[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019064746A1 - Rotor and motor comprising rotor - Google Patents

Rotor and motor comprising rotor Download PDF

Info

Publication number
WO2019064746A1
WO2019064746A1 PCT/JP2018/023719 JP2018023719W WO2019064746A1 WO 2019064746 A1 WO2019064746 A1 WO 2019064746A1 JP 2018023719 W JP2018023719 W JP 2018023719W WO 2019064746 A1 WO2019064746 A1 WO 2019064746A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor
recess
extending
rotor core
Prior art date
Application number
PCT/JP2018/023719
Other languages
French (fr)
Japanese (ja)
Inventor
古舘 栄次
香織 宮田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019064746A1 publication Critical patent/WO2019064746A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a rotor and a motor provided with the rotor.
  • the rotor in the conventional electric motor includes a rotor core provided on a rotating shaft, a plurality of magnet insertion holes formed circumferentially in the rotor core, a permanent magnet inserted and embedded in the magnet insertion hole, and a magnet insertion on the surface of the permanent magnet And a resin member that covers an outer peripheral surface facing the inner peripheral surface of the hole (e.g., Patent Document 1).
  • a protrusion for preventing the permanent magnet from falling is formed on one side of the radially inner peripheral surface of the magnet insertion hole.
  • a permanent magnet on which a coating of a resin member is formed is pressed into and fixed to the magnet insertion hole.
  • the magnet before the press-fitting of the magnet into the magnet insertion hole, the magnet is coated with the resin member in advance and the projection is arranged in advance in the magnet insertion hole. For this reason, variation may occur in the thickness of the resin member or the protrusion amount of the protrusion. In this case, if the thickness of the resin member or the amount of protrusion of the protrusion is insufficient, there is a problem that rattling of the magnet accommodated in the magnet insertion hole occurs. On the other hand, when the thickness of the resin member or the protrusion amount of the protrusion is increased, it takes time and effort to press the magnet into the magnet insertion hole, which causes problems such as breakage of the magnet and an increase in the number of manufacturing steps.
  • An embodiment of the present invention provides a rotor that can suppress an increase in the number of manufacturing steps while suppressing rattling of the magnet in the magnet housing portion, and a motor including the rotor.
  • An exemplary rotor of the present invention comprises a rotor core disposed along a vertically extending central axis, and a plurality of magnets circumferentially arranged on the rotor core, wherein the rotor core is at least one of the magnets.
  • the magnet housing includes a plurality of magnet housings that are partially housed and arranged in the circumferential direction, and the magnet housing extends radially outward from the central axis side, and is radially outward of the magnet housing. Is provided with a recess which is recessed radially inward from the outer peripheral surface of the rotor core, and at least a part of a pressing member for pressing the magnet radially inward directly or indirectly is disposed in the recess .
  • An exemplary motor of the present invention comprises the rotor of the above configuration and a stator.
  • the exemplary rotor and motor of the present invention it is possible to suppress the increase in the number of manufacturing processes while suppressing the rattling of the magnet in the magnet housing portion.
  • FIG. 1 is a plan view of a motor provided with a rotor according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a state in which a shaft of a rotor according to an embodiment of the present invention is attached.
  • FIG. 3 is a plan view showing a state in which a shaft of a rotor according to an embodiment of the present invention is attached.
  • FIG. 4 is a plan view showing a state before the pressing member of the rotor according to an embodiment of the present invention is disposed in the recess.
  • FIG. 5 is a view on arrow A of FIG.
  • FIG. 6 is a perspective view of a pressing member of a rotor according to an embodiment of the present invention.
  • FIG. 1 is a plan view of a motor provided with a rotor according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a state in which a shaft of a rotor according to an embodiment of the present invention is attached.
  • FIG. 7 is a plan view of a pressing member of a rotor according to an embodiment of the present invention.
  • FIG. 8 is a perspective view showing a state in which a shaft of a rotor according to a first modification of the embodiment of the present invention is attached.
  • FIG. 9 is a side view showing a state in which a shaft of a rotor according to a second modification of the embodiment of the present invention is attached.
  • FIG. 10 is a perspective view showing a state in which a shaft of a rotor according to a third modification of the embodiment of the present invention is attached.
  • FIG. 11 is a perspective view showing a state in which a shaft of a rotor according to a fourth modified example of the embodiment of the present invention is attached.
  • FIG. 8 is a perspective view showing a state in which a shaft of a rotor according to a first modification of the embodiment of the present invention is attached.
  • FIG. 9 is a side view showing a state in which a shaft of
  • FIG. 12 is a plan view showing a state in which a shaft of a rotor according to a fifth modification of the embodiment of the present invention is attached.
  • FIG. 13 is an enlarged plan view of a part of the peripheral portion of a rotor according to a sixth modification of the embodiment of the present invention.
  • the direction in which the central axis of the motor extends is simply referred to as “axial direction”, and the direction orthogonal to the central axis (direction perpendicular to the axial direction) centered on the central axis of the motor is simply referred to as “radial direction”.
  • a direction along an arc centering on the central axis of the motor is simply referred to as "circumferential direction”.
  • the central axis of the rotor core coincides with the central axis of the motor.
  • FIG. 1 is a plan view of a motor according to an embodiment of the present invention.
  • the motor 1 is a so-called inner rotor type motor and has a stator 2 and a rotor 3.
  • the motor 1 further has a cylindrical housing (not shown) that encloses the stator 2 and the rotor 3.
  • the stator 2 is fixed to the housing by, for example, press fitting or shrink fitting.
  • the motor 1 may further include a control board (not shown) connected to the stator 2.
  • the stator 2 has, for example, an axially extending cylindrical shape.
  • the stator 2 is disposed radially outside the rotor 3 with a predetermined gap.
  • the stator 2 has a stator core 21, an insulator 22, and a coil 23.
  • the stator core 21 has a cylindrical shape extending in the axial direction.
  • the stator core 21 is formed by laminating a plurality of electromagnetic steel plates in the axial direction.
  • the stator core 21 may be a dust core.
  • the stator core 21 has a core back 21 a and a plurality of teeth (not shown).
  • the core back 21a has an annular shape.
  • the teeth extend radially inward from the inner peripheral surface of the core back 21a.
  • the plurality of teeth are arranged in the circumferential direction at predetermined intervals.
  • the number of teeth is twelve.
  • the number of teeth is not particularly limited, and may be arbitrarily changed in accordance with a desired specification.
  • the stator core 21 is a so-called round core.
  • the stator core 21 may be a split core or a straight core formed by connecting a plurality of T-shaped core back pieces having teeth in a strip shape.
  • the insulator 22 covers the outer surface of the teeth.
  • the insulator 22 is disposed between the stator core 21 and the coil 23.
  • the insulator 22 is made of, for example, an insulating material such as a synthetic resin.
  • the coil 23 is configured by winding a conducting wire around the teeth via the insulator 22.
  • FIG. 2 is a perspective view of the rotor 3 to which the shaft 4 is attached.
  • FIG. 3 is a plan view of the rotor 3 to which the shaft 4 is attached.
  • FIG. 4 is a plan view showing a state before the pressing member 34 of the rotor 3 to which the shaft 4 is attached is disposed in the recess 33. As shown in FIG.
  • the rotor 3 has an axially extending cylindrical shape.
  • the rotor 3 is disposed radially inward of the stator 2 with a predetermined gap.
  • the rotor 3 is an IPM (Interior Permanent Magnet) type rotor, and includes a rotor core 30 and a plurality of magnets 31.
  • the rotor core 30 is disposed along a central axis C extending up and down and has an electromagnetic steel plate 30b.
  • the electromagnetic steel plate 30 b extends radially outward with respect to the central axis C of the rotor core 30.
  • the rotor core 30 is a laminated steel plate in which a plurality of electromagnetic steel plates 30 b are laminated in the axial direction.
  • the plurality of electromagnetic steel plates 30b are fixed to each other by, for example, caulking or welding.
  • the rotor core 30 is not limited to a laminated steel plate, and may be, for example, a dust core.
  • the rotor core 30 has a substantially cylindrical shape extending in the axial direction.
  • a hole 30 a penetrating in the axial direction is disposed at the center of the rotor core 30.
  • a portion of the shaft 4 is press-fitted into the hole 30a.
  • the shaft 4 is a rotating shaft of the motor 1.
  • the shaft 4 has a cylindrical shape extending in the vertical direction.
  • the shaft 4 may be a hollow member.
  • a member such as a resin member or a metal member may be attached in the hole 30a, and a part of the shaft 4 may be fixed to the hole 30a via the member. That is, the shaft 4 is fixed to the rotor core 30 directly or indirectly.
  • the upper end side and the lower end side of the shaft 4 are rotatably supported by upper and lower bearings (both not shown) provided above and below the rotor 3.
  • the rotor 3 can rotate around the central axis C together with the shaft 4 extending in the vertical direction.
  • the central axis of the rotor core 30 coincides with the shaft 4 of the motor 1.
  • the bearing may be a ball bearing or the like, and the type is not particularly limited.
  • the rotor core 30 has a plurality of magnetic pole portions 35 and a plurality of magnet housing portions 32.
  • the plurality of magnetic pole portions 35 are arranged at substantially equal intervals in the circumferential direction.
  • the shape of each magnetic pole portion 35 is substantially fan-shaped as viewed from the axial direction.
  • the radially outer end surface of the magnetic pole portion 35 radially faces the radially inner end surface of the teeth of the stator core 21.
  • the magnet housing portion 32 is a through hole which penetrates the rotor core 30 in the axial direction.
  • the plurality of magnet housing portions 32 are arranged side by side in the circumferential direction, and extend radially outward from the central axis C side.
  • Each magnet housing portion 32 is disposed between the magnetic pole portions 35 adjacent in the circumferential direction.
  • the shape of the cross section perpendicular to the axial direction of the magnet housing portion 32 is a rectangular shape extending in the radial direction.
  • the inner wall 32 a of the magnet housing portion 32 is disposed on both sides in the circumferential direction and both sides in the radial direction of the magnet housing portion 32.
  • Each magnet housing portion 32 houses at least a part of the magnet 31.
  • the plurality of magnets 31 are arranged in the circumferential direction on the rotor core 30. That is, the rotor 3 is a so-called spoke-type rotor in which a plurality of magnets 31 are arranged radially.
  • the shape of the cross section perpendicular to the axial direction of the magnet 31 is a rectangular shape extending in the radial direction.
  • the shape of the magnet 31 is a plate extending in the radial direction.
  • eight magnet housing portions 32 and eight magnets 31 are provided. The axial length of the magnet 31 substantially coincides with the axial length of the magnet housing portion 32.
  • the circumferential end surface of the magnet 31 is a magnetic pole surface that faces the circumferential end surface of the magnetic pole portion 35 in the circumferential direction.
  • the plurality of magnets 31 are arranged such that the magnetic pole faces of the same pole face each other in the circumferential direction.
  • the magnetic pole portion 35 is magnetized by magnets 31 disposed on both sides in the circumferential direction of the magnetic pole portion 35. Thus, the radially outer end surface of the magnetic pole portion 35 becomes a magnetic pole surface.
  • the axial length of the magnet 31 may be shorter than the axial length of the magnet housing portion 32.
  • the number of magnet housing portions 32 and the number of magnets 31 are not particularly limited, and may be arbitrarily changed in accordance with desired specifications.
  • the shape of the magnet 31 is not limited to the above-described shape.
  • the shape of the magnet 31 may be any shape as long as it can be housed in the magnet housing portion 32, and may be a shape in which the circumferential end surface is a curved surface, and is not particularly limited.
  • the type of the magnet 31 may be a neodymium sintered magnet, a neodymium bond magnet, a ferrite magnet or the like, and is not particularly limited.
  • a recess 33 that is recessed radially inward from the outer peripheral surface of the rotor core 30 is provided radially outward of the magnet housing portion 32.
  • the recess 33 faces the magnet housing portion 32 in the radial direction.
  • the recess 33 extends from one axial end of the rotor core 30 to the other axial end.
  • the position of the magnet 31 is preferably closer to the radial outer opening of the recess 33.
  • the recess 33 has a narrow portion 331, an inner wide portion 332, and an outer wide portion 333.
  • An inner wide portion 332, a narrow portion 331, and an outer wide portion 333 are arranged in order from the inner side in the radial direction to the outer side in the radial direction.
  • the inner wide portion 332, the narrow portion 331, and the outer wide portion 333 communicate with each other in the radial direction.
  • the shape of the opening of the inner wide portion 332 is substantially C-shaped.
  • the narrow portions 331 are a pair of linear shapes extending in the radial direction from the inner wide portion 332.
  • the circumferential width of the outer wide portion 333 generally increases toward the radially outer side.
  • the longest width W2 in the circumferential direction of the inner wide portion 332 is larger than the width W1 in the circumferential direction of the narrow portion 331, and the shortest width W3 in the circumferential direction of the outer wide portion 333 is at least the circumferential width W1 of the narrow portion 331 is there. That is, the inner wide portion 332 is disposed radially inward of the narrow portion 331, and the width in the circumferential direction is larger than that of the narrow portion 331.
  • the outer wide portion 333 is disposed radially outward of the narrow portion 331 and has a circumferential width greater than that of the narrow portion 331.
  • FIG. 5 is a view on arrow A of FIG. That is, it is the figure which looked at the magnet accommodating part 32 side in the recessed part 33 from the radial direction outer side. Hatching shows the magnet 31 in the figure.
  • the inner wall of the recess 33 has a bridge portion 36 connected to the inner wall 32 a of the magnet housing portion 32.
  • the rotor core 30 in the present embodiment is configured by alternately laminating an electromagnetic steel plate 30 b having a bridge portion 36 and an electromagnetic steel plate 30 b having no bridge portion 36 in the axial direction. Therefore, the space portion 37 is formed between the bridge portions 36 adjacent in the axial direction.
  • the electromagnetic steel plates 30 b having the bridge portions 36 and the electromagnetic steel plates 30 b not having the bridge portions 36 need not necessarily be alternately arranged.
  • the rotor core 30 may have at least one or more electromagnetic steel plates 30 b having no bridge portion 36.
  • the rotor core 30 may not include the electromagnetic steel plate 30 b having no bridge portion 36, and may be configured only of the electromagnetic steel plate having the bridge portion 36. In this case, the rotor core 30 does not have the space 37.
  • FIG. 6 is a perspective view of the pressing member 34.
  • FIG. FIG. 7 is a plan view of the pressing member 34.
  • the pressing member 34 has a first reinforcing portion 343 and a plurality of first extending portions 341. At least a part of the first extending portion 341 is disposed in the recess 33.
  • the pressing member 34 is preferably made of, for example, a nonmagnetic material such as resin, nonmagnetic stainless steel, or aluminum. Although eight first extending portions 341 are arranged in the present embodiment, the number of first extending portions 341 is not limited thereto. That is, the number of first extending portions 341 may be equal to or less than the number of recesses 33.
  • the first reinforcing portion 343 is annular, and is located on the axially lower side (axially one side) of the rotor core 30.
  • the first extending portion 341 extends axially upward from the first reinforcing portion 343 (the other side in the axial direction).
  • the axial length of the first extending portion 341 is approximately half of the axial length of the rotor core 30, but may be the same as the axial length of the rotor core 30.
  • the first reinforcing portion 343 connects the plurality of first extending portions 341.
  • the first extending portion 341 is a member integral with the first reinforcing portion 343.
  • the first extending portion 341 may be a member separate from the first reinforcing portion 343. In this case, it is desirable that the first reinforcing portion 343 be connected to the plurality of first extending portions 341 by, for example, welding or welding.
  • the cross-sectional shape perpendicular to the axial direction of the first extending portion 341 is substantially the same as the cross-sectional shape perpendicular to the axial direction of the recess 33. Moreover, in the state before inserting the first extending portion 341 into the recess 33, the area of the cross section perpendicular to the axial direction of the first extending portion 341 is larger than the area of the cross section perpendicular to the axial direction of the recess 33. There is.
  • the magnet 31 is inserted into the magnet housing portion 32 in the axial direction.
  • the radial length of the magnet housing portion 32 is larger than the radial length of the magnet 31, and the circumferential length of the magnet housing portion 32 is Greater than the circumferential length. Therefore, when the magnet 31 is inserted into the magnet housing portion 32 in the axial direction, excessive stress is not applied to the magnet 31 from the electromagnetic steel plate 30 b. Therefore, the magnet 31 can be easily housed in the magnet housing portion 32. Further, when the magnet 31 is housed in the magnet housing portion 32, damage such as cracking of the magnet 31 can be prevented.
  • the first extending portion 341 is inserted into the recess 33 in the axial direction.
  • the first extending portion 341 is disposed in the recess 33.
  • at least a part of the first extending portion 341 may be accommodated in the recess 33.
  • the upper surface (the surface on the other side in the axial direction) of the first reinforcing portion 343 contacts the lower surface (the surface on the one side in the axial direction) of the rotor core 30.
