discharge side end of the first compressor (13a), and the second inflow branch pipe (56b) is connected to the discharge side end of the second compressor (13b), The third inflow branch pipe (56c) is connected to the discharge side end of the third compressor (13c). The first to third inflow branch pipes (56a, 56b, 56c) are respectively provided with check valves (CV1, CV2, CV3). These check valves (CV1, CV2, CV3) allow the refrigerant to flow from the first to third compressors (13a, 13b, 13c) to the four-way selector valve (17, 18, 19), Prevent the flow of refrigerant in the direction. The discharge pipe (56) has an outflow side branched into a first outflow branch pipe (56d), a second outflow branch pipe (56e), and a third outflow branch pipe (56f). The first outflow branch pipe (56d) is connected to the first port (P1) of the first four-way selector valve (17), and the second outflow branch pipe (56e) is connected to the first one of the second four-way selector valve (18). The third outflow branch pipe (56f) is connected to the port (P1), and is connected to the first port (P1) of the third four-way selector valve (19).
  油分離器(16)は、吐出配管(56)の中途部に設けられている。油分離器(16)は、第1~第3圧縮機(13a,13b,13c)から吐出される冷媒に混じった潤滑油を分離し、該潤滑油を第1~第3圧縮機(13a,13b,13c)に返送する。具体的には、油分離器(16)において冷媒から分離された潤滑油は、油分離器(16)に接続された油戻し配管(50)を介して後述するインジェクション配管(81)の流入端側に返送される。油戻し配管(50)には流量調整弁(48)が設けられている。 The oil separator (16) is provided in the middle of the discharge pipe (56). The oil separator (16) separates the lubricating oil mixed with the refrigerant discharged from the first to third compressors (13a, 13b, 13c), and the lubricating oil is separated from the first to third compressors (13a, 13a, 13c). Return to 13b, 13c). Specifically, the lubricating oil separated from the refrigerant in the oil separator (16) is introduced into the inflow end of an injection pipe (81) described later via an oil return pipe (50) connected to the oil separator (16). It will be returned to the side. The oil return pipe (50) is provided with a flow control valve (48).
  第1,第2及び第3四路切換弁(17,18,19)は、第1ポート(P1)が第3ポート(P3)に連通し且つ第2ポート(P2)が第4ポート(P4)に連通する第1状態(図1に実線で示す状態)と、第1ポート(P1)が第4ポート(P4)に連通し且つ第2ポート(P2)が第3ポート(P3)に連通する第2状態(図1に破線で示す状態)とに切り換わる。上記冷凍装置は、この第1,第2及び第3四路切換弁(17,18,19)の切換動作によって、様々な運転を行うことができる。 The first, second and third four-way selector valves (17, 18, 19) communicate the first port (P1) with the third port (P3) and the second port (P2) with the fourth port (P4). And the first port (P1) communicates with the fourth port (P4) and the second port (P2) communicates with the third port (P3). Switching to the second state (indicated by the broken line in FIG. 1). The refrigeration system can perform various operations by the switching operation of the first, second and third four-way selector valves (17, 18, 19).
  第1四路切換弁(17)の第1ポート(P1)には第1流出分岐管(56d)が接続されている。第1四路切換弁(17)の第2ポート(P2)は、第2四路切換弁(18)の第3ポート(P3)に接続されている。第1四路切換弁(17)の第3ポート(P3)は、冷媒配管を介して第1ガス側閉鎖弁(71)に接続されている。第1四路切換弁(17)の第4ポート(P4)は、室外ガス配管(58)を介して室外熱交換器(12)のガス側端に接続されている。 A first outflow branch pipe (56d) is connected to a first port (P1) of the first four-way selector valve (17). The second port (P2) of the first four-way selector valve (17) is connected to the third port (P3) of the second four-way selector valve (18). The third port (P3) of the first four-way selector valve (17) is connected to the first gas side shut-off valve (71) via a refrigerant pipe. The fourth port (P4) of the first four-way selector valve (17) is connected to the gas side end of the outdoor heat exchanger (12) via the outdoor gas pipe (58).
  第2四路切換弁(18)の第1ポート(P1)には第2流出分岐管(56e)が接続されている。第2四路切換弁(18)の第2ポート(P2)は、上述したように第2流入分岐管(55b)に接続されている。第2四路切換弁(18)の第3ポート(P3)は、上述したように第1四路切換弁(17)の第2ポート(P2)に接続されている。第2四路切換弁(18)の第4ポート(P4)は閉鎖された閉鎖ポートになっている。 A second outflow branch pipe (56e) is connected to a first port (P1) of the second four-way selector valve (18). The second port (P2) of the second four-way selector valve (18) is connected to the second inflow branch pipe (55b) as described above. The third port (P3) of the second four-way selector valve (18) is connected to the second port (P2) of the first four-way selector valve (17) as described above. The fourth port (P4) of the second four-way selector valve (18) is a closed port that is closed.
  第3四路切換弁(19)の第1ポート(P1)には第3流出分岐管(56f)が接続されている。第3四路切換弁(19)の第2ポート(P2)は、第1流入分岐管(55a)に接続されている。第3四路切換弁(19)の第3ポート(P3)は、開閉弁(64)が設けられた接続配管(65)を介して、レシーバ(15)への冷媒流入管である後述の第4液管(79)に接続され、第3四路切換弁(19)の第4ポート(P4)は、冷媒配管を介して第2ガス側閉鎖弁(73)に接続されている。 A third outflow branch pipe (56f) is connected to a first port (P1) of the third four-way selector valve (19). The second port (P2) of the third four-way selector valve (19) is connected to the first inflow branch pipe (55a). The third port (P3) of the third four-way selector valve (19) is a refrigerant inflow pipe to the receiver (15) via the connection pipe (65) provided with the on-off valve (64). It is connected to the four liquid pipe (79), and the fourth port (P4) of the third four-way selector valve (19) is connected to the second gas side closing valve (73) via the refrigerant pipe.
  室外熱交換器(12)は、フィン・アンド・チューブ型の熱交換器であり、近傍に室外ファン(12a)が設けられている。この室外熱交換器(12)では、内部を流れる冷媒と室外ファン(12a)が送風する外気との間で熱交換が行われる。室外ファン(12a)は、室外回路(11)と共に室外ケーシング(10a)内に収容されている。 The outdoor heat exchanger (12) is a fin-and-tube type heat exchanger, and an outdoor fan (12a) is provided in the vicinity. In the outdoor heat exchanger (12), heat exchange is performed between the refrigerant flowing inside and the outside air blown by the outdoor fan (12a). The outdoor fan (12a) is accommodated in the outdoor casing (10a) together with the outdoor circuit (11).
  室外熱交換器(12)は、液側端が第1液管(59)を介してレシーバ(15)の頂部に接続されている。レシーバ(15)の底部は、室外熱交換器(12)の底部の凍結防止管(57)と、この凍結防止管(57)に接続された過冷却熱交換器(76)が設けられた第2液管(60)とを介して第2液側閉鎖弁(74)に接続されている。また、第2液管(60)における凍結防止管(57)と過冷却熱交換器(76)との間の部分は、第3液管(62)を介して第1液側閉鎖弁(72)に接続されている。 The outdoor heat exchanger (12) has a liquid side end connected to the top of the receiver (15) via a first liquid pipe (59). The bottom of the receiver (15) is provided with a freeze protection pipe (57) at the bottom of the outdoor heat exchanger (12) and a subcooling heat exchanger (76) connected to the freeze protection pipe (57). It is connected to the second liquid side shut-off valve (74) via the two liquid pipe (60). Further, a portion of the second liquid pipe (60) between the antifreeze pipe (57) and the subcooling heat exchanger (76) is connected to the first liquid side shut-off valve (72) through the third liquid pipe (62). )It is connected to the.
  第1液管(59)には、室外膨張弁(14)が設けられている。室外膨張弁(14)は、開度が調節可能な電子膨張弁によって構成されている。 An outdoor expansion valve (14) is provided in the first liquid pipe (59). The outdoor expansion valve (14) is configured by an electronic expansion valve whose opening degree can be adjusted.
  第1液管(59)及び第3液管(62)には、それぞれ逆止弁(CV4,CV5)が設けられている。第1液管(59)の逆止弁(CV4)は、室外熱交換器(12)からレシーバ(15)の頂部へ向かう冷媒の流通を許容し、逆方向への冷媒の流通を阻止する。第3液管(60)の逆止弁(CV5)は、凍結防止管(57)から第1液側閉鎖弁(72)に向かう冷媒の流通を許容し、逆方向への冷媒の流通を阻止する。 The first liquid pipe (59) and the third liquid pipe (62) are provided with check valves (CV4, CV5), respectively. The check valve (CV4) of the first liquid pipe (59) allows the refrigerant to flow from the outdoor heat exchanger (12) to the top of the receiver (15) and prevents the refrigerant from flowing in the reverse direction. The check valve (CV5) of the third liquid pipe (60) allows the refrigerant to flow from the antifreeze pipe (57) toward the first liquid side shut-off valve (72) and prevents the refrigerant from flowing in the reverse direction Do.
  第1液管(59)と第2液管(60)との間には、バイパス管(61)が設けられている。バイパス管(61)は、一端が第1液管(59)の逆止弁(CV4)の上流側に接続され、他端が第2液管(60)の逆止弁(CV9)の上流側に接続されている。バイパス管(61)には逆止弁(CV8)が設けられ、室外熱交換器(12)へ向かう冷媒の流れを許容し、逆方向への冷媒の流れを禁止する。バイパス管(61)と第2液側閉鎖弁(74)との間には、バイパス管(61)から第2液側閉鎖弁(74)へ向かう冷媒の流れを許容し、逆方向への冷媒の流れを禁止する逆止弁(CV9)が設けられている。 A bypass pipe (61) is provided between the first liquid pipe (59) and the second liquid pipe (60). One end of the bypass pipe (61) is connected to the upstream side of the check valve (CV4) in the first liquid pipe (59), and the other end is upstream of the check valve (CV9) in the second liquid pipe (60). It is connected to the. The bypass pipe (61) is provided with a check valve (CV8) to allow the flow of the refrigerant toward the outdoor heat exchanger (12) and to prohibit the flow of the refrigerant in the reverse direction. Between the bypass pipe (61) and the second liquid side shut-off valve (74), allow the flow of the refrigerant from the bypass pipe (61) to the second liquid side shut-off valve (74). A check valve (CV9) for inhibiting the flow of
  過冷却熱交換器(76)は、高圧側流路(76a)と低圧側流路(76b)とを備えている。過冷却熱交換器(76)は、高圧側流路(76a)及び低圧側流路(76b)を流れる冷媒同士が熱交換して高圧側流路(76a)の冷媒が過冷却されるように構成されている。低圧側流路(76b)は、詳細は後述するインジェクション配管(81)の主管(77)の一部を構成している。 The subcooling heat exchanger (76) includes a high pressure side flow passage (76a) and a low pressure side flow passage (76b). In the subcooling heat exchanger (76), the refrigerant flowing in the high pressure side flow passage (76a) and the low pressure side flow passage (76b) exchanges heat so that the refrigerant in the high pressure side flow passage (76a) is supercooled. It is configured. The low pressure side flow passage (76b) constitutes a part of a main pipe (77) of an injection pipe (81) which will be described in detail later.
  第2液管(60)の逆止弁(CV5)の下流側と第1液管(59)の逆止弁(CV4)の下流側との間には、第4液管(79)が設けられている。第4液管(79)には、逆止弁(CV6)が設けられている。逆止弁(CV6)は、第2液管(60)から第1液管(59)へ向かう冷媒の流通を許容し、逆方向への冷媒の流通を阻止する。 A fourth liquid pipe (79) is provided between the downstream side of the check valve (CV5) of the second liquid pipe (60) and the downstream side of the check valve (CV4) of the first liquid pipe (59) It is done. The fourth liquid pipe (79) is provided with a check valve (CV6). The check valve (CV6) allows the flow of the refrigerant from the second liquid pipe (60) to the first liquid pipe (59), and prevents the flow of the refrigerant in the reverse direction.
  室外回路(11)には、逆サイクルデフロスト運転時の冷媒戻り配管(80)が設けられている。冷媒戻り配管(80)は、一端が第2液側閉鎖弁(74)とバイパス管(61)との間に接続され、他端が第4液管(79)における第1液管(59)と接続配管(65)との間で接続されている。冷媒戻り配管(80)には、レシーバ(15)へ向かう冷媒の流れを許容し、逆方向への冷媒の流れを禁止する逆止弁(CV10)が設けられている。 The outdoor circuit (11) is provided with a refrigerant return pipe (80) during reverse cycle defrost operation. One end of the refrigerant return pipe (80) is connected between the second liquid side closing valve (74) and the bypass pipe (61), and the other end is a first liquid pipe (59) in the fourth liquid pipe (79). And connection piping (65) are connected. The refrigerant return pipe (80) is provided with a check valve (CV10) which allows the flow of the refrigerant toward the receiver (15) and prohibits the flow of the refrigerant in the reverse direction.
  インジェクション配管(81)は、液ラインである第2液管(60)に繋がる主管(77)と、該主管(77)の流出端から分岐する3つの分岐管(81a,81b,81c)とを有している。 The injection pipe (81) includes a main pipe (77) connected to the second liquid pipe (60) which is a liquid line, and three branch pipes (81a, 81b, 81c) branched from the outflow end of the main pipe (77) Have.
  主管(77)のうち低圧側流路(76b)の上流側には、膨張弁(78)が接続される。膨張弁(78)は、開度可変の電子膨張弁によって構成されている。膨張弁(78)は、主管(77)を流れる冷媒の流量を調節する。 An expansion valve (78) is connected to the upstream side of the low pressure side flow passage (76b) of the main pipe (77). The expansion valve (78) is constituted by an electronic expansion valve whose opening degree is variable. The expansion valve (78) regulates the flow rate of the refrigerant flowing through the main pipe (77).
