[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019065565A1 - Multi-layer sheet - Google Patents

Multi-layer sheet Download PDF

Info

Publication number
WO2019065565A1
WO2019065565A1 PCT/JP2018/035285 JP2018035285W WO2019065565A1 WO 2019065565 A1 WO2019065565 A1 WO 2019065565A1 JP 2018035285 W JP2018035285 W JP 2018035285W WO 2019065565 A1 WO2019065565 A1 WO 2019065565A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
sheet
laminated sheet
layer
mass
Prior art date
Application number
PCT/JP2018/035285
Other languages
French (fr)
Japanese (ja)
Inventor
義朗 小田
智之 菱田
淳人 田所
Original Assignee
花王株式会社
積水成型工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社, 積水成型工業株式会社 filed Critical 花王株式会社
Priority to JP2019545095A priority Critical patent/JPWO2019065565A1/en
Publication of WO2019065565A1 publication Critical patent/WO2019065565A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties

Definitions

  • the present invention relates to a laminated sheet for a damping material.
  • the present invention relates to the following [1].
  • the damping layer contains a thermoplastic polyester resin (A) composed of a component containing a dicarboxylic acid component and a diol component, a component (B) which is a plasticizer and / or an elastomer, and an inorganic filler (C)
  • the laminated sheet which is a sheet-like molded object of the polyester resin composition formed.
  • FIG. 1 is a schematic diagram which shows the cross-section of the one aspect
  • FIG. 2 is the model (A) and (B) which shows the cross-section of the various aspect of the lamination sheet of this invention.
  • FIG. 3 is the model (A) and (B) which shows the cross-section of the aspect of the lamination sheet as comparison object.
  • FIG. 4 is a schematic view (A) showing a cross-sectional structure of one aspect of the laminated sheet of the present invention and a schematic view (B) showing a cross-sectional structure of one aspect of the laminated sheet as a comparative object.
  • FIG. 5 is a schematic view showing a cross-sectional structure of various aspects of the laminated sheet of the present invention.
  • the present invention relates to a laminated sheet having sufficient rigidity and impact strength to an extent that metal material is unnecessary, and having excellent vibration damping properties.
  • the laminated sheet of the present invention has sufficient rigidity and impact strength to such an extent that a metal material is unnecessary, and can exhibit excellent vibration damping properties.
  • the laminated sheet of the present invention is a laminated sheet in which a damping layer and a polycarbonate layer are laminated,
  • the damping layer is present on the surface and / or near the surface of the laminated sheet,
  • the damping layer contains a thermoplastic polyester resin (A) composed of a component containing a dicarboxylic acid component and a diol component, a component (B) which is a plasticizer and / or an elastomer, and an inorganic filler (C)
  • A thermoplastic polyester resin
  • B a component which is a plasticizer and / or an elastomer
  • C inorganic filler
  • the present invention is characterized in the position where the damping layer is present.
  • vibration control is performed with a two-layer structure in which the damping material is simply attached to the sheet serving as a base (made of polycarbonate or the like) having self-supporting properties. It is conceivable to have a three-layer structure sandwiching the material.
  • a sheet having a two-layer structure in which a damping material is simply attached to a sheet serving as a base material can provide high damping properties, it is not sufficient in terms of strength and heat resistance.
  • the mechanism by which the laminated sheet of the present invention exerts an excellent damping effect is presumed as follows. By arranging the damping layer on the surface side of the laminated sheet or near the surface, ie, on the surface side of the center of the laminated sheet, when distortion such as bending is applied to the sheet, the strain energy is applied to the damping layer on the surface side As a result, energy loss occurs, and it is considered that damping property is developed.
  • the damping layer on the surface side it is expected that the strain energy of the damping layer on the surface side will further increase, thereby further improving the damping property. Further, by increasing the thickness of the damping layer on the surface side, it is expected that the strain energy of the damping layer on the surface side will further increase, thereby further improving the damping property. Furthermore, in the embodiment in which the damping layer is present in the vicinity of the surface of the laminated sheet, that is, when the polycarbonate layer is laminated on both the upper surface and the lower surface of the damping layer, It can also be expected to improve chemical resistance and suppress bleed and outgassing.
  • the laminated sheet of the present invention Since the laminated sheet of the present invention has rigidity, impact strength and excellent vibration damping properties, it can be used as a speaker, television, radio cassette player, headphone, audio component, microphone, etc. as a material for an audio equipment case; Parts and housing materials as electric drills, electric tools such as electric screwdrivers, computers, projectors, servers, electric products with cooling fans such as POS systems, washing machines, clothes dryers, air conditioner indoor machines, sewing machines, dish washing Machines, fan heaters, complex machines, printers, scanners, hard disk drives, video cameras, etc .; parts of electric products with vibration source and housings as electric toothbrushes, electric shavers, massage machines etc .; Parts and housing materials for generators, gas generators, etc .; Parts and housing materials for refrigerators, vending machines, outdoor units of air conditioners, dehumidifiers, household generators; materials for automobile parts such as dashboards, instrument panels, floors, doors, roofs, etc.
  • Materials for engines such as oil pans, front covers, lockers, etc .; interior materials for floors, walls, side plates, ceilings, doors, chairs, tables, etc., as housing materials for railway parts, casings and parts around motors, Various protective covers, etc .; Materials for airplane parts, such as interior materials such as floors, walls, side plates, ceilings, chairs, and tables, casings and parts around engines, etc. Cases for engine room as materials for marine parts Wall materials, enclosures and wall materials for measurement rooms; Walls, ceilings, floors, partition boards, soundproof walls, shutters, curtain rails, piping ducts, stairs, doors, etc.
  • kerosene cans, drums can be used in the composite container, tank trucks, shipping cases and the like.
  • the layer configuration of the laminated sheet of the present invention will be described.
  • the thickness (ie, total thickness) of the entire laminated sheet of the present invention is preferably 0.3 mm or more, more preferably 1.0 mm or more, still more preferably 1. 5 mm or more, more preferably 2.0 mm or more, still more preferably 2.5 mm or more, preferably 30 mm or less, more preferably 10 mm or less, still more preferably from the viewpoint of mass, strength and rigidity required for use It is 5.0 mm or less.
  • a polycarbonate layer is a sheet-like molded object shape
  • the use of the polycarbonate layer can impart self-supporting property, chemical resistance, volatility resistance and impact resistance to the laminated sheet of the present invention.
  • the polycarbonate layer is not limited to a single layer, but may be a layer composed of a plurality of layers (for example, a layer formed by thermocompression pressing of a plurality of polycarbonate layers) or a single polycarbonate layer. Treat as. The same applies to the damping layer.
  • the thickness of the polycarbonate layer is preferably 0.05 mm or more, more preferably 0.10 mm or more, still more preferably 0.15 mm or more from the viewpoint of the characteristics of the molding method for producing the thin sheet to be used. From the viewpoint of the characteristics of the molding method for producing the object plate, it is preferably 10 mm or less, more preferably 5.0 mm or less, and still more preferably 3.5 mm or less.
  • the thickness referred to here is the thickness of each polycarbonate layer.
  • the thickness of at least one of the polycarbonate layers is preferably 1.0 times or less, more preferably 0.5 times or less, still more preferably 0.25 times or less of the thickness of the damping layer
  • the lower limit is preferably 0.01 times or more.
  • the damping layer is a sheet-like molded product of a polyester resin composition comprising the component (A), the component (B) and the component (C) described later.
  • the number of damping layers in the laminated sheet may be one or more.
  • one damping layer is present on the surface of the laminated sheet and the remaining damping layers are present in the vicinity of the surface, or two damping layers are present.
  • the aspect for example, the lamination sheet shown in FIG. 5B) which exists in the surface, and the aspect (for example, the lamination sheet shown in FIG. 5A or FIG. 5C) in which all of a plurality of damping layers exist near the surface are assumed. These aspects are also included in the laminated sheet of the present invention.
  • the thickness of the damping layer is preferably 0.05 mm or more, more preferably 0.2 mm or more, still more preferably 0.4 mm or more, from the viewpoint of the characteristics of the molding method for producing the thin sheet to be used. From the viewpoint of the characteristics of the molding method for producing a thick plate, it is preferably 10 mm or less, more preferably 5.0 mm or less, and still more preferably 1.0 mm or less.
  • the thickness said here is each thickness of each damping layer.
  • a polycarbonate layer is laminated on one or both of the upper and lower surfaces of the damping layer.
  • the laminated sheet has a structure in which the damping layer is exposed on the surface of the laminated sheet, that is, an embodiment in which the damping layer is present on the surface of the laminated sheet. .
  • the cross-sectional structure of this embodiment is schematically shown in FIG. 2A.
  • the polycarbonate layer 2 is laminated on the upper surface of the damping layer 1.
  • a laminate sheet When a polycarbonate layer is laminated on both the upper surface and the lower surface of the damping layer, such a laminate sheet has a structure in which the polycarbonate layer is exposed on the surface of the laminate sheet, that is, "a damping layer exists near the surface of the laminate sheet" It is.
  • the cross-sectional structure of this embodiment is schematically shown in FIG. 2B.
  • the polycarbonate layer 2 is laminated on the upper surface of the damping layer 1 and the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1.
  • effects such as further improvement of rigidity and impact strength, improvement of chemical resistance, suppression of bleeding and outgassing can also be expected.
  • the damping layer is preferably within 40%, more preferably within 33%, still more preferably within 30%, still more preferably within 25% of the thickness direction from the surface of the laminated sheet. Is preferably within 20%, more preferably within 15%, and even more preferably within 10%.
  • the damping layer is preferably 0.05% or more, more preferably 0.25% in the thickness direction from the surface of the laminated sheet.
  • the content is more preferably 0.5% or more, still more preferably 1.0% or more, still more preferably 5.0% or more, and still more preferably 10% or more.
  • FIG. 1 schematically shows a cross-sectional view of the laminated sheet of the present invention when the damping layer is one layer and the polycarbonate layer is two layers, and the surface of the laminated sheet on the side closer to the damping layer 1 That is, let S be the top surface and S 'be the other surface.
  • the thickness direction from the surface is the direction from S to S 'indicated by the direction of the arrow on the right side of FIG.
  • the relative position in the thickness direction of the damping layer 1 can be indicated by the percentage of the thickness of the laminated sheet .
  • the thickness of the polycarbonate layer 2 when the thicknesses of the polycarbonate layer 2, the damping layer 1 and the polycarbonate layer 3 are respectively 2 mm, 2 mm and 16 mm, the position in the thickness direction of the damping layer 1 is 10 to 20%. Can be shown.
  • “within 40% of the thickness direction from the surface of the laminated sheet” means that the whole damping layer is present within 40% of the thickness direction when the thickness of the entire laminated sheet is indicated by percentage. .
  • the position ratio is within 40% or "the relative position (%) of the damping layer from the upper surface of the laminated sheet is within 40%".
  • One of the preferred embodiments of the present invention is a laminated sheet in which at least one layer of the damping layer is in a proportion of 10 to 40%.
  • the proportion of the damping layer in the laminated sheet is preferably 1% or more, more preferably 5% or more, and still more preferably 10% or more in terms of volume fraction, from the viewpoint of improving damping performance, and high elastic modulus or strength From the viewpoint of maintaining the volume fraction, it is preferably 70% or less, more preferably 50% or less, still more preferably 34% or less, and still more preferably 25% or less.
  • the volume fraction referred to here is the sum of the respective damping layers.
  • the laminated sheet of the present invention is compatible with the rigidity and impact strength of the laminated sheet and the damping property.
  • the total thickness of the polycarbonate layer and the total thickness of the damping layer depend on the situation where the laminated sheet is applied, that is, the scene where importance is placed on rigidity and impact strength, or where the damping property of the laminated sheet is emphasized.
  • the preferred relationship with can vary.
  • the total thickness of the polycarbonate layer is the sum of the thicknesses of all the polycarbonate layers present in the laminated sheet
  • the total thickness of the damping layer is the total of the thicknesses of all the damping layers present in the laminated sheet It is.
  • the total thickness of the polycarbonate layer is preferably equal to or greater than the total thickness of the damping layer. Specifically, the total thickness of the damping layer is 100% In the above case, the total thickness of the polycarbonate layer is preferably 100% or more, more preferably 200% or more, still more preferably 300% or more, and the upper limit is preferably 2000% or less, more preferably Is less than 1000%. On the other hand, in the embodiment in which the damping performance of the laminated sheet is emphasized, the total thickness of the polycarbonate layer is preferably equal to or less than the total thickness of the damping layer. Specifically, the total thickness of the damping layer is 100 When it is%, the total thickness of the polycarbonate layer is preferably 100% or less, more preferably 67% or less, and the lower limit is preferably 33% or more.
  • the damping layer constituting the laminated sheet of the present invention that is, the surface presence amount of the elastomer in the sheet-like molded product of the polyester resin composition is the polycarbonate resin composition sheet (also referred to as "PC sheet" in this specification). From the viewpoint of adhesion, it is preferably 0.5% or more, more preferably 1% or more, still more preferably 5% or more, and from the viewpoint of maintaining the elastic modulus, preferably 50% or less, more preferably 40 % Or less, more preferably 30% or less.
  • the surface existing amount of the elastomer is determined by immersing the sheet-like molded product of the polyester resin composition in a solvent to remove the elastomer, and observing the molded product after treatment with an SEM. Specifically, the surface abundance of the elastomer is indicated by the area% of the void portion per fixed area, where the void portion of the molded article after the treatment is a region where the elastomer was present.
  • the particle diameter of the elastomer in the damping layer constituting the laminated sheet of the present invention is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, still more preferably 0.1 ⁇ m or more from the viewpoint of adhesion to the PC sheet On the other hand, in view of maintaining the elastic modulus, it is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, and still more preferably 50 ⁇ m or less.
  • the particle size of the elastomer is determined by observing the molded body after removal of the elastomer, which is obtained by the same method as the method for determining the "surface amount of the elastomer" described above, by SEM.
  • each void is measured, with the void portion of the molded body as the area where the elastomer was present.
  • the diameter of a total of 100 holes is measured, and the average value is taken as the particle size of the elastomer.
  • the damping layer constituting the laminated sheet of the present invention preferably has a large surface area from the viewpoint of adhesion to polycarbonate.
  • the large surface area means that the "surface area / area of arbitrarily designated area” is large.
  • the “surface area / area of arbitrarily designated area” is preferably 1 or more, more preferably 2 or more, still more preferably 5 or more, still more preferably 8 or more, while the sheet shape Preferably, it is 100 or less, more preferably 50 or less from the viewpoint of the stability of
  • the “surface area / area of arbitrarily designated area” can be measured using a three-dimensional image obtained by a confocal laser microscope.
  • the polycarbonate used for the polycarbonate layer has a structure containing a carbonic acid ester bond in the main chain of the molecule, ie,-(O-R-OCO)-(where R is an aliphatic group, an aromatic group)
  • R is an aliphatic group, an aromatic group
  • the lamination sheet which has the self-supporting property in which the metal plate for holding a shape is unnecessary can be obtained.
  • polycarbonate copolymerized with a specific monomer is more preferable.
  • the melt flow rate (MFR) of the polycarbonate used in the polycarbonate layer is preferably 0.1 g / 10 min or more, more preferably 0.1 g / 10 min or more, under the conditions of 300 ° C. and 1.2 kgf, from the viewpoint of extrusion molding and extruder characteristics.
  • 0.5 g / 10 min or more, more preferably 1.0 g / 10 min or more, preferably 20 g / 10 min or less, more preferably 15 g / 10 min or less, from the viewpoint of heat press formability Is less than 8.0 g / 10 min.
  • the MFR value of polycarbonate is measured by the method described in the examples below.
  • the polycarbonate resin composition in the present invention may contain various additives such as a general ultraviolet light absorber, a heat stabilizer, a colorant, a release agent, a lubricant, an antistatic agent and the like.
  • compositions of the resin compositions constituting them may be the same or different.
  • the composition of the resin composition constituting the polycarbonate layer 2 and the composition of the resin composition constituting the polycarbonate layer 3 shown in FIG. 2B may be identical to or different from each other.
  • the polyester resin composition used for the damping layer in the present invention comprises a thermoplastic polyester resin (A) composed of a dicarboxylic acid component and a diol component, a component (B) which is a plasticizer / or elastomer, and an inorganic filler (C) is contained.
  • A thermoplastic polyester resin
  • B component which is a plasticizer / or elastomer
  • C inorganic filler
  • the composition of the polyester resin composition that constitutes each damping layer may be the same or different.
  • the elastic modulus of the entire resin composition is improved while the loss factor is decreased.
  • the reduction of the loss factor is due to the reduction of the amount of energy loss in the resin portion because the proportion of the resin in the resin composition is reduced by the addition of the filler. Therefore, in the present invention, by adding a plasticizer and / or an elastomer to such a system, by imparting flexibility and facilitating energy loss, the loss coefficient is improved and the elastic modulus of the resin composition is increased. While reducing the loss factor.
  • friction occurs at the interface between the resin or the plasticizer and / or the elastomer and the inorganic filler to cause energy loss, which further suppresses the loss factor reduction. It is estimated that
  • the upper limit of the mass average molecular weight of the thermoplastic polyester resin (A) in the present invention is preferably 300,000.
  • the upper limit does not change depending on the type of thermoplastic polyester resin (A) used, but from the viewpoint of improving the loss coefficient, as the lower limit, for example, polybutylene terephthalate resin is used as the thermoplastic polyester resin (A)
  • 70,000 or more is preferable, 80,000 or more is more preferable, and 100,000 or more is still more preferable.
  • polytrimethylene terephthalate resin as a thermoplastic polyester resin (A)
  • 60,000 or more is preferable and 70,000 or more is more preferable.
  • thermoplastic polyester resin (A) When using a polyethylene terephthalate resin as a thermoplastic polyester resin (A), 30,000 or more is preferable, 40,000 or more is more preferable, 50,000 or more is still more preferable.
  • the polyester resin composition in this invention has the absolute crystallinity degree mentioned later, a minimum changes with values of absolute crystallinity degree (Xc), and if absolute crystallinity degree is 5% or more and 37% or less, Even if the mass average molecular weight of the thermoplastic polyester resin (A) used is less than 50,000, performance can be exhibited, and, for example, 20,000 or more can be mentioned.
  • the mass average molecular weight of the thermoplastic polyester resin (A) to be used is preferably 50,000 or more.
  • the mass average molecular weight of the thermoplastic polyester resin (A) can be measured according to the method described in the examples described later.
  • the lower limit of the absolute crystallinity degree (Xc) of the polyester resin composition in the present invention may be preferably 5%, but it is as follows according to the type of thermoplastic polyester resin (A) used from the viewpoint of improving the loss coefficient. Range is indicated. For example, when using a polybutylene terephthalate resin as the thermoplastic polyester resin (A), 10% or more is preferable, 15% or more is more preferable, 20% or more is more preferable, 25% or more is more preferable, 35% or less is preferable 30% or less is more preferable, and 28% or less is still more preferable.
  • thermoplastic polyester resin (A) When using polytrimethylene terephthalate resin as a thermoplastic polyester resin (A), 10% or more is preferable, 15% or more is more preferable, 20% or more is still more preferable, and 35% or less is preferable. When using a polyethylene terephthalate resin as the thermoplastic polyester resin (A), 10% or more is preferable, 15% or more is more preferable, 20% or more is more preferable, 25% or more is more preferable, and 35% or less is preferable. In addition, since the thermoplastic polyester resin (A) in the present invention has the above-described mass average molecular weight, the value of the absolute crystallinity degree varies depending on the value of the mass average molecular weight of the resin (A).
  • the mass average molecular weight of the resin (A) is 50,000 or more and 150,000 or less, the performance can be exhibited even in the case of more than 37%, and for example, preferably 40% or less as the upper limit.
  • the mass average molecular weight is less than 50,000, it is preferably 37% or less.
  • the absolute crystallinity degree of a polyester resin composition means the ratio of the crystal part in matrix resin, and it can measure according to the method as described in the below-mentioned Example.
  • thermoplastic polyester resin (A) and the polyester resin composition in the present invention preferably have a mass average molecular weight and an absolute crystallinity within the ranges described above, and as the combination thereof, the thermoplastic polyester resin (A) When polybutylene terephthalate resin is used, the mass average molecular weight is preferably 70,000 to 150,000 and the absolute crystallinity is preferably 25% to 35%. The mass average molecular weight is 100,000 to 150,000 and the absolute crystallinity is 25 % Or more and 35% or less are more preferable.
  • thermoplastic polyester resin (A) is a polyethylene terephthalate resin
  • the mass average molecular weight is 30,000 to 150,000 and the absolute crystallinity is preferably 10% to 35%, and the mass average molecular weight is 40,000 to 150,000.
  • the absolute crystallinity is more preferably 20% or more and 35% or less.
  • thermoplastic polyester resin (A) is composed of a dicarboxylic acid component and a diol component, and can be obtained by a combination of polycondensation of the dicarboxylic acid component and the diol component.
  • the dicarboxylic acid component includes dicarboxylic acid and its lower ester derivative, and these are collectively referred to as a dicarboxylic acid component.
  • dicarboxylic acid component which constitutes thermoplastic polyester resin (A)
  • aliphatic dicarboxylic acid, alicyclic dicarboxylic acid, aromatic dicarboxylic acid, and dicarboxylic acid having a furan ring can be used.
  • examples thereof include terephthalic acid and the like, which are listed in paragraph 0014 of JP-A-2016-89148.
  • the dicarboxylic acid components can be used alone or in combination of two or more.
  • diol component which comprises a thermoplastic polyester resin (A)
  • an aliphatic diol an alicyclic diol, an aromatic diol, and the diol which has a furan ring
  • 1,4-butanediol and the like those listed in paragraph 0015 of JP-A-2016-89148 can be mentioned.
  • the diol components can be used alone or in combination of two or more.
  • an aromatic ring, an alicyclic ring, or a furan ring is a dicarboxylic acid or It is preferable to include it in one or both of the diols. Specific examples thereof include those listed in paragraph 0016 of JP-A-2016-89148.
  • the polycondensation of the dicarboxylic acid component and the diol component is not particularly limited, and can be carried out according to a known method.
  • the thermoplastic polyester resin (A) obtained has a glass transition temperature (Tg) of preferably 20 ° C. or more, more preferably 25 ° C. or more, still more preferably 30 ° C. or more, still more preferably, from the viewpoint of improving molding processability. 35 ° C or higher. Further, from the viewpoint of improving the vibration damping property, it is preferably 160 ° C. or less, more preferably 150 ° C. or less, still more preferably 140 ° C. or less, still more preferably 130 ° C. or less. In order for the glass transition temperature to be the above temperature, it is effective to control the skeleton structure of the polyester resin.
  • thermoplastic polyester resin when a thermoplastic polyester resin is prepared by using a rigid component such as an aromatic dicarboxylic acid component or an alicyclic diol component as a raw material, it is possible to increase the glass transition temperature.
  • the glass transition temperature of resin can be measured in accordance with the method as described in the below-mentioned Example.
  • the thermoplastic polyester resin (A) in this invention has crystallinity from a vibration suppression viewpoint.
  • a method of preparing a thermoplastic polyester resin having crystallinity a method using a dicarboxylic acid component and a diol component having high purity, and a method using a dicarboxylic acid component with a small amount of side chains and a diol component can be mentioned.
  • having crystallinity means heating the resin from 25 ° C. to 300 ° C. at a heating rate of 20 ° C./min according to JIS K 7122 (1999), and holding for 5 minutes in that state, Then, when cooled at ⁇ 20 ° C./min so as to be 25 ° C.
  • thermoplastic polyester resin (A) constituting the present invention preferably has a crystallization enthalpy ⁇ Hmc of 5 J / g or more, more preferably 10 J / g or more, still more preferably 15 J / g or more, still more preferably 30 J / g or more It is preferable to use a resin.
  • the crystallization enthalpy of resin can be measured according to the method as described in the below-mentioned Example.
  • thermoplastic polyester resin (A) examples include, for example, those listed in paragraph 0020 of JP-A-2016-89148, and from the viewpoint of damping property, terephthalic acid and 1,4-butanediol Preferred is polybutylene terephthalate (PBT resin, Tg: 50 ° C.).
  • PBT resin polybutylene terephthalate
  • the thermoplastic polyester resins (A) can be used alone or in combination of two or more.
  • the content of the thermoplastic polyester resin (A) is preferably 50% by mass or more, more preferably 55% by mass or more, and still more preferably 60% by mass or more from the viewpoint of improving the loss coefficient. Further, from the viewpoint of improving the rigidity, 90% by mass or less is preferable, 80% by mass or less is more preferable, 75% by mass or less is more preferable, and 70% by mass or less is more preferable.
  • the mass average molecular weight of the thermoplastic polyester resin (A) is preferably 30,000 or more, more preferably 50,000 or more, still more preferably 70,000 or more, from the viewpoint of improving the damping property. From the viewpoint of improving the properties, it is preferably at most 300,000, more preferably at most 200,000, further preferably at most 150,000. Specifically, the mass average molecular weight of the thermoplastic polyester resin (A) is measured by the method described in the following examples.
  • Component (B) which is a plasticizer and / or an elastomer As a component (B) in this invention, 1 type (s) or 2 or more types selected from the group which consists of a plasticizer and an elastomer are used. In the present specification, the plasticizer and / or the elastomer may be collectively referred to as component (B).
  • the plasticizer in the present invention contains one or more selected from the group consisting of polyester plasticizers, polyhydric alcohol ester plasticizers, polyhydric carboxylic acid ester plasticizers, and bisphenol plasticizers. Is preferred.
  • plasticizers having a 5% mass loss temperature of 200 ° C. or more are preferable, plasticizers of 220 ° C. or more are more preferable, plasticizers of 240 ° C. or more are more preferable, and plasticizers of 260 ° C. or more are more preferable.
  • the measurement of the 5% mass loss temperature of the plasticizer is carried out under the condition that the temperature is raised at 10 ° C./min in an air atmosphere.
  • the weight retention of the plasticizer at 260 ° C. in an air atmosphere for 5 minutes isothermally maintained is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more. From the viewpoint of improving, it is preferably 100% or less, more preferably 98% or less.
  • polyester plasticizer examples include those listed in paragraph 0024 of JP-A-2016-89148.
  • Preferred examples include, for example, mixed diesters of adipic acid and diethylene glycol monomethyl ether / benzyl alcohol.
  • polyhydric alcohol ester plasticizer examples include those listed in paragraph 0025 of JP-A-2016-89148.
  • polyvalent carboxylic acid ester plasticizers examples include those listed in paragraph 0026 of JP-A-2016-89148.
  • Examples of the bisphenol-based plasticizer include those listed in paragraph 0027 of JP-A-2016-89148.
  • a polyester-based plasticizer from the viewpoint of improving the loss coefficient, a polyester-based plasticizer, a polyhydric alcohol ester-based plasticizer, a polyvalent carboxylic acid, preferably having a (poly) oxyalkylene group or an alkylene group having 2 to 10 carbon atoms
  • the (poly) oxyalkylene group means an oxyalkylene group or a polyoxyalkylene group.
  • the oxyalkylene group is preferably one having an alkylene group having preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms, and an oxyethylene group, an oxypropylene group or an oxybutylene group Preferably, oxyethylene or oxypropylene is more preferred.
  • the plasticizer preferably contains one or more selected from the group consisting of the following compound groups (A) to (C) from the viewpoint of improving the loss coefficient, and the following compound group (A) It is more preferable to contain one or more selected from the group consisting of and (B).
  • Compound Group (A) An ester compound having two or more ester groups in the molecule, wherein at least one of the alcohol components constituting the ester compound has an average of 0 to 2 alkylene oxides per one hydroxyl group.
  • ester compound group (B) Formula (I): R 1 O-CO-R 2 -CO-[(OR 3 ) m O-CO-R 2 -CO-] n OR 1 (I) (Wherein, R 1 is an alkyl group having 1 to 4 carbon atoms, R 2 is an alkylene group having 2 to 4 carbon atoms, R 3 is an alkylene group having 2 to 6 carbon atoms, and m is 1 to 6) And n represents a number of 1 to 12, provided that all R 2 s may be the same or different, and all R 3 s may be the same or different)
  • Compound compound group (C) represented by: an ester compound having two or more ester groups in the molecule, wherein the alcohol component constituting the ester compound is a monoalcohol
  • the ester compound contained in the compound group (A) is a polyhydric alcohol ester or polyhydric carboxylic acid ether ester having two or more ester groups in the molecule, and at least one of alcohol components constituting the ester compound.
  • An ester compound which is an alcohol having an average of 0.5 to 5 moles of an alkylene oxide of 2 to 3 carbon atoms added per hydroxyl group is preferable.
  • R 1 in the formula (I) represents an alkyl group having 1 to 4 carbon atoms, and two in one molecule are present at both ends of the molecule.
  • R 1 may be linear or branched as long as it has 1 to 4 carbon atoms.
  • the carbon number of the alkyl group is preferably 1 to 4 and more preferably 1 to 2 from the viewpoint of exhibiting coloring resistance and a plasticizing effect.
  • methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, iso-butyl group can be mentioned, and among them, from the viewpoint of improving the loss factor, methyl A group and an ethyl group are preferable, and a methyl group is more preferable.
  • R 2 in the formula (I) represents an alkylene group having 2 to 4 carbon atoms, and a linear alkylene group is mentioned as a preferable example. Specifically, ethylene, 1,3-propylene and 1,4-butylene are mentioned, and from the viewpoint of improving the loss factor, ethylene, 1,3-propylene and 1,4-butylene are preferable. Preferably, ethylene is more preferred. However, all R 2 s may be the same or different.
  • R 3 in the formula (I) represents an alkylene group having 2 to 6 carbon atoms, and OR 3 is present as an oxyalkylene group in the repeating unit.
  • R 3 may be linear or branched as long as it has 2 to 6 carbon atoms.
  • the number of carbon atoms of the alkylene group is preferably 2 to 6, and more preferably 2 to 3 from the viewpoint of improving the loss coefficient.
  • M represents the average number of repetition of the oxyalkylene group, and from the viewpoint of heat resistance, the number is preferably 1 to 6, more preferably 1 to 4, and still more preferably 1 to 3.
  • N represents the average number of repeating units (average degree of polymerization) of the repeating units, and is a number of 1 to 12.
  • the damping material is preferably a number of 1 to 12, more preferably a number of 1 to 6, and still more preferably a number of 1 to 5 from the viewpoint of improving the loss coefficient.
  • the average degree of polymerization may be determined by analysis such as NMR, but can be calculated according to the method described in paragraph 0100 of JP-A 2016-89148.
  • R 1 is all methyl group
  • R 2 is ethylene group or 1,4-butylene group
  • R 3 is ethylene group or 1,3-propylene group
  • m is a number of 1 to 4 and n is a number of 1 to 6
  • R 1 is all methyl
  • R 2 is ethylene or 1,4-butylene
  • R 3 is ethylene or 1
  • Compounds having a 3-propylene group, m being a number of 1 to 3 and n being a number of 1 to 5 are more preferable.
  • the compound represented by the formula (I) is not particularly limited as long as it has the above-mentioned structure, but a compound obtained by reacting the following (1) to (3) is preferable.
  • (1) and (2), or (2) and (3) may form an ester compound.
  • (2) may be an acid anhydride or an acid halide.
  • a monohydric alcohol having alkyl group having 1 to 4 carbon atoms is an alcohol containing the above R 1 , specifically, methanol, Ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, tert-butanol can be mentioned.
  • methanol, ethanol, 1-propanol and 1-butanol are preferable, methanol and ethanol are more preferable, and methanol is still more preferable from the viewpoint of improving the loss factor.
  • the dicarboxylic acid having an alkylene group having 2 to 4 carbons is a dicarboxylic acid containing the above-mentioned R 2.
  • succinic acid, Glutaric acid, adipic acid and their derivatives such as succinic anhydride, glutaric anhydride, dimethyl succinate, dibutyl succinate, dimethyl glutarate, dimethyl adipate and the like can be mentioned.
  • succinic acid, adipic acid and derivatives thereof for example, succinic anhydride, dimethyl succinate, dibutyl succinate, dimethyl adipate are preferable, and succinic acid and its derivatives, for example, Succinic anhydride, dimethyl succinate and dibutyl succinate are more preferred.
  • Dihydric alcohol having an alkylene group having 2 to 6 carbon atoms is a dihydric alcohol containing the above R 3 , specifically, Ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,2-pentanediol, 1,4-pentanediol, 1,5-pentanediol, 2,5-hexanediol, Examples include 1,6-hexanediol and 3-methyl-1,5-pentanediol.
  • diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, tetraethylene glycol and 1,4-butanediol are preferable from the viewpoint of improving the loss coefficient, and diethylene glycol and triethylene glycol, 1,2-propanediol and 1,3-propanediol are more preferable, and diethylene glycol, triethylene glycol and 1,3-propanediol are more preferable.
  • the monohydric alcohol is one or more selected from the group consisting of methanol, ethanol, 1-propanol, and 1-butanol
  • the dicarboxylic acid is succinic acid, adipic acid, glutaric acid, and And one or more selected from the group consisting of derivatives thereof
  • the dihydric alcohol is diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, tetraethylene glycol, and Preferably, it is one or more selected from the group consisting of 1,4-butanediol, (1) One or two or more selected from the group consisting of methanol and ethanol, and (2) One or more selected from the group consisting of succinic acid, adipic acid, and derivatives thereof More than two, and (3) the dihydric alcohol is one or more selected from the group consisting of diethylene glycol, triethylene glycol, 1,2-propanediol, and 1,
  • Embodiment 1 A step of esterification reaction of (2) dicarboxylic acid and (1) monohydric alcohol to synthesize a dicarboxylic acid ester, and a step of esterifying reaction of the obtained dicarboxylic acid ester and (3) dihydric alcohol
  • Method aspect 2 including: Method including batch reaction of (1) monohydric alcohol, (2) dicarboxylic acid, and (3) dihydric alcohol
  • the method of aspect 1 is preferable from the viewpoint of adjusting the average degree of polymerization.
  • reaction of each process mentioned above can be performed according to a well-known method.
  • the compound represented by the formula (I) is preferably 1.50 mg KOH / g or less, more preferably 1.00 mg KOH / g or less, from the viewpoint of improving the loss coefficient, and the hydroxyl value is a loss coefficient From the viewpoint of improving the pH, it is preferably 10.0 mg KOH / g or less, more preferably 5.0 mg KOH / g or less, and still more preferably 3.0 mg KOH / g or less.
  • the acid value and the hydroxyl value of the plasticizer can be measured according to the method described in paragraph 0099 of JP-A-2016-89148.
  • the number average molecular weight of the compound represented by the formula (I) is preferably 300 to 1,500, more preferably 300 to 1000, from the viewpoint of color resistance, from the viewpoint of improving the loss coefficient.
  • the number average molecular weight of the plasticizer can be calculated according to the method described in paragraph 0100 of JP-A-2016-89148.
  • the saponification value of the compound represented by the formula (I) is preferably 500 to 800 mg KOH / g, and more preferably 550 to 750 mg KOH / g from the viewpoint of improving the loss coefficient.
  • the saponification value of the plasticizer can be measured according to the method described in paragraph 0099 of JP-A-2016-89148.
  • the compound represented by the formula (I) preferably has an alkyl esterification ratio (terminal alkyl esterification ratio) to two molecular ends of 95% or more, more preferably 98% or more. It is.
  • the terminal alkyl esterification rate of the plasticizer can be calculated according to the method described in paragraph 0100 of JP-A 2016-89148.
  • the ether group value of the compound represented by the formula (I) is preferably 0 to 8 mmol / g, and more preferably 0 to 6 mmol / g.
  • the ether group value of the plasticizer can be calculated according to the method described in paragraph 0100 of JP-A-2016-89148.
  • the ester compound contained in the compound group (C) is preferably an ester of adipic acid and 2-ethylhexanol (DOA) and an ester of phthalic acid and 2-ethylhexanol (DOP).
  • DOA 2-ethylhexanol
  • DOP 2-ethylhexanol
  • the content of one or more selected from the group consisting of polyester plasticizers, polyhydric alcohol ester plasticizers, polyhydric carboxylic acid ester plasticizers, and bisphenol plasticizers preferably It is selected from the group consisting of polyester-based plasticizers, polyhydric alcohol ester-based plasticizers, polyvalent carboxylic acid ester-based plasticizers, and bisphenol-based plasticizers having a poly (oxyalkylene) group or an alkylene group having 2 to 10 carbon atoms.
  • polyester plasticizers polyhydric alcohol ester plasticizers, polyhydric carboxylic acid ester plasticizers, and bisphenol plasticizers having one or more contents, more preferably (poly) oxyalkylene groups A group consisting of one or more selected from the group consisting of: and such compound groups (A) to (C)
  • the content of one or more compounds selected is preferably 50% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, further preferably from the viewpoint of improving the loss coefficient. It is 95% by mass or more, more preferably substantially 100% by mass, and still more preferably 100% by mass.
  • substantially 100% by mass means a state in which a trace amount of impurities and the like are inevitably contained.
  • the content of the plasticizer means the total content when a plurality of compounds are contained.
  • the content of the plasticizer is preferably 1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 5 parts by mass from the viewpoint of improving the loss coefficient with respect to 100 parts by mass of the thermoplastic polyester resin (A).
  • the amount is more preferably 10 parts by mass or more, and preferably 50 parts by mass or less, more preferably 40 parts by mass or less, still more preferably 30 parts by mass or less, still more preferably 25 parts by mass or less from the viewpoint of suppressing rigidity reduction. is there.
  • the content of the plasticizer in the polyester resin composition is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, from the viewpoint of improving the loss coefficient From the viewpoint of suppression, it is preferably 25% by mass or less, more preferably 20% by mass or less, and still more preferably 15% by mass or less.
  • thermoplastic elastomer In the present invention, one or two or more elastomers are used from the viewpoint of the improvement of the damping property in the high temperature range and the low temperature range.
  • a thermoplastic elastomer As an elastomer in the present invention, a thermoplastic elastomer is preferable.
  • the content of the elastomer is preferably 10 parts by mass or more, more preferably 12 parts by mass or more, and 15 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A), from the viewpoint of improving the loss coefficient in the low temperature range.
  • the above is more preferable.
  • 50 mass parts or less are preferable, 40 mass parts or less are more preferable, and 35 mass parts or less are still more preferable.