  • the first reinforcing portion 343 covers at least a part of the opening at the lower end of the magnet housing portion 32.
  • the first reinforcing portion 343 may not necessarily cover the opening at the lower end of the magnet housing portion 32.
  • the area of the cross section perpendicular to the axial direction of the first extending portion 341 is larger than the area of the cross section perpendicular to the axial direction of the recess 33 . Therefore, when the first extending portion 341 is disposed in the recess 33, the radially inner end portion of the first extending portion 341 presses the bridge portion 36 radially inward, so that the bridge portion 36 is elastically deformed. Then, the first extending portion 341 presses the magnet 31 radially inward via the bridge portion 36. That is, the pressing member 34 in the recess 33 indirectly presses the magnet 31 radially inward.
  • a radial gap between the inner wall 32a on the inner peripheral side of the magnet housing portion 32 and the magnet 31, and a radial gap between the inner wall 32a on the outer peripheral side of the magnet housing portion 32 and the magnet 31. Can be reduced. Further, when the magnet 31 is housed in the magnet housing portion 32, excessive stress is not received from the inner wall 32a of the magnet housing portion 32. For this reason, accommodation of the magnet 31 in the magnet accommodation part 32 can be performed smoothly. Therefore, it is possible to suppress an increase in the number of manufacturing steps of the rotor 3 and the motor 1 while suppressing the rattling of the magnet 31 housed in the magnet housing portion 32.
  • the first extending portion 341 can be reinforced by the first reinforcing portion 343. Moreover, the workability at the time of insertion to the recessed part 33 of several 1st extending
  • stretching part 341 can be improved by the 1st reinforcement part 343.
  • the circumferential width L1 (see FIG. 7) of the first extending portion 341 (the pressing member 34) in the inner wide portion 332 is larger than the narrow portion 331, and the circumferential maximum width W2 of the inner wide portion 332 (see FIG. 4) Less than see).
  • the radial narrowing of the pressing member 34 can be prevented by the narrow portion 331, and rattling of the magnet 31 can be further suppressed.
  • the gap in the radial direction between the inner wall 32a on the inner peripheral side of the magnet housing portion 32 and the magnet 31 and the inner wall on the outer peripheral side of the magnet housing portion 32 can be reduced. Therefore, the magnetic resistance of the motor 1 in the magnet housing portion 32 is reduced, and the magnetic flux flows smoothly between the stator 2 and the rotor 3. Therefore, the rotation efficiency of the motor 1 can be improved.
  • the pressing member 34 is a nonmagnetic material
  • the leakage of the magnetic flux from the stator 2 to the pressing member 34 is suppressed, and the decrease in the rotation efficiency of the motor 1 is suppressed.
  • an adhesive, a resin material, or the like may be further disposed.
  • a radial gap between the inner wall 32a on the inner peripheral side of the magnet housing portion 32 and the magnet 31 and a radial gap between the inner wall 32a on the outer peripheral side of the magnet housing portion 32 and the magnet 31. Can be further reduced, and rattling of the magnet 31 housed in the magnet housing portion 32 can be further suppressed.
  • FIG. 8 is a perspective view showing a state in which the shaft 4 of the rotor 3 of the first modified example of the present embodiment is attached. In addition, in FIG. 8, the mode in the middle of inserting the 2nd extending part 342 of the press member 34 in the recessed part 33 is shown.
  • the pressing member 34 has a second reinforcing portion 344 and a plurality of second extending portions 342 in addition to the first reinforcing portion 343 and the first extending portion 341.
  • the second reinforcing portion 344 is annular, and is located on the other axial side (axially upper side) of the rotor core 30.
  • the second extending portion 342 extends from the second reinforcing portion 344 in the axial direction to one side (axially lower side), and at least a part of the second extending portion 342 is accommodated in the recess 33.
  • the second reinforcing portion 344 connects the plurality of second extending portions 342. In the present modification, the second reinforcing portion 344 is integrally formed with the second extending portion 342.
  • the second reinforcing portion 344 may be configured separately from the second extending portion 342. In this case, it is desirable that the second reinforcing portion 344 be connected to the plurality of second extending portions 342 by, for example, welding or welding.
  • the number of second extending portions 342 is eight in the present embodiment, the present invention is not limited to this. That is, the number of second extending portions 342 may be equal to or less than the number of concave portions 33.
  • the number of first extending portions 341 is the same as the number of second extending portions 342. The number of first extending portions 341 may be different from the number of second extending portions 342.
  • the second reinforcing portion 344 is configured in the same manner as the first reinforcing portion 343.
  • the shape of the second reinforcing portion 344 does not have to be the same as the shape of the first reinforcing portion 343 and may be different from each other.
  • the second extending portion 342 is configured in the same manner as the first extending portion 341.
  • the shape of the second extending portion 342 does not have to be the same as the shape of the first extending portion 341, and may be different from each other.
  • the axial length of the first extending portion 341 and the axial length of the second extending portion 342 are substantially the same, and are approximately half of the axial length of the rotor core 30.
  • the axial length of the first extending portion 341 does not have to be the same as the axial length of the second extending portion 342, and the lengths may be different from each other.
  • the axial length of the first extending portion 341 may be longer than the axial length of the second extending portion 342, or the axial length of the second extending portion 342 is greater than the axial length of the first extending portion 341 It may also be long. Even in this case, it is desirable that the sum of the axial length of the first extending portion 341 and the axial length of the second extending portion 342 be the axial length of the rotor core 30.
  • the tip of the first extending portion 341 on the upper side in the axial direction contacts or opposes the tip on the lower side (the one side in the axial direction) of the second extending portion 342 in the axial direction. Similar to the first extending portion 341, the second extending portion 342 presses the magnet 31 radially inward via the bridge portion 36.
  • a radial gap between the inner wall 32a on the inner peripheral side of the magnet housing portion 32 and the magnet 31 and a radial gap between the inner wall 32a on the outer peripheral side of the magnet housing portion 32 and the magnet 31. Can be reduced. Therefore, rattling of the magnet 31 housed in the magnet housing portion 32 can be suppressed.
  • the second extending portion 342 can be reinforced by the second reinforcing portion 344, and the workability at the time of insertion of the plurality of second extending portions 342 into the recess 33 can be improved.
  • FIG. 9 is a perspective view showing a state in which the shaft 4 of the rotor 3 of the second modified example of the present embodiment is attached.
  • the rotor core 30 may be divided into a plurality of stages in the axial direction. More preferably, the rotor core 30 has a skew structure axially divided into a plurality of stages.
  • the rotor core 30 includes, for example, a first rotor core 301 and a second rotor core 302.
  • the first rotor core 301 and the second rotor core 302 are configured by laminating a plurality of electromagnetic steel plates 30 b in the axial direction, as in the above-described embodiment.
  • the second rotor core 302 is located on the axially upper side (the other axial side) of the first rotor core 301.
  • Each of the first rotor core 301 and the second rotor core 302 has the recess 33, the bridge portion 36, the magnet housing portion 32, and the magnet 31 as in the above-described embodiment.
  • the axial height of the first rotor core 301 is the same as the axial height of the second rotor core 302.
  • the axial height of the first rotor core 301 may be different from the axial height of the second rotor core 302.
  • the first rotor core 301 is arranged to be offset from the second rotor core 302 by a predetermined angle in the circumferential direction around the central axis C.
  • the rotor core 30 may be axially divided into three or more stages instead of two stages.
  • the first reinforcing portion 343 is disposed on one side in the axial direction of the first rotor core 301.
  • the first reinforcing portion 343 axially faces or contacts the surface on one axial side of the first rotor core 301. More preferably, the first reinforcing portion 343 covers at least a part of the opening at the lower end of the magnet housing portion 32 of the first rotor core 301.
  • the magnet 31 is prevented from coming off the magnet housing portion 32 in the axial direction.
  • At least a portion of the first extending portion 341 is accommodated in the recess 33 of the first rotor core 301. Thereby, in the first rotor core 301, the first extending portion 341 can press the bridge portion 36, and rattling of the magnet 31 housed in the magnet housing portion 32 can be suppressed.
  • the second reinforcing portion 344 is disposed on the other axial side of the second rotor core 302.
  • the second reinforcing portion 344 faces or contacts the other surface of the second rotor core 302 in the axial direction.
  • the second reinforcing portion 344 covers at least a part of the opening at the upper end of the magnet housing portion 32 of the second rotor core 302.
  • the magnet 31 is prevented from coming off the magnet housing portion 32 in the axial direction.
  • At least a portion of the second extending portion 342 is accommodated in the recess 33 of the second rotor core 302.
  • the second extending portion 342 can press the bridge portion 36, and rattling of the magnet 31 housed in the magnet housing portion 32 can be suppressed.
  • the first rotor core 301 and the second rotor core 302 are arranged to be offset in the circumferential direction. Therefore, in the circumferential direction, the position of the first extending portion 341 is different from the position of the second extending portion 342. In other words, the first extending portion 341 does not face or contact the second extending portion 342 in the axial direction. Note that, even when the first rotor core 301 and the second rotor core 302 are offset in the circumferential direction, at least a portion of the end of the first extending portion 341 is at least a portion of the end of the second extending portion 342; It may be opposed or in contact.
  • the length of the first extending portion 341 is the same as the axial length of the first rotor core 301 or shorter than the axial length of the first rotor core 301.
  • the length of the second extending portion 342 is the same as the axial length of the second rotor core 302 or shorter than the axial length of the second rotor core 302.
  • the axial length of the first extending portion 341 is longer than the axial length of the first rotor core 301, and the axial length of the second extending portion 342 is shorter than the axial length of the second rotor core 302. Good.
  • the axial length of the second extending portion 342 is short by the dimension between the end of the first extending portion 341 and the other surface of the first rotor core 301 in the axial direction.
  • the axial length of the first extending portion 341 is longer than the axial length of the first rotor core 301
  • the axial length of the second extending portion 342 is longer than the axial length of the second rotor core 302. Good.
  • at least a part of the tip on the other side in the axial direction of the first extension part 341 radially overlaps with at least a part of the tip on the one side in the axial direction of the second extension part 342.
  • the rotor core 30 may have a skew structure in which the electromagnetic steel plates 30b are stacked with a predetermined angle in the circumferential direction with the central axis C as a center.
  • the first extending portion 341 be extended in the circumferential direction by being inclined to the central axis C by the predetermined angle.
  • FIG. 10 is a perspective view showing a state in which the shaft 4 of the rotor 3 of the third modified example of the present embodiment is attached.
  • the first reinforcing portion 343 and the second reinforcing portion 344 are omitted from the pressing member 34, and the pressing member 34 is configured by the first extending portion 341.
  • the axial length of the first extending portion 341 (the pressing member 34) is substantially the same as the axial length of the rotor core 30.
  • the axial length of the first extending portion 341 may be different from the axial length of the rotor core 30.
  • the axial length of the first extending portion 341 (the pressing member 34) may be shorter than the axial length of the rotor core 30.
  • at least one of the axial direction one side and the axial direction other side end face of the first extending portion 341 is located in the recess 33.
  • the end surface of the first extending portion 341 on the one side in the axial direction and the end surface on the other side in the axial direction may be flush with the end surface on the one side in the axial direction of the rotor core 30 and the other end. Only the end surface on the one axial direction side or the other axial direction side of the first extending portion 341 may be flush with the end surface on the axial direction one side or the other axial direction side of the rotor core 30.
  • the rotor 3 includes a cylindrical holding member 38 which covers the circumferential surface of the rotor core 30 and presses the first extending portion 341 (the pressing member 34) radially inward.
  • the holding member 38 is made of, for example, a nonmagnetic material such as resin or aluminum.
  • the axial length of the holding member 38 is substantially the same as the axial length of the rotor core 30.
  • the holding member 38 can move the first extending portion 341 more radially inward. Thereby, the first extending portion 341 can further press the bridge portion 36, and rattling of the magnet 31 positioned in the magnet housing portion 32 can be further suppressed.
  • the shape of the holding member 38 is not limited to a tubular shape, and may be, for example, a band-like ring shape as shown in FIG. In FIG. 11, the ring-shaped holding member 38 is disposed at the upper axial portion and the lower axial portion. As a result, the first extending portion 341 (the pressing member 34) can be easily tightened toward the magnet 31 side, and rattling of the magnet 31 in the magnet housing portion 32 can be further suppressed.
  • the ring-shaped holding member 38 may be disposed only at the axial center, or may be disposed at the axial upper portion, the axial lower portion, and the axial center.
  • the number of ring-shaped holding members 38 attached to the rotor core 30 may be one or two or more.
  • the rotor 3 may have both a cylindrical holding member 38 and a ring-shaped holding member 38.
  • the shape of the holding member 38 is not limited to a circular shape, and may be, for example, a polygonal shape.
  • the holding member 38 may be configured by a heat-shrinkable tube that shrinks by heating.
  • FIG. 12 is a plan view showing a rotor 3 of a fifth modified example of the present embodiment.
  • the circumferential width of the recess 33 is substantially constant from the radially inner side to the radially outer side in the state before the pressing member 34 is disposed.
  • the rotor core 30 is formed only of the electromagnetic steel plate 30 b having the bridge portion 36. That is, the rotor core 30 of the present modification does not have the space 37.
  • the pressing member 34 of this modification is a round bar-like member extending in the axial direction. That is, the shape of the cross section perpendicular to the axial direction of the pressing member 34 is circular. Thereby, the pressing member 34 can be easily formed.
  • the rod-shaped pressing member 34 is not limited to a round rod.
  • the shape of the cross section perpendicular to the axial direction of the rod-like pressing member 34 may be, for example, an elliptical shape or a polygonal shape including a rectangle, and is not particularly limited.
  • the pressing member 34 presses the magnet 31 radially inward via the bridge portion 36.
  • the bridge portion 36 is deformed in the radial direction.
  • the pressing member 34 is sandwiched by the magnetic pole portions 35 adjacent in the circumferential direction.
  • the holding member 38 may be attached to the rotor 3. Thereby, the radial outward movement of the pressing member 34 can be restricted.
  • the pressing member 34 presses the bridge portion 36, the gap between the inner wall 32a of the magnet housing portion 32 and the outer peripheral surface of the magnet 31 can be reduced. Thereby, rattling of the magnet 31 in the magnet housing portion 32 can be further suppressed.
  • FIG. 13 is an enlarged plan view of a part of the peripheral portion of the rotor 3 according to a sixth modification of the present embodiment.
  • the magnet housing portion 32 of the present modification is a through hole having an opening 39 at the radially outer side and penetrating the rotor core 30 in the axial direction.
  • the opening 39 extends radially and extends from one axial end of the rotor core 30 to the other axial end.
  • the bridge portion 36 is not disposed on the opening 39 side of the magnet housing portion 32.
  • the recess 33 communicates with the magnet housing portion 32 through the opening 39.
  • the pressing member 34 in the recess 33 contacts the magnet 31 through the opening 39. Then, the pressing member 34 directly presses the magnet 31 radially inward. Thereby, rattling of the magnet 31 in the magnet housing portion 32 can be suppressed. Since the magnet housing portion 32 has the opening 39, the magnet 31 can be easily stored in the magnet housing portion 32 via the opening 39.
  • the pressing member 34 can restrict circumferential movement of the magnet 31 through the opening 39.
  • the pressing member 34 may not necessarily be in contact with the magnet 31.
  • the inner wall 32 a of the magnet housing portion 32 be at least in radial contact with the magnet 31.
  • the bridge portion 36 may not necessarily be continuously formed in the circumferential direction, and a part of the bridge portion 36 may be discontinuously formed in the circumferential direction.
  • the pressing member 34 presses a portion of the inner wall located inward in the radial direction of the recess 33 (that is, a portion of the bridge portion 36 formed discontinuously), via the inner wall 32 a of the magnet housing portion 32.
  • the magnet 31 can be pressed.
  • a member such as resin or metal may be disposed in the radial gap between the pressing member 34 and the magnet 31.
  • the pressing member 34 may indirectly press the magnet 31 via the member.
  • Embodiments of the present disclosure can be widely used in various devices including various motors such as a vacuum cleaner, a dryer, a sealing fan, a washing machine, a refrigerator, an electric power steering apparatus, an electric oil pump, and an electric brake.
  • various motors such as a vacuum cleaner, a dryer, a sealing fan, a washing machine, a refrigerator, an electric power steering apparatus, an electric oil pump, and an electric brake.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