  3つの分岐管は、第1分岐管(81a)、第2分岐管(81b)、及び第3分岐管(81c)で構成される。各分岐管(81a,81b,81c)の流出端は、対応する圧縮機(13a,13b,13c)の各中間圧ポートに接続されている。各中間圧ポートは、対応する圧縮機(13a,13b,13c)の各圧縮室に連通する。具体的に、第1分岐管(81a)は、第1圧縮機(13a)の中間圧ポートに接続し、第2分岐管(81b)は、第2圧縮機(13b)の中間圧ポートに接続し、第3分岐管(81c)は、第3圧縮機(13c)の中間圧ポートに接続される。 The three branch pipes are composed of a first branch pipe (81a), a second branch pipe (81b), and a third branch pipe (81c). The outflow end of each branch pipe (81a, 81b, 81c) is connected to each intermediate pressure port of the corresponding compressor (13a, 13b, 13c). Each intermediate pressure port communicates with each compression chamber of the corresponding compressor (13a, 13b, 13c). Specifically, the first branch pipe (81a) is connected to the intermediate pressure port of the first compressor (13a), and the second branch pipe (81b) is connected to the intermediate pressure port of the second compressor (13b) The third branch pipe (81c) is connected to the intermediate pressure port of the third compressor (13c).
  第1分岐管(81a)には第1流量調節弁(82a)が、第2分岐管(81b)には第2流量調節弁(82b)が、第3分岐管(81c)には第3流量調節弁(82c)がそれぞれ接続される。各流量調節弁(82a,82b,82c)は、開度可変の電子膨張弁によって構成されている。各分岐管(81a,81b,81c)は、過冷却熱交換器(76)から各圧縮機(13a,13b,13c)の中間圧の圧縮室へガス冷媒を導入するインジェクション回路を構成している。 The first flow control valve (82a) for the first branch pipe (81a), the second flow control valve (82b) for the second branch pipe (81b), and the third flow rate for the third branch pipe (81c) The control valves (82c) are connected respectively. Each flow rate control valve (82a, 82b, 82c) is constituted by an electronic expansion valve whose opening degree is variable. Each branch pipe (81a, 81b, 81c) constitutes an injection circuit for introducing a gas refrigerant from the subcooling heat exchanger (76) into the compression chamber at an intermediate pressure of each compressor (13a, 13b, 13c) .
  室外回路(11)には、各種センサが設けられている。例えば、吐出配管(56)には、各圧縮機(13a,13b,13c)の吐出冷媒の温度をそれぞれ検出する吐出温度センサ(111a, 111b, 111c)と、各圧縮機(13a,13b,13c)の吐出冷媒の圧力を検出する吐出圧力センサ(112)とが設けられている。これらの吐出温度センサ(111a,111b, 111c)は、第1圧縮機(13a)に対応する第1吐出温度センサ(111a)と、第2圧縮機(13b)に対応する第2吐出温度センサ(111b)と、第3圧縮機(13c)に対応する第3吐出温度センサ(111c)とで構成される。また、吸入配管(55)には、各圧縮機(13a,13b,13c)の吸入冷媒の温度を検出する吸入温度センサ(113)が設けられる。吸入配管(55)には、第1圧縮機(13a)及び第2圧縮機(13b)の吸入冷媒の圧力を検出する第1吸入圧力センサ(114a)と、第3圧縮機(13c)の吸入冷媒の圧力を検出する第2吸入圧力センサ(114b)とが設けられる。 Various sensors are provided in the outdoor circuit (11). For example, the discharge piping (56) includes discharge temperature sensors (111a, 111b, 111c) for detecting the temperatures of the refrigerant discharged from the compressors (13a, 13b, 13c), and the compressors (13a, 13b, 13c). And a discharge pressure sensor (112) for detecting the pressure of the discharge refrigerant. The discharge temperature sensors (111a, 111b, 111c) correspond to the first discharge temperature sensor (111a) corresponding to the first compressor (13a) and the second discharge temperature sensor (111) corresponding to the second compressor (13b). And 111b) and a third discharge temperature sensor (111c) corresponding to the third compressor (13c). The suction pipe (55) is provided with a suction temperature sensor (113) for detecting the temperature of the suction refrigerant of each of the compressors (13a, 13b, 13c). The suction pipe (55) includes a first suction pressure sensor (114a) for detecting the pressure of refrigerant drawn from the first compressor (13a) and the second compressor (13b), and a suction of the third compressor (13c). A second suction pressure sensor (114b) is provided to detect the pressure of the refrigerant.
  室外熱交換器(12)の近傍には、室外の外気温度を検出する室外温度センサ(115)が設けられている。室外熱交換器(12)の液側端部には、第1温度センサ(118)が設けられている。主管(77)には、中間圧力センサ(117)が設けられている。また、第2液管(60)には、レシーバ(15)の圧力を検出する圧力センサ(119)が設けられている。これらのセンサの検出値は、後述するコントローラ(100)に入力される。 In the vicinity of the outdoor heat exchanger (12), an outdoor temperature sensor (115) for detecting the outdoor air temperature outside the room is provided. A first temperature sensor (118) is provided at the liquid side end of the outdoor heat exchanger (12). The main pipe (77) is provided with an intermediate pressure sensor (117). Further, the second liquid pipe (60) is provided with a pressure sensor (119) for detecting the pressure of the receiver (15). The detection values of these sensors are input to a controller (100) described later.
 〈室内ユニット〉
  室内ユニット(20)は、室内に設置され、室内回路(21)と、室内回路(21)を収容する室内ケーシング(20a)とを有している。室内回路(21)は、ガス側端が第1ガス側連絡配管(51)に接続され、液側端が第1液側連絡配管(52)に接続されている。室内回路(21)には、ガス側端から順に、室内熱交換器(22)及び室内膨張弁(23)(膨張機構)が設けられている。室内熱交換器(22)は、クロスフィン式のフィン・アンド・チューブ型熱交換器によって構成され、近傍に室内ファン(22a)が設けられている。室内ファン(22a)は、室内回路(21)と共に室内ケーシング(20a)内に収容されている。室内熱交換器(22)では、内部を流れる冷媒と室内ファン(22a)が送風する室内空気との間で熱交換が行われる。
<Indoor unit>
The indoor unit (20) is installed indoors and has an indoor circuit (21) and an indoor casing (20a) that accommodates the indoor circuit (21). The indoor circuit (21) has a gas side end connected to the first gas side communication pipe (51) and a liquid side end connected to the first liquid side communication pipe (52). The indoor heat exchanger (22) and the indoor expansion valve (23) (expansion mechanism) are provided in the indoor circuit (21) in order from the gas side end. The indoor heat exchanger (22) is constituted by a cross fin type fin-and-tube heat exchanger, and an indoor fan (22a) is provided in the vicinity. The indoor fan (22a) is housed in the indoor casing (20a) together with the indoor circuit (21). In the indoor heat exchanger (22), heat exchange is performed between the refrigerant flowing inside and the indoor air blown by the indoor fan (22a).
  室内膨張弁(23)は、開度が調節可能な電子膨張弁によって構成されている。室内熱交換器(22)の近傍には、室内空気の温度を検出する室内温度センサ(121)が設けられている。室内回路(21)では、室内熱交換器(22)の伝熱管に、第2温度センサ(122)が設けられている。また、室内回路(21)におけるガス側端の近傍に、蒸発温度センサ(123)が設けられている。 The indoor expansion valve (23) is constituted by an electronic expansion valve whose opening degree can be adjusted. In the vicinity of the indoor heat exchanger (22), an indoor temperature sensor (121) for detecting the temperature of the indoor air is provided. In the indoor circuit (21), a heat transfer pipe of the indoor heat exchanger (22) is provided with a second temperature sensor (122). Further, an evaporation temperature sensor (123) is provided in the vicinity of the gas side end of the indoor circuit (21).
 〈冷蔵ユニット〉
  冷蔵ユニット(30)は、上記冷蔵用回路(31)と、該冷蔵用回路(31)を収容する冷蔵庫(30a)とを有している。
<Colder unit>
The refrigeration unit (30) has the refrigeration circuit (31) and a refrigerator (30a) for accommodating the refrigeration circuit (31).
  冷蔵ユニット(30)の冷蔵用回路(31)は、ガス側端が第2ガス側連絡配管(53)の第1分岐ガス管(53a)に接続され、液側端が第2液側連絡配管(54)の第1分岐液管(54a)に接続されている。冷蔵用回路(31)には、ガス側端から順に、冷蔵熱交換器(32)及び冷蔵膨張弁(33)(膨張機構)が設けられている。冷蔵熱交換器(32)は、クロスフィン式のフィン・アンド・チューブ型熱交換器によって構成され、近傍に庫内ファン(32a)が設けられている。庫内ファン(32a)は、冷蔵用回路(31)と共に冷蔵庫(30a)内に収容されている。冷蔵熱交換器(32)では、内部を流れる冷媒と庫内ファン(32a)が送風する冷蔵庫(30a)内の庫内空気との間で熱交換が行われる。冷蔵膨張弁(33)は、開度が調節可能な電子膨張弁により構成されている。また、冷蔵熱交換器(32)の近傍には、庫内空気の温度を検出する庫内温度センサ(131)が設けられている。また、冷蔵熱交換器(32)の伝熱管に、蒸発温度センサ(132)が設けられている。また、冷蔵用回路(31)におけるガス側端の近傍に、ガス温度センサ(133)が設けられている。 In the refrigeration circuit (31) of the refrigeration unit (30), the gas side end is connected to the first branch gas pipe (53a) of the second gas side communication pipe (53), and the liquid side end is the second liquid side communication pipe It is connected to the first branched liquid pipe (54a) of (54). The refrigeration circuit (31) is provided with a refrigeration heat exchanger (32) and a refrigeration expansion valve (33) (expansion mechanism) in this order from the gas side end. The cold storage heat exchanger (32) is constituted by a cross fin type fin-and-tube heat exchanger, and an internal fan (32a) is provided in the vicinity. The internal fan (32a) is housed in the refrigerator (30a) together with the circuit for refrigeration (31). In the refrigeration heat exchanger (32), heat exchange is performed between the refrigerant flowing inside and the air inside the refrigerator (30a) which the inside fan (32a) blows. The cold storage expansion valve (33) is constituted by an electronic expansion valve whose opening degree can be adjusted. Further, an in-compartment temperature sensor (131) for detecting the temperature of the in-compartment air is provided in the vicinity of the cold storage heat exchanger (32). Moreover, the evaporation temperature sensor (132) is provided in the heat transfer tube of the refrigeration heat exchanger (32). In addition, a gas temperature sensor (133) is provided in the vicinity of the gas side end of the refrigeration circuit (31).
 〈コントローラ〉
  コントローラ(100)(制御部)は、マイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイス(具体的には半導体メモリ)とを用いて構成されている。コントローラ(100)は、冷凍装置(1)の各機器を制御する。
<controller>
The controller (100) (control unit) is configured using a microcomputer and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer. The controller (100) controls each device of the refrigeration system (1).
  コントローラ(100)による各機器の制御により、冷凍装置(1)の各運転が切り換えられる。冷凍装置(1)は、室内ユニット(20)で室内を冷房する冷房運転と、室内ユニット(20)で室内を暖房する暖房運転とを行う。 Each operation of the refrigeration system (1) is switched by control of each device by the controller (100). The refrigeration system (1) performs a cooling operation to cool the room with the indoor unit (20) and a heating operation to heat the room with the indoor unit (20).
  冷房運転では、室内ユニット(20)で室内空気を冷却すると同時に冷蔵ユニット(30)及び冷凍ユニット(40)で庫内空気を冷却する冷房冷却運転を含む。暖房運転は、第1暖房冷却運転、第2暖房冷却運転、及び第3暖房冷却運転を含む。第1暖房冷却運転では、室外熱交換器(12)が実質的に停止状態となると同時に冷蔵ユニット(30)で庫内空気を冷却する。第2暖房冷却運転では、室外熱交換器(12)が放熱器(凝縮器)になると同時に冷蔵ユニット(30)で庫内空気を冷却する。第3暖房冷却運転では、室外熱交換器(12)が蒸発器になると同時に冷蔵ユニット(30)で庫内空気を冷却する。 In the cooling operation, the cooling operation includes cooling the room air by the indoor unit (20) and simultaneously cooling the air in the cold storage unit (30) and the freezing unit (40). The heating operation includes a first heating / cooling operation, a second heating / cooling operation, and a third heating / cooling operation. In the first heating / cooling operation, the outdoor heat exchanger (12) is substantially stopped and, at the same time, the inside air is cooled by the refrigeration unit (30). In the second heating and cooling operation, the outdoor heat exchanger (12) becomes a radiator (condenser) and simultaneously cools the air in the cold storage by the refrigeration unit (30). In the third heating and cooling operation, the outdoor heat exchanger (12) becomes an evaporator and at the same time, the refrigeration unit (30) cools the air in the cold storage.
  また、冷房運転及び暖房運転では、冷蔵ユニット(30)の冷蔵熱交換器(32)を除霜するデフロスト運転がそれぞれ実行される。 Further, in the cooling operation and the heating operation, the defrosting operation for defrosting the refrigeration heat exchanger (32) of the refrigeration unit (30) is executed respectively.
  図8に示すように、コントローラ(100)は、入力部(101)、演算部(102)、判定部(103)、及び出力部(104)を有している。 As shown in FIG. 8, the controller (100) includes an input unit (101), an arithmetic unit (102), a determination unit (103), and an output unit (104).
  入力部(101)には、各センサの検出値や各機器の状態を示す信号が入力される。より詳細には、本実施形態の入力部(101)には、吐出圧力センサ(112)の検出値(吐出圧力(Pd))と、第1吐出温度センサ(111a)の検出値(第1吐出冷媒温度(Td1))と、第2吐出温度センサ(111b)の検出値(第2吐出冷媒温度(Td2))と、第3吐出温度センサ(111c)の検出値(第3吐出冷媒温度(Td3))とが入力される。また、入力部(101)には、第1吸入圧力センサ(114a)の検出値(第1吸入圧力(Ps1))と、第2吸入圧力センサ(114b)の検出値(第2吸入圧力(PS2)と、圧力センサ(117)の検出値(インジェクション圧力(PI))とが入力される。 A signal indicating the detection value of each sensor or the state of each device is input to the input unit (101). More specifically, in the input section (101) of the present embodiment, the detected value (discharge pressure (Pd)) of the discharge pressure sensor (112) and the detected value (first discharge) of the first discharge temperature sensor (111a) The refrigerant temperature (Td1), the detected value of the second discharge temperature sensor (111b) (second discharged refrigerant temperature (Td2)), and the detected value of the third discharged temperature sensor (111c) (third discharged refrigerant temperature (Td3) ) Is input. Further, in the input section (101), the detection value (first suction pressure (Ps1)) of the first suction pressure sensor (114a) and the detection value (second suction pressure (PS2) of the second suction pressure sensor (114b) And the detection value (injection pressure (PI)) of the pressure sensor (117) are input.