  • the content of the elastomer in the polyester resin composition is preferably 5% by mass or more, more preferably 8% by mass or more, and still more preferably 9.5% by mass or more, from the viewpoint of improving the loss coefficient
  • a plasticizer and an elastomer may be used in combination, and it is possible to use a plasticizer alone or two or more types and an elastomer alone or a combination of two or more types.
  • a plasticizer and an elastomer in combination, the loss coefficient in the room temperature region is further improved, and the loss coefficient is also improved in a wide temperature region such as a low temperature region or a high temperature region.
  • the total content of the plasticizer and the elastomer in combination is preferably 15 parts by mass or more, and more preferably 20 parts by mass or more with respect to 100 parts by mass of the thermoplastic polyester resin (A). 25 parts by mass or more is more preferable. Moreover, from a viewpoint of rigidity fall suppression, 60 mass parts or less are preferable, 50 mass parts or less are more preferable, and 40 mass parts or less are still more preferable.
  • the mass ratio of the plasticizer and the elastomer (plasticizer / elastomer) in the combined use is preferably 10/90 to 90/10, and 30/70 to 70/30 from the viewpoint of improving the loss coefficient in a wide temperature range. More preferable.
  • thermoplastic elastomer Use of a thermoplastic elastomer as the elastomer is preferable because the effect of improving the damping properties in the high temperature range and the low temperature range is exhibited. Furthermore, by using together with the plasticizer, the vibration damping property can be further improved in a wide temperature range in the high temperature range and the low temperature range.
  • the thermoplastic elastomer preferably has a glass transition temperature Tg of ⁇ 40 ° C. or higher, and preferably 20 ° C. or lower, from the viewpoint of improving the damping performance in the high temperature range and the low temperature range.
  • Tg glass transition temperature
  • the glass transition temperature of the thermoplastic elastomer can be measured according to the method described in the examples below.
  • the thermoplastic elastomer in the present invention includes styrene thermoplastic elastomer, olefin thermoplastic elastomer, polyester thermoplastic elastomer, polyamide thermoplastic elastomer, urethane thermoplastic elastomer, nitrile thermoplastic elastomer, fluorine thermoplastic elastomer And at least one selected from polybutadiene-based thermoplastic elastomers and silicone-based thermoplastic elastomers, and as styrene-based thermoplastic elastomers, polystyrene-vinyl-polyisoprene-polystyrene block copolymer, copolymer of styrene and butadiene, and
  • the hydrogen additive can be mentioned, for example, “Hybler” manufactured by Kuraray Plastics, “Tough Tech” “S.O.E” (registered trademark) manufactured by Asahi Kasei Co., Ltd., Formula company
  • olefin-based thermoplastic elastomer examples include those in which an olefin-based rubber (EPR, EPDM) is finely dispersed in a matrix of an olefin-based resin (polyethylene, polypropylene, etc.). Trademarks, "Espolex” (registered trademark) manufactured by Sumitomo Chemical Co., Ltd., and the like.
  • polyester-based thermoplastic elastomers include copolymers of polybutylene terephthalate and polyether and the like, and examples thereof include Hytrel (registered trademark) manufactured by Toray DuPont Co., Ltd.
  • polyamide-based thermoplastic elastomers include those obtained by transesterification and condensation polymerization reactions using block copolymers of nylon and polyester or polyol, lactams, and dicarboxylic acid polyether diols as raw materials.
  • urethane type thermoplastic elastomer there is, for example, "TPU” manufactured by Nippon Polyurethane Industry Co., Ltd.
  • thermoplastic elastomer As a nitrile thermoplastic elastomer, what emulsion-polymerized acrylonitrile and butadiene, etc. are mentioned.
  • fluorine-based thermoplastic elastomer include copolymers of vinylidene fluoride and hexafluoropropylene, copolymers of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene, etc.
  • fluorine-based thermoplastic elastomer include copolymers of vinylidene fluoride and hexafluoropropylene, copolymers of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene, etc.
  • Showa Highpolymer Co., Ltd. There are "Eraftol” (registered trademark), DuPont “Viton” (registered trademark) series, and the like
  • Polybutadiene-based and silicone-based thermoplastic elastomers include organic silicon polymer bonds in which an organic group or the like is directly bonded to the silicon atom with a siloxane bond as a skeleton, and examples thereof include KBM series made by Shin-Etsu Silicone.
  • a thermoplastic elastomer a styrene-based thermoplastic elastomer is preferable from the viewpoint of the improvement of the damping property in the high temperature range and the low temperature range.
  • styrenic thermoplastic elastomer (Styrenic thermoplastic elastomer) in the present invention, block A formed by polymerization of a styrenic compound constituting the hard segment, and conjugated diene constituting the soft segment are polymerized.
  • the block B is composed of Examples of the styrene compound used for the polymer block A include styrene compounds such as styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene and 1,3-dimethylstyrene; vinyl naphthalene, Polycyclic aromatic compounds having a vinyl group such as vinyl anthracene and the like are mentioned, and among these, polymers of styrene compounds are preferable, and polymers of styrene are more preferable.
  • styrene compounds such as styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene and 1,3-dimethylstyrene
  • vinyl naphthalene Polycyclic aromatic compounds having a vinyl group such as vinyl anthracene and
  • the conjugated diene used for the polymer block B includes, for example, butadiene, isoprene, butylene, ethylene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like, preferably polyisoprene, polybutadiene, and The copolymer of isoprene and butadiene is mentioned, It is the block copolymer which superposed
  • a styrenic compound used for the polymer block A may be copolymerized. In the case of each copolymer, any form of a random copolymer, a block copolymer, and a tapered copolymer can be selected as the form thereof. Alternatively, a hydrogenated structure may be used.
  • styrenic elastomers include polystyrene-isoprene block copolymer (SIS), polystyrene-polybutadiene copolymer (SEBS), polystyrene-hydrogenated polybutadiene copolymer (SEBS), polystyrene-hydrogenated Polyisoprene-polystyrene block copolymer (SEPS), polystyrene-vinyl-polyisoprene-polystyrene block copolymer (SHIVS), polystyrene-hydrogenated polybutadiene-hydrogenated polyisoprene-polystyrene block copolymer, polystyrene-hydrogenated polybutadiene -Polyisoprene-polystyrene block copolymer etc.
  • SIS polystyrene-isoprene block copolymer
  • SEBS polystyrene
  • polystyrene-vinyl-polyisoprene-polystyrene block copolymer is preferably used in the present invention, and commercially available products of such block copolymers include “Hylar” series manufactured by Kuraray Plastics Co., Ltd. .
  • the styrene content in the styrenic elastomer is preferably 10% by mass or more, more preferably 15% by mass or more, preferably 30% by mass or less, from the viewpoint of improving the damping performance in the high temperature range and the low temperature range. Preferably it is 25 mass% or less.
  • the high temperature range means 35 to 80 ° C.
  • the low temperature range means -20 to 10 ° C.
  • the styrene content in the styrenic elastomer is described in the following examples. It can be measured according to the method of
  • styrene-type elastomer a styrene isoprene block copolymer and / or a styrene butadiene block copolymer are preferable.
  • the styrene isoprene block copolymer in the present invention is a block copolymer having a polystyrene block at both ends, and having at least one block of a polyisoprene block or a vinyl-polyisoprene block therebetween.
  • an isoprene block or a butadiene block may be copolymerized or may have a hydrogenated structure.
  • styrene-isoprene block copolymer examples include polystyrene-isoprene block copolymer (SIS), polystyrene-hydrogenated polyisoprene-polystyrene block copolymer (SEPS), polystyrene-vinyl-polyisoprene Polystyrene block copolymer (SHIVS), polystyrene-hydrogenated polybutadiene-hydrogenated polyisoprene-polystyrene block copolymer, polystyrene-hydrogenated polybutadiene-polyisoprene-polystyrene block copolymer, and the like.
  • SIS polystyrene-isoprene block copolymer
  • SEPS polystyrene-hydrogenated polyisoprene-polystyrene block copolymer
  • SHIVS polystyrene-viny
  • polystyrene-vinyl-polyisoprene-polystyrene block copolymer is preferably used in the present invention, and commercially available products of such block copolymers include “Hylar” series manufactured by Kuraray Plastics Co., Ltd. .
  • the styrene butadiene block copolymer in the present invention is a block copolymer having a polystyrene block at both ends and having a polybutadiene block or a hydrogenated substance thereof in between.
  • an isoprene block or a butadiene block may be copolymerized or may have a hydrogenated structure.
  • styrene-butadiene block copolymer examples include polystyrene-polybutadiene copolymer (SEBS), polystyrene-hydrogenated polybutadiene copolymer (SEBS), polystyrene-polybutadiene copolymer (SBS), polystyrene And hydrogenated polybutadiene copolymers (SBS) and the like. These may be used alone or in combination of two or more.
  • SEBS polystyrene-polybutadiene copolymer
  • SEBS polystyrene-hydrogenated polybutadiene copolymer
  • SBS polystyrene-polybutadiene copolymer
  • SBS polystyrene And hydrogenated polybutadiene copolymers
  • SEBS polystyrene-hydrogenated polybutadiene copolymer
  • elastomers with few or no unsaturated bonds are preferable.
  • the thing hydrogenated among various said elastomers is mentioned.
  • an elastomer that is resistant to oxidative degradation or does not undergo oxidative degradation is preferable.
  • the thing hydrogenated among various said elastomers is mentioned.
  • the polyester resin composition in the present invention contains an inorganic filler (C) from the viewpoint of rigidity improvement.
  • the inorganic filler (C) in the present invention is not particularly limited as long as it is a known inorganic filler, and is an inorganic filler generally used for reinforcing a thermoplastic resin, specifically, a plate-like filler, One or more selected from the group consisting of granular fillers, acicular fillers, and fibrous fillers can be used.
  • the plate-like filler has an aspect ratio (length of the longest side of the largest surface of the plate-like body / thickness of the surface) of 20 or more and 150 or less.
  • the length of the plate-like filler (length of the longest side in the largest surface) It is preferably 1.0 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more, further preferably 20 ⁇ m or more, preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, further preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less More preferably, it is 30 ⁇ m or less.
  • the thickness is not particularly limited, but from the same viewpoint, preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, still more preferably 0.1 ⁇ m or more, still more preferably 0.2 ⁇ m or more, preferably 5 ⁇ m or less. More preferably, it is 3 ⁇ m or less, still more preferably 2 ⁇ m or less, still more preferably 1 ⁇ m or less, and still more preferably 0.5 ⁇ m or less.
  • the aspect ratio of the plate-like filler is preferably 30 or more, more preferably 40 or more, still more preferably 50 or more, and preferably 120 or less, more preferably 100 or less, from the same viewpoint. Preferably it is 90 or less, More preferably, it is 80 or less.
  • the plate-like filler examples include, for example, those listed in paragraph 0064 of JP-A-2016-89148, such as mica.
  • the side length and thickness of a plate-shaped filler can be calculated
  • the particulate filler is not limited to those having a spherical shape, but also to those having a cross-sectional elliptical or substantially oval shape, and has an aspect ratio (longest diameter of granular body / shortest diameter of granular body) One or more and less than two, and one close to one is preferable.
  • the average particle diameter of the particulate filler is preferably 1.0 ⁇ m or more, more preferably from the viewpoint of obtaining good dispersibility in the polyester resin composition, improving the flexural modulus, and / or improving the loss factor.
  • the thickness is 5 ⁇ m or more, more preferably 10 ⁇ m or more, further preferably 20 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and still more preferably 30 ⁇ m or less.
  • Specific examples of the particulate filler include those listed in paragraph 0065 of JP-A-2016-89148.
  • the diameter of the particulate filler can be determined by cutting 100 fillers randomly selected, observing the cross section with an optical microscope, and calculating the number average.
  • the needle-like filler has an aspect ratio (particle length / particle diameter) in the range of 2 or more and less than 20.
  • the length (particle length) of the needle-like filler is preferably 1.0 ⁇ m from the viewpoint of obtaining good dispersibility in the polyester resin composition, improving the flexural modulus, and / or improving the loss factor. Or more, more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more, still more preferably 20 ⁇ m or more, still more preferably 30 ⁇ m or more, preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less It is.
  • the particle diameter is not particularly limited, but from the same viewpoint, preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, still more preferably 0.5 ⁇ m or more, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, further Preferably it is 10 micrometers or less.
  • the aspect ratio of the needle-like filler is preferably 5 or more, and preferably 10 or less from the same viewpoint. Specific examples of the needle-like filler include those listed in paragraph 0066 of JP-A-2016-89148.
  • the particle length and particle diameter of the needle-like filler can be determined by observing 100 fillers randomly selected with an optical microscope and calculating the number average. When the particle size has a minor axis and a major axis, the major axis is used to calculate.
  • the fibrous filler is one having an aspect ratio (average fiber length / average fiber diameter) of more than 150.
  • the length (average fiber length) of the fibrous filler is preferably 0.15 mm or more, more preferably 0.2 mm or more, and still more preferably 0.5 mm or more, from the viewpoint of improving bending modulus and loss coefficient. More preferably, it is 1 mm or more, preferably 30 mm or less, more preferably 10 mm or less, and still more preferably 5 mm or less.
  • the average fiber diameter is not particularly limited, but from the same viewpoint, it is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, further preferably 10 ⁇ m or less.
  • the aspect ratio is preferably 200 or more, more preferably 250 or more, still more preferably 500 or more, and preferably 10000 or less, more preferably 5000 or less, still more preferably 1000 or less, from the same viewpoint. More preferably, it is 800 or less.
  • Specific examples of fibrous fillers include those listed in paragraph 0067 of JP-A-2016-89148.
  • the fiber length and fiber diameter of a fibrous filler can be calculated
  • the fibrous filler is cut by the shear force in the kneading section and the average is Although the fiber length is shortened, the average fiber length of the fibrous filler in the resin is preferably 100 to 800 ⁇ m, more preferably 200 to 700 ⁇ m, and still more preferably 300 to 600 ⁇ m from the viewpoint of improving the loss coefficient and rigidity.
  • the granular, plate-like or needle-like filler may be coated or converged with a thermoplastic resin such as ethylene / vinyl acetate copolymer or a thermosetting resin such as epoxy resin, aminosilane or epoxy It may be treated with a coupling agent such as silane.
  • a thermoplastic resin such as ethylene / vinyl acetate copolymer or a thermosetting resin such as epoxy resin, aminosilane or epoxy It may be treated with a coupling agent such as silane.
  • fillers can be used alone or in combination of two or more, and fillers of different shapes may be combined.
  • at least one selected from the group consisting of a plate-like filler, a needle-like filler, and a fibrous filler from the viewpoint of improving the flexural modulus and suppressing the decrease in loss coefficient. More preferably, it is 1 type, or 2 or more types selected from the group which consists of a plate-like filler and a needle-like filler, More preferably, it is 1 type or 2 or more types of a plate-like filler.
  • mica, talc and glass fiber are preferably used, mica and talc are more preferably used, and mica is more preferably used.
  • the plate-like filler is oriented in the direction of flow in the injection-molded product, etc., so the tensile modulus in the direction of orientation and the flexural modulus in the direction perpendicular to the direction of orientation are significantly improved compared to other fillers. Also, it is presumed that the loss coefficient is further suppressed because there are many interfaces that affect the friction generated when the molded body vibrates.
  • the content of the plate-like filler in the inorganic filler is preferably 60% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more from the viewpoint of suppressing the loss coefficient decrease.
  • the content of the inorganic filler (C) is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, and 20 parts by mass or more with respect to 100 parts by mass of the thermoplastic polyester resin (A). Is more preferable, and 30 parts by mass or more is further preferable. Further, from the viewpoint of suppressing a decrease in loss factor, 80 parts by mass or less is preferable, 70 parts by mass or less is more preferable, 60 parts by mass or less is more preferable, 50 parts by mass or less is more preferable, 45 parts by mass or less is more preferable .
  • content of an inorganic filler is the total mass of the inorganic filler used, and when several compounds are contained, it means the thing of total content.
  • the content of the inorganic filler is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, further preferably 20% by mass from the viewpoint of rigidity improvement.
  • the mass ratio of the component (B) to the inorganic filler (C) is 10/90 to 60 / from the viewpoint of improving the elastic modulus and the loss factor.
  • 40 is preferable, 25/75 to 50/50 is more preferable, and 40/60 to 47/53 is further preferable.
  • the polyester resin composition in the present invention can contain an organic crystal nucleating agent from the viewpoint of improving the crystallization rate of the polyester resin, improving the crystallinity of the polyester resin, and improving the flexural modulus.
  • organic crystal nucleating agent known organic crystal nucleating agents can be used, and organic carboxylic acid metal salts, organic sulfonic acid salts, carboxylic acid amides, phosphorus compound metal salts, metal salts of rosins, alkoxy metal salts, And organic nitrogen-containing compounds can be used. Specifically, for example, those listed in paragraph 0074 of JP-A-2016-89148 can be mentioned.
  • the content of the organic crystal nucleating agent (D) is preferably 0.01 parts by mass or more, more preferably 100 parts by mass of the thermoplastic polyester resin (A), from the viewpoint of improving the bending elastic modulus and the loss coefficient. Is 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, from the viewpoint of improving flexural modulus and loss factor Is 5 parts by mass or less, more preferably 3 parts by mass or less, still more preferably 1 part by mass or less.
  • the content of the organic crystal nucleating agent means the total content of all the organic crystal nucleating agents contained in the polyester resin composition.
  • the polyester resin composition in the present invention is a lubricant other than the above components, which is a lubricant, an inorganic crystal nucleating agent, a hydrolysis inhibitor, a flame retardant, an antioxidant, a hydrocarbon wax and an anionic surfactant.
  • An ultraviolet absorber, an antistatic agent, an antifogging agent, a light stabilizer, a pigment, an antifungal agent, an antibacterial agent, a foaming agent, etc. can be contained in the range which does not impair the effect of the present invention.
  • the polyester resin composition in the present invention may be prepared without particular limitation as long as it contains a thermoplastic polyester resin (A), a component (B) which is a plasticizer and / or an elastomer, and an inorganic filler (C).
  • a thermoplastic polyester resin A
  • a component (B) which is a plasticizer and / or an elastomer B
  • an inorganic filler C
  • materials such as thermoplastic polyester resin, plasticizer and / or elastomer, and inorganic filler, and, if necessary, various additives, may be sealed kneader, single- or twin-screw extruder, open-roll type kneader, etc.
  • the composition can be prepared by melt-kneading using a known kneader.
  • the melt-kneaded product may be dried or cooled according to a known method.
  • the raw materials can also be subjected to melt-kneading after being uniformly mixed in advance using a Henschel mixer, a super mixer, or the like.
  • a supercritical gas may be made to melt-mix.
  • the melt-kneading temperature is not generally set depending on the type of thermoplastic polyester resin to be used, but from the viewpoint of improving the moldability and prevention of deterioration of the polyester resin composition, it is preferably 220 ° C. or more, more preferably 225 ° C. or more It is preferably 230 ° C. or more, preferably 300 ° C. or less, more preferably 290 ° C. or less, still more preferably 280 ° C. or less, still more preferably 260 ° C. or less, still more preferably 250 ° C. or less, more preferably 240 ° C. or less .
  • the melt-kneading time can not be determined generally depending on the melt-kneading temperature and the type of the kneader, but it is preferably 15 to 900 seconds.
  • the laminated sheet of the present invention can be produced by a conventionally known method. For example, a method in which each layer is separately formed in advance and then laminated or thermocompression-pressed, a method in which the upper or lower surface of the previously formed layer is coated to form another layer, and respective resin layers are laminated by coextrusion And the like.
  • a method will be described more specifically, in which each layer is separately formed in advance, each layer is stacked, and then thermocompression bonding is performed.
  • a sheet-like molded article molded from a polycarbonate resin composition used as a polycarbonate layer is to obtain a desired thickness by a known method such as inflation molding, extrusion sheet molding, press molding, cast molding and the like. Can.
  • a damping layer of a desired thickness can be produced by feeding the melt-kneaded product of the polyester resin composition prepared as described above to, for example, a known extruder or drawing machine and drawing.
  • thermocompression bonding press The layers produced as described above are superimposed in a predetermined order. Set in a press, press-fit under the conditions of pressure 1 to 7MPa, temperature 160 to 190 ° C, press time 0.5 to 2.0 minutes, and then cool down to room temperature to obtain a predetermined laminated sheet Can.
  • pressure 1 to 7MPa press-fit under the conditions of pressure 1 to 7MPa, temperature 160 to 190 ° C, press time 0.5 to 2.0 minutes, and then cool down to room temperature to obtain a predetermined laminated sheet Can.
  • changes in the thickness of the polycarbonate layer and the damping layer are almost negligible before and after the pressing.
  • the present invention further discloses the following laminated sheet.
  • the damping layer is present on the surface and / or near the surface of the laminated sheet,
  • the damping layer contains a thermoplastic polyester resin (A) composed of a component containing a dicarboxylic acid component and a diol component, a component (B) which is a plasticizer and / or an elastomer, and an inorganic filler (C)
  • the laminated sheet which is a sheet-like molded object of the polyester resin composition formed.
  • the relative position (%) of the damping layer from the upper surface of the ⁇ 2> laminated sheet is preferably 40% or less, more preferably 33% or less, still more preferably 30% or less, still more preferably 25% or less Preferably it is 20% or less, more preferably 15% or less, more preferably 10% or less, and preferably 0.05% or more, more preferably 0.25% or more, still more preferably 0.5% or more
  • the laminated sheet according to ⁇ 1> which is more preferably 1.0% or more, further preferably 5.0% or more, further preferably 10% or more.
  • the ratio of the damping layer in the ⁇ 3> laminated sheet is preferably 1% or more, more preferably 5% or more, still more preferably 10% or more, and preferably 70% or less, in volume fraction.
  • the laminated sheet according to ⁇ 1> or ⁇ 2> which is preferably 50% or less, more preferably 34% or less, and further preferably 25% or less.
  • ⁇ 4> The laminated sheet according to any one of ⁇ 1> to ⁇ 3>, wherein the thermoplastic polyester resin (A) contains polybutylene terephthalate.
  • ⁇ 5> The laminated sheet according to any one of ⁇ 1> to ⁇ 4>, wherein the inorganic filler (C) comprises a plate-like filler.
  • the component (B) contains one or more plasticizers and one or more elastomers.
  • each polycarbonate layer is preferably 0.05 mm or more, more preferably 0.10 mm or more, still more preferably 0.15 mm or more, and preferably 10 mm or less, more preferably 5.0 mm or less.
  • each damping layer is preferably 0.05 mm or more, more preferably 0.2 mm or more, still more preferably 0.4 mm or more, and preferably 10 mm or less, more preferably 5.0 mm or less.
  • the thickness of the entire ⁇ 10> laminated sheet is preferably 0.3 mm or more, more preferably 1.0 mm or more, still more preferably 1.5 mm or more, still more preferably 2.0 mm or more, further preferably 2.5 mm or more
  • the laminated sheet according to any one of the above ⁇ 1> to ⁇ 9> which is preferably 30 mm or less, more preferably 10 mm or less, still more preferably 5.0 mm or less.
  • the total thickness of the ⁇ 11> damping layer is 100%
  • the total thickness of the polycarbonate layer is preferably 100% or more, more preferably 200% or more, still more preferably 300% or more, and preferably 2000 % Or less, more preferably 1000% or less, according to any one of the items ⁇ 1> to ⁇ 10>.
  • Thermoplastic polyester resin (A) is preferably polybutylene terephthalate; plasticizers are preferably polyester plasticizers, polyhydric alcohol ester plasticizers, polyhydric carboxylic acid ester plasticizers, bisphenol plasticizers And the elastomer is preferably polystyrene-isoprene block copolymer (SIS), polystyrene-polybutadiene copolymer (SEBS), polystyrene-hydrogenated polybutadiene copolymer (SEBS).
  • SIS polystyrene-isoprene block copolymer
  • SEBS polystyrene-polybutadiene copolymer
  • SEBS polystyrene-hydrogenated polybutadiene copolymer
  • Polystyrene-hydrogenated polyisoprene-polystyrene block copolymer SEPS
  • polystyrene-vinyl-polyisoprene-polystyrene block copolymer SHIVS
  • the content of the thermoplastic polyester resin (A) in the ⁇ 13> polyester resin composition is preferably 50% by mass or more, more preferably 55% by mass or more, still more preferably 60% by mass or more, and preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 75% by mass or less, still more preferably 70% by mass or less; content of the plasticizer in the polyester resin composition is preferably 1% by mass or more More preferably 3% by mass or more, still more preferably 5% by mass or more, and preferably 25% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less; polyester resin composition
  • the content of the elastomer contained therein is preferably 5% by mass or more, more preferably 8% by mass or more, still more preferably 9.5% by mass or more.
  • the content of the inorganic filler in the polyester resin composition is preferably 5% by mass or more, more The content is preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, still more preferably 23% by mass or more, and preferably 40% by mass or less, more preferably 35% by mass or less.
  • the total content of the plasticizer and the elastomer when used in combination is preferably 15 parts by mass or more, more preferably 20 parts by mass or more, and still more preferably 25 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A).
  • the mass ratio of the plasticizer and the elastomer (plasticizer / elastomer) in the combined use is preferably 10/90 to 90/10, more preferably 30/70 to 70/30.
  • the laminated sheet of any one of 14> The mass ratio of the component (B) to the inorganic filler (C) (component (B) / inorganic filler (C)) is preferably 10/90 to 60/40, more preferably 25/75 to 50.
  • a preferred arrangement of each layer in the laminated sheet is a group consisting of polycarbonate layer (PC) / damping layer (PBT), PC / PBT / PC, PC / PBT / PC / PBT / PC, and PBT / PC / PBT
  • the ⁇ 18> loss factor is preferably 0.04 or more, more preferably 0.05 or more, still more preferably 0.06 or more, still more preferably 0.07 or more.
  • flexural modulus is preferably 2.7 or more, more preferably 2.8 or more, further preferably 2.9 or more, still more preferably 3.1 or more.
  • thermoplastic polyester resin and elastomer A flat test piece (40 mm ⁇ 5 mm ⁇ 0.4 mm) of a sheet-like molded product or an elastomer of a polyester resin composition prepared in the same manner as described later is produced. Next, using a DMA device (manufactured by SII, EXSTAR 6000), with a measurement frequency of 1 Hz, the temperature is raised from -50 ° C. to 250 ° C. at a heating rate of 2 ° C./min. Calculated as a transition point.
  • DIMA device manufactured by SII, EXSTAR 6000
  • ⁇ Enthalpy of crystallization of thermoplastic polyester resin About 7 mg of a thermoplastic polyester resin sample is weighed, and the resin is heated from 25 ° C. to 300 ° C. at a temperature rising rate of 20 ° C./min according to JIS K 7122 (1999) using a DSC (Perkin Elmer Co., DSC 8500) Then, after holding for 5 minutes in that state, when cooling at ⁇ 20 ° C./min so as to be 25 ° C. or less, the enthalpy of crystallization is calculated from the exothermic peak accompanying crystallization.
  • ⁇ Styrene content of styrenic elastomer> The elastomer is dissolved in deuterated chloroform, and the H-NMR spectrum of the sample solution is measured at an observation width of 15 ppm.
  • a calibration curve is previously obtained from the peak area and concentration of styrene in the H-NMR spectrum of a polystyrene / deuterated chloroform solution of three different concentrations, and using this calibration curve, the peak area of styrene in the sample solution is used. Calculate the content.
  • Production Example 1 and Production Example 3 (Production of Sheet-Like Molding of Polyester Resin Composition)
  • the raw materials of the polyester resin composition shown in Table 1 are melt-kneaded at 240 ° C. using a co-directional meshing type twin screw extruder (TEX-28V manufactured by Japan Steel Works, Ltd.), and strand cut is performed to obtain a resin composition. Pellets were obtained. The pellets obtained were dried by dehumidification at 110 ° C. for 3 hours to make the water content 500 ppm or less.
  • TEX-28V manufactured by Japan Steel Works, Ltd.
  • the obtained pellets were fed to a 50 mm single screw extruder and melt-kneaded at 240 ° C., and then the melt-kneaded product was formed into a sheet by a roll controlled to a roll temperature of 90 ° C. and a cooled roll Thereafter, a sheet having a width of 450 mm and a thickness of 0.5 mm was wound up to obtain a sheet-like formed product of the polyester resin composition (abbreviated as "PBT sheet").
  • Production Example 2 Production of Polycarbonate Resin Composition Sheet
  • the film was formed at a barrel temperature of 260 to 300 ° C. while being supplied to a machine to obtain a PC sheet having a thickness of 0.5 mm.
  • Production Example 4 Production of Polycarbonate Resin Composition Sheet
  • a film was formed at a barrel temperature of 260 to 300 ° C. to obtain a PC sheet having a thickness of 0.25 mm.
  • Example 1 (manufacture of laminated sheet)
  • One PBT sheet produced in Production Example 1 and two PC sheets produced in Production Example 2 were prepared. Two PC sheets were laminated on the upper surface of one PBT sheet.
  • the three laminates are integrated by heating and compressing for 1 minute under the conditions of a pressure of 0.2 to 3 MPa using a press set at a press heating temperature of 165 ° C., and then cooled to room temperature by a cooling press It cooled.
  • a laminated sheet having a thickness of 1.5 mm was produced.
  • the manufactured laminated sheet has a structure in which a PC sheet as the polycarbonate layer 2 is laminated on the upper surface of the PBT sheet as the damping layer 1, and the cross section corresponds to the cross sectional view of FIG. 2A. .
  • Example 2 (manufacture of laminated sheet)
  • One PBT sheet produced in Production Example 1 and eight PC sheets produced in Production Example 2 were prepared.
  • One PC sheet was laminated on the upper surface of one PBT sheet, and seven PC sheets were laminated on the lower surface of the PBT sheet.
  • the nine laminates are integrated by heating and compressing for 2 minutes under the conditions of a pressure of 0.2 to 3 MPa using a press set to a press heating temperature of 165 ° C., and then cooled to room temperature by a cooling press It cooled.
  • a laminated sheet having a thickness of 4.5 mm was produced.
  • a PC sheet as the polycarbonate layer 2 is laminated on the upper surface of the PBT sheet as the damping layer 1, and a PC sheet as the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1. It is a structure, and its cross section corresponds to the cross section of FIG. 2B.
  • Example 3 (manufacture of laminated sheet)
  • One PBT sheet produced in Production Example 1 and 14 PC sheets of 0.25 mm thickness produced in Production Example 4 were prepared.
  • One PC sheet was laminated on the upper surface of one PBT sheet, and 13 PC sheets were laminated on the lower surface of the PBT sheet.
  • the 15 laminates are integrated by heating and compressing for 2 minutes under conditions of a pressure of 0.2 to 3 MPa using a press set to a press heating temperature of 165 ° C., and then cooled to room temperature by a cooling press It cooled.
  • a laminated sheet having a thickness of 4.0 mm was produced.
  • a PC sheet as the polycarbonate layer 2 is laminated on the upper surface of the PBT sheet as the damping layer 1, and a PC sheet as the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1. It is a structure, The cross section corresponded to the cross section of FIG. 4A.
  • Comparative Example 1 (Production of Laminated Sheet)
  • One PBT sheet produced in Production Example 1 and two PC sheets produced in Production Example 2 were prepared.
  • One PC sheet was laminated on the upper surface of one PBT sheet, and one PC sheet was laminated on the lower surface of the PBT sheet.
  • the three laminates are integrated by heating and compressing for 1.5 minutes under the conditions of a pressure of 0.2 to 3 MPa using a press whose press heating temperature is set at 165 ° C., and then the cooling press It cooled to normal temperature.
  • a laminated sheet having a thickness of 1.5 mm was produced.
  • a PC sheet as the polycarbonate layer 2 is laminated on the upper surface of the PBT sheet as the damping layer 1, and a PC sheet as the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1. It is a structure, and its cross section corresponds to the cross section of FIG. 3A.
  • Comparative Example 2 (Production of Laminated Sheet)
  • One PBT sheet produced in Production Example 1 and eight PC sheets produced in Production Example 2 were prepared.
  • Four PC sheets were laminated on the upper surface of one PBT sheet, and four PC sheets were laminated on the lower surface of the PBT sheet.
  • the nine laminates are integrated by heating and compressing for 1.5 minutes under the conditions of a pressure of 0.2 to 3 MPa using a press whose press heating temperature is set to 165 ° C., and then by a cooling press It cooled to normal temperature.
  • a laminated sheet having a thickness of 4.5 mm was produced.
  • a PC sheet as the polycarbonate layer 2 is laminated on the upper surface of the PBT sheet as the damping layer 1, and a PC sheet as the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1. It is a structure, and the cross section corresponds to the cross section of FIG. 3B.
  • Comparative Example 3 (Production of Laminated Sheet Formed Only from Damping Layer)
  • PBT sheets manufactured in Production Example 1 were prepared.
  • Four PBT sheets were laminated, and then the four laminates were heated and compressed for 1.5 minutes under a pressure of 0.2 to 3 MPa using a press set to a heating temperature of 225 ° C. And then cooled to room temperature by a cooling press.
  • a laminated sheet having a thickness of 2.0 mm was produced.
  • the produced laminated sheet was a laminated sheet formed only of the PBT sheet as the damping layer 1.
  • Comparative Example 4 (Production of Laminated Sheet)
  • One PBT sheet produced in Production Example 1 and seven PC sheets produced in Production Example 2 were prepared.
  • Four PC sheets were laminated on the upper surface of one PBT sheet, and three PC sheets were laminated on the lower surface of the PBT sheet.
  • the eight laminates are integrated by heating and compressing for 1.5 minutes under the conditions of a pressure of 0.2 to 3 MPa using a press whose press heating temperature is set to 165 ° C., and then the cooling press It cooled to normal temperature.
  • a laminated sheet having a thickness of 4.0 mm was produced.
  • a PC sheet as the polycarbonate layer 2 is laminated on the upper surface of the PBT sheet as the damping layer 1, and a PC sheet as the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1. It is a structure, and the cross section corresponds to the cross section of FIG. 4B.
  • Test Example 1 Each laminated sheet is cut into a size of 127 mm ⁇ 12.7 mm ⁇ thickness (2.0 to 4.5) mm (the thickness depends on the thickness of the laminated sheet obtained in each example and comparative example), and flat plate test pieces And The loss factor of the flat plate test piece was calculated by the half width method from the peak of the secondary resonance of the frequency response function measured by the central excitation method based on JIS K 7391.
  • the oscillator was Type 3160
  • the amplifier was Type 2718
  • the exciter was Type 4810
  • the acceleration sensor was Type 8001 (all manufactured by B & K)
  • MS18143 was used.
  • the measurement environment was controlled by a thermostatic bath (manufactured by ESPEC, PU-3J), and was measured at 23 ° C. As the loss factor of the laminated sheet is higher, it can be judged that the vibration damping is faster, that is, the damping effect of the laminated sheet is higher.
  • Test Example 2 (Stiffness) Each laminated sheet was cut into a size of 30 mm ⁇ 25 mm ⁇ thickness (2.0 to 4.5) mm (the thickness depends on the thickness of the laminated sheet obtained in each of the examples and comparative examples) to obtain flat test pieces. .
  • a flat plate test piece was subjected to a bending test at a distance between supporting points of 24 mm and a test speed of 1 mm / min using a TENSILON universal material tester (RTC-1250A manufactured by Orientec Co., Ltd.) based on JIS K7171.
  • the flexural modulus was determined. When the bending elastic modulus is 2.0 GPa or more, it can be judged that the bending elastic modulus is high and the rigidity is good.
  • the laminated sheet (of the example) of the present invention has a high loss coefficient and a high elastic modulus, and is excellent in both the self-supporting property and the damping effect. In addition, sufficient stiffness and impact strength are expected to be high.
  • laminated sheets (Comparative Examples 1, 2 and 4) in which the damping layer is not at a predetermined position have a low loss coefficient and are therefore poor in damping effect, and are formed of only damping layers Comparative Example 3) was found to be low in rigidity because the elastic modulus was low.
  • Example 4 (manufacture of laminated sheet) Two PBT sheets produced in Production Example 1 and six PC sheets produced in Production Example 2 were prepared. One PC sheet is laminated on the lower surface of one PBT sheet, four PC sheets are laminated on the upper surface of the PBT sheet, one PBT sheet is laminated on the upper surface of the PC sheet, and the upper surface of the PBT sheet One PC sheet was laminated. Next, the eight laminates are integrated by heating and compressing for 2 minutes under the conditions of a pressure of 0.2 to 3 MPa using a press set to a press heating temperature of 165 ° C., and then cooled to room temperature by a cooling press It cooled. Thus, a laminated sheet having a thickness of 4.0 mm was produced.
  • the produced laminated sheet has a structure in which the polycarbonate layer 2, the damping layer 4 and the polycarbonate layer 5 are laminated on the upper surface of the damping layer 1, and the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1.
  • the cross section corresponds to the cross sectional view of FIG. 5A.
  • Example 5 (manufacture of laminated sheet) Two PBT sheets produced in Production Example 1 and six PC sheets produced in Production Example 2 were prepared. Six PC sheets were laminated on the upper surface of one PBT sheet, and one PBT sheet was laminated on the upper surface of the PC sheet. Next, the eight laminates are integrated by heating and compressing for 2 minutes under the conditions of a pressure of 0.2 to 3 MPa using a press set to a press heating temperature of 165 ° C., and then cooled to room temperature by a cooling press It cooled. Thus, a laminated sheet having a thickness of 4.0 mm was produced. The manufactured laminated sheet has a structure in which the polycarbonate layer 2 and the damping layer 4 are laminated on the upper surface of the damping layer 1, and the cross section thereof corresponds to the cross sectional view of FIG. 5B.
  • Example 6 (manufacture of laminated sheet) Two PBT sheets produced in Production Example 1 and 12 PC sheets of 0.25 mm thickness produced in Production Example 4 were prepared. One PC sheet is laminated on the lower surface of one PBT sheet, ten PC sheets are laminated on the upper surface of the PBT sheet, one PBT sheet is laminated on the upper surface of the PC sheet, and the upper surface of the PBT sheet One PC sheet was laminated. Next, the 14 laminates are integrated by heating and compressing for 2 minutes under conditions of a pressure of 0.2 to 3 MPa using a press set at a press heating temperature of 165 ° C., and then cooled to room temperature by a cooling press It cooled. Thus, a laminated sheet having a thickness of 4.0 mm was produced.
  • the produced laminated sheet has a structure in which the polycarbonate layer 2, the damping layer 4 and the polycarbonate layer 5 are laminated on the upper surface of the damping layer 1, and the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1.
  • the cross section corresponds to the cross sectional view of FIG. 5C.
  • Example 7 (Production of Laminated Sheet) A laminated sheet having a thickness of 1.5 mm was produced under the same conditions as in Example 1 except that the PBT sheet produced in Production Example 3 was used instead of the PBT sheet produced in Production Example 1.
  • the manufactured laminated sheet has a structure in which a PC sheet as the polycarbonate layer 2 is laminated on the upper surface of the PBT sheet as the damping layer 1, and the cross section corresponds to the cross sectional view of FIG. 2A. .
  • a laminated sheet (Example 7) obtained using a polystyrene-hydrogenated polybutadiene copolymer as an elastomer is comparable to a laminated sheet (Example 1) obtained using a styrene isoprene block copolymer It was found to show the loss factor and modulus of elasticity of That is, it was found that a polystyrene-hydrogenated polybutadiene copolymer can also be preferably used as an elastomer.
  • the laminated sheet of the present invention has sufficient rigidity and impact strength to have a polycarbonate layer, and also has a high loss coefficient and is excellent in the damping effect, so for example, a speaker, a television, a radio cassette player, a headphone, an audio component Alternatively, it can be suitably used as a material for an acoustic device such as a microphone, an electric product, a product such as a vehicle, a building, an industrial device or a part thereof, or a damping material for a housing.
  • damping layer 2 polycarbonate layer 3 polycarbonate layer 4 damping layer 5 polycarbonate layer