A rotor that comprises: a rotor core that is arranged along a vertical center axis; and a plurality of magnets that are arranged on the rotor core side-by-side in the circumferential direction. The rotor core has a plurality of magnet housing parts that are arranged side-by-side in the circumferential direction and house at least parts of the magnets. The magnet housing parts extend from the center axis side toward the radial direction outside, and recesses that are recessed from an outer circumferential surface of the rotor core toward the radial direction inside are provided at the radial direction outside of the magnet housing parts. At least parts of pressing members that directly or indirectly press the magnets toward the radial direction inside are arranged in the recesses.

Description

ロータ及びそのロータを備えたモータRotor and motor provided with the rotor
本発明は、ロータ及びそのロータを備えたモータに関する。 The present invention relates to a rotor and a motor provided with the rotor.
従来の電動モータにおけるロータは、回転軸に設けられたロータコアと、ロータコアに周方向に複数形成された磁石挿入孔と、磁石挿入孔に挿入され埋め込まれる永久磁石と、永久磁石の表面の磁石挿入孔の内周面と対向する外周面を被覆する樹脂部材と、を備える(例えば、特許文献1)。
The rotor in the conventional electric motor includes a rotor core provided on a rotating shaft, a plurality of magnet insertion holes formed circumferentially in the rotor core, a permanent magnet inserted and embedded in the magnet insertion hole, and a magnet insertion on the surface of the permanent magnet And a resin member that covers an outer peripheral surface facing the inner peripheral surface of the hole (e.g., Patent Document 1).
磁石挿入孔の径方向内周面の一方の側には、永久磁石の抜け防止用の突起部が形成されている。樹脂部材の被覆が形成された永久磁石が磁石挿入孔に圧入され固定されている。
On one side of the radially inner peripheral surface of the magnet insertion hole, a protrusion for preventing the permanent magnet from falling is formed. A permanent magnet on which a coating of a resin member is formed is pressed into and fixed to the magnet insertion hole.
特開2013-219948号公報JP, 2013-219948, A
しかしながら、上記従来のロータによると、マグネットの磁石挿入孔への圧入前に、マグネットを樹脂部材で予め被覆するとともに磁石挿入孔内に突起部を予め配置している。このため、樹脂部材の厚み又は突起部の突出量にバラツキが生じる場合がある。この場合に、樹脂部材の厚みまたは突起部の突出量が不十分であると、磁石挿入孔に収容されたマグネットのガタツキが発生する問題があった。一方、樹脂部材の厚みまたは突起部の突出量を大きくすると、マグネットの磁石挿入孔への圧入に手間がかかり、マグネットの破損や製造工数が増大するなどの問題があった。  However, according to the above-mentioned conventional rotor, before the press-fitting of the magnet into the magnet insertion hole, the magnet is coated with the resin member in advance and the projection is arranged in advance in the magnet insertion hole. For this reason, variation may occur in the thickness of the resin member or the protrusion amount of the protrusion. In this case, if the thickness of the resin member or the amount of protrusion of the protrusion is insufficient, there is a problem that rattling of the magnet accommodated in the magnet insertion hole occurs. On the other hand, when the thickness of the resin member or the protrusion amount of the protrusion is increased, it takes time and effort to press the magnet into the magnet insertion hole, which causes problems such as breakage of the magnet and an increase in the number of manufacturing steps.
本発明の一実施形態では、マグネット収容部内のマグネットのガタツキを抑制しながら製造工数の増大を抑制できるロータ及びそのロータを備えるモータを提供する。 An embodiment of the present invention provides a rotor that can suppress an increase in the number of manufacturing steps while suppressing rattling of the magnet in the magnet housing portion, and a motor including the rotor.
本発明の例示的なロータは、上下に延びる中心軸に沿って配置されるロータコアと、前記ロータコアに周方向に並んで配置された複数のマグネットと、を備え、前記ロータコアは、前記マグネットの少なくとも一部を収容して周方向に並んで配置された複数のマグネット収容部を有し、前記マグネット収容部は前記中心軸側から径方向外側へ向かって延び、前記マグネット収容部の径方向外方には、前記ロータコアの外周面から径方向内方に凹む凹部が設けられ、前記凹部内には前記マグネットを直接または間接的に径方向内方に押圧する押圧部材の少なくとも一部が配置される。  An exemplary rotor of the present invention comprises a rotor core disposed along a vertically extending central axis, and a plurality of magnets circumferentially arranged on the rotor core, wherein the rotor core is at least one of the magnets. The magnet housing includes a plurality of magnet housings that are partially housed and arranged in the circumferential direction, and the magnet housing extends radially outward from the central axis side, and is radially outward of the magnet housing. Is provided with a recess which is recessed radially inward from the outer peripheral surface of the rotor core, and at least a part of a pressing member for pressing the magnet radially inward directly or indirectly is disposed in the recess .
本発明の例示的なモータは、上記構成のロータと、ステータと、を備える。 An exemplary motor of the present invention comprises the rotor of the above configuration and a stator.
本発明の例示的なロータ及びモータによれば、マグネット収容部内におけるマグネットのガタツキを抑制しながら製造工数の増大を抑制することができる。 According to the exemplary rotor and motor of the present invention, it is possible to suppress the increase in the number of manufacturing processes while suppressing the rattling of the magnet in the magnet housing portion.
図1は、本発明の一実施形態に係るロータを備えるモータの平面図である。FIG. 1 is a plan view of a motor provided with a rotor according to an embodiment of the present invention. 図2は、本発明の一実施形態に係るロータのシャフトを取り付けた状態を示す斜視図である。FIG. 2 is a perspective view showing a state in which a shaft of a rotor according to an embodiment of the present invention is attached. 図3は、本発明の一実施形態に係るロータのシャフトを取り付けた状態を示す平面図である。FIG. 3 is a plan view showing a state in which a shaft of a rotor according to an embodiment of the present invention is attached. 図4は、本発明の一実施形態に係るロータの押圧部材を凹部に配置する前の状態を示す平面図である。FIG. 4 is a plan view showing a state before the pressing member of the rotor according to an embodiment of the present invention is disposed in the recess. 図5は、図4のA矢視図である。FIG. 5 is a view on arrow A of FIG. 図6は、本発明の一実施形態に係るロータの押圧部材の斜視図である。FIG. 6 is a perspective view of a pressing member of a rotor according to an embodiment of the present invention. 図7は、本発明の一実施形態に係るロータの押圧部材の平面図である。FIG. 7 is a plan view of a pressing member of a rotor according to an embodiment of the present invention. 図8は、本発明の一実施形態の第1変形例に係るロータのシャフトを取り付けた状態を示す斜視図である。FIG. 8 is a perspective view showing a state in which a shaft of a rotor according to a first modification of the embodiment of the present invention is attached. 図9は、本発明の一実施形態の第2変形例に係るロータのシャフトを取り付けた状態を示す側面図である。FIG. 9 is a side view showing a state in which a shaft of a rotor according to a second modification of the embodiment of the present invention is attached. 図10は、本発明の一実施形態の第3変形例に係るロータのシャフトを取り付けた状態を示す斜視図である。FIG. 10 is a perspective view showing a state in which a shaft of a rotor according to a third modification of the embodiment of the present invention is attached. 図11は、本発明の一実施形態の第4変形例に係るロータのシャフトを取り付けた状態を示す斜視図である。FIG. 11 is a perspective view showing a state in which a shaft of a rotor according to a fourth modified example of the embodiment of the present invention is attached. 図12は、本発明の一実施形態の第5変形例に係るロータのシャフトを取り付けた状態を示す平面図である。FIG. 12 is a plan view showing a state in which a shaft of a rotor according to a fifth modification of the embodiment of the present invention is attached. 図13は、本発明の一実施形態の第6変形例に係るロータの周縁部の一部を拡大した拡大平面図である。FIG. 13 is an enlarged plan view of a part of the peripheral portion of a rotor according to a sixth modification of the embodiment of the present invention.
以下、本発明の例示的な実施形態について、図面を参照しながら詳細に説明する。本明細書では、モータの中心軸が延びる方向を単に「軸方向」と呼び、モータの中心軸を中心として中心軸と直交する方向(軸方向に垂直な方向)を単に「径方向」と呼び、モータの中心軸を中心とする円弧に沿う方向を単に「周方向」と呼ぶ。ロータコアの中心軸は、モータの中心軸に一致する。また、本明細書では、説明の便宜上、軸方向を上下方向とし、図1の紙面に直交する方向をロータコア、ロータ、及びモータの上下方向として各部の形状や位置関係を説明する。なお、この上下方向の定義はモータの使用時の向きを限定するものではない。また、本明細書で用いる「平行」及び「垂直」は、それぞれ厳密な意味での平行及び垂直のほかに、略平行及び略垂直も含む。  Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. In the present specification, the direction in which the central axis of the motor extends is simply referred to as “axial direction”, and the direction orthogonal to the central axis (direction perpendicular to the axial direction) centered on the central axis of the motor is simply referred to as “radial direction”. A direction along an arc centering on the central axis of the motor is simply referred to as "circumferential direction". The central axis of the rotor core coincides with the central axis of the motor. Further, in the present specification, for convenience of explanation, the shape and positional relationship of each part will be described with the axial direction as the vertical direction and the direction orthogonal to the sheet of FIG. 1 as the rotor core, the rotor and the motor. Note that the definition in the vertical direction does not limit the direction of use of the motor. Also, as used herein, "parallel" and "perpendicular" include near parallel and near vertical as well as parallel and vertical in the strict sense respectively.
<1.モータの全体構成>