  演算部(102)は、各センサの検出値に基づいて、膨張弁(78)の開度を調節するための指標を求める。具体的に、演算部(102)は、各吐出冷媒温度(Td1,Td2,T3)と、吐出圧力(Pd)の飽和温度に基づいて、各圧縮機(13a,13b,13c)の吐出冷媒の過熱度(吐出過熱度)を算出する。 The calculation unit (102) obtains an index for adjusting the opening degree of the expansion valve (78) based on the detection value of each sensor. Specifically, the calculation unit (102) calculates the discharge refrigerant of each compressor (13a, 13b, 13c) based on the discharge refrigerant temperature (Td1, Td2, T3) and the saturation temperature of the discharge pressure (Pd). The degree of superheat (discharge superheat) is calculated.
  判定部(103)は、各吐出冷媒温度(Td1,Td2,Td3)や吐出過熱度と、所定の設定値とを比較し、膨張弁(78)や各流量調節弁(82a,82b,82c)の開度を制御する。 The determination unit (103) compares each discharge refrigerant temperature (Td1, Td2, Td3), discharge superheat degree, and a predetermined set value, and the expansion valve (78) or each flow control valve (82a, 82b, 82c) Control the opening degree of
 -運転動作-
  冷凍装置(1)では、冷房冷却運転、第1暖房冷却運転、第2暖房冷却運転、第3暖房冷却運転の各運転モードが、各四路切換弁(17,18,19)を切り換えることにより実行される。
-Driving operation-
In the refrigeration system (1), each operation mode of the cooling / cooling operation, the first heating / cooling operation, the second heating / cooling operation, and the third heating / cooling operation is switched by switching the four-way switching valves (17, 18, 19). To be executed.
 〈冷房冷却運転〉
  図2に示す冷房冷却運転は、室内ユニット(20)の冷房と冷蔵ユニット(30)の冷却を行う運転である。コントローラ(100)は、第1,第2四路切換弁(17,18)を第2状態に切り換え、第3四路切換弁(19)を第1状態に切り換え、室外膨張弁(14)を全開状態に制御し、冷蔵膨張弁(33)、及び室内膨張弁(23)の開度を適宜調節する。また、開閉弁(64)と圧力調整弁(67)は全閉に制御される。
<Cooling cooling operation>
The cooling operation shown in FIG. 2 is an operation for cooling the indoor unit (20) and cooling the refrigeration unit (30). The controller (100) switches the first and second four-way selector valves (17, 18) to the second state, switches the third four-way selector valve (19) to the first state, and the outdoor expansion valve (14). It controls to a fully open state and adjusts the opening degree of a refrigeration expansion valve (33) and an indoor expansion valve (23) suitably. Further, the on-off valve (64) and the pressure control valve (67) are controlled to be fully closed.
  冷媒回路(2)では以下のように冷媒が循環する。 In the refrigerant circuit (2), the refrigerant circulates as follows.
  第1~第3圧縮機(13a,13b,13c)で圧縮された冷媒は、吐出配管(56)において合流してから油分離器(16)において潤滑油が分離され、第1四路切換弁(17)及び室外ガス配管(58)を通過して室外熱交換器(12)に流入する。室外熱交換器(12)では、冷媒が室外空気に放熱して凝縮する。室外熱交換器(12)で凝縮した液冷媒は、第1液管(59)を介してレシーバ(15)に流入し、該レシーバ(15)に貯留される。 The refrigerant compressed by the first to third compressors (13a, 13b, 13c) merges in the discharge pipe (56) and then the lubricating oil is separated in the oil separator (16), and the first four-way selector valve (17) and the outdoor gas pipe (58) to flow into the outdoor heat exchanger (12). In the outdoor heat exchanger (12), the refrigerant releases heat to the outdoor air and condenses. The liquid refrigerant condensed in the outdoor heat exchanger (12) flows into the receiver (15) through the first liquid pipe (59) and is stored in the receiver (15).
  レシーバ(15)に貯留された液冷媒は、レシーバ(15)から流出して凍結防止管(57)を通過し、第2液管(60)を第1液側閉鎖弁(72)及び第2液側閉鎖弁(74)に向かって分流する。その際に、液冷媒は過冷却熱交換器(76)を通過する。 The liquid refrigerant stored in the receiver (15) flows out of the receiver (15) and passes through the antifreeze pipe (57), and the second liquid pipe (60) is subjected to the first liquid side shut-off valve (72) and the second It diverts towards the liquid side shutoff valve (74). At that time, the liquid refrigerant passes through the subcooling heat exchanger (76).
  高圧の液冷媒は、過冷却熱交換器(76)の高圧側流路(76a)に流入する。一方、過冷却熱交換器(76)の低圧側流路(76b)には高圧側流路(76a)を通過後に第2液管(60)から主管(77)に分岐して膨張弁(78)で減圧された冷媒が流入する。低圧側流路(76b)を流れる冷媒は、高圧側流路(76a)を流れる高圧の液冷媒と熱交換して蒸発する一方、高圧側流路(76a)の高圧の液冷媒は、低圧側流路(76b)の冷媒に放熱することによって過冷却状態となる。第2液側閉鎖弁(74)を通過した冷媒は、第2液側連絡配管(54)に流入する。第1液側閉鎖弁(72)を通過した冷媒は、第1液側連絡配管(52)に流入する。蒸発した低圧側流路(76b)の冷媒は、インジェクション配管(81)に流入する。 The high pressure liquid refrigerant flows into the high pressure side flow passage (76a) of the subcooling heat exchanger (76). On the other hand, after passing through the high pressure side channel (76a) to the low pressure side channel (76b) of the subcooling heat exchanger (76), the second liquid pipe (60) branches to the main pipe (77) to pass through the expansion valve (78). The refrigerant that has been depressurized in) flows in. The refrigerant flowing in the low pressure side flow passage (76b) exchanges heat with the high pressure liquid refrigerant flowing in the high pressure side flow passage (76a) and evaporates, while the high pressure liquid refrigerant in the high pressure side flow passage (76a) is evaporated on the low pressure side The heat is released to the refrigerant of the flow path (76 b) to be a supercooled state. The refrigerant that has passed through the second liquid side shut-off valve (74) flows into the second liquid side communication pipe (54). The refrigerant that has passed through the first liquid side shut-off valve (72) flows into the first liquid side communication pipe (52). The evaporated refrigerant in the low pressure side channel (76b) flows into the injection pipe (81).
  第2液側連絡配管(54)に流入した液冷媒は、冷蔵ユニット(30)の冷蔵用回路(31)に流入する。冷蔵用回路(31)に流入した液冷媒は、冷蔵膨張弁(33)で減圧された後、冷蔵熱交換器(32)に流入する。冷蔵熱交換器(32)では、冷媒が庫内空気から吸熱して蒸発する。その結果、庫内空気が冷却される。 The liquid refrigerant flowing into the second liquid side communication pipe (54) flows into the refrigeration circuit (31) of the refrigeration unit (30). The liquid refrigerant that has flowed into the refrigeration circuit (31) is depressurized by the refrigeration expansion valve (33) and then flows into the refrigeration heat exchanger (32). In the refrigeration heat exchanger (32), the refrigerant absorbs heat from the air in the storage and evaporates. As a result, the internal air is cooled.
  冷蔵熱交換器(32)で蒸発した冷媒は、冷蔵用回路(31)から第2ガス側連絡配管(53)に流入する。この冷媒は、第2ガス側閉鎖弁(73)を通過した後、第3四路切換弁(19)を介して吸入配管(55)の第1流入分岐管(55a)に流入する。 The refrigerant evaporated in the refrigeration heat exchanger (32) flows from the refrigeration circuit (31) into the second gas side communication pipe (53). After passing through the second gas side shut-off valve (73), the refrigerant flows into the first inflow branch pipe (55a) of the suction pipe (55) through the third four-way selector valve (19).
  一方、第1液側連絡配管(52)に流入した液冷媒は、室内膨張弁(23)で減圧された後、室内熱交換器(22)に流入する。室内熱交換器(22)では、冷媒が室内空気から吸熱して蒸発する。その結果、室内空気が冷却される。室内熱交換器(22)で蒸発した冷媒は、第1ガス側連絡配管(51)、第1四路切換弁(17)、及び第2四路切換弁(18)を通過して吸入配管(55)の第2流入分岐管(55b)に流入する。 On the other hand, the liquid refrigerant that has flowed into the first liquid side communication pipe (52) is reduced in pressure by the indoor expansion valve (23), and then flows into the indoor heat exchanger (22). In the indoor heat exchanger (22), the refrigerant absorbs heat from room air and evaporates. As a result, the room air is cooled. The refrigerant evaporated in the indoor heat exchanger (22) passes through the first gas side connection pipe (51), the first four-way selector valve (17), and the second four-way selector valve (18) and 55) flows into the second inflow branch pipe (55b).
  上述のようにして吸入配管(55)の第1流入分岐管(55a)及び第2流入分岐管(55b)のそれぞれに流入した冷媒は、合流した後、第1流出分岐管(55c)、第2流出分岐管(55d)及び第3流出分岐管(55e)にそれぞれ分流する。そして、第1~第3流出分岐管(55c,55d,55e)に流入した冷媒は、それぞれ対応する第1~第3圧縮機(13a,13b,13c)に吸入されて圧縮される(3台の圧縮機をすべて運転している場合)。 The refrigerant flowing into each of the first inflow branch pipe (55a) and the second inflow branch pipe (55b) of the suction pipe (55) as described above merges, and then the first outflow branch pipe (55c), the first inflow branch pipe 2) Divide into the outflow branch pipe (55d) and the third outflow branch pipe (55e) respectively. Then, the refrigerant flowing into the first to third outflow branch pipes (55c, 55d, 55e) is sucked into the corresponding first to third compressors (13a, 13b, 13c) and compressed (three units). If all the compressors are in operation).
  一方、インジェクション配管(81)に流入した冷媒は、第1~第3分岐管(81a,81b,81c)に分流した後、対応する第1~第3圧縮機(13a,13b,13c)の中間圧の圧縮室に導入される。これにより、第1~第3圧縮機(13a,13b,13c)の吐出ガス温度が低下する。また、油分離器(16)において第1~第3圧縮機(13a,13b,13c)の吐出冷媒から分離された潤滑油は、油戻し配管(50)を通ってインジェクション配管(81)に返送される。 On the other hand, the refrigerant flowing into the injection pipe (81) is branched to the first to third branch pipes (81a, 81b, 81c), and then the middle of the corresponding first to third compressors (13a, 13b, 13c) The pressure is introduced into the compression chamber. As a result, the discharge gas temperature of the first to third compressors (13a, 13b, 13c) decreases. In addition, the lubricating oil separated from the refrigerant discharged from the first to third compressors (13a, 13b, 13c) in the oil separator (16) is returned to the injection pipe (81) through the oil return pipe (50) Be done.
 〈第1暖房冷却運転〉
  図3に示す第1暖房冷却運転は、室外熱交換器(12)を用いずに、室内ユニット(20)の暖房と冷蔵ユニット(30)の冷却を行う運転である。第1冷房冷却運転では、冷蔵ユニット(30)の冷却能力(蒸発熱量)と、室内ユニット(20)の暖房能力(凝縮熱量)とがバランスし、100%の熱回収が行われる。
<First heating / cooling operation>
The first heating and cooling operation shown in FIG. 3 is an operation for heating the indoor unit (20) and cooling the refrigeration unit (30) without using the outdoor heat exchanger (12). In the first cooling / cooling operation, the cooling capacity (heat of evaporation) of the cold storage unit (30) and the heating capacity (heat of condensation) of the indoor unit (20) are balanced, and 100% heat recovery is performed.
  コントローラ(100)は、第1四路切換弁(17)及び第3四路切換弁(19)を第1状態に切り換えると共に第2四路切換弁(18)を第2状態に切り換え、室外膨張弁(14)を全閉状態に制御し、冷蔵膨張弁(33)を所定開度に制御し、室内膨張弁(23)の開度を全開状態に制御する。また、圧力調整弁(67)の開度は全開に制御され、開閉弁(64)は全閉に制御される。 The controller (100) switches the first four-way selector valve (17) and the third four-way selector valve (19) to the first state and switches the second four-way selector valve (18) to the second state to perform outdoor expansion. The valve (14) is controlled to the fully closed state, the refrigeration expansion valve (33) is controlled to the predetermined opening degree, and the opening degree of the indoor expansion valve (23) is controlled to the fully opened state. Further, the opening degree of the pressure control valve (67) is controlled to be fully open, and the on-off valve (64) is controlled to be fully closed.
  冷媒回路(2)では以下のように冷媒が循環する。 In the refrigerant circuit (2), the refrigerant circulates as follows.
  第1~第3圧縮機(13a,13b,13c)で圧縮された冷媒は、吐出配管(56)において合流してから油分離器(16)において潤滑油が分離され、第1四路切換弁(17)、及び第1ガス側連絡配管(51)を通過して室内熱交換器(22)に流入する。室内熱交換器(22)では、冷媒が室内空気に放熱して凝縮する。室内熱交換器(22)で凝縮した液冷媒は、第1液側連絡配管(52)を流れる。 The refrigerant compressed by the first to third compressors (13a, 13b, 13c) merges in the discharge pipe (56) and then the lubricating oil is separated in the oil separator (16), and the first four-way selector valve (17) and the first gas side communication pipe (51) to flow into the indoor heat exchanger (22). In the indoor heat exchanger (22), the refrigerant releases heat to room air and condenses. The liquid refrigerant condensed in the indoor heat exchanger (22) flows through the first liquid side communication pipe (52).
  第1液側連絡配管(52)を流れる液冷媒は、室外ユニット(10)に流入し、第4液管(79)を通ってレシーバ(15)へ流入する。レシーバ(15)の冷媒は凍結防止管(57)を通過して第2液管(60)を流れ、さらに過冷却熱交換器(76)を通って第2液側連絡配管(54)に流入する。 The liquid refrigerant flowing through the first liquid side communication pipe (52) flows into the outdoor unit (10), and flows into the receiver (15) through the fourth liquid pipe (79). The refrigerant of the receiver (15) passes through the antifreeze pipe (57), flows through the second liquid pipe (60), and further flows through the subcooling heat exchanger (76) into the second liquid side communication pipe (54) Do.