Landscapes

  • Laminated Bodies (AREA)

Abstract

The present invention relates to a multi-layer sheet obtained by laminating a vibration-damping layer and a polycarbonate layer, wherein (1) the vibration-damping layer is present on and/or close to the surface of the multi-layer sheet, and (2) the vibration-damping layer is a sheet-like compact of a polyester resin composition containing: a thermoplastic polyester resin (A) that is constituted from components including a dicarboxylic acid component and a diol component; a component (B) that is a plasticizer and/or an elastomer; and an inorganic filler (C). This multi-layer sheet exhibits sufficient rigidity and impact strength due to having a polycarbonate layer, and also exhibits an excellent vibration-damping effect due to a high loss coefficient. Therefore, this multi-layer sheet can be suitably used as a material for audio equipment, products such as appliances, vehicles, buildings, industrial equipment, or parts thereof, as well as a vibration-damping material for casings.

Description

積層シートLaminated sheet
 本発明は、制振材料用の積層シートに関する。 The present invention relates to a laminated sheet for a damping material.
 近年、各種機器の振動対策が要求されるようになっており、特に、自動車、家電製品、精密機器などの分野において必要とされている。制振性の高い材料の一つとしてとしては、金属板とゴム、アスファルト等の振動吸収素材を貼り合わせた材料(特許文献1)や、制振性を付与した樹脂シートが挙げられる。しかしながら、金属板を用いた材料は製品自体が重くなる問題があった。さらに、制振性を付与した樹脂シートの単体は剛性が低く、自立性がないものが多いという問題があった。 In recent years, vibration countermeasures for various devices have been required, and in particular, in the fields of automobiles, home appliances, precision instruments and the like. As one of the materials having high damping property, there is a material (patent document 1) in which a metal plate and a vibration absorbing material such as rubber, asphalt or the like are laminated (patent document 1), and a resin sheet to which damping property is given. However, the material using the metal plate has a problem that the product itself becomes heavy. Furthermore, there is a problem that the single sheet of the resin sheet to which the vibration damping property is imparted is low in rigidity and there are many in which there is no self-supporting property.
特開2016-186207号公報JP, 2016-186207, A
 本発明は、下記〔1〕に関する。
〔1〕制振層とポリカーボネート層とが積層されている積層シートであって、
 該制振層が積層シートの表面及び/又は表面近傍に存在し、
 該制振層が、ジカルボン酸成分とジオール成分とを含む成分から構成される熱可塑性ポリエステル樹脂(A)、可塑剤及び/又はエラストマーである成分(B)、並びに無機充填剤(C)を含有してなるポリエステル樹脂組成物のシート状成形体である、積層シート。
The present invention relates to the following [1].
[1] A laminated sheet in which a damping layer and a polycarbonate layer are laminated,
The damping layer is present on the surface and / or near the surface of the laminated sheet,
The damping layer contains a thermoplastic polyester resin (A) composed of a component containing a dicarboxylic acid component and a diol component, a component (B) which is a plasticizer and / or an elastomer, and an inorganic filler (C) The laminated sheet which is a sheet-like molded object of the polyester resin composition formed.
図1は、本発明の積層シートの一態様の断面構造を示す模式図である。FIG. 1: is a schematic diagram which shows the cross-section of the one aspect | mode of the lamination sheet of this invention. 図2は、本発明の積層シートの種々の態様の断面構造を示す模式図(A)及び(B)である。FIG. 2: is the model (A) and (B) which shows the cross-section of the various aspect of the lamination sheet of this invention. 図3は、比較対象としての積層シートの態様の断面構造を示す模式図(A)及び(B)である。FIG. 3: is the model (A) and (B) which shows the cross-section of the aspect of the lamination sheet as comparison object. 図4は、本発明の積層シートの一態様の断面構造を示す模式図(A)及び比較対象としての積層シートの一態様の断面構造を示す模式図(B)である。FIG. 4 is a schematic view (A) showing a cross-sectional structure of one aspect of the laminated sheet of the present invention and a schematic view (B) showing a cross-sectional structure of one aspect of the laminated sheet as a comparative object. 図5は、本発明の積層シートの種々の態様の断面構造を示す模式図である。FIG. 5 is a schematic view showing a cross-sectional structure of various aspects of the laminated sheet of the present invention.
発明の詳細な説明Detailed Description of the Invention
 本発明は、金属材料が不要な程度に十分な剛性と衝撃強度を有し、かつ優れた制振性を有する積層シートに関する。 The present invention relates to a laminated sheet having sufficient rigidity and impact strength to an extent that metal material is unnecessary, and having excellent vibration damping properties.
 本発明の積層シートは、金属材料が不要な程度に十分な剛性と衝撃強度を有し、かつ優れた制振性を発揮することができる。 The laminated sheet of the present invention has sufficient rigidity and impact strength to such an extent that a metal material is unnecessary, and can exhibit excellent vibration damping properties.
 以下、本発明の積層シートについて詳細に説明する。
1.積層シート
 本発明の積層シートは、制振層とポリカーボネート層とが積層されている積層シートであって、
 該制振層が積層シートの表面及び/又は表面近傍に存在し、
 該制振層が、ジカルボン酸成分とジオール成分とを含む成分から構成される熱可塑性ポリエステル樹脂(A)、可塑剤及び/又はエラストマーである成分(B)、並びに無機充填剤(C)を含有してなるポリエステル樹脂組成物のシート状成形体であることを特徴の一つとする。
Hereinafter, the laminated sheet of the present invention will be described in detail.
1. Laminated Sheet The laminated sheet of the present invention is a laminated sheet in which a damping layer and a polycarbonate layer are laminated,
The damping layer is present on the surface and / or near the surface of the laminated sheet,
The damping layer contains a thermoplastic polyester resin (A) composed of a component containing a dicarboxylic acid component and a diol component, a component (B) which is a plasticizer and / or an elastomer, and an inorganic filler (C) It is one of the features of the invention that it is a sheet-like molded product of the polyester resin composition.
 本発明においては、制振層の存在する位置に特徴を有する。積層シートに剛性や自立性を付与する観点から、単に、自立性を有する(ポリカーボネート製等の)基材となるシートに制振材を張り付ける2層構造や、基材となるシートで制振材を挟む3層構造としたものが考えられる。しかしながら、基材となるシートに単に制振材を張り付けた2層構造のシートでは、高い制振性は得られるものの、強度や耐熱性の点で十分ではない。一方で、基材となるシートで制振材を挟んだ3層構造のシートでは強度を保てるものの、制振性があまり向上しない。そこで本発明者らは、積層シート中の制振材(制振層)の位置について検討を進め、本発明を完成させた。 The present invention is characterized in the position where the damping layer is present. From the viewpoint of imparting rigidity and self-supporting property to the laminated sheet, vibration control is performed with a two-layer structure in which the damping material is simply attached to the sheet serving as a base (made of polycarbonate or the like) having self-supporting properties. It is conceivable to have a three-layer structure sandwiching the material. However, although a sheet having a two-layer structure in which a damping material is simply attached to a sheet serving as a base material can provide high damping properties, it is not sufficient in terms of strength and heat resistance. On the other hand, although a sheet having a three-layer structure in which a damping material is sandwiched between sheets serving as a base material can maintain strength, the damping property is not significantly improved. Then, the present inventors examined the position of the damping material (damping layer) in a lamination sheet, and completed the present invention.
 前記制振層の存在する位置にこのような特徴を有することにより、積層シートの自立性を確保しつつ積層シートの十分な剛性と衝撃強度と制振性を向上させることができる。かかる本発明の積層シートが優れた制振効果を発揮するメカニズムは、以下のように推定される。積層シートの表面かあるいは表面近傍、即ち、積層シートの中心よりも表面側に制振層を配置することで、曲げなどの歪みがシートに加わった時、その歪みエネルギーが表面側の制振層に偏ることとなり、その結果、エネルギー損失が起こり、制振性を発現すると考えられる。さらに表面側の制振層の厚みを大きくすることによって、表面側の制振層の歪みエネルギーがさらに増大すると予想され、それによりさらに制振性が向上することが考えられる。さらに表面側の制振層の厚みを大きくすることによって、表面側の制振層の歪みエネルギーがさらに増大すると予想され、それによりさらに制振性が向上することが考えられる。さらには、制振層が積層シートの表面近傍に存在する態様、即ち制振層の上面及び下面の両方にポリカーボネート層が積層する場合、優れた制振効果以外にも、基材となるシートの耐薬品性の向上、ブリードおよびアウトガスの抑制といった効果も期待できる。 By having such a feature at the position where the damping layer is present, sufficient rigidity, impact strength and damping property of the laminated sheet can be improved while securing the self-supporting property of the laminated sheet. The mechanism by which the laminated sheet of the present invention exerts an excellent damping effect is presumed as follows. By arranging the damping layer on the surface side of the laminated sheet or near the surface, ie, on the surface side of the center of the laminated sheet, when distortion such as bending is applied to the sheet, the strain energy is applied to the damping layer on the surface side As a result, energy loss occurs, and it is considered that damping property is developed. Further, by increasing the thickness of the damping layer on the surface side, it is expected that the strain energy of the damping layer on the surface side will further increase, thereby further improving the damping property. Further, by increasing the thickness of the damping layer on the surface side, it is expected that the strain energy of the damping layer on the surface side will further increase, thereby further improving the damping property. Furthermore, in the embodiment in which the damping layer is present in the vicinity of the surface of the laminated sheet, that is, when the polycarbonate layer is laminated on both the upper surface and the lower surface of the damping layer, It can also be expected to improve chemical resistance and suppress bleed and outgassing.
 本発明の積層シートは剛性と衝撃強度及び優れた制振性を有するので、音響機器筐体用材料としてスピーカー、テレビ、ラジカセ、ヘッドフォン、オーディオコンポ、マイク等に;さらには、電動モーター付電気製品の部品及び筐体用材料として電動ドリル、電動ドライバー等の電動工具類、コンピューター、プロジェクター、サーバー、POSシステム等の冷却ファン付電気製品、洗濯機、衣類乾燥機、エアコン室内機、ミシン、食器洗浄機、ファンヒーター、複合機、プリンター、スキャナー、ハードディスクドライブ、ビデオカメラ等に;加振源付電気製品の部品及び筐体用材料として電動歯ブラシ、電動シェイバー、マッサージ機等に;原動機付電気製品の部品及び筐体用材料として発電機、ガス発電機等に;コンプレッサー付電気製品の部品及び筐体用材料として冷蔵庫、自動販売機、エアコン室外機、除湿機、家庭用発電機に;自動車部品用材料としてダッシュボード、インストルメントパネル、フロア、ドア、ルーフ等の内装材用材料、オイルパン、フロントカバー、ロッカーカバー等のエンジン回り用材料等に;鉄道部品用材料として、床、壁、側板、天井、ドア、椅子、テーブル等の内装材料、モーター周りの筐体や部品、各種保護カバー等に;飛行機部品用材料として、床、壁、側板、天井、椅子、テーブル等の内装材料、エンジン周りの筐体や部品等に;船舶部品用材料としてエンジンルーム用の筐体や壁材、計測ルーム用の筐体や壁材に;建築用材料として壁、天井、床、間仕切りボード、防音壁、シャッター、カーテンレール、配管ダクト、階段、ドア等に;産業用機器部品用材料として、シューター、エレベーター、エスカレーター、コンベアー、トラクター、ブルドーザー、草刈り機等に;産業用輸送部材として、灯油缶、ドラム缶、複合容器、タンクローリー、輸送用ケース等に使用できる。 Since the laminated sheet of the present invention has rigidity, impact strength and excellent vibration damping properties, it can be used as a speaker, television, radio cassette player, headphone, audio component, microphone, etc. as a material for an audio equipment case; Parts and housing materials as electric drills, electric tools such as electric screwdrivers, computers, projectors, servers, electric products with cooling fans such as POS systems, washing machines, clothes dryers, air conditioner indoor machines, sewing machines, dish washing Machines, fan heaters, complex machines, printers, scanners, hard disk drives, video cameras, etc .; parts of electric products with vibration source and housings as electric toothbrushes, electric shavers, massage machines etc .; Parts and housing materials for generators, gas generators, etc .; Parts and housing materials for refrigerators, vending machines, outdoor units of air conditioners, dehumidifiers, household generators; materials for automobile parts such as dashboards, instrument panels, floors, doors, roofs, etc. interior materials Materials for engines, such as oil pans, front covers, lockers, etc .; interior materials for floors, walls, side plates, ceilings, doors, chairs, tables, etc., as housing materials for railway parts, casings and parts around motors, Various protective covers, etc .; Materials for airplane parts, such as interior materials such as floors, walls, side plates, ceilings, chairs, and tables, casings and parts around engines, etc. Cases for engine room as materials for marine parts Wall materials, enclosures and wall materials for measurement rooms; Walls, ceilings, floors, partition boards, soundproof walls, shutters, curtain rails, piping ducts, stairs, doors, etc. as building materials ; As industrial equipment parts for material, shooter, elevators, escalators, conveyor, tractors, bulldozers, the mower or the like; as an industrial transporting member, kerosene cans, drums, can be used in the composite container, tank trucks, shipping cases and the like.
<層構成>
 本発明の積層シートの層構成について説明する。
 本発明の積層シート全体の厚み(即ち、総厚み)としては、使用用途で要求される強度および剛性の観点から、好ましくは0.3mm以上、より好ましくは1.0mm以上、更に好ましくは1.5mm以上、更に好ましくは2.0mm以上、更に好ましくは2.5mm以上であり、使用用途で要求される質量、強度および剛性の観点から、好ましくは30mm以下、より好ましくは10mm以下、更に好ましくは5.0mm以下である。
<Layer composition>
The layer configuration of the laminated sheet of the present invention will be described.
The thickness (ie, total thickness) of the entire laminated sheet of the present invention is preferably 0.3 mm or more, more preferably 1.0 mm or more, still more preferably 1. 5 mm or more, more preferably 2.0 mm or more, still more preferably 2.5 mm or more, preferably 30 mm or less, more preferably 10 mm or less, still more preferably from the viewpoint of mass, strength and rigidity required for use It is 5.0 mm or less.
〔ポリカーボネート層〕
 ポリカーボネート層は、後述のポリカーボネート樹脂組成物から成形されるシート状成形体である。ポリカーボネート層を使用することにより、本発明の積層シートに自立性、耐薬品性、耐揮発性及び衝撃性を付与することができる。
[Polycarbonate layer]
A polycarbonate layer is a sheet-like molded object shape | molded from the below-mentioned polycarbonate resin composition. The use of the polycarbonate layer can impart self-supporting property, chemical resistance, volatility resistance and impact resistance to the laminated sheet of the present invention.
 本明細書において、ポリカーボネート層は、単一層だけでなく、複数の層から構成される層(例えば、複数のポリカーボネート層を熱圧着プレスして形成される層)であっても、一層のポリカーボネート層として扱う。制振層についても同様である。 In the present specification, the polycarbonate layer is not limited to a single layer, but may be a layer composed of a plurality of layers (for example, a layer formed by thermocompression pressing of a plurality of polycarbonate layers) or a single polycarbonate layer. Treat as. The same applies to the damping layer.
 ポリカーボネート層の厚みとしては、使用する薄物シートを製造する成形方法の特性の観点から、好ましくは0.05mm以上、より好ましくは0.10mm以上、更に好ましくは0.15mm以上であり、使用する厚物プレートを製造する成形方法の特性の観点から、好ましくは10mm以下、より好ましくは5.0mm以下、更に好ましくは3.5mm以下である。ポリカーボネート層が複数ある場合、例えば、図2Bに示される積層シートのようにポリカーボネート層2及びポリカーボネート層3の2層が存在する場合、ここで言う厚みとは各ポリカーボネート層のそれぞれの厚みである。 The thickness of the polycarbonate layer is preferably 0.05 mm or more, more preferably 0.10 mm or more, still more preferably 0.15 mm or more from the viewpoint of the characteristics of the molding method for producing the thin sheet to be used. From the viewpoint of the characteristics of the molding method for producing the object plate, it is preferably 10 mm or less, more preferably 5.0 mm or less, and still more preferably 3.5 mm or less. When there are a plurality of polycarbonate layers, for example, when two layers of polycarbonate layer 2 and polycarbonate layer 3 are present as in the laminated sheet shown in FIG. 2B, the thickness referred to here is the thickness of each polycarbonate layer.
 ポリカーボネート層が複数ある場合、制振層がポリカーボネート層で挟まれた態様、即ち、制振層が積層シートの表面近傍に存在する態様となる(例えば、図2B、図4A、図5A又は図5Cに示される積層シート)。この場合、高い強度と高い制振性を両立させる観点から、ポリカーボネート層の少なくとも一方が制振層と同じか、またはより薄い方が望ましい。具体的には、かかる態様の場合、ポリカーボネート層の少なくとも一方の厚みは制振層の厚みの、好ましくは1.0倍以下、より好ましくは0.5倍以下、更に好ましくは0.25倍以下であり、下限値としては、好ましくは0.01倍以上である。 When there are a plurality of polycarbonate layers, an aspect in which the damping layer is sandwiched by the polycarbonate layers, that is, an aspect in which the damping layer is present in the vicinity of the surface of the laminated sheet (for example, FIG. 2B, FIG. 4A, FIG. 5A or FIG. Shown laminated sheet). In this case, it is desirable that at least one of the polycarbonate layers be the same as or thinner than the damping layer from the viewpoint of achieving both high strength and high damping properties. Specifically, in the case of such an embodiment, the thickness of at least one of the polycarbonate layers is preferably 1.0 times or less, more preferably 0.5 times or less, still more preferably 0.25 times or less of the thickness of the damping layer The lower limit is preferably 0.01 times or more.
〔制振層〕
 制振層は、後述の成分(A)、成分(B)及び成分(C)を含有してなるポリエステル樹脂組成物のシート状成形体である。積層シートにおける制振層の数は1層又は複数層であり得る。積層シートに複数の制振層が存在する場合、1層の制振層が積層シートの表面に存在し、かつ残りの制振層が表面近傍に存在する態様や、2層の制振層が表面に存在する態様(例えば、図5Bに示される積層シート)、複数の制振層のいずれもが表面近傍に存在する態様(例えば、図5A又は図5Cに示される積層シート)が想定され、これらの態様も本発明の積層シートに包含される。
[Damping layer]
The damping layer is a sheet-like molded product of a polyester resin composition comprising the component (A), the component (B) and the component (C) described later. The number of damping layers in the laminated sheet may be one or more. When a plurality of damping layers are present in the laminated sheet, one damping layer is present on the surface of the laminated sheet and the remaining damping layers are present in the vicinity of the surface, or two damping layers are present. The aspect (for example, the lamination sheet shown in FIG. 5B) which exists in the surface, and the aspect (for example, the lamination sheet shown in FIG. 5A or FIG. 5C) in which all of a plurality of damping layers exist near the surface are assumed. These aspects are also included in the laminated sheet of the present invention.
 制振層の厚みとしては、使用する薄物シートを製造する成形方法の特性の観点から、好ましくは0.05mm以上、より好ましくは0.2mm以上、更に好ましくは0.4mm以上であり、使用する厚物プレートを製造する成形方法の特性の観点から、好ましくは10mm以下、より好ましくは5.0mm以下、更に好ましくは1.0mm以下である。積層シートに制振層が複数ある場合、ここで言う厚みとは各制振層のそれぞれの厚みである。 The thickness of the damping layer is preferably 0.05 mm or more, more preferably 0.2 mm or more, still more preferably 0.4 mm or more, from the viewpoint of the characteristics of the molding method for producing the thin sheet to be used. From the viewpoint of the characteristics of the molding method for producing a thick plate, it is preferably 10 mm or less, more preferably 5.0 mm or less, and still more preferably 1.0 mm or less. When a lamination sheet has multiple damping layers, the thickness said here is each thickness of each damping layer.
 制振層の上面及び下面の一方の面、又は両面にポリカーボネート層が積層される。
 制振層の一方の面にポリカーボネート層が積層する場合、かかる積層シートは制振層が積層シートの表面に露出した構造、即ち、「制振層が積層シートの表面に存在する」態様である。本態様の断面構造は模式的に図2Aで示される。図2Aに示される積層シートは、制振層1の上面にポリカーボネート層2が積層されている。
A polycarbonate layer is laminated on one or both of the upper and lower surfaces of the damping layer.
When a polycarbonate layer is laminated on one side of the damping layer, the laminated sheet has a structure in which the damping layer is exposed on the surface of the laminated sheet, that is, an embodiment in which the damping layer is present on the surface of the laminated sheet. . The cross-sectional structure of this embodiment is schematically shown in FIG. 2A. In the laminated sheet shown in FIG. 2A, the polycarbonate layer 2 is laminated on the upper surface of the damping layer 1.
 制振層の上面及び下面の両方にポリカーボネート層が積層する場合、かかる積層シートはポリカーボネート層が積層シートの表面に露出した構造、即ち、「制振層が積層シートの表面近傍に存在する」態様である。本態様の断面構造は模式的に図2Bで示される。図2Bに示される積層シートは、制振層1の上面にポリカーボネート層2が、制振層1の下面にポリカーボネート層3が積層されている。このような構造の場合、さらなる剛性と衝撃強度の向上、耐薬品性の向上、ブリード及びアウトガスの抑制といった効果も期待できる。 When a polycarbonate layer is laminated on both the upper surface and the lower surface of the damping layer, such a laminate sheet has a structure in which the polycarbonate layer is exposed on the surface of the laminate sheet, that is, "a damping layer exists near the surface of the laminate sheet" It is. The cross-sectional structure of this embodiment is schematically shown in FIG. 2B. In the laminated sheet shown in FIG. 2B, the polycarbonate layer 2 is laminated on the upper surface of the damping layer 1 and the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1. In the case of such a structure, effects such as further improvement of rigidity and impact strength, improvement of chemical resistance, suppression of bleeding and outgassing can also be expected.
 本明細書において、制振層が積層シートの表面近傍に存在するとは、制振層が積層シートの表面には存在せず、かつ積層シートの断面図(図1)で示した場合に、制振層の全体が断面の中央線(図1の一点破線)よりも表面側(図1のS又はS’)に存在することをいう。制振性向上の観点から、制振層は、積層シートの表面から厚み方向の好ましくは40%以内、より好ましくは33%以内、更に好ましくは30%以内、更に好ましくは25%以内、更に好ましくは20%以内、更に好ましくは15%以内、更に好ましくは10%以内に存在する。一方、積層シートが高い耐薬品性、高い弾性率又は高い強度を維持する観点から、制振層は、積層シートの表面から厚み方向の好ましくは0.05%以上、より好ましくは0.25%以上、更に好ましくは0.5%以上、より更に好ましくは1.0%以上、より更に好ましくは5.0%以上、より更に好ましくは10%以上に存在する。 In the present specification, that the damping layer is present in the vicinity of the surface of the laminated sheet means that the damping layer is not present on the surface of the laminated sheet and the damping layer is shown in the sectional view of the laminated sheet (FIG. 1). It means that the whole of the vibration layer exists on the surface side (S or S ′ in FIG. 1) than the center line (dotted line in FIG. 1) of the cross section. From the viewpoint of improving the damping property, the damping layer is preferably within 40%, more preferably within 33%, still more preferably within 30%, still more preferably within 25% of the thickness direction from the surface of the laminated sheet. Is preferably within 20%, more preferably within 15%, and even more preferably within 10%. On the other hand, from the viewpoint of maintaining high chemical resistance, high elastic modulus or high strength of the laminated sheet, the damping layer is preferably 0.05% or more, more preferably 0.25% in the thickness direction from the surface of the laminated sheet. The content is more preferably 0.5% or more, still more preferably 1.0% or more, still more preferably 5.0% or more, and still more preferably 10% or more.
 ここで、制振層が積層シートの表面から厚み方向の40%以内に存在することを、図1を参照しつつ具体的に説明する。図1は、制振層が1層でありポリカーボネート層が2層の場合の本発明の積層シートの断面図を模式的に示したものであり、制振層1に近い側の積層シートの表面、即ち、上部表面をSとし、もう一方の表面をS’とする。表面から厚み方向とは、図1の右側の矢印の方向で示されるSからS’への方向である。積層シート全体の厚みを百分率、即ちSを0%とし、S’を100%で示した場合、制振層1の厚み方向の相対的な位置を、積層シートの厚みの百分率で示すことができる。例えば、図1で示される積層シートにおいて、ポリカーボネート層2、制振層1及びポリカーボネート層3のそれぞれ厚みを2mm、2mm及び16mmとすると、制振層1の厚み方向の位置を10~20%と示すことができる。このように、積層シートの表面から厚み方向の40%以内に存在するとは、積層シート全体の厚みを百分率で示した場合、制振層の全体が厚み方向の40%以内に存在することを言う。また、このとき、「位置割合が40%以内である」、あるいは、「積層シートの上部表面からの制振層の相対的位置(%)が40%以内である」ともいう。本発明の好ましい態様の一つとして、制振層の少なくとも1層が10~40%の位置割合にある積層シートが挙げられる。 Here, the fact that the damping layer is present within 40% of the thickness direction from the surface of the laminated sheet will be specifically described with reference to FIG. FIG. 1 schematically shows a cross-sectional view of the laminated sheet of the present invention when the damping layer is one layer and the polycarbonate layer is two layers, and the surface of the laminated sheet on the side closer to the damping layer 1 That is, let S be the top surface and S 'be the other surface. The thickness direction from the surface is the direction from S to S 'indicated by the direction of the arrow on the right side of FIG. When the thickness of the entire laminated sheet is a percentage, that is, S is 0% and S 'is 100%, the relative position in the thickness direction of the damping layer 1 can be indicated by the percentage of the thickness of the laminated sheet . For example, in the laminated sheet shown in FIG. 1, when the thicknesses of the polycarbonate layer 2, the damping layer 1 and the polycarbonate layer 3 are respectively 2 mm, 2 mm and 16 mm, the position in the thickness direction of the damping layer 1 is 10 to 20%. Can be shown. Thus, “within 40% of the thickness direction from the surface of the laminated sheet” means that the whole damping layer is present within 40% of the thickness direction when the thickness of the entire laminated sheet is indicated by percentage. . At this time, it is also said that "the position ratio is within 40%" or "the relative position (%) of the damping layer from the upper surface of the laminated sheet is within 40%". One of the preferred embodiments of the present invention is a laminated sheet in which at least one layer of the damping layer is in a proportion of 10 to 40%.
 積層シート中の制振層の割合は、制振性向上の観点から、好ましくは体積分率で1%以上、より好ましくは5%以上、更に好ましくは10%以上であり、高い弾性率又は強度を維持する観点から、好ましくは体積分率で70%以下、より好ましくは50%以下、更に好ましくは34%以下、更に好ましくは25%以下である。積層シート中に制振層が複数存在する場合、ここでいう体積分率は各制振層の合計である。 The proportion of the damping layer in the laminated sheet is preferably 1% or more, more preferably 5% or more, and still more preferably 10% or more in terms of volume fraction, from the viewpoint of improving damping performance, and high elastic modulus or strength From the viewpoint of maintaining the volume fraction, it is preferably 70% or less, more preferably 50% or less, still more preferably 34% or less, and still more preferably 25% or less. When a plurality of damping layers exist in the laminated sheet, the volume fraction referred to here is the sum of the respective damping layers.
 本発明の積層シートは、積層シートの剛性や衝撃強度と制振性とを両立できるものである。積層シートをどのような場面に適用するか、即ち、剛性や衝撃強度を重視する場面か、あるいは積層シートの制振性を重視する場面かによって、ポリカーボネート層の総厚みと制振層の総厚みとの好ましい関係は変化し得る。ここで、ポリカーボネート層の総厚みとは、積層シートに存在する全てのポリカーボネート層の厚みの合計であり、制振層の総厚みとは、積層シートに存在する全ての制振層の厚みの合計である。積層シートの剛性や衝撃強度を重視する態様では、ポリカーボネート層の総厚みは制振層の総厚みと同じかそれよりも厚い方が好ましく、具体的には、制振層の総厚みを100%とした場合、ポリカーボネート層の総厚みは、好ましくは100%以上、より好ましくは200%以上であり、さらにより好ましくは300%以上であり、上限値としては好ましくは2000%以下であり、より好ましくは1000%以下である。一方、積層シートの制振性能を重視する態様では、ポリカーボネート層の総厚みは制振層の総厚みと同じかそれよりも薄い方が好ましく、具体的には、制振層の総厚みを100%とした場合、ポリカーボネート層の総厚みは、好ましくは100%以下、より好ましくは67%以下であり、下限値としては好ましくは33%以上である。 The laminated sheet of the present invention is compatible with the rigidity and impact strength of the laminated sheet and the damping property. The total thickness of the polycarbonate layer and the total thickness of the damping layer depend on the situation where the laminated sheet is applied, that is, the scene where importance is placed on rigidity and impact strength, or where the damping property of the laminated sheet is emphasized. The preferred relationship with can vary. Here, the total thickness of the polycarbonate layer is the sum of the thicknesses of all the polycarbonate layers present in the laminated sheet, and the total thickness of the damping layer is the total of the thicknesses of all the damping layers present in the laminated sheet It is. In an embodiment in which the rigidity and impact strength of the laminated sheet are emphasized, the total thickness of the polycarbonate layer is preferably equal to or greater than the total thickness of the damping layer. Specifically, the total thickness of the damping layer is 100% In the above case, the total thickness of the polycarbonate layer is preferably 100% or more, more preferably 200% or more, still more preferably 300% or more, and the upper limit is preferably 2000% or less, more preferably Is less than 1000%. On the other hand, in the embodiment in which the damping performance of the laminated sheet is emphasized, the total thickness of the polycarbonate layer is preferably equal to or less than the total thickness of the damping layer. Specifically, the total thickness of the damping layer is 100 When it is%, the total thickness of the polycarbonate layer is preferably 100% or less, more preferably 67% or less, and the lower limit is preferably 33% or more.
 本発明の積層シートを構成する制振層、即ちポリエステル樹脂組成物のシート状成形体におけるエラストマーの表面存在量は、ポリカーボネート樹脂組成物シート(本明細書において「PCシート」とも称する。)との接着性の観点から、好ましくは0.5%以上、より好ましくは1%以上、更に好ましくは5%以上であり、一方、弾性率を維持する観点から、好ましくは50%以下、より好ましくは40%以下、更に好ましくは30%以下である。エラストマーの表面存在量は、ポリエステル樹脂組成物のシート状成形体を溶剤に浸漬してエラストマーを除去し、処理後の成形体をSEMで観察することで求める。具体的には、処理後の成形体の空穴部分をエラストマーが存在していた領域として、一定面積あたりの空穴部分の面積%でエラストマーの表面存在量を示す。 The damping layer constituting the laminated sheet of the present invention, that is, the surface presence amount of the elastomer in the sheet-like molded product of the polyester resin composition is the polycarbonate resin composition sheet (also referred to as "PC sheet" in this specification). From the viewpoint of adhesion, it is preferably 0.5% or more, more preferably 1% or more, still more preferably 5% or more, and from the viewpoint of maintaining the elastic modulus, preferably 50% or less, more preferably 40 % Or less, more preferably 30% or less. The surface existing amount of the elastomer is determined by immersing the sheet-like molded product of the polyester resin composition in a solvent to remove the elastomer, and observing the molded product after treatment with an SEM. Specifically, the surface abundance of the elastomer is indicated by the area% of the void portion per fixed area, where the void portion of the molded article after the treatment is a region where the elastomer was present.
 本発明の積層シートを構成する制振層におけるエラストマーの粒径は、PCシートとの接着性の観点から、好ましくは0.01μm以上、より好ましくは0.05μm以上、更に好ましくは0.1μm以上であり、一方、弾性率を維持する観点で、好ましくは100μm以下、より好ましくは70μm以下、さらに好ましくは50μm以下である。エラストマーの粒径は、前記の「エラストマーの表面存在量」の求め方と同じ方法で得られる、エラストマーの除去処理後の成形体をSEMで観察することで求める。具体的には、成形体の空穴部分をエラストマーが存在していた領域として、個々の空穴の直径を測定する。合計100個の空穴の直径を測定し、その平均値をエラストマーの粒径とする。 The particle diameter of the elastomer in the damping layer constituting the laminated sheet of the present invention is preferably 0.01 μm or more, more preferably 0.05 μm or more, still more preferably 0.1 μm or more from the viewpoint of adhesion to the PC sheet On the other hand, in view of maintaining the elastic modulus, it is preferably 100 μm or less, more preferably 70 μm or less, and still more preferably 50 μm or less. The particle size of the elastomer is determined by observing the molded body after removal of the elastomer, which is obtained by the same method as the method for determining the "surface amount of the elastomer" described above, by SEM. Specifically, the diameter of each void is measured, with the void portion of the molded body as the area where the elastomer was present. The diameter of a total of 100 holes is measured, and the average value is taken as the particle size of the elastomer.
 本発明の積層シートを構成する制振層は、ポリカーボネートとの接着性の観点から、表面積が大きい方が好ましい。ここで表面積が大きいとは、「表面積/任意に指定した領域の面積」が大きいことを言う。ポリカーボネートとの接着性の観点から、「表面積/任意に指定した領域の面積」は好ましくは1以上、より好ましくは2以上、更に好ましくは5以上、更に好ましくは8以上であり、一方、シート形状の安定性の観点から、好ましくは100以下、より好ましくは50以下である。「表面積/任意に指定した領域の面積」は、共焦点レーザー顕微鏡で得られた三次元画像を利用して測定することができる。 The damping layer constituting the laminated sheet of the present invention preferably has a large surface area from the viewpoint of adhesion to polycarbonate. Here, the large surface area means that the "surface area / area of arbitrarily designated area" is large. From the viewpoint of adhesion to polycarbonate, the “surface area / area of arbitrarily designated area” is preferably 1 or more, more preferably 2 or more, still more preferably 5 or more, still more preferably 8 or more, while the sheet shape Preferably, it is 100 or less, more preferably 50 or less from the viewpoint of the stability of The “surface area / area of arbitrarily designated area” can be measured using a three-dimensional image obtained by a confocal laser microscope.
<樹脂成分>
 次に、各層を構成する樹脂成分について具体的に説明する。
〔ポリカーボネート〕
 本発明において、ポリカーボネート層に使用されるポリカーボネートは、分子の主鎖中に炭酸エステル結合を含む構造、即ち、-(O-R-OCO)-(ここで、Rは脂肪族基、芳香族基又は脂肪族基と芳香族基の両者を含むもの、さらに直鎖構造又は分岐構造を持つもの)を単位構造として有するものであれば特に限定されない。このようなポリカーボネートを含有するポリカーボネート樹脂組成物のシート状成形物を使用することで、形状を保持するための金属板が不要な自立性を有する積層シートを得ることができる。