本発明の例示的な一実施形態に係るモータの全体構成について説明する。図1は、本発明の一実施形態に係るモータの平面図である。モータ1はいわゆるインナーロータ型のモータであり、ステータ2及びロータ3を有する。モータ1は、さらに、ステータ2及びロータ3を内包する筒状のハウジング(不図示)を有する。ステータ2は、ハウジングに、例えば圧入または焼き嵌めなどにより、固定される。なお、モータ1は、さらにステータ2に接続される制御基板(不図示)を有してもよい。 
<1. Overall configuration of motor>

An overall configuration of a motor according to an exemplary embodiment of the present invention will be described. FIG. 1 is a plan view of a motor according to an embodiment of the present invention. The motor 1 is a so-called inner rotor type motor and has a stator 2 and a rotor 3. The motor 1 further has a cylindrical housing (not shown) that encloses the stator 2 and the rotor 3. The stator 2 is fixed to the housing by, for example, press fitting or shrink fitting. The motor 1 may further include a control board (not shown) connected to the stator 2.
ステータ2は、例えば、軸方向に延びる円筒形状である。ステータ2は、ロータ3の径方向外側に所定の隙間を設けて配置される。ステータ2は、ステータコア21と、インシュレータ22と、コイル23と、を有する。  The stator 2 has, for example, an axially extending cylindrical shape. The stator 2 is disposed radially outside the rotor 3 with a predetermined gap. The stator 2 has a stator core 21, an insulator 22, and a coil 23.
ステータコア21は、軸方向に延びる筒形状である。ステータコア21は、複数枚の電磁鋼板を軸方向に積層して形成される。なお、ステータコア21は、圧粉磁心であってもよい。ステータコア21は、コアバック21aと、複数のティース(不図示)と、を有する。コアバック21aは円環形状である。ティースは、コアバック21aの内周面から径方向内側に延びる。複数のティースは周方向に所定間隔で並んで配置される。本実施形態では、ティースの数は12本である。なお、ティースの数は、特に限定されるものではなく、所望の仕様にあわせて任意に変更されてもよい。また、本実施形態において、ステータコア21は、いわゆる丸コアとなっている。なお、ステータコア21は、分割コアや、ティースを有する複数のT字状のコアバック片を帯状に連結して形成されるストレートコアなどであってもよい。  The stator core 21 has a cylindrical shape extending in the axial direction. The stator core 21 is formed by laminating a plurality of electromagnetic steel plates in the axial direction. The stator core 21 may be a dust core. The stator core 21 has a core back 21 a and a plurality of teeth (not shown). The core back 21a has an annular shape. The teeth extend radially inward from the inner peripheral surface of the core back 21a. The plurality of teeth are arranged in the circumferential direction at predetermined intervals. In the present embodiment, the number of teeth is twelve. The number of teeth is not particularly limited, and may be arbitrarily changed in accordance with a desired specification. Further, in the present embodiment, the stator core 21 is a so-called round core. The stator core 21 may be a split core or a straight core formed by connecting a plurality of T-shaped core back pieces having teeth in a strip shape.
インシュレータ22はティースの外面を覆う。インシュレータ22はステータコア21とコイル23との間に配置される。インシュレータ22は、例えば合成樹脂等の絶縁材料により構成される。コイル23はティースにインシュレータ22を介して導線が巻き回されることにより構成される。  The insulator 22 covers the outer surface of the teeth. The insulator 22 is disposed between the stator core 21 and the coil 23. The insulator 22 is made of, for example, an insulating material such as a synthetic resin. The coil 23 is configured by winding a conducting wire around the teeth via the insulator 22.

<1-1.ロータの構成>

 図2は、シャフト4が取り付けられたロータ3の斜視図である。図3は、シャフト4が取り付けられたロータ3の平面図である。図4は、シャフト4が取り付けられたロータ3の押圧部材34が凹部33内に配置される前の状態を示す平面図である。 

<1-1. Rotor configuration>

FIG. 2 is a perspective view of the rotor 3 to which the shaft 4 is attached. FIG. 3 is a plan view of the rotor 3 to which the shaft 4 is attached. FIG. 4 is a plan view showing a state before the pressing member 34 of the rotor 3 to which the shaft 4 is attached is disposed in the recess 33. As shown in FIG.
ロータ3は、軸方向に延びる円筒形状である。ロータ3は、ステータ2の径方向内側に所定の隙間を設けて配置される。ロータ3はIPM(Interior Permanent Magnet)型ロータであり、ロータコア30と、複数のマグネット31と、を有する。  The rotor 3 has an axially extending cylindrical shape. The rotor 3 is disposed radially inward of the stator 2 with a predetermined gap. The rotor 3 is an IPM (Interior Permanent Magnet) type rotor, and includes a rotor core 30 and a plurality of magnets 31.
ロータコア30は、上下に延びる中心軸Cに沿って配置され、電磁鋼板30bを有する。電磁鋼板30bは、ロータコア30の中心軸Cに対して径方向外側に拡がる。ロータコア30は、電磁鋼板30bが軸方向に複数積層された積層鋼板である。複数の電磁鋼板30bは、例えばかしめ又は溶接などによって互いに固定される。なお、ロータコア30は、積層鋼板に限られず、例えば、圧粉磁心であってもよい。  The rotor core 30 is disposed along a central axis C extending up and down and has an electromagnetic steel plate 30b. The electromagnetic steel plate 30 b extends radially outward with respect to the central axis C of the rotor core 30. The rotor core 30 is a laminated steel plate in which a plurality of electromagnetic steel plates 30 b are laminated in the axial direction. The plurality of electromagnetic steel plates 30b are fixed to each other by, for example, caulking or welding. The rotor core 30 is not limited to a laminated steel plate, and may be, for example, a dust core.
本実施形態では、ロータコア30は、軸方向に延びる略円筒形状である。ロータコア30の中心部には軸方向に貫通する孔部30aが配置される。孔部30a内にはシャフト4の一部が圧入される。シャフト4はモータ1の回転軸である。本実施形態では、シャフト4は、上下方向に延びる円柱形状である。なお、シャフト4は、中空の部材であってもよい。また、孔部30a内に樹脂部材や金属部材などの部材が取り付けられ、シャフト4が当該部材を介して孔部30aに一部が固定されてもよい。すなわち、シャフト4は、ロータコア30に直接または間接的に固定される。  In the present embodiment, the rotor core 30 has a substantially cylindrical shape extending in the axial direction. A hole 30 a penetrating in the axial direction is disposed at the center of the rotor core 30. A portion of the shaft 4 is press-fitted into the hole 30a. The shaft 4 is a rotating shaft of the motor 1. In the present embodiment, the shaft 4 has a cylindrical shape extending in the vertical direction. The shaft 4 may be a hollow member. In addition, a member such as a resin member or a metal member may be attached in the hole 30a, and a part of the shaft 4 may be fixed to the hole 30a via the member. That is, the shaft 4 is fixed to the rotor core 30 directly or indirectly.
シャフト4の上端側及び下端側は、ロータ3の上方及び下方に設けられた上軸受及び下軸受(いずれも不図示)に回転可能に支持される。これにより、ロータ3は、上下方向に延びるシャフト4とともに中心軸Cを中心に回転可能である。本実施形態では、ロータコア30の中心軸は、モータ1のシャフト4に一致する。なお、シャフト4は、上端または下端のいずれか一方のみが軸受に回転可能に支持されてもよい。軸受は、玉軸受などであってもよく、特に種類は限定されない。  The upper end side and the lower end side of the shaft 4 are rotatably supported by upper and lower bearings (both not shown) provided above and below the rotor 3. Thus, the rotor 3 can rotate around the central axis C together with the shaft 4 extending in the vertical direction. In the present embodiment, the central axis of the rotor core 30 coincides with the shaft 4 of the motor 1. Note that only one of the upper end and the lower end of the shaft 4 may be rotatably supported by the bearing. The bearing may be a ball bearing or the like, and the type is not particularly limited.
ロータコア30は、複数の磁極部35と、複数のマグネット収容部32と、を有する。複数の磁極部35は、周方向に略等間隔に配置される。各磁極部35の形状は、軸方向から見て略扇形である。磁極部35の径方向外端面は、ステータコア21のティースの径方向内端面と径方向に対向する。  The rotor core 30 has a plurality of magnetic pole portions 35 and a plurality of magnet housing portions 32. The plurality of magnetic pole portions 35 are arranged at substantially equal intervals in the circumferential direction. The shape of each magnetic pole portion 35 is substantially fan-shaped as viewed from the axial direction. The radially outer end surface of the magnetic pole portion 35 radially faces the radially inner end surface of the teeth of the stator core 21.
マグネット収容部32はロータコア30を軸方向に貫通する貫通孔である。複数のマグネット収容部32は周方向に並んで配置され、中心軸C側から径方向外側へ向かって延びる。各マグネット収容部32は周方向に隣り合う磁極部35間に配置される。本実施形態では、マグネット収容部32の軸方向に垂直な断面の形状は、径方向に延びる矩形形状である。マグネット収容部32の内壁32aは、マグネット収容部32の周方向両側及び径方向両側に配置される。  The magnet housing portion 32 is a through hole which penetrates the rotor core 30 in the axial direction. The plurality of magnet housing portions 32 are arranged side by side in the circumferential direction, and extend radially outward from the central axis C side. Each magnet housing portion 32 is disposed between the magnetic pole portions 35 adjacent in the circumferential direction. In the present embodiment, the shape of the cross section perpendicular to the axial direction of the magnet housing portion 32 is a rectangular shape extending in the radial direction. The inner wall 32 a of the magnet housing portion 32 is disposed on both sides in the circumferential direction and both sides in the radial direction of the magnet housing portion 32.
各マグネット収容部32にはマグネット31の少なくとも一部が収容される。複数のマグネット31はロータコア30に周方向に並んで配置される。すなわち、ロータ3は、複数のマグネット31を放射状に配置した、いわゆるスポーク型のロータである。本実施形態では、マグネット31の軸方向に垂直な断面の形状は径方向に延びる矩形形状である。言い換えると、本実施形態において、マグネット31の形状は、径方向に伸びる板状である。本実施形態ではマグネット収容部32及びマグネット31はそれぞれ8個設けられる。マグネット31の軸方向長さは、マグネット収容部32の軸方向長さに略一致する。  Each magnet housing portion 32 houses at least a part of the magnet 31. The plurality of magnets 31 are arranged in the circumferential direction on the rotor core 30. That is, the rotor 3 is a so-called spoke-type rotor in which a plurality of magnets 31 are arranged radially. In the present embodiment, the shape of the cross section perpendicular to the axial direction of the magnet 31 is a rectangular shape extending in the radial direction. In other words, in the present embodiment, the shape of the magnet 31 is a plate extending in the radial direction. In the present embodiment, eight magnet housing portions 32 and eight magnets 31 are provided. The axial length of the magnet 31 substantially coincides with the axial length of the magnet housing portion 32.
マグネット31の周方向端面は、磁極部35の周方向端面と周方向に対向する磁極面になる。複数のマグネット31は、同極の磁極面同士が周方向に対向するように配置される。磁極部35は、磁極部35の周方向両側に配置されたマグネット31により磁化される。これにより、磁極部35の径方向外端面が磁極面となる。  The circumferential end surface of the magnet 31 is a magnetic pole surface that faces the circumferential end surface of the magnetic pole portion 35 in the circumferential direction. The plurality of magnets 31 are arranged such that the magnetic pole faces of the same pole face each other in the circumferential direction. The magnetic pole portion 35 is magnetized by magnets 31 disposed on both sides in the circumferential direction of the magnetic pole portion 35. Thus, the radially outer end surface of the magnetic pole portion 35 becomes a magnetic pole surface.
なお、マグネット31の軸方向長さは、マグネット収容部32の軸方向長さよりも短くてもよい。マグネット収容部32の数及びマグネット31の数は、特に限定されるものではなく、所望の仕様にあわせて任意に変更されてもよい。マグネット31の形状は、上述の形状に限られない。マグネット31の形状は、マグネット収容部32に収容可能であればよく、周方向端面が湾曲面である形状などででもよく、特に限定されるものではない。また、マグネット31の種類は、ネオジ焼結マグネット、ネオジボンド磁石、フェライト磁石などでもよく、特に限定されるものではない。  The axial length of the magnet 31 may be shorter than the axial length of the magnet housing portion 32. The number of magnet housing portions 32 and the number of magnets 31 are not particularly limited, and may be arbitrarily changed in accordance with desired specifications. The shape of the magnet 31 is not limited to the above-described shape. The shape of the magnet 31 may be any shape as long as it can be housed in the magnet housing portion 32, and may be a shape in which the circumferential end surface is a curved surface, and is not particularly limited. Further, the type of the magnet 31 may be a neodymium sintered magnet, a neodymium bond magnet, a ferrite magnet or the like, and is not particularly limited.
マグネット収容部32の径方向外方には、ロータコア30の外周面から径方向内方に凹む凹部33が設けられる。凹部33は、マグネット収容部32と径方向で対向する。凹部33はロータコア30の軸方向一端から軸方向他端にわたって延びる。なお、ロータコア30が凹部33を有する場合において、マグネット31の径方向における位置は、ロータコア30の外周側(すなわち、径方向外側)に近いほうが望ましい。言い換えると、マグネット31の位置は、凹部33の径方向外側の開口に近いほうが好ましい。これにより、ステータ2とロータ3との間において磁束を円滑に流すことができる。  A recess 33 that is recessed radially inward from the outer peripheral surface of the rotor core 30 is provided radially outward of the magnet housing portion 32. The recess 33 faces the magnet housing portion 32 in the radial direction. The recess 33 extends from one axial end of the rotor core 30 to the other axial end. In the case where the rotor core 30 has the recess 33, it is desirable that the position of the magnet 31 in the radial direction be closer to the outer peripheral side (i.e., the radial outer side) of the rotor core 30. In other words, the position of the magnet 31 is preferably closer to the radial outer opening of the recess 33. Thereby, magnetic flux can be smoothly flowed between the stator 2 and the rotor 3.
図4に示すように、凹部33は、幅狭部331と、内側幅広部332と、外側幅広部333と、を有する。径方向内側から径方向外側に向かって、内側幅広部332、幅狭部331及び外側幅広部333が順に配置される。内側幅広部332と、幅狭部331と、外側幅広部333とは互いに径方向で連通する。軸方向から見て、内側幅広部332の開口における形状は略C字状である。軸方向から見たときに、幅狭部331は、内側幅広部332から径方向に延びる一対の線状である。軸方向から見たときに、外側幅広部333の周方向の幅は径方向外側へ行くほど概ね大きくなる。  As shown in FIG. 4, the recess 33 has a narrow portion 331, an inner wide portion 332, and an outer wide portion 333. An inner wide portion 332, a narrow portion 331, and an outer wide portion 333 are arranged in order from the inner side in the radial direction to the outer side in the radial direction. The inner wide portion 332, the narrow portion 331, and the outer wide portion 333 communicate with each other in the radial direction. When viewed from the axial direction, the shape of the opening of the inner wide portion 332 is substantially C-shaped. When viewed from the axial direction, the narrow portions 331 are a pair of linear shapes extending in the radial direction from the inner wide portion 332. When viewed from the axial direction, the circumferential width of the outer wide portion 333 generally increases toward the radially outer side.
内側幅広部332の周方向の最長幅W2は幅狭部331の周方向の幅W1よりも大きく、外側幅広部333の周方向の最短幅W3は幅狭部331の周方向の幅W1以上である。すなわち、内側幅広部332は、幅狭部331の径方向内側に配されて幅狭部331よりも周方向の幅が大きい。外側幅広部333は、幅狭部331の径方向外側に配されて幅狭部331よりも周方向の幅が大きい。  The longest width W2 in the circumferential direction of the inner wide portion 332 is larger than the width W1 in the circumferential direction of the narrow portion 331, and the shortest width W3 in the circumferential direction of the outer wide portion 333 is at least the circumferential width W1 of the narrow portion 331 is there. That is, the inner wide portion 332 is disposed radially inward of the narrow portion 331, and the width in the circumferential direction is larger than that of the narrow portion 331. The outer wide portion 333 is disposed radially outward of the narrow portion 331 and has a circumferential width greater than that of the narrow portion 331.
図5は、図4のA矢視図である。すなわち、凹部33内でマグネット収容部32側を径方向外側から見た図である。図中、ハッチングはマグネット31を示す。凹部33の内壁は、マグネット収容部32の内壁32aと接続されるブリッジ部36を有する。  FIG. 5 is a view on arrow A of FIG. That is, it is the figure which looked at the magnet accommodating part 32 side in the recessed part 33 from the radial direction outer side. Hatching shows the magnet 31 in the figure. The inner wall of the recess 33 has a bridge portion 36 connected to the inner wall 32 a of the magnet housing portion 32.
本実施形態におけるロータコア30は、ブリッジ部36を有する電磁鋼板30bとブリッジ部36を有しない電磁鋼板30bとが軸方向に交互に積層されることにより、構成されている。そのため、軸方向に隣り合うブリッジ部36同士の間には、空間部37が構成される。なお、ブリッジ部36を有する電磁鋼板30bとブリッジ部36を有しない電磁鋼板30bとは、必ずしも交互に配置される必要はない。ロータコア30は、ブリッジ部36を有しない電磁鋼板30bを少なくとも1以上有してもよい。ロータコア30は、ブリッジ部36を有しない電磁鋼板30bを含まず、ブリッジ部36を有する電磁鋼板のみから構成されてもよい。この場合、ロータコア30は、空間部37を有しない。  The rotor core 30 in the present embodiment is configured by alternately laminating an electromagnetic steel plate 30 b having a bridge portion 36 and an electromagnetic steel plate 30 b having no bridge portion 36 in the axial direction. Therefore, the space portion 37 is formed between the bridge portions 36 adjacent in the axial direction. The electromagnetic steel plates 30 b having the bridge portions 36 and the electromagnetic steel plates 30 b not having the bridge portions 36 need not necessarily be alternately arranged. The rotor core 30 may have at least one or more electromagnetic steel plates 30 b having no bridge portion 36. The rotor core 30 may not include the electromagnetic steel plate 30 b having no bridge portion 36, and may be configured only of the electromagnetic steel plate having the bridge portion 36. In this case, the rotor core 30 does not have the space 37.
図6は押圧部材34の斜視図である。図7は押圧部材34の平面図である。押圧部材34は第1補強部343と複数の第1延伸部341とを有する。凹部33内には第1延伸部341の少なくとも一部が配置される。押圧部材34は、例えば、樹脂、非磁性ステンレス鋼、またはアルミニウム等の非磁性材であると好ましい。本実施形態では第1延伸部341は8個配置されるが、第1延伸部341の数はこれに限定されない。すなわち、第1延伸部341の数は、凹部33の数以下であればよい。
FIG. 6 is a perspective view of the pressing member 34. FIG. FIG. 7 is a plan view of the pressing member 34. FIG. The pressing member 34 has a first reinforcing portion 343 and a plurality of first extending portions 341. At least a part of the first extending portion 341 is disposed in the recess 33. The pressing member 34 is preferably made of, for example, a nonmagnetic material such as resin, nonmagnetic stainless steel, or aluminum. Although eight first extending portions 341 are arranged in the present embodiment, the number of first extending portions 341 is not limited thereto. That is, the number of first extending portions 341 may be equal to or less than the number of recesses 33.
第1補強部343は環状であり、ロータコア30の軸方向下方側(軸方向一方側)に位置する。第1延伸部341は第1補強部343から軸方向上方側(軸方向他方側)へ延びる。本実施形態において、第1延伸部341の軸方向の長さはロータコア30の軸方向の長さの略半分になっているが、ロータコア30の軸方向の長さと同じでもよい。第1補強部343は、複数の第1延伸部341を連結する。本実施形態では、第1延伸部341は第1補強部343と一体の部材である。なお、第1延伸部341は、第1補強部343と別体の部材であってもよい。この場合、第1補強部343は、例えば、溶着や溶接等によって、複数の第1延伸部341と連結されるのが望ましい。
The first reinforcing portion 343 is annular, and is located on the axially lower side (axially one side) of the rotor core 30. The first extending portion 341 extends axially upward from the first reinforcing portion 343 (the other side in the axial direction). In the present embodiment, the axial length of the first extending portion 341 is approximately half of the axial length of the rotor core 30, but may be the same as the axial length of the rotor core 30. The first reinforcing portion 343 connects the plurality of first extending portions 341. In the present embodiment, the first extending portion 341 is a member integral with the first reinforcing portion 343. The first extending portion 341 may be a member separate from the first reinforcing portion 343. In this case, it is desirable that the first reinforcing portion 343 be connected to the plurality of first extending portions 341 by, for example, welding or welding.
第1延伸部341の軸方向に垂直な断面形状は凹部33の軸方向に垂直な断面形状と略同じである。また、第1延伸部341を凹部33に挿入する前の状態において、第1延伸部341の軸方向に垂直な断面の面積は、凹部33の軸方向に垂直な断面の面積よりも大きくなっている。  The cross-sectional shape perpendicular to the axial direction of the first extending portion 341 is substantially the same as the cross-sectional shape perpendicular to the axial direction of the recess 33. Moreover, in the state before inserting the first extending portion 341 into the recess 33, the area of the cross section perpendicular to the axial direction of the first extending portion 341 is larger than the area of the cross section perpendicular to the axial direction of the recess 33. There is.