  第2液側連絡配管(54)に流入した液冷媒は、冷蔵ユニット(30)の冷蔵用回路(31)に流入する。冷蔵用回路(31)に流入した液冷媒は、冷蔵膨張弁(33)で減圧された後、冷蔵熱交換器(32)に流入する。冷蔵熱交換器(32)では、冷媒が庫内空気から吸熱して蒸発する。その結果、庫内空気が冷却される。 The liquid refrigerant flowing into the second liquid side communication pipe (54) flows into the refrigeration circuit (31) of the refrigeration unit (30). The liquid refrigerant that has flowed into the refrigeration circuit (31) is depressurized by the refrigeration expansion valve (33) and then flows into the refrigeration heat exchanger (32). In the refrigeration heat exchanger (32), the refrigerant absorbs heat from the air in the storage and evaporates. As a result, the internal air is cooled.
  冷蔵熱交換器(32)で蒸発した冷媒は、冷蔵用回路(31)から第2ガス側連絡配管(53)に流入する。この冷媒は、第2ガス側閉鎖弁(73)を通過した後、第3四路切換弁(19)を介して吸入配管(55)の第1流入分岐管(55a)に流入する。 The refrigerant evaporated in the refrigeration heat exchanger (32) flows from the refrigeration circuit (31) into the second gas side communication pipe (53). After passing through the second gas side shut-off valve (73), the refrigerant flows into the first inflow branch pipe (55a) of the suction pipe (55) through the third four-way selector valve (19).
  上述のようにして吸入配管(55)の第1流入分岐管(55a)に流入した冷媒は、第1流出分岐管(55c)、第2流出分岐管(55d)及び第3流出分岐管(55e)にそれぞれ分流する。そして、第1~第3流出分岐管(55c,55d,55e)に流入した冷媒は、それぞれ対応する第1~第3圧縮機(13a,13b,13c)に吸入されて圧縮される。 The refrigerant flowing into the first inflow branch pipe (55a) of the suction pipe (55) as described above is the first outflow branch pipe (55c), the second outflow branch pipe (55d), and the third outflow branch pipe (55e). I divide into each). Then, the refrigerant that has flowed into the first to third outflow branch pipes (55c, 55d, 55e) is drawn into the corresponding first to third compressors (13a, 13b, 13c) and compressed.
  この第1暖房冷却運転におけるインジェクション配管(81)による第1~第3圧縮機(13a,13b,13c)への中間圧冷媒の注入は、冷房冷却運転時と基本的に同様に行われる。 The injection of the intermediate pressure refrigerant into the first to third compressors (13a, 13b, 13c) by the injection piping (81) in the first heating / cooling operation is basically performed similarly to the cooling / cooling operation.
 〈第2暖房冷却運転〉
  図4に示す第2暖房冷却運転は、第1暖房冷却運転の際に室内ユニット(20)の暖房能力が余る場合に、室外熱交換器(12)を放熱器(凝縮器)として用いて室内ユニット(20)の暖房と冷蔵ユニット(30)の冷却とを行う運転である。つまり、第2暖房冷却運転では、冷蔵ユニット(30)の冷却能力(蒸発熱量)と、室内ユニット(20)の暖房能力(凝縮熱量)とがバランスせず、余る凝縮熱を室外熱交換器(12)で室外に放出する。
<Second heating / cooling operation>
In the second heating / cooling operation shown in FIG. 4, when the heating capacity of the indoor unit (20) remains in the first heating / cooling operation, the outdoor heat exchanger (12) is used as a radiator (condenser) to perform indoor operation. It is operation which performs heating of a unit (20), and cooling of a refrigeration unit (30). That is, in the second heating and cooling operation, the cooling capacity (heat of vaporization) of the refrigeration unit (30) and the heating capacity (heat of condensation) of the indoor unit (20) are not balanced, and excess condensation heat is Release to the outside in 12).
  コントローラ(100)は、第1四路切換弁(17),第2四路切換弁(18)及び第3四路切換弁(19)を第1状態に切り換える。また、室外膨張弁(14)、室内膨張弁(23)、及び冷蔵膨張弁(33)を所定開度に制御する。また、圧力調整弁(67)は全開に制御され、開閉弁(64)は原則として全閉に制御される。 The controller (100) switches the first four-way switching valve (17), the second four-way switching valve (18) and the third four-way switching valve (19) to the first state. Further, the outdoor expansion valve (14), the indoor expansion valve (23), and the cold storage expansion valve (33) are controlled to a predetermined opening degree. Also, the pressure control valve (67) is controlled to be fully open, and the on-off valve (64) is controlled to be fully closed in principle.
  冷媒回路(2)では以下のように冷媒が循環する。 In the refrigerant circuit (2), the refrigerant circulates as follows.
  第1~第3圧縮機(13a,13b,13c)で圧縮された冷媒は、吐出配管(56)において合流してから油分離器(16)において潤滑油が分離された後、2つに分流する。分流した冷媒の一方は第2四路切換弁(18)、第1四路切換弁(17)及び室外ガス配管(58)を介して室外熱交換器(12)に流入し、他方は第1四路切換弁(17)、及び第1ガス側連絡配管(51)を通過して室内熱交換器(22)に流入する。 The refrigerant compressed by the first to third compressors (13a, 13b, 13c) is split into two after the lubricating oil is separated in the oil separator (16) after joining in the discharge piping (56) Do. One of the branched refrigerant flows into the outdoor heat exchanger (12) through the second four-way selector valve (18), the first four-way selector valve (17) and the outdoor gas pipe (58), and the other is the first one. It flows into the indoor heat exchanger (22) through the four-way switching valve (17) and the first gas side connection pipe (51).
  室外熱交換器(12)では、冷媒が室外空気に放熱して凝縮する。室外熱交換器(12)で凝縮した液冷媒は、レシーバ(15)に流入する。室内熱交換器(22)では、冷媒が室内空気に放熱して凝縮する。室内熱交換器(22)で凝縮した液冷媒は、第1液側連絡配管(52)を流れる。 In the outdoor heat exchanger (12), the refrigerant releases heat to the outdoor air and condenses. The liquid refrigerant condensed by the outdoor heat exchanger (12) flows into the receiver (15). In the indoor heat exchanger (22), the refrigerant releases heat to room air and condenses. The liquid refrigerant condensed in the indoor heat exchanger (22) flows through the first liquid side communication pipe (52).
  第1液側連絡配管(52)を流れる液冷媒は、室外ユニット(10)に流入し、第4液管(79)を通ってレシーバ(15)へ流入する。レシーバ(15)で合流した冷媒は凍結防止管(57)を通過して第2液管(60)を流れ、さらに過冷却熱交換器(76)を通って第2液側連絡配管(54)に流入する。 The liquid refrigerant flowing through the first liquid side communication pipe (52) flows into the outdoor unit (10), and flows into the receiver (15) through the fourth liquid pipe (79). The refrigerant joined at the receiver (15) passes through the antifreeze pipe (57), flows through the second liquid pipe (60), and further passes through the subcooling heat exchanger (76) to carry out the second liquid side communication pipe (54) Flow into
  第2液側連絡配管(54)に流入した液冷媒は、冷蔵ユニット(30)の冷蔵用回路(31)に流入する。冷蔵用回路(31)に流入した液冷媒は、冷蔵膨張弁(33)で減圧された後、冷蔵熱交換器(32)に流入する。冷蔵熱交換器(32)では、冷媒が庫内空気から吸熱して蒸発する。その結果、庫内空気が冷却される。 The liquid refrigerant flowing into the second liquid side communication pipe (54) flows into the refrigeration circuit (31) of the refrigeration unit (30). The liquid refrigerant that has flowed into the refrigeration circuit (31) is depressurized by the refrigeration expansion valve (33) and then flows into the refrigeration heat exchanger (32). In the refrigeration heat exchanger (32), the refrigerant absorbs heat from the air in the storage and evaporates. As a result, the internal air is cooled.
  冷蔵熱交換器(32)で蒸発した冷媒は、冷蔵用回路(31)から第2ガス側連絡配管(53)に流入する。この冷媒は、第2ガス側閉鎖弁(73)を通過した後、第3四路切換弁(19)を介して吸入配管(55)の第1流入分岐管(55a)に流入する。 The refrigerant evaporated in the refrigeration heat exchanger (32) flows from the refrigeration circuit (31) into the second gas side communication pipe (53). After passing through the second gas side shut-off valve (73), the refrigerant flows into the first inflow branch pipe (55a) of the suction pipe (55) through the third four-way selector valve (19).
  上述のようにして吸入配管(55)の第1流入分岐管(55a)に流入した冷媒は、第1流出分岐管(55c)、第2流出分岐管(55d)、及び第3流出分岐管(55e)にそれぞれ分流する。そして、第1~第3流出分岐管(55c,55d,55e)に流入した冷媒は、それぞれ対応する第1~第3圧縮機(13a,13b,13c)に吸入されて圧縮される。 The refrigerant that has flowed into the first inflow branch pipe (55a) of the suction pipe (55) as described above includes the first outflow branch pipe (55c), the second outflow branch pipe (55d), and the third outflow branch pipe ( Each is diverted to 55e). Then, the refrigerant that has flowed into the first to third outflow branch pipes (55c, 55d, 55e) is drawn into the corresponding first to third compressors (13a, 13b, 13c) and compressed.
  第2暖房冷却運転におけるインジェクション配管(81)による第1~第3圧縮機(13a,13b,13c)への中間圧冷媒の注入は、冷房冷却運転時と基本的に同様に行われる。 The injection of the intermediate pressure refrigerant into the first to third compressors (13a, 13b, 13c) by the injection piping (81) in the second heating / cooling operation is basically performed similarly to the cooling / cooling operation.
 〈第3暖房冷却運転〉
  図5に示す第3暖房冷却運転は、第1暖房冷却運転の際に室内ユニット(20)の暖房能力が不足する場合に、室外熱交換器(12)を蒸発器として用いて室内ユニット(20)の暖房と冷蔵ユニット(30)の冷却を行う運転である。つまり、第3暖房冷却運転では、冷蔵ユニット(30)の冷却能力(蒸発熱量)と、室内ユニット(20)の暖房能力(凝縮熱量)とがバランスせず、不足する蒸発熱を室外熱交換器(12)において吸収する。
<Third heating and cooling operation>
In the third heating / cooling operation shown in FIG. 5, when the heating capacity of the indoor unit (20) runs short during the first heating / cooling operation, the outdoor unit (20) is used as an evaporator and the indoor unit (20) is used. Operation of cooling the refrigeration unit (30). That is, in the third heating and cooling operation, the cooling capacity (heat of evaporation) of the refrigeration unit (30) and the heating capacity (heat of condensation) of the indoor unit (20) are not balanced, and the evaporation heat that runs short is an outdoor heat exchanger Absorb in (12).
  コントローラ(100)は、第1四路切換弁(17)及び第3四路切換弁(19)を第1状態に切り換え、第2四路切換弁(18)を第2状態に切り換え、室外膨張弁(14)の開度を適宜調整する。また、冷蔵膨張弁(33)を所定開度に制御し、室内膨張弁(23)の開度を全開状態に制御する。また、開閉弁(64)と圧力調整弁(67)の開度は全閉状態に制御される。 The controller (100) switches the first four-way switching valve (17) and the third four-way switching valve (19) to the first state, switches the second four-way switching valve (18) to the second state, and performs outdoor expansion Adjust the opening of the valve (14) appropriately. Further, the refrigeration expansion valve (33) is controlled to a predetermined opening degree, and the opening degree of the indoor expansion valve (23) is controlled to a fully open state. In addition, the opening degree of the on-off valve (64) and the pressure control valve (67) is controlled to the fully closed state.
  冷媒回路(2)では以下のように冷媒が循環する。 In the refrigerant circuit (2), the refrigerant circulates as follows.
  第1~第3圧縮機(13a,13b,13c)で圧縮された冷媒は、吐出配管(56)において合流してから油分離器(16)において潤滑油が分離された後、第1四路切換弁(17)、及び第1ガス側連絡配管(51)を通過して室内熱交換器(22)に流入する。室内熱交換器(22)では、冷媒が室内空気に放熱して凝縮する。室内熱交換器(22)で凝縮した液冷媒は、第1液側連絡配管(52)を流れる。 The refrigerant compressed by the first to third compressors (13a, 13b, 13c) is joined in the discharge pipe (56) and then the lubricating oil is separated in the oil separator (16). It flows into the indoor heat exchanger (22) through the switching valve (17) and the first gas side connection pipe (51). In the indoor heat exchanger (22), the refrigerant releases heat to room air and condenses. The liquid refrigerant condensed in the indoor heat exchanger (22) flows through the first liquid side communication pipe (52).
  第1液側連絡配管(52)を流れる液冷媒は、室外ユニット(10)に流入し、第4液管(79)を通ってレシーバ(15)へ流入する。レシーバ(15)に流入した液冷媒は、レシーバ(15)から流出して第2液管(60)を流れ、過冷却熱交換器(76)を通ってから第2液側連絡配管(54)とバイパス管(61)に分流する。 The liquid refrigerant flowing through the first liquid side communication pipe (52) flows into the outdoor unit (10), and flows into the receiver (15) through the fourth liquid pipe (79). The liquid refrigerant that has flowed into the receiver (15) flows out of the receiver (15), flows through the second liquid pipe (60), passes through the subcooling heat exchanger (76), and then the second liquid side communication pipe (54) And divert to the bypass pipe (61).
  第2液側連絡配管(54)に流入した液冷媒は、冷蔵ユニット(30)の冷蔵用回路(31)に流入する。冷蔵用回路(31)に流入した液冷媒は、冷蔵膨張弁(33)で減圧された後、冷蔵熱交換器(32)に流入する。冷蔵熱交換器(32)では、冷媒が庫内空気から吸熱して蒸発する。その結果、庫内空気が冷却される。 The liquid refrigerant flowing into the second liquid side communication pipe (54) flows into the refrigeration circuit (31) of the refrigeration unit (30). The liquid refrigerant that has flowed into the refrigeration circuit (31) is depressurized by the refrigeration expansion valve (33) and then flows into the refrigeration heat exchanger (32). In the refrigeration heat exchanger (32), the refrigerant absorbs heat from the air in the storage and evaporates. As a result, the internal air is cooled.
  冷蔵熱交換器(32)で蒸発した冷媒は、冷蔵用回路(31)から第2ガス側連絡配管(53)に流入する。この冷媒は、第2ガス側閉鎖弁(73)を通過した後、第3四路切換弁(19)を介して吸入配管(55)の第1流入分岐管(55a)に流入する。 The refrigerant evaporated in the refrigeration heat exchanger (32) flows from the refrigeration circuit (31) into the second gas side communication pipe (53). After passing through the second gas side shut-off valve (73), the refrigerant flows into the first inflow branch pipe (55a) of the suction pipe (55) through the third four-way selector valve (19).