<Resin component>
Next, resin components constituting each layer will be specifically described.
[Polycarbonate]
In the present invention, the polycarbonate used for the polycarbonate layer has a structure containing a carbonic acid ester bond in the main chain of the molecule, ie,-(O-R-OCO)-(where R is an aliphatic group, an aromatic group) There is no particular limitation as long as one having both an aliphatic group and an aromatic group, and one having a linear structure or a branched structure as a unit structure. By using the sheet-like molding of the polycarbonate resin composition containing such a polycarbonate, the lamination sheet which has the self-supporting property in which the metal plate for holding a shape is unnecessary can be obtained.
 制振層との接着性の観点から、特定のモノマーと共重合したポリカーボネートがより好ましい。 From the viewpoint of adhesion to the damping layer, polycarbonate copolymerized with a specific monomer is more preferable.
 ポリカーボネート層に使用されるポリカーボネートのメルトフローレート(MFR)としては、押出成形および押出機の特性の観点から、300℃、1.2kgfの条件で好ましくは0.1g/10分以上、より好ましくは0.5g/10分以上、更に好ましくは1.0g/10分以上であり、熱プレス成形性の観点の観点から、好ましくは20g/10分以下、より好ましくは15g/10分以下、更に好ましくは8.0g/10分以下である。ポリカーボネートのMFRの値は、具体的には後述の実施例に記載の方法により測定される。 The melt flow rate (MFR) of the polycarbonate used in the polycarbonate layer is preferably 0.1 g / 10 min or more, more preferably 0.1 g / 10 min or more, under the conditions of 300 ° C. and 1.2 kgf, from the viewpoint of extrusion molding and extruder characteristics. 0.5 g / 10 min or more, more preferably 1.0 g / 10 min or more, preferably 20 g / 10 min or less, more preferably 15 g / 10 min or less, from the viewpoint of heat press formability Is less than 8.0 g / 10 min. Specifically, the MFR value of polycarbonate is measured by the method described in the examples below.
 本発明におけるポリカーボネート樹脂組成物には、一般的な、紫外線吸収剤、熱安定剤、着色剤、離型剤、滑剤、帯電防止剤等の各種添加剤が含まれていてもよい。 The polycarbonate resin composition in the present invention may contain various additives such as a general ultraviolet light absorber, a heat stabilizer, a colorant, a release agent, a lubricant, an antistatic agent and the like.
 ポリカーボネート層が複数ある場合、それらを構成する樹脂組成物の組成は同一でも異なっていてもよい。例えば、図2Bに示されるポリカーボネート層2を構成する樹脂組成物の組成及びポリカーボネート層3を構成する樹脂組成物の組成はそれぞれ同一であってもよく、異なっていてもよい。 When there are a plurality of polycarbonate layers, the compositions of the resin compositions constituting them may be the same or different. For example, the composition of the resin composition constituting the polycarbonate layer 2 and the composition of the resin composition constituting the polycarbonate layer 3 shown in FIG. 2B may be identical to or different from each other.
〔ポリエステル樹脂組成物〕
 本発明における制振層に用いられるポリエステル樹脂組成物は、ジカルボン酸成分とジオール成分とから構成される熱可塑性ポリエステル樹脂(A)、可塑剤/又はエラストマーである成分(B)、並びに無機充填剤(C)を含有する。本発明において、制振層が複数ある場合、各制振層を構成するポリエステル樹脂組成物の組成はそれぞれ同一であってもよく、異なっていてもよい。
[Polyester resin composition]
The polyester resin composition used for the damping layer in the present invention comprises a thermoplastic polyester resin (A) composed of a dicarboxylic acid component and a diol component, a component (B) which is a plasticizer / or elastomer, and an inorganic filler (C) is contained. In the present invention, when there are a plurality of damping layers, the composition of the polyester resin composition that constitutes each damping layer may be the same or different.
 一般的に樹脂に無機充填剤を添加すると、樹脂組成物全体の弾性率が向上する一方で、損失係数が低下する。この損失係数の低下は、充填剤の添加により、樹脂組成物中の樹脂の割合が減少するため、樹脂部分でのエネルギー損失量が減少することによるものである。そこで、本発明では、かかる系に、可塑剤及び/又はエラストマーを添加することで、柔軟性を付与しエネルギー損失を起こりやすくすることで、損失係数を向上させ、樹脂組成物の弾性率を高めながら、損失係数の低下を抑制した。さらに、本発明に用いられるポリエステル樹脂組成物においては、樹脂あるいは可塑剤及び/又はエラストマーと無機充填剤の間の界面における摩擦が発生してエネルギー損失が起こり、よりいっそうの損失係数の低下が抑制されると推定される。 Generally, when an inorganic filler is added to the resin, the elastic modulus of the entire resin composition is improved while the loss factor is decreased. The reduction of the loss factor is due to the reduction of the amount of energy loss in the resin portion because the proportion of the resin in the resin composition is reduced by the addition of the filler. Therefore, in the present invention, by adding a plasticizer and / or an elastomer to such a system, by imparting flexibility and facilitating energy loss, the loss coefficient is improved and the elastic modulus of the resin composition is increased. While reducing the loss factor. Furthermore, in the polyester resin composition used in the present invention, friction occurs at the interface between the resin or the plasticizer and / or the elastomer and the inorganic filler to cause energy loss, which further suppresses the loss factor reduction. It is estimated that
 本発明における熱可塑性ポリエステル樹脂(A)の質量平均分子量の上限は、好ましくは30万である。用いる熱可塑性ポリエステル樹脂(A)の種類によって上限値が変化することはないが、損失係数を向上させる観点から、下限値としては、例えば、熱可塑性ポリエステル樹脂(A)としてポリブチレンテレフタレート樹脂を用いる場合、7万以上が好ましく、8万以上がより好ましく、10万以上が更に好ましい。熱可塑性ポリエステル樹脂(A)としてポリトリメチレンテレフタレート樹脂を用いる場合、6万以上が好ましく、7万以上がより好ましい。熱可塑性ポリエステル樹脂(A)としてポリエチレンテレフタレート樹脂を用いる場合、3万以上が好ましく、4万以上がより好ましく、5万以上が更に好ましい。なお、本発明におけるポリエステル樹脂組成物は後述する絶対結晶化度を有することから、下限は絶対結晶化度(Xc)の値によって異なり、絶対結晶化度が5%以上37%以下であれば、用いる熱可塑性ポリエステル樹脂(A)の質量平均分子量が5万未満でも性能を発現させることができ、例えば、2万以上が挙げられる。絶対結晶化度が37%を超える場合は、用いる熱可塑性ポリエステル樹脂(A)の質量平均分子量は5万以上であることが好ましい。熱可塑性ポリエステル樹脂(A)の質量平均分子量は、後述の実施例に記載の方法に従って測定することができる。 The upper limit of the mass average molecular weight of the thermoplastic polyester resin (A) in the present invention is preferably 300,000. The upper limit does not change depending on the type of thermoplastic polyester resin (A) used, but from the viewpoint of improving the loss coefficient, as the lower limit, for example, polybutylene terephthalate resin is used as the thermoplastic polyester resin (A) In the case, 70,000 or more is preferable, 80,000 or more is more preferable, and 100,000 or more is still more preferable. When using polytrimethylene terephthalate resin as a thermoplastic polyester resin (A), 60,000 or more is preferable and 70,000 or more is more preferable. When using a polyethylene terephthalate resin as a thermoplastic polyester resin (A), 30,000 or more is preferable, 40,000 or more is more preferable, 50,000 or more is still more preferable. In addition, since the polyester resin composition in this invention has the absolute crystallinity degree mentioned later, a minimum changes with values of absolute crystallinity degree (Xc), and if absolute crystallinity degree is 5% or more and 37% or less, Even if the mass average molecular weight of the thermoplastic polyester resin (A) used is less than 50,000, performance can be exhibited, and, for example, 20,000 or more can be mentioned. When the absolute crystallinity degree exceeds 37%, the mass average molecular weight of the thermoplastic polyester resin (A) to be used is preferably 50,000 or more. The mass average molecular weight of the thermoplastic polyester resin (A) can be measured according to the method described in the examples described later.
 本発明におけるポリエステル樹脂組成物の絶対結晶化度(Xc)の下限は、好ましくは5%であればよいが、損失係数を向上させる観点から用いる熱可塑性ポリエステル樹脂(A)の種類によって次のような範囲が示される。例えば、熱可塑性ポリエステル樹脂(A)としてポリブチレンテレフタレート樹脂を用いる場合、10%以上が好ましく、15%以上がより好ましく、20%以上が更に好ましく、25%以上が更に好ましく、35%以下が好ましく、30%以下がより好ましく、28%以下が更に好ましい。熱可塑性ポリエステル樹脂(A)としてポリトリメチレンテレフタレート樹脂を用いる場合、10%以上が好ましく、15%以上がより好ましく、20%以上が更に好ましく、35%以下が好ましい。熱可塑性ポリエステル樹脂(A)としてポリエチレンテレフタレート樹脂を用いる場合、10%以上が好ましく、15%以上がより好ましく、20%以上が更に好ましく、25%以上が更に好ましく、35%以下が好ましい。なお、本発明における熱可塑性ポリエステル樹脂(A)は前述した質量平均分子量を有することから、絶対結晶化度の値は該樹脂(A)の質量平均分子量の値によって異なり、具体的には、該樹脂(A)の質量平均分子量が5万以上15万以下であれば、37%を超える場合でも性能を発現させることができ、例えば、上限としては好ましくは40%以下が挙げられる。質量平均分子量が5万未満の場合は好ましくは37%以下である。なお、本明細書において、ポリエステル樹脂組成物の絶対結晶化度とはマトリックス樹脂中の結晶部の割合を意味し、後述の実施例に記載の方法に従って測定することができる。 The lower limit of the absolute crystallinity degree (Xc) of the polyester resin composition in the present invention may be preferably 5%, but it is as follows according to the type of thermoplastic polyester resin (A) used from the viewpoint of improving the loss coefficient. Range is indicated. For example, when using a polybutylene terephthalate resin as the thermoplastic polyester resin (A), 10% or more is preferable, 15% or more is more preferable, 20% or more is more preferable, 25% or more is more preferable, 35% or less is preferable 30% or less is more preferable, and 28% or less is still more preferable. When using polytrimethylene terephthalate resin as a thermoplastic polyester resin (A), 10% or more is preferable, 15% or more is more preferable, 20% or more is still more preferable, and 35% or less is preferable. When using a polyethylene terephthalate resin as the thermoplastic polyester resin (A), 10% or more is preferable, 15% or more is more preferable, 20% or more is more preferable, 25% or more is more preferable, and 35% or less is preferable. In addition, since the thermoplastic polyester resin (A) in the present invention has the above-described mass average molecular weight, the value of the absolute crystallinity degree varies depending on the value of the mass average molecular weight of the resin (A). If the mass average molecular weight of the resin (A) is 50,000 or more and 150,000 or less, the performance can be exhibited even in the case of more than 37%, and for example, preferably 40% or less as the upper limit. When the mass average molecular weight is less than 50,000, it is preferably 37% or less. In addition, in this specification, the absolute crystallinity degree of a polyester resin composition means the ratio of the crystal part in matrix resin, and it can measure according to the method as described in the below-mentioned Example.
 また、本発明における熱可塑性ポリエステル樹脂(A)やポリエステル樹脂組成物は前記した範囲内の質量平均分子量や絶対結晶化度を有することが好ましいが、その組み合わせとしては、熱可塑性ポリエステル樹脂(A)がポリブチレンテレフタレート樹脂の場合、質量平均分子量が7万以上15万以下で絶対結晶化度が25%以上35%以下が好ましく、質量平均分子量が10万以上15万以下で絶対結晶化度が25%以上35%以下がより好ましい。熱可塑性ポリエステル樹脂(A)がポリエチレンテレフタレート樹脂の場合、質量平均分子量が3万以上15万以下で絶対結晶化度が10%以上35%以下が好ましく、質量平均分子量が4万以上15万以下で絶対結晶化度が20%以上35%以下がより好ましい。 Further, the thermoplastic polyester resin (A) and the polyester resin composition in the present invention preferably have a mass average molecular weight and an absolute crystallinity within the ranges described above, and as the combination thereof, the thermoplastic polyester resin (A) When polybutylene terephthalate resin is used, the mass average molecular weight is preferably 70,000 to 150,000 and the absolute crystallinity is preferably 25% to 35%. The mass average molecular weight is 100,000 to 150,000 and the absolute crystallinity is 25 % Or more and 35% or less are more preferable. When the thermoplastic polyester resin (A) is a polyethylene terephthalate resin, the mass average molecular weight is 30,000 to 150,000 and the absolute crystallinity is preferably 10% to 35%, and the mass average molecular weight is 40,000 to 150,000. The absolute crystallinity is more preferably 20% or more and 35% or less.
[熱可塑性ポリエステル樹脂(A)]
 本発明における熱可塑性ポリエステル樹脂(A)は、ジカルボン酸成分とジオール成分とから構成され、ジカルボン酸成分とジオール成分の重縮合の組み合わせにより得ることができる。なお、本明細書において、ジカルボン酸成分とは、ジカルボン酸及びその低級エステル誘導体を含み、これらを総称してジカルボン酸成分とする。
[Thermoplastic polyester resin (A)]
The thermoplastic polyester resin (A) in the present invention is composed of a dicarboxylic acid component and a diol component, and can be obtained by a combination of polycondensation of the dicarboxylic acid component and the diol component. In the present specification, the dicarboxylic acid component includes dicarboxylic acid and its lower ester derivative, and these are collectively referred to as a dicarboxylic acid component.
 熱可塑性ポリエステル樹脂(A)を構成するジカルボン酸成分としては、脂肪族ジカルボン酸、脂環式ジカルボン酸、芳香族ジカルボン酸、フラン環を有するジカルボン酸を用いることができる。具体的には、例えば、テレフタル酸等、特開2016-89148号公報の段落0014に列挙されたものが挙げられる。ジカルボン酸成分は単独で又は2種以上組み合わせて用いることができる。 As a dicarboxylic acid component which constitutes thermoplastic polyester resin (A), aliphatic dicarboxylic acid, alicyclic dicarboxylic acid, aromatic dicarboxylic acid, and dicarboxylic acid having a furan ring can be used. Specifically, examples thereof include terephthalic acid and the like, which are listed in paragraph 0014 of JP-A-2016-89148. The dicarboxylic acid components can be used alone or in combination of two or more.
 熱可塑性ポリエステル樹脂(A)を構成するジオール成分としては、脂肪族ジオール、脂環式ジオール、芳香族ジオール、フラン環を有するジオールを用いることができる。具体的には、例えば、1,4-ブタンジオール等、特開2016-89148号公報の段落0015に列挙されたものが挙げられる。ジオール成分は、単独で又は2種以上組み合わせて用いることができる。 As a diol component which comprises a thermoplastic polyester resin (A), an aliphatic diol, an alicyclic diol, an aromatic diol, and the diol which has a furan ring can be used. Specifically, for example, 1,4-butanediol and the like, those listed in paragraph 0015 of JP-A-2016-89148 can be mentioned. The diol components can be used alone or in combination of two or more.
 また、ジカルボン酸成分とジオール成分の組み合わせとしては、熱可塑性ポリエステル樹脂(A)のTgを向上させ、制振性と剛性を向上させる観点から、芳香族環、脂環、フラン環をジカルボン酸又はジオールのどちらか一方に又は両方に含むことが好ましい。具体的には、例えば特開2016-89148号公報の段落0016に列挙されたものが挙げられる。 In addition, as a combination of a dicarboxylic acid component and a diol component, from the viewpoint of improving the Tg of the thermoplastic polyester resin (A) and improving the vibration damping property and the rigidity, an aromatic ring, an alicyclic ring, or a furan ring is a dicarboxylic acid or It is preferable to include it in one or both of the diols. Specific examples thereof include those listed in paragraph 0016 of JP-A-2016-89148.
 前記ジカルボン酸成分と前記ジオール成分との重縮合は、特に限定はなく、公知の方法に従って行うことができる。 The polycondensation of the dicarboxylic acid component and the diol component is not particularly limited, and can be carried out according to a known method.
 得られる熱可塑性ポリエステル樹脂(A)は、成形加工性を向上させる観点から、ガラス転移温度(Tg)が好ましくは20℃以上、より好ましくは25℃以上、更に好ましくは30℃以上、更に好ましくは35℃以上である。また、制振性を向上させる観点から、好ましくは160℃以下、より好ましくは150℃以下、更に好ましくは140℃以下、より更に好ましくは130℃以下である。ガラス転移温度が前記温度となるようにするには、ポリエステル樹脂の骨格構造をコントロールすることが有効である。例えば、芳香族ジカルボン酸成分や脂環式ジオール成分などの剛直な成分を原料として用い、熱可塑性ポリエステル樹脂を調製するとガラス転移温度を高くすることが可能である。なお、本明細書において、樹脂のガラス転移温度は、後述の実施例に記載の方法に従って測定することができる。 The thermoplastic polyester resin (A) obtained has a glass transition temperature (Tg) of preferably 20 ° C. or more, more preferably 25 ° C. or more, still more preferably 30 ° C. or more, still more preferably, from the viewpoint of improving molding processability. 35 ° C or higher. Further, from the viewpoint of improving the vibration damping property, it is preferably 160 ° C. or less, more preferably 150 ° C. or less, still more preferably 140 ° C. or less, still more preferably 130 ° C. or less. In order for the glass transition temperature to be the above temperature, it is effective to control the skeleton structure of the polyester resin. For example, when a thermoplastic polyester resin is prepared by using a rigid component such as an aromatic dicarboxylic acid component or an alicyclic diol component as a raw material, it is possible to increase the glass transition temperature. In addition, in this specification, the glass transition temperature of resin can be measured in accordance with the method as described in the below-mentioned Example.
 また、本発明における熱可塑性ポリエステル樹脂(A)は、制振性の観点から結晶性を有することが好ましい。結晶性を有する熱可塑性ポリエステル樹脂を調製する方法としては、ジカルボン酸成分とジオール成分を純度の高いものを用いる方法、側鎖の少ないジカルボン酸成分及びジオール成分を用いる方法が挙げられる。なお、本明細書において、結晶性を有するとは、JIS K7122(1999)に準じて、昇温速度20℃/minで樹脂を25℃から300℃まで加熱し、その状態で5分間保持後、次いで25℃以下となるよう-20℃/minで冷却したとき、結晶化に伴う発熱ピークが観察される樹脂のことである。より詳しくは、発熱ピークの面積から求められる結晶化エンタルピーΔHmcが1J/g以上となる樹脂のことをいう。本発明を構成する熱可塑性ポリエステル樹脂(A)は、結晶化エンタルピーΔHmcが好ましくは5J/g以上、より好ましくは10J/g以上、更に好ましくは15J/g以上、更に好ましくは30J/g以上の樹脂を用いるのがよい。なお、本明細書において、樹脂の結晶化エンタルピーは、後述の実施例に記載の方法に従って測定することができる。 Moreover, it is preferable that the thermoplastic polyester resin (A) in this invention has crystallinity from a vibration suppression viewpoint. As a method of preparing a thermoplastic polyester resin having crystallinity, a method using a dicarboxylic acid component and a diol component having high purity, and a method using a dicarboxylic acid component with a small amount of side chains and a diol component can be mentioned. In the present specification, having crystallinity means heating the resin from 25 ° C. to 300 ° C. at a heating rate of 20 ° C./min according to JIS K 7122 (1999), and holding for 5 minutes in that state, Then, when cooled at −20 ° C./min so as to be 25 ° C. or lower, this is a resin in which an exothermic peak associated with crystallization is observed. More specifically, it refers to a resin in which the crystallization enthalpy ΔHmc obtained from the area of the exothermic peak is 1 J / g or more. The thermoplastic polyester resin (A) constituting the present invention preferably has a crystallization enthalpy ΔHmc of 5 J / g or more, more preferably 10 J / g or more, still more preferably 15 J / g or more, still more preferably 30 J / g or more It is preferable to use a resin. In addition, in this specification, the crystallization enthalpy of resin can be measured according to the method as described in the below-mentioned Example.
 熱可塑性ポリエステル樹脂(A)の具体例としては、例えば特開2016-89148号公報の段落0020に列挙されたものが挙げられ、制振性の観点から、テレフタル酸と1,4-ブタンジオールから構成されるポリブチレンテレフタレート(PBT樹脂、Tg:50℃)が好ましい。熱可塑性ポリエステル樹脂(A)は単独で又は2種以上組み合わせて用いることができる。 Specific examples of the thermoplastic polyester resin (A) include, for example, those listed in paragraph 0020 of JP-A-2016-89148, and from the viewpoint of damping property, terephthalic acid and 1,4-butanediol Preferred is polybutylene terephthalate (PBT resin, Tg: 50 ° C.). The thermoplastic polyester resins (A) can be used alone or in combination of two or more.
 熱可塑性ポリエステル樹脂(A)の含有量は、損失係数を向上させる観点から、ポリエステル樹脂組成物中、50質量%以上が好ましく、55質量%以上がより好ましく、60質量%以上が更に好ましい。また、剛性を向上させる観点から、90質量%以下が好ましく、80質量%以下がより好ましく、75質量%以下が更に好ましく、70質量%以下が更に好ましい。 In the polyester resin composition, the content of the thermoplastic polyester resin (A) is preferably 50% by mass or more, more preferably 55% by mass or more, and still more preferably 60% by mass or more from the viewpoint of improving the loss coefficient. Further, from the viewpoint of improving the rigidity, 90% by mass or less is preferable, 80% by mass or less is more preferable, 75% by mass or less is more preferable, and 70% by mass or less is more preferable.
 本発明において、熱可塑性ポリエステル樹脂(A)の質量平均分子量としては、制振性向上の観点から、好ましくは3万以上、より好ましくは5万以上、更に好ましくは7万以上であり、成形加工性向上の観点の観点から、好ましくは30万以下、より好ましくは20万以下、更に好ましくは15万以下である。熱可塑性ポリエステル樹脂(A)の質量平均分子量は、具体的には後述の実施例に記載の方法により測定される。 In the present invention, the mass average molecular weight of the thermoplastic polyester resin (A) is preferably 30,000 or more, more preferably 50,000 or more, still more preferably 70,000 or more, from the viewpoint of improving the damping property. From the viewpoint of improving the properties, it is preferably at most 300,000, more preferably at most 200,000, further preferably at most 150,000. Specifically, the mass average molecular weight of the thermoplastic polyester resin (A) is measured by the method described in the following examples.
[可塑剤及び/又はエラストマーである成分(B)]
 本発明における成分(B)としては、可塑剤及びエラストマーからなる群より選ばれる1種又は2種以上を用いる。なお、本明細書において、可塑剤及び/又はエラストマーを、まとめて成分(B)と記載することもある。
[Component (B) which is a plasticizer and / or an elastomer]
As a component (B) in this invention, 1 type (s) or 2 or more types selected from the group which consists of a plasticizer and an elastomer are used. In the present specification, the plasticizer and / or the elastomer may be collectively referred to as component (B).
(可塑剤)
 本発明における可塑剤としては、ポリエステル系可塑剤、多価アルコールエステル系可塑剤、多価カルボン酸エステル系可塑剤、及びビスフェノール系可塑剤からなる群より選ばれる1種又は2種以上を含むことが好ましい。
(Plasticizer)
The plasticizer in the present invention contains one or more selected from the group consisting of polyester plasticizers, polyhydric alcohol ester plasticizers, polyhydric carboxylic acid ester plasticizers, and bisphenol plasticizers. Is preferred.
 製造過程での積層シートのシート物性の変化を抑制する観点から、可塑剤としては低揮発性の可塑剤が好ましい。具体的には、5%質量減少温度が200℃以上の可塑剤が好ましく、220℃以上の可塑剤がより好ましく、240℃以上の可塑剤が更に好ましく、260℃以上の可塑剤が更に好ましい。ここで、可塑剤の5%質量減少温度の測定は、空気雰囲気下、10℃/minで昇温するという条件で実施する。さらに、260℃、空気雰囲気下、5分等温保持での可塑剤の重量保持率は、好ましくは80%以上、より好ましくは85%以上、更に好ましくは90%以上であり、一方、損失係数を向上させる観点から、好ましくは100%以下、より好ましくは98%以下である。 As a plasticizer, a low volatility plasticizer is preferable from the viewpoint of suppressing a change in sheet physical properties of the laminated sheet in the manufacturing process. Specifically, plasticizers having a 5% mass loss temperature of 200 ° C. or more are preferable, plasticizers of 220 ° C. or more are more preferable, plasticizers of 240 ° C. or more are more preferable, and plasticizers of 260 ° C. or more are more preferable. Here, the measurement of the 5% mass loss temperature of the plasticizer is carried out under the condition that the temperature is raised at 10 ° C./min in an air atmosphere. Furthermore, the weight retention of the plasticizer at 260 ° C. in an air atmosphere for 5 minutes isothermally maintained is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more. From the viewpoint of improving, it is preferably 100% or less, more preferably 98% or less.
 ポリエステル系可塑剤の具体例としては、例えば特開2016-89148号公報の段落0024に列挙されたものが挙げられる。好ましい例としては、例えば、アジピン酸と、ジエチレングリコールモノメチルエーテル/ベンジルアルコールとの混合ジエステルが挙げられる。 Specific examples of the polyester plasticizer include those listed in paragraph 0024 of JP-A-2016-89148. Preferred examples include, for example, mixed diesters of adipic acid and diethylene glycol monomethyl ether / benzyl alcohol.
 多価アルコールエステル系可塑剤の具体例としては、例えば特開2016-89148号公報の段落0025に列挙されたものが挙げられる。 Examples of the polyhydric alcohol ester plasticizer include those listed in paragraph 0025 of JP-A-2016-89148.
 多価カルボン酸エステル系可塑剤としては、例えば特開2016-89148号公報の段落0026に列挙されたものが挙げられる。 Examples of polyvalent carboxylic acid ester plasticizers include those listed in paragraph 0026 of JP-A-2016-89148.
 ビスフェノール系可塑剤としては、例えば特開2016-89148号公報の段落0027に列挙されたものが挙げられる。 Examples of the bisphenol-based plasticizer include those listed in paragraph 0027 of JP-A-2016-89148.
 可塑剤としては、損失係数を向上させる観点から、好ましくは(ポリ)オキシアルキレン基又は炭素数2~10のアルキレン基を有する、ポリエステル系可塑剤、多価アルコールエステル系可塑剤、多価カルボン酸エステル系可塑剤、及びビスフェノール系可塑剤からなる群より選ばれる1種又は2種以上を含み、より好ましくは、(ポリ)オキシアルキレン基を有する、ポリエステル系可塑剤、多価アルコールエステル系可塑剤、多価カルボン酸エステル系可塑剤、及びビスフェノール系可塑剤からなる群より選ばれる1種又は2種以上を含む。尚、(ポリ)オキシアルキレン基とは、オキシアルキレン基又はポリオキシアルキレン基を意味する。オキシアルキレン基としては、好ましくは炭素数2~10、より好ましくは炭素数2~6、更に好ましくは2~4のアルキレン基を有するもので、オキシエチレン基、オキシプロピレン基又はオキシブチレン基が更に好ましく、オキシエチレン基又はオキシプロピレン基がより更に好ましい。 As a plasticizer, from the viewpoint of improving the loss coefficient, a polyester-based plasticizer, a polyhydric alcohol ester-based plasticizer, a polyvalent carboxylic acid, preferably having a (poly) oxyalkylene group or an alkylene group having 2 to 10 carbon atoms Polyester-based plasticizer, polyhydric alcohol ester-based plasticizer, containing one or more selected from the group consisting of ester-based plasticizers and bisphenol-based plasticizers, and more preferably having a (poly) oxyalkylene group And one or more selected from the group consisting of polyhydric carboxylic acid ester plasticizers and bisphenol plasticizers. Here, the (poly) oxyalkylene group means an oxyalkylene group or a polyoxyalkylene group. The oxyalkylene group is preferably one having an alkylene group having preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms, and an oxyethylene group, an oxypropylene group or an oxybutylene group Preferably, oxyethylene or oxypropylene is more preferred.
 可塑剤としては、損失係数を向上させる観点から、以下の化合物群(A)~(C)からなる群より選ばれる1種又は2種以上を含むことが好ましく、また以下の化合物群(A)及び(B)からなる群より選ばれる1種又は2種以上を含むことがより好ましい。2種以上を組み合わせて用いる場合は、同じ化合物群同士でも異なる化合物群同士であってもよい。
化合物群(A) 分子中に2個以上のエステル基を有するエステル化合物であって、該エステル化合物を構成するアルコール成分の少なくとも1種が水酸基1個当たり炭素数2~3のアルキレンオキサイドを平均0.5~5モル付加したアルコールであるエステル化合物
化合物群(B) 式(I):
  RO-CO-R-CO-〔(OR)O-CO-R-CO-〕OR  (I)
(式中、Rは炭素数が1~4のアルキル基、Rは炭素数が2~4のアルキレン基、Rは炭素数が2~6のアルキレン基であり、mは1~6の数、nは1~12の数を示し、但し、全てのRは同一でも異なっていてもよく、全てのRは同一でも異なっていてもよい)
で表される化合物
化合物群(C) 分子中に2個以上のエステル基を有するエステル化合物であって、該エステル化合物を構成するアルコール成分がモノアルコールであるエステル化合物
The plasticizer preferably contains one or more selected from the group consisting of the following compound groups (A) to (C) from the viewpoint of improving the loss coefficient, and the following compound group (A) It is more preferable to contain one or more selected from the group consisting of and (B). When two or more kinds are used in combination, the same compound group may be used, or different compound groups may be used.
Compound Group (A) An ester compound having two or more ester groups in the molecule, wherein at least one of the alcohol components constituting the ester compound has an average of 0 to 2 alkylene oxides per one hydroxyl group. .5-5 mol added alcohol which is an alcohol, ester compound group (B) Formula (I):
R 1 O-CO-R 2 -CO-[(OR 3 ) m O-CO-R 2 -CO-] n OR 1 (I)
(Wherein, R 1 is an alkyl group having 1 to 4 carbon atoms, R 2 is an alkylene group having 2 to 4 carbon atoms, R 3 is an alkylene group having 2 to 6 carbon atoms, and m is 1 to 6) And n represents a number of 1 to 12, provided that all R 2 s may be the same or different, and all R 3 s may be the same or different)
Compound compound group (C) represented by: an ester compound having two or more ester groups in the molecule, wherein the alcohol component constituting the ester compound is a monoalcohol
化合物群(A)
 化合物群(A)に含まれるエステル化合物としては、分子中に2個以上のエステル基を有する多価アルコールエステル又は多価カルボン酸エーテルエステルであって、該エステル化合物を構成するアルコール成分の少なくとも1種が水酸基1個当たり炭素数2~3のアルキレンオキサイドを平均0.5~5モル付加したアルコールであるエステル化合物が好ましい。
Compound group (A)
The ester compound contained in the compound group (A) is a polyhydric alcohol ester or polyhydric carboxylic acid ether ester having two or more ester groups in the molecule, and at least one of alcohol components constituting the ester compound. An ester compound which is an alcohol having an average of 0.5 to 5 moles of an alkylene oxide of 2 to 3 carbon atoms added per hydroxyl group is preferable.
 具体的な化合物としては、酢酸とグリセリンのエチレンオキサイド平均3~6モル付加物(水酸基1個あたりエチレンオキサイドを1~2モル付加)とのエステル、酢酸とエチレンオキサイドの平均付加モル数が4~6のポリエチレングリコールとのエステル、コハク酸とエチレンオキサイドの平均付加モル数が2~3のポリエチレングリコールモノメチルエーテル(水酸基1個あたりエチレンオキサイドを2~3モル付加)とのエステル、アジピン酸とジエチレングリコールモノメチルエーテルとのエステル、テレフタル酸とエチレンオキサイドの平均付加モル数が2~3のポリエチレングリコールモノメチルエーテル(水酸基1個あたりエチレンオキサイドを2~3モル付加)とのエステル、1,3,6-ヘキサントリカルボン酸とジエチレングリコールモノメチルエーテルとのエステルが好ましい。 Specific compounds include esters of acetic acid and glycerin with an average of 3 to 6 moles of ethylene oxide adduct of glycerin (addition of 1 to 2 moles of ethylene oxide per hydroxyl group), and average addition mole number of acetic acid and ethylene oxide is 4 to 6, esters of polyethylene glycol with polyethylene glycol, esters of succinic acid and polyethylene glycol monomethyl ether having an average addition mole number of ethylene oxide of 2 to 3 (addition of 2 to 3 moles of ethylene oxide per hydroxyl group), adipic acid and diethylene glycol monomethyl Esters with ether, Esters of terephthalic acid with polyethylene glycol monomethyl ether (2 to 3 moles of ethylene oxide added per hydroxyl group) with an average addition mole number of ethylene oxide of 2-3, 1,3,6-hexanetricarboxylic acid Acid and di Esters of Chi glycol monomethyl ether.
化合物群(B)
 式(I)におけるRは、炭素数が1~4のアルキル基を示し、1分子中に2個存在して、分子の両末端に存在する。Rは炭素数が1~4であれば、直鎖であっても分岐鎖であってもよい。アルキル基の炭素数としては、耐着色性及び可塑化効果を発現させる観点から、1~4が好ましく、1~2がより好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、iso-ブチル基が挙げられ、なかでも、損失係数を向上させる観点から、メチル基及びエチル基が好ましく、メチル基がより好ましい。
Compound group (B)
R 1 in the formula (I) represents an alkyl group having 1 to 4 carbon atoms, and two in one molecule are present at both ends of the molecule. R 1 may be linear or branched as long as it has 1 to 4 carbon atoms. The carbon number of the alkyl group is preferably 1 to 4 and more preferably 1 to 2 from the viewpoint of exhibiting coloring resistance and a plasticizing effect. Specifically, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, iso-butyl group can be mentioned, and among them, from the viewpoint of improving the loss factor, methyl A group and an ethyl group are preferable, and a methyl group is more preferable.
 式(I)におけるRは、炭素数が2~4のアルキレン基を示し、直鎖のアルキレン基が好適例として挙げられる。具体的には、エチレン基、1,3-プロピレン基、1,4-ブチレン基が挙げられ、損失係数を向上させる観点から、エチレン基、1,3-プロピレン基、1,4-ブチレン基が好ましく、エチレン基がより好ましい。但し、全てのRは同一でも異なっていてもよい。 R 2 in the formula (I) represents an alkylene group having 2 to 4 carbon atoms, and a linear alkylene group is mentioned as a preferable example. Specifically, ethylene, 1,3-propylene and 1,4-butylene are mentioned, and from the viewpoint of improving the loss factor, ethylene, 1,3-propylene and 1,4-butylene are preferable. Preferably, ethylene is more preferred. However, all R 2 s may be the same or different.
 式(I)におけるRは、炭素数が2~6のアルキレン基を示し、ORはオキシアルキレン基として、繰り返し単位中に存在する。Rは炭素数が2~6であれば、直鎖であっても分岐鎖であってもよい。アルキレン基の炭素数としては、損失係数を向上させる観点から、2~6が好ましく、2~3がより好ましい。具体的には、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基、2-メチル-1,3-プロピレン基、1,2-ペンチレン基、1,4-ペンチレン基、1,5-ペンチレン基、2,2-ジメチル-1,3-プロピレン基、1,2-ヘキシレン基、1,5-ヘキシレン基、1,6-ヘキシレン基、2,5-ヘキシレン基、3-メチル-1,5-ペンチレン基が挙げられ、なかでも、エチレン基、1,2-プロピレン基、1,3-プロピレン基が好ましい。但し、全てのRは同一でも異なっていてもよい。 R 3 in the formula (I) represents an alkylene group having 2 to 6 carbon atoms, and OR 3 is present as an oxyalkylene group in the repeating unit. R 3 may be linear or branched as long as it has 2 to 6 carbon atoms. The number of carbon atoms of the alkylene group is preferably 2 to 6, and more preferably 2 to 3 from the viewpoint of improving the loss coefficient. Specifically, ethylene, 1,2-propylene, 1,3-propylene, 1,2-butylene, 1,3-butylene, 1,4-butylene, 2-methyl-1,3 -Propylene group, 1,2-pentylene group, 1,4-pentylene group, 1,5-pentylene group, 2,2-dimethyl-1,3-propylene group, 1,2-hexylene group, 1,5-hexylene And 1,6-hexylene, 2,5-hexylene, 3-methyl-1,5-pentylene, among which ethylene, 1,2-propylene, and 1,3-propylene are preferred. preferable. However, all R 3 s may be the same or different.
 mはオキシアルキレン基の平均の繰り返し数を示し、耐熱性の観点から、1~6の数が好ましく、1~4の数がより好ましく、1~3の数が更に好ましい。 M represents the average number of repetition of the oxyalkylene group, and from the viewpoint of heat resistance, the number is preferably 1 to 6, more preferably 1 to 4, and still more preferably 1 to 3.
 nは繰り返し単位の平均の繰り返し数(平均重合度)を示し、1~12の数である。制振材料として、損失係数を向上させる観点から、1~12の数が好ましく、1~6の数がより好ましく、1~5の数が更に好ましい。平均重合度は、NMR等の分析によって求めてもよいが、特開2016-89148号公報の段落0100に記載の方法に従って算出することができる。 N represents the average number of repeating units (average degree of polymerization) of the repeating units, and is a number of 1 to 12. The damping material is preferably a number of 1 to 12, more preferably a number of 1 to 6, and still more preferably a number of 1 to 5 from the viewpoint of improving the loss coefficient. The average degree of polymerization may be determined by analysis such as NMR, but can be calculated according to the method described in paragraph 0100 of JP-A 2016-89148.
 式(I)で表される化合物の具体例としては、Rが全てメチル基、Rがエチレン基又は1,4-ブチレン基、Rがエチレン基又は1,3-プロピレン基であって、mが1~4の数、nが1~6の数である化合物が好ましく、Rが全てメチル基、Rがエチレン基又は1,4-ブチレン基、Rがエチレン基又は1,3-プロピレン基であって、mが1~3の数、nが1~5の数である化合物がより好ましい。 As specific examples of the compound represented by the formula (I), R 1 is all methyl group, R 2 is ethylene group or 1,4-butylene group, R 3 is ethylene group or 1,3-propylene group And m is a number of 1 to 4 and n is a number of 1 to 6; R 1 is all methyl, R 2 is ethylene or 1,4-butylene, R 3 is ethylene or 1, Compounds having a 3-propylene group, m being a number of 1 to 3 and n being a number of 1 to 5 are more preferable.
 式(I)で表される化合物は、前記構造を有するのであれば特に限定ないが、下記(1)~(3)の原料を反応させて得られるものが好ましい。尚、(1)と(2)とは、又は(2)と(3)とは、エステル化合物を形成していてもよい。(2)は、酸無水物や酸ハロゲン化物であってもよい。
  (1)炭素数が1~4のアルキル基を有する一価アルコール
  (2)炭素数が2~4のアルキレン基を有するジカルボン酸
  (3)炭素数が2~6のアルキレン基を有する二価アルコール
The compound represented by the formula (I) is not particularly limited as long as it has the above-mentioned structure, but a compound obtained by reacting the following (1) to (3) is preferable. In addition, (1) and (2), or (2) and (3) may form an ester compound. (2) may be an acid anhydride or an acid halide.
(1) a monohydric alcohol having an alkyl group having 1 to 4 carbon atoms (2) a dicarboxylic acid having an alkylene group having 2 to 4 carbon atoms (3) a dihydric alcohol having an alkylene group having 2 to 6 carbon atoms
(1)炭素数が1~4のアルキル基を有する一価アルコール
 炭素数が1~4のアルキル基を有する一価アルコールとしては、前記Rを含むアルコールであり、具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、tert-ブタノールが挙げられる。なかでも、損失係数を向上させる観点から、メタノール、エタノール、1-プロパノール、1-ブタノールが好ましく、メタノール、エタノールがより好ましく、メタノールが更に好ましい。
(1) Monohydric alcohol having alkyl group having 1 to 4 carbon atoms A monohydric alcohol having an alkyl group having 1 to 4 carbon atoms is an alcohol containing the above R 1 , specifically, methanol, Ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, tert-butanol can be mentioned. Among them, methanol, ethanol, 1-propanol and 1-butanol are preferable, methanol and ethanol are more preferable, and methanol is still more preferable from the viewpoint of improving the loss factor.
(2)炭素数が2~4のアルキレン基を有するジカルボン酸
 炭素数が2~4のアルキレン基を有するジカルボン酸としては、前記Rを含むジカルボン酸であり、具体的には、コハク酸、グルタル酸、アジピン酸、及びそれらの誘導体、例えば、コハク酸無水物、グルタル酸無水物、コハク酸ジメチル、コハク酸ジブチル、グルタル酸ジメチル、アジピン酸ジメチル等が挙げられる。なかでも、損失係数を向上させる観点から、コハク酸、アジピン酸及びそれらの誘導体、例えば、コハク酸無水物、コハク酸ジメチル、コハク酸ジブチル、アジピン酸ジメチルが好ましく、コハク酸及びその誘導体、例えば、コハク酸無水物、コハク酸ジメチル、コハク酸ジブチルがより好ましい。
(2) Dicarboxylic Acid Having an Alkylene Group Having 2 to 4 Carbons The dicarboxylic acid having an alkylene group having 2 to 4 carbons is a dicarboxylic acid containing the above-mentioned R 2. Specifically, succinic acid, Glutaric acid, adipic acid and their derivatives such as succinic anhydride, glutaric anhydride, dimethyl succinate, dibutyl succinate, dimethyl glutarate, dimethyl adipate and the like can be mentioned. Among them, from the viewpoint of improving the loss factor, succinic acid, adipic acid and derivatives thereof, for example, succinic anhydride, dimethyl succinate, dibutyl succinate, dimethyl adipate are preferable, and succinic acid and its derivatives, for example, Succinic anhydride, dimethyl succinate and dibutyl succinate are more preferred.
(3)炭素数が2~6のアルキレン基を有する二価アルコール
 炭素数が2~6のアルキレン基を有する二価アルコールとしては、前記Rを含む二価アルコールであり、具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,2-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、2,5-ヘキサンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオールが挙げられる。なかでも、損失係数を向上させる観点から、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、テトラエチレングリコール、1,4-ブタンジオールが好ましく、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオールがより好ましく、ジエチレングリコール、トリエチレングリコール、1,3-プロパンジオールが更に好ましい。
(3) Dihydric alcohol having an alkylene group having 2 to 6 carbon atoms The dihydric alcohol having an alkylene group having 2 to 6 carbon atoms is a dihydric alcohol containing the above R 3 , specifically, Ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,2-pentanediol, 1,4-pentanediol, 1,5-pentanediol, 2,5-hexanediol, Examples include 1,6-hexanediol and 3-methyl-1,5-pentanediol. Among them, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, tetraethylene glycol and 1,4-butanediol are preferable from the viewpoint of improving the loss coefficient, and diethylene glycol and triethylene glycol, 1,2-propanediol and 1,3-propanediol are more preferable, and diethylene glycol, triethylene glycol and 1,3-propanediol are more preferable.
 よって、前記(1)~(3)としては、
(1)一価アルコールがメタノール、エタノール、1-プロパノール、及び1-ブタノールからなる群より選ばれる1種又は2種以上であり、(2)ジカルボン酸がコハク酸、アジピン酸、グルタル酸、及びそれらの誘導体からなる群より選ばれる1種又は2種以上であり、(3)二価アルコールがジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、テトラエチレングリコール、及び1,4-ブタンジオールからなる群より選ばれる1種又は2種以上であることが好ましく、
(1)一価アルコールがメタノール及びエタノールからなる群より選ばれる1種又は2種以上であり、(2)ジカルボン酸がコハク酸、アジピン酸、及びそれらの誘導体からなる群より選ばれる1種又は2種以上であり、(3)二価アルコールがジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、及び1,3-プロパンジオールからなる群より選ばれる1種又は2種以上であることがより好ましく、
(1)一価アルコールがメタノールであり、(2)ジカルボン酸がコハク酸及びその誘導体からなる群より選ばれる1種又は2種以上であり、(3)二価アルコールがジエチレングリコール、トリエチレングリコール、及び1,3-プロパンジオールからなる群より選ばれる1種又は2種以上であることが更に好ましい。
Therefore, as the above (1) to (3),
(1) The monohydric alcohol is one or more selected from the group consisting of methanol, ethanol, 1-propanol, and 1-butanol, and (2) the dicarboxylic acid is succinic acid, adipic acid, glutaric acid, and And one or more selected from the group consisting of derivatives thereof, wherein (3) the dihydric alcohol is diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, tetraethylene glycol, and Preferably, it is one or more selected from the group consisting of 1,4-butanediol,
(1) One or two or more selected from the group consisting of methanol and ethanol, and (2) One or more selected from the group consisting of succinic acid, adipic acid, and derivatives thereof More than two, and (3) the dihydric alcohol is one or more selected from the group consisting of diethylene glycol, triethylene glycol, 1,2-propanediol, and 1,3-propanediol Preferably
(1) monohydric alcohol is methanol, (2) dicarboxylic acid is one or more selected from the group consisting of succinic acid and derivatives thereof, (3) dihydric alcohol is diethylene glycol, triethylene glycol, More preferably, it is one or more selected from the group consisting of and 1,3-propanediol.
 前記(1)~(3)を反応させて式(I)で表されるエステル化合物を得る方法としては、特に限定はないが、例えば、以下の態様1及び態様2の方法が挙げられる。
態様1:(2)ジカルボン酸と(1)一価アルコールのエステル化反応を行ってジカルボン酸エステルを合成する工程と、得られたジカルボン酸エステルと(3)二価アルコールをエステル化反応させる工程を含む方法
態様2:(1)一価アルコール、(2)ジカルボン酸、及び(3)二価アルコールを一括反応させる工程を含む方法
The method for obtaining the ester compound represented by the formula (I) by reacting the above (1) to (3) is not particularly limited, but, for example, the methods of the following aspect 1 and aspect 2 can be mentioned.
Embodiment 1: A step of esterification reaction of (2) dicarboxylic acid and (1) monohydric alcohol to synthesize a dicarboxylic acid ester, and a step of esterifying reaction of the obtained dicarboxylic acid ester and (3) dihydric alcohol Method aspect 2 including: Method including batch reaction of (1) monohydric alcohol, (2) dicarboxylic acid, and (3) dihydric alcohol
 これらのなかでも、平均重合度を調整する観点から、態様1の方法が好ましい。なお、前記した各工程の反応は、公知の方法に従って行うことができる。 Among these, the method of aspect 1 is preferable from the viewpoint of adjusting the average degree of polymerization. In addition, reaction of each process mentioned above can be performed according to a well-known method.
 式(I)で表される化合物は、酸価が、損失係数を向上させる観点から、好ましくは1.50mgKOH/g以下、より好ましくは1.00mgKOH/g以下であり、水酸基価が、損失係数を向上させる観点から、好ましくは10.0mgKOH/g以下、より好ましくは5.0mgKOH/g以下、更に好ましくは3.0mgKOH/g以下である。なお、本明細書において、可塑剤の酸価及び水酸基価は、特開2016-89148号公報の段落0099に記載の方法に従って測定することができる。 The compound represented by the formula (I) is preferably 1.50 mg KOH / g or less, more preferably 1.00 mg KOH / g or less, from the viewpoint of improving the loss coefficient, and the hydroxyl value is a loss coefficient From the viewpoint of improving the pH, it is preferably 10.0 mg KOH / g or less, more preferably 5.0 mg KOH / g or less, and still more preferably 3.0 mg KOH / g or less. In the present specification, the acid value and the hydroxyl value of the plasticizer can be measured according to the method described in paragraph 0099 of JP-A-2016-89148.
 また、式(I)で表される化合物の数平均分子量は、損失係数を向上させる観点から、耐着色性の観点から、好ましくは300~1500、より好ましくは300~1000である。なお、本明細書において、可塑剤の数平均分子量は、特開2016-89148号公報の段落0100に記載の方法に従って算出することができる。 The number average molecular weight of the compound represented by the formula (I) is preferably 300 to 1,500, more preferably 300 to 1000, from the viewpoint of color resistance, from the viewpoint of improving the loss coefficient. In the present specification, the number average molecular weight of the plasticizer can be calculated according to the method described in paragraph 0100 of JP-A-2016-89148.
 式(I)で表される化合物のケン化価は、損失係数を向上させる観点から、500~800mgKOH/gが好ましく、550~750mgKOH/gがより好ましい。なお、本明細書において、可塑剤のケン化価は、特開2016-89148号公報の段落0099に記載の方法に従って測定することができる。 The saponification value of the compound represented by the formula (I) is preferably 500 to 800 mg KOH / g, and more preferably 550 to 750 mg KOH / g from the viewpoint of improving the loss coefficient. In the present specification, the saponification value of the plasticizer can be measured according to the method described in paragraph 0099 of JP-A-2016-89148.
 式(I)で表される化合物は、損失係数を向上させる観点から、2個の分子末端に対するアルキルエステル化率(末端アルキルエステル化率)が、好ましくは95%以上、より好ましくは98%以上である。なお、本明細書において、可塑剤の末端アルキルエステル化率は、特開2016-89148号公報の段落0100に記載の方法に従って算出することができる。 From the viewpoint of improving the loss coefficient, the compound represented by the formula (I) preferably has an alkyl esterification ratio (terminal alkyl esterification ratio) to two molecular ends of 95% or more, more preferably 98% or more. It is. In the present specification, the terminal alkyl esterification rate of the plasticizer can be calculated according to the method described in paragraph 0100 of JP-A 2016-89148.
 式(I)で表される化合物のエーテル基価は、振動時間を短縮する観点から、0~8mmol/gが好ましく、0~6mmol/gがより好ましい。なお、本明細書において、可塑剤のエーテル基価は、特開2016-89148号公報の段落0100に記載の方法に従って算出することができる。 From the viewpoint of shortening the vibration time, the ether group value of the compound represented by the formula (I) is preferably 0 to 8 mmol / g, and more preferably 0 to 6 mmol / g. In the present specification, the ether group value of the plasticizer can be calculated according to the method described in paragraph 0100 of JP-A-2016-89148.
化合物群(C)
 化合物群(C)に含まれるエステル化合物としては、具体的には、アジピン酸と2-エチルヘキサノールとのエステル(DOA)、フタル酸と2-エチルヘキサノールとのエステル(DOP)が好ましい。
Compound group (C)
Specifically, the ester compound contained in the compound group (C) is preferably an ester of adipic acid and 2-ethylhexanol (DOA) and an ester of phthalic acid and 2-ethylhexanol (DOP).
 可塑剤中、ポリエステル系可塑剤、多価アルコールエステル系可塑剤、多価カルボン酸エステル系可塑剤、及びビスフェノール系可塑剤からなる群より選ばれる1種又は2種以上の含有量、好ましくは(ポリ)オキシアルキレン基又は炭素数2~10のアルキレン基を有する、ポリエステル系可塑剤、多価アルコールエステル系可塑剤、多価カルボン酸エステル系可塑剤、及びビスフェノール系可塑剤からなる群より選ばれる1種又は2種以上の含有量、より好ましくは(ポリ)オキシアルキレン基を有する、ポリエステル系可塑剤、多価アルコールエステル系可塑剤、多価カルボン酸エステル系可塑剤、及びビスフェノール系可塑剤からなる群より選ばれる1種又は2種以上の含有量、ならびにかかる化合物群(A)~(C)からなる群より選ばれる1種又は2種以上の化合物の含有量は、損失係数を向上させる観点から、好ましくは50質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上、更に好ましくは95質量%以上、更に好ましくは実質的に100質量%であり、更に好ましくは100質量%である。ここで実質的に100質量%とは不可避的に微量の不純物等を含んでいる状態を言う。なお、本明細書において、前記可塑剤の含有量とは、複数の化合物が含有される場合には、総含有量のことを意味する。 Among the plasticizers, the content of one or more selected from the group consisting of polyester plasticizers, polyhydric alcohol ester plasticizers, polyhydric carboxylic acid ester plasticizers, and bisphenol plasticizers, preferably It is selected from the group consisting of polyester-based plasticizers, polyhydric alcohol ester-based plasticizers, polyvalent carboxylic acid ester-based plasticizers, and bisphenol-based plasticizers having a poly (oxyalkylene) group or an alkylene group having 2 to 10 carbon atoms. From polyester plasticizers, polyhydric alcohol ester plasticizers, polyhydric carboxylic acid ester plasticizers, and bisphenol plasticizers having one or more contents, more preferably (poly) oxyalkylene groups A group consisting of one or more selected from the group consisting of: and such compound groups (A) to (C) The content of one or more compounds selected is preferably 50% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, further preferably from the viewpoint of improving the loss coefficient. It is 95% by mass or more, more preferably substantially 100% by mass, and still more preferably 100% by mass. Here, substantially 100% by mass means a state in which a trace amount of impurities and the like are inevitably contained. In the present specification, the content of the plasticizer means the total content when a plurality of compounds are contained.
 可塑剤の含有量は、熱可塑性ポリエステル樹脂(A)100質量部に対して、損失係数を向上させる観点から、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上、更に好ましくは10質量部以上であり、剛性低下抑制の観点から、好ましくは50質量部以下、より好ましくは40質量部以下、更に好ましくは30質量部以下、更に好ましくは25質量部以下である。 The content of the plasticizer is preferably 1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 5 parts by mass from the viewpoint of improving the loss coefficient with respect to 100 parts by mass of the thermoplastic polyester resin (A). The amount is more preferably 10 parts by mass or more, and preferably 50 parts by mass or less, more preferably 40 parts by mass or less, still more preferably 30 parts by mass or less, still more preferably 25 parts by mass or less from the viewpoint of suppressing rigidity reduction. is there.
 また、ポリエステル樹脂組成物中、可塑剤の含有量は、損失係数を向上させる観点から、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上であり、剛性低下抑制の観点から、好ましくは25質量%以下、より好ましくは20質量%以下、更に好ましくは15質量%以下である。 In addition, the content of the plasticizer in the polyester resin composition is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, from the viewpoint of improving the loss coefficient From the viewpoint of suppression, it is preferably 25% by mass or less, more preferably 20% by mass or less, and still more preferably 15% by mass or less.
(エラストマー)
 本発明においては、高温域及び低温域での制振性向上の観点から、1種又は2種以上のエラストマーが用いられる。本発明におけるエラストマーとしては、熱可塑性エラストマーが好ましい。
(Elastomer)
In the present invention, one or two or more elastomers are used from the viewpoint of the improvement of the damping property in the high temperature range and the low temperature range. As an elastomer in the present invention, a thermoplastic elastomer is preferable.
 エラストマーの含有量は、熱可塑性ポリエステル樹脂(A)100質量部に対して、低温域での損失係数を向上する観点から、10質量部以上が好ましく、12質量部以上がより好ましく、15質量部以上が更に好ましい。また、剛性低下抑制の観点から、50質量部以下が好ましく、40質量部以下がより好ましく、35質量部以下が更に好ましい。 The content of the elastomer is preferably 10 parts by mass or more, more preferably 12 parts by mass or more, and 15 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A), from the viewpoint of improving the loss coefficient in the low temperature range. The above is more preferable. Moreover, from a viewpoint of rigidity fall suppression, 50 mass parts or less are preferable, 40 mass parts or less are more preferable, and 35 mass parts or less are still more preferable.
 ポリエステル樹脂組成物中のエラストマーの含有量は、損失係数を向上させる観点から、好ましくは5質量%以上、より好ましくは8質量%以上、更に好ましくは9.5質量%以上であり、剛性低下抑制の観点から、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下である。 The content of the elastomer in the polyester resin composition is preferably 5% by mass or more, more preferably 8% by mass or more, and still more preferably 9.5% by mass or more, from the viewpoint of improving the loss coefficient Preferably it is 30 mass% or less, More preferably, it is 25 mass% or less, More preferably, it is 20 mass% or less.
 本発明においては、成分(B)として、可塑剤及びエラストマーを併用してもよく、可塑剤を単独で又は2種以上とエラストマーを単独で又は2種以上とを組み合わせて用いることができる。可塑剤及びエラストマーを併用することで、室温領域の損失係数がさらに向上し、また低温領域や高温領域などの広い温度領域においても損失係数が向上するため、好ましい。 In the present invention, as the component (B), a plasticizer and an elastomer may be used in combination, and it is possible to use a plasticizer alone or two or more types and an elastomer alone or a combination of two or more types. By using a plasticizer and an elastomer in combination, the loss coefficient in the room temperature region is further improved, and the loss coefficient is also improved in a wide temperature region such as a low temperature region or a high temperature region.
 併用時の可塑剤及びエラストマーの合計含有量は、熱可塑性ポリエステル樹脂(A)100質量部に対して、損失係数を向上させる観点から、15質量部以上が好ましく、20質量部以上がより好ましく、25質量部以上が更に好ましい。また、剛性低下抑制の観点から、60質量部以下が好ましく、50質量部以下がより好ましく、40質量部以下が更に好ましい。 From the viewpoint of improving the loss coefficient, the total content of the plasticizer and the elastomer in combination is preferably 15 parts by mass or more, and more preferably 20 parts by mass or more with respect to 100 parts by mass of the thermoplastic polyester resin (A). 25 parts by mass or more is more preferable. Moreover, from a viewpoint of rigidity fall suppression, 60 mass parts or less are preferable, 50 mass parts or less are more preferable, and 40 mass parts or less are still more preferable.
 また、併用時の可塑剤及びエラストマーの質量比(可塑剤/エラストマー)は、広い温度領域での損失係数向上の観点から、10/90~90/10が好ましく、30/70~70/30がより好ましい。 In addition, the mass ratio of the plasticizer and the elastomer (plasticizer / elastomer) in the combined use is preferably 10/90 to 90/10, and 30/70 to 70/30 from the viewpoint of improving the loss coefficient in a wide temperature range. More preferable.
(熱可塑性エラストマー)
 エラストマーとして熱可塑性エラストマーを用いることで、高温域及び低温域での制振性が向上する効果が奏されるため、好ましい。さらに可塑剤と併用することにより、さらに高温域及び低温域での広い温度領域で制振性を向上させることができる。
(Thermoplastic elastomer)
Use of a thermoplastic elastomer as the elastomer is preferable because the effect of improving the damping properties in the high temperature range and the low temperature range is exhibited. Furthermore, by using together with the plasticizer, the vibration damping property can be further improved in a wide temperature range in the high temperature range and the low temperature range.
 熱可塑性エラストマーは、高温域及び低温域での制振性向上の観点から、ガラス転移温度Tgが、好ましくは-40℃以上であり、好ましくは20℃以下である。熱可塑性エラストマーのガラス転移温度は、後述の実施例に記載の方法に従って測定することができる。 The thermoplastic elastomer preferably has a glass transition temperature Tg of −40 ° C. or higher, and preferably 20 ° C. or lower, from the viewpoint of improving the damping performance in the high temperature range and the low temperature range. The glass transition temperature of the thermoplastic elastomer can be measured according to the method described in the examples below.
 本発明における熱可塑性エラストマーとしては、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ニトリル系熱可塑性エラストマー、フッ素系熱可塑性エラストマー、ポリブタジエン系熱可塑性エラストマー及びシリコーン系熱可塑性エラストマーから選択される少なくとも1種が好ましく、スチレン系熱可塑性エラストマーとしては、ポリスチレン-ビニル-ポリイソプレン-ポリスチレンブロック共重合体やスチレンとブタジエンとのコポリマー及びその水素添加物が挙げられ、例えば、クラレプラスチックス社製「ハイブラー」、旭化成株式会社製「タフテック」「S.O.E」(登録商標)、株式会社クラレ製「セプトン」(登録商標)、三菱化学株式会社製「ラバロン」(登録商標)等がある。オレフィン系熱可塑性エラストマーとしては、オレフィン系樹脂(ポリエチレン、ポリプロピレン等)のマトリックスにオレフィン系ゴム(EPR、EPDM)を微分散させたものが挙げられ、例えば、三菱化学株式会社製「サーモラン」(登録商標)、住友化学株式会社製「エスポレックス」(登録商標)等がある。ポリエステル系熱可塑性エラストマーとしては、ポリブチレンテレフタレートとポリエーテルとのコポリマー等が挙げられ、例えば、東レ・デュポン株式会社製「ハイトレル」(登録商標)等がある。ポリアミド系熱可塑性エラストマーとしては、ナイロンとポリエステル又はポリオールとのブロックコポリマーやラクタム、ジカルボン酸ポリエーテルジオールを原料としてエステル交換及び縮重合反応させたものが挙げられる。ウレタン系熱可塑性エラストマーとしては、例えば、日本ポリウレタン工業株式会社製「TPU」がある。ニトリル系熱可塑性エラストマーとしては、アクリロニトリルとブタジエンとを乳化重合したもの等が挙げられる。フッ素系熱可塑性エラストマーとしては、ビニリデンフロライドとヘキサフルオロプロピレンとの共重合体、ビニリデンフロライドとヘキサフルオロプロピレンとテトラフルオロエチレンとの共重合体等が挙げられ、例えば、昭和高分子株式会社製「エラフトール」(登録商標)、デュポン製「バイトン」(登録商標)シリーズ等がある。ポリブタジエン系及びシリコーン系熱可塑性エラストマーとしては、シロキサン結合を骨格として、そのケイ素原子に有機基などが直接結合した有機ケイ素高分子結合物等が挙げられ、例えば、信越シリコーン製KBMシリーズ等がある。熱可塑性エラストマーとしては、高温域及び低温域での制振性向上の観点からスチレン系熱可塑性エラストマーが好ましい。 The thermoplastic elastomer in the present invention includes styrene thermoplastic elastomer, olefin thermoplastic elastomer, polyester thermoplastic elastomer, polyamide thermoplastic elastomer, urethane thermoplastic elastomer, nitrile thermoplastic elastomer, fluorine thermoplastic elastomer And at least one selected from polybutadiene-based thermoplastic elastomers and silicone-based thermoplastic elastomers, and as styrene-based thermoplastic elastomers, polystyrene-vinyl-polyisoprene-polystyrene block copolymer, copolymer of styrene and butadiene, and The hydrogen additive can be mentioned, for example, “Hybler” manufactured by Kuraray Plastics, “Tough Tech” “S.O.E” (registered trademark) manufactured by Asahi Kasei Co., Ltd., Formula company manufactured by Kuraray Co., Ltd. "Septon" (registered trademark), manufactured by Mitsubishi Chemical Co., Ltd. "Rabalon" there is a (registered trademark), and the like. Examples of the olefin-based thermoplastic elastomer include those in which an olefin-based rubber (EPR, EPDM) is finely dispersed in a matrix of an olefin-based resin (polyethylene, polypropylene, etc.). Trademarks, "Espolex" (registered trademark) manufactured by Sumitomo Chemical Co., Ltd., and the like. Examples of polyester-based thermoplastic elastomers include copolymers of polybutylene terephthalate and polyether and the like, and examples thereof include Hytrel (registered trademark) manufactured by Toray DuPont Co., Ltd. Examples of polyamide-based thermoplastic elastomers include those obtained by transesterification and condensation polymerization reactions using block copolymers of nylon and polyester or polyol, lactams, and dicarboxylic acid polyether diols as raw materials. As a urethane type thermoplastic elastomer, there is, for example, "TPU" manufactured by Nippon Polyurethane Industry Co., Ltd. As a nitrile thermoplastic elastomer, what emulsion-polymerized acrylonitrile and butadiene, etc. are mentioned. Examples of the fluorine-based thermoplastic elastomer include copolymers of vinylidene fluoride and hexafluoropropylene, copolymers of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene, etc. For example, manufactured by Showa Highpolymer Co., Ltd. There are "Eraftol" (registered trademark), DuPont "Viton" (registered trademark) series, and the like. Polybutadiene-based and silicone-based thermoplastic elastomers include organic silicon polymer bonds in which an organic group or the like is directly bonded to the silicon atom with a siloxane bond as a skeleton, and examples thereof include KBM series made by Shin-Etsu Silicone. As a thermoplastic elastomer, a styrene-based thermoplastic elastomer is preferable from the viewpoint of the improvement of the damping property in the high temperature range and the low temperature range.
(スチレン系熱可塑性エラストマー)
 本発明におけるスチレン系熱可塑性エラストマー(以下、スチレン系エラストマーと称する場合がある。)は、ハードセグメントを構成するスチレン系化合物が重合してなるブロックA、及びソフトセグメントを構成する共役ジエンが重合してなるブロックBからなるものである。重合体ブロックAに用いるスチレン系化合物としては、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、1,3-ジメチルスチレン等のスチレン化合物;ビニルナフタレン、ビニルアントラセン等のビニル基を有する多環芳香族化合物等が挙げられ、これらのうちスチレン化合物の重合体が好ましく、スチレンの重合体がより好ましい。重合体ブロックBに用いる共役ジエンとしては、例えばブタジエン、イソプレン、ブチレン、エチレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられ、好ましくはポリイソプレン、ポリブタジエン、およびイソプレンとブタジエンの共重合体が挙げられ、これらの共役ジエン単量体から選ばれる1種又2種以上を重合したブロック共重合体である。またブロックBには前記重合体ブロックAに用いるスチレン系化合物が共重合されていても良い。各々の共重合体の場合には、その形態としてはランダム共重合体、ブロック共重合体、およびテーパード共重合体のいずれの形態も選択することができる。また、水素添加された構造でもよい。
(Styrenic thermoplastic elastomer)
In the styrenic thermoplastic elastomer (hereinafter sometimes referred to as styrenic elastomer) in the present invention, block A formed by polymerization of a styrenic compound constituting the hard segment, and conjugated diene constituting the soft segment are polymerized. The block B is composed of Examples of the styrene compound used for the polymer block A include styrene compounds such as styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene and 1,3-dimethylstyrene; vinyl naphthalene, Polycyclic aromatic compounds having a vinyl group such as vinyl anthracene and the like are mentioned, and among these, polymers of styrene compounds are preferable, and polymers of styrene are more preferable. The conjugated diene used for the polymer block B includes, for example, butadiene, isoprene, butylene, ethylene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like, preferably polyisoprene, polybutadiene, and The copolymer of isoprene and butadiene is mentioned, It is the block copolymer which superposed | polymerized 1 type (s) or 2 or more types selected from these conjugated diene monomers. Further, in the block B, a styrenic compound used for the polymer block A may be copolymerized. In the case of each copolymer, any form of a random copolymer, a block copolymer, and a tapered copolymer can be selected as the form thereof. Alternatively, a hydrogenated structure may be used.
 このようなスチレン系エラストマーの具体例を例示すると、ポリスチレン-イソプレンブロック共重合体(SIS)、ポリスチレン-ポリブタジエン共重合体(SEBS)、ポリスチレン-水素添加ポリブタジエン共重合体(SEBS)、ポリスチレン-水素添加ポリイソプレン-ポリスチレンブロック共重合体(SEPS)、ポリスチレン-ビニル-ポリイソプレン-ポリスチレンブロック共重合体(SHIVS)、ポリスチレン-水素添加ポリブタジエン-水素添加ポリイソプレン-ポリスチレンブロック共重合体、ポリスチレン-水素添加ポリブタジエン-ポリイソプレン-ポリスチレンブロック共重合体等が挙げられる。これらは一種類を単独で用いても、二種以上を併用してもよい。本発明においては中でも、ポリスチレン-ビニル-ポリイソプレン-ポリスチレンブロック共重合体を使用することが好ましく、このようなブロック共重合体の市販品としては、クラレプラスチックス社製「ハイブラー」シリーズが挙げられる。 Specific examples of such styrenic elastomers include polystyrene-isoprene block copolymer (SIS), polystyrene-polybutadiene copolymer (SEBS), polystyrene-hydrogenated polybutadiene copolymer (SEBS), polystyrene-hydrogenated Polyisoprene-polystyrene block copolymer (SEPS), polystyrene-vinyl-polyisoprene-polystyrene block copolymer (SHIVS), polystyrene-hydrogenated polybutadiene-hydrogenated polyisoprene-polystyrene block copolymer, polystyrene-hydrogenated polybutadiene -Polyisoprene-polystyrene block copolymer etc. are mentioned. These may be used alone or in combination of two or more. Among them, polystyrene-vinyl-polyisoprene-polystyrene block copolymer is preferably used in the present invention, and commercially available products of such block copolymers include “Hylar” series manufactured by Kuraray Plastics Co., Ltd. .
 スチレン系エラストマー中のスチレン含有量は、高温域及び低温域での制振性向上の観点から、好ましくは10質量%以上、より好ましくは15質量%以上であり、好ましくは30質量%以下、より好ましくは25質量%以下である。なお、本明細書において、高温域とは35~80℃のことを、低温域とは-20~10℃のことを意味し、スチレン系エラストマー中のスチレン含有量は、後述の実施例に記載の方法に従って測定することができる。 The styrene content in the styrenic elastomer is preferably 10% by mass or more, more preferably 15% by mass or more, preferably 30% by mass or less, from the viewpoint of improving the damping performance in the high temperature range and the low temperature range. Preferably it is 25 mass% or less. In the present specification, the high temperature range means 35 to 80 ° C., the low temperature range means -20 to 10 ° C., and the styrene content in the styrenic elastomer is described in the following examples. It can be measured according to the method of
 スチレン系エラストマーとしては、スチレン・イソプレンブロック共重合体及び/又はスチレン・ブタジエンブロック共重合体が好ましい。 As a styrene-type elastomer, a styrene isoprene block copolymer and / or a styrene butadiene block copolymer are preferable.
(スチレン・イソプレンブロック共重合体)
 本発明におけるスチレン・イソプレンブロック共重合体は、両末端にポリスチレンブロックを有し、その間にポリイソプレンブロック又はビニル-ポリイソプレンブロックの少なくとも一方のブロックを有するブロック共重合体である。また、イソプレンブロックやブタジエンブロックが共重合されていてもよく、水素添加された構造でもよい。
(Styrene isoprene block copolymer)
The styrene isoprene block copolymer in the present invention is a block copolymer having a polystyrene block at both ends, and having at least one block of a polyisoprene block or a vinyl-polyisoprene block therebetween. In addition, an isoprene block or a butadiene block may be copolymerized or may have a hydrogenated structure.
 このようなスチレン・イソプレンブロック共重合体の具体例を例示すると、ポリスチレン-イソプレンブロック共重合体(SIS)、ポリスチレン-水素添加ポリイソプレン-ポリスチレンブロック共重合体(SEPS)、ポリスチレン-ビニル-ポリイソプレン-ポリスチレンブロック共重合体(SHIVS)、ポリスチレン-水素添加ポリブタジエン-水素添加ポリイソプレン-ポリスチレンブロック共重合体、ポリスチレン-水素添加ポリブタジエン-ポリイソプレン-ポリスチレンブロック共重合体等が挙げられる。これらは一種類を単独で用いても、二種以上を併用してもよい。本発明においては中でも、ポリスチレン-ビニル-ポリイソプレン-ポリスチレンブロック共重合体を使用することが好ましく、このようなブロック共重合体の市販品としては、クラレプラスチックス社製「ハイブラー」シリーズが挙げられる。 Specific examples of such styrene-isoprene block copolymer include polystyrene-isoprene block copolymer (SIS), polystyrene-hydrogenated polyisoprene-polystyrene block copolymer (SEPS), polystyrene-vinyl-polyisoprene Polystyrene block copolymer (SHIVS), polystyrene-hydrogenated polybutadiene-hydrogenated polyisoprene-polystyrene block copolymer, polystyrene-hydrogenated polybutadiene-polyisoprene-polystyrene block copolymer, and the like. These may be used alone or in combination of two or more. Among them, polystyrene-vinyl-polyisoprene-polystyrene block copolymer is preferably used in the present invention, and commercially available products of such block copolymers include “Hylar” series manufactured by Kuraray Plastics Co., Ltd. .
(スチレン・ブタジエンブロック共重合体)
 本発明におけるスチレン・ブタジエンブロック共重合体は、両末端にポリスチレンブロックを有し、その間にポリブタジエンブロックまたはその水素添加物を有するブロック共重合体である。また、イソプレンブロックやブタジエンブロックが共重合されていてもよく、水素添加された構造でもよい。
(Styrene butadiene block copolymer)
The styrene butadiene block copolymer in the present invention is a block copolymer having a polystyrene block at both ends and having a polybutadiene block or a hydrogenated substance thereof in between. In addition, an isoprene block or a butadiene block may be copolymerized or may have a hydrogenated structure.
 このようなスチレン・ブタジエンブロック共重合体の具体例を例示すると、ポリスチレン-ポリブタジエン共重合体(SEBS)、ポリスチレン-水素添加ポリブタジエン共重合体(SEBS)、ポリスチレン-ポリブタジエン共重合体(SBS)、ポリスチレン-水素添加ポリブタジエン共重合体(SBS)等が挙げられる。これらは一種類を単独で用いても、二種以上を併用してもよい。本発明においては中でも、ポリスチレン-水素添加ポリブタジエン共重合体(SEBS)を使用することが好ましく、このようなブロック共重合体の市販品としては、旭化成株式会社製「S.O.E」が挙げられる。 Specific examples of such a styrene-butadiene block copolymer include polystyrene-polybutadiene copolymer (SEBS), polystyrene-hydrogenated polybutadiene copolymer (SEBS), polystyrene-polybutadiene copolymer (SBS), polystyrene And hydrogenated polybutadiene copolymers (SBS) and the like. These may be used alone or in combination of two or more. In the present invention, among these, polystyrene-hydrogenated polybutadiene copolymer (SEBS) is preferably used, and as a commercial product of such a block copolymer, "S.O.E" manufactured by Asahi Kasei Co., Ltd. may be mentioned. Be
 ポリカーボネートとの接着性の観点から、不飽和結合の少ない、又は不飽和結合のないエラストマーが好ましい。かかる観点から好ましいエラストマーとしては、上記の各種エラストマーの中で、水素添加されたものが挙げられる。
 さらに、ポリカーボネートとの接着性の観点から、酸化劣化のしにくい、又は酸化劣化が生じないエラストマーが好ましい。かかる観点から好ましいエラストマーとしては、上記の各種エラストマーの中で、水素添加されたものが挙げられる。
 さらに、ポリカーボネートとの接着性の観点から、ポリスチレン-水素添加ポリブタジエン共重合体(SEBS)を使用することが好ましい。
From the viewpoint of adhesion to polycarbonate, elastomers with few or no unsaturated bonds are preferable. As a preferable elastomer from this viewpoint, the thing hydrogenated among various said elastomers is mentioned.
Furthermore, from the viewpoint of adhesion to polycarbonate, an elastomer that is resistant to oxidative degradation or does not undergo oxidative degradation is preferable. As a preferable elastomer from this viewpoint, the thing hydrogenated among various said elastomers is mentioned.
Furthermore, from the viewpoint of adhesion to polycarbonate, it is preferable to use polystyrene-hydrogenated polybutadiene copolymer (SEBS).
[無機充填剤(C)]
 本発明におけるポリエステル樹脂組成物は、剛性向上の観点から、無機充填剤(C)を含有する。本発明における無機充填剤(C)としては、公知の無機充填剤であれば特に限定されず、通常熱可塑性樹脂の強化に用いられる無機充填剤で、具体的には、板状の充填剤、粒状の充填剤、針状の充填剤、及び繊維状の充填剤からなる群より選ばれる1種又は2種以上を用いることができる。
[Inorganic filler (C)]
The polyester resin composition in the present invention contains an inorganic filler (C) from the viewpoint of rigidity improvement. The inorganic filler (C) in the present invention is not particularly limited as long as it is a known inorganic filler, and is an inorganic filler generally used for reinforcing a thermoplastic resin, specifically, a plate-like filler, One or more selected from the group consisting of granular fillers, acicular fillers, and fibrous fillers can be used.
 板状の充填剤とは、アスペクト比(板状体の最大面における最長辺の長さ/該面の厚み)が20以上150以下のものである。板状充填剤の長さ(最大面における最長辺の長さ)は、ポリエステル樹脂組成物での良好な分散性を得る、曲げ弾性率を向上させる、及び/又は損失係数を向上させる観点から、好ましくは1.0μm以上、より好ましくは5μm以上、更に好ましくは10μm以上、更に好ましくは20μm以上であり、好ましくは150μm以下、より好ましくは100μm以下、更に好ましくは50μm以下、更に好ましくは40μm以下、更に好ましくは30μm以下である。厚みは特に限定されないが、同様の観点から、好ましくは0.01μm以上、より好ましくは0.05μm以上、更に好ましくは0.1μm以上、更に好ましくは0.2μm以上であり、好ましくは5μm以下、より好ましくは3μm以下、更に好ましくは2μm以下、更に好ましくは1μm以下、更に好ましくは0.5μm以下である。また、板状充填剤のアスペクト比としては、同様の観点から、好ましくは30以上、より好ましくは40以上、更に好ましくは50以上であり、また、好ましくは120以下、より好ましくは100以下、更に好ましくは90以下、更に好ましくは80以下である。板状充填剤の具体例としては、例えば、マイカ等、特開2016-89148号公報の段落0064に列挙されたものが挙げられる。なお、板状充填剤の辺長及び厚みは、無作為に選んだ100本の充填剤を光学顕微鏡で観察してその数平均を算出することにより求めることができる。 The plate-like filler has an aspect ratio (length of the longest side of the largest surface of the plate-like body / thickness of the surface) of 20 or more and 150 or less. From the viewpoint of obtaining good dispersibility in the polyester resin composition, improving the flexural modulus, and / or improving the loss factor, the length of the plate-like filler (length of the longest side in the largest surface) It is preferably 1.0 μm or more, more preferably 5 μm or more, still more preferably 10 μm or more, further preferably 20 μm or more, preferably 150 μm or less, more preferably 100 μm or less, further preferably 50 μm or less, still more preferably 40 μm or less More preferably, it is 30 μm or less. The thickness is not particularly limited, but from the same viewpoint, preferably 0.01 μm or more, more preferably 0.05 μm or more, still more preferably 0.1 μm or more, still more preferably 0.2 μm or more, preferably 5 μm or less. More preferably, it is 3 μm or less, still more preferably 2 μm or less, still more preferably 1 μm or less, and still more preferably 0.5 μm or less. Further, the aspect ratio of the plate-like filler is preferably 30 or more, more preferably 40 or more, still more preferably 50 or more, and preferably 120 or less, more preferably 100 or less, from the same viewpoint. Preferably it is 90 or less, More preferably, it is 80 or less. Specific examples of the plate-like filler include, for example, those listed in paragraph 0064 of JP-A-2016-89148, such as mica. In addition, the side length and thickness of a plate-shaped filler can be calculated | required by observing 100 fillers selected at random with an optical microscope, and calculating the number average.
 粒状の充填剤とは、真球状の形態を呈するものだけでなく、ある程度断面楕円状や略長円状のものも含み、アスペクト比(粒状体の最長の直径/粒状体の最短の直径)が1以上2未満のものであり、1に近いものが好適である。粒状充填剤の平均粒径は、ポリエステル樹脂組成物での良好な分散性を得る、曲げ弾性率を向上させる、及び/又は損失係数を向上させる観点から、好ましくは1.0μm以上、より好ましくは5μm以上、更に好ましくは10μm以上、更に好ましくは20μm以上であり、好ましくは50μm以下、より好ましくは40μm以下、更に好ましくは30μm以下である。粒状充填剤の具体例としては、例えば特開2016-89148号公報の段落0065に列挙されたものが挙げられる。なお、粒状充填剤の直径は、無作為に選んだ100本の充填剤を切断して、断面を光学顕微鏡で観察しその数平均を算出することにより求めることができる。 The particulate filler is not limited to those having a spherical shape, but also to those having a cross-sectional elliptical or substantially oval shape, and has an aspect ratio (longest diameter of granular body / shortest diameter of granular body) One or more and less than two, and one close to one is preferable. The average particle diameter of the particulate filler is preferably 1.0 μm or more, more preferably from the viewpoint of obtaining good dispersibility in the polyester resin composition, improving the flexural modulus, and / or improving the loss factor. The thickness is 5 μm or more, more preferably 10 μm or more, further preferably 20 μm or more, preferably 50 μm or less, more preferably 40 μm or less, and still more preferably 30 μm or less. Specific examples of the particulate filler include those listed in paragraph 0065 of JP-A-2016-89148. The diameter of the particulate filler can be determined by cutting 100 fillers randomly selected, observing the cross section with an optical microscope, and calculating the number average.
 針状の充填剤とは、アスペクト比(粒子長さ/粒子径)が2以上20未満の範囲のものである。針状充填剤の長さ(粒子長さ)は、ポリエステル樹脂組成物での良好な分散性を得る、曲げ弾性率を向上させる、及び/又は損失係数を向上させる観点から、好ましくは1.0μm以上、より好ましくは5μm以上、更に好ましくは10μm以上、更に好ましくは20μm以上、更に好ましくは30μm以上であり、好ましくは150μm以下、より好ましくは100μm以下、更に好ましくは80μm以下、更に好ましくは60μm以下である。粒子径は特に限定されないが、同様の観点から、好ましくは0.01μm以上、より好ましくは0.1μm以上、更に好ましくは0.5μm以上であり、好ましくは20μm以下、より好ましくは15μm以下、更に好ましくは10μm以下である。また、針状充填剤のアスペクト比としては、同様の観点から、好ましくは5以上であり、また、好ましくは10以下である。針状充填剤の具体例としては、例えば特開2016-89148号公報の段落0066に列挙されたものが挙げられる。なお、針状充填剤の粒子長さ及び粒子径は、無作為に選んだ100本の充填剤を光学顕微鏡で観察してその数平均を算出することにより求めることができる。粒子径に短径と長径がある場合は長径を用いて算出する。 The needle-like filler has an aspect ratio (particle length / particle diameter) in the range of 2 or more and less than 20. The length (particle length) of the needle-like filler is preferably 1.0 μm from the viewpoint of obtaining good dispersibility in the polyester resin composition, improving the flexural modulus, and / or improving the loss factor. Or more, more preferably 5 μm or more, still more preferably 10 μm or more, still more preferably 20 μm or more, still more preferably 30 μm or more, preferably 150 μm or less, more preferably 100 μm or less, still more preferably 80 μm or less, more preferably 60 μm or less It is. The particle diameter is not particularly limited, but from the same viewpoint, preferably 0.01 μm or more, more preferably 0.1 μm or more, still more preferably 0.5 μm or more, preferably 20 μm or less, more preferably 15 μm or less, further Preferably it is 10 micrometers or less. Further, the aspect ratio of the needle-like filler is preferably 5 or more, and preferably 10 or less from the same viewpoint. Specific examples of the needle-like filler include those listed in paragraph 0066 of JP-A-2016-89148. The particle length and particle diameter of the needle-like filler can be determined by observing 100 fillers randomly selected with an optical microscope and calculating the number average. When the particle size has a minor axis and a major axis, the major axis is used to calculate.
 繊維状の充填剤とは、アスペクト比(平均繊維長/平均繊維径)が150を超えるものである。繊維状充填剤の長さ(平均繊維長)としては、曲げ弾性率向上、損失係数向上の観点から、好ましくは0.15mm以上、より好ましくは0.2mm以上、更に好ましくは0.5mm以上、更に好ましくは1mm以上であり、好ましくは30mm以下、より好ましくは10mm以下、更に好ましくは5mm以下である。平均繊維径は特に限定されないが、同様の観点から、好ましくは1μm以上、より好ましくは3μm以上であり、好ましくは30μm以下、より好ましくは20μm以下、更に好ましくは10μm以下である。また、アスペクト比としては、同様の観点から、好ましくは200以上、より好ましくは250以上、更に好ましくは500以上であり、また、好ましくは10000以下、より好ましくは5000以下、更に好ましくは1000以下、更に好ましくは800以下である。繊維状充填剤の具体例としては、例えば特開2016-89148号公報の段落0067に列挙されたものが挙げられる。なお、繊維状充填剤の繊維長及び繊維径は、無作為に選んだ100本の充填剤を光学顕微鏡で観察してその数平均を算出することにより求めることができる。繊維径に短径と長径がある場合は長径を用いて算出する。また繊維径は長径と短径が等しい円形だけでなく、長径と短径が異なる長円形(例えば長径/短径=4)や、まゆ型(例えば長径/短径=2)を用いても良い。一方、2軸押出機等の混練機を使用して樹脂組成物を作成するために樹脂と繊維状充填剤を溶融混練する場合は、混練部での剪断力により繊維状充填剤が切断され平均繊維長は短くなるが、樹脂中における繊維状充填剤の平均繊維長は、損失係数向上と剛性向上の観点から100~800μmが好ましく、200~700μmがより好ましく、300~600μmが更に好ましい。 The fibrous filler is one having an aspect ratio (average fiber length / average fiber diameter) of more than 150. The length (average fiber length) of the fibrous filler is preferably 0.15 mm or more, more preferably 0.2 mm or more, and still more preferably 0.5 mm or more, from the viewpoint of improving bending modulus and loss coefficient. More preferably, it is 1 mm or more, preferably 30 mm or less, more preferably 10 mm or less, and still more preferably 5 mm or less. The average fiber diameter is not particularly limited, but from the same viewpoint, it is preferably 1 μm or more, more preferably 3 μm or more, preferably 30 μm or less, more preferably 20 μm or less, further preferably 10 μm or less. The aspect ratio is preferably 200 or more, more preferably 250 or more, still more preferably 500 or more, and preferably 10000 or less, more preferably 5000 or less, still more preferably 1000 or less, from the same viewpoint. More preferably, it is 800 or less. Specific examples of fibrous fillers include those listed in paragraph 0067 of JP-A-2016-89148. In addition, the fiber length and fiber diameter of a fibrous filler can be calculated | required by observing 100 fillers selected at random with an optical microscope, and calculating the number average. When the fiber diameter has a short diameter and a long diameter, it is calculated using the long diameter. Further, the fiber diameter may be not only a circle having the same major axis and minor axis, but also an oval having different major axis and minor axis (for example, major axis / minor axis = 4) or cocoon type (for example, major axis / minor axis = 2) . On the other hand, when melt-kneading a resin and a fibrous filler in order to prepare a resin composition using a kneader such as a twin-screw extruder, the fibrous filler is cut by the shear force in the kneading section and the average is Although the fiber length is shortened, the average fiber length of the fibrous filler in the resin is preferably 100 to 800 μm, more preferably 200 to 700 μm, and still more preferably 300 to 600 μm from the viewpoint of improving the loss coefficient and rigidity.
 前記の粒状、板状、又は針状充填剤は、エチレン/酢酸ビニル共重合体などの熱可塑性樹脂や、エポキシ樹脂などの熱硬化性樹脂で被覆又は集束処理されていてもよく、アミノシランやエポキシシランなどのカップリング剤などで処理されていても良い。 The granular, plate-like or needle-like filler may be coated or converged with a thermoplastic resin such as ethylene / vinyl acetate copolymer or a thermosetting resin such as epoxy resin, aminosilane or epoxy It may be treated with a coupling agent such as silane.
 これらの充填剤は、単独で又は2種以上組み合わせて用いることができ、形状の異なる充填剤を組み合わせてもよい。なかでも、曲げ弾性率を向上させ、損失係数の低下を抑制する観点から、好ましくは板状充填剤、針状充填剤、及び繊維状充填剤からなる群より選ばれる1種又は2種以上、より好ましくは板状充填剤及び針状充填剤からなる群より選ばれる1種又は2種以上、更に好ましくは板状充填剤の1種又は2種以上である。具体的には、マイカ、タルク、ガラス繊維を用いることが好ましく、マイカ、タルクを用いることがより好ましく、マイカを用いることが更に好ましい。板状充填剤は射出成形体等においては流動方向により配向するため、他の充填剤に比べて、配向方向での引張弾性率や配向方向に垂直な方向での曲げ弾性率が顕著に向上し、また、成形体が振動する際に発生する摩擦に影響する界面が多く存在するため、さらに損失係数の低下が抑制されることが推察される。無機充填剤中の板状充填剤の含有量は、損失係数低下を抑制する観点から、60質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が更に好ましい。 These fillers can be used alone or in combination of two or more, and fillers of different shapes may be combined. Among them, at least one selected from the group consisting of a plate-like filler, a needle-like filler, and a fibrous filler, from the viewpoint of improving the flexural modulus and suppressing the decrease in loss coefficient. More preferably, it is 1 type, or 2 or more types selected from the group which consists of a plate-like filler and a needle-like filler, More preferably, it is 1 type or 2 or more types of a plate-like filler. Specifically, mica, talc and glass fiber are preferably used, mica and talc are more preferably used, and mica is more preferably used. The plate-like filler is oriented in the direction of flow in the injection-molded product, etc., so the tensile modulus in the direction of orientation and the flexural modulus in the direction perpendicular to the direction of orientation are significantly improved compared to other fillers. Also, it is presumed that the loss coefficient is further suppressed because there are many interfaces that affect the friction generated when the molded body vibrates. The content of the plate-like filler in the inorganic filler is preferably 60% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more from the viewpoint of suppressing the loss coefficient decrease.
 無機充填剤(C)の含有量は、熱可塑性ポリエステル樹脂(A)100質量部に対して、剛性向上の観点から、10質量部以上が好ましく、15質量部以上がより好ましく、20質量部以上が更に好ましく、30質量部以上が更に好ましい。また、損失係数の低下を抑制する観点から、80質量部以下が好ましく、70質量部以下がより好ましく、60質量部以下が更に好ましく、50質量部以下が更に好ましく、45質量部以下が更に好ましい。なお、無機充填剤の含有量とは、用いられる無機充填剤の合計質量のことであり、複数の化合物が含有される場合には、総含有量のことを意味する。 From the viewpoint of rigidity improvement, the content of the inorganic filler (C) is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, and 20 parts by mass or more with respect to 100 parts by mass of the thermoplastic polyester resin (A). Is more preferable, and 30 parts by mass or more is further preferable. Further, from the viewpoint of suppressing a decrease in loss factor, 80 parts by mass or less is preferable, 70 parts by mass or less is more preferable, 60 parts by mass or less is more preferable, 50 parts by mass or less is more preferable, 45 parts by mass or less is more preferable . In addition, content of an inorganic filler is the total mass of the inorganic filler used, and when several compounds are contained, it means the thing of total content.
 また、ポリエステル樹脂組成物中、無機充填剤の含有量は、剛性向上の観点から、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上、更に好ましくは20質量%以上、更に好ましくは23質量%以上であり、損失係数の低下を抑制する観点から、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは30質量%以下である。 Further, in the polyester resin composition, the content of the inorganic filler is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, further preferably 20% by mass from the viewpoint of rigidity improvement. % Or more, more preferably 23% by mass or more, and preferably 40% by mass or less, more preferably 35% by mass or less, still more preferably 30% by mass or less from the viewpoint of suppressing a decrease in loss factor.
 本発明において、成分(B)と無機充填剤(C)の質量比(成分(B)/無機充填剤(C))は、弾性率向上と損失係数向上の観点から、10/90~60/40が好ましく、25/75~50/50がより好ましく、40/60~47/53が更に好ましい。 In the present invention, the mass ratio of the component (B) to the inorganic filler (C) (component (B) / inorganic filler (C)) is 10/90 to 60 / from the viewpoint of improving the elastic modulus and the loss factor. 40 is preferable, 25/75 to 50/50 is more preferable, and 40/60 to 47/53 is further preferable.
[有機結晶核剤(D)]
 また、本発明におけるポリエステル樹脂組成物は、ポリエステル樹脂の結晶化速度を向上させ、ポリエステル樹脂の結晶性を向上させ、曲げ弾性率を向上させる観点から、有機結晶核剤を含有することができる。
[Organic crystal nucleating agent (D)]
The polyester resin composition in the present invention can contain an organic crystal nucleating agent from the viewpoint of improving the crystallization rate of the polyester resin, improving the crystallinity of the polyester resin, and improving the flexural modulus.
 有機結晶核剤としては、公知の有機系結晶核剤を用いることができ、有機カルボン酸金属塩、有機スルホン酸塩、カルボン酸アミド、リン化合物金属塩、ロジン類の金属塩、アルコキシ金属塩、及び有機含窒素化合物などを用いることができる。具体的には、例えば特開2016-89148号公報の段落0074に列挙されたものが挙げられる。 As the organic crystal nucleating agent, known organic crystal nucleating agents can be used, and organic carboxylic acid metal salts, organic sulfonic acid salts, carboxylic acid amides, phosphorus compound metal salts, metal salts of rosins, alkoxy metal salts, And organic nitrogen-containing compounds can be used. Specifically, for example, those listed in paragraph 0074 of JP-A-2016-89148 can be mentioned.
 有機結晶核剤(D)の含有量は、熱可塑性ポリエステル樹脂(A)100質量部に対して、曲げ弾性率、及び損失係数を向上させる観点から、好ましくは0.01質量部以上、より好ましくは0.1質量部以上、更に好ましくは0.2質量部以上であり、曲げ弾性率、及び損失係数を向上させる観点から、好ましくは20質量部以下、より好ましくは10質量部以下、更に好ましくは5質量部以下、更に好ましくは3質量部以下、更に好ましくは1質量部以下である。なお、本明細書において、有機結晶核剤の含有量とは、ポリエステル樹脂組成物に含有される全ての有機結晶核剤の合計含有量を意味する。 The content of the organic crystal nucleating agent (D) is preferably 0.01 parts by mass or more, more preferably 100 parts by mass of the thermoplastic polyester resin (A), from the viewpoint of improving the bending elastic modulus and the loss coefficient. Is 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, from the viewpoint of improving flexural modulus and loss factor Is 5 parts by mass or less, more preferably 3 parts by mass or less, still more preferably 1 part by mass or less. In the present specification, the content of the organic crystal nucleating agent means the total content of all the organic crystal nucleating agents contained in the polyester resin composition.
 本発明におけるポリエステル樹脂組成物は、前記以外の他の成分として、滑剤、無機結晶核剤、加水分解抑制剤、難燃剤、酸化防止剤、炭化水素系ワックス類やアニオン型界面活性剤である滑剤、紫外線吸収剤、帯電防止剤、防曇剤、光安定剤、顔料、防カビ剤、抗菌剤、発泡剤等を、本発明の効果を損なわない範囲で含有することができる。また同様に、本発明の効果を阻害しない範囲内で他の高分子材料や他の樹脂組成物を含有することも可能である。 The polyester resin composition in the present invention is a lubricant other than the above components, which is a lubricant, an inorganic crystal nucleating agent, a hydrolysis inhibitor, a flame retardant, an antioxidant, a hydrocarbon wax and an anionic surfactant. An ultraviolet absorber, an antistatic agent, an antifogging agent, a light stabilizer, a pigment, an antifungal agent, an antibacterial agent, a foaming agent, etc. can be contained in the range which does not impair the effect of the present invention. Similarly, it is possible to contain other polymer materials and other resin compositions as long as the effects of the present invention are not impaired.
 本発明におけるポリエステル樹脂組成物は、熱可塑性ポリエステル樹脂(A)、可塑剤及び/又はエラストマーである成分(B)、並びに無機充填剤(C)を含有するのであれば特に限定なく調製することができる。例えば、熱可塑性ポリエステル樹脂、可塑剤及び/又はエラストマー、ならびに無機充填剤、更に必要により各種添加剤を含有する原料を、密閉式ニーダー、1軸もしくは2軸の押出機、オープンロール型混練機等の公知の混練機を用いて溶融混練して調製することができる。溶融混練後は、公知の方法に従って、溶融混練物を乾燥又は冷却させてもよい。また、原料は、予めヘンシェルミキサー、スーパーミキサー等を用いて均一に混合した後に、溶融混練に供することも可能である。なお、溶融混練する際にポリエステル樹脂の可塑性を促進させるため、超臨界ガスを存在させて溶融混合させてもよい。 The polyester resin composition in the present invention may be prepared without particular limitation as long as it contains a thermoplastic polyester resin (A), a component (B) which is a plasticizer and / or an elastomer, and an inorganic filler (C). it can. For example, materials such as thermoplastic polyester resin, plasticizer and / or elastomer, and inorganic filler, and, if necessary, various additives, may be sealed kneader, single- or twin-screw extruder, open-roll type kneader, etc. The composition can be prepared by melt-kneading using a known kneader. After melt-kneading, the melt-kneaded product may be dried or cooled according to a known method. The raw materials can also be subjected to melt-kneading after being uniformly mixed in advance using a Henschel mixer, a super mixer, or the like. In addition, in order to promote the plasticity of a polyester resin at the time of melt-kneading, a supercritical gas may be made to melt-mix.
 溶融混練温度は、用いる熱可塑性ポリエステル樹脂の種類によって一概には設定されないが、ポリエステル樹脂組成物の成形性及び劣化防止を向上する観点から、好ましくは220℃以上、より好ましくは225℃以上、更に好ましくは230℃以上、そして、好ましくは300℃以下、より好ましくは290℃以下、更に好ましくは280℃以下、更に好ましくは260℃以下、更に好ましくは250℃以下、更に好ましくは240℃以下である。溶融混練時間は、溶融混練温度、混練機の種類によって一概には決定できないが、15~900秒間が好ましい。 The melt-kneading temperature is not generally set depending on the type of thermoplastic polyester resin to be used, but from the viewpoint of improving the moldability and prevention of deterioration of the polyester resin composition, it is preferably 220 ° C. or more, more preferably 225 ° C. or more It is preferably 230 ° C. or more, preferably 300 ° C. or less, more preferably 290 ° C. or less, still more preferably 280 ° C. or less, still more preferably 260 ° C. or less, still more preferably 250 ° C. or less, more preferably 240 ° C. or less . The melt-kneading time can not be determined generally depending on the melt-kneading temperature and the type of the kneader, but it is preferably 15 to 900 seconds.
2.積層シートの製造方法
 次に、本発明の積層シートの製造方法について説明する。
 本発明の積層シートは、従来公知の方法により製造することができる。例えば、各層を予め別々に形成しておきラミネートする又は熱圧着プレスする方法、予め形成した層の上面又は下面にコーティングして他の層を形成させる方法、それぞれの樹脂層を共押出し方により積層する方法等が挙げられる。以下、製造方法の一例として、各層を予め別々に形成しておき、各層を積み重ねた後に熱圧着プレスする方法をより具体的に述べる。
2. Method of Manufacturing Laminated Sheet Next, a method of manufacturing the laminated sheet of the present invention will be described.
The laminated sheet of the present invention can be produced by a conventionally known method. For example, a method in which each layer is separately formed in advance and then laminated or thermocompression-pressed, a method in which the upper or lower surface of the previously formed layer is coated to form another layer, and respective resin layers are laminated by coextrusion And the like. Hereinafter, as an example of the manufacturing method, a method will be described more specifically, in which each layer is separately formed in advance, each layer is stacked, and then thermocompression bonding is performed.
<ポリカーボネート層の製造>
 ポリカーボネート層として使用されるポリカーボネート樹脂組成物から成形されるシート状成形体は、公知の方法、例えばインフレーション成形、押出シート成形、プレス成型、キャスト成形等の方法により、所望の厚みのものを得ることができる。
<Manufacture of polycarbonate layer>
A sheet-like molded article molded from a polycarbonate resin composition used as a polycarbonate layer is to obtain a desired thickness by a known method such as inflation molding, extrusion sheet molding, press molding, cast molding and the like. Can.
<制振層の製造>
 前述のようにして調製されるポリエステル樹脂組成物の溶融混練物を、例えば、公知の押出機や延伸機に供給して延伸することによって、所望の厚みの制振層を製造することができる。
<Manufacturing of damping layer>
A damping layer of a desired thickness can be produced by feeding the melt-kneaded product of the polyester resin composition prepared as described above to, for example, a known extruder or drawing machine and drawing.
<熱圧着プレスの条件>
 前述のようにして製造した各層を所定の順序で重ね合わせる。プレス機にセットし、圧力1~7MPa、温度160~190℃、プレス時間0.5~2.0分間の条件で圧着して、その後、常温になるまで冷却し、所定の積層シートを得ることができる。熱圧着プレスで積層シートを製造する場合、プレス前後でポリカーボネート層や制振層の厚さの変化はほとんど無視できる程度である。
<Conditions of thermocompression bonding press>
The layers produced as described above are superimposed in a predetermined order. Set in a press, press-fit under the conditions of pressure 1 to 7MPa, temperature 160 to 190 ° C, press time 0.5 to 2.0 minutes, and then cool down to room temperature to obtain a predetermined laminated sheet Can. In the case of producing a laminated sheet by a thermocompression bonding press, changes in the thickness of the polycarbonate layer and the damping layer are almost negligible before and after the pressing.
 上述した実施形態に関し、本発明はさらに以下の積層シートを開示する。 With respect to the embodiment described above, the present invention further discloses the following laminated sheet.
<1> 制振層とポリカーボネート層とが積層されている積層シートであって、
 該制振層が積層シートの表面及び/又は表面近傍に存在し、
 該制振層が、ジカルボン酸成分とジオール成分とを含む成分から構成される熱可塑性ポリエステル樹脂(A)、可塑剤及び/又はエラストマーである成分(B)、並びに無機充填剤(C)を含有してなるポリエステル樹脂組成物のシート状成形体である、積層シート。
<1> A laminated sheet in which a damping layer and a polycarbonate layer are laminated,
The damping layer is present on the surface and / or near the surface of the laminated sheet,
The damping layer contains a thermoplastic polyester resin (A) composed of a component containing a dicarboxylic acid component and a diol component, a component (B) which is a plasticizer and / or an elastomer, and an inorganic filler (C) The laminated sheet which is a sheet-like molded object of the polyester resin composition formed.
<2> 積層シートの上部表面からの制振層の相対的位置(%)が、好ましくは40%以内、より好ましくは33%以内、更に好ましくは30%以内、更に好ましくは25%以内、更に好ましくは20%以内、更に好ましくは15%以内、更に好ましくは10%以内であり、そして、好ましくは0.05%以上、より好ましくは0.25%以上、更に好ましくは0.5%以上、更に好ましくは1.0%以上、更に好ましくは5.0%以上、更に好ましくは10%以上である、前記<1>に記載の積層シート。
<3> 積層シート中の制振層の割合が、体積分率で、好ましくは1%以上、より好ましくは5%以上、更に好ましくは10%以上であり、そして、好ましくは70%以下、より好ましくは50%以下、更に好ましくは34%以下、さらに好ましくは25%以下である、前記<1>又は<2>に記載の積層シート。
<4> 熱可塑性ポリエステル樹脂(A)がポリブチレンテレフタレートを含む、前記<1>~<3>のいずれか1項に記載の積層シート。
<5> 無機充填剤(C)が板状充填剤を含む、前記<1>~<4>のいずれか1項に記載の積層シート。
<6> (B)成分が、1種以上の可塑剤と1種以上のエラストマーとを含む、前記<1>~<5>のいずれか1項に記載の積層シート。
<7> 制振層の少なくとも1層が10~40%の位置割合にある、前記<1>~<6>のいずれか1項に記載の積層シート。
<8> 各ポリカーボネート層の厚みが、好ましくは0.05mm以上、より好ましくは0.10mm以上、更に好ましくは0.15mm以上であり、そして、好ましくは10mm以下、より好ましくは5.0mm以下、更に好ましくは3.5mm以下である、前記<1>~<7>のいずれか1項に記載の積層シート。
<9> 各制振層の厚みが、好ましくは0.05mm以上、より好ましくは0.2mm以上、更に好ましくは0.4mm以上であり、そして、好ましくは10mm以下、より好ましくは5.0mm以下、更に好ましくは1.0mm以下である、前記<1>~<8>のいずれか1項に記載の積層シート。
<10> 積層シート全体の厚みが、好ましくは0.3mm以上、より好ましくは1.0mm以上、更に好ましくは1.5mm以上、更に好ましくは2.0mm以上、更に好ましくは2.5mm以上であり、そして、好ましくは30mm以下、より好ましくは10mm以下、更に好ましくは5.0mm以下である、前記<1>~<9>のいずれか1項に記載の積層シート。
<11> 制振層の総厚みを100%とした場合、ポリカーボネート層の総厚みが、好ましくは100%以上、より好ましくは200%以上、更に好ましくは300%以上であり、そして、好ましくは2000%以下、より好ましくは1000%以下である、前記<1>~<10>のいずれか1項に記載の積層シート。
<12> 熱可塑性ポリエステル樹脂(A)が好ましくはポリブチレンテレフタレートであり;可塑剤が好ましくは、ポリエステル系可塑剤、多価アルコールエステル系可塑剤、多価カルボン酸エステル系可塑剤、ビスフェノール系可塑剤からなる群より選ばれる1種以上であり;エラストマーが好ましくは、ポリスチレン-イソプレンブロック共重合体(SIS)、ポリスチレン-ポリブタジエン共重合体(SEBS)、ポリスチレン-水素添加ポリブタジエン共重合体(SEBS)、ポリスチレン-水素添加ポリイソプレン-ポリスチレンブロック共重合体(SEPS)、ポリスチレン-ビニル-ポリイソプレン-ポリスチレンブロック共重合体(SHIVS)、ポリスチレン-水素添加ポリブタジエン-水素添加ポリイソプレン-ポリスチレンブロック共重合体及びポリスチレン-水素添加ポリブタジエン-ポリイソプレン-ポリスチレンブロック共重合体からなる群より選択される1種以上のスチレン系エラストマーであり;並びに無機充填剤(C)が好ましくは板状充填剤、より好ましくはマイカ及び/又はタルクである、前記<1>~<11>のいずれか1項に記載の積層シート。
The relative position (%) of the damping layer from the upper surface of the <2> laminated sheet is preferably 40% or less, more preferably 33% or less, still more preferably 30% or less, still more preferably 25% or less Preferably it is 20% or less, more preferably 15% or less, more preferably 10% or less, and preferably 0.05% or more, more preferably 0.25% or more, still more preferably 0.5% or more The laminated sheet according to <1>, which is more preferably 1.0% or more, further preferably 5.0% or more, further preferably 10% or more.
The ratio of the damping layer in the <3> laminated sheet is preferably 1% or more, more preferably 5% or more, still more preferably 10% or more, and preferably 70% or less, in volume fraction. The laminated sheet according to <1> or <2>, which is preferably 50% or less, more preferably 34% or less, and further preferably 25% or less.
<4> The laminated sheet according to any one of <1> to <3>, wherein the thermoplastic polyester resin (A) contains polybutylene terephthalate.
<5> The laminated sheet according to any one of <1> to <4>, wherein the inorganic filler (C) comprises a plate-like filler.
<6> The laminated sheet according to any one of <1> to <5>, wherein the component (B) contains one or more plasticizers and one or more elastomers.
<7> The laminated sheet according to any one of <1> to <6>, wherein at least one layer of the vibration damping layer is in a position ratio of 10 to 40%.
<8> The thickness of each polycarbonate layer is preferably 0.05 mm or more, more preferably 0.10 mm or more, still more preferably 0.15 mm or more, and preferably 10 mm or less, more preferably 5.0 mm or less The laminated sheet according to any one of the above <1> to <7>, which is more preferably 3.5 mm or less.
<9> The thickness of each damping layer is preferably 0.05 mm or more, more preferably 0.2 mm or more, still more preferably 0.4 mm or more, and preferably 10 mm or less, more preferably 5.0 mm or less The laminated sheet according to any one of <1> to <8>, which is more preferably 1.0 mm or less.
The thickness of the entire <10> laminated sheet is preferably 0.3 mm or more, more preferably 1.0 mm or more, still more preferably 1.5 mm or more, still more preferably 2.0 mm or more, further preferably 2.5 mm or more And the laminated sheet according to any one of the above <1> to <9>, which is preferably 30 mm or less, more preferably 10 mm or less, still more preferably 5.0 mm or less.
When the total thickness of the <11> damping layer is 100%, the total thickness of the polycarbonate layer is preferably 100% or more, more preferably 200% or more, still more preferably 300% or more, and preferably 2000 % Or less, more preferably 1000% or less, according to any one of the items <1> to <10>.
<12> Thermoplastic polyester resin (A) is preferably polybutylene terephthalate; plasticizers are preferably polyester plasticizers, polyhydric alcohol ester plasticizers, polyhydric carboxylic acid ester plasticizers, bisphenol plasticizers And the elastomer is preferably polystyrene-isoprene block copolymer (SIS), polystyrene-polybutadiene copolymer (SEBS), polystyrene-hydrogenated polybutadiene copolymer (SEBS). Polystyrene-hydrogenated polyisoprene-polystyrene block copolymer (SEPS), polystyrene-vinyl-polyisoprene-polystyrene block copolymer (SHIVS), polystyrene-hydrogenated polybutadiene-hydrogenated polyisoprene-polystyrene One or more styrenic elastomers selected from the group consisting of styrene block copolymers and polystyrene-hydrogenated polybutadiene-polyisoprene-polystyrene block copolymers; and inorganic fillers (C) are preferably plate-like filled The laminated sheet according to any one of the above <1> to <11>, which is an agent, more preferably mica and / or talc.
<13> ポリエステル樹脂組成物中の熱可塑性ポリエステル樹脂(A)の含有量が、好ましくは50質量%以上、より好ましくは55質量%以上、更に好ましくは60質量%以上であり、そして、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは75質量%以下、更に好ましくは70質量%以下であり;ポリエステル樹脂組成物中の可塑剤の含有量が、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上であり、そして、好ましくは25質量%以下、より好ましくは20質量%以下、更に好ましくは15質量%以下であり;ポリエステル樹脂組成物中のエラストマーの含有量が、好ましくは5質量%以上、より好ましくは8質量%以上、更に好ましくは9.5質量%以上であり、そして、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下であり;ポリエステル樹脂組成物中の無機充填剤の含有量が、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上、更に好ましくは20質量%以上、更に好ましくは23質量%以上であり、そして、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは30質量%以下である、前記<1>~<12>のいずれか1項に記載の積層シート。
<14> 併用時の可塑剤及びエラストマーの合計含有量が、熱可塑性ポリエステル樹脂(A)100質量部に対して、好ましくは15質量部以上、より好ましくは20質量部以上、更に好ましくは25質量部以上であり、そして、好ましくは60質量部以下、より好ましくは50質量部以下、更に好ましくは40質量部以下である、前記<1>~<13>のいずれか1項に記載の積層シート。
<15> 併用時の可塑剤及びエラストマーの質量比(可塑剤/エラストマー)が、好ましくは10/90~90/10、より好ましくは30/70~70/30である、前記<1>~<14>のいずれか1項に記載の積層シート。
<16> 成分(B)と無機充填剤(C)の質量比(成分(B)/無機充填剤(C))が、好ましくは10/90~60/40、より好ましくは25/75~50/50、更に好ましくは40/60~47/53である、前記<1>~<15>のいずれか1項に記載の積層シート。
<17> 積層シートにおける各層の好ましい配置が、ポリカーボネート層(PC)/制振層(PBT)、PC/PBT/PC、PC/PBT/PC/PBT/PC、及びPBT/PC/PBTからなる群より選択される1種又は2種以上である、前記<1>~<16>のいずれか1項に記載の積層シート。
<18> 損失係数が好ましくは0.04以上、より好ましくは0.05以上、更に好ましくは0.06以上、更に好ましくは0.07以上である、前記<1>~<17>のいずれか1項に記載の積層シート。
<19> 曲げ弾性率が好ましくは2.7以上、より好ましくは2.8以上、更に好ましくは2.9以上、更に好ましくは3.1以上である、前記<1>~<18>のいずれか1項に記載の積層シート。
The content of the thermoplastic polyester resin (A) in the <13> polyester resin composition is preferably 50% by mass or more, more preferably 55% by mass or more, still more preferably 60% by mass or more, and preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 75% by mass or less, still more preferably 70% by mass or less; content of the plasticizer in the polyester resin composition is preferably 1% by mass or more More preferably 3% by mass or more, still more preferably 5% by mass or more, and preferably 25% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less; polyester resin composition The content of the elastomer contained therein is preferably 5% by mass or more, more preferably 8% by mass or more, still more preferably 9.5% by mass or more. And preferably 30% by mass or less, more preferably 25% by mass or less, further preferably 20% by mass or less; the content of the inorganic filler in the polyester resin composition is preferably 5% by mass or more, more The content is preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, still more preferably 23% by mass or more, and preferably 40% by mass or less, more preferably 35% by mass or less The laminated sheet according to any one of the above <1> to <12>, which is more preferably 30% by mass or less.
The total content of the plasticizer and the elastomer when used in combination is preferably 15 parts by mass or more, more preferably 20 parts by mass or more, and still more preferably 25 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A). The laminated sheet according to any one of the above <1> to <13>, which is not less than 60 parts by mass, preferably not more than 60 parts by mass, more preferably not more than 50 parts by mass, still more preferably not more than 40 parts by mass. .
<15> The mass ratio of the plasticizer and the elastomer (plasticizer / elastomer) in the combined use is preferably 10/90 to 90/10, more preferably 30/70 to 70/30. The laminated sheet of any one of 14>.
The mass ratio of the component (B) to the inorganic filler (C) (component (B) / inorganic filler (C)) is preferably 10/90 to 60/40, more preferably 25/75 to 50 The laminated sheet according to any one of the above <1> to <15>, which is / 50, more preferably 40/60 to 47/53.
<17> A preferred arrangement of each layer in the laminated sheet is a group consisting of polycarbonate layer (PC) / damping layer (PBT), PC / PBT / PC, PC / PBT / PC / PBT / PC, and PBT / PC / PBT The laminated sheet according to any one of <1> to <16>, which is one or more selected from the group consisting of
The <18> loss factor is preferably 0.04 or more, more preferably 0.05 or more, still more preferably 0.06 or more, still more preferably 0.07 or more. A laminated sheet according to item 1.
<19> Any of the above <1> to <18>, wherein the flexural modulus is preferably 2.7 or more, more preferably 2.8 or more, further preferably 2.9 or more, still more preferably 3.1 or more. Or laminated sheet according to item 1.
 以下、実施例を示して本発明を具体的に説明する。なお、この実施例は、単なる本発明の例示であり、何ら限定を意味するものではない。例中の部は、特記しない限り質量部である。なお、「常圧」とは101.3kPaを、「常温」とは25℃を示す。 Hereinafter, the present invention will be specifically described by way of examples. Note that this example is merely an example of the present invention and does not mean any limitation. Parts in the examples are parts by weight unless otherwise stated. In addition, "atmospheric pressure" shows 101.3 kPa and "normal temperature" shows 25 degreeC.
<熱可塑性ポリエステル樹脂(A)の質量平均分子量>
 ペレットサンプル0.6mgをHFIP(1,1,1,3,3,3-Hexafluoro-2-propanol 和光純薬社製)2gに完全に溶解させ、ゲル浸透クロマトグラフィー(TOSOH社製:EcoSEC HLC-8320GPC)を用いて分子量測定を行う。測定条件については、溶離液はHFIP/0.5mM トリフルオロ酢酸Na、流量は0.2mL/min、測定温度は40℃で行う。検量線の作成のための標準ポリマーとしては、ポリスチレン(東ソー株式会社製)を使用する。なお、複数のピークや肩部が認められた時、単一のピークとしてポリエステル樹脂の分子量分布とする。
<Mass Average Molecular Weight of Thermoplastic Polyester Resin (A)>
Gel Permeation Chromatography (TOSOH: EcoSEC HLC-) was prepared by completely dissolving 0.6 mg of pellet sample in 2 g of HFIP (1,1,1,3,3,3-Hexafluoro-2-propanol Wako Pure Chemical Industries, Ltd.). The molecular weight is measured using 8320 GPC). Regarding the measurement conditions, the eluent is HFIP / 0.5 mM Na trifluoroacetate, the flow rate is 0.2 mL / min, and the measurement temperature is 40 ° C. Polystyrene (made by Tosoh Corp.) is used as a standard polymer for preparation of a standard curve. In addition, when several peaks and shoulders are recognized, it is set as molecular weight distribution of polyester resin as a single peak.
<ポリエステル樹脂組成物の絶対結晶化度(Xc)>
 ポリエステル樹脂組成物をプレス成形して得られた平板試験片(127mm×12.7mm×1.6mm)について、XRD(Rigaku社製:MiniFlex II DESKTOP X-ray DIFFRACTOMETER)を用いて、X線入射角2θ=5°~40°における回折光の計測を行い、ピークとハローの強度から、絶対結晶化度を算出する。
<Absolute crystallinity (Xc) of polyester resin composition>
X-ray incident angles of flat plate specimens (127 mm × 12.7 mm × 1.6 mm) obtained by press-molding a polyester resin composition using XRD (manufactured by Rigaku: MiniFlex II DESKTOP X-ray DIFFRACTOMETER) The diffracted light at 2θ = 5 ° to 40 ° is measured, and the absolute crystallinity degree is calculated from the intensities of the peak and the halo.
<熱可塑性ポリエステル樹脂及びエラストマーのガラス転移温度>
 後述と同様にして調製したポリエステル樹脂組成物のシート状成形体又はエラストマーの平板試験片(40mm×5mm×0.4mm)を作製する。次いで、DMA装置(SII社製、EXSTAR6000)を用い、測定周波数を1Hzとして、昇温速度2℃/分で-50℃から250℃まで昇温し、得られた損失弾性率のピーク温度をガラス転移点として求める。
<Glass transition temperature of thermoplastic polyester resin and elastomer>
A flat test piece (40 mm × 5 mm × 0.4 mm) of a sheet-like molded product or an elastomer of a polyester resin composition prepared in the same manner as described later is produced. Next, using a DMA device (manufactured by SII, EXSTAR 6000), with a measurement frequency of 1 Hz, the temperature is raised from -50 ° C. to 250 ° C. at a heating rate of 2 ° C./min. Calculated as a transition point.
<熱可塑性ポリエステル樹脂の結晶化エンタルピー>
 熱可塑性ポリエステル樹脂試料約7mgを計量し、DSC装置(パーキンエルマー社製、DSC8500)を用い、JIS K7122(1999)に準じて、昇温速度20℃/minで樹脂を25℃から300℃まで加熱し、その状態で5分間保持後、次いで25℃以下となるよう-20℃/minで冷却したとき、結晶化に伴う発熱ピークから結晶化エンタルピーを算出する。
<Enthalpy of crystallization of thermoplastic polyester resin>
About 7 mg of a thermoplastic polyester resin sample is weighed, and the resin is heated from 25 ° C. to 300 ° C. at a temperature rising rate of 20 ° C./min according to JIS K 7122 (1999) using a DSC (Perkin Elmer Co., DSC 8500) Then, after holding for 5 minutes in that state, when cooling at −20 ° C./min so as to be 25 ° C. or less, the enthalpy of crystallization is calculated from the exothermic peak accompanying crystallization.
<スチレン系エラストマーのスチレン含有量>
 エラストマーを重水素化クロロホルムに溶解し、その試料溶液のH-NMRスペクトルを観測幅15ppmで測定する。またあらかじめ、3種の濃度のポリスチレン/重水素化クロロホルム溶液のH-NMRスペクトルのスチレンのピーク面積と濃度から検量線を求め、この検量線を用いて、試料溶液のスチレンのピーク面積からスチレンの含有量を算出する。
<Styrene content of styrenic elastomer>
The elastomer is dissolved in deuterated chloroform, and the H-NMR spectrum of the sample solution is measured at an observation width of 15 ppm. In addition, a calibration curve is previously obtained from the peak area and concentration of styrene in the H-NMR spectrum of a polystyrene / deuterated chloroform solution of three different concentrations, and using this calibration curve, the peak area of styrene in the sample solution is used. Calculate the content.
<ポリカーボネートのMFR>
 ASTM D1238に準拠して、試験温度300℃、試験荷重1.2kgfの条件で求める。
<MFR of polycarbonate>
In accordance with ASTM D1238, the test temperature is 300 ° C. and the test load is 1.2 kgf.
製造例1及び製造例3(ポリエステル樹脂組成物のシート状成形体の製造)
 表1に示すポリエステル樹脂組成物の原料を、同方向噛み合型二軸押出機(日本製鋼所社製 TEX-28V)を用いて240℃で溶融混練し、ストランドカットを行い、樹脂組成物のペレットを得た。なお、得られたペレットは、110℃で3時間除湿乾燥し、水分量を500ppm以下とした。
Production Example 1 and Production Example 3 (Production of Sheet-Like Molding of Polyester Resin Composition)
The raw materials of the polyester resin composition shown in Table 1 are melt-kneaded at 240 ° C. using a co-directional meshing type twin screw extruder (TEX-28V manufactured by Japan Steel Works, Ltd.), and strand cut is performed to obtain a resin composition. Pellets were obtained. The pellets obtained were dried by dehumidification at 110 ° C. for 3 hours to make the water content 500 ppm or less.
 次いで、得られたペレットを50mm単軸押出機に供給し、240℃で溶融混錬した後、溶融混錬物をロール温度90℃に制御されたロールと冷却されたロールでシート状に成形した後、幅450mm、厚み0.5mmのシートを巻き取り、ポリエステル樹脂組成物のシート状成形体(「PBTシート」と略記する。)とした。 Next, the obtained pellets were fed to a 50 mm single screw extruder and melt-kneaded at 240 ° C., and then the melt-kneaded product was formed into a sheet by a roll controlled to a roll temperature of 90 ° C. and a cooled roll Thereafter, a sheet having a width of 450 mm and a thickness of 0.5 mm was wound up to obtain a sheet-like formed product of the polyester resin composition (abbreviated as "PBT sheet").
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 なお、表1における原料の詳細は以下の通りである。
〔熱可塑性ポリエステル樹脂〕
PBT(700FP):ポリブチレンテレフタレート樹脂、ジュラネックス700FP(ポリプラスチックス社製、非強化、ガラス転移温度:50℃、結晶化エンタルピーΔHmc:44J/g)
〔可塑剤〕
DAIFATTY-101:アジピン酸と、ジエチレングリコールモノメチルエーテル/ベンジルアルコール=1/1との混合ジエステル(大八化学工業社製);5%質量減少温度:235℃
〔エラストマー〕
スチレン・イソプレンブロック共重合体:ハイブラー5127(クラレプラスチック社製、ガラス転移温度:8℃、スチレン含有量:20質量%)
ポリスチレン-水素添加ポリブタジエン共重合体:S.O.E.S1605(旭化成社製、ガラス転移温度:8℃、スチレン含有量:67質量%)
〔無機充填剤〕
マイカ:A-21S(ヤマグチマイカ社製、最大面における最長辺の長さ:23μm、最大面の厚み:0.33μm、アスペクト比:70)
In addition, the detail of the raw material in Table 1 is as follows.
[Thermoplastic polyester resin]
PBT (700FP): polybutylene terephthalate resin, Duranex 700FP (Polyplastics Co., Ltd., non-reinforced, glass transition temperature: 50 ° C., crystallization enthalpy ΔHmc: 44 J / g)
[Plasticizer]
DAIFATTY-101: mixed diester of adipic acid and diethylene glycol monomethyl ether / benzyl alcohol = 1/1 (made by Daihachi Chemical Industry Co., Ltd.); 5% mass loss temperature: 235 ° C.
[Elastomer]
Styrene isoprene block copolymer: HYBLER 5127 (manufactured by Kuraray Plastics, glass transition temperature: 8 ° C., styrene content: 20% by mass)
Polystyrene-hydrogenated polybutadiene copolymer: S.I. O. E. S1605 (manufactured by Asahi Kasei Corporation, glass transition temperature: 8 ° C., styrene content: 67% by mass)
[Inorganic filler]
Mica: A-21S (Yamaguchi Mica Co., length of longest side of largest face: 23 μm, thickness of largest face: 0.33 μm, aspect ratio: 70)
製造例2(ポリカーボネート樹脂組成物シートの製造)
 ポリカーボネート樹脂(サビック社製、商品名:LEXAN、MFR:7g/10分(300℃、1.2kgf))のペレットを、先端に500mm幅のダイとフィルム引き取り装置を取り付けた直径50mmの単軸押出機に供給しながら、バレル温度260~300℃にて製膜し、厚み0.5mmのPCシートを得た。
Production Example 2 (Production of Polycarbonate Resin Composition Sheet)
Single-shaft extrusion of 50 mm diameter with a 500 mm wide die and a film take-up device attached to the end of a pellet of polycarbonate resin (Sabik, trade name: LEXAN, MFR: 7 g / 10 min (300 ° C., 1.2 kgf)) The film was formed at a barrel temperature of 260 to 300 ° C. while being supplied to a machine to obtain a PC sheet having a thickness of 0.5 mm.
製造例4(ポリカーボネート樹脂組成物シートの製造)
 ポリカーボネート樹脂(サビック社製、商品名:LEXAN、MFR:7g/10分(300℃、1.2kgf))のペレットを、先端に500mm幅のダイとフィルム引き取り装置を取り付けた直径50mmの単軸押出機に供給しながら、バレル温度260~300℃にて製膜し、厚み0.25mmのPCシートを得た。
Production Example 4 (Production of Polycarbonate Resin Composition Sheet)
Single-shaft extrusion of 50 mm diameter with a 500 mm wide die and a film take-up device attached to the end of a pellet of polycarbonate resin (Sabik, trade name: LEXAN, MFR: 7 g / 10 min (300 ° C., 1.2 kgf)) While feeding to a machine, a film was formed at a barrel temperature of 260 to 300 ° C. to obtain a PC sheet having a thickness of 0.25 mm.
実施例1(積層シートの製造)
 製造例1で製造されたPBTシートを1枚、製造例2で製造されたPCシートを2枚用意した。1枚のPBTシートの上面にPCシートを2枚積層した。次いで、この3枚の積層物をプレス加熱温度が165℃に設定されたプレス機を用いて、圧力0.2~3MPaの条件で1分間加熱圧縮して一体化させ、次いで冷却プレスにより常温まで冷却した。このようにして、厚み1.5mmの積層シートを製造した。
Example 1 (manufacture of laminated sheet)
One PBT sheet produced in Production Example 1 and two PC sheets produced in Production Example 2 were prepared. Two PC sheets were laminated on the upper surface of one PBT sheet. Next, the three laminates are integrated by heating and compressing for 1 minute under the conditions of a pressure of 0.2 to 3 MPa using a press set at a press heating temperature of 165 ° C., and then cooled to room temperature by a cooling press It cooled. Thus, a laminated sheet having a thickness of 1.5 mm was produced.
 製造された積層シートは、制振層1としてのPBTシートの上面に、ポリカーボネート層2としてのPCシートが積層されている構造であり、その断面は図2Aの断面図に該当するものであった。 The manufactured laminated sheet has a structure in which a PC sheet as the polycarbonate layer 2 is laminated on the upper surface of the PBT sheet as the damping layer 1, and the cross section corresponds to the cross sectional view of FIG. 2A. .
実施例2(積層シートの製造)
 製造例1で製造されたPBTシートを1枚、製造例2で製造されたPCシートを8枚用意した。1枚のPBTシートの上面にPCシートを1枚積層し、該PBTシートの下面にPCシートを7枚積層した。次いで、この9枚の積層物をプレス加熱温度が165℃に設定されたプレス機を用いて、圧力0.2~3MPaの条件で2分間加熱圧縮して一体化させ、次いで冷却プレスにより常温まで冷却した。このようにして、厚み4.5mmの積層シートを製造した。
Example 2 (manufacture of laminated sheet)
One PBT sheet produced in Production Example 1 and eight PC sheets produced in Production Example 2 were prepared. One PC sheet was laminated on the upper surface of one PBT sheet, and seven PC sheets were laminated on the lower surface of the PBT sheet. Next, the nine laminates are integrated by heating and compressing for 2 minutes under the conditions of a pressure of 0.2 to 3 MPa using a press set to a press heating temperature of 165 ° C., and then cooled to room temperature by a cooling press It cooled. Thus, a laminated sheet having a thickness of 4.5 mm was produced.
 製造された積層シートは、制振層1としてのPBTシートの上面に、ポリカーボネート層2としてのPCシートが積層され、制振層1の下面に、ポリカーボネート層3としてのPCシートが積層されている構造であり、その断面は図2Bの断面図に該当するものであった。 In the produced laminated sheet, a PC sheet as the polycarbonate layer 2 is laminated on the upper surface of the PBT sheet as the damping layer 1, and a PC sheet as the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1. It is a structure, and its cross section corresponds to the cross section of FIG. 2B.
実施例3(積層シートの製造)
 製造例1で製造されたPBTシートを1枚、製造例4で製造された0.25mm厚のPCシートを14枚用意した。1枚のPBTシートの上面にPCシートを1枚積層し、該PBTシートの下面にPCシートを13枚積層した。次いで、この15枚の積層物をプレス加熱温度が165℃に設定されたプレス機を用いて、圧力0.2~3MPaの条件で2分間加熱圧縮して一体化させ、次いで冷却プレスにより常温まで冷却した。このようにして、厚み4.0mmの積層シートを製造した。
Example 3 (manufacture of laminated sheet)
One PBT sheet produced in Production Example 1 and 14 PC sheets of 0.25 mm thickness produced in Production Example 4 were prepared. One PC sheet was laminated on the upper surface of one PBT sheet, and 13 PC sheets were laminated on the lower surface of the PBT sheet. Next, the 15 laminates are integrated by heating and compressing for 2 minutes under conditions of a pressure of 0.2 to 3 MPa using a press set to a press heating temperature of 165 ° C., and then cooled to room temperature by a cooling press It cooled. Thus, a laminated sheet having a thickness of 4.0 mm was produced.
 製造された積層シートは、制振層1としてのPBTシートの上面に、ポリカーボネート層2としてのPCシートが積層され、制振層1の下面に、ポリカーボネート層3としてのPCシートが積層されている構造であり、その断面は図4Aの断面図に該当するものであった。 In the produced laminated sheet, a PC sheet as the polycarbonate layer 2 is laminated on the upper surface of the PBT sheet as the damping layer 1, and a PC sheet as the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1. It is a structure, The cross section corresponded to the cross section of FIG. 4A.
比較例1(積層シートの製造)
 製造例1で製造されたPBTシートを1枚、製造例2で製造されたPCシートを2枚用意した。1枚のPBTシートの上面にPCシートを1枚積層し、該PBTシートの下面にPCシートを1枚積層した。次いで、この3枚の積層物をプレス加熱温度が165℃に設定されたプレス機を用いて、圧力0.2~3MPaの条件で1.5分間加熱圧縮して一体化させ、次いで冷却プレスにより常温まで冷却した。このようにして、厚み1.5mmの積層シートを製造した。
Comparative Example 1 (Production of Laminated Sheet)
One PBT sheet produced in Production Example 1 and two PC sheets produced in Production Example 2 were prepared. One PC sheet was laminated on the upper surface of one PBT sheet, and one PC sheet was laminated on the lower surface of the PBT sheet. Next, the three laminates are integrated by heating and compressing for 1.5 minutes under the conditions of a pressure of 0.2 to 3 MPa using a press whose press heating temperature is set at 165 ° C., and then the cooling press It cooled to normal temperature. Thus, a laminated sheet having a thickness of 1.5 mm was produced.
 製造された積層シートは、制振層1としてのPBTシートの上面に、ポリカーボネート層2としてのPCシートが積層され、制振層1の下面に、ポリカーボネート層3としてのPCシートが積層されている構造であり、その断面は図3Aの断面図に該当するものであった。 In the produced laminated sheet, a PC sheet as the polycarbonate layer 2 is laminated on the upper surface of the PBT sheet as the damping layer 1, and a PC sheet as the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1. It is a structure, and its cross section corresponds to the cross section of FIG. 3A.
比較例2(積層シートの製造)
 製造例1で製造されたPBTシートを1枚、製造例2で製造されたPCシートを8枚用意した。1枚のPBTシートの上面にPCシートを4枚積層し、該PBTシートの下面にPCシートを4枚積層した。次いで、この9枚の積層物をプレス加熱温度が165℃に設定されたプレス機を用いて、圧力0.2~3MPaの条件で1.5分間加熱圧縮して一体化させ、次いで冷却プレスにより常温まで冷却した。このようにして、厚み4.5mmの積層シートを製造した。
Comparative Example 2 (Production of Laminated Sheet)
One PBT sheet produced in Production Example 1 and eight PC sheets produced in Production Example 2 were prepared. Four PC sheets were laminated on the upper surface of one PBT sheet, and four PC sheets were laminated on the lower surface of the PBT sheet. Next, the nine laminates are integrated by heating and compressing for 1.5 minutes under the conditions of a pressure of 0.2 to 3 MPa using a press whose press heating temperature is set to 165 ° C., and then by a cooling press It cooled to normal temperature. Thus, a laminated sheet having a thickness of 4.5 mm was produced.
 製造された積層シートは、制振層1としてのPBTシートの上面に、ポリカーボネート層2としてのPCシートが積層され、制振層1の下面に、ポリカーボネート層3としてのPCシートが積層されている構造であり、その断面は図3Bの断面図に該当するものであった。 In the produced laminated sheet, a PC sheet as the polycarbonate layer 2 is laminated on the upper surface of the PBT sheet as the damping layer 1, and a PC sheet as the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1. It is a structure, and the cross section corresponds to the cross section of FIG. 3B.
比較例3(制振層のみから形成される積層シートの製造)
 製造例1で製造されたPBTシートを4枚用意した。4枚のPBTシートを積層し、次いで、この4枚の積層物をプレス加熱温度が225℃に設定されたプレス機を用いて、圧力0.2~3MPaの条件で1.5分間加熱圧縮して一体化させ、次いで冷却プレスにより常温まで冷却した。このようにして、厚み2.0mmの積層シートを製造した。
 製造された積層シートは、制振層1としてのPBTシートのみから形成される積層シートであった。
Comparative Example 3 (Production of Laminated Sheet Formed Only from Damping Layer)
Four PBT sheets manufactured in Production Example 1 were prepared. Four PBT sheets were laminated, and then the four laminates were heated and compressed for 1.5 minutes under a pressure of 0.2 to 3 MPa using a press set to a heating temperature of 225 ° C. And then cooled to room temperature by a cooling press. Thus, a laminated sheet having a thickness of 2.0 mm was produced.
The produced laminated sheet was a laminated sheet formed only of the PBT sheet as the damping layer 1.
比較例4(積層シートの製造)
 製造例1で製造されたPBTシートを1枚、製造例2で製造されたPCシートを7枚用意した。1枚のPBTシートの上面にPCシートを4枚積層し、該PBTシートの下面にPCシートを3枚積層した。次いで、この8枚の積層物をプレス加熱温度が165℃に設定されたプレス機を用いて、圧力0.2~3MPaの条件で1.5分間加熱圧縮して一体化させ、次いで冷却プレスにより常温まで冷却した。このようにして、厚み4.0mmの積層シートを製造した。
 製造された積層シートは、制振層1としてのPBTシートの上面に、ポリカーボネート層2としてのPCシートが積層され、制振層1の下面に、ポリカーボネート層3としてのPCシートが積層されている構造であり、その断面は図4Bの断面図に該当するものであった。
Comparative Example 4 (Production of Laminated Sheet)
One PBT sheet produced in Production Example 1 and seven PC sheets produced in Production Example 2 were prepared. Four PC sheets were laminated on the upper surface of one PBT sheet, and three PC sheets were laminated on the lower surface of the PBT sheet. Next, the eight laminates are integrated by heating and compressing for 1.5 minutes under the conditions of a pressure of 0.2 to 3 MPa using a press whose press heating temperature is set to 165 ° C., and then the cooling press It cooled to normal temperature. Thus, a laminated sheet having a thickness of 4.0 mm was produced.
In the produced laminated sheet, a PC sheet as the polycarbonate layer 2 is laminated on the upper surface of the PBT sheet as the damping layer 1, and a PC sheet as the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1. It is a structure, and the cross section corresponds to the cross section of FIG. 4B.
 得られた各積層シートの特性を、下記の試験例に従って評価した。結果を表2に示す。なお、実施例2、比較例2及び比較例3についての評価結果の記載は省略した。 The characteristics of each of the obtained laminated sheets were evaluated in accordance with the following test examples. The results are shown in Table 2. In addition, the description of the evaluation result about Example 2, Comparative Example 2 and Comparative Example 3 was omitted.
試験例1〔損失係数〕
 各積層シートを127mm×12.7mm×厚み(2.0~4.5)mm(厚みは各実施例及び比較例で得られた積層シートの厚みによる)のサイズに裁断して、平板試験片とした。
 平板試験片について、JIS K7391に基づいて、中央加振法により計測した周波数応答関数の2次共振のピークから、半値幅法により損失係数を算出した。発振器はType 3160、増幅器はType 2718、加振器はType 4810、加速度センサはType 8001で構成されるシステムを用い(いずれもB&K社製)、損失係数計測ソフトウェアMS18143を用いた。測定環境は恒温槽(エスペック社製、PU-3J)で制御し、23℃で測定した。積層シートの損失係数が高いほど、振動の減衰が速い、即ち積層シートの制振効果が高いと判断できる。
Test Example 1 [Loss Factor]
Each laminated sheet is cut into a size of 127 mm × 12.7 mm × thickness (2.0 to 4.5) mm (the thickness depends on the thickness of the laminated sheet obtained in each example and comparative example), and flat plate test pieces And
The loss factor of the flat plate test piece was calculated by the half width method from the peak of the secondary resonance of the frequency response function measured by the central excitation method based on JIS K 7391. The oscillator was Type 3160, the amplifier was Type 2718, the exciter was Type 4810, and the acceleration sensor was Type 8001 (all manufactured by B & K), and the loss coefficient measurement software MS18143 was used. The measurement environment was controlled by a thermostatic bath (manufactured by ESPEC, PU-3J), and was measured at 23 ° C. As the loss factor of the laminated sheet is higher, it can be judged that the vibration damping is faster, that is, the damping effect of the laminated sheet is higher.
試験例2〔剛性〕
 各積層シートを30mm×25mm×厚み(2.0~4.5)mm(厚みは各実施例及び比較例で得られた積層シートの厚みによる)のサイズに裁断して、平板試験片とした。平板試験片について、JIS K7171に基づいて、テンシロン万能材料試験機(オリエンテック社製、RTC-1250A)を用いて、支点間距離を24mm、試験速度を1mm/minに設定して曲げ試験を行い、曲げ弾性率を求めた。曲げ弾性率が2.0GPa以上の場合に曲げ弾性率が高く、良好な剛性を有すると判断できる。
Test Example 2 (Stiffness)
Each laminated sheet was cut into a size of 30 mm × 25 mm × thickness (2.0 to 4.5) mm (the thickness depends on the thickness of the laminated sheet obtained in each of the examples and comparative examples) to obtain flat test pieces. . A flat plate test piece was subjected to a bending test at a distance between supporting points of 24 mm and a test speed of 1 mm / min using a TENSILON universal material tester (RTC-1250A manufactured by Orientec Co., Ltd.) based on JIS K7171. The flexural modulus was determined. When the bending elastic modulus is 2.0 GPa or more, it can be judged that the bending elastic modulus is high and the rigidity is good.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 本発明の積層シート(実施例のもの)は、損失係数が高く、かつ弾性率も高いものであり、自立性と制振効果の両方に優れていることが分かった。さらに、十分な剛性と衝撃強度が高いことが予想される。一方、制振層が所定の位置にない積層シート(比較例1、2及び4)は、損失係数が低いため、制振効果に乏しいものであり、制振層のみから形成される積層シート(比較例3)は、弾性率が低いため、剛性が低いものであることが分かった。さらに、ポリカーボネート層と制振層とを組み合わせた積層シートであっても、本発明の積層構造を持たない場合、剛性と制振効果の両方を満足させることができないことが分かった(比較例1、2及び4)。 It has been found that the laminated sheet (of the example) of the present invention has a high loss coefficient and a high elastic modulus, and is excellent in both the self-supporting property and the damping effect. In addition, sufficient stiffness and impact strength are expected to be high. On the other hand, laminated sheets (Comparative Examples 1, 2 and 4) in which the damping layer is not at a predetermined position have a low loss coefficient and are therefore poor in damping effect, and are formed of only damping layers Comparative Example 3) was found to be low in rigidity because the elastic modulus was low. Furthermore, even if it was a lamination sheet which combined a polycarbonate layer and a damping layer, when it did not have the layered structure of the present invention, it turned out that both rigidity and a damping effect can not be satisfied (comparative example 1) , 2 and 4).
実施例4(積層シートの製造)
 製造例1で製造されたPBTシートを2枚、製造例2で製造されたPCシートを6枚用意した。1枚のPBTシートの下面にPCシートを1枚積層し、該PBTシートの上面にPCシートを4枚積層し、該PCシートの上面にPBTシートを1枚積層し、該PBTシートの上面にPCシートを1枚積層した。次いで、この8枚の積層物をプレス加熱温度が165℃に設定されたプレス機を用いて、圧力0.2~3MPaの条件で2分間加熱圧縮して一体化させ、次いで冷却プレスにより常温まで冷却した。このようにして、厚み4.0mmの積層シートを製造した。
Example 4 (manufacture of laminated sheet)
Two PBT sheets produced in Production Example 1 and six PC sheets produced in Production Example 2 were prepared. One PC sheet is laminated on the lower surface of one PBT sheet, four PC sheets are laminated on the upper surface of the PBT sheet, one PBT sheet is laminated on the upper surface of the PC sheet, and the upper surface of the PBT sheet One PC sheet was laminated. Next, the eight laminates are integrated by heating and compressing for 2 minutes under the conditions of a pressure of 0.2 to 3 MPa using a press set to a press heating temperature of 165 ° C., and then cooled to room temperature by a cooling press It cooled. Thus, a laminated sheet having a thickness of 4.0 mm was produced.
 製造された積層シートは、制振層1の上面に、ポリカーボネート層2、制振層4及びポリカーボネート層5が積層され、制振層1の下面に、ポリカーボネート層3が積層されている構造であり、その断面は図5Aの断面図に該当するものであった。 The produced laminated sheet has a structure in which the polycarbonate layer 2, the damping layer 4 and the polycarbonate layer 5 are laminated on the upper surface of the damping layer 1, and the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1. The cross section corresponds to the cross sectional view of FIG. 5A.
実施例5(積層シートの製造)
 製造例1で製造されたPBTシートを2枚、製造例2で製造されたPCシートを6枚用意した。1枚のPBTシートの上面にPCシートを6枚積層し、該PCシートの上面にPBTシートを1枚積層した。次いで、この8枚の積層物をプレス加熱温度が165℃に設定されたプレス機を用いて、圧力0.2~3MPaの条件で2分間加熱圧縮して一体化させ、次いで冷却プレスにより常温まで冷却した。このようにして、厚み4.0mmの積層シートを製造した。
 製造された積層シートは、制振層1の上面に、ポリカーボネート層2及び制振層4が積層されている構造であり、その断面は図5Bの断面図に該当するものであった。
Example 5 (manufacture of laminated sheet)
Two PBT sheets produced in Production Example 1 and six PC sheets produced in Production Example 2 were prepared. Six PC sheets were laminated on the upper surface of one PBT sheet, and one PBT sheet was laminated on the upper surface of the PC sheet. Next, the eight laminates are integrated by heating and compressing for 2 minutes under the conditions of a pressure of 0.2 to 3 MPa using a press set to a press heating temperature of 165 ° C., and then cooled to room temperature by a cooling press It cooled. Thus, a laminated sheet having a thickness of 4.0 mm was produced.
The manufactured laminated sheet has a structure in which the polycarbonate layer 2 and the damping layer 4 are laminated on the upper surface of the damping layer 1, and the cross section thereof corresponds to the cross sectional view of FIG. 5B.
実施例6(積層シートの製造)
 製造例1で製造されたPBTシートを2枚、製造例4で製造された0.25mm厚のPCシートを12枚用意した。1枚のPBTシートの下面にPCシートを1枚積層し、該PBTシートの上面にPCシートを10枚積層し、該PCシートの上面にPBTシートを1枚積層し、該PBTシートの上面にPCシートを1枚積層した。次いで、この14枚の積層物をプレス加熱温度が165℃に設定されたプレス機を用いて、圧力0.2~3MPaの条件で2分間加熱圧縮して一体化させ、次いで冷却プレスにより常温まで冷却した。このようにして、厚み4.0mmの積層シートを製造した。
Example 6 (manufacture of laminated sheet)
Two PBT sheets produced in Production Example 1 and 12 PC sheets of 0.25 mm thickness produced in Production Example 4 were prepared. One PC sheet is laminated on the lower surface of one PBT sheet, ten PC sheets are laminated on the upper surface of the PBT sheet, one PBT sheet is laminated on the upper surface of the PC sheet, and the upper surface of the PBT sheet One PC sheet was laminated. Next, the 14 laminates are integrated by heating and compressing for 2 minutes under conditions of a pressure of 0.2 to 3 MPa using a press set at a press heating temperature of 165 ° C., and then cooled to room temperature by a cooling press It cooled. Thus, a laminated sheet having a thickness of 4.0 mm was produced.
 製造された積層シートは、制振層1の上面に、ポリカーボネート層2、制振層4及びポリカーボネート層5が積層され、制振層1の下面に、ポリカーボネート層3が積層されている構造であり、その断面は図5Cの断面図に該当するものであった。 The produced laminated sheet has a structure in which the polycarbonate layer 2, the damping layer 4 and the polycarbonate layer 5 are laminated on the upper surface of the damping layer 1, and the polycarbonate layer 3 is laminated on the lower surface of the damping layer 1. The cross section corresponds to the cross sectional view of FIG. 5C.
実施例7(積層シートの製造)
 製造例1で製造されたPBTシートの代わりに、製造例3で製造されたPBTシートを用いたこと以外は実施例1と同じ条件で、厚み1.5mmの積層シートを製造した。
 製造された積層シートは、制振層1としてのPBTシートの上面に、ポリカーボネート層2としてのPCシートが積層されている構造であり、その断面は図2Aの断面図に該当するものであった。
Example 7 (Production of Laminated Sheet)
A laminated sheet having a thickness of 1.5 mm was produced under the same conditions as in Example 1 except that the PBT sheet produced in Production Example 3 was used instead of the PBT sheet produced in Production Example 1.
The manufactured laminated sheet has a structure in which a PC sheet as the polycarbonate layer 2 is laminated on the upper surface of the PBT sheet as the damping layer 1, and the cross section corresponds to the cross sectional view of FIG. 2A. .
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 実施例4~6より、積層シートが複数の制振層を有していても、本発明の条件を満たす限り、その損失係数は高く、かつ弾性率も高いものであること、即ち、自立性と制振効果の両方に優れていることが分かった。さらに、PCシートを相対的に厚く設定しても、十分な制振性を確保できることが分かった。さらに、エラストマーとしてポリスチレン-水素添加ポリブタジエン共重合体を用いて得られた積層シート(実施例7)は、スチレン・イソプレンブロック共重合体を用いて得られた積層シート(実施例1)と同程度の損失係数及び弾性率を示すことが分かった。即ち、ポリスチレン-水素添加ポリブタジエン共重合体も、エラストマーとして好ましく使用できることが分かった。 From Examples 4 to 6, even if the laminated sheet has a plurality of damping layers, the loss coefficient is high and the elastic modulus is also high as long as the conditions of the present invention are satisfied, that is, self-supporting It turned out that it is excellent in both and the damping effect. Furthermore, it was found that sufficient damping performance can be secured even if the PC sheet is set relatively thick. Furthermore, a laminated sheet (Example 7) obtained using a polystyrene-hydrogenated polybutadiene copolymer as an elastomer is comparable to a laminated sheet (Example 1) obtained using a styrene isoprene block copolymer It was found to show the loss factor and modulus of elasticity of That is, it was found that a polystyrene-hydrogenated polybutadiene copolymer can also be preferably used as an elastomer.
 本発明の積層シートはポリカーボネート層を有するために十分な剛性と衝撃強度を有し、それだけでなく損失係数が高いため制振効果に優れているので、例えばスピーカー、テレビ、ラジカセ、ヘッドフォン、オーディオコンポ又はマイク等の音響機器の材料や電気製品、乗物、建築物、産業用機器等の製品又はそれらの部品、筐体用の制振材料として好適に使用することができる。 The laminated sheet of the present invention has sufficient rigidity and impact strength to have a polycarbonate layer, and also has a high loss coefficient and is excellent in the damping effect, so for example, a speaker, a television, a radio cassette player, a headphone, an audio component Alternatively, it can be suitably used as a material for an acoustic device such as a microphone, an electric product, a product such as a vehicle, a building, an industrial device or a part thereof, or a damping material for a housing.
1  制振層
2  ポリカーボネート層
3  ポリカーボネート層
4  制振層
5  ポリカーボネート層
1 damping layer 2 polycarbonate layer 3 polycarbonate layer 4 damping layer 5 polycarbonate layer

Claims (9)

  1.  制振層とポリカーボネート層とが積層されている積層シートであって、
     該制振層が積層シートの表面及び/又は表面近傍に存在し、
     該制振層が、ジカルボン酸成分とジオール成分とを含む成分から構成される熱可塑性ポリエステル樹脂(A)、可塑剤及び/又はエラストマーである成分(B)、並びに無機充填剤(C)を含有してなるポリエステル樹脂組成物のシート状成形体である、積層シート。
    A laminated sheet in which a damping layer and a polycarbonate layer are laminated,
    The damping layer is present on the surface and / or near the surface of the laminated sheet,
    The damping layer contains a thermoplastic polyester resin (A) composed of a component containing a dicarboxylic acid component and a diol component, a component (B) which is a plasticizer and / or an elastomer, and an inorganic filler (C) The laminated sheet which is a sheet-like molded object of the polyester resin composition formed.
  2.  積層シートの上部表面からの制振層の相対的位置(%)が30%以内である、請求項1に記載の積層シート The laminated sheet according to claim 1, wherein the relative position (%) of the damping layer from the upper surface of the laminated sheet is within 30%.
  3.  積層シート中の制振層の割合が、体積分率で1%以上70%以下である、請求項1又は2に記載の積層シート。 The lamination sheet of Claim 1 or 2 whose ratio of the damping layer in a lamination sheet is 1% or more and 70% or less in a volume fraction.
  4.  熱可塑性ポリエステル樹脂(A)がポリブチレンテレフタレートを含む、請求項1~3のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 3, wherein the thermoplastic polyester resin (A) comprises polybutylene terephthalate.
  5.  無機充填剤(C)が板状充填剤を含む、請求項1~4のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 4, wherein the inorganic filler (C) comprises a plate-like filler.
  6.  (B)成分が、1種以上の可塑剤と1種以上のエラストマーとを含む、請求項1~5のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 5, wherein the component (B) contains one or more plasticizers and one or more elastomers.
  7.  制振層の少なくとも1層が10~40%の位置割合に存在する、請求項1~6のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 6, wherein at least one layer of the damping layer is present at a position ratio of 10 to 40%.
  8.  各ポリカーボネート層の厚みが、0.05mm以上、10mm以下である、請求項1~7のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 7, wherein the thickness of each polycarbonate layer is 0.05 mm or more and 10 mm or less.
  9.  各制振層の厚みが、0.05mm以上、10mm以下である、請求項1~8のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 8, wherein the thickness of each damping layer is 0.05 mm or more and 10 mm or less.
PCT/JP2018/035285 2017-09-29 2018-09-25 Multi-layer sheet WO2019065565A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019545095A JPWO2019065565A1 (en) 2017-09-29 2018-09-25 Laminated sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-191314 2017-09-29
JP2017191314 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065565A1 true WO2019065565A1 (en) 2019-04-04

Family

ID=65901959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035285 WO2019065565A1 (en) 2017-09-29 2018-09-25 Multi-layer sheet

Country Status (3)

Country Link
JP (1) JPWO2019065565A1 (en)
TW (1) TW201919902A (en)
WO (1) WO2019065565A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147096A (en) * 1991-11-28 1993-06-15 Nippon Steel Chem Co Ltd Thermoplastic resin multi-layer structure
JPH08176352A (en) * 1994-12-22 1996-07-09 Ntn Corp Damping elastic body composition
JPH09227766A (en) * 1995-12-20 1997-09-02 Kuraray Co Ltd Vibration damping polyester resin composition and its use
JP2000509468A (en) * 1996-04-08 2000-07-25 ミネソタ マイニング アンド マニュファクチャリング カンパニー Vibration and shock damping products and methods of damping vibration and shock with such products
JP2001506198A (en) * 1996-12-16 2001-05-15 ミネソタ マイニング アンド マニュファクチャリング カンパニー Damping glass and plastic laminate
JP2003034010A (en) * 2001-07-25 2003-02-04 Sekisui Chem Co Ltd Damping sheet
JP2005041943A (en) * 2003-07-24 2005-02-17 Nippon Steel Corp Resin composition for damping material, resin sheet and damping material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196992A (en) * 1993-12-28 1995-08-01 Nippon Autom Kk Vibration-damping sheet
JPH10130451A (en) * 1996-10-29 1998-05-19 Mitsubishi Chem Corp Thermoplastic elastomer composition and its composite molding
JP4884713B2 (en) * 2005-07-04 2012-02-29 ウィンテックポリマー株式会社 Damping polybutylene terephthalate resin composition
US8096449B2 (en) * 2006-07-17 2012-01-17 Medmix Systems Ag Dispensing appliance for a multiple cartridge
EP2803648B1 (en) * 2012-01-13 2018-08-22 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, and laminated glass
JP2013184318A (en) * 2012-03-06 2013-09-19 Mitsubishi Chemicals Corp Laminated body and component
JP6677456B2 (en) * 2014-10-31 2020-04-08 花王株式会社 Polyester resin composition for vibration damping material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147096A (en) * 1991-11-28 1993-06-15 Nippon Steel Chem Co Ltd Thermoplastic resin multi-layer structure
JPH08176352A (en) * 1994-12-22 1996-07-09 Ntn Corp Damping elastic body composition
JPH09227766A (en) * 1995-12-20 1997-09-02 Kuraray Co Ltd Vibration damping polyester resin composition and its use
JP2000509468A (en) * 1996-04-08 2000-07-25 ミネソタ マイニング アンド マニュファクチャリング カンパニー Vibration and shock damping products and methods of damping vibration and shock with such products
JP2001506198A (en) * 1996-12-16 2001-05-15 ミネソタ マイニング アンド マニュファクチャリング カンパニー Damping glass and plastic laminate
JP2003034010A (en) * 2001-07-25 2003-02-04 Sekisui Chem Co Ltd Damping sheet
JP2005041943A (en) * 2003-07-24 2005-02-17 Nippon Steel Corp Resin composition for damping material, resin sheet and damping material

Also Published As

Publication number Publication date
JPWO2019065565A1 (en) 2020-09-10
TW201919902A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
JP6239177B2 (en) Polyester resin molding composition for damping material
JP6677456B2 (en) Polyester resin composition for vibration damping material
JP2017197736A (en) Polyester resin composition for damping material
JP6992814B2 (en) Resin composition, molded article and its manufacturing method, prepreg and its manufacturing method, and fiber reinforced molded article and their manufacturing method.
WO2019107449A1 (en) Polypropylene resin composition
WO2017159818A1 (en) Fan
JP6259142B2 (en) fan
JP2020037610A (en) Resin composition and resin molding
JP2007009143A (en) Damping polybutylene terephthalate resin composition
JP2012140581A (en) Two-component polyurethane-based adhesive, laminate using the same, and back sheet for solar cell
WO2019065565A1 (en) Multi-layer sheet
WO2019049793A1 (en) Laminated sheet
WO2016067961A1 (en) Polyester resin composition for damping material
TW201811560A (en) Package tray panel comprising polyester resin having low melting point and preparation method thereof capable of realizing excellent processability without lowering physical properties such as strength and durability and having excellent price competitiveness
DE102019105063A1 (en) RESIN COMPOSITION AND RESIN MOLDED OBJECT
JP2017043768A (en) Polyester film and laminated sheet prepared therewith
JP2020037605A (en) Resin composition and resin molding
JP2001316574A (en) Thermoplastic polyester-based elastomer composition
JP2020037607A (en) Resin composition and resin molding
JP2020037606A (en) Resin composition and resin molding
JP2020037612A (en) Resin composition and resin molding
JP2024058068A (en) Thermoplastic polyester elastomer resin composition for thin wall composite mold
JP2003119954A (en) Building material
JP2013010929A (en) Molding material and molded article having vibration-damping properties and sound insulating properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545095

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862936

Country of ref document: EP

Kind code of ref document: A1