<1-2.マグネット及び押圧部材の取付方法>

次に、マグネット31及び押圧部材34のロータコア30への取付方法について説明する。マグネット31を軸方向からマグネット収容部32内に挿入する。押圧部材34を凹部33に配置する前のロータコア30では、マグネット収容部32の径方向の長さはマグネット31の径方向の長さより大きく、マグネット収容部32の周方向の長さはマグネット31の周方向の長さよりも大きい。このため、マグネット31をマグネット収容部32に軸方向から挿入する際に、電磁鋼板30bからマグネット31に対して過大な応力が加わらない。したがって、マグネット31をマグネット収容部32に容易に収容することができる。また、マグネット31をマグネット収容部32に収容する際に、マグネット31の割れ等の損傷を防止することができる。 

<1-2. Mounting method of magnet and pressing member>

Next, a method of attaching the magnet 31 and the pressing member 34 to the rotor core 30 will be described. The magnet 31 is inserted into the magnet housing portion 32 in the axial direction. In the rotor core 30 before the pressing member 34 is disposed in the recess 33, the radial length of the magnet housing portion 32 is larger than the radial length of the magnet 31, and the circumferential length of the magnet housing portion 32 is Greater than the circumferential length. Therefore, when the magnet 31 is inserted into the magnet housing portion 32 in the axial direction, excessive stress is not applied to the magnet 31 from the electromagnetic steel plate 30 b. Therefore, the magnet 31 can be easily housed in the magnet housing portion 32. Further, when the magnet 31 is housed in the magnet housing portion 32, damage such as cracking of the magnet 31 can be prevented.
マグネット31をマグネット収容部32に収容した後に、第1延伸部341を軸方向から凹部33内に挿入する。これにより、第1延伸部341は凹部33に配置される。この時、第1延伸部341の少なくとも一部が凹部33に収容されればよい。また、第1補強部343の上面(軸方向他方側の面)は、ロータコア30の下面(軸方向一方側の面)に接触する。第1補強部343は、マグネット収容部32の下端の開口の少なくとも一部を覆う。これにより、ロータコア30に対して外部から衝撃等が加わった場合であっても、マグネット31がマグネット収容部32から抜け出ることが防止される。なお、第1補強部343は、必ずしもマグネット収容部32の下端の開口を覆わなくてもよい。  After the magnet 31 is housed in the magnet housing portion 32, the first extending portion 341 is inserted into the recess 33 in the axial direction. Thus, the first extending portion 341 is disposed in the recess 33. At this time, at least a part of the first extending portion 341 may be accommodated in the recess 33. Further, the upper surface (the surface on the other side in the axial direction) of the first reinforcing portion 343 contacts the lower surface (the surface on the one side in the axial direction) of the rotor core 30. The first reinforcing portion 343 covers at least a part of the opening at the lower end of the magnet housing portion 32. As a result, even when an impact or the like is applied to the rotor core 30 from the outside, the magnet 31 is prevented from coming out of the magnet housing portion 32. The first reinforcing portion 343 may not necessarily cover the opening at the lower end of the magnet housing portion 32.
第1延伸部341を凹部33内に配置する前の状態において、第1延伸部341の軸方向に垂直な断面の面積は、凹部33の軸方向に垂直な断面の面積よりも大きくなっている。このため、第1延伸部341を凹部33内に配置すると、第1延伸部341の径方向内端部がブリッジ部36を径方向内方に押圧し、ブリッジ部36が弾性変形する。そして、第1延伸部341はブリッジ部36を介してマグネット31を径方向内方に押圧する。すなわち、凹部33内の押圧部材34はマグネット31を間接的に径方向内方に押圧する。  Before the first extending portion 341 is disposed in the recess 33, the area of the cross section perpendicular to the axial direction of the first extending portion 341 is larger than the area of the cross section perpendicular to the axial direction of the recess 33 . Therefore, when the first extending portion 341 is disposed in the recess 33, the radially inner end portion of the first extending portion 341 presses the bridge portion 36 radially inward, so that the bridge portion 36 is elastically deformed. Then, the first extending portion 341 presses the magnet 31 radially inward via the bridge portion 36. That is, the pressing member 34 in the recess 33 indirectly presses the magnet 31 radially inward.
これにより、マグネット収容部32において、マグネット収容部32の内周側の内壁32aとマグネット31との径方向の隙間、及びマグネット収容部32の外周側の内壁32aとマグネット31との径方向の隙間を低減することができる。また、マグネット31をマグネット収容部32内に収容する際に、マグネット収容部32の内壁32aから過度の応力を受けることがない。このため、マグネット収容部32へのマグネット31の収容を円滑に行うことができる。したがって、マグネット収容部32内に収容されるマグネット31のガタツキを抑制しながらロータ3及びモータ1の製造工数の増大を抑制することができる。  Thus, in the magnet housing portion 32, a radial gap between the inner wall 32a on the inner peripheral side of the magnet housing portion 32 and the magnet 31, and a radial gap between the inner wall 32a on the outer peripheral side of the magnet housing portion 32 and the magnet 31. Can be reduced. Further, when the magnet 31 is housed in the magnet housing portion 32, excessive stress is not received from the inner wall 32a of the magnet housing portion 32. For this reason, accommodation of the magnet 31 in the magnet accommodation part 32 can be performed smoothly. Therefore, it is possible to suppress an increase in the number of manufacturing steps of the rotor 3 and the motor 1 while suppressing the rattling of the magnet 31 housed in the magnet housing portion 32.
第1補強部343により、第1延伸部341を補強することができる。また、第1補強部343により、複数の第1延伸部341の凹部33への挿入時の作業性を向上させることができる。
The first extending portion 341 can be reinforced by the first reinforcing portion 343. Moreover, the workability at the time of insertion to the recessed part 33 of several 1st extending | stretching part 341 can be improved by the 1st reinforcement part 343. FIG.
内側幅広部332における第1延伸部341(押圧部材34)の周方向の幅L1(図7参照)は、幅狭部331よりも大きく、内側幅広部332の周方向の最長幅W2(図4参照)よりも小さい。これにより、幅狭部331により押圧部材34の径方向外方への抜けを防止することができ、マグネット31のガタツキをより抑制することができる。  The circumferential width L1 (see FIG. 7) of the first extending portion 341 (the pressing member 34) in the inner wide portion 332 is larger than the narrow portion 331, and the circumferential maximum width W2 of the inner wide portion 332 (see FIG. 4) Less than see). Thereby, the radial narrowing of the pressing member 34 can be prevented by the narrow portion 331, and rattling of the magnet 31 can be further suppressed.