  上述のようにして吸入配管(55)の第1流入分岐管(55a)に流入した冷媒は、第1流出分岐管(55c)及び第2流出分岐管(55d)にそれぞれ分流する。そして、第1,第2流出分岐管(55c,55d)に流入した冷媒は、それぞれ対応する第1,第2圧縮機(13a,13b)に吸入されて圧縮される。 The refrigerant flowing into the first inflow branch pipe (55a) of the suction pipe (55) as described above is branched into the first outflow branch pipe (55c) and the second outflow branch pipe (55d). Then, the refrigerant flowing into the first and second outflow branch pipes (55c, 55d) is sucked into the corresponding first and second compressors (13a, 13b) and compressed.
  一方、レシーバ(15)及び過冷却熱交換器(76)を流出してからバイパス管(61)に流入した液冷媒は、室外膨張弁(14)で減圧された後、室外熱交換器(12)に流入する。室外熱交換器(12)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器(12)で蒸発した冷媒は、室外ガス配管(58)、第1四路切換弁(17)及び第2四路切換弁(18)を介して吸入配管(55)の第2流入分岐管(55b)に流入する。第2流入分岐管(55b)に流入した冷媒は、第3流出分岐管(55e)を通り、第3圧縮機(13c)に吸入されて圧縮される。 On the other hand, the liquid refrigerant that has flowed out of the receiver (15) and the subcooling heat exchanger (76) and then flows into the bypass pipe (61) is decompressed by the outdoor expansion valve (14), and then the outdoor heat exchanger (12 Flows into the In the outdoor heat exchanger (12), the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (12) is passed through the outdoor gas pipe (58), the first four-way selector valve (17) and the second four-way selector valve (18), and the second refrigerant in the suction piping (55). It flows into the inflow branch pipe (55b). The refrigerant flowing into the second inflow branch pipe (55b) passes through the third outflow branch pipe (55e), is sucked into the third compressor (13c), and is compressed.
 〈デフロスト運転〉
  上述した冷房運転や暖房運転では、冷蔵熱交換器(32)に付着した霜を融かすデフロスト運転が行われる。
<Defrost operation>
In the cooling operation and the heating operation described above, the defrost operation is performed to melt the frost adhering to the cold storage heat exchanger (32).
 〈冷房時のデフロスト運転〉
  図6に示す冷房時のデフロスト運転では、室内を冷房すると同時に、冷蔵庫(30a)の冷蔵熱交換器(32)に付着した霜が除去される。コントローラ(100)は、第1四路切換弁(17),第2四路切換弁(18)及び第3四路切換弁(19)を第2状態に切り換え、室外膨張弁(14)を全開状態に制御し、室内膨張弁(23)の開度を適宜調節し、冷蔵膨張弁(33)の開度を全閉にする。また、コントローラ(100)は、開閉弁(64)を全閉に制御し、圧力調整弁(67)を全開に制御する。
<Defrost operation at the time of cooling>
In the defrosting operation at the time of cooling shown in FIG. 6, the room is cooled and, at the same time, the frost adhering to the refrigerator heat exchanger (32) of the refrigerator (30a) is removed. The controller (100) switches the first four-way selector valve (17), the second four-way selector valve (18) and the third four-way selector valve (19) to the second state, and fully opens the outdoor expansion valve (14). It controls to a state, adjusts the opening degree of a room expansion valve (23) suitably, and makes the opening degree of a refrigeration expansion valve (33) fully closed. The controller (100) controls the on-off valve (64) to be fully closed and controls the pressure regulating valve (67) to be fully open.
  冷媒回路(2)では以下のように冷媒が循環する。 In the refrigerant circuit (2), the refrigerant circulates as follows.
  第1~第3圧縮機(13a,13b,13c)で圧縮された冷媒は、吐出配管(56)において合流してから油分離器(16)において潤滑油が分離され、第1流出分岐管(56d)と第3流出分岐管(56f)に分流する。 The refrigerant compressed by the first to third compressors (13a, 13b, 13c) merges in the discharge pipe (56) and then the lubricating oil is separated in the oil separator (16), and the first outflow branch pipe ( It branches into 56d) and the 3rd outflow branch pipe (56f).
  第1流出分岐管(56d)を流れる冷媒は、第1四路切換弁(17)及び室外ガス配管(58)を通過して室外熱交換器(12)に流入する。室外熱交換器(12)では、冷媒が室外空気に放熱して凝縮する。室外熱交換器(12)で凝縮した液冷媒は、第1液管(59)を介してレシーバ(15)に流入し、該レシーバ(15)に貯留される。 The refrigerant flowing through the first outflow branch pipe (56d) passes through the first four-way selector valve (17) and the outdoor gas pipe (58) to flow into the outdoor heat exchanger (12). In the outdoor heat exchanger (12), the refrigerant releases heat to the outdoor air and condenses. The liquid refrigerant condensed in the outdoor heat exchanger (12) flows into the receiver (15) through the first liquid pipe (59) and is stored in the receiver (15).
  吐出配管(56)の第3流出分岐管(56f)に流入した冷媒は、第2ガス側連絡配管(53)を通って冷蔵熱交換器(32)へ流入し、冷蔵熱交換器(32)に付着した霜に熱を与えて霜を溶かす。冷蔵熱交換器(32)から流出した冷媒は、第2液側連絡配管(54)を流れて室外ユニット(10)へ流入し、冷媒戻り配管(80)を通ってレシーバ(15)に流入し、室外熱交換器(12)からレシーバ(15)へ流入した冷媒と合流する。 The refrigerant that has flowed into the third outflow branch pipe (56f) of the discharge pipe (56) flows into the cold storage heat exchanger (32) through the second gas side connection pipe (53), and the cold storage heat exchanger (32) Apply heat to the frost that has adhered to it to melt the frost. The refrigerant flowing out of the refrigeration heat exchanger (32) flows through the second liquid side communication pipe (54), flows into the outdoor unit (10), flows through the refrigerant return pipe (80), and flows into the receiver (15). And merge with the refrigerant flowing from the outdoor heat exchanger (12) to the receiver (15).
  レシーバ(15)に貯留された液冷媒は、レシーバ(15)から流出して凍結防止管(57)を通過し、第3液管(62)を介して第1液側連絡配管(52)に流入する。 The liquid refrigerant stored in the receiver (15) flows out of the receiver (15), passes through the antifreeze pipe (57), and passes through the third liquid pipe (62) to the first liquid side communication pipe (52). To flow.
  第1液側連絡配管(52)に流入した冷媒は、室内膨張弁(23)で減圧された後、室内熱交換器(22)に流入する。室内熱交換器(22)では、冷媒が室内空気から吸熱して蒸発する。その結果、室内空気が冷却される。室内熱交換器(22)で蒸発した冷媒は、第1ガス側連絡配管(51)、第1四路切換弁(17)及び第2四路切換弁(18)を通過して吸入配管(55)の第2流入分岐管(55b)に流入する。 The refrigerant flowing into the first liquid side communication pipe (52) is depressurized by the indoor expansion valve (23) and then flows into the indoor heat exchanger (22). In the indoor heat exchanger (22), the refrigerant absorbs heat from room air and evaporates. As a result, the room air is cooled. The refrigerant evaporated in the indoor heat exchanger (22) passes through the first gas side connection pipe (51), the first four way selector valve (17) and the second four way selector valve (18), and is drawn to the suction piping (55). Flows into the second inflow branch pipe (55b).
  上述のようにして吸入配管(55)の第2流入分岐管(55b)に流入した冷媒は、第1流出分岐管(55c)、第2流出分岐管(55d)及び第3流出分岐管(55e)にそれぞれ分流する。そして、第1~第3流出分岐管(55c,55d,55e)に流入した冷媒は、それぞれ対応する第1~第3圧縮機(13a,13b,13c)に吸入されて圧縮される。 The refrigerant flowing into the second inflow branch pipe (55b) of the suction pipe (55) as described above is the first outflow branch pipe (55c), the second outflow branch pipe (55d), and the third outflow branch pipe (55e). I divide into each). Then, the refrigerant that has flowed into the first to third outflow branch pipes (55c, 55d, 55e) is drawn into the corresponding first to third compressors (13a, 13b, 13c) and compressed.
 〈暖房時のデフロスト運転〉
  図7に示す暖房時のデフロスト運転では、室内を暖房すると同時に、冷蔵庫(30a)の冷蔵熱交換器(32)に付着した霜が除去される。コントローラ(100)は、第1四路切換弁(17)を第1状態に切り換え、第2四路切換弁(18)及び第3四路切換弁(19)を第2状態に切り換え、室外膨張弁(14)の開度を適宜調節し、室内膨張弁(23)と冷蔵膨張弁(33)の開度を全開にする。また、コントローラ(100)は、冷開閉弁(64)を全閉に制御し、圧力調整弁(67)を全開に制御する。
<Defrost operation at heating>
In the defrosting operation at the time of heating shown in FIG. 7, simultaneously with heating the room, the frost adhering to the chilled heat exchanger (32) of the refrigerator (30a) is removed. The controller (100) switches the first four-way switching valve (17) to the first state, switches the second four-way switching valve (18) and the third four-way switching valve (19) to the second state, and performs outdoor expansion. The opening degree of the valve (14) is appropriately adjusted, and the opening degree of the indoor expansion valve (23) and the cold storage expansion valve (33) is fully opened. Further, the controller (100) controls the cold on-off valve (64) to be fully closed and controls the pressure regulating valve (67) to be fully open.
  冷媒回路(2)では以下のように冷媒が循環する。 In the refrigerant circuit (2), the refrigerant circulates as follows.
  第1~第3圧縮機(13a,13b,13c)で圧縮された冷媒は、吐出配管(56)において合流してから油分離器(16)において潤滑油が分離され、第1流出分岐管(56d)と第3流出分岐管(56f)に分流する。 The refrigerant compressed by the first to third compressors (13a, 13b, 13c) merges in the discharge pipe (56) and then the lubricating oil is separated in the oil separator (16), and the first outflow branch pipe ( It branches into 56d) and the 3rd outflow branch pipe (56f).
  第1流出分岐管(56d)を流れる冷媒は、第1四路切換弁(17)、及び第1ガス側連絡配管(51)を通過して室内熱交換器(22)に流入する。室内熱交換器(22)では、冷媒が室内空気に放熱して凝縮する。室内熱交換器(22)で凝縮した液冷媒は、第1液側連絡配管(52)を流れる。第1液側連絡配管(52)を流れる液冷媒は、室外ユニット(10)に流入し、第4液管(79)を通ってレシーバ(15)へ流入する。 The refrigerant flowing through the first outflow branch pipe (56d) flows into the indoor heat exchanger (22) through the first four-way selector valve (17) and the first gas side connection pipe (51). In the indoor heat exchanger (22), the refrigerant releases heat to room air and condenses. The liquid refrigerant condensed in the indoor heat exchanger (22) flows through the first liquid side communication pipe (52). The liquid refrigerant flowing through the first liquid side communication pipe (52) flows into the outdoor unit (10), and flows into the receiver (15) through the fourth liquid pipe (79).
  吐出配管(56)の第3流出分岐管(56f)に流入した冷媒は、第2ガス側連絡配管(53)を通って冷蔵熱交換器(32)へ流入し、冷蔵熱交換器(32)に付着した霜に熱を与えて霜を溶かす。冷蔵熱交換器(32)から流出した冷媒は、第2液側連絡配管(54)を流れて室外ユニット(10)へ流入し、冷媒戻り配管(80)を通ってレシーバ(15)に流入し、室内熱交換器(22)からレシーバ(15)へ流入した冷媒と合流する。 The refrigerant that has flowed into the third outflow branch pipe (56f) of the discharge pipe (56) flows into the cold storage heat exchanger (32) through the second gas side connection pipe (53), and the cold storage heat exchanger (32) Apply heat to the frost that has adhered to it to melt the frost. The refrigerant flowing out of the refrigeration heat exchanger (32) flows through the second liquid side communication pipe (54), flows into the outdoor unit (10), flows through the refrigerant return pipe (80), and flows into the receiver (15). And merge with the refrigerant flowing from the indoor heat exchanger (22) to the receiver (15).
  レシーバ(15)に流入した液冷媒は、レシーバ(15)から流出して第2液管(60)を流れ、過冷却熱交換器(76)を通ってからバイパス管(61)に流入する。過冷却熱交換器(76)を流出してからバイパス管(61)に流入した冷媒は、室外膨張弁(14)で減圧された後、室外熱交換器(12)に流入する。室外熱交換器(12)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器(12)で蒸発した冷媒は、室外ガス配管(58)、第1四路切換弁(17)及び第2四路切換弁(18)を介して吸入配管(55)の第2流入分岐管(55b)に流入する。 The liquid refrigerant flowing into the receiver (15) flows out of the receiver (15), flows through the second liquid pipe (60), passes through the subcooling heat exchanger (76), and then flows into the bypass pipe (61). The refrigerant flowing out of the subcooling heat exchanger (76) and flowing into the bypass pipe (61) is depressurized by the outdoor expansion valve (14), and then flows into the outdoor heat exchanger (12). In the outdoor heat exchanger (12), the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (12) is passed through the outdoor gas pipe (58), the first four-way selector valve (17) and the second four-way selector valve (18), and the second refrigerant in the suction piping (55). It flows into the inflow branch pipe (55b).
  上述のようにして吸入配管(55)の第2流入分岐管(55b)に流入した冷媒は、第1流出分岐管(55c)、第2流出分岐管(55d)及び第3流出分岐管(55e)にそれぞれ分流する。そして、第1~第3流出分岐管(55c,55d,55e)に流入した冷媒は、それぞれ対応する第1~第3圧縮機(13a,13b,13c)に吸入されて圧縮される。 The refrigerant flowing into the second inflow branch pipe (55b) of the suction pipe (55) as described above is the first outflow branch pipe (55c), the second outflow branch pipe (55d), and the third outflow branch pipe (55e). I divide into each). Then, the refrigerant that has flowed into the first to third outflow branch pipes (55c, 55d, 55e) is drawn into the corresponding first to third compressors (13a, 13b, 13c) and compressed.
 〈インジェクション配管の弁の制御〉
  上述したインジェクション配管(81)には、主管(77)に膨張弁(78)が接続され、且つ各分岐管(81a,81b,81c)にそれぞれ流量調節弁(82a,82b,82c)が接続される。このため、インジェクション配管(81)から各圧縮機(13a,13b,13c)へ冷媒を導入するインジェクション動作を行う際、これらの全ての弁の開度を細かく調節すると、弁制御が複雑となる。また、このような弁制御により、各圧縮機(13a,13b,13c)の吐出冷媒の温度(吐出温度ともいう)がハンチングしてしまい、吐出温度を目標値に収束できない可能性もある。そこで、本実施形態では、以下に述べる膨張弁の制御(図9を参照)、及び膨張弁(78)の制御(図10を参照)を行うことで弁制御の簡素化を図っている。
<Control of injection piping valve>
In the above-described injection pipe (81), an expansion valve (78) is connected to the main pipe (77), and flow control valves (82a, 82b, 82c) are connected to the respective branch pipes (81a, 81b, 81c). Ru. Therefore, when performing the injection operation of introducing the refrigerant from the injection pipe (81) to the compressors (13a, 13b, 13c), if the opening degree of all these valves is finely adjusted, the valve control becomes complicated. In addition, there is a possibility that the temperature (also referred to as discharge temperature) of the refrigerant discharged from each of the compressors (13a, 13b, 13c) may hunting due to such valve control, and the discharge temperature may not converge to the target value. So, in this embodiment, simplification of valve control is achieved by performing control of an expansion valve (refer to Drawing 9) mentioned below, and control of an expansion valve (78) (refer to Drawing 10).
 〈各流量調節弁の制御の詳細〉
  図9に示す各流量調節弁(82a,82b,82c)の制御では、ステップST11において、各流量調節弁(82a,82b,82c)に対応する圧縮機(13a,13b,13c)が運転中か否か判定する。そして、流量調節弁(82a,82b,82c)に対応する圧縮機(13a,13b,13c)が停止中である場合、ステップST12に移行し、この流量調節弁(82a,82b,82c)は全閉状態となる。例えば第1膨張弁(82a)の制御においては、第1圧縮機(13a)が停止中であれば、該第1膨張弁(82a)を全閉とする。一方、第1圧縮機(13a)が運転中であれば、第1膨張弁(82a)は開放状態となり、ステップST13~ステップST19の制御が行われる。
<Details of control of each flow control valve>
In the control of each flow control valve (82a, 82b, 82c) shown in FIG. 9, in step ST11, whether the compressor (13a, 13b, 13c) corresponding to each flow control valve (82a, 82b, 82c) is in operation It judges whether or not. Then, when the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c) is stopped, the process proceeds to step ST12, and all the flow rate control valves (82a, 82b, 82c) It will be closed. For example, in the control of the first expansion valve (82a), when the first compressor (13a) is stopped, the first expansion valve (82a) is fully closed. On the other hand, when the first compressor (13a) is in operation, the first expansion valve (82a) is in the open state, and the control of step ST13 to step ST19 is performed.
  次いで、ステップST13では、流量調節弁(82a,82b,82c)に対応する圧縮機(13a,13b,13c)の吐出冷媒の温度が、運転中の圧縮機(13a,13b,13c)の吐出冷媒のうち最も高いか否かの判定が行われる。この条件が成立する場合、流量調節弁(82a,82b,82c)が全開状態に維持される。例えば全ての圧縮機(13a,13b,13c)が運転中である場合、第1圧縮機(13a)の吐出冷媒の温度(Td1)が、全ての圧縮機(13a,13b,13c)の吐出冷媒の温度(Td1,Td2,Td3)のうち最も高いとする。この場合、ステップST14に移行し、第1膨張弁(82a)が全開状態に維持される。なお、ステップST14に移行した場合、対象となる流量調節弁(82a,82b,82c)を全開、ないし最大開度とするのが好ましい。しかし、流量調節弁(82a,82b,82c)は所定の固定開度で維持すればよく、必ずしも全開ないし最大開度でなくてもよい。 Next, at step ST13, the temperature of the refrigerant discharged from the compressor (13a, 13b, 13c) corresponding to the flow rate adjustment valve (82a, 82b, 82c) is the refrigerant discharged from the compressor (13a, 13b, 13c) during operation. It is determined whether or not it is the highest among the above. When this condition is satisfied, the flow rate control valves (82a, 82b, 82c) are maintained in the fully open state. For example, when all the compressors (13a, 13b, 13c) are in operation, the temperature (Td1) of the refrigerant discharged from the first compressor (13a) is the refrigerant discharged from all the compressors (13a, 13b, 13c) The highest temperature among the temperatures (Td1, Td2, Td3) of In this case, the process proceeds to step ST14, and the first expansion valve (82a) is maintained in the fully open state. In addition, when it transfers to step ST14, it is preferable to make the target flow control valve (82a, 82b, 82c) full open thru | or the largest opening degree. However, the flow rate control valves (82a, 82b, 82c) may be maintained at a predetermined fixed opening degree, and may not necessarily be the full opening or the maximum opening degree.
  ステップST13の制御が行われることで、いずれかの流量調節弁(82a,82b,82c)が全開状態となる。しかしながら、この流量調節弁(82a,82b,82c)に対応する圧縮機(13a,13b,13c)の吐出温度に基づいて、主管(77)の膨張弁(78)の開度が調節される。これにより、吐出温度が最も高い圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)を全開状態としても、この圧縮機(13a,13b,13c)へ供給される冷媒の量を調節することができる(詳細は後述する)。 By performing the control of step ST13, any one of the flow rate control valves (82a, 82b, 82c) is fully opened. However, the opening degree of the expansion valve (78) of the main pipe (77) is adjusted based on the discharge temperature of the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c). Thus, even when the flow control valves (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the highest discharge temperature are fully opened, the compressors (13a, 13b, 13c) are supplied. The amount of refrigerant can be adjusted (details will be described later).
  ステップST13において、流量調節弁(82a,82b,82c)に対応する圧縮機(13a,13b,13c)の吐出冷媒の温度が、最も高くない場合、ステップST15へ移行する。ステップS15では、過熱条件(圧縮機(13a,13b,13c)の吐出冷媒の温度が過剰に高い状態であるか)の判定が行われる。ステップST15において、過熱状態と判定されると、ステップST16へ移行し、流量調節弁(82a,82b,82c)の開度が大きくなる。これにより、この流量調節弁(82a,82b,82c)に対応する圧縮機(13a,13b,13c)への冷媒の供給量が多くなり、過熱状態を解消できる。 In step ST13, when the temperature of the refrigerant discharged from the compressor (13a, 13b, 13c) corresponding to the flow rate adjustment valve (82a, 82b, 82c) is not the highest, the process proceeds to step ST15. In step S15, it is determined whether the superheating condition (whether the temperature of the refrigerant discharged from the compressor (13a, 13b, 13c) is excessively high) is determined. If it is determined in step ST15 that the overheat state has occurred, the process proceeds to step ST16, and the opening degree of the flow rate control valve (82a, 82b, 82c) becomes large. As a result, the amount of refrigerant supplied to the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c) is increased, and the overheat state can be eliminated.
  ここで、ステップST15における過熱条件としては、条件1)例えば流量調節弁(82a,82b,82c)に対応する圧縮機(13a,13b,13c)の吐出冷媒の温度が所定値(例えば100℃)よりも高い、条件2)流量調節弁(82a,82b,82c)に対応する圧縮機(13a,13b,13c)の吐出の冷媒温度が所定値(例えば80℃)よりも高く、未だ上昇変化している、等が用いられる。条件1及び条件2の一方、又は両方が成立する場合、ステップST16へ移行する。 Here, as the superheating condition in step ST15, condition 1) For example, the temperature of the refrigerant discharged from the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c) is a predetermined value (for example, 100.degree. C.) Condition 2 higher than that, the refrigerant temperature of the discharge of the compressor (13a, 13b, 13c) corresponding to the flow rate adjustment valve (82a, 82b, 82c) is higher than a predetermined value (for example, 80.degree. C.). , Etc. are used. If one or both of the condition 1 and the condition 2 are satisfied, the process proceeds to step ST16.
  ステップST17では、湿り条件(流量調節弁(82a,82b,82c)に対応する圧縮機(13a,13b,13c)の内部の冷媒が液リッチであるか)の判定が行われる。ステップST17において、湿り状態と判定されると、ステップST18へ移行し、流量調節弁(82a,82b,82c)の開度が小さくなる。これにより、この流量調節弁(82a,82b,82c)に対応する圧縮機(13a,13b,13c)への冷媒の供給量が少なくなり、湿り状態を解消できる。 In step ST17, it is determined whether the wet condition (whether the refrigerant in the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c) is liquid rich). In step ST17, when it is determined that the state is wet, the process proceeds to step ST18, and the opening degree of the flow rate adjustment valve (82a, 82b, 82c) becomes smaller. As a result, the amount of refrigerant supplied to the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c) decreases, and the wet state can be eliminated.
  ここで、ステップST17における湿り条件としては、条件3)例えば流量調節弁(82a,82b,82c)に対応する圧縮機(13a,13b,13c)の吐出冷媒温度が所定値(例えば50℃)よりも低い、条件4)流量調節弁(82a,82b,82c)に対応する圧縮機(13a,13b,13c)の吐出冷媒の過熱度が所定値(例えば5℃)よりも小さい、等が用いられる。条件3及び条件4の一方、又は両方が成立する場合、ステップST18へ移行する。 Here, as the wet condition in step ST17, condition 3) For example, the discharge refrigerant temperature of the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c) is higher than a predetermined value (for example, 50 ° C) Condition 4) the degree of superheat of the refrigerant discharged from the compressor (13a, 13b, 13c) corresponding to the flow control valve (82a, 82b, 82c) is smaller than a predetermined value (for example, 5 ° C) . If one or both of the condition 3 and the condition 4 are satisfied, the process proceeds to step ST18.
  圧縮機(13a,13b,13c)が過熱状態でも湿り状態でもない場合、ステップST19へ移行する。ステップST19では、流量調節弁(82a,82b,82c)に対応する圧縮機(13a,13b,13c)の吐出冷媒の温度が目標値(例えば90℃)に近づくように、該流量調節弁(82a,82b,82c)の開度が制御される。 If the compressors (13a, 13b, 13c) are neither overheated nor wet, the process proceeds to step ST19. In step ST19, the flow rate control valve (82a) is set such that the temperature of the refrigerant discharged from the compressor (13a, 13b, 13c) corresponding to the flow rate control valve (82a, 82b, 82c) approaches a target value (for example, 90.degree. C.). , 82b, 82c) are controlled.
  以上のように、各流量調節弁(82a,82b,82c)の制御では、吐出温度が最も高い圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)が全開状態となる。同時に、他の流量調節弁(82a,82b,82c)に対応する圧縮機(13a,13b,13c)の吐出温度が目標温度に近づくように、該他の流量調節弁(82a,82b,82c)の開度が調節される。 As described above, in the control of each flow control valve (82a, 82b, 82c), the flow control valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the highest discharge temperature is fully opened. It becomes. At the same time, as the discharge temperature of the compressor (13a, 13b, 13c) corresponding to the other flow rate control valves (82a, 82b, 82c) approaches the target temperature, the other flow rate control valves (82a, 82b, 82c) Is adjusted.
 〈膨張弁の制御の詳細〉
  一方、膨張弁(78)の開度は、最も吐出温度が高い圧縮機(13a,13b,13c)を対象に調節される。具体的には、まず、図10のステップST21では、最も吐出温度が高い圧縮機(13a,13b,13c)が湿り条件であるか否かの判定が行われる。上述したように、最も吐出温度が高い圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)は全開状態となるため、過剰の冷媒がこの圧縮機(13a,13b,13c)に導入される可能性があるからである。
<Details of expansion valve control>
On the other hand, the opening degree of the expansion valve (78) is adjusted for the compressor (13a, 13b, 13c) having the highest discharge temperature. Specifically, first, in step ST21 of FIG. 10, it is determined whether the compressor (13a, 13b, 13c) with the highest discharge temperature is the wet condition. As described above, since the flow rate control valves (82a, 82b, 82c) corresponding to the compressors (13a, 13b, 13c) with the highest discharge temperature are fully opened, the excess refrigerant is discharged from the compressors (13a, 13b). , 13c).
  ステップST21において、湿り条件が成立すると、ステップST22へ移行し、膨張弁(78)の開度が所定開度(例えば現在の開度の50%~80%)まで小さくなる。これにより、この圧縮機(13a,13b,13c)の湿り状態を速やかに解消できる。ここで、ステップST21における湿り条件は、上述したステップST17と同様である。 In step ST21, when the wet condition is satisfied, the process proceeds to step ST22, and the opening degree of the expansion valve (78) decreases to a predetermined opening degree (for example, 50% to 80% of the current opening degree). Thereby, the wet state of the compressor (13a, 13b, 13c) can be quickly eliminated. Here, the wet condition in step ST21 is the same as that in step ST17 described above.
  ステップST22では、最も吐出温度が高い圧縮機(13a,13b,13c)が過熱条件であるか否かの判定が行われる。過熱条件が成立すると、ステップST24へ移行し、膨張弁(78)の開度が所定開度(例えば10~30パルス)だけ大きくなる。これにより、この圧縮機(13a,13b,13c)の過熱状態を速やかに解消できる。ここで、ステップST22における過熱条件は、上述したステップST23と同様である。 In step ST22, it is determined whether the compressor (13a, 13b, 13c) having the highest discharge temperature is in the superheating condition. When the overheat condition is satisfied, the process proceeds to step ST24, and the opening degree of the expansion valve (78) is increased by a predetermined opening degree (for example, 10 to 30 pulses). Thereby, the overheat state of this compressor (13a, 13b, 13c) can be eliminated promptly. Here, the heating condition in step ST22 is the same as that in step ST23 described above.
  吐出温度が最も高い圧縮機(13a,13b,13c)が過熱状態でも湿り状態でもない場合、ステップST25へ移行する。ステップST25では、この圧縮機(13a,13b,13c)の吐出冷媒の温度(最大吐出冷媒温度(Tdmax))が目標値(例えば95℃)に近づくように、該膨張弁(78)の開度が制御される。 If the compressor (13a, 13b, 13c) with the highest discharge temperature is neither overheated nor wet, the process proceeds to step ST25. In step ST25, the degree of opening of the expansion valve (78) such that the temperature (maximum discharge refrigerant temperature (Tdmax)) of the refrigerant discharged from the compressor (13a, 13b, 13c) approaches a target value (for example, 95 ° C.) Is controlled.
  上述したように、吐出温度が最も高い圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)は全開状態となる。しかしながら、膨張弁(78)の開度は、この圧縮機(13a,13b,13c)の吐出温度を目標値に近づけるように制御される。また、残りの流量調節弁(82a,82b,82c)の開度は、残りの圧縮機(13a,13b,13c)の吐出温度を目標値に近づけるように制御される。この結果、インジェクション動作では、制御対象となる弁の数を実質的に1つ減らすことができ、弁制御の簡素化を図ることができる。 As described above, the flow control valves (82a, 82b, 82c) corresponding to the compressors (13a, 13b, 13c) having the highest discharge temperature are fully opened. However, the opening degree of the expansion valve (78) is controlled so that the discharge temperature of the compressor (13a, 13b, 13c) approaches the target value. Further, the opening degree of the remaining flow rate control valves (82a, 82b, 82c) is controlled so that the discharge temperature of the remaining compressors (13a, 13b, 13c) approaches the target value. As a result, in the injection operation, the number of valves to be controlled can be substantially reduced by one, and valve control can be simplified.
  ところでこのような膨張弁(78)の制御においては、インジェクション配管(81)の圧力が、運転中の圧縮機(13a,13b,13c)の中間ポートの圧力の最大値(Pm)よりも高くなるように、該膨張弁(78)の開度の下限値を設けるのが好ましい。ここで、インジェクション配管(81)の圧力は、圧力センサ(117)の検出値(インジェクション圧力(PI)である。また、運転中の圧縮機(13a,13b,13c)の中間ポートの圧力の最大値(Pm)は、例えば第1吸入圧力センサ(114a)の検出値(第1吸入圧力(Ps1))に所定の係数(1.3)を乗じた値と、例えば第2吸入圧力センサ(114b)の検出値(第2吸入圧力(Ps2))に所定の係数(1.3)を乗じた値のうちの高い方を用いることができる。 By the way, in the control of such an expansion valve (78), the pressure of the injection pipe (81) becomes higher than the maximum value (Pm) of the pressure of the intermediate port of the operating compressor (13a, 13b, 13c) Thus, it is preferable to set the lower limit value of the opening degree of the expansion valve (78). Here, the pressure of the injection pipe (81) is the detection value (injection pressure (PI)) of the pressure sensor (117), and the maximum pressure of the intermediate port of the operating compressor (13a, 13b, 13c) The value (Pm) is, for example, a value obtained by multiplying the detection value (first suction pressure (Ps1)) of the first suction pressure sensor (114a) by a predetermined coefficient (1.3), for example, the second suction pressure sensor (114b) The higher one of the values obtained by multiplying the predetermined detected value (second suction pressure (Ps2)) by the predetermined coefficient (1.3) can be used.
  膨張弁(78)の開度が過剰に小さくなり、インジェクション圧力(PI)が中間ポートの圧力の最大値(Pm)よりも低くなると、インジェクション配管(81)から各圧縮機(13a,13b,13c)へ確実に冷媒を導入できず、冷媒が逆流するおそれがある。これに対し、本実施形態では、インジェクション圧力(PI)が中間ポートの圧力の最大値(Pm)よりも高くなるように、膨張弁(78)の開度に下限値が設定される。従って、このような冷媒の逆流を防止しつつ、上述したインジェクション動作を継続することができる。 When the degree of opening of the expansion valve (78) becomes excessively small and the injection pressure (PI) becomes lower than the maximum value (Pm) of the pressure at the intermediate port, each compressor (13a, 13b, 13c) from the injection pipe (81) ) Can not be reliably introduced, and the refrigerant may flow back. On the other hand, in the present embodiment, the lower limit value of the opening degree of the expansion valve (78) is set such that the injection pressure (PI) becomes higher than the maximum value (Pm) of the pressure of the intermediate port. Therefore, the above-described injection operation can be continued while preventing such backflow of the refrigerant.
  なお、上述した例において、全ての圧縮機(13a,13b,13c)のうち吐出冷媒の温度が最も高くなる圧縮機が複数ある場合、これらの圧縮機に対応する流量調節弁(82a,82b,82c)を固定開度とする。具体的には、例えば第1圧縮機(13a)の吐出冷媒の温度(Td1)と、第2圧縮機(13b)の吐出冷媒の温度(Td2)とが最大である場合、第1流量調節弁(82a)及び第2流量調節弁(82b)を固定開度とするとともに、第3流量調節弁(82c)及び膨張弁(78)の開度を調節する。 In the example described above, when there are a plurality of compressors in which the temperature of the discharged refrigerant is the highest among all the compressors (13a, 13b, 13c), the flow rate control valves (82a, 82b, Let 82c) be a fixed opening. Specifically, for example, when the temperature (Td1) of the discharge refrigerant of the first compressor (13a) and the temperature (Td2) of the discharge refrigerant of the second compressor (13b) are maximum, the first flow control valve (82a) and the second flow control valve (82b) are fixedly opened, and the openings of the third flow control valve (82c) and the expansion valve (78) are adjusted.
  また、全ての圧縮機(13a,13b,13c)の吐出冷媒の温度(Td1,Td2,Td3)が等しい場合、全ての流量調節弁(82a,82b,82c)を固定開度とし、膨張弁(78)の開度を調節するとよい。 Further, when the temperatures (Td1, Td2, Td3) of the refrigerant discharged from all the compressors (13a, 13b, 13c) are equal, all flow rate control valves (82a, 82b, 82c) have fixed opening degrees, and the expansion valves ( Adjust the opening of 78).
  〈切換動作に伴う膨張弁の制御〉
  上記実施形態において、例えば第2暖房冷却運転(図2)からデフロスト運転(図7)に切り換える場合、各四方切換弁(17,18,19)の切換動作により、蒸発器であった冷蔵熱交換器(32)が凝縮器に変更され、凝縮器であった室外熱交換器(12)が蒸発器となる。この切換動作の直後には、冷媒回路(2)の高低差圧が小さくなり、室外熱交換器(12)の蒸発圧力、及び蒸発温度が高くなる。従って、室外熱交換器(12)で液冷媒を十分に蒸発させることができず、圧縮機(13a,13b,13c)の吸入冷媒の吸入過熱度が小さくなることがある。吸入冷媒の吸入過熱度が小さいにも拘わらず、インジェクション配管(81)から圧縮機(13a,13b,13c)へ液冷媒を導入すると、圧縮機(13a,13b,13c)の内部の冷媒が湿り状態になり易い。この場合、圧縮機(13a,13b,13c)の潤滑油に液冷媒が溶け込み、潤滑油が希釈される。この結果、潤滑油の粘性が低下し、圧縮機(13a,13b,13c)の摺動部の潤滑不良を招くという問題が生じる。そこで、本実施形態では、各四方切換弁(17,18,19)の切換動作に連動して、膨張弁(78)を全閉状態、又は微小開度とする。これにより、切換動作の際、インジェクション配管(81)から各圧縮機(3a,13b,13c)へ液冷媒が導入されることを回避でき、各圧縮機(3a,13b,13c)の内部の冷媒が湿り状態となることを回避できる。
<Control of Expansion Valve Associated with Switching Operation>
In the above embodiment, for example, when switching from the second heating / cooling operation (FIG. 2) to the defrost operation (FIG. 7), refrigeration heat exchange which was an evaporator by switching operation of each four-way switching valve (17, 18, 19) The vessel (32) is changed to a condenser, and the outdoor heat exchanger (12), which was a condenser, becomes an evaporator. Immediately after this switching operation, the differential pressure of the refrigerant circuit (2) decreases, and the evaporation pressure and the evaporation temperature of the outdoor heat exchanger (12) increase. Therefore, the liquid refrigerant can not be evaporated sufficiently by the outdoor heat exchanger (12), and the degree of suction superheat of the refrigerant drawn into the compressor (13a, 13b, 13c) may be reduced. When the liquid refrigerant is introduced from the injection pipe (81) to the compressor (13a, 13b, 13c) despite the small degree of suction superheat of the drawn refrigerant, the refrigerant in the compressor (13a, 13b, 13c) becomes wet. It is easy to be in the state. In this case, the liquid refrigerant dissolves in the lubricating oil of the compressor (13a, 13b, 13c) and the lubricating oil is diluted. As a result, the viscosity of the lubricating oil is lowered, which causes a problem that lubrication failure of the sliding portion of the compressor (13a, 13b, 13c) occurs. Therefore, in the present embodiment, the expansion valve (78) is fully closed or slightly opened in conjunction with the switching operation of each four-way switching valve (17, 18, 19). Thereby, it is possible to prevent the liquid refrigerant from being introduced from the injection pipe (81) to each compressor (3a, 13b, 13c) at the time of switching operation, and the refrigerant inside each compressor (3a, 13b, 13c) Can be avoided from becoming wet.
  -実施形態の効果-
  上記実施形態では、複数の圧縮機(13a,13b,13c)のうちの1つに対応する流量調節弁(82a,82b,82c)が固定開度に維持される。このため、この流量調節弁(82a,82b,82c)の開度を適宜調節する必要がなくなる。
-Effect of the embodiment-
In the above embodiment, the flow control valve (82a, 82b, 82c) corresponding to one of the plurality of compressors (13a, 13b, 13c) is maintained at the fixed opening degree. Therefore, it is not necessary to appropriately adjust the opening degree of the flow rate control valve (82a, 82b, 82c).
  一方、各圧縮機(13a,13b,13c)の吐出冷媒の各温度が所定の目標温度に近づくように、膨張弁(78)、及び残りの流量調節弁(82a,82b,82c)の開度が調節される。これにより、制御対象となる弁の実質的な数を減らしつつ、インジェクション動作を行うことができる。 On the other hand, the opening degree of the expansion valve (78) and the remaining flow rate control valves (82a, 82b, 82c) so that each temperature of the refrigerant discharged from each compressor (13a, 13b, 13c) approaches a predetermined target temperature. Is adjusted. Thereby, the injection operation can be performed while reducing the substantial number of valves to be controlled.
  インジェクション動作において、吐出冷媒の温度が最も高い圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)の開度は、最大開度に維持される。複数の圧縮機(13a,13b,13c)のうち最も吐出温度が高い圧縮機(13a,13b,13c)は、液冷媒を多く導入する必要がある。このため、この流量調節弁(82a,82b,82c)の開度を最大とすることで、この圧縮機(13a,13b,13c)に冷媒を速やかに導入できる。 In the injection operation, the opening degree of the flow rate control valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the highest temperature of the discharged refrigerant is maintained at the maximum opening degree. The compressor (13a, 13b, 13c) having the highest discharge temperature among the plurality of compressors (13a, 13b, 13c) needs to introduce a large amount of liquid refrigerant. Therefore, by maximizing the opening degree of the flow rate control valve (82a, 82b, 82c), the refrigerant can be promptly introduced into the compressor (13a, 13b, 13c).
 《実施形態の変形例》
  上述した実施形態は、冷媒回路(2)に複数の蒸発器(22,32)が接続され、これらの蒸発器(22,32)で冷媒が異なる温度で蒸発する、いわゆる異温度蒸発式の冷凍サイクルが行われる。しかしながら、冷媒回路(2)は、必ずしも異温度蒸発式の冷凍サイクルを行うものでなくてもよく、1つの蒸発器(32)のみを有する構成であってもよい。
<< Modification of Embodiment >>
In the above-described embodiment, a plurality of evaporators (22, 32) are connected to the refrigerant circuit (2), and the refrigerant evaporates at different temperatures in these evaporators (22, 32). A cycle is performed. However, the refrigerant circuit (2) may not necessarily perform the different temperature evaporation type refrigeration cycle, and may be configured to have only one evaporator (32).
  図11に示す変形例の冷凍装置(1)の冷媒回路(2)には、複数(例えば2つ)の圧縮機(第1圧縮機(13a)及び第2圧縮機(13b))と、1つの放熱器(例えば室外熱交換器(12))と、1つの蒸発器(例えば冷蔵熱交換器(32))とが接続される。第1圧縮機(13a)及び第2圧縮機(13b)は、それぞれ個別に容量が可変に構成される。つまり、第1圧縮機(13a)及び第2圧縮機(13b)は、インバータ制御によって回転速度がそれぞれ可変に構成される。 In the refrigerant circuit (2) of the refrigeration system (1) of the modification shown in FIG. 11, a plurality of (for example, two) compressors (first compressor (13a) and second compressor (13b)), 1 Two radiators (for example, an outdoor heat exchanger (12)) and one evaporator (for example, a refrigeration heat exchanger (32)) are connected. The first compressor (13a) and the second compressor (13b) are individually configured to have variable capacities. That is, the rotational speeds of the first compressor (13a) and the second compressor (13b) are configured to be variable by inverter control.
  冷媒回路(2)の液管(90)には、過冷却熱交換器(76)が接続される。液管(90)には、インジェクション配管(81)の流入管が接続される。過冷却熱交換器(76)の高圧側流路(76a)には、液管(90)が接続される。過冷却熱交換器(76)の低圧側流路(76b)は、インジェクション配管(81)の主管(77)の一部を構成している。インジェクション配管(81)の第1分岐管(81a)は、第1圧縮機(13a)の中間圧ポートに接続し、インジェクション配管(81)の第2分岐管(79)は、第2圧縮機(13b)の中間圧ポートに接続している。 The subcooling heat exchanger (76) is connected to the liquid pipe (90) of the refrigerant circuit (2). The inflow pipe of the injection pipe (81) is connected to the liquid pipe (90). A liquid pipe (90) is connected to the high pressure side flow passage (76a) of the subcooling heat exchanger (76). The low pressure side flow passage (76b) of the subcooling heat exchanger (76) constitutes a part of the main pipe (77) of the injection pipe (81). The first branch pipe (81a) of the injection pipe (81) is connected to the intermediate pressure port of the first compressor (13a), and the second branch pipe (79) of the injection pipe (81) is the second compressor (81). It is connected to the intermediate pressure port of 13 b).
  主管(77)における低圧側流路(76b)の上流側には、膨張弁(78)が接続される。第1分岐管(81a)には、第1流量調節弁(82a)が接続される。第2分岐管(81b)には、第2流量調節弁(82b)が接続される。 An expansion valve (78) is connected to the upstream side of the low pressure side flow passage (76b) in the main pipe (77). A first flow control valve (82a) is connected to the first branch pipe (81a). The second flow control valve (82b) is connected to the second branch pipe (81b).
  第1圧縮機(13a)の吐出側(第1流入分岐管(56a))には、第1吐出温度センサ(111a)が設けられる。第2圧縮機(13b)の吐出側(第2流入分岐管(56b))には、第2吐出温度センサ(111b)が設けられる。第1圧縮機(13a)及び第2圧縮機(13b)の吐出側(吐出管(56))には、吐出圧力センサ(112)が設けられる。主管(77)には、圧力センサ(117)が設けられる。これらのセンサの検出値に基づき、上記実施形態と同様、第1圧縮機(13a)の吐出過熱度及び第2圧縮機の吐出冷媒の温度、該吐出冷媒の過熱度、中間圧ポートの圧力等が計測可能となっている。 A first discharge temperature sensor (111a) is provided on the discharge side (first inflow branch pipe (56a)) of the first compressor (13a). A second discharge temperature sensor (111b) is provided on the discharge side (second inflow branch pipe (56b)) of the second compressor (13b). A discharge pressure sensor (112) is provided on the discharge side (discharge pipe (56)) of the first compressor (13a) and the second compressor (13b). The main pipe (77) is provided with a pressure sensor (117). Similar to the above embodiment, the degree of discharge superheat of the first compressor (13a) and the temperature of the discharge refrigerant of the second compressor, the degree of superheat of the discharge refrigerant, the pressure of the intermediate pressure port, etc. Is measurable.
  冷凍装置(1)の運転時には、第1圧縮機(13a)及び第2圧縮機(13b)が駆動され、例えば室外熱交換器(12)が放熱器(凝縮器)となり、冷蔵熱交換器(32)が蒸発器となる冷凍サイクルが行われる。この運転時には、上記実施形態と同様にしてインジェクション動作が行われる。つまり、第1圧縮機(13a)及び第2圧縮機(13b)には、それぞれ流量調節弁(82a,82b)で流量を調節した冷媒が供給される。第1圧縮機(13a)及び第2圧縮機(13b)は、それぞれ運転容量ないし回転数が異なるため、各圧縮機(13a,13b)に必要なインジェクション量が異なるからである。 During operation of the refrigeration system (1), the first compressor (13a) and the second compressor (13b) are driven, and the outdoor heat exchanger (12), for example, becomes a radiator (condenser), and a refrigeration heat exchanger ( A refrigeration cycle is performed in which 32) becomes an evaporator. During this operation, the injection operation is performed as in the above embodiment. That is, the first compressor (13a) and the second compressor (13b) are supplied with the refrigerant whose flow rate is adjusted by the flow rate control valves (82a, 82b). This is because the first compressor (13a) and the second compressor (13b) have different operating capacities or rotational speeds, so the amount of injection required for each of the compressors (13a, 13b) is different.
  上記実施形態と同様、この変形例においても、インジェクション動作では、第1圧縮機(13a)及び第2圧縮機(13b)のうち吐出冷媒の温度が最も高い圧縮機(13a,13b)に対応する流量調節弁(82a,82b)の開度が、最大開度に維持される。そして、各圧縮機(13a,13b)の吐出冷媒の各温度が所定の目標温度に近づくように、膨張弁(78)、及び残りの流量調節弁(82a,82b)の開度が調節される。これにより、制御対象となる弁の実質的な数を減らしつつ、インジェクション動作を行うことができる。 As in the above embodiment, in this modification as well, in the injection operation, of the first compressor (13a) and the second compressor (13b), it corresponds to the compressor (13a, 13b) with the highest temperature of the discharged refrigerant. The opening degree of the flow rate adjustment valve (82a, 82b) is maintained at the maximum opening degree. Then, the opening degrees of the expansion valve (78) and the remaining flow control valves (82a, 82b) are adjusted so that the temperatures of the refrigerant discharged from the compressors (13a, 13b) approach the predetermined target temperature. . Thereby, the injection operation can be performed while reducing the substantial number of valves to be controlled.
 《その他の実施形態》
  上記実施形態の冷凍装置(1)は、室内ユニット(10)と冷蔵ユニット(30)とを有するものである。しかし、冷凍装置(1)に、庫内の冷凍を行う冷凍ユニットを有してもよい。また、冷凍装置(1)は、給湯ユニットを有し、給湯ユニットの給湯熱交換器(放熱器ないし凝縮器)で水を加熱する構成であってもよい。
<< Other Embodiments >>
The refrigeration system (1) of the above embodiment has an indoor unit (10) and a refrigeration unit (30). However, the refrigeration system (1) may have a refrigeration unit that performs refrigeration inside the refrigerator. The refrigeration system (1) may have a hot water supply unit, and may be configured to heat water with a hot water supply heat exchanger (radiator or condenser) of the hot water supply unit.
  上記実施形態のインジェクション配管(81)の終端は、圧縮機(13a,13b,13c)の中間圧ポート(中間圧の圧縮室)に接続されている。しかし、インジェクション配管(81)の終端は、圧縮機(13a,13b,13c)の吸入ポート、ないし吸入配管に接続されてもよい。つまり、インジェクション配管(81)は、液ラインの冷媒を圧縮機(13a,13b,13c)の吸入側へ導入するものであってもよい。 The end of the injection pipe (81) of the above embodiment is connected to the intermediate pressure port (intermediate pressure compression chamber) of the compressor (13a, 13b, 13c). However, the end of the injection pipe (81) may be connected to the suction port of the compressor (13a, 13b, 13c) or to the suction pipe. That is, the injection pipe (81) may introduce the refrigerant in the liquid line to the suction side of the compressor (13a, 13b, 13c).
  上記実施形態の圧縮機(13a,13b,13c)の台数は単なる例示であり、1台、2台、又は4台以上であってもよい。 The number of compressors (13a, 13b, 13c) in the above embodiment is merely an example, and may be one, two, or four or more.
  上記実施形態の冷凍装置(1)は、連絡配管が4本のいわゆる4管方式であるが、連絡配管が3本のいわゆる3管方式であってもよい。 The refrigeration system (1) of the above embodiment is a so-called four-pipe system in which four connection pipes are provided, but it may be a so-called three-pipe system in which three connection pipes are provided.
  本発明は、冷凍装置について有用である。 The present invention is useful for refrigeration systems.
2     冷媒回路
12    室外熱交換器(放熱器)
22    室内熱交換器(蒸発器)
32    冷蔵熱交換器(蒸発器)
60    液ライン
77    主管
78    流量調節弁
81    インジェクション配管(インジェクション回路)
81a   第1分岐管
81b   第2分岐管
81c   第3分岐管
82a   第1流量調節弁
82b   第2流量調節弁
82c   第3流量調節弁
100   コントローラ(制御部)
2 Refrigerant circuit 12 Outdoor heat exchanger (dissipator)
22 Indoor heat exchanger (evaporator)
32 Refrigerated Heat Exchanger (Evaporator)
60 fluid line 77 main pipe 78 flow control valve 81 injection piping (injection circuit)
81a first branch pipe 81b second branch pipe 81c third branch pipe 82a first flow control valve 82b second flow control valve 82c third flow control valve 100 controller (control section)

Claims (5)

  1.  複数の圧縮機(13a,13b,13c)と、少なくとも1つの放熱器(12)と、少なくとも1つの蒸発器(22,32)とが接続され、冷凍サイクルが行われる冷媒回路(2)を備えた冷凍装置であって、
     前記冷媒回路(2)には、前記放熱器(12)と前記蒸発器(22,32)との間の液ライン(60)の冷媒を各圧縮機(13a,13b,13c)に導入するインジェクション動作を行うためのインジェクション回路(81)が接続され、
     前記インジェクション回路(81)には、
      前記液ライン(60)に接続するとともに膨張弁(78)を有する1つの主管(77)と、
      該主管(77)の流出端から分岐して前記複数の圧縮機(13a,13b,13c)にそれぞれ繋がるとともに、各々が流量調節弁(82a,82b,82c)を有する複数の分岐管(81a,81b,81c)とが設けられ、
     前記インジェクション動作において、前記複数の圧縮機(13a,13b,13c)のうち所定の圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)を所定の固定開度に維持するとともに、前記膨張弁(78)及び残りの流量調節弁(82a,82b,82c)の開度をそれぞれ調節する制御部(100)を備えていることを特徴とする冷凍装置。
    It has a refrigerant circuit (2) in which a plurality of compressors (13a, 13b, 13c), at least one radiator (12), and at least one evaporator (22, 32) are connected, and a refrigeration cycle is performed. Refrigeration system, and
    In the refrigerant circuit (2), the refrigerant in the liquid line (60) between the radiator (12) and the evaporator (22, 32) is introduced into each compressor (13a, 13b, 13c) by injection The injection circuit (81) for operation is connected,
    The injection circuit (81)
    One main pipe (77) connected to the fluid line (60) and having an expansion valve (78);
    A plurality of branch pipes (81a, 81a, 82b, 82c) branched from the outflow end of the main pipe (77) and connected to the plurality of compressors (13a, 13b, 13c) 81b and 81c) are provided.
    In the injection operation, the flow control valve (82a, 82b, 82c) corresponding to the predetermined compressor (13a, 13b, 13c) among the plurality of compressors (13a, 13b, 13c) is set to a predetermined fixed opening degree. A refrigeration apparatus comprising: a control unit (100) for maintaining the expansion valve (78) and the remaining flow rate control valves (82a, 82b, 82c) respectively.
  2.  請求項1において、
     前記制御部(100)は、吐出冷媒の温度が最も高い圧縮機(13a,13b,13c)に対応する前記流量調節弁(82a,82b,82c)を前記所定の固定開度に維持することを特徴とする冷凍装置。
    In claim 1,
    The control unit (100) maintains the flow control valves (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the highest temperature of the discharged refrigerant at the predetermined fixed opening degree. A refrigeration system characterized by
  3.  請求項2において、
     前記制御部(100)は、吐出冷媒の温度が最も高い圧縮機(13a,13b,13c)に対応する流量調節弁(82a,82b,82c)の前記所定の開度を最大に維持することを特徴とする冷凍装置。
    In claim 2,
    The control unit (100) maintains the predetermined opening degree of the flow rate control valve (82a, 82b, 82c) corresponding to the compressor (13a, 13b, 13c) having the highest temperature of the discharged refrigerant at a maximum. A refrigeration system characterized by
  4. 請求項1乃至3のいずれか1つにおいて、
    上記冷媒回路(2)では、複数の蒸発器(22,32)の異なる蒸発圧力で蒸発した冷媒が異なる圧縮機(13a,13b,13c)にそれぞれ吸入される冷凍サイクルが行われること特徴とする冷凍装置。
    In any one of claims 1 to 3,
    The refrigerant circuit (2) is characterized in that a refrigeration cycle is performed in which refrigerants evaporated at different evaporation pressures of a plurality of evaporators (22, 32) are respectively sucked into different compressors (13a, 13b, 13c) Refrigeration equipment.
  5.  請求項1乃至3のいずれか1つにおいて、
     上記冷媒回路(2)には、1つの蒸発器(22)が接続されることを特徴とする冷凍装置。
    In any one of claims 1 to 3,
    One evaporator (22) is connected to the said refrigerant circuit (2), The freezing apparatus characterized by the above-mentioned.
PCT/JP2018/035988 2017-09-29 2018-09-27 Refrigeration device WO2019065856A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017190607 2017-09-29
JP2017-190607 2017-09-29
JP2018-108009 2018-06-05
JP2018108009A JP6508394B2 (en) 2017-09-29 2018-06-05 Refrigeration system

Publications (1)

Publication Number Publication Date
WO2019065856A1 true WO2019065856A1 (en) 2019-04-04

Family

ID=65902001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035988 WO2019065856A1 (en) 2017-09-29 2018-09-27 Refrigeration device

Country Status (1)

Country Link
WO (1) WO2019065856A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065111A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Heat source unit and refrigeration device
EP4170258A4 (en) * 2020-06-30 2023-12-27 Daikin Industries, Ltd. Refrigeration system and heat source unit
WO2024106479A1 (en) * 2022-11-17 2024-05-23 パナソニックIpマネジメント株式会社 Refrigeration system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044921A (en) * 2002-07-12 2004-02-12 Daikin Ind Ltd Refrigerating device
JP2009293887A (en) * 2008-06-06 2009-12-17 Daikin Ind Ltd Refrigerating device
WO2010097874A1 (en) * 2009-02-27 2010-09-02 ダイキン工業株式会社 Refrigeration unit
JP2016211747A (en) * 2015-04-28 2016-12-15 ダイキン工業株式会社 Refrigerating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044921A (en) * 2002-07-12 2004-02-12 Daikin Ind Ltd Refrigerating device
JP2009293887A (en) * 2008-06-06 2009-12-17 Daikin Ind Ltd Refrigerating device
WO2010097874A1 (en) * 2009-02-27 2010-09-02 ダイキン工業株式会社 Refrigeration unit
JP2016211747A (en) * 2015-04-28 2016-12-15 ダイキン工業株式会社 Refrigerating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065111A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Heat source unit and refrigeration device
EP4170258A4 (en) * 2020-06-30 2023-12-27 Daikin Industries, Ltd. Refrigeration system and heat source unit
WO2024106479A1 (en) * 2022-11-17 2024-05-23 パナソニックIpマネジメント株式会社 Refrigeration system

Similar Documents

Publication Publication Date Title
JP3775358B2 (en) Refrigeration equipment
EP1659348B1 (en) Freezing apparatus
JP4001171B2 (en) Refrigeration equipment
JP6508394B2 (en) Refrigeration system
EP2314954B1 (en) Refrigeration device
JP5734205B2 (en) Air conditioner
WO2019065856A1 (en) Refrigeration device
JP2007232265A (en) Refrigeration unit
WO2006013938A1 (en) Freezing apparatus
JP2019066086A (en) Refrigeration device
JP2008267653A (en) Refrigerating device
CN114341569B (en) Heat source unit and refrigerating device
EP3760947B1 (en) Refrigeration device
JP2010002112A (en) Refrigerating device
JP2018173197A (en) Refrigeration device
JP3998035B2 (en) Refrigeration equipment
JP2008002711A (en) Refrigerating device
JP2021032441A (en) Refrigeration unit and intermediate unit
JP4023386B2 (en) Refrigeration equipment
JP2008032337A (en) Refrigerating apparatus
EP4047289A1 (en) Intermediate unit for refrigeration device, and refrigeration device
JP2019066088A (en) Refrigeration device
JP2009115336A (en) Refrigeration system
JP2006057869A (en) Refrigerating device
JP6521018B2 (en) Refrigeration system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862596

Country of ref document: EP

Kind code of ref document: A1