<2.モータの動作>

上記構成のモータ1において、外部電源(不図示)から制御基板等を介してコイル23に電力が供給されると、ステータコア21の複数のティースに径方向の磁束が生じる。この時、マグネット31から生じる磁束は磁極部35を通って磁極部35の径方向外側へ延びる。ステータ2に発生した磁束とマグネット31の磁束との相互作用により周方向のトルクが発生する。これにより、ステータ2に対してロータ3が中心軸Cを中心として回転する。

<2. Motor operation>

In the motor 1 configured as described above, when electric power is supplied to the coil 23 from an external power supply (not shown) via a control board or the like, magnetic flux in the radial direction is generated in the plurality of teeth of the stator core 21. At this time, the magnetic flux generated from the magnet 31 extends radially outward of the magnetic pole portion 35 through the magnetic pole portion 35. The interaction between the magnetic flux generated in the stator 2 and the magnetic flux of the magnet 31 generates torque in the circumferential direction. Thereby, the rotor 3 rotates around the central axis C with respect to the stator 2.
この時、上述のように、マグネット収容部32において、押圧部材34により、マグネット収容部32の内周側の内壁32aとマグネット31との径方向の隙間、及びマグネット収容部32の外周側の内壁32aとマグネット31との径方向の隙間を低減することができる。このため、マグネット収容部32におけるモータ1の磁気抵抗が低減されて磁束がステータ2およびロータ3との間を円滑に流れる。したがって、モータ1の回転効率を向上させることができる。  At this time, as described above, in the magnet housing portion 32, the gap in the radial direction between the inner wall 32a on the inner peripheral side of the magnet housing portion 32 and the magnet 31 and the inner wall on the outer peripheral side of the magnet housing portion 32 The gap in the radial direction between 32 a and the magnet 31 can be reduced. Therefore, the magnetic resistance of the motor 1 in the magnet housing portion 32 is reduced, and the magnetic flux flows smoothly between the stator 2 and the rotor 3. Therefore, the rotation efficiency of the motor 1 can be improved.
押圧部材34が非磁性材であると、ステータ2から押圧部材34への磁束の漏れが抑制され、モータ1における回転効率の減少が抑制される。なお、マグネット収容部32内には、さらに接着剤や樹脂材料などが配置されてもよい。これにより、マグネット収容部32において、マグネット収容部32の内周側の内壁32aとマグネット31との径方向の隙間、及びマグネット収容部32の外周側の内壁32aとマグネット31との径方向の隙間をさらに小さくすることができ、マグネット収容部32内に収容されるマグネット31のガタツキをより抑制することができる。  When the pressing member 34 is a nonmagnetic material, the leakage of the magnetic flux from the stator 2 to the pressing member 34 is suppressed, and the decrease in the rotation efficiency of the motor 1 is suppressed. In the magnet housing portion 32, an adhesive, a resin material, or the like may be further disposed. Thus, in the magnet housing portion 32, a radial gap between the inner wall 32a on the inner peripheral side of the magnet housing portion 32 and the magnet 31, and a radial gap between the inner wall 32a on the outer peripheral side of the magnet housing portion 32 and the magnet 31. Can be further reduced, and rattling of the magnet 31 housed in the magnet housing portion 32 can be further suppressed.

<3.第1変形例>

図8は本実施形態の第1変形例のロータ3のシャフト4を取り付けた状態を示す斜視図である。なお、図8では、押圧部材34の第2延伸部342を凹部33に挿入している途中の様子を示している。 

<3. First Modified Example>

FIG. 8 is a perspective view showing a state in which the shaft 4 of the rotor 3 of the first modified example of the present embodiment is attached. In addition, in FIG. 8, the mode in the middle of inserting the 2nd extending part 342 of the press member 34 in the recessed part 33 is shown.
押圧部材34は、第1補強部343及び第1延伸部341に加えて、第2補強部344及び複数の第2延伸部342を有する。第2補強部344は環状であり、ロータコア30の軸方向他方側(軸方向上方側)に位置する。第2延伸部342は第2補強部344から軸方向一方側(軸方向下方側)へ延び、第2延伸部342の少なくとも一部は凹部33に収容される。第2補強部344は、複数の第2延伸部342を連結する。本変形例では、第2補強部344は、第2延伸部342と一体に形成される。なお、第2補強部344が、第2延伸部342と別体に構成されてもよい。この場合、第2補強部344は、複数の第2延伸部342と、例えば、溶着や溶接等により、連結されるのが望ましい。本実施形態では第2延伸部342の数は8個であるが、これに限定されない。すなわち、第2延伸部342の数は、凹部33の数以下であればよい。また、本実施形態では、第1延伸部341の数は、第2延伸部342の数と同じである。なお、第1延伸部341の数が、第2延伸部342の数と異なってもよい。  The pressing member 34 has a second reinforcing portion 344 and a plurality of second extending portions 342 in addition to the first reinforcing portion 343 and the first extending portion 341. The second reinforcing portion 344 is annular, and is located on the other axial side (axially upper side) of the rotor core 30. The second extending portion 342 extends from the second reinforcing portion 344 in the axial direction to one side (axially lower side), and at least a part of the second extending portion 342 is accommodated in the recess 33. The second reinforcing portion 344 connects the plurality of second extending portions 342. In the present modification, the second reinforcing portion 344 is integrally formed with the second extending portion 342. The second reinforcing portion 344 may be configured separately from the second extending portion 342. In this case, it is desirable that the second reinforcing portion 344 be connected to the plurality of second extending portions 342 by, for example, welding or welding. Although the number of second extending portions 342 is eight in the present embodiment, the present invention is not limited to this. That is, the number of second extending portions 342 may be equal to or less than the number of concave portions 33. Further, in the present embodiment, the number of first extending portions 341 is the same as the number of second extending portions 342. The number of first extending portions 341 may be different from the number of second extending portions 342.
第2補強部344は第1補強部343と同様に構成される。なお、第2補強部344の形状は、第1補強部343の形状と必ずしも同じである必要はなく、互いに異なる形状であってもよい。第2延伸部342は第1延伸部341と同様に構成される。第2延伸部342の形状は、第1延伸部341の形状と必ずしも同じである必要はなく、互いに異なる形状であってもよい。また、第1延伸部341の軸方向長さと第2延伸部342の軸方向長さは略同じであり、ロータコア30の軸方向長さの略半分である。なお、第1延伸部341の軸方向長さは、第2延伸部342の軸方向長さと必ずしも同じである必要はなく、互いの長さが異なっていてもよい。第1延伸部341の軸方向長さが第2延伸部342の軸方向長さよりも長くてもよく、または、第2延伸部342の軸方向長さが第1延伸部341の軸方向長さよりも長くてもよい。この場合でも、第1延伸部341の軸方向長さと第2延伸部342の軸方向長さとの和は、ロータコア30の軸方向長さであるのが望ましい。  The second reinforcing portion 344 is configured in the same manner as the first reinforcing portion 343. The shape of the second reinforcing portion 344 does not have to be the same as the shape of the first reinforcing portion 343 and may be different from each other. The second extending portion 342 is configured in the same manner as the first extending portion 341. The shape of the second extending portion 342 does not have to be the same as the shape of the first extending portion 341, and may be different from each other. Further, the axial length of the first extending portion 341 and the axial length of the second extending portion 342 are substantially the same, and are approximately half of the axial length of the rotor core 30. The axial length of the first extending portion 341 does not have to be the same as the axial length of the second extending portion 342, and the lengths may be different from each other. The axial length of the first extending portion 341 may be longer than the axial length of the second extending portion 342, or the axial length of the second extending portion 342 is greater than the axial length of the first extending portion 341 It may also be long. Even in this case, it is desirable that the sum of the axial length of the first extending portion 341 and the axial length of the second extending portion 342 be the axial length of the rotor core 30.
第1延伸部341の軸方向上方側(軸方向他方側)の先端は、第2延伸部342の軸方向下方側(軸方向一方側)の先端と、接触または対向する。第2延伸部342は、第1延伸部341と同様に、ブリッジ部36を介してマグネット31を径方向内方に押圧する。これにより、マグネット収容部32において、マグネット収容部32の内周側の内壁32aとマグネット31との径方向の隙間、及びマグネット収容部32の外周側の内壁32aとマグネット31との径方向の隙間を低減することができる。したがって、マグネット収容部32内に収容されるマグネット31のガタツキを抑制することができる。また、第2補強部344により、第2延伸部342を補強することができ、複数の第2延伸部342の凹部33への挿入時の作業性を向上させることができる。
The tip of the first extending portion 341 on the upper side in the axial direction (the other side in the axial direction) contacts or opposes the tip on the lower side (the one side in the axial direction) of the second extending portion 342 in the axial direction. Similar to the first extending portion 341, the second extending portion 342 presses the magnet 31 radially inward via the bridge portion 36. Thus, in the magnet housing portion 32, a radial gap between the inner wall 32a on the inner peripheral side of the magnet housing portion 32 and the magnet 31, and a radial gap between the inner wall 32a on the outer peripheral side of the magnet housing portion 32 and the magnet 31. Can be reduced. Therefore, rattling of the magnet 31 housed in the magnet housing portion 32 can be suppressed. In addition, the second extending portion 342 can be reinforced by the second reinforcing portion 344, and the workability at the time of insertion of the plurality of second extending portions 342 into the recess 33 can be improved.

<4.第2変形例>

図9は本実施形態の第2変形例のロータ3のシャフト4を取り付けた状態を示す斜視図である。図9に示すように、ロータコア30は、軸方向に複数の段に分割された構成であってもよい。より好ましくは、ロータコア30は、軸方向に複数の段に分割されたスキュー構造を有する。ロータコア30は、例えば、第1ロータコア301と、第2ロータコア302と、を含む。第1ロータコア301及び第2ロータコア302は、上述の実施形態と同様に、複数枚の電磁鋼板30bが軸方向に積層されることにより構成される。第2ロータコア302は、第1ロータコア301の軸方向上方側(軸方向他方側)に位置する。第1ロータコア301及び第2ロータコア302は、それぞれ、上述の実施形態と同様に、凹部33、ブリッジ部36、マグネット収容部32、及びマグネット31を有する。第1ロータコア301の軸方向高さは、第2ロータコア302の軸方向高さと同じである。なお、第1ロータコア301の軸方向高さは、第2ロータコア302の軸方向高さと異なっていてもよい。さらに、第1ロータコア301は、第2ロータコア302に対して、中心軸Cを中心として周方向に所定角度だけずれて配置される。なお、ロータコア30は、2段ではなく、3段以上に軸方向に分割されてもよい。

<4. Second Modified Example>

FIG. 9 is a perspective view showing a state in which the shaft 4 of the rotor 3 of the second modified example of the present embodiment is attached. As shown in FIG. 9, the rotor core 30 may be divided into a plurality of stages in the axial direction. More preferably, the rotor core 30 has a skew structure axially divided into a plurality of stages. The rotor core 30 includes, for example, a first rotor core 301 and a second rotor core 302. The first rotor core 301 and the second rotor core 302 are configured by laminating a plurality of electromagnetic steel plates 30 b in the axial direction, as in the above-described embodiment. The second rotor core 302 is located on the axially upper side (the other axial side) of the first rotor core 301. Each of the first rotor core 301 and the second rotor core 302 has the recess 33, the bridge portion 36, the magnet housing portion 32, and the magnet 31 as in the above-described embodiment. The axial height of the first rotor core 301 is the same as the axial height of the second rotor core 302. The axial height of the first rotor core 301 may be different from the axial height of the second rotor core 302. Furthermore, the first rotor core 301 is arranged to be offset from the second rotor core 302 by a predetermined angle in the circumferential direction around the central axis C. The rotor core 30 may be axially divided into three or more stages instead of two stages.
第1ロータコア301の軸方向一方側には、第1補強部343が配置される。第1補強部343は第1ロータコア301の軸方向一方側の面と軸方向に対向または接触する。より好ましくは、第1補強部343は、第1ロータコア301のマグネット収容部32の下端の開口の少なくとも一部を覆う。これにより、第1ロータコア301において、マグネット収容部32からマグネット31が軸方向に抜けることが防止される。第1延伸部341は、第1ロータコア301の凹部33内に少なくとも一部が収容される。これにより、第1ロータコア301において、第1延伸部341はブリッジ部36を押圧することができ、マグネット収容部32内に収容されるマグネット31のガタツキを抑制することができる。  The first reinforcing portion 343 is disposed on one side in the axial direction of the first rotor core 301. The first reinforcing portion 343 axially faces or contacts the surface on one axial side of the first rotor core 301. More preferably, the first reinforcing portion 343 covers at least a part of the opening at the lower end of the magnet housing portion 32 of the first rotor core 301. As a result, in the first rotor core 301, the magnet 31 is prevented from coming off the magnet housing portion 32 in the axial direction. At least a portion of the first extending portion 341 is accommodated in the recess 33 of the first rotor core 301. Thereby, in the first rotor core 301, the first extending portion 341 can press the bridge portion 36, and rattling of the magnet 31 housed in the magnet housing portion 32 can be suppressed.
同様に、第2補強部344は、第2ロータコア302の軸方向他方側に配置される。第2補強部344は、第2ロータコア302の軸方向他方側の面と、対向または接触する。第2補強部344は、第2ロータコア302のマグネット収容部32の上端の開口の少なくとも一部を覆う。これにより、第2ロータコア302において、マグネット収容部32からマグネット31が軸方向に抜けることが防止される。第2延伸部342は、第2ロータコア302の凹部33内に少なくとも一部が収容される。これにより、第2ロータコア302において、第2延伸部342はブリッジ部36を押圧することができ、マグネット収容部32内に収容されるマグネット31のガタツキを抑制することができる。  Similarly, the second reinforcing portion 344 is disposed on the other axial side of the second rotor core 302. The second reinforcing portion 344 faces or contacts the other surface of the second rotor core 302 in the axial direction. The second reinforcing portion 344 covers at least a part of the opening at the upper end of the magnet housing portion 32 of the second rotor core 302. As a result, in the second rotor core 302, the magnet 31 is prevented from coming off the magnet housing portion 32 in the axial direction. At least a portion of the second extending portion 342 is accommodated in the recess 33 of the second rotor core 302. Thus, in the second rotor core 302, the second extending portion 342 can press the bridge portion 36, and rattling of the magnet 31 housed in the magnet housing portion 32 can be suppressed.

第1ロータコア301と第2ロータコア302とが周方向にずれて配置される。そのため、周方向において、第1延伸部341の位置は、第2延伸部342の位置と、異なる。言い換えると、第1延伸部341は、第2延伸部342と軸方向に対向または接触しない。なお、第1ロータコア301と第2ロータコア302とが周方向にずれて配置された場合でも、第1延伸部341の先端の少なくとも一部が、第2延伸部342の先端の少なくとも一部と、対向または接触してもよい。

The first rotor core 301 and the second rotor core 302 are arranged to be offset in the circumferential direction. Therefore, in the circumferential direction, the position of the first extending portion 341 is different from the position of the second extending portion 342. In other words, the first extending portion 341 does not face or contact the second extending portion 342 in the axial direction. Note that, even when the first rotor core 301 and the second rotor core 302 are offset in the circumferential direction, at least a portion of the end of the first extending portion 341 is at least a portion of the end of the second extending portion 342; It may be opposed or in contact.
なお、好ましくは、第1延伸部341の長さは、第1ロータコア301の軸方向長さと同じまたは第1ロータコア301の軸方向長さよりも短い。第2延伸部342の長さは、第2ロータコア302の軸方向長さと同じまたは第2ロータコア302の軸方向長さよりも短い。なお、第1延伸部341の軸方向長さが、第1ロータコア301の軸方向長さよりも長く、第2延伸部342の軸方向長さが第2ロータコア302の軸方向長さよりも短くてもよい。この場合、第1延伸部341の先端と第1ロータコア301の軸方向他方側の面との間の寸法だけ、第2延伸部342の軸方向長さが短い。また、第1延伸部341の軸方向長さが、第1ロータコア301の軸方向長さよりも長く、第2延伸部342の軸方向長さが第2ロータコア302の軸方向長さよりも長くてもよい。この場合、第1延伸部341の軸方向他方側の先端の少なくとも一部が、第2延伸部342の軸方向一方側の先端の少なくとも一部と径方向に重なる。  Preferably, the length of the first extending portion 341 is the same as the axial length of the first rotor core 301 or shorter than the axial length of the first rotor core 301. The length of the second extending portion 342 is the same as the axial length of the second rotor core 302 or shorter than the axial length of the second rotor core 302. The axial length of the first extending portion 341 is longer than the axial length of the first rotor core 301, and the axial length of the second extending portion 342 is shorter than the axial length of the second rotor core 302. Good. In this case, the axial length of the second extending portion 342 is short by the dimension between the end of the first extending portion 341 and the other surface of the first rotor core 301 in the axial direction. In addition, the axial length of the first extending portion 341 is longer than the axial length of the first rotor core 301, and the axial length of the second extending portion 342 is longer than the axial length of the second rotor core 302. Good. In this case, at least a part of the tip on the other side in the axial direction of the first extension part 341 radially overlaps with at least a part of the tip on the one side in the axial direction of the second extension part 342.
なお、ロータコア30は、各電磁鋼板30bが中心軸Cを中心として周方向に所定角度だけずれて積層されるスキュー構造であってもよい。この場合、第1延伸部341は中心軸Cに対して当該所定角度だけ周方向に傾斜して延びることが好ましい。  The rotor core 30 may have a skew structure in which the electromagnetic steel plates 30b are stacked with a predetermined angle in the circumferential direction with the central axis C as a center. In this case, it is preferable that the first extending portion 341 be extended in the circumferential direction by being inclined to the central axis C by the predetermined angle.

<5.第3変形例>

図10は本実施形態の第3変形例のロータ3のシャフト4を取り付けた状態を示す斜視図である。図10に示すように、本変形例では押圧部材34から第1補強部343、第2補強部344が省かれ、第1延伸部341により押圧部材34が構成される。本変形例では、第1延伸部341(押圧部材34)の軸方向の長さはロータコア30の軸方向の長さと略同じである。 

<5. Third Modified Example>

FIG. 10 is a perspective view showing a state in which the shaft 4 of the rotor 3 of the third modified example of the present embodiment is attached. As shown in FIG. 10, in this modification, the first reinforcing portion 343 and the second reinforcing portion 344 are omitted from the pressing member 34, and the pressing member 34 is configured by the first extending portion 341. In the present modification, the axial length of the first extending portion 341 (the pressing member 34) is substantially the same as the axial length of the rotor core 30.
なお、第1延伸部341(押圧部材34)の軸方向の長さはロータコア30の軸方向の長さと、異なっていてもよい。例えば、第1延伸部341(押圧部材34)の軸方向の長さは、ロータコア30の軸方向の長さよりも、短くてもよい。この場合、第1延伸部341の軸方向一方側及び軸方向他方側の端面の少なくとも一方は、凹部33内に位置する。また、第1延伸部341の軸方向一方側及び軸方向他方側の端面は、ロータコア30の軸方向一方側及び軸方向他方側の端面と、それぞれ面一であってもよい。第1延伸部341の軸方向一方側または軸方向他方側の端面のみが、ロータコア30の軸方向一方側または軸方向他方側の端面と、面一であってもよい。  The axial length of the first extending portion 341 (the pressing member 34) may be different from the axial length of the rotor core 30. For example, the axial length of the first extending portion 341 (the pressing member 34) may be shorter than the axial length of the rotor core 30. In this case, at least one of the axial direction one side and the axial direction other side end face of the first extending portion 341 is located in the recess 33. In addition, the end surface of the first extending portion 341 on the one side in the axial direction and the end surface on the other side in the axial direction may be flush with the end surface on the one side in the axial direction of the rotor core 30 and the other end. Only the end surface on the one axial direction side or the other axial direction side of the first extending portion 341 may be flush with the end surface on the axial direction one side or the other axial direction side of the rotor core 30.
ロータ3は、ロータコア30の周面を覆って第1延伸部341(押圧部材34)を径方向内方に押圧する筒状の保持部材38を備える。保持部材38は、例えば、樹脂やアルミニウムなどの非磁性材料により構成される。保持部材38の軸方向の長さはロータコア30の軸方向の長さと略同じである。保持部材38により、第1延伸部341を径方向内方へとより移動させることができる。これにより、第1延伸部341がブリッジ部36をより押圧することができ、マグネット収容部32内に位置するマグネット31のガタツキを一層抑制することができる。
The rotor 3 includes a cylindrical holding member 38 which covers the circumferential surface of the rotor core 30 and presses the first extending portion 341 (the pressing member 34) radially inward. The holding member 38 is made of, for example, a nonmagnetic material such as resin or aluminum. The axial length of the holding member 38 is substantially the same as the axial length of the rotor core 30. The holding member 38 can move the first extending portion 341 more radially inward. Thereby, the first extending portion 341 can further press the bridge portion 36, and rattling of the magnet 31 positioned in the magnet housing portion 32 can be further suppressed.

<6.第4変形例>

保持部材38の形状は筒状に限定されず、図11に示すように、例えば帯状のリング状でもよい。図11では、リング状の保持部材38を軸方向上部と軸方向下部に配置している。これにより、第1延伸部341(押圧部材34)をマグネット31側に向けて容易に締め付けることができ、マグネット収容部32内のマグネット31のガタツキを一層抑制することができる。なお、リング状の保持部材38は、軸方向中央部にのみ配置してもよく、軸方向上部、軸方向下部及び軸方向中央部にそれぞれ配置されてもよい。ロータコア30に取り付けられるリング状の保持部材38の数は、1つであってもよく、2以上であってもよい。また、ロータ3は筒状の保持部材38及びリング状の保持部材38の両方を有してもよい。また、軸方向から見て、保持部材38の形状は円形状に限定されず、例えば多角形状でもよい。また、保持部材38は、加熱により収縮する熱収縮チューブにより構成されてもよい。

<6. Fourth Modified Example>

The shape of the holding member 38 is not limited to a tubular shape, and may be, for example, a band-like ring shape as shown in FIG. In FIG. 11, the ring-shaped holding member 38 is disposed at the upper axial portion and the lower axial portion. As a result, the first extending portion 341 (the pressing member 34) can be easily tightened toward the magnet 31 side, and rattling of the magnet 31 in the magnet housing portion 32 can be further suppressed. The ring-shaped holding member 38 may be disposed only at the axial center, or may be disposed at the axial upper portion, the axial lower portion, and the axial center. The number of ring-shaped holding members 38 attached to the rotor core 30 may be one or two or more. Also, the rotor 3 may have both a cylindrical holding member 38 and a ring-shaped holding member 38. Further, when viewed from the axial direction, the shape of the holding member 38 is not limited to a circular shape, and may be, for example, a polygonal shape. In addition, the holding member 38 may be configured by a heat-shrinkable tube that shrinks by heating.

<7.第5変形例>

図12は本実施形態の第5変形例のロータ3を示す平面図である。本変形例では、押圧部材34を配置する前の状態において、凹部33の周方向の幅は、径方向内側から径方向外側にわたって略一定である。本変形例では、ロータコア30は、ブリッジ部36を有する電磁鋼板30bのみから構成されている。すなわち、本変形例のロータコア30は、空間部37を有しない。

<7. Fifth modified example>

FIG. 12 is a plan view showing a rotor 3 of a fifth modified example of the present embodiment. In the present modification, the circumferential width of the recess 33 is substantially constant from the radially inner side to the radially outer side in the state before the pressing member 34 is disposed. In the present modification, the rotor core 30 is formed only of the electromagnetic steel plate 30 b having the bridge portion 36. That is, the rotor core 30 of the present modification does not have the space 37.
本変形例の押圧部材34は軸方向に延びる丸棒状である。すなわち、押圧部材34の軸方向に垂直な断面の形状は円形状である。これにより、押圧部材34を容易に形成することができる。なお、棒状の押圧部材34は丸棒状に限られない。棒状の押圧部材34の軸方向に垂直な断面の形状は例えば楕円形状、矩形を含む多角形形状などでもよく、特に限定されるものではない。
The pressing member 34 of this modification is a round bar-like member extending in the axial direction. That is, the shape of the cross section perpendicular to the axial direction of the pressing member 34 is circular. Thereby, the pressing member 34 can be easily formed. The rod-shaped pressing member 34 is not limited to a round rod. The shape of the cross section perpendicular to the axial direction of the rod-like pressing member 34 may be, for example, an elliptical shape or a polygonal shape including a rectangle, and is not particularly limited.
凹部33に押圧部材34を配置すると、押圧部材34はブリッジ部36を介してマグネット31を径方向内方に押圧する。この時、ブリッジ部36は径方向に変形する。また、押圧部材34は周方向に隣り合う磁極部35により挟み込まれる。この時、ロータ3に保持部材38を取り付けてもよい。これにより、押圧部材34の径方向外方への移動を規制することができる。また、押圧部材34がブリッジ部36を押圧することから、マグネット収容部32の内壁32aとマグネット31の外周面との隙間を小さくすることができる。これにより、マグネット収容部32内のマグネット31のガタツキを一層抑制することができる。  When the pressing member 34 is disposed in the recess 33, the pressing member 34 presses the magnet 31 radially inward via the bridge portion 36. At this time, the bridge portion 36 is deformed in the radial direction. Further, the pressing member 34 is sandwiched by the magnetic pole portions 35 adjacent in the circumferential direction. At this time, the holding member 38 may be attached to the rotor 3. Thereby, the radial outward movement of the pressing member 34 can be restricted. Further, since the pressing member 34 presses the bridge portion 36, the gap between the inner wall 32a of the magnet housing portion 32 and the outer peripheral surface of the magnet 31 can be reduced. Thereby, rattling of the magnet 31 in the magnet housing portion 32 can be further suppressed.

<8.第6変形例>

図13は、本実施形態の第6変形例に係るロータ3の周縁部の一部を拡大した拡大平面図である。本変形例のマグネット収容部32は、径方向外側に開口部39を有してロータコア30を軸方向に貫通する貫通孔である。開口部39は径方向に貫通し、ロータコア30の軸方向一端から軸方向他端にわたって延びる。言い換えると、マグネット収容部32の開口部39側にはブリッジ部36が配置されていない。 

<8. Sixth modification>

FIG. 13 is an enlarged plan view of a part of the peripheral portion of the rotor 3 according to a sixth modification of the present embodiment. The magnet housing portion 32 of the present modification is a through hole having an opening 39 at the radially outer side and penetrating the rotor core 30 in the axial direction. The opening 39 extends radially and extends from one axial end of the rotor core 30 to the other axial end. In other words, the bridge portion 36 is not disposed on the opening 39 side of the magnet housing portion 32.
凹部33は、開口部39を介してマグネット収容部32に連通する。凹部33内の押圧部材34は開口部39を介してマグネット31に接触する。そして、押圧部材34はマグネット31を直接、径方向内方に押圧する。これにより、マグネット収容部32内のマグネット31のガタツキを抑制することができる。マグネット収容部32が開口部39を有するため、マグネット31を開口部39を介してマグネット収容部32内に容易に収容することができる。押圧部材34によりマグネット31の開口部39を介した周方向の移動を規制することができる。  The recess 33 communicates with the magnet housing portion 32 through the opening 39. The pressing member 34 in the recess 33 contacts the magnet 31 through the opening 39. Then, the pressing member 34 directly presses the magnet 31 radially inward. Thereby, rattling of the magnet 31 in the magnet housing portion 32 can be suppressed. Since the magnet housing portion 32 has the opening 39, the magnet 31 can be easily stored in the magnet housing portion 32 via the opening 39. The pressing member 34 can restrict circumferential movement of the magnet 31 through the opening 39.
なお、凹部33が開口部39を介してマグネット収容部32に連通する場合において、押圧部材34は、必ずしも、マグネット31に接触しなくてもよい。この場合、マグネット収容部32の内壁32aがマグネット31と少なくとも径方向に当たるのが望ましい。言い換えれば、ブリッジ部36は必ずしも周方向において連続して形成されていなくてもよく、ブリッジ部36の一部が周方向において不連続に形成されてもよい。押圧部材34は、凹部33の径方向内側に位置する内壁の一部(すなわち、不連続に形成されたブリッジ部36の一部)を押圧することにより、マグネット収容部32の内壁32aを介してマグネット31を押圧することができる。これにより、凹部33が開口部39を介してマグネット収容部32に連通する場合であっても、マグネット31のマグネット収容部32内におけるガタツキを抑えることができる。また、凹部33が開口部39を介してマグネット収容部32に連通する場合、押圧部材34とマグネット31との径方向における隙間には、樹脂や金属などの部材が配置されてもよい。押圧部材34は、当該部材を介して、マグネット31を間接的に押圧してもよい。  In the case where the recess 33 communicates with the magnet housing portion 32 through the opening 39, the pressing member 34 may not necessarily be in contact with the magnet 31. In this case, it is desirable that the inner wall 32 a of the magnet housing portion 32 be at least in radial contact with the magnet 31. In other words, the bridge portion 36 may not necessarily be continuously formed in the circumferential direction, and a part of the bridge portion 36 may be discontinuously formed in the circumferential direction. The pressing member 34 presses a portion of the inner wall located inward in the radial direction of the recess 33 (that is, a portion of the bridge portion 36 formed discontinuously), via the inner wall 32 a of the magnet housing portion 32. The magnet 31 can be pressed. As a result, even when the recess 33 communicates with the magnet housing 32 through the opening 39, rattling of the magnet 31 in the magnet housing 32 can be suppressed. When the recess 33 communicates with the magnet housing portion 32 through the opening 39, a member such as resin or metal may be disposed in the radial gap between the pressing member 34 and the magnet 31. The pressing member 34 may indirectly press the magnet 31 via the member.

<9.その他>

 以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。また、上記実施形態やその変形例は適宜任意に組み合わせることができる。

<9. Other>

The embodiment of the present invention has been described above, but the scope of the present invention is not limited to this, and various modifications can be made without departing from the scope of the invention. In addition, the above-described embodiment and the modifications thereof can be arbitrarily combined arbitrarily.
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫、電動パワーステアリング装置、電動オイルポンプ、電動ブレーキなどの、各種モータを備える多様な機器に幅広く利用され得る。 Embodiments of the present disclosure can be widely used in various devices including various motors such as a vacuum cleaner, a dryer, a sealing fan, a washing machine, a refrigerator, an electric power steering apparatus, an electric oil pump, and an electric brake.
1:モータ、2:ステータ、21:ステータコア、21a:コアバック、22:インシュレータ、23:コイル、3:ロータ、30:ロータコア、30a:孔部、30b:磁性鋼板、31:マグネット、32:マグネット収容部、32a:内壁、33:凹部、331:幅狭部、332:内側幅狭部、333:外側幅狭部、34:押圧部材、341:第1延伸部、342:第2延伸部、343:第1補強部、344:第2補強部、35:磁極部、36:ブリッジ部、37:空間部、38:保持部材、39:開口部、4:シャフト、C:中心軸、L1:幅、W1:幅、W2:最長幅、W3:最短幅 1: Motor, 2: Stator, 21: Stator core, 21a: Core back, 22: Insulator, 23: Coil, 3: Rotor, 30: Rotor core, 30a: Hole, 30b: Magnetic steel plate, 31: Magnet, 32: Magnet Housing portion 32a: inner wall, 33: recess, 331: narrow portion, 332: inner narrow portion, 333: outer narrow portion, 34: pressing member, 341: first extending portion, 342: second extending portion, 343: first reinforcement portion 344: second reinforcement portion 35: magnetic pole portion 36: bridge portion 37: space portion 38: holding member 39: opening portion 4: shaft C: central axis L1: Width, W1: Width, W2: longest width, W3: shortest width

Claims (16)


  1. 上下に延びる中心軸に沿って配置されるロータコアと、

    前記ロータコアに周方向に並んで配置された複数のマグネットと、

    を備え、

     前記ロータコアは、前記マグネットの少なくとも一部を収容して周方向に並んで配置された複数のマグネット収容部を有し、

     前記マグネット収容部は前記中心軸側から径方向外側へ向かって延び、

     前記マグネット収容部の径方向外方には、前記ロータコアの外周面から径方向内方に凹む凹部が設けられ、

     前記凹部内には前記マグネットを直接または間接的に径方向内方に押圧する押圧部材の少なくとも一部が配置される、ロータ。

    A rotor core disposed along a central axis extending up and down;

    A plurality of magnets arranged circumferentially on the rotor core;

    Equipped with

    The rotor core has a plurality of magnet housing portions that are arranged in the circumferential direction, housing at least a part of the magnets.

    The magnet housing portion extends radially outward from the central axis side,

    A recess which is recessed radially inward from an outer peripheral surface of the rotor core is provided radially outward of the magnet housing portion,

    A rotor, in which at least a part of a pressing member for pressing the magnet radially inward directly or indirectly is disposed in the recess.
  2. 前記凹部は、前記マグネット収容部と連通しており、

    前記押圧部材は、前記マグネットを直接押圧する、請求項1に記載のロータ。
    The recess communicates with the magnet housing portion,

    The rotor according to claim 1, wherein the pressing member directly presses the magnet.
  3. 前記凹部は、前記マグネット収容部と連通し、

    前記凹部の内壁は、前記マグネット収容部の内壁と接続されるブリッジ部を有し、

    前記押圧部材は、前記ブリッジ部を介して、前記マグネットを押圧する、請求項1に記載のロータ。
    The recess communicates with the magnet housing portion,

    The inner wall of the recess has a bridge portion connected to the inner wall of the magnet housing portion,

    The rotor according to claim 1, wherein the pressing member presses the magnet via the bridge portion.
  4. 前記凹部の内壁は、前記マグネット収容部の内壁と接続されるブリッジ部を有し、

    前記押圧部材は、前記ブリッジ部を介して、前記マグネットを押圧する、請求項1に記載のロータ。
    The inner wall of the recess has a bridge portion connected to the inner wall of the magnet housing portion,

    The rotor according to claim 1, wherein the pressing member presses the magnet via the bridge portion.
  5. 前記押圧部材は、

     前記ロータコアの軸方向一方側に位置する第1補強部と、

     前記第1補強部から軸方向他方側へ延び、少なくとも一部が前記凹部内に収容される第1延伸部と、

    を有し、

    前記第1延伸部は、前記マグネットを直接または間接的に押圧する、請求項1に記載のロータ。
    The pressing member is

    A first reinforcing portion located on one side in the axial direction of the rotor core;

    A first extension portion extending from the first reinforcement portion to the other side in the axial direction, and at least a part of which is accommodated in the recess;

    Have

    The rotor according to claim 1, wherein the first extending portion presses the magnet directly or indirectly.
  6. 前記凹部は、前記マグネット収容部と連通しており、

    前記第1延伸部は、前記マグネットを直接押圧する、請求項5に記載のロータ。
    The recess communicates with the magnet housing portion,

    The rotor according to claim 5, wherein the first extending portion directly presses the magnet.
  7. 前記凹部は、前記マグネット収容部と連通し、

    前記凹部の内壁は、前記マグネット収容部の内壁と接続されるブリッジ部を有し、

    前記第1延伸部は、前記ブリッジ部を介して、前記マグネットを押圧する、請求項5に記載のロータ。
    The recess communicates with the magnet housing portion,

    The inner wall of the recess has a bridge portion connected to the inner wall of the magnet housing portion,

    The rotor according to claim 5, wherein the first extending portion presses the magnet via the bridge portion.
  8. 前記凹部の内壁は、前記マグネット収容部の内壁と接続されるブリッジ部を有し、

    前記第1延伸部は、前記ブリッジ部を介して、前記マグネットを押圧する、請求項5に記載のロータ。
    The inner wall of the recess has a bridge portion connected to the inner wall of the magnet housing portion,

    The rotor according to claim 5, wherein the first extending portion presses the magnet via the bridge portion.
  9. 前記押圧部材は、さらに、

     前記ロータコアの前記軸方向他方側に位置する第2補強部と、

     前記第2補強部から前記軸方向一方側へ伸び、少なくとも一部が前記凹部内に収容される第2延伸部と、

    を有し、

    前記第1延伸部の前記軸方向他方側の先端は、前記第2延伸部の前記軸方向一方側の先端と、接触または対向し、

    前記第1延伸部および前記第2延伸部は、直接または間接的に前記マグネットを押圧する、

    請求項5に記載のロータ。
    The pressing member is further

    A second reinforcing portion located on the other side in the axial direction of the rotor core;

    A second extending portion that extends from the second reinforcing portion to the one side in the axial direction, and at least a portion of which is accommodated in the recess;

    Have

    The tip on the other side in the axial direction of the first extending portion contacts or faces the tip on the one side in the axial direction of the second extending portion,

    The first extending portion and the second extending portion directly or indirectly press the magnet.

    The rotor according to claim 5.
  10. 前記凹部は、前記マグネット収容部と連通しており、

    前記第1延伸部および第2延伸部は、前記マグネットを直接押圧する、請求項9に記載のロータ。
    The recess communicates with the magnet housing portion,

    The rotor according to claim 9, wherein the first extending portion and the second extending portion directly press the magnet.
  11. 前記凹部は、前記マグネット収容部と連通し、

    前記凹部の内壁は、前記マグネット収容部の内壁と接続されるブリッジ部を有し、

    前記第1延伸部および前記第2延伸部は、前記ブリッジ部を介して、前記マグネットを押圧する、請求項9に記載のロータ。
    The recess communicates with the magnet housing portion,

    The inner wall of the recess has a bridge portion connected to the inner wall of the magnet housing portion,

    The rotor according to claim 9, wherein the first extending portion and the second extending portion press the magnet via the bridge portion.
  12. 前記凹部の内壁は、前記マグネット収容部の内壁と接続されるブリッジ部を有し、

    前記第1延伸部および第2延伸部は、前記ブリッジ部を介して、前記マグネットを押圧する、請求項9に記載のロータ。
    The inner wall of the recess has a bridge portion connected to the inner wall of the magnet housing portion,

    The rotor according to claim 9, wherein the first extending portion and the second extending portion press the magnet via the bridge portion.
  13. 前記押圧部材は軸方向に延びる棒状である、請求項1から請求項4のいずれか一項に記載のロータ。
    The rotor according to any one of claims 1 to 4, wherein the pressing member is in the form of an axially extending rod.
  14. 前記ロータコアの周面を覆って前記押圧部材を径方向内方に押圧する保持部材をさらに備える、請求項1から請求項13のいずれか一項に記載のロータ。
    The rotor according to any one of claims 1 to 13, further comprising a holding member that covers the circumferential surface of the rotor core and presses the pressing member radially inward.
  15. 前記押圧部材は非磁性材である、請求項1から請求項14のいずれか一項に記載のロータ。
    The rotor according to any one of claims 1 to 14, wherein the pressing member is a nonmagnetic material.
  16. 請求項1から請求項15のいずれか一項に記載のロータと、

    ステータと、

    を備えるモータ。
    A rotor according to any one of the preceding claims;

    With the stator,

    Motor.
PCT/JP2018/023719 2017-09-27 2018-06-22 Rotor and motor comprising rotor WO2019064746A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017186978 2017-09-27
JP2017-186978 2017-09-27

Publications (1)

Publication Number Publication Date
WO2019064746A1 true WO2019064746A1 (en) 2019-04-04

Family

ID=65901214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023719 WO2019064746A1 (en) 2017-09-27 2018-06-22 Rotor and motor comprising rotor

Country Status (1)

Country Link
WO (1) WO2019064746A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288940A (en) * 1994-04-13 1995-10-31 Meidensha Corp Permanent magnet rotating electric machine
JPH0965591A (en) * 1995-08-24 1997-03-07 Toyota Motor Corp Permanent magnet motor
JP2002112474A (en) * 2000-09-28 2002-04-12 Mitsubishi Electric Corp Permanent magnet rotating electric machine, compressor, and refrigerating cycle
US20150349603A1 (en) * 2014-05-30 2015-12-03 Summit Esp, Llc Motor bearing for electric submersible motors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288940A (en) * 1994-04-13 1995-10-31 Meidensha Corp Permanent magnet rotating electric machine
JPH0965591A (en) * 1995-08-24 1997-03-07 Toyota Motor Corp Permanent magnet motor
JP2002112474A (en) * 2000-09-28 2002-04-12 Mitsubishi Electric Corp Permanent magnet rotating electric machine, compressor, and refrigerating cycle
US20150349603A1 (en) * 2014-05-30 2015-12-03 Summit Esp, Llc Motor bearing for electric submersible motors

Similar Documents

Publication Publication Date Title
JP6592296B2 (en) Brushless DC motor and its rotor
US8760027B2 (en) Stator
JP5958502B2 (en) Rotor and rotating electric machine using the same
US11165293B2 (en) Rotor and motor
JP2013021776A (en) Rotary electric machine
WO2015087773A1 (en) Embedded-permanent-magnet electric motor
JP2008306886A (en) Motor and its manufacturing method
US7474028B2 (en) Motor
WO2014020756A1 (en) Dynamo-electric machine
JP2013021775A (en) Rotary electric machine
US10622855B2 (en) Permanent magnet electric motor
JP2016129473A (en) motor
JP4002451B2 (en) Rotating electric machine
JP4386909B2 (en) motor
JP2009077491A (en) Stator core laminated body and electric motor
JP2005269831A (en) Brushless dc motor
WO2017009902A1 (en) Electric motor and air conditioner
JP2020078099A (en) Rotary electric machine
WO2019064746A1 (en) Rotor and motor comprising rotor
WO2019064747A1 (en) Rotor and motor comprising rotor
US11289963B2 (en) Rotor, motor, and electric power steering device
WO2019181523A1 (en) Stator and motor provided therewith
JP2017103986A (en) Electric motor
WO2017175461A1 (en) Axial gap rotary electric machine
US12136854B2 (en) Rotating electrical machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP