[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019059329A1 - Mold release film and laminate - Google Patents

Mold release film and laminate Download PDF

Info

Publication number
WO2019059329A1
WO2019059329A1 PCT/JP2018/034953 JP2018034953W WO2019059329A1 WO 2019059329 A1 WO2019059329 A1 WO 2019059329A1 JP 2018034953 W JP2018034953 W JP 2018034953W WO 2019059329 A1 WO2019059329 A1 WO 2019059329A1
Authority
WO
WIPO (PCT)
Prior art keywords
release
layer
group
film
release film
Prior art date
Application number
PCT/JP2018/034953
Other languages
French (fr)
Japanese (ja)
Inventor
俊啓 開
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN201880058517.2A priority Critical patent/CN111051061B/en
Priority to JP2019543719A priority patent/JP7234929B2/en
Priority to KR1020207007778A priority patent/KR102535755B1/en
Publication of WO2019059329A1 publication Critical patent/WO2019059329A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners
    • C09J7/401Adhesives in the form of films or foils characterised by release liners characterised by the release coating composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/255Polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present invention relates to a release film and a laminate.
  • a polyester film-based release film is conventionally used for various optical applications, and is used to bond optical members such as a polarizing plate and a retardation plate via an adhesive layer. It has for example, various display components can be manufactured, such as a capacitive touch panel, a liquid crystal display component, a plasma display panel component, and an organic electroluminescence (organic EL) component.
  • various display components can be manufactured, such as a capacitive touch panel, a liquid crystal display component, a plasma display panel component, and an organic electroluminescence (organic EL) component.
  • organic EL organic electroluminescence
  • the substrate-less double-sided pressure-sensitive adhesive sheet has a laminate structure in which a light release film having a relatively low peel force and a heavy release film having a relatively high peel force are laminated on both sides of the pressure-sensitive adhesive layer. It is a double-sided adhesive sheet which becomes only the adhesive layer which does not have a support base material after removing.
  • the substrate-less double-sided pressure-sensitive adhesive sheet As a method of using the substrate-less double-sided pressure-sensitive adhesive sheet, first, the light release film is peeled off, one surface of the exposed pressure-sensitive adhesive layer is bonded to the opposite object surface to be bonded, The other side of the exposed adhesive layer is bonded to a different object surface, thereby exemplifying a processing step in which the objects are surface-bonded.
  • the substrate-less double-sided pressure-sensitive adhesive sheet attracts attention for its good workability, and its use is expanding, and is also used for members for various optical applications such as mobile phones.
  • a capacitive touch panel is in a situation where the use as an information terminal is rapidly expanding due to a multi-touch operation in which a screen operation is performed by two fingers. Since the capacitive touch panel tends to have a thicker printing step than the resistive film method, it has been proposed to thicken the adhesive layer to eliminate the printing step.
  • the pressure-sensitive adhesive layer is thickened, when the release film is peeled off, a part of the pressure-sensitive adhesive layer may adhere to the release film, or air bubbles may be mixed in the pressure-sensitive adhesive layer. Therefore, when using a substrateless double-sided pressure-sensitive adhesive sheet for optical applications, not only the substrateless double-sided pressure-sensitive adhesive sheet but also the combined release film is more severe than before and release films of higher quality It is in the necessary situation.
  • a light-peelable release film that is relatively easy to peel may be used, but when peeling the light-peelable release film from the pressure-sensitive adhesive layer, it is higher than the desired peel strength. It is a problem that the yield is reduced because the adhesive can not be peeled off well. For this reason, a lighter release film is required to be lighter than before.
  • a release film based on a polyester film has a problem that it is easily charged due to its properties, and in industrial use, for example, the following problems may occur.
  • the release film is generally used in such a manner that it is peeled off after being bonded to another member through the pressure-sensitive adhesive layer. However, since the release film is easily charged, charging occurs at the time of peeling. At this time, the peeling charge damages the member which is the adherend or attracts the surrounding dust to cause a defect.
  • 2 In the substrate-less double-sided pressure-sensitive adhesive sheet having a configuration in which the pressure-sensitive adhesive layer is sandwiched between two release films, one release film is peeled off and bonded to another member.
  • Patent Documents 1 and 2 As a solution to this problem, there has been proposed an antistatic layer containing a ⁇ electron conjugated conductive polymer (see, for example, Patent Documents 1 and 2).
  • a release film having a silicone resin coating film on an antistatic layer containing an ionic polymer has been proposed, and the antistatic performance and productivity have been improved (see, for example, Patent Document 3).
  • the antistatic films of Patent Documents 1 and 2 have good antistatic properties, when melt recycling of the antistatic film is performed, the phase of the polyester constituting the substrate and the phase of the conductive polymer constituting the antistatic layer Since the solubility is so low that foreign substances are generated, there is a problem that the productivity can not be reduced because the recycling can not be performed.
  • the release film of Patent Document 3 not only has a heavy release force between the releasable silicone resin coating film forming the release layer of the release film and the adhesive layer of the adherend, but also constitutes the release film. The adhesion between the antistatic layer and the releasable silicone resin coating film (releasing layer) with time was insufficient.
  • the releasability (light releasability) between the releasable silicone resin coating film constituting the releasable layer of the releasable film and the adhesive layer of the adherend, and the releasable layer surface of the releasable film
  • the present inventor has found that the above-mentioned problems can be solved by using the polyester film substrate, the specific crosslinked resin layer, and the specific releasing layer as a result of earnestly examining the above-mentioned problems.
  • the present invention is as follows.
  • the present invention is a release film having a crosslinked resin layer on at least one surface of a polyester film stretched in at least uniaxial direction, and further having a release layer laminated on the crosslinked resin layer,
  • the crosslinked resin layer is formed of a crosslinked resin composition containing an ionic polymer (A) having a cationic group and a crosslinking agent (C),
  • the release layer has a weight average molecular weight of 500 to 50,000, and a first polydimethylsiloxane having at least one alkenyl group in one molecule, and a weight average molecular weight of 120 to 20,000, in one molecule.
  • a release film having a peel strength of 4 g / 25 mm or less when measured by the following method is provided.
  • a release layer of a release film and a pressure-sensitive adhesive tape (Nitto Denko Co., Ltd., “No. 502, acrylic adhesive) are attached to each other, and the tensile speed is 300 mm / min. Conduct a 180 ° peel test.
  • the present invention further comprises a release film having a crosslinked resin layer on at least one surface of a polyester film stretched in at least one uniaxial direction, and further having a release layer laminated on the crosslinked resin layer, and a double-sided adhesive sheet It is a laminated body laminated,
  • the crosslinked resin layer contains an ionic polymer (A) having a cationic group,
  • the release layer contains polydimethylsiloxane and has a film thickness of 0.01 to 1 ⁇ m,
  • the releasability (light releasability) between the releasable silicone resin coating film constituting the releasable layer of the releasable film and the adhesive layer of the adherend, and the releasable layer of the releasable film
  • a release film having good antistatic properties on the surface, adhesion between a crosslinked resin layer constituting the release film and the release layer with time, and being melt recyclable and having good productivity. be able to.
  • the release film of the present invention has a crosslinked resin layer on at least one surface of a polyester film stretched at least in a uniaxial direction, and further, a release layer is laminated on the crosslinked resin layer.
  • the polyester film in the present invention is a film obtained by stretching a sheet melt-extruded from an extrusion die according to a so-called extrusion method at least uniaxially.
  • the polyester layer constituting the polyester film may have a single-layer structure or a multi-layer structure, and in addition to the two-layer or three-layer structure, four or more layers may be used as long as the gist of the present invention is not exceeded. It may be present and is not particularly limited.
  • each polyester layer may use together the following polyester 1 type or 2 types or more.
  • the polyester used for the polyester layer is preferably a homopolyester composed of one kind of aromatic dicarboxylic acid and one kind of aliphatic glycol obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol. It may be a copolyester obtained by copolymerizing one or more other components.
  • polyesters When it consists of homo polyesters, terephthalic acid, 2, 6- naphthalene dicarboxylic acid etc. are mentioned as aromatic dicarboxylic acid, ethylene glycol, diethylene glycol, 1, 4- cyclohexane dimethanol etc. are mentioned as aliphatic glycol .
  • a polyethylene terephthalate etc. are mentioned as a typical polyester.
  • examples of the dicarboxylic acid used as a component of the copolymerized polyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid and the like.
  • examples of the glycol component include ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol and the like.
  • polyesters obtained by copolymerizing other acid components and glycol components may be used.
  • the polyester film contains an oligomer in the outermost layer of the multilayer structure film in order to reduce the amount of precipitation and crystallization of the oligomer contained in the release film on the surface due to the heat history during film processing and the like. It is also possible to use reduced amounts of polyester. As a method of reducing the amount of oligomers in the polyester, for example, a solid phase polymerization method can be used.
  • a conventionally well-known compound can be used.
  • antimony compounds, titanium compounds, germanium compounds, manganese compounds, aluminum compounds, magnesium compounds, calcium compounds and the like can be mentioned.
  • the polymerization catalyst may be used alone or in combination of two or more.
  • the polyester film can contain particles mainly for the purpose of imparting slipperiness, ensuring the film traveling property in each step, and preventing the occurrence of flaws.
  • the type of particles to be blended is not particularly limited as long as the particles can be provided with slipperiness.
  • heat-resistant organic particles described in JP-B-59-5216, JP-A-59-217755, etc. may be used.
  • the other heat resistant organic particles include thermosetting urea resin, thermosetting phenol resin, thermosetting epoxy resin, benzoguanamine resin and the like.
  • precipitated particles in which a part of a metal compound such as a catalyst is precipitated and finely dispersed can also be used in the polyester production process. These particles may be used alone or in combination of two or more.
  • the shape of the particles to be used is not particularly limited either, and any of spherical, massive, rod-like, flat and the like may be used.
  • the particle size of the particles may be selected according to the application and purpose of the film, but is preferably 0.01 to 5 ⁇ m, more preferably 0.01 to 2 ⁇ m. If the average particle size is 0.01 ⁇ m or more, there is little risk of aggregation of the particles and sufficient dispersibility is obtained. If the average particle size is 5 ⁇ m or less, the surface roughness of the film does not become too rough, There is no risk of problems occurring when providing a mold layer.
  • the particle content in the polyester film is preferably 0.001 to 5% by mass, more preferably 0.005 to 3% by mass. If the particle content is 0.001% by mass or more, sufficient lubricity is obtained in the polyester film, and if 5% by mass or less, the transparency of the polyester film is maintained.
  • a conventionally well-known method can be employ
  • particles may be added to proceed with the polycondensation reaction.
  • antioxidants In addition to the above-mentioned particles, conventionally known antioxidants, antistatic agents, heat stabilizers, lubricants, dyes, pigments and the like can be added to the polyester, as required.
  • the manufacturing method of a biaxially stretched film is concretely demonstrated as a manufacturing example of a polyester film, it is not limited at all to the following manufacturing example,
  • it is preferable to improve the planarity of the sheet it is preferable to improve the adhesion between the sheet and the rotary cooling drum, and an electrostatic application adhesion method and / or a liquid application adhesion method are preferably employed.
  • the obtained unstretched sheet is biaxially stretched.
  • the unstretched sheet is stretched in one direction by a roll or tenter-type stretching machine.
  • the stretching temperature is usually about 70 to 145 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually about 2.5 to 7 times, preferably 3.0 to 6 times.
  • the film is stretched in the direction orthogonal to the first-stage stretching direction, in which case the stretching temperature is usually about 70 to 170 ° C., and the stretching ratio is usually about 3.0 to 7 times, preferably 3.5. ⁇ 6 times.
  • heat treatment is subsequently performed usually at a temperature of about 150 to 270 ° C. under tension or relaxation within 30% to obtain a biaxially oriented film.
  • stretching the method of performing extending
  • the simultaneous biaxial stretching method can also be employ
  • the simultaneous biaxial stretching method simultaneously stretches the above-mentioned unstretched sheet in the machine direction (longitudinal direction) and the width direction (transverse direction) while the temperature is usually controlled at about 70 to 120 ° C., preferably 80 to 110 ° C. It is the method of making it orientate.
  • the stretching ratio is usually about 4 to 50 times, preferably 7 to 35 times, more preferably 10 to 25 times in area ratio.
  • heat treatment is subsequently performed usually at a temperature of about 170 to 250 ° C. under tension or relaxation within 30% to obtain a stretched and oriented film.
  • conventionally known stretching methods such as a screw method, a pantograph method, and a linear drive method can be adopted.
  • the thickness of the polyester film constituting the release film in the present invention is not particularly limited as long as the film can be formed as a film, but is usually 400 ⁇ m or less, preferably 5 to 250 ⁇ m, more preferably 12 to It is 200 ⁇ m.
  • the transparency of the polyester film in the present invention is not particularly limited, but when transparency is required, the haze of the entire release film is preferably 15% or less, more preferably 5% or less, and further preferably Is less than 3%.
  • inspection etc.) of the said optical member may be performed from on the release film in the state to which the release film was stuck. In such a case, if the haze of the release film is greater than 15%, a false recognition may occur as a foreign matter.
  • haze can be measured, for example, according to JIS K7136. The above haze value is the same for the release film of the present invention, and the same is also true for the preferable numerical range.
  • the total light transmittance of the polyester film in the present invention is not particularly limited, but when transparency is required, it is preferably 80% or more, more preferably 85% or more.
  • the total light transmittance can be measured, for example, according to JIS K7361-1.
  • the value of said total light transmittance is the same also about the release film of this invention, and is the same also about a preferable numerical range.
  • the intrinsic viscosity of the polyester is preferably 0.30 to 0.90 dL / g, more preferably 0.40 to 0.80 dL / g, and still more preferably 0.50 to 0.80 dL / g.
  • the intrinsic viscosity is preferably 0.30 to 0.90 dL / g, more preferably 0.40 to 0.80 dL / g, and still more preferably 0.50 to 0.80 dL / g.
  • the crosslinked resin layer which comprises the release film in this invention is demonstrated.
  • the crosslinked resin composition forming the crosslinked resin layer contains an ionic polymer (A) having a cationic group and a crosslinking agent (C).
  • the crosslinked resin composition which forms a crosslinked resin layer further contains a binder polymer (B) from an adhesive viewpoint with a release layer.
  • the crosslinked resin layer contains an ionic polymer (A) having a cationic group.
  • the ionic polymer (A) having a cationic group not only good antistatic properties can be obtained, but also compatibility with the polyester enables melt recycling, and good productivity can be obtained. be able to.
  • the polymer having a cationic group includes a polymer having a quaternary ammonium salt and the like, and the polymer having an anionic group includes a polymer having a sulfonic acid group, a sulfuric acid ester group, a carboxyl group, a phosphate and the like.
  • a quaternary ammonium base-containing polymer that is, a cationic polymer containing a quaternary ammonium salt as the ionic polymer.
  • the cationic polymer containing a quaternary ammonium salt refers to a polymer having a component containing a quaternary ammonium base in the main chain or side chain in the molecule.
  • a component include a pyrrolidinium ring, a quaternary compound of alkylamine, a copolymer of these with acrylic acid and methacrylic acid, a quaternary compound of N-alkylaminoacrylamide, a quaternary compound of polyallylamine, Examples include vinylbenzyltrimethylammonium salt, 2-hydroxy 3-methacryloxypropyltrimethylammonium salt and the like. Furthermore, these may be combined or copolymerized with other resins.
  • anion used as a counter ion of these quaternary ammonium salts is not particularly limited, but, for example, anions such as halide ion, alkyl sulfate ion, alkyl sulfonate ion, and nitrate ion are generally used.
  • the quaternary ammonium salt is used as the main chain in the molecule.
  • the cationic polymer contained is more preferable.
  • a polymer in which a reactive functional group such as methylol or epoxy is introduced into a cationic polymer containing quaternary ammonium salt is More preferable.
  • a homopolymer or copolymer of diallyldimethyl ammonium chloride is preferable.
  • the cationic polymer may be used alone or in combination of two or more.
  • the number average molecular weight of the cationic polymer is preferably 1000 or more, more preferably 2000 or more, and still more preferably 5000 or more.
  • the molecular weight is 1000 or more, the cationic polymer is not removed from the crosslinked resin layer to cause a decrease in performance over time, and the crosslinked resin layer is not likely to be sticky.
  • the number average molecular weight is preferably 500000 or less, more preferably 100000 or less, since the viscosity of the coating solution is not too high and there is no possibility of causing problems such as deterioration of the coating property.
  • the number average molecular weight can be measured, for example, in terms of polystyrene by gel permeation chromatography (GPC).
  • the content of the ionic polymer (A) having a cationic group in the crosslinked resin composition is preferably 5 to 90% by mass, more preferably 10 to 80% by mass, in terms of solid mass ratio. Preferably, it is 10 to 60% by mass. If the proportion of the ionic polymer (A) having a cationic group is 5% by mass or more, the antistatic performance of the crosslinked resin layer will be sufficient, and if it is 90% by mass or less, the transparency and durability of the crosslinked resin layer The quality also becomes good.
  • the binder polymer (B) constituting the cross-linked resin layer in the present invention means gel permeation chromatography (GPC) according to the macromolecular compound safety evaluation flow scheme (November 1975, sponsored by the Chemical Substances Council) It is a polymer compound having a number average molecular weight (Mn) of 1000 or more as measured, and has a film forming property, and does not include the ionic polymer (A) having the cationic group.
  • GPC gel permeation chromatography
  • the binder polymer (B) constituting the crosslinked resin layer in the present invention may be a thermosetting resin or a thermoplastic resin.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polyimides such as polyimide and polyamideimide; polyamides such as polyamide 6, polyamide 6, 6, polyamide 12 and polyamide 11; polyvinylidene fluoride, polyvinyl fluoride, poly Fluororesins such as tetrafluoroethylene, ethylene tetrafluoroethylene copolymer, polychlorotrifluoroethylene, etc .; polyvinyl resins such as polyvinyl alcohol, polyvinyl ether, polyvinyl butyral, polyvinyl acetate, polyvinyl chloride; epoxy resins; oxetane resins; xylene resins; Aramid resin, polyimide silicone, polyurethane, polyurea, melamine resin, phenol
  • the binder polymer (B) may be dissolved in an organic solvent as a raw material of the coating solution, or a functional group such as a hydroxyl group, a sulfo group or a carboxyl group is added to form an aqueous solution or a surfactant in combination. It may be dispersed in water. Moreover, additives, such as a viscosity modifier, may be contained in the binder polymer (B) as needed.
  • binder polymers (B) from the viewpoint of adhesion to the release layer, any one or more types selected from polyester resins, acrylic resins, polyurethane resins, and vinyl resins are preferable, and a coating liquid is prepared. From the viewpoint of compatibility with other coating agents (substance constituting the coating liquid), it is more preferable to use one or more selected from acrylic resins and vinyl resins.
  • the polyester resin used in the present invention is defined as a linear polyester having a dicarboxylic acid component and a glycol component as constituent components.
  • dicarboxylic acid component terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, phenylindane dicarboxylic acid, A dimer acid etc.
  • these components may be used alone or in combination of two or more.
  • a small proportion of unsaturated polybasic acids such as maleic acid, fumaric acid, itaconic acid, etc.
  • hydroxycarboxylic acids such as p-hydroxybenzoic acid, p- ( ⁇ -hydroxyethoxy) benzoic acid etc. It can be used.
  • the proportion of the unsaturated polybasic acid component and the hydroxycarboxylic acid component is usually 10 mol% or less, preferably 5 mol% or less.
  • glycol component ethylene glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, xylylene glycol, dimethylol propionic acid
  • examples thereof include glycerin, trimethylolpropane, poly (ethyleneoxy) glycol, poly (tetramethylene oxy) glycol, an alkylene oxide adduct of bisphenol A, and an alkylene oxide adduct of hydrogenated bisphenol A. These can be used alone or in combination of two or more.
  • glycol components ethylene glycol, ethylene oxide adduct or propylene oxide adduct of bisphenol A, and 1,4-butanediol are preferable, and ethylene glycol adduct or propylene oxide adduct of bisphenol A is more preferable.
  • polyester resin with a compound having a sulfonic acid group or a compound having a carboxylic acid group in order to facilitate aqueous liquefaction, which is preferable.
  • compounds having this sulfonate group include 5-sodium sulfoisophthalic acid, 5-ammonium sulfoisophthalic acid, 4-sodium sulfoisophthalic acid, 4-methylammonium sulfoisophthalic acid, 2-sodium sulfoisophthalic acid, 5-potassium Preferred examples include sulfonic acid alkali metal salts or sulfonic acid amine salts such as sulfoisophthalic acid, 4-potassium sulfoisophthalic acid, 2-potassium sulfoisophthalic acid, sodium sulfosuccinic acid and the like.
  • Examples of compounds having this carboxylic acid group include trimellitic acid anhydride, trimellitic acid, pyromellitic acid anhydride, pyromellitic acid, pyromellitic acid, trimesic acid, cyclobutanetetracarboxylic acid, dimethylol propionic acid, etc., or mono alkali metal salts thereof Etc.
  • the free carboxyl group is reacted with an alkali metal compound or an amine compound after copolymerization to form a carboxylate group. From these compounds, one or more may be appropriately selected, and polyesters obtained by synthesizing by a conventional polycondensation reaction may be used.
  • the glass transition temperature (hereinafter sometimes abbreviated as Tg) of the polyester resin is preferably 40 ° C. or more, more preferably 60 ° C. or more.
  • Tg is 40 ° C. or higher, there is no possibility of causing a problem such as easy blocking when the coating thickness of the crosslinked resin layer is increased for the purpose of improving adhesion.
  • the glass transition temperature can be measured, for example, by a method in accordance with JIS K 7121: 1987.
  • the acrylic resin used in the present invention is defined as a polymer containing acrylic and methacrylic monomers as a polymerizable monomer having a carbon-carbon double bond. These may be homopolymers or copolymers. Also included are copolymers of these polymers with other polymers such as polyesters, polyurethanes and the like. For example, a block copolymer and a graft copolymer. Further included are polyester solutions, or polymers obtained by polymerizing polymerizable monomers having carbon-carbon double bonds in polyester dispersion (in some cases, mixtures of polymers).
  • polyurethane solutions polymers obtained by polymerizing polymerizable monomers having carbon-carbon double bonds in polyurethane dispersion (in some cases, mixtures of polymers).
  • other polymer solutions, or polymers obtained by polymerizing polymerizable monomers having carbon-carbon double bonds in the dispersion (in some cases, polymer mixtures) are also included.
  • the polymerizable monomer having a carbon-carbon double bond other than acrylic and methacrylic monomers is not particularly limited, but typical compounds include acrylic acid, methacrylic acid, crotonic acid, itaconic acid, and the like.
  • Various carboxyl group-containing monomers such as fumaric acid, maleic acid, citraconic acid and salts thereof; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, mono
  • Various hydroxyl group-containing monomers such as butyl hydroxyl fumarate, monobutyl hydroxy itaconate; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate
  • Various kinds of ) Acrylate (meth) acrylamide, diacetone acrylamide, N- methylol
  • an acrylic resin obtained by polymerizing one or more selected from a carboxyl group-containing monomer, a (meth) acrylic acid ester, and a nitrogen-containing vinyl monomer.
  • (meth) acrylate means acrylate and methacrylate.
  • polymerizable monomers as shown below can be copolymerized. That is, various styrene derivatives such as styrene, ⁇ -methylstyrene, divinylbenzene and vinyltoluene, various vinyl esters such as vinyl acetate and vinyl propionate; ⁇ -methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, Various silicon-containing polymerizable monomers such as methacryloyl silicon macromer and the like; phosphorus-containing vinyl monomers; vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, trifluorochlorethylene, tetrafluoroethylene, chlorotrifluoroethylene And various halogenated vinyls such as hexafluoropropylene; various conjugated dienes such as butadiene. These polymerizable monomers may be used alone or in combination of two or more.
  • Tg is preferably 40 ° C. or more, more preferably 60 ° C. or more.
  • Tg is 40 ° C. or higher, there is no possibility of causing a problem such as easy blocking when the coating thickness of the crosslinked resin layer is increased for the purpose of improving adhesion.
  • the polyurethane resin in the present invention refers to a polymer compound having a urethane bond in the molecule.
  • water-dispersible or water-soluble polyurethane resins are preferable in consideration of the suitability for in-line coating.
  • a hydrophilic group such as a hydroxyl group, a carboxyl group, a sulfonic acid group, a sulfonyl group, a phosphoric acid group or an ether group into the polyurethane resin.
  • a carboxylic acid group or a sulfonic acid group is preferably used from the viewpoint of improving the coating film physical properties and the adhesion.
  • a method of using a reaction of a hydroxyl group-containing compound and an isocyanate compound can be mentioned.
  • a hydroxyl group containing compound used as a raw material a polyol is used suitably, for example, polyether polyols, polyester polyols, polycarbonate-type polyols, polyolefin polyols, and acryl polyols are mentioned. These compounds may be used alone or in combination of two or more.
  • polyether polyols examples include polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol and the like.
  • Polyester polyols include those obtained from the reaction of polyhydric carboxylic acids or their acid anhydrides with polyhydric alcohols.
  • polyvalent carboxylic acids include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid and the like. One or more of these may be used in combination.
  • polyhydric alcohols ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-Methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol , 2-Methyl-2-propyl-1,3-propanediol, 1,8-octanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2 , 5-Dimethyl-2, 5-hexanediol,
  • Polycarbonate-based polyols are polycarbonate diols obtained by polyhydric alcohol and dimethyl carbonate, diethyl carbonate, diphenyl carbonate, ethylene carbonate or the like by a dealcoholization reaction, for example, poly (1,6-hexylene) Carbonate, poly (3-methyl-1,5-pentylene) carbonate and the like can be mentioned.
  • aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, ⁇ , ⁇ , ⁇ ′, ⁇ ′ Aliphatic diisocyanates having an aromatic ring such as tetramethyl xylylene diisocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, aliphatic diisocyanates such as hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, Dicyclohexyl Tan diisocyanate, and cycloaliphatic diisocyanates
  • a conventionally known chain extender may be used, and as a chain extender, it is not particularly limited as long as it has two or more active groups that react with isocyanate groups.
  • a chain extender having two hydroxyl groups or two amino groups is generally used.
  • chain extenders having two hydroxyl groups include aliphatic glycols such as ethylene glycol, propylene glycol, and butanediol, aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene, neopentyl glycol hydroxypivalate, etc.
  • glycols such as ester glycols of Moreover, as a chain extender having two amino groups, for example, aromatic diamines such as tolylenediamine, xylylenediamine, and diphenylmethanediamine, ethylenediamine, propylenediamine, hexanediamine, 2,2-dimethyl-1,3 -Propanediamine, 2-methyl-1,5-pentanediamine, trimethylhexanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, and Aliphatic diamines such as 10-decanediamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, dicyclohexylmethanediamine, isopropyritin cyclohexyl-4,4'-diamine, 1,4-diaminocyclohexane And 1,3-bis (aminomethyl) Alicycl
  • vinyl resin examples include polystyrene, poly ⁇ -methylstyrene, sodium polystyrene sulfonate, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl ether, sodium polyvinyl sulfonate, sodium polymethacrylate, polyvinyl alcohol, polyvinyl butyral and the like.
  • it is a polymer or copolymer obtained from a monomer having an unsaturated double bond in a molecule having as a main component thereof, a substantially composite structure such as vinyl resin-grafted polyester and vinyl resin-grafted polyurethane.
  • the resin which it has can also be used. One or more of these may be used in combination.
  • polyvinyl alcohol is preferably used from the viewpoint of compatibility with other coating agents (substance constituting the coating solution) at the time of preparation of the coating solution.
  • Polyvinyl alcohol can be synthesized by a usual polymerization reaction, for example, by adding an alkali catalyst such as sodium hydroxide or potassium hydroxide to a solution containing polyvinyl acetate produced by polymerizing vinyl acetate, and then desired. It can be partially saponified to produce a degree of saponification. Also, polyvinyl alcohol is preferably water soluble.
  • the polymerization degree of polyvinyl alcohol is not particularly limited, but generally 100 or more, preferably 300 to 40,000. If the polymerization degree is 100 or more, there is no possibility that the water resistance of the crosslinked resin layer will be reduced.
  • the degree of saponification of the polyvinyl alcohol used in the present invention is not particularly limited, but is usually 70 mol% or more, preferably 80 mol% or more, and preferably 99.9 mol% or less.
  • the degree of saponification can be measured according to the method described in JIS K6726 (1994).
  • the degree of polymerization viscosity average degree of polymerization
  • JIS K 6726 (1994) can be measured in accordance with the method described in JIS K 6726 (1994).
  • the content of the binder polymer (B) in the crosslinked resin composition is preferably 5 to 90% by mass, more preferably 10 to 70% by mass, and still more preferably 10 to 60% by mass in terms of solid content mass ratio. %.
  • the content of the binder polymer (B) is in the above range, the strength of the obtained crosslinked resin layer and the adhesion to the release layer can be sufficiently obtained.
  • the crosslinking resin composition in the present invention contains a crosslinking agent (C).
  • the crosslinking agent mainly improves the cohesion, surface hardness, scratch resistance, solvent resistance, water resistance, etc. of the crosslinked resin layer by crosslinking reaction with a functional group contained in another resin or compound, or self-crosslinking. be able to.
  • the crosslinking agent (C) which can be used is not particularly limited, and any kind of crosslinking agent can be used.
  • any kind of crosslinking agent can be used.
  • melamine compounds, guanamine compounds, alkylamide compounds, and polyamide compounds, glyoxals, carbodiimide compounds, epoxy compounds, oxazoline compounds, aziridine compounds, isocyanate compounds, silane coupling agents, dialcohol aluminate coupling agents, Aldehyde compounds, zircoaluminate coupling agents, peroxides, heat or photoreactive vinyl compounds, photosensitive resins and the like are suitably used.
  • crosslinking agent or a silane coupling agent of a melamine compound or an epoxy compound.
  • these crosslinkers include polymer crosslinkable compounds having a reactive group in the other polymer skeleton, and further, in the present invention, one or more of these crosslinkers are used in combination. You may
  • the melamine compound is a compound having a melamine skeleton in the compound.
  • an alkylolated melamine derivative a compound obtained by reacting an alcohol with an alkylolated melamine derivative to partially or completely etherify, and a mixture thereof can be used.
  • alcohol used for etherification methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol etc. are used suitably.
  • any of a monomer or the multimer more than a dimer may be sufficient, or you may use these mixtures.
  • a product obtained by co-condensing urea or the like with part of melamine can also be used, and a catalyst can also be used to increase the reactivity of the melamine compound.
  • a catalyst can also be used to increase the reactivity of the melamine compound.
  • hexamethoxymethylolmelamine is preferably used as the melamine compound.
  • Epoxy compound is a compound which has an epoxy group in a molecule
  • examples of compounds having an epoxy group in the molecule include condensates of epichlorohydrin with hydroxyl groups or amino groups such as ethylene glycol, polyethylene glycol, glycerin, polyglycerin, bisphenol A, etc.
  • Polyepoxy compounds, diepoxy There are compounds, monoepoxy compounds, glycidyl amine compounds and the like.
  • polyepoxy compounds include sorbitol, polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylol
  • propane polyglycidyl ether and diepoxy compound include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcinol diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl Ether, polypropylene glycol diglycidyl ether,
  • the lithium tetramethylene glycol diglycidyl ether and monoepoxy compound include allyl
  • xylylenediamine 1,3-bis (N, N-diglycidylamino) cyclohexane and the like.
  • polyglycerol polyglycidyl ether it is preferable to use polyglycerol polyglycidyl ether as the epoxy compound.
  • the silane coupling agent is an alkoxysilane compound having a general formula of X-Si (OR) 3 which contains two of reactive group site X and alkoxyl group site OR in the molecule, Any silane coupling agent that is synthetically possible can be used in the present invention as long as it is a silane compound containing a reactive group site X and an alkoxyl group site OR in the molecule.
  • R contained in the silane coupling agent is usually a methyl group or an ethyl group, but may be any alkyl group or a derivative thereof as long as synthetically possible, such as a butyl group or an isopropyl group.
  • reactive groups such as double bond group, amino group, epoxy group, mercapto group, sulfide group, isocyanate group, ureido group, chloropropyl group, hydroxyl group etc. It is possible to use any structure as the reactive group site X as long as the structure has a structure.
  • the use of a silane coupling agent having a structure containing an amino group is preferable from the viewpoint of the coating appearance and the effect of improving transparency, and a silane cup having a structure containing an epoxy group
  • a ring agent eg, 3-glycidoxypropyltrimethoxysilane
  • a silane coupling agent having a structure containing a vinyl group is more preferable.
  • the content of the crosslinking agent (C) in the crosslinked resin composition is preferably 1 to 90% by mass, more preferably 3 to 50% by mass, and still more preferably 5 to 40% by mass in terms of solid content mass ratio. %.
  • the ratio of the crosslinking agent (C) is in the above range, sufficient adhesion to the release layer by synergy with the binder polymer (B) can be obtained.
  • particles may be contained in the crosslinked resin layer for the purpose of improving the adhesion and slipperiness of the crosslinked resin layer.
  • the average particle diameter is not particularly limited, but is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, and still more preferably 0.2 ⁇ m or less from the viewpoint of film transparency. Moreover, it is preferably 0.01 ⁇ m or more from the viewpoint of obtaining the adhesion and slipperiness of the crosslinked resin layer.
  • Specific examples of the particles include inactive inorganic particles such as silica, alumina, calcium carbonate and titanium dioxide, fine particles obtained from polystyrene resins, polyacrylic resins and polyvinyl resins, organic particles represented by cross-linked particles thereof, etc. Can be mentioned.
  • the average particle size of the particles can be measured, for example, by the method described later in the Examples.
  • the cross-linked resin layer may optionally contain a surfactant, an antifoamer, a coating property improver, a mold release agent, a thickener, an organic lubricant, an antistatic agent, as long as the gist of the present invention is not impaired.
  • a conductive agent, a light absorber such as ultraviolet light, an antioxidant, a foaming agent, a dye, a pigment and the like may be contained.
  • the analysis of the components in the crosslinked resin layer can be performed, for example, by analysis of TOF-SIMS, photoelectron spectroscopy (XPS), fluorescent X-ray or the like.
  • the crosslinked resin layer may be provided by in-line coating which treats the film surface during the stretching process of the polyester film, or off-line coating may be applied outside the system on the film once produced. Since coating is possible simultaneously with film formation, in-line coating is preferably used from the point that manufacturing can correspond at low cost and that the thickness of the crosslinked resin layer can be changed by the draw ratio.
  • in-line coating although it is not limited to the following, for example, in successive biaxial stretching, a coating process can be applied before transverse stretching, especially after longitudinal stretching is completed.
  • a crosslinked resin layer is provided on a polyester film by in-line coating, coating becomes possible at the same time as film formation, and the crosslinked resin layer is cured by heat curing of the crosslinked resin composition by being treated at high temperature during transverse stretching. It can be formed to produce a film suitable as a polyester film.
  • the curing conditions for forming the cross-linked resin layer are not particularly limited, but it is generally preferable to conduct at 170 ° C. or more for 2 seconds or more as a standard.
  • a coating liquid on a polyester film As a method of applying a coating solution containing a crosslinked resin composition, conventionally known coating methods such as reverse roll coating, gravure coating, bar coating, and doctor blade coating can be used.
  • a small amount of organic solvent may be contained in the coating solution for the purpose of improving the dispersibility in water, improving the film forming property, and the like, as long as the gist of the present invention is not impaired.
  • the organic solvent can be used alone or in combination of two or more.
  • the content of the organic solvent in the coating solution is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the organic solvent include aliphatic or alicyclic alcohols such as n-butyl alcohol, n-propyl alcohol, isopropyl alcohol, ethyl alcohol and methyl alcohol, and glycols such as propylene glycol, ethylene glycol and diethylene glycol Glycol derivatives such as n-butyl cellosolve, ethyl cellosolve, methyl cellosolve, propylene glycol monomethyl ether, ethers such as dioxane and tetrahydrofuran, esters such as ethyl acetate and amyl acetate, ketones such as methyl ethyl ketone and acetone, N-methyl pyrrolidone And the like.
  • the organic solvent include aliphatic or alicyclic alcohols such as n-butyl alcohol, n-propyl alcohol, isopropyl alcohol, ethyl alcohol and methyl alcohol, and glycols such as propylene glycol,
  • heat treatment and active energy ray irradiation such as ultraviolet irradiation may be used in combination, as necessary.
  • a crosslinked resin layer for example, gravure coat, reverse roll coat, die coat, air doctor coat, blade coat, rod coat, bar coat, curtain coat, knife coat, transfer roll coat, squeeze coat, curtain coat, Conventionally known coating methods such as impregnation coating, kiss coating, spray coating, calender coating, and extrusion coating can be used.
  • the film thickness of the crosslinked resin layer provided on the polyester film in the present invention is preferably 0.01 to 3 ⁇ m, more preferably 0.01 to 3 ⁇ m from the viewpoint of exhibiting various functionalities when viewed as a final film. It is preferably 1 ⁇ m, more preferably 0.01 to 0.3 ⁇ m.
  • the film thickness of the crosslinked resin layer in the present invention is obtained, for example, by staining the release film with a heavy metal such as a ruthenium compound or an osmium compound and adjusting the cross section of the release film by the ultrathin section method.
  • the cross-linked resin layer of the cross section of the release film can be measured at a plurality of places at random and the average value can be calculated and determined.
  • the coating amount of the coating solution containing the crosslinked resin composition is usually 0.01 to 3 g / m 2 , preferably 0.01 to 1 g / m 2 , and more preferably 0.01 to 0.3 g / m 2 . is there.
  • the amount is 0.01 g / m 2 or more, sufficient performance in adhesion to the release layer (adhesion resistance) and antistatic performance can be obtained.
  • the amount is 3 g / m 2 or less, the crosslinked resin layer has an appearance and transparency There is no possibility that the blocking of the film and the reduction of the productivity due to the reduction of the line speed occur.
  • the coating amount can be calculated from the mass of liquid per application time (before drying), the concentration of the non-volatile portion of the coating liquid, the coating width, the stretching ratio, the line speed and the like.
  • the polyester film used in the present invention can be subjected to various surface treatments separately from the crosslinked resin layer. Specifically, it can be applied to the polyester film on the back surface side of the crosslinked resin layer, or the like before the crosslinked resin layer is formed on the polyester film.
  • Conventionally known techniques can be used for various surface treatments and various functional layers.
  • surface treatment may be surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet light treatment, high frequency treatment, microwave treatment, glow discharge treatment, active plasma treatment, laser treatment and the like.
  • a crosslinked resin layer having the same constitution as the crosslinked resin layer may be provided on the back surface side of the crosslinked resin layer, or various functional layers may be separately provided.
  • various functional layers an adhesive layer, an antistatic layer, a bleed-out component sealing layer, a refractive index adjustment layer, a light absorption layer, a light transmittance improving layer, an antifogging layer, a barrier coat layer, a hard coat layer, adhesion Layers, layers in which these functionalities are combined, and the like can be mentioned.
  • the functional layer may be a single layer, or may be configured of two or more layers.
  • the release layer which comprises the release film of this invention is formed using a release agent composition.
  • the release agent composition according to the present invention has a first polydimethylsiloxane having at least one alkenyl group in one molecule and an at least one hydrosilyl group in one molecule as an addition reaction type silicone resin. And 2 polydimethylsiloxanes.
  • the alkenyl group contained in the first polydimethylsiloxane used in the present invention is a monovalent hydrocarbon group such as vinyl group, allyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, etc. It can be mentioned. Among them, vinyl and hexenyl are preferable from the viewpoint of the reactivity with the hydrosilyl group.
  • the alkenyl group is preferably contained in 3 to 90 mmol, more preferably 6 to 45 mmol, in 30 g of the first polydimethylsiloxane. Further, in 30 g of the second polydimethylsiloxane, the hydrosilyl group is preferably contained in 6 to 450 mmol, more preferably in 15 to 450 mmol. Furthermore, the molar ratio (b / a) of the hydrosilyl group (b) to the alkenyl group (a) is preferably 1.5 to 5.0, more preferably 1.5 to 3.0.
  • the weight average molecular weight of the first polydimethylsiloxane is 500 or more and 50000 or less, preferably 800 or more or 30000 or less, and more preferably 2000 or more or 20000 or less. If the weight average molecular weight of the first polydimethylsiloxane is less than 500, the reactivity is high, and the reaction proceeds in the coating solution, so the desired light peel strength can not be expressed, and if it exceeds 50,000, the reactivity is not good. It becomes worse and does not develop the desired light peeling force.
  • the weight average molecular weight of the second polydimethylsiloxane is 120 or more and 20000 or less, preferably 150 or more or 10000 or less, and more preferably 200 or more or 5000 or less. If the weight average molecular weight of the second polydimethylsiloxane is less than 120, the reactivity is high, and the reaction proceeds in the coating liquid, so the desired light peel strength can not be expressed, and if it exceeds 20000, the reactivity is not good. It becomes worse and does not develop the desired light peeling force.
  • the weight average molecular weight in this invention is a value of polystyrene conversion measured by the gel permeation chromatography (GPC) method.
  • a crosslinked structure is formed by the reaction of the alkenyl group and the hydrosilyl group.
  • setting the weight average molecular weights of the first polydimethylsiloxane and the second polydimethylsiloxane to the above upper limit or less, respectively forms a releasing layer using a component having a molecular weight lower than that of the prior art as a raw material. It means to do. Therefore, the release layer in the present invention has a high crosslinking density, in other words, it is possible to lower the molecular weight between crosslinking points.
  • the release layer has such a structure, it is possible not only to reduce the peeling force with respect to the adherend (light peelability) but also to stabilize the effect over time. I found it.
  • the weight average molecular weight of the polydimethylsiloxane having an alkenyl group or the polydimethylsiloxane having a hydrosilyl group is higher than the upper limit defined in the present invention, it is good immediately after the release film and the adherend are adhered. Even if light peelability is exhibited, the peel strength increases with time.
  • the present inventor found that it is preferable to contain an organic silicon compound in the mold release layer, as described later. That is, as a release agent composition, an organosilicon compound is contained together with the first and second polydimethylsiloxanes, and when these are cured to form a release layer, it has light releasability to an adherend, It was confirmed that the interlayer adhesion in the release film is good. In the present invention, it has also been found that, by using an organosilicon compound in combination with the release agent composition as described above, it is possible to exhibit an anchor effect on the crosslinked resin layer.
  • the confirmation method is not limited to the following. (1) Extract the release layer with an organic solvent or the like, and measure the molecular weight of the unreacted component, (2) Analysis of the crosslinking point by tetraethoxysilane analysis to estimate the molecular weight, (3) The electronic state of the release layer is analyzed by X-ray photoelectron spectroscopy (XPS), and the crosslink density is measured to estimate the molecular weight between crosslink points.
  • XPS X-ray photoelectron spectroscopy
  • the content of each of the first polydimethylsiloxane and the second polydimethylsiloxane in the release agent composition is from the viewpoint of the formation of the release layer. And preferably 20/80 to 90/10 (% by mass), and more preferably 50/50 to 80/20 (% by mass).
  • Platinum-based catalyst The release agent composition preferably contains a platinum-based catalyst that promotes addition type reaction in order to make the release layer smooth and robust.
  • platinum-based catalysts platinum-based compounds such as chloroplatinic acid, alcohol solutions of chloroplatinic acid, complexes of chloroplatinic acid and olefin, complexes of chloroplatinic acid and alkenyl siloxane, platinum black, platinum-supported silica, supported platinum An activated carbon is illustrated.
  • the platinum-based catalyst may be used alone or in combination of two or more.
  • the content of the platinum-based catalyst in the release agent composition is preferably 0.3 to 3.0% by mass, more preferably 0.5 to 2.0% by mass. If the content of the platinum-based catalyst in the release layer is 0.3% by mass or more, problems such as surface deterioration may occur due to defects in peeling force and insufficient curing reaction in the crosslinked resin layer. There is no fear, and if the content of the platinum-based catalyst in the release layer is 3.0% by mass or less, the reactivity is enhanced, and there is no risk of causing process defects such as generation of gel foreign matter.
  • a release film By forming a release layer using the release agent composition which satisfy
  • the release agent composition for forming the release layer in the present invention in order to improve the adhesion of the coating film between the release layer and the polyester film, it is possible to use ones other than the first and second polydimethylsiloxanes. It is preferable to contain a reactive group-containing organic silicon compound (hereinafter sometimes simply referred to as an organic silicon compound).
  • the reactive group-containing organic silicon compound is an organic silicon compound having a reactive group such as an epoxy group, a mercapto group, a (meth) acryloyl group, a haloalkyl group, and an amino group in the molecular structure in the present invention. Both high molecular weight compounds and low molecular weight compounds can be used.
  • the reactive group-containing organic silicon compound does not include the first and second polydimethylsiloxanes.
  • the organic silicon compound represented by the above general formula (I) has two (D unit source) or three (D unit source) having a hydrolyzable group Y capable of forming a siloxane bond by hydrolysis / condensation reaction Source) can be used.
  • the monovalent hydrocarbon group R 1 is one having 1 to 10 carbon atoms, and in particular, a methyl group, an ethyl group or a propyl group is preferable.
  • examples of the hydrolyzable group Y include the following. That is, they are methoxy group, ethoxy group, butoxy group, isopropenoxy group, acetoxy group, butanoxym group, amino group and the like. These hydrolyzable groups may be used alone or in combination of two or more. The application of a methoxy group or an ethoxy group is particularly preferable because it can impart good storage stability to the coating material and has adequate hydrolyzability.
  • the content of the organic silicon compound in the release agent composition is preferably 0.1 to 5.0% by mass, more preferably 0.3 to 2.0% by mass, and still more preferably 0.3 to 1 .5 mass%. If the content of the organosilicon compound is 0.1% by mass or more, desired adhesion can be secured, and if it is 5.0% by mass or less, the adhesiveness to the cross-linked resin layer of the other member to be bonded There is no risk of problems such as being unable to be easily peeled off in situations where it is necessary to originally peel off.
  • the release agent composition may further contain a non-reactive silicone resin in order to impart light releasability to the release film.
  • the weight average molecular weight of the non-reactive silicone resin is preferably 50000 or more and 500000 or less.
  • organopolysiloxane shown by following General formula (II) is preferable.
  • the content of the nonreactive silicone resin in the release agent composition is preferably 1 to 10% by mass, and more preferably 1 to 5% by mass. If the content of the non-reactive silicone resin is 1% by mass or more, a sufficient light peeling effect is exhibited, and if 10% by mass or less, sufficient curability and adhesiveness can be obtained.
  • the release agent composition may contain various release control agents in order to adjust the release property and the like of the release layer.
  • adjustment is usually carried out by incorporating an appropriate amount of a silica particle, a silicone type having a heavy peeling force, or the like into the releasing agent composition in order to obtain a desired peeling force.
  • Shin-Etsu Chemical Co., Ltd. KS-3800, X-92-183, Toray Dow Corning Co., Ltd. SDY7292, BY24-843, BY24-4980 are examples of the heavy peeling agent marketed. Be done.
  • low molecular weight siloxanes non-reactive low molecular weight silicone compounds
  • the content is adjusted appropriately for the releasing layer, and the siloxane transfer component exerts releasing performance.
  • low molecular weight siloxane compounds include hexamethyl cyclotrisiloxane, octamethyl cyclotetrasiloxane, decamethyl cyclopentasiloxane and the like.
  • the content of these low molecular weight siloxane compounds in the releasing agent composition is preferably 0.1 to 15.0% by mass, more preferably 0.1 to 10.0% by mass, still more preferably 0.1. It is ⁇ 5.0 mass%.
  • the content of the low molecular weight siloxane is 0.1% by mass or more, the releasable component is not too small and the releasability can be exhibited, and when it is 15.0% by mass or less, the mobilizable component is There is no possibility of causing process contamination without excessive precipitation.
  • the releasing agent composition optionally contains acetylene alcohol as a reaction inhibitor, as needed.
  • acetylene alcohol is an organic compound having a carbon-carbon triple bond and a hydroxyl group, preferably 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, and phenyl. It is a compound selected from the group consisting of butynol.
  • the reaction inhibitor may be used alone or in combination of two or more.
  • the release agent composition for forming the release layer may, if necessary, be an antifoamer, a coatability improver, a thickener, inorganic organic particles, organic lubrication
  • An agent, an antistatic agent, a conductive agent, an ultraviolet absorber, an antioxidant, a foaming agent, a dye, a pigment and the like may be contained.
  • the release film of the present invention is produced by providing a crosslinked resin layer on at least one surface of a polyester film stretched at least in a uniaxial direction, and further laminating a release layer on the crosslinked resin layer.
  • the release layer may be in-line coating or off-line coating as in the case of the cross-linked resin layer, but off-line coating is preferably used in that the release layer composition can be uniformly applied at high speed.
  • conventionally known coating methods such as reverse roll coating, gravure coating, bar coating, and doctor blade coating can be used as in the case of the crosslinked resin layer.
  • the release layer When the release layer is provided by off-line coating, it is preferable to apply the coating solution on the crosslinked resin layer as a solution or dispersion of a release agent composition containing the above-mentioned series of compounds.
  • the solvent may be water or an organic solvent in producing a coating solution containing the release agent composition, but an organic solvent is preferable from the viewpoint of compatibility with the release agent composition.
  • the organic solvent include aliphatic or alicyclic alcohols such as n-butyl alcohol, n-propyl alcohol, isopropyl alcohol, ethyl alcohol and methyl alcohol, and glycols such as propylene glycol, ethylene glycol and diethylene glycol Glycol derivatives such as n-butyl cellosolve, ethyl cellosolve, methyl cellosolve, propylene glycol monomethyl ether, ethers such as dioxane and tetrahydrofuran, esters such as ethyl acetate and amyl acetate, ketones such as methyl ethyl ketone and acetone, N-methyl pyrrolidone And the like.
  • aliphatic or alicyclic alcohols such as n-butyl alcohol, n-propyl alcohol, isopropyl alcohol, ethyl alcohol and methyl alcohol
  • glycols such as propylene glycol, ethylene glycol
  • the curing conditions for forming the release layer on the cross-linked resin layer of the polyester film are not particularly limited, and when the release layer is provided by off-line coating, usually 80 ° C. or more for 10 seconds or more,
  • the heat treatment is preferably carried out with a temperature of 100 to 200 ° C. for 3 to 40 seconds, more preferably 120 to 180 ° C. for 3 to 40 seconds.
  • active energy ray irradiations such as ultraviolet irradiation, as needed.
  • an energy source for hardening by active energy ray irradiation a well-known apparatus and energy source can be used.
  • the film thickness of the release layer provided on the crosslinked resin layer improves the adhesion with the crosslinked resin layer when viewed as a final film, and the light releasability from the substrateless double-sided pressure-sensitive adhesive sheet
  • the thickness is usually 0.005 to 1 ⁇ m, preferably 0.01 to 1 ⁇ m, and more preferably 0.15 to 0.70 ⁇ m.
  • the amount of the release layer applied (after drying) is usually from 0.005 to 5 g / m 2 , preferably from 0.01 to 1 g / m 2 , more preferably from 0.15 to 0, from the viewpoint of coatability. It is in the range of .70 g / m 2 .
  • the coating amount (after drying) is 0.005 g / m 2 or more, it becomes possible to obtain a uniform coating film without lack of stability in terms of coating property. Moreover, if it is 5 g / m ⁇ 2 > or less, there is no possibility that the coating-film adhesiveness of a release layer itself, hardening property, etc. may fall.
  • the application amount can be calculated from the liquid mass per application time (before drying), the concentration of non-volatile matter in the application liquid, the application width, the draw ratio, the line speed, and the like.
  • the release film of the present invention has good releasability and antistatic properties between the release film and the pressure-sensitive adhesive, has adhesion to the release layer even with time lapse, is melt recyclable, and has good productivity. , Its industrial value is high.
  • the release force of the release film of the present invention is 4 g / g at 180 ° release under the conditions of a release speed of 300 mm / min between the release film (surface on the release layer side) and the adhesive tape. It is 25 mm or less. When the peeling force exceeds 4 g / 25 mm, the peeling force is too heavy, so the convenience at the time of peeling the release film is lowered.
  • the peeling force is more preferably 3 g / 25 mm or less from the viewpoint of the convenience of the release film.
  • the lower limit of the peeling force is not particularly limited, but from the viewpoint of transportability, it preferably has adhesiveness between the release film and the pressure-sensitive adhesive film which is the adherend, and is 0.5 g / 25 mm or more More preferable.
  • the release force of the release film of the present invention is 4 g / 25 mm or less at 180 ° peeling, so that the release agent composition constituting the release layer of the release film has a weight average molecular weight of 500 to 50,000.
  • the peeling force of the release film of the present invention is measured in detail by the method described later in the examples.
  • the release film of the present invention has good releasability, that is, light releasability, in the present invention, light releasability means that the force at the time of adhering and peeling a tape about 25 mm wide is 4 g / 25 mm or less In what is peelable.
  • the pressure-sensitive adhesive having good releasability and release film is not particularly limited, but an acrylic pressure-sensitive adhesive is preferable.
  • the acrylic pressure-sensitive adhesive includes, as a main component, an acrylic copolymer obtained by copolymerizing a functional group-containing monomer with another monomer such as acrylic acid ester and methacrylic acid ester.
  • the surface specific resistance on the surface of the release layer of the release film of the present invention is preferably 1 ⁇ 10 11 ⁇ from the viewpoint of preventing peeling charge generated when releasing the release film and preventing adhesion of dust etc. to the adhesive surface. Or less, more preferably 1 ⁇ 10 10 ⁇ or less. On the other hand, the lower limit of the surface specific resistance is not particularly limited, but 1 ⁇ 10 1 ⁇ or more is preferable.
  • the surface resistivity of the release film of the present invention can be measured in detail by the method described later in the examples.
  • the laminate of the present invention comprises a release film having a crosslinked resin layer on at least one side of a polyester film stretched in at least one uniaxial direction, and further having a release layer laminated on the crosslinked resin layer, and a double-sided pressure-sensitive adhesive sheet And a laminated body.
  • the crosslinked resin layer of the release film contains an ionic polymer (A) having a cationic group
  • the release layer contains polydimethylsiloxane and has a film thickness of 0.01 to 1 ⁇ m. It is.
  • the film thickness of the release layer exceeds 1 ⁇ m, the adhesion between the release layer constituting the release film and the cross-linked resin layer becomes insufficient, and the surface of the release layer is easily peeled off. It is easy to occur.
  • the thickness of the release layer is more preferably 0.15 to 0.70 ⁇ m.
  • the laminate of the present invention can have light releasability between the release film and the double-sided pressure-sensitive adhesive sheet.
  • the peel force between the release layer surface of the release film and the double-sided pressure-sensitive adhesive sheet is 4 g / 25 mm or less at 180 ° peeling under the condition of 300 mm / min tensile speed.
  • the peeling force is more preferably 3 g / 25 mm or less from the viewpoint of convenience of the release film.
  • the lower limit of the peeling force is not particularly limited, but from the viewpoint of transportability, it preferably has adhesiveness between the release film and the pressure-sensitive adhesive film which is the adherend, and is 0.5 g / 25 mm or more More preferable.
  • polyester (I) Using 100 parts by mass of dimethyl terephthalate and 60 parts by mass of ethylene glycol as starting materials, 0.09 parts by mass of magnesium acetate tetrahydrate as an ester exchange catalyst is placed in a reactor, the reaction start temperature is 150 ° C., methanol is distilled off The reaction temperature was gradually raised with this and brought to 230 ° C. after 3 hours. After 4 hours, the transesterification was substantially terminated. After 0.04 parts by mass of ethyl acid phosphate was added to the reaction mixture, 0.04 parts by mass of antimony trioxide was added as a polymerization catalyst, and a polycondensation reaction was performed for 4 hours.
  • the temperature was gradually raised from 230 ° C. to 280 ° C.
  • the pressure was gradually reduced from normal pressure, and finally it was 0.3 mmHg.
  • the reaction was stopped when the intrinsic viscosity corresponded to 0.63 dL / g due to the change of the stirring power of the reaction tank, and the polymer was discharged under nitrogen pressure.
  • the intrinsic viscosity of the obtained polyester (I) was 0.63 dL / g.
  • polyester (II) In the production method of polyester (I), after adding 0.04 parts by mass of ethyl acid phosphate, 0.3 parts by mass of silica particles having an average particle diameter of 1.6 ⁇ m dispersed in ethylene glycol, 0.04 of antimony trioxide A polyester (II) was obtained using the same method as the polyester (I) production method, except that the polycondensation reaction was stopped when a mass part was added and the polycondensation reaction was stopped when the intrinsic viscosity corresponded to 0.65 dL / g. The intrinsic viscosity of the obtained polyester (II) was 0.65 dL / g.
  • Binder polymer B1 polyvinyl alcohol
  • emulsifier anionic surfactant
  • B3 Polyurethane resin
  • a polyester polyol comprising 664 parts by mass of terephthalic acid, 631 parts by mass of isophthalic acid, 472 parts by mass of 1,4-butanediol, and 447 parts by mass of neopentyl glycol was obtained.
  • Crosslinking agent C1 hexamethoxymethylolmelamine
  • C2 polyglycerol polyglycidyl ether
  • C3 3-glycidoxypropyltrimethoxysilane
  • D1 Mixture of polyethylene dioxythiophene and polystyrene sulfonic acid (Stark Co., Ltd., Baytron PAG)
  • E1 Glycerin
  • F1 Alumina surface-modified silica sol aqueous dispersion
  • F2 having an average particle size of 0.02 ⁇ m: Silica particles having an average particle size of 0.07 ⁇ m
  • ⁇ Release layer> The following raw materials were used for the mold release agent composition which forms a mold release layer.
  • the weight average molecular weight of the raw material was measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • b1 Polymethyl hydrogen siloxane having at least two hydrosilyl groups in the structure of polydimethylsiloxane (weight average molecular weight: 200, 300 mmol of hydrosilyl group in 30 g of PDMS)
  • b2 Polymethyl hydrogen siloxane having at least one hydrosilyl group in the structure of polydimethylsiloxane (weight average molecular weight: 5000, hydrosilyl group 6 mmol in 30 g of PDMS)
  • b3 Polymethyl hydrogen siloxane having at least one hydrosilyl group in the structure of polydimethylsiloxane (weight average molecular weight: 30,000, 1 mmol of hydrosilyl group in 30 g of PDMS)
  • b4 polymethyl hydrogen siloxane having at least two hydrosilyl groups in the structure of polydimethylsiloxane (weight average molecular weight: 200, 300 mmol of hydrosilyl group in 30 g of PDMS)
  • c1 Platinum-based catalyst (Toray ⁇ Dow Corning “SRX-212”)
  • d1 Reactive group-containing organosilicon compound (epoxy siloxane, manufactured by Momentive, “Anchorsil 3000”)
  • d2 Reactive group-containing organosilicon compound ( ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane)
  • d3 Reactive group-containing organosilicon compound ( ⁇ -glycidoxypropyltrimethoxysilane)
  • Example 1 Laminated polyester film A mixed raw material in which polyesters (I) and (II) are mixed at a ratio of 90% and 10%, respectively, is used as the raw material for the outermost layer (surface layer), and polyester (I) is used as the raw material for the intermediate layer.
  • Each is supplied to a platform extruder and melted at 285 ° C., and then co-extruded in a layer configuration of two types and three layers (surface layer / interlayer / surface layer) on a cooling roll set at 40 ° C., and solidified by cooling The unstretched sheet was obtained. Then, after stretching by 3.4 times in the longitudinal direction at a film temperature of 85 ° C.
  • the coating amount (water dispersion, solid content concentration 5 mass%) of the coating agent composition in Table 1 is applied
  • the film is coated on one side of the film so that it has a predetermined amount (after drying), and then guided to a tenter, stretched 4.3 times in the lateral direction at 120 ° C., heat-treated at 225 ° C., and then the thickness of the polyester film
  • a laminated polyester film having a thickness of 38 ⁇ m (surface layer 5 ⁇ m / intermediate layer 28 ⁇ m / surface layer 5 ⁇ m) and the crosslinked resin layer 1 provided.
  • the release agent composition is reverse-gravure so that the film thickness of the release layer 1 becomes 0.2 ⁇ m offline. After coating by a coating method and heat treatment at 180 ° C. for 10 seconds, a release film was obtained.
  • the evaluation results of the obtained release film are shown in Table 3.
  • the film thickness of the release layer and the cross-linked resin layer in the present invention is obtained by dyeing the release film with a heavy metal such as a ruthenium compound or osmium compound and adjusting the cross section of the release film by the ultrathin section method.
  • the cross-linked resin layer of the cross section of the release film was randomly measured at a plurality of places with a scanning electron microscope, and the average value was calculated.
  • Examples 2 to 14 and Comparative Examples 1 to 8 A crosslinked film was produced in the same manner as in Example 1 except that the crosslinked resin layer was changed to the crosslinked resin layer shown in Table 1, and the release layer was changed to the release agent composition shown in Table 2, to obtain a release film.
  • the evaluation results of the obtained release film are shown in Table 3.
  • the examples are good in all evaluations of peel strength as a light release release film, surface specific resistance, adhesion with time of coating film, and productivity.
  • the comparative examples did not satisfy all the evaluations, and did not satisfy the evaluation criteria of the present invention, and were not practical.
  • the release film of the present invention can be used for various optical applications, for example, for manufacturing various display components such as a polarizing plate for liquid crystal display, a retardation plate, a plasma display component, and an organic EL component.
  • various display components such as a polarizing plate for liquid crystal display, a retardation plate, a plasma display component, and an organic EL component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

A mold release film which comprises a crosslinkable resin layer at least on one surface of a polyester film, said polyester film having been stretched at least in one axial direction, and a mold release layer further laminated on the crosslinkable resin layer, wherein: the crosslinkable resin layer is formed of a crosslinkable resin composition comprising a cationic group-containing ionic polymer (A) and a crosslinking agent (C); the mold release layer is formed of a mold releasing agent composition comprising a first polydimethylsiloxane having a weight-average molecular weight of 500-50000 and having at least one alkenyl group per molecule and a second polydimethylsiloxane having a weight-average molecular weight of 120-20000 and having at least one hydrosilyl group per molecule; and the peel force measured by the following method is not more than 4 g/25 mm. <Measurement of peel force> The mold release layer of the mold release film is bonded to an adhesive tape ("No. 502" manufactured by Nitto Denko Co., acrylic adhesive) and subjected to 180° peel test at a tension rate of 300 mm/min.

Description

離型フィルム及び積層体Release film and laminate
 本発明は、離型フィルム及び積層体に関する。 The present invention relates to a release film and a laminate.
 従来、ポリエステルフィルムを基材とする離型フィルムは、各種光学用途に用いられており、偏光板や位相差板をはじめとした光学部材と、粘着剤層とを介して貼り合わせるために用いられてきた。例えば、静電容量方式のタッチパネル、液晶ディスプレイ構成部材、プラズマディスプレイパネル構成部材、及び有機エレクトロルミネッセンス(有機EL)構成部材のように各種ディスプレイ構成部材製造用が挙げられる。
 近年、光学部材の1つであるタッチパネル製造用基材レス両面粘着シートと、離型フィルムとを貼り合せる際、離型フィルムの剥離力による不具合が多数報告されている。
A polyester film-based release film is conventionally used for various optical applications, and is used to bond optical members such as a polarizing plate and a retardation plate via an adhesive layer. It has For example, various display components can be manufactured, such as a capacitive touch panel, a liquid crystal display component, a plasma display panel component, and an organic electroluminescence (organic EL) component.
In recent years, when bonding a substrateless double-sided pressure-sensitive adhesive sheet for manufacturing a touch panel, which is one of optical members, and a release film, many problems due to the peeling force of the release film have been reported.
 基材レス両面粘着シートは、粘着層の両面に剥離力の相対的に低い軽剥離フィルムと、剥離力の相対的に高い重剥離フィルムが積層された積層体構成からなり、両面の剥離フィルムを除去した後には、支持基材を有さない粘着層のみとなる両面粘着シートである。 The substrate-less double-sided pressure-sensitive adhesive sheet has a laminate structure in which a light release film having a relatively low peel force and a heavy release film having a relatively high peel force are laminated on both sides of the pressure-sensitive adhesive layer. It is a double-sided adhesive sheet which becomes only the adhesive layer which does not have a support base material after removing.
 基材レス両面粘着シートの使用方法として、まず軽剥離フィルムが剥がされ、露出した粘着層の一方の表面が貼り合わせる相手方の物体面に接着され、その接着後、さらに重剥離フィルムが剥がされ、露出された粘着層の他方の面が、異なる物体面に接着され、これにより物体間が面接着される加工工程が例示される。 As a method of using the substrate-less double-sided pressure-sensitive adhesive sheet, first, the light release film is peeled off, one surface of the exposed pressure-sensitive adhesive layer is bonded to the opposite object surface to be bonded, The other side of the exposed adhesive layer is bonded to a different object surface, thereby exemplifying a processing step in which the objects are surface-bonded.
 近年、基材レス両面粘着シートは、その作業性良好な点が注目され、用途が広がりつつあり、各種光学用途の部材、例えば、携帯電話等にも使用されている。特に、静電容量方式のタッチパネルは、二本の指で画面操作を行なうマルチタッチ操作により、情報端末としての用途が急速に拡大する状況にある。静電容量方式のタッチパネルは、抵抗膜方式に比べ、構成上、印刷の段差が厚くなる傾向にあるため、粘着層を厚くして印刷の段差を解消する提案がなされている。粘着層を厚くした場合には、離型フィルムを剥す時に、粘着層の一部が離型フィルムに付着する、或いは粘着層に気泡が混入する等の不具合を生じる場合があった。そのため、基材レス両面粘着シートを光学用途に使用する場合には、基材レス両面粘着シートだけでなく、組み合わせる離型フィルムにおいても、従来よりも一段と厳しく、より高度な品質の離型フィルムが必要とされる状況にある。 In recent years, the substrate-less double-sided pressure-sensitive adhesive sheet attracts attention for its good workability, and its use is expanding, and is also used for members for various optical applications such as mobile phones. In particular, a capacitive touch panel is in a situation where the use as an information terminal is rapidly expanding due to a multi-touch operation in which a screen operation is performed by two fingers. Since the capacitive touch panel tends to have a thicker printing step than the resistive film method, it has been proposed to thicken the adhesive layer to eliminate the printing step. When the pressure-sensitive adhesive layer is thickened, when the release film is peeled off, a part of the pressure-sensitive adhesive layer may adhere to the release film, or air bubbles may be mixed in the pressure-sensitive adhesive layer. Therefore, when using a substrateless double-sided pressure-sensitive adhesive sheet for optical applications, not only the substrateless double-sided pressure-sensitive adhesive sheet but also the combined release film is more severe than before and release films of higher quality It is in the necessary situation.
 基材レス両面粘着シートを用いる際、比較的剥がれやすい軽剥離離型フィルムが用いられることがあるが、軽剥離離型フィルムを粘着層から剥離する際に、所望する剥離力よりも高いため、粘着剤から上手く剥離できずに歩留まりが低下することが問題になっている。このため軽剥離離型フィルムには以前よりもさらに軽い離型性が要求されている。 When using a substrate-less double-sided pressure-sensitive adhesive sheet, a light-peelable release film that is relatively easy to peel may be used, but when peeling the light-peelable release film from the pressure-sensitive adhesive layer, it is higher than the desired peel strength. It is a problem that the yield is reduced because the adhesive can not be peeled off well. For this reason, a lighter release film is required to be lighter than before.
 一方、ポリエステルフィルムを基材とした離型フィルムには、その性質上、帯電しやすいという課題があり、工業上の使用において、例えば次の様な不具合を生じることがある。1:離型フィルムは粘着剤層を介して他の部材と貼り合わされた後、剥離されるという使用法が一般的である。しかし、離型フィルムが帯電しやすいために、剥離の際に帯電が生じる。この時の剥離帯電が、被着体である部材にダメージを与えたり、周囲の塵芥を引き付けて欠陥を生じたりする。2:2枚の離型フィルムで粘着剤層を挟み込んだ構成の基材レス両面粘着シートでは、一方の離型フィルムを剥離して、他の部材に貼り合わせる。この時の剥離帯電により塵芥を粘着面に付着させて他の部材に貼り合わせると、間に塵芥を閉じ込めてしまい、再剥離が出来ず、欠陥を生じた製品となる。そのため、製造工程における設備対応による帯電防止対策だけでは、必ずしも十分ではなく、離型フィルム自体からの帯電防止処理が強く切望される状況にある。 On the other hand, a release film based on a polyester film has a problem that it is easily charged due to its properties, and in industrial use, for example, the following problems may occur. 1: The release film is generally used in such a manner that it is peeled off after being bonded to another member through the pressure-sensitive adhesive layer. However, since the release film is easily charged, charging occurs at the time of peeling. At this time, the peeling charge damages the member which is the adherend or attracts the surrounding dust to cause a defect. 2: In the substrate-less double-sided pressure-sensitive adhesive sheet having a configuration in which the pressure-sensitive adhesive layer is sandwiched between two release films, one release film is peeled off and bonded to another member. If dust is attached to the adhesive surface by peeling charge at this time and is bonded to another member, the dust is trapped between the members, so that peeling can not be performed, resulting in a product having a defect. Therefore, it is not always sufficient to use only the antistatic measures by means of equipment in the manufacturing process, and there is a strong demand for antistatic treatment from the release film itself.
 かかる問題に対する解決策として、π電子共役系導電性高分子を含有する帯電防止層の提案がされている(例えば、特許文献1及び2参照)。
 また、イオン性ポリマーを含有する帯電防止層の上にシリコーン樹脂塗膜を有する離型フィルムが提案されており、帯電防止性能や生産性は改善されている(例えば、特許文献3参照)。
As a solution to this problem, there has been proposed an antistatic layer containing a π electron conjugated conductive polymer (see, for example, Patent Documents 1 and 2).
In addition, a release film having a silicone resin coating film on an antistatic layer containing an ionic polymer has been proposed, and the antistatic performance and productivity have been improved (see, for example, Patent Document 3).
特開2012-183811号公報JP, 2012-183811, A 特開2012-993号公報JP 2012-993 A 特開2007-45953号公報JP 2007-45953 A
 しかしながら、特許文献1及び2の帯電防止フィルムは、帯電防止性が良好な反面、帯電防止フィルムの溶融リサイクルを行う場合、基材を構成するポリエステルと帯電防止層を構成する導電性高分子の相溶性が悪く異物が発生するため、再生利用をすることができずに生産性が低くなる問題があった。また特許文献3の離型フィルムは、離型フィルムの離型層を構成する離型性シリコーン樹脂塗膜と、被着体の粘着層との剥離力が重いだけでなく、離型フィルムを構成する帯電防止層と離型性シリコーン樹脂塗膜(離型層)との経時での密着性が不十分な状況であった。 However, while the antistatic films of Patent Documents 1 and 2 have good antistatic properties, when melt recycling of the antistatic film is performed, the phase of the polyester constituting the substrate and the phase of the conductive polymer constituting the antistatic layer Since the solubility is so low that foreign substances are generated, there is a problem that the productivity can not be reduced because the recycling can not be performed. In addition, the release film of Patent Document 3 not only has a heavy release force between the releasable silicone resin coating film forming the release layer of the release film and the adhesive layer of the adherend, but also constitutes the release film. The adhesion between the antistatic layer and the releasable silicone resin coating film (releasing layer) with time was insufficient.
 そこで本発明は、離型フィルムの離型層を構成する離型性シリコーン樹脂塗膜と、被着体の粘着層との離型性(軽剥離性)、及び離型フィルムの離型層表面における帯電防止性が良好であり、離型フィルムを構成する架橋樹脂層(帯電防止層)と離型層との経時での密着性があり、かつ、溶融リサイクル可能で生産性が良好な離型フィルムを提供するものである。 Therefore, in the present invention, the releasability (light releasability) between the releasable silicone resin coating film constituting the releasable layer of the releasable film and the adhesive layer of the adherend, and the releasable layer surface of the releasable film Anti-static properties of the release film, adhesion between the cross-linked resin layer (anti-static layer) constituting the release film and the release layer with time, and being melt recyclable and having good productivity It provides a film.
 本発明者は、上記の課題に関して鋭意検討を重ねた結果、ポリエステルフィルム基材、特定の架橋樹脂層、特定の離型層の構成とすることにより、上記課題が解決されることを見出し、本発明を完成するに至った。
 すなわち、本発明は下記のとおりである。
The present inventor has found that the above-mentioned problems can be solved by using the polyester film substrate, the specific crosslinked resin layer, and the specific releasing layer as a result of earnestly examining the above-mentioned problems. We came to complete the invention.
That is, the present invention is as follows.
 本発明は、少なくとも一軸方向に延伸されたポリエステルフィルムの少なくとも片面に架橋樹脂層を有し、さらに該架橋樹脂層の上に離型層が積層された離型フィルムであり、
 該架橋樹脂層は、カチオン性基を有するイオン性ポリマー(A)、及び架橋剤(C)を含有する架橋樹脂組成物から形成され、
 該離型層は、重量平均分子量が500以上50000以下であり1分子中に少なくとも1個のアルケニル基を有する第1のポリジメチルシロキサンと、重量平均分子量が120以上20000以下であり1分子中に少なくとも1個のヒドロシリル基を有する第2のポリジメチルシロキサンとを含有する離型剤組成物から形成され、かつ、
 下記の方法で測定した際の剥離力が4g/25mm以下である、離型フィルムを提供する。
<剥離力の測定> 離型フィルムの離型層と粘着剤テープ(日東電工(株)製、「No.502」、アクリル系粘着剤)とを貼り合せ、引張速度300mm/minの条件下で180°剥離試験を行う。
The present invention is a release film having a crosslinked resin layer on at least one surface of a polyester film stretched in at least uniaxial direction, and further having a release layer laminated on the crosslinked resin layer,
The crosslinked resin layer is formed of a crosslinked resin composition containing an ionic polymer (A) having a cationic group and a crosslinking agent (C),
The release layer has a weight average molecular weight of 500 to 50,000, and a first polydimethylsiloxane having at least one alkenyl group in one molecule, and a weight average molecular weight of 120 to 20,000, in one molecule. Formed from a release agent composition containing a second polydimethylsiloxane having at least one hydrosilyl group, and
A release film having a peel strength of 4 g / 25 mm or less when measured by the following method is provided.
<Measurement of Peeling Force> A release layer of a release film and a pressure-sensitive adhesive tape (Nitto Denko Co., Ltd., “No. 502, acrylic adhesive) are attached to each other, and the tensile speed is 300 mm / min. Conduct a 180 ° peel test.
 また本発明は、少なくとも一軸方向に延伸されたポリエステルフィルムの少なくとも片面に架橋樹脂層を有し、さらに該架橋樹脂層の上に離型層が積層された離型フィルムと、両面粘着シートとを積層させた積層体であり、
 該架橋樹脂層は、カチオン性基を有するイオン性ポリマー(A)を含有し、
 該離型層は、ポリジメチルシロキサンを含有し、膜厚が0.01~1μmであり、
 該離型フィルムの離型層表面と該両面粘着シートとの剥離力が、引張速度300mm/minの条件の下、180°剥離で4g/25mm以下である積層体を提供する。
The present invention further comprises a release film having a crosslinked resin layer on at least one surface of a polyester film stretched in at least one uniaxial direction, and further having a release layer laminated on the crosslinked resin layer, and a double-sided adhesive sheet It is a laminated body laminated,
The crosslinked resin layer contains an ionic polymer (A) having a cationic group,
The release layer contains polydimethylsiloxane and has a film thickness of 0.01 to 1 μm,
There is provided a laminate in which the peeling force between the surface of the release layer of the release film and the double-sided pressure-sensitive adhesive sheet is 4 g / 25 mm or less at 180 ° peeling under the conditions of a tensile speed of 300 mm / min.
 本発明によれば、離型フィルムの離型層を構成する離型性シリコーン樹脂塗膜と、被着体の粘着層との離型性(軽剥離性)、及び離型フィルムの離型層表面における帯電防止性が良好であり、離型フィルムを構成する架橋樹脂層と離型層との経時での密着性があり、かつ、溶融リサイクル可能で生産性が良好な離型フィルムを提供することができる。 According to the present invention, the releasability (light releasability) between the releasable silicone resin coating film constituting the releasable layer of the releasable film and the adhesive layer of the adherend, and the releasable layer of the releasable film Provided is a release film having good antistatic properties on the surface, adhesion between a crosslinked resin layer constituting the release film and the release layer with time, and being melt recyclable and having good productivity. be able to.
<離型フィルム>
 本発明の離型フィルムは、少なくとも一軸方向に延伸されたポリエステルフィルムの少なくとも片面に架橋樹脂層を有し、さらに該架橋樹脂層の上に離型層が積層されたものである。
<Release film>
The release film of the present invention has a crosslinked resin layer on at least one surface of a polyester film stretched at least in a uniaxial direction, and further, a release layer is laminated on the crosslinked resin layer.
[ポリエステルフィルム]
 本発明でいうポリエステルフィルムとは、いわゆる押出法に従い押出口金から溶融押出されたシートを少なくとも一軸方向に延伸したフィルムである。
 ポリエステルフィルムを構成するポリエステル層は、単層構成であっても多層構成であってもよく、2層、3層構成以外にも本発明の要旨を越えない限り、4層又はそれ以上の多層であってもよく、特に限定されるものではない。また、各ポリエステル層は以下のポリエステルを1種又は2種以上を併用してもよい。
[Polyester film]
The polyester film in the present invention is a film obtained by stretching a sheet melt-extruded from an extrusion die according to a so-called extrusion method at least uniaxially.
The polyester layer constituting the polyester film may have a single-layer structure or a multi-layer structure, and in addition to the two-layer or three-layer structure, four or more layers may be used as long as the gist of the present invention is not exceeded. It may be present and is not particularly limited. Moreover, each polyester layer may use together the following polyester 1 type or 2 types or more.
〈ポリエステル〉
 上記ポリエステル層に用いられるポリエステルは、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものが好ましく、1種の芳香族ジカルボン酸と1種の脂肪族グリコールとからなるホモポリエステルであってもよく、さらに1種以上の他の成分を共重合させた共重合ポリエステルであってもよい。
<polyester>
The polyester used for the polyester layer is preferably a homopolyester composed of one kind of aromatic dicarboxylic acid and one kind of aliphatic glycol obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol. It may be a copolyester obtained by copolymerizing one or more other components.
 ホモポリエステルからなる場合、芳香族ジカルボン酸としては、テレフタル酸、2,6-ナフタレンジカルボン酸等が挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4-シクロヘキサンジメタノール等が挙げられる。代表的なポリエステルとしては、ポリエチレンテレフタレート等が挙げられる。 When it consists of homo polyesters, terephthalic acid, 2, 6- naphthalene dicarboxylic acid etc. are mentioned as aromatic dicarboxylic acid, ethylene glycol, diethylene glycol, 1, 4- cyclohexane dimethanol etc. are mentioned as aliphatic glycol . A polyethylene terephthalate etc. are mentioned as a typical polyester.
 一方、共重合ポリエステルの成分として用いるジカルボン酸としては、イソフタル酸、フタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、アジピン酸、セバシン酸等が挙げられる。
 グリコール成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール等が挙げられる。
 さらにその他の酸成分やグリコール成分を共重合したポリエステルであってもよい。
On the other hand, examples of the dicarboxylic acid used as a component of the copolymerized polyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid and the like.
Examples of the glycol component include ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol and the like.
Furthermore, polyesters obtained by copolymerizing other acid components and glycol components may be used.
 また、ポリエステルフィルムには、フィルム加工中の熱履歴等により、離型フィルム中に含有しているオリゴマーが表面に析出・結晶化する量を低減するために、多層構造フィルムの最外層にオリゴマー含有量を低減させたポリエステルを用いることも可能である。ポリエステル中のオリゴマー量を低減する方法としては、例えば、固相重合法等を用いることができる。 In addition, the polyester film contains an oligomer in the outermost layer of the multilayer structure film in order to reduce the amount of precipitation and crystallization of the oligomer contained in the release film on the surface due to the heat history during film processing and the like. It is also possible to use reduced amounts of polyester. As a method of reducing the amount of oligomers in the polyester, for example, a solid phase polymerization method can be used.
 ポリエステルの重合触媒としては、特に制限はなく、従来公知の化合物を使用することができる。例えば、アンチモン化合物、チタン化合物、ゲルマニウム化合物、マンガン化合物、アルミニウム化合物、マグネシウム化合物、カルシウム化合物等が挙げられる。重合触媒は1種又は2種以上を併用してもよい。 There is no restriction | limiting in particular as a polymerization catalyst of polyester, A conventionally well-known compound can be used. For example, antimony compounds, titanium compounds, germanium compounds, manganese compounds, aluminum compounds, magnesium compounds, calcium compounds and the like can be mentioned. The polymerization catalyst may be used alone or in combination of two or more.
〈粒子〉
 ポリエステルフィルムには、易滑性の付与及び各工程でのフィルムの走行性確保、傷発生防止を主たる目的として、粒子を含有させることができる。配合する粒子の種類は、易滑性付与可能な粒子であれば特に限定されるものではない。例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸カルシウム、フッ化カルシウム、シュウ酸カルシウム、フッ化リチウム、ゼオライト、リン酸マグネシウム、カオリン、タルク、酸化アルミニウム、アルミナ、酸化チタン、硫化モリブデン等の粒子が挙げられる。これらの中でも易滑性付与の観点から、シリカ粒子を用いることが好ましい。
<particle>
The polyester film can contain particles mainly for the purpose of imparting slipperiness, ensuring the film traveling property in each step, and preventing the occurrence of flaws. The type of particles to be blended is not particularly limited as long as the particles can be provided with slipperiness. For example, silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, calcium phosphate, calcium fluoride, calcium oxalate, lithium fluoride, zeolite, magnesium phosphate, kaolin, talc, aluminum oxide, alumina, titanium oxide And particles of molybdenum sulfide and the like. Among these, it is preferable to use a silica particle from the viewpoint of imparting slipperiness.
 また、特公昭59-5216号公報、特開昭59-217755号公報等に記載されている耐熱性有機粒子を用いてもよい。この他の耐熱性有機粒子の例として、熱硬化性尿素樹脂、熱硬化性フェノール樹脂、熱硬化性エポキシ樹脂、ベンゾグアナミン樹脂等が挙げられる。さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。
 これら粒子は1種又は2種以上を併用してもよい。
 一方、使用する粒子の形状に関しても特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。
Further, heat-resistant organic particles described in JP-B-59-5216, JP-A-59-217755, etc. may be used. Examples of the other heat resistant organic particles include thermosetting urea resin, thermosetting phenol resin, thermosetting epoxy resin, benzoguanamine resin and the like. Furthermore, precipitated particles in which a part of a metal compound such as a catalyst is precipitated and finely dispersed can also be used in the polyester production process.
These particles may be used alone or in combination of two or more.
On the other hand, the shape of the particles to be used is not particularly limited either, and any of spherical, massive, rod-like, flat and the like may be used. Moreover, there is no restriction | limiting in particular also about the hardness, specific gravity, a color, etc.
 粒子の粒径はフィルムの用途や目的に応じて選択すればよいが、好ましくは0.01~5μmであり、より好ましくは0.01~2μmである。平均粒径が0.01μm以上であれば、粒子が凝集するおそれが少なく十分な分散性が得られ、また、5μm以下であれば、フィルムの表面粗度が粗くなりすぎず、後工程において離型層を設ける場合等に不具合が生じるおそれがない。 The particle size of the particles may be selected according to the application and purpose of the film, but is preferably 0.01 to 5 μm, more preferably 0.01 to 2 μm. If the average particle size is 0.01 μm or more, there is little risk of aggregation of the particles and sufficient dispersibility is obtained. If the average particle size is 5 μm or less, the surface roughness of the film does not become too rough, There is no risk of problems occurring when providing a mold layer.
 さらにポリエステルフィルム中の粒子含有量は、好ましくは0.001~5質量%であり、より好ましくは0.005~3質量%である。粒子含有量が0.001質量%以上であれば、ポリエステルフィルムに十分な易滑性が得られ、5質量%以下であれば、ポリエステルフィルムの透明性が保持される。 Furthermore, the particle content in the polyester film is preferably 0.001 to 5% by mass, more preferably 0.005 to 3% by mass. If the particle content is 0.001% by mass or more, sufficient lubricity is obtained in the polyester film, and if 5% by mass or less, the transparency of the polyester film is maintained.
 粒子がない場合、あるいは少ない場合はフィルムの透明性が高くなり良好なフィルムとなるが、すべり性が不十分となる等取り扱いが難しくなる場合があるため、ナーリングや架橋樹脂層中に粒子を入れる等の工夫が必要になることがある。 If there are no particles, or if there are few particles, the transparency of the film will be high and it will be a good film, but handling may become difficult as slipperiness becomes insufficient, so the particles are put in knurling or crosslinked resin layer Ingenuity such as may be necessary.
 ポリエステル中に粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用し得る。例えば、各層を構成するポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化もしくはエステル交換反応終了後、粒子を添加し重縮合反応を進めてもよい。
 また、ベント付き混練押出機を用い、エチレングリコール又は水等に分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、又は、混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法等によって行われる。
It does not specifically limit as method to add particle | grains in polyester, A conventionally well-known method can be employ | adopted. For example, although it can be added at any stage of producing the polyester constituting each layer, preferably, after completion of the esterification or transesterification reaction, particles may be added to proceed with the polycondensation reaction.
Also, a method of blending a slurry of particles dispersed in ethylene glycol or water with a polyester raw material using a vented kneading extruder, or blending of dried particles with a polyester raw material using a kneading extruder It is done by the method etc.
〈その他の成分〉
 また、ポリエステル中には、上述の粒子以外に必要に応じて従来公知の酸化防止剤、帯電防止剤、熱安定剤、潤滑剤、染料、顔料等を添加することができる。
<Other ingredients>
In addition to the above-mentioned particles, conventionally known antioxidants, antistatic agents, heat stabilizers, lubricants, dyes, pigments and the like can be added to the polyester, as required.
〈ポリエステルフィルムの製造方法〉
 ポリエステルフィルムの製造例として二軸延伸フィルムの製造方法について具体的に説明するが、以下の製造例に何ら限定されるものではなく、通常知られているポリエステルフィルムの製膜法を採用できる。
 まず、先に述べたポリエステル原料を使用し、ダイから押し出された溶融シートを冷却ロールで冷却固化して未延伸シートを得る方法が好ましい。この場合、シートの平面性を向上させるためシートと回転冷却ドラムとの密着性を高めることが好ましく、静電印加密着法及び/又は液体塗布密着法が好ましく採用される。
 次に得られた未延伸シートは二軸方向に延伸される。その場合、まず、前記の未延伸シートを一方向にロール又はテンター方式の延伸機により延伸する。延伸温度は、通常70~145℃程度であり、好ましくは80~110℃であり、延伸倍率は通常2.5~7倍程度であり、好ましくは3.0~6倍である。次いで、一段目の延伸方向と直交する方向に延伸するが、その場合、延伸温度は通常70~170℃程度であり、延伸倍率は通常3.0~7倍程度であり、好ましくは3.5~6倍である。
 そして、引き続き通常150~270℃程度の温度で緊張下又は30%以内の弛緩下で熱処理を行い、二軸配向フィルムを得る。
 上記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うのが好ましい。
<Production method of polyester film>
Although the manufacturing method of a biaxially stretched film is concretely demonstrated as a manufacturing example of a polyester film, it is not limited at all to the following manufacturing example, The film forming method of the polyester film generally known can be employ | adopted.
First, it is preferable to use the above-described polyester raw material and cool and solidify the molten sheet extruded from the die with a cooling roll to obtain an unstretched sheet. In this case, in order to improve the planarity of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum, and an electrostatic application adhesion method and / or a liquid application adhesion method are preferably employed.
Next, the obtained unstretched sheet is biaxially stretched. In that case, first, the unstretched sheet is stretched in one direction by a roll or tenter-type stretching machine. The stretching temperature is usually about 70 to 145 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually about 2.5 to 7 times, preferably 3.0 to 6 times. Next, the film is stretched in the direction orthogonal to the first-stage stretching direction, in which case the stretching temperature is usually about 70 to 170 ° C., and the stretching ratio is usually about 3.0 to 7 times, preferably 3.5. ~ 6 times.
Then, heat treatment is subsequently performed usually at a temperature of about 150 to 270 ° C. under tension or relaxation within 30% to obtain a biaxially oriented film.
In said extending | stretching, the method of performing extending | stretching of one direction in two or more steps is also employable. In that case, it is preferable to carry out so that the draw ratio of two directions finally becomes the said range, respectively.
 また、本発明におけるポリエステルフィルム製造に関しては同時二軸延伸法を採用することもできる。同時二軸延伸法は、前記の未延伸シートを通常70~120℃程度、好ましくは80~110℃で温度コントロールされた状態で機械方向(縦方向)及び幅方向(横方向)に同時に延伸し配向させる方法である。延伸倍率としては、面積倍率で、通常4~50倍程度であり、好ましくは7~35倍、さらに好ましくは10~25倍である。
 そして、引き続き通常170~250℃程度の温度で緊張下又は30%以内の弛緩下で熱処理を行い、延伸配向フィルムを得る。
 上述の延伸方式を採用する同時二軸延伸装置に関しては、スクリュー方式、パンタグラフ方式、リニアー駆動方式等、従来公知の延伸方式を採用することができる。
Moreover, the simultaneous biaxial stretching method can also be employ | adopted regarding polyester film manufacture in this invention. The simultaneous biaxial stretching method simultaneously stretches the above-mentioned unstretched sheet in the machine direction (longitudinal direction) and the width direction (transverse direction) while the temperature is usually controlled at about 70 to 120 ° C., preferably 80 to 110 ° C. It is the method of making it orientate. The stretching ratio is usually about 4 to 50 times, preferably 7 to 35 times, more preferably 10 to 25 times in area ratio.
Then, heat treatment is subsequently performed usually at a temperature of about 170 to 250 ° C. under tension or relaxation within 30% to obtain a stretched and oriented film.
With respect to the simultaneous biaxial stretching apparatus adopting the above-described stretching method, conventionally known stretching methods such as a screw method, a pantograph method, and a linear drive method can be adopted.
 本発明における離型フィルムを構成するポリエステルフィルムの厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではないが、通常、400μm以下、好ましくは5~250μm、より好ましくは12~200μmである。 The thickness of the polyester film constituting the release film in the present invention is not particularly limited as long as the film can be formed as a film, but is usually 400 μm or less, preferably 5 to 250 μm, more preferably 12 to It is 200 μm.
〈ヘーズ〉
 本発明におけるポリエステルフィルムの透明度は特に制限されないが、透明性が必要とされる場合等は、離型フィルム全体のヘーズとして好ましくは15%以下であり、より好ましくは5%以下であり、さらに好ましくは3%以下である。例えば離型フィルムを光学部材の保護等に用いる場合、離型フィルムが貼られた状態で、離型フィルムの上から当該光学部材の製品検査(異物検査等)を行う場合がある。そのような場合、離型フィルムのヘーズが15%より大きいと、異物として誤認が生じる場合がある。
 本発明においてヘーズは、例えばJIS K7136に準じ測定することができる。
 なお、上記のヘーズの値は、本発明の離型フィルムについても同様であり、好ましい数値範囲についても同様である。
<Haze>
The transparency of the polyester film in the present invention is not particularly limited, but when transparency is required, the haze of the entire release film is preferably 15% or less, more preferably 5% or less, and further preferably Is less than 3%. For example, when using a release film for protection of an optical member etc., the product inspection (foreign material test | inspection etc.) of the said optical member may be performed from on the release film in the state to which the release film was stuck. In such a case, if the haze of the release film is greater than 15%, a false recognition may occur as a foreign matter.
In the present invention, haze can be measured, for example, according to JIS K7136.
The above haze value is the same for the release film of the present invention, and the same is also true for the preferable numerical range.
〈全光線透過率〉
 本発明におけるポリエステルフィルムの全光線透過率は特に制限されないが、透明性が必要とされる場合等は、好ましくは80%以上、より好ましくは85%以上である。
 本発明において全光線透過率は、例えばJIS K7361-1に準じ測定することができる。
 なお、上記の全光線透過率の値は、本発明の離型フィルムについても同様であり、好ましい数値範囲についても同様である。
<Total light transmittance>
The total light transmittance of the polyester film in the present invention is not particularly limited, but when transparency is required, it is preferably 80% or more, more preferably 85% or more.
In the present invention, the total light transmittance can be measured, for example, according to JIS K7361-1.
In addition, the value of said total light transmittance is the same also about the release film of this invention, and is the same also about a preferable numerical range.
〈極限粘度〉
 ポリエステルの極限粘度は、好ましくは0.30~0.90dL/g、より好ましくは0.40~0.80dL/g、さらに好ましくは0.50~0.80dL/gである。極限粘度を0.30dL/g以上とすることで、十分な耐熱性、機械的強度等を有するポリエステルフィルムが得られる傾向がある。また極限粘度を0.90dL/g以下とすることで、ポリエステルフィルムの製造時の押出工程で負荷は押さえられ、十分な生産性を得ることがある。
 本発明においてポリエステルの極限粘度は、実施例において後述する方法により測定することができ、ポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(質量比)の混合溶媒100mLを加えて溶解させ、全自動溶液粘度計を用いて30℃で測定することができる。
<Intrinsic viscosity>
The intrinsic viscosity of the polyester is preferably 0.30 to 0.90 dL / g, more preferably 0.40 to 0.80 dL / g, and still more preferably 0.50 to 0.80 dL / g. By setting the intrinsic viscosity to 0.30 dL / g or more, a polyester film having sufficient heat resistance, mechanical strength and the like tends to be obtained. Further, by setting the intrinsic viscosity to 0.90 dL / g or less, the load may be suppressed in the extrusion step during the production of the polyester film, and sufficient productivity may be obtained.
In the present invention, the intrinsic viscosity of the polyester can be measured by the method described later in the examples, 1 g of polyester is precisely weighed, 100 mL of mixed solvent of phenol / tetrachloroethane = 50/50 (mass ratio) is added and dissolved. It can be measured at 30 ° C. using a fully automatic solution viscometer.
[架橋樹脂層]
 本発明における離型フィルムを構成する架橋樹脂層について説明する。
 架橋樹脂層を形成する架橋樹脂組成物は、カチオン性基を有するイオン性ポリマー(A)及び架橋剤(C)を含有する。また、架橋樹脂層を形成する架橋樹脂組成物は、離型層との密着性の観点から、バインダーポリマー(B)を更に含有することが好ましい。
[Crosslinked resin layer]
The crosslinked resin layer which comprises the release film in this invention is demonstrated.
The crosslinked resin composition forming the crosslinked resin layer contains an ionic polymer (A) having a cationic group and a crosslinking agent (C). Moreover, it is preferable that the crosslinked resin composition which forms a crosslinked resin layer further contains a binder polymer (B) from an adhesive viewpoint with a release layer.
〈カチオン性基を有するイオン性ポリマー(A)〉
 架橋樹脂層は、カチオン性基を有するイオン性ポリマー(A)が含有されていることが重要である。カチオン性基を有するイオン性ポリマー(A)を含有することによって、良好な帯電防止性が得られるだけではなく、ポリエステルとの相溶性があるため、溶融リサイクルが可能となり、良好な生産性を得ることができる。
<Ionic Polymer (A) Having a Cationic Group>
It is important that the crosslinked resin layer contains an ionic polymer (A) having a cationic group. By containing the ionic polymer (A) having a cationic group, not only good antistatic properties can be obtained, but also compatibility with the polyester enables melt recycling, and good productivity can be obtained. be able to.
 カチオン性基を有するポリマーとしては4級アンモニウム塩等を有するポリマーが挙げられ、アニオン性基を有するポリマーとしてはスルホン酸基、硫酸エステル基、カルボキシル基、リン酸塩等を有するポリマーが挙げられる。中でも架橋樹脂組成物中の他の成分との相溶性の観点から、イオン性ポリマーとして、4級アンモニウム塩基含有ポリマー、すなわち4級アンモニウム塩を含有するカチオン性ポリマーを用いることがより好ましい。 The polymer having a cationic group includes a polymer having a quaternary ammonium salt and the like, and the polymer having an anionic group includes a polymer having a sulfonic acid group, a sulfuric acid ester group, a carboxyl group, a phosphate and the like. Among them, from the viewpoint of compatibility with other components in the crosslinked resin composition, it is more preferable to use a quaternary ammonium base-containing polymer, that is, a cationic polymer containing a quaternary ammonium salt as the ionic polymer.
 4級アンモニウム塩を含有するカチオン性ポリマーとは、分子中の主鎖もしくは側鎖に4級アンモニウム塩基を含む構成要素を持つポリマーを指す。そのような構成要素としては例えば、ピロリジウム環、アルキルアミンの4級化物、さらにこれらをアクリル酸やメタクリル酸と共重合したもの、N-アルキルアミノアクリルアミドの4級化物、ポリアリルアミンの4級化物、ビニルベンジルトリメチルアンモニウム塩、2-ヒドロキシ3-メタクリルオキシプロピルトリメチルアンモニウム塩等を挙げることができる。さらに、これらを組み合わせて、あるいは他の樹脂と共重合させても構わない。また、これらの4級アンモニウム塩の対イオンとして用いるアニオン種には特に制限は無いが、例えば、ハロゲン化物イオン、アルキルサルフェートイオン、アルキルスルホネートイオン、硝酸イオン等のアニオンが一般的に用いられる。 The cationic polymer containing a quaternary ammonium salt refers to a polymer having a component containing a quaternary ammonium base in the main chain or side chain in the molecule. Examples of such a component include a pyrrolidinium ring, a quaternary compound of alkylamine, a copolymer of these with acrylic acid and methacrylic acid, a quaternary compound of N-alkylaminoacrylamide, a quaternary compound of polyallylamine, Examples include vinylbenzyltrimethylammonium salt, 2-hydroxy 3-methacryloxypropyltrimethylammonium salt and the like. Furthermore, these may be combined or copolymerized with other resins. Further, the type of anion used as a counter ion of these quaternary ammonium salts is not particularly limited, but, for example, anions such as halide ion, alkyl sulfate ion, alkyl sulfonate ion, and nitrate ion are generally used.
 本発明では、上記の4級アンモニウム塩を含有するカチオン性ポリマーの中でも、離型フィルムの製膜時に、高温による帯電防止剤の分解を防ぐ観点から、分子中の主鎖に4級アンモニウム塩を含有するカチオン性ポリマーがより好ましい。中でも、架橋剤との反応等により塗膜強度を強め、耐溶剤性を向上させる観点から、4級アンモニウム塩を含有するカチオン性ポリマーに、メチロールやエポキシ等の反応性官能基を導入したポリマーがさらに好ましい。
 また、この様なカチオン性ポリマーの例としては、ジアリルジメチルアンモニウムクロライドの単独重合体あるいは共重合体等が好例である。
 カチオン性ポリマーは、1種又は2種以上を併用してもよい。
In the present invention, among the above-mentioned cationic polymers containing quaternary ammonium salts, from the viewpoint of preventing the decomposition of the antistatic agent at high temperature during the film formation of the release film, the quaternary ammonium salt is used as the main chain in the molecule. The cationic polymer contained is more preferable. Among them, from the viewpoint of strengthening the coating film strength by reaction with a crosslinking agent and the like and improving the solvent resistance, a polymer in which a reactive functional group such as methylol or epoxy is introduced into a cationic polymer containing quaternary ammonium salt is More preferable.
Further, as an example of such a cationic polymer, a homopolymer or copolymer of diallyldimethyl ammonium chloride is preferable.
The cationic polymer may be used alone or in combination of two or more.
 カチオン性ポリマーの数平均分子量は、好ましくは1000以上であり、より好ましくは2000以上であり、さらに好ましくは5000以上である。分子量が1000以上であれば、カチオン性ポリマーが架橋樹脂層中から除去されて経時的に性能の低下を引き起こすおそれがなく、架橋樹脂層がべたついたりするおそれもない。また、分子量が低いと耐熱安定性に劣る場合もある。また、塗布液の粘度が高くなりすぎて塗工性を悪化させる等の不具合を生じるおそれがないことから、数平均分子量は、好ましくは500000以下であり、より好ましくは100000以下である。
 本発明において数平均分子量は、例えばゲルパーミエーションクロマトグラフィ(GPC)によりポリスチレン換算で測定することができる。
The number average molecular weight of the cationic polymer is preferably 1000 or more, more preferably 2000 or more, and still more preferably 5000 or more. When the molecular weight is 1000 or more, the cationic polymer is not removed from the crosslinked resin layer to cause a decrease in performance over time, and the crosslinked resin layer is not likely to be sticky. In addition, when the molecular weight is low, the heat stability may be poor. In addition, the number average molecular weight is preferably 500000 or less, more preferably 100000 or less, since the viscosity of the coating solution is not too high and there is no possibility of causing problems such as deterioration of the coating property.
In the present invention, the number average molecular weight can be measured, for example, in terms of polystyrene by gel permeation chromatography (GPC).
 架橋樹脂組成物中におけるカチオン性基を有するイオン性ポリマー(A)の含有量は、固形分質量比で、好ましくは5~90質量%であり、より好ましくは10~80質量%であり、さらに好ましくは10~60質量%である。カチオン性基を有するイオン性ポリマー(A)の比率が、5質量%以上であれば架橋樹脂層の帯電防止性能が十分なものとなり、90質量%以下であれば架橋樹脂層の透明性や耐久性も良好となる。 The content of the ionic polymer (A) having a cationic group in the crosslinked resin composition is preferably 5 to 90% by mass, more preferably 10 to 80% by mass, in terms of solid mass ratio. Preferably, it is 10 to 60% by mass. If the proportion of the ionic polymer (A) having a cationic group is 5% by mass or more, the antistatic performance of the crosslinked resin layer will be sufficient, and if it is 90% by mass or less, the transparency and durability of the crosslinked resin layer The quality also becomes good.
〈バインダーポリマー(B)〉
 本発明における架橋樹脂層を構成するバインダーポリマー(B)とは、高分子化合物安全性評価フロースキーム(昭和60年11月、化学物質審議会主催)に準じて、ゲルパーミエーションクロマトグラフィー(GPC)測定による数平均分子量(Mn)が1000以上の高分子化合物で、かつ造膜性を有するものであり、前記カチオン性基を有するイオン性ポリマー(A)は含まないものとする。
<Binder polymer (B)>
The binder polymer (B) constituting the cross-linked resin layer in the present invention means gel permeation chromatography (GPC) according to the macromolecular compound safety evaluation flow scheme (November 1975, sponsored by the Chemical Substances Council) It is a polymer compound having a number average molecular weight (Mn) of 1000 or more as measured, and has a film forming property, and does not include the ionic polymer (A) having the cationic group.
 本発明における架橋樹脂層を構成するバインダーポリマー(B)は、熱硬化性樹脂でも熱可塑性樹脂であってもよい。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリイミド、ポリアミドイミド等のポリイミド;ポリアミド6、ポリアミド6,6、ポリアミド12、ポリアミド11等のポリアミド;ポリフッ化ビニリデン、ポリフッ化ビニル、ポリテトラフルオロエチレン、エチレンテトラフルオロエチレンコポリマー、ポリクロロトリフルオロエチレン等のフッ素樹脂;ポリビニルアルコール、ポリビニルエーテル、ポリビニルブチラール、ポリ酢酸ビニル、ポリ塩化ビニル等のビニル樹脂;エポキシ樹脂;オキセタン樹脂;キシレン樹脂;アラミド樹脂;ポリイミドシリコーン;ポリウレタン;ポリウレア;メラミン樹脂;フェノール樹脂;ポリエーテル;アクリル樹脂及びこれらの共重合体等が挙げられる。これらは、1種又は2種以上を併用してもよい。 The binder polymer (B) constituting the crosslinked resin layer in the present invention may be a thermosetting resin or a thermoplastic resin. For example, polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polyimides such as polyimide and polyamideimide; polyamides such as polyamide 6, polyamide 6, 6, polyamide 12 and polyamide 11; polyvinylidene fluoride, polyvinyl fluoride, poly Fluororesins such as tetrafluoroethylene, ethylene tetrafluoroethylene copolymer, polychlorotrifluoroethylene, etc .; polyvinyl resins such as polyvinyl alcohol, polyvinyl ether, polyvinyl butyral, polyvinyl acetate, polyvinyl chloride; epoxy resins; oxetane resins; xylene resins; Aramid resin, polyimide silicone, polyurethane, polyurea, melamine resin, phenol resin, polyether, acrylic resin and these Copolymers. One or more of these may be used in combination.
 前記バインダーポリマー(B)は、塗布液の原料として、有機溶剤に溶解されていてもよいし、ヒドロキシル基やスルホ基、カルボキシル基等の官能基が付与されて水溶液化若しくは界面活性剤を併用して水分散化されていてもよい。また、バインダーポリマー(B)には、必要に応じて、粘度調整剤等の添加剤が含まれていてもよい。 The binder polymer (B) may be dissolved in an organic solvent as a raw material of the coating solution, or a functional group such as a hydroxyl group, a sulfo group or a carboxyl group is added to form an aqueous solution or a surfactant in combination. It may be dispersed in water. Moreover, additives, such as a viscosity modifier, may be contained in the binder polymer (B) as needed.
 前記バインダーポリマー(B)の中でも、離型層との密着性の観点から、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂、ビニル樹脂の中から選択されるいずれか1種類以上の使用が好ましく、塗布液作製時の他の塗布剤(塗布液を構成する物質)との相溶性の観点から、アクリル樹脂及びビニル樹脂から選ばれる1種以上の使用がより好ましい。 Among the binder polymers (B), from the viewpoint of adhesion to the release layer, any one or more types selected from polyester resins, acrylic resins, polyurethane resins, and vinyl resins are preferable, and a coating liquid is prepared. From the viewpoint of compatibility with other coating agents (substance constituting the coating liquid), it is more preferable to use one or more selected from acrylic resins and vinyl resins.
(ポリエステル樹脂)
 本発明において使用するポリエステル樹脂とは、ジカルボン酸成分とグリコール成分とを構成成分とする線状ポリエステルと定義する。ジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、4,4-ジフェニルジカルボン酸、1,4-シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、フェニルインダンジカルボン酸、ダイマー酸等を例示することができる。これらの成分は1種又は2種以上を併用できる。
 さらに、これらの成分とともにマレイン酸、フマル酸、イタコン酸等のような不飽和多塩基酸やp-ヒドロキシ安息香酸、p-(β-ヒドロキシエトキシ)安息香酸等のようなヒドロキシカルボン酸を少割合用いることができる。不飽和多塩基酸成分やヒドロキシカルボン酸成分の割合は通常10モル%以下、好ましくは5モル%以下である。
(Polyester resin)
The polyester resin used in the present invention is defined as a linear polyester having a dicarboxylic acid component and a glycol component as constituent components. As the dicarboxylic acid component, terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, phenylindane dicarboxylic acid, A dimer acid etc. can be illustrated. These components may be used alone or in combination of two or more.
Furthermore, together with these components, a small proportion of unsaturated polybasic acids such as maleic acid, fumaric acid, itaconic acid, etc., and hydroxycarboxylic acids such as p-hydroxybenzoic acid, p- (β-hydroxyethoxy) benzoic acid etc. It can be used. The proportion of the unsaturated polybasic acid component and the hydroxycarboxylic acid component is usually 10 mol% or less, preferably 5 mol% or less.
 また、グリコール成分としては、エチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、キシリレングリコール、ジメチロールプロピオン酸、グリセリン、トリメチロールプロパン、ポリ(エチレンオキシ)グリコール、ポリ(テトラメチレンオキシ)グリコール、ビスフェノールAのアルキレンオキサイド付加物、水添ビスフェノールAのアルキレンオキサイド付加物等を例示することができる。これらは1種又は2種以上を併用できる。 Moreover, as a glycol component, ethylene glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, xylylene glycol, dimethylol propionic acid Examples thereof include glycerin, trimethylolpropane, poly (ethyleneoxy) glycol, poly (tetramethylene oxy) glycol, an alkylene oxide adduct of bisphenol A, and an alkylene oxide adduct of hydrogenated bisphenol A. These can be used alone or in combination of two or more.
 かかるグリコール成分の中でもエチレングリコール、ビスフェノールAのエチレンオキサイド付加物やプロピレンオキサイド付加物、1,4-ブタンジオールが好ましく、さらにエチレングリコール、ビスフェノールAのエチレンオキサイド付加物やプロピレンオキサイド付加物が好ましい。 Among these glycol components, ethylene glycol, ethylene oxide adduct or propylene oxide adduct of bisphenol A, and 1,4-butanediol are preferable, and ethylene glycol adduct or propylene oxide adduct of bisphenol A is more preferable.
 また、前記ポリエステル樹脂には、水性液化を容易にするために若干量の、スルホン酸塩基を有する化合物やカルボン酸塩基を有する化合物を共重合させることが可能であり、その方が好ましい。
 このスルホン酸塩基を有する化合物としては、例えば5-ナトリウムスルホイソフタル酸、5-アンモニウムスルホイソフタル酸、4-ナトリウムスルホイソフタル酸、4-メチルアンモニウムスルホイソフタル酸、2-ナトリウムスルホイソフタル酸、5-カリウムスルホイソフタル酸、4-カリウムスルホイソフタル酸、2-カリウムスルホイソフタル酸、ナトリウムスルホコハク酸等のスルホン酸アルカリ金属塩系又はスルホン酸アミン塩系化合物等が好ましく挙げられる。
Further, it is possible to copolymerize the polyester resin with a compound having a sulfonic acid group or a compound having a carboxylic acid group in order to facilitate aqueous liquefaction, which is preferable.
Examples of compounds having this sulfonate group include 5-sodium sulfoisophthalic acid, 5-ammonium sulfoisophthalic acid, 4-sodium sulfoisophthalic acid, 4-methylammonium sulfoisophthalic acid, 2-sodium sulfoisophthalic acid, 5-potassium Preferred examples include sulfonic acid alkali metal salts or sulfonic acid amine salts such as sulfoisophthalic acid, 4-potassium sulfoisophthalic acid, 2-potassium sulfoisophthalic acid, sodium sulfosuccinic acid and the like.
 このカルボン酸塩基を有する化合物としては、例えば無水トリメリット酸、トリメリット酸、無水ピロメリット酸、ピロメリット酸、トリメシン酸、シクロブタンテトラカルボン酸、ジメチロールプロピオン酸等、あるいはこれらのモノアルカリ金属塩等が挙げられる。なお、遊離カルボキシル基は共重合後にアルカリ金属化合物やアミン化合物を作用させてカルボン酸塩基とする。これらの化合物の中からそれぞれ適宜1つ以上選択して、常法の重縮合反応によって合成することによって得たポリエステルを用いることができる。 Examples of compounds having this carboxylic acid group include trimellitic acid anhydride, trimellitic acid, pyromellitic acid anhydride, pyromellitic acid, pyromellitic acid, trimesic acid, cyclobutanetetracarboxylic acid, dimethylol propionic acid, etc., or mono alkali metal salts thereof Etc. The free carboxyl group is reacted with an alkali metal compound or an amine compound after copolymerization to form a carboxylate group. From these compounds, one or more may be appropriately selected, and polyesters obtained by synthesizing by a conventional polycondensation reaction may be used.
 ポリエステル樹脂に関して、ガラス転移温度(以下、Tgと略記する場合がある。)は好ましくは40℃以上であり、より好ましくは60℃以上である。Tgが40℃以上であれば、接着性向上を目的として、架橋樹脂層の塗布厚みを厚くした場合、ブロッキングし易くなる等の不具合を生じるおそれはない。
 本発明においてガラス転移温度は、例えばJIS K7121:1987に準拠した方法により測定することができる。
The glass transition temperature (hereinafter sometimes abbreviated as Tg) of the polyester resin is preferably 40 ° C. or more, more preferably 60 ° C. or more. When the Tg is 40 ° C. or higher, there is no possibility of causing a problem such as easy blocking when the coating thickness of the crosslinked resin layer is increased for the purpose of improving adhesion.
In the present invention, the glass transition temperature can be measured, for example, by a method in accordance with JIS K 7121: 1987.
(アクリル樹脂)
 本発明において使用するアクリル樹脂とは、炭素-炭素二重結合を持つ重合性モノマーとして、アクリル系、メタクリル系のモノマーを含有する重合体と定義する。これらは、単独重合体又は共重合体いずれでも差し支えない。また、それら重合体と他のポリマー(例えばポリエステル、ポリウレタン等)との共重合体も含まれる。例えば、ブロック共重合体、グラフト共重合体である。さらにポリエステル溶液、又はポリエステル分散液中で炭素-炭素二重結合を持つ重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にポリウレタン溶液、ポリウレタン分散液中で炭素-炭素二重結合を持つ重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にして他のポリマー溶液、又は分散液中で炭素-炭素二重結合を持つ重合性モノマーを重合して得られたポリマー(場合によってはポリマー混合物)も含まれる。
(acrylic resin)
The acrylic resin used in the present invention is defined as a polymer containing acrylic and methacrylic monomers as a polymerizable monomer having a carbon-carbon double bond. These may be homopolymers or copolymers. Also included are copolymers of these polymers with other polymers such as polyesters, polyurethanes and the like. For example, a block copolymer and a graft copolymer. Further included are polyester solutions, or polymers obtained by polymerizing polymerizable monomers having carbon-carbon double bonds in polyester dispersion (in some cases, mixtures of polymers). Also included are polyurethane solutions, polymers obtained by polymerizing polymerizable monomers having carbon-carbon double bonds in polyurethane dispersion (in some cases, mixtures of polymers). Similarly, other polymer solutions, or polymers obtained by polymerizing polymerizable monomers having carbon-carbon double bonds in the dispersion (in some cases, polymer mixtures) are also included.
 アクリル系、メタクリル系のモノマー以外で、上記炭素-炭素二重結合を持つ重合性モノマーとしては、特に限定はしないが、代表的な化合物としては、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、フマル酸、マレイン酸、シトラコン酸のような各種カルボキシル基含有モノマー類及びそれらの塩;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、モノブチルヒドロキルフマレート、モノブチルヒドロキシイタコネートのような各種の水酸基含有モノマー類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレートのような各種の(メタ)アクリル酸エステル類;(メタ)アクリルアミド、ジアセトンアクリルアミド、N-メチロールアクリルアミド又は(メタ)アクリロニトリル等のような種々の窒素含有ビニル系モノマー類等が挙げられる。中でも、カルボキシル基含有モノマー類、(メタ)アクリル酸エステル類、及び窒素含有ビニル系モノマー類から選ばれる1種又は2種以上を重合したアクリル樹脂が好ましい。
 なお、上記において例えば「(メタ)アクリレート」とは、アクリレート及びメタクリレートを意味する。
The polymerizable monomer having a carbon-carbon double bond other than acrylic and methacrylic monomers is not particularly limited, but typical compounds include acrylic acid, methacrylic acid, crotonic acid, itaconic acid, and the like. Various carboxyl group-containing monomers such as fumaric acid, maleic acid, citraconic acid and salts thereof; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, mono Various hydroxyl group-containing monomers such as butyl hydroxyl fumarate, monobutyl hydroxy itaconate; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate Various kinds of ) Acrylate; (meth) acrylamide, diacetone acrylamide, N- methylol acrylamide or (meth) various nitrogen-containing vinyl monomers such as acrylonitrile. Among them, an acrylic resin obtained by polymerizing one or more selected from a carboxyl group-containing monomer, a (meth) acrylic acid ester, and a nitrogen-containing vinyl monomer.
In the above, for example, "(meth) acrylate" means acrylate and methacrylate.
 また、これらと併用して以下に示すような重合性モノマーを共重合することができる。すなわち、スチレン、α-メチルスチレン、ジビニルベンゼン、ビニルトルエンのような各種スチレン誘導体、酢酸ビニル、プロピオン酸ビニルのような各種のビニルエステル類;γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、メタクリロイルシリコンマクロマー等のような種々の珪素含有重合性モノマー類;燐含有ビニル系モノマー類;塩化ビニル、塩化ビリデン、フッ化ビニル、フッ化ビニリデン、トリフルオロクロルエチレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレンのような各種のハロゲン化ビニル類;ブタジエンのような各種共役ジエン類等が挙げられる。
 これら重合性モノマーは1種又は2種以上を併用してもよい。
In addition, in combination with these, polymerizable monomers as shown below can be copolymerized. That is, various styrene derivatives such as styrene, α-methylstyrene, divinylbenzene and vinyltoluene, various vinyl esters such as vinyl acetate and vinyl propionate; γ-methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, Various silicon-containing polymerizable monomers such as methacryloyl silicon macromer and the like; phosphorus-containing vinyl monomers; vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, trifluorochlorethylene, tetrafluoroethylene, chlorotrifluoroethylene And various halogenated vinyls such as hexafluoropropylene; various conjugated dienes such as butadiene.
These polymerizable monomers may be used alone or in combination of two or more.
 アクリル樹脂においてTgは、好ましくは40℃以上であり、より好ましくは60℃以上である。Tgが40℃以上であれば、接着性向上を目的として、架橋樹脂層の塗布厚みを厚くした場合、ブロッキングし易くなる等の不具合を生じるおそれがない。 In the acrylic resin, Tg is preferably 40 ° C. or more, more preferably 60 ° C. or more. When the Tg is 40 ° C. or higher, there is no possibility of causing a problem such as easy blocking when the coating thickness of the crosslinked resin layer is increased for the purpose of improving adhesion.
(ポリウレタン樹脂)
 本発明におけるポリウレタン樹脂とは、ウレタン結合を分子内に有する高分子化合物のことを指す。その中でも、インラインコーティングへの適性を考慮した場合、水分散性又は水溶性のポリウレタン樹脂が好ましい。水分散性又は水溶性を付与させるためには、水酸基、カルボキシル基、スルホン酸基、スルホニル基、リン酸基、エーテル基等の親水性基をポリウレタン樹脂に導入することが可能である。前記親水性基の中でも、塗膜物性及び密着性向上の観点から、カルボン酸基又はスルホン酸基が好適に使用される。
(Polyurethane resin)
The polyurethane resin in the present invention refers to a polymer compound having a urethane bond in the molecule. Among them, water-dispersible or water-soluble polyurethane resins are preferable in consideration of the suitability for in-line coating. In order to impart water dispersibility or water solubility, it is possible to introduce a hydrophilic group such as a hydroxyl group, a carboxyl group, a sulfonic acid group, a sulfonyl group, a phosphoric acid group or an ether group into the polyurethane resin. Among the above-mentioned hydrophilic groups, a carboxylic acid group or a sulfonic acid group is preferably used from the viewpoint of improving the coating film physical properties and the adhesion.
 ポリウレタン樹脂の具体的な製造例として、例えば、水酸基含有化合物とイソシアネート化合物との反応を利用する方法が挙げられる。原料として用いる水酸基含有化合物としては、ポリオールが好適に用いられ、例えば、ポリエーテルポリオール類、ポリエステルポリオール類、ポリカーボネート系ポリオール類、ポリオレフィンポリオール類、アクリルポリオール類が挙げられる。これらの化合物は1種又は2種以上を併用してもよい。 As a specific production example of the polyurethane resin, for example, a method of using a reaction of a hydroxyl group-containing compound and an isocyanate compound can be mentioned. As a hydroxyl group containing compound used as a raw material, a polyol is used suitably, For example, polyether polyols, polyester polyols, polycarbonate-type polyols, polyolefin polyols, and acryl polyols are mentioned. These compounds may be used alone or in combination of two or more.
 ポリエーテルポリオール類としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール等が挙げられる。 Examples of polyether polyols include polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol and the like.
 ポリエステルポリオール類としては、多価カルボン酸又はそれらの酸無水物と多価アルコールとの反応から得られるものが挙げられる。
 多価カルボン酸としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、フマル酸、マレイン酸、テレフタル酸、イソフタル酸等が挙げられる。これらは1種又は2種以上を併用してもよい。
 多価アルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、1,8-オクタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-ブチル-2-ヘキシル-1,3-プロパンジオール、シクロヘキサンジオール、ビスヒドロキシメチルシクロヘキサン、ジメタノールベンゼン、ビスヒドロキシエトキシベンゼン、アルキルジアルカノールアミン、ラクトンジオール等が挙げられる。
Polyester polyols include those obtained from the reaction of polyhydric carboxylic acids or their acid anhydrides with polyhydric alcohols.
Examples of polyvalent carboxylic acids include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid and the like. One or more of these may be used in combination.
As polyhydric alcohols, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-Methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol , 2-Methyl-2-propyl-1,3-propanediol, 1,8-octanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2 , 5-Dimethyl-2, 5-hexanediol, 1, 9-nonane , 2-methyl-1,8-octanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-butyl-2-hexyl-1,3-propanediol, cyclohexanediol, bishydroxymethyl Examples thereof include cyclohexane, dimethanolbenzene, bishydroxyethoxybenzene, alkyldialkanolamines, lactone diols and the like.
 ポリカーボネート系ポリオール類としては、多価アルコール類と、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、又はエチレンカーボネート等とから、脱アルコール反応によって得られるポリカーボネートジオールであり、例えば、ポリ(1,6-ヘキシレン)カーボネート、ポリ(3-メチル-1,5-ペンチレン)カーボネート等が挙げられる。 Polycarbonate-based polyols are polycarbonate diols obtained by polyhydric alcohol and dimethyl carbonate, diethyl carbonate, diphenyl carbonate, ethylene carbonate or the like by a dealcoholization reaction, for example, poly (1,6-hexylene) Carbonate, poly (3-methyl-1,5-pentylene) carbonate and the like can be mentioned.
 ポリウレタン樹脂を得るために使用されるイソシアネート化合物としては、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、及びトリジンジイソシアネート等の芳香族ジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族ジイソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、及びヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、及びイソプロピリデンジシクロヘキシルジイソシアネート等の脂環族ジイソシアネート等が挙げられる。 As an isocyanate compound used to obtain a polyurethane resin, aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, α, α, α ′, α ′ Aliphatic diisocyanates having an aromatic ring such as tetramethyl xylylene diisocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, aliphatic diisocyanates such as hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, Dicyclohexyl Tan diisocyanate, and cycloaliphatic diisocyanates such as isopropylidene dicyclohexyl diisocyanate.
 ポリウレタン樹脂を合成する際には従来から公知の鎖延長剤を使用してもよく、鎖延長剤として、イソシアネート基と反応する活性基を2個以上有するものであれば特に限定されるわけではなく、水酸基又はアミノ基を2個有する鎖延長剤が汎用的に用いられる。 When synthesizing a polyurethane resin, a conventionally known chain extender may be used, and as a chain extender, it is not particularly limited as long as it has two or more active groups that react with isocyanate groups. A chain extender having two hydroxyl groups or two amino groups is generally used.
 水酸基を2個有する鎖延長剤としては、例えば、エチレングリコール、プロピレングリコール、及びブタンジオール等の脂肪族グリコール、キシリレングリコール、及びビスヒドロキシエトキシベンゼン等の芳香族グリコール、ネオペンチルグリコールヒドロキシピバレート等のエステルグリコールといったグリコール類を挙げることができる。また、アミノ基を2個有する鎖延長剤としては、例えば、トリレンジアミン、キシリレンジアミン、及びジフェニルメタンジアミン等の芳香族ジアミン、エチレンジアミン、プロピレンジアミン、ヘキサンジアミン、2,2-ジメチル-1,3-プロパンジアミン、2-メチル-1,5-ペンタンジアミン、トリメチルヘキサンジアミン、2-ブチル-2-エチル-1,5-ペンタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、及び1,10-デカンジアミン等の脂肪族ジアミン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ジシクロヘキシルメタンジアミン、イソプロビリチンシクロヘキシル-4,4’-ジアミン、1,4-ジアミノシクロヘキサン、及び1,3-ビス(アミノメチル)シクロヘキサン等の脂環族ジアミン等が挙げられる。 Examples of chain extenders having two hydroxyl groups include aliphatic glycols such as ethylene glycol, propylene glycol, and butanediol, aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene, neopentyl glycol hydroxypivalate, etc. And glycols such as ester glycols of Moreover, as a chain extender having two amino groups, for example, aromatic diamines such as tolylenediamine, xylylenediamine, and diphenylmethanediamine, ethylenediamine, propylenediamine, hexanediamine, 2,2-dimethyl-1,3 -Propanediamine, 2-methyl-1,5-pentanediamine, trimethylhexanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, and Aliphatic diamines such as 10-decanediamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, dicyclohexylmethanediamine, isopropyritin cyclohexyl-4,4'-diamine, 1,4-diaminocyclohexane And 1,3-bis (aminomethyl) Alicyclic diamines such as cyclohexane.
(ビニル樹脂)
 ビニル樹脂としては、ポリスチレン、ポリα-メチルスチレン、ポリスチレンスルホン酸ソーダ、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルエーテル、ポリビニルスルホン酸ソーダ、ポリメタリル酸ソーダ、ポリビニルアルコール、ポリビニルブチラール等が挙げられる。また、これらを主成分とする分子内に不飽和二重結合を有する単量体から得られる重合体又は共重合体であり、ビニル樹脂グラフトポリエステル及びビニル樹脂グラフトポリウレタン等の実質的に複合構造を有している樹脂も用いることができる。これらは1種又は2種以上を併用してもよい。
 ビニル樹脂の中でも、塗布液作製時の他の塗布剤(塗布液を構成する物質)との相溶性の観点から、ポリビニルアルコールを用いることが好ましい。
(Vinyl resin)
Examples of the vinyl resin include polystyrene, poly α-methylstyrene, sodium polystyrene sulfonate, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl ether, sodium polyvinyl sulfonate, sodium polymethacrylate, polyvinyl alcohol, polyvinyl butyral and the like. Be In addition, it is a polymer or copolymer obtained from a monomer having an unsaturated double bond in a molecule having as a main component thereof, a substantially composite structure such as vinyl resin-grafted polyester and vinyl resin-grafted polyurethane. The resin which it has can also be used. One or more of these may be used in combination.
Among the vinyl resins, polyvinyl alcohol is preferably used from the viewpoint of compatibility with other coating agents (substance constituting the coating solution) at the time of preparation of the coating solution.
 ポリビニルアルコールは、通常の重合反応によって合成することができ、例えば、酢酸ビニルを重合させて生成したポリ酢酸ビニルを含む溶液に、水酸化ナトリムや水酸化カリウム等のアルカリ触媒を添加し、所望のケン化度となるように部分的にケン化して製造することができる。また、ポリビニルアルコールは水溶性であることが好ましい。 Polyvinyl alcohol can be synthesized by a usual polymerization reaction, for example, by adding an alkali catalyst such as sodium hydroxide or potassium hydroxide to a solution containing polyvinyl acetate produced by polymerizing vinyl acetate, and then desired. It can be partially saponified to produce a degree of saponification. Also, polyvinyl alcohol is preferably water soluble.
 ポリビニルアルコールの重合度は、特に限定されるものではないが、通常100以上、好ましくは300~40000のものが用いられる。重合度が100以上であれば、架橋樹脂層の耐水性が低下するおそれがない。本発明で用いるポリビニルアルコールのケン化度は、特に限定されるものではないが、通常70モル%以上、好ましくは80モル%以上であり、好ましくは99.9モル%以下である。
 ケン化度は、JIS K6726(1994)に記載された方法に準拠して測定することができる。
 また、重合度(粘度平均重合度)は、JIS K6726(1994)に記載された方法に準拠して測定することができる。
The polymerization degree of polyvinyl alcohol is not particularly limited, but generally 100 or more, preferably 300 to 40,000. If the polymerization degree is 100 or more, there is no possibility that the water resistance of the crosslinked resin layer will be reduced. The degree of saponification of the polyvinyl alcohol used in the present invention is not particularly limited, but is usually 70 mol% or more, preferably 80 mol% or more, and preferably 99.9 mol% or less.
The degree of saponification can be measured according to the method described in JIS K6726 (1994).
The degree of polymerization (viscosity average degree of polymerization) can be measured in accordance with the method described in JIS K 6726 (1994).
 架橋樹脂組成物中におけるバインダーポリマー(B)の含有量は、固形分質量比で、好ましくは5~90質量%であり、より好ましくは10~70質量%であり、さらに好ましくは10~60質量%である。バインダーポリマー(B)の含有量が、上記範囲にあれば、得られる架橋樹脂層の強度や離型層への密着性を十分に得ることができる。 The content of the binder polymer (B) in the crosslinked resin composition is preferably 5 to 90% by mass, more preferably 10 to 70% by mass, and still more preferably 10 to 60% by mass in terms of solid content mass ratio. %. When the content of the binder polymer (B) is in the above range, the strength of the obtained crosslinked resin layer and the adhesion to the release layer can be sufficiently obtained.
<架橋剤(C)>
 本発明における架橋樹脂組成物には、架橋剤(C)が含まれる。架橋剤は主に、他の樹脂や化合物に含まれる官能基との架橋反応や、自己架橋によって、架橋樹脂層の凝集性、表面硬度、耐擦傷性、耐溶剤性、耐水性等を改良することができる。
<Crosslinking agent (C)>
The crosslinking resin composition in the present invention contains a crosslinking agent (C). The crosslinking agent mainly improves the cohesion, surface hardness, scratch resistance, solvent resistance, water resistance, etc. of the crosslinked resin layer by crosslinking reaction with a functional group contained in another resin or compound, or self-crosslinking. be able to.
 本発明において、使用することのできる架橋剤(C)には特に制限はなく、どの様な種類の架橋剤でも使用することが可能である。例えばメラミン化合物、グアナミン系、アルキルアミド系、及びポリアミド系の化合物、グリオキサール系、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物、アジリジン化合物、イソシアネート化合物、シランカップリング剤、ジアルコールアルミネート系カップリング剤、ジアルデヒド化合物、ジルコアルミネート系カップリング剤、過酸化物、熱又は光反応性のビニル化合物や感光性樹脂等が好適に用いられる。中でも、離型層への良好な密着性を相乗的に得るという観点から、メラミン化合物、エポキシ化合物の架橋剤やシランカップリング剤を用いることが好ましい。
 また、これら架橋剤には他のポリマー骨格に反応性基を持たせた、ポリマー型架橋反応性化合物も含まれており、さらに本発明においては、これら架橋剤を1種又は2種以上を併用してもよい。
In the present invention, the crosslinking agent (C) which can be used is not particularly limited, and any kind of crosslinking agent can be used. For example, melamine compounds, guanamine compounds, alkylamide compounds, and polyamide compounds, glyoxals, carbodiimide compounds, epoxy compounds, oxazoline compounds, aziridine compounds, isocyanate compounds, silane coupling agents, dialcohol aluminate coupling agents, Aldehyde compounds, zircoaluminate coupling agents, peroxides, heat or photoreactive vinyl compounds, photosensitive resins and the like are suitably used. Among them, from the viewpoint of synergistically obtaining good adhesion to the release layer, it is preferable to use a crosslinking agent or a silane coupling agent of a melamine compound or an epoxy compound.
Moreover, these crosslinkers include polymer crosslinkable compounds having a reactive group in the other polymer skeleton, and further, in the present invention, one or more of these crosslinkers are used in combination. You may
(メラミン化合物)
 メラミン化合物とは、化合物中にメラミン骨格を有する化合物のことである。例えば、アルキロール化メラミン誘導体、アルキロール化メラミン誘導体にアルコールを反応させて部分的あるいは完全にエーテル化した化合物、及びこれらの混合物を用いることができる。エーテル化に用いるアルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブタノール、イソブタノール等が好適に用いられる。また、メラミン化合物としては、単量体、あるいは2量体以上の多量体のいずれであってもよく、あるいはこれらの混合物を用いてもよい。さらに、メラミンの一部に尿素等を共縮合したものも使用できるし、メラミン化合物の反応性を上げるために触媒を使用することも可能である。中でも、メラミン化合物としてヘキサメトキシメチロールメラミンを用いることが好ましい。
(Melamine compound)
The melamine compound is a compound having a melamine skeleton in the compound. For example, an alkylolated melamine derivative, a compound obtained by reacting an alcohol with an alkylolated melamine derivative to partially or completely etherify, and a mixture thereof can be used. As alcohol used for etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol etc. are used suitably. Moreover, as a melamine compound, any of a monomer or the multimer more than a dimer may be sufficient, or you may use these mixtures. Furthermore, a product obtained by co-condensing urea or the like with part of melamine can also be used, and a catalyst can also be used to increase the reactivity of the melamine compound. Among them, hexamethoxymethylolmelamine is preferably used as the melamine compound.
(エポキシ化合物)
 エポキシ化合物とは、分子内にエポキシ基を有する化合物、及びエポキシ基が反応した結果得られる化合物のことである。分子内にエポキシ基を有する化合物としては、例えば、エピクロロヒドリンとエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、ビスフェノールA等の水酸基やアミノ基との縮合物が挙げられ、ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物、グリシジルアミン化合物等がある。ポリエポキシ化合物としては、例えば、ソルビトール、ポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2-ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルアミン化合物としてはN,N,N’,N’,-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノ)シクロヘキサン等が挙げられる。中でも、エポキシ化合物としてポリグリセロールポリグリシジルエーテルを用いることが好ましい。
(Epoxy compound)
An epoxy compound is a compound which has an epoxy group in a molecule | numerator, and a compound obtained as a result of reaction of an epoxy group. Examples of compounds having an epoxy group in the molecule include condensates of epichlorohydrin with hydroxyl groups or amino groups such as ethylene glycol, polyethylene glycol, glycerin, polyglycerin, bisphenol A, etc. Polyepoxy compounds, diepoxy There are compounds, monoepoxy compounds, glycidyl amine compounds and the like. Examples of polyepoxy compounds include sorbitol, polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylol Examples of propane polyglycidyl ether and diepoxy compound include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcinol diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl Ether, polypropylene glycol diglycidyl ether, Examples of the lithium tetramethylene glycol diglycidyl ether and monoepoxy compound include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and as the glycidyl amine compound, N, N, N ', N',-tetraglycidyl-m. And xylylenediamine, 1,3-bis (N, N-diglycidylamino) cyclohexane and the like. Among them, it is preferable to use polyglycerol polyglycidyl ether as the epoxy compound.
(シランカップリング剤)
 シランカップリング剤とは、分子中に反応性基部位Xとアルコキシル基部位ORの2つを含有する、一般式がX―Si(OR)で表されるアルコキシシラン化合物の事であるが、分子中に反応性基部位Xとアルコキシル基部位ORを含有しているシラン化合物であれば、合成上可能であるどの様なシランカップリング剤でも、本発明において使用することが可能である。
 シランカップリング剤が有するRは通常メチル基もしくはエチル基であるが、例えばブチル基やイソプロピル基等合成上可能であるならば、どの様なアルキル基やその誘導体であってもよい。
(Silane coupling agent)
The silane coupling agent is an alkoxysilane compound having a general formula of X-Si (OR) 3 which contains two of reactive group site X and alkoxyl group site OR in the molecule, Any silane coupling agent that is synthetically possible can be used in the present invention as long as it is a silane compound containing a reactive group site X and an alkoxyl group site OR in the molecule.
R contained in the silane coupling agent is usually a methyl group or an ethyl group, but may be any alkyl group or a derivative thereof as long as synthetically possible, such as a butyl group or an isopropyl group.
 シランカップリング剤が有する反応性基部位Xに関しては二重結合基、アミノ基、エポキシ基、メルカプト基、スルフィド基、イソシアネート基、ウレイド基、クロロプロピル基、ヒドロキシル基等の反応性基を含んでいる構造となっていれば、どの様な構造でも反応性基部位Xとして用いることが可能である。 As for the reactive group site X possessed by the silane coupling agent, reactive groups such as double bond group, amino group, epoxy group, mercapto group, sulfide group, isocyanate group, ureido group, chloropropyl group, hydroxyl group etc. It is possible to use any structure as the reactive group site X as long as the structure has a structure.
 本発明においては、シランカップリング剤の中でも、塗布外観及び透明性を改善する効果の観点から、アミノ基を含有する構造のシランカップリング剤の使用が好ましく、エポキシ基を含有する構造のシランカップリング剤(例えば、3-グリシドキシプロピルトリメトキシシラン)やビニル基を含有する構造のシランカップリング剤の使用はさらに好ましい。 In the present invention, among the silane coupling agents, the use of a silane coupling agent having a structure containing an amino group is preferable from the viewpoint of the coating appearance and the effect of improving transparency, and a silane cup having a structure containing an epoxy group The use of a ring agent (eg, 3-glycidoxypropyltrimethoxysilane) or a silane coupling agent having a structure containing a vinyl group is more preferable.
 架橋樹脂組成物中における架橋剤(C)の含有量は、固形分質量比で、好ましくは1~90質量%であり、より好ましくは3~50質量%であり、さらに好ましくは5~40質量%である。架橋剤(C)の比率が、上記の範囲にあれば、バインダーポリマー(B)との相乗作用による離型層への密着性を十分に得ることができる。 The content of the crosslinking agent (C) in the crosslinked resin composition is preferably 1 to 90% by mass, more preferably 3 to 50% by mass, and still more preferably 5 to 40% by mass in terms of solid content mass ratio. %. When the ratio of the crosslinking agent (C) is in the above range, sufficient adhesion to the release layer by synergy with the binder polymer (B) can be obtained.
(粒子)
 本発明は、架橋樹脂層の固着性、滑り性改良を目的として、架橋樹脂層中に粒子を含有してもよい。その平均粒径に特に制限はないが、フィルムの透明性の観点から、好ましくは1.0μm以下であり、より好ましくは0.5μm以下であり、さらに好ましくは0.2μm以下である。また架橋樹脂層の固着性、滑り性改良を得る観点から好ましくは0.01μm以上である。
 粒子の具体例としてはシリカ、アルミナ、炭酸カルシウム、二酸化チタン等の不活性無機粒子やポリスチレン系樹脂、ポリアクリル系樹脂、ポリビニル系樹脂から得られる微粒子あるいはこれらの架橋粒子に代表される有機粒子等が挙げられる。
 本発明において粒子の平均粒子径は、例えば実施例で後述する方法により測定することができる。
(particle)
In the present invention, particles may be contained in the crosslinked resin layer for the purpose of improving the adhesion and slipperiness of the crosslinked resin layer. The average particle diameter is not particularly limited, but is preferably 1.0 μm or less, more preferably 0.5 μm or less, and still more preferably 0.2 μm or less from the viewpoint of film transparency. Moreover, it is preferably 0.01 μm or more from the viewpoint of obtaining the adhesion and slipperiness of the crosslinked resin layer.
Specific examples of the particles include inactive inorganic particles such as silica, alumina, calcium carbonate and titanium dioxide, fine particles obtained from polystyrene resins, polyacrylic resins and polyvinyl resins, organic particles represented by cross-linked particles thereof, etc. Can be mentioned.
In the present invention, the average particle size of the particles can be measured, for example, by the method described later in the Examples.
(その他)
 さらに本発明の主旨を損なわない範囲において、架橋樹脂層には必要に応じて界面活性剤、消泡剤、塗布性改良剤、離型剤、増粘剤、有機系潤滑剤、帯電防止剤、導電剤、紫外線等光吸収剤、酸化防止剤、発泡剤、染料、顔料等が含有されてもよい。
(Others)
Further, the cross-linked resin layer may optionally contain a surfactant, an antifoamer, a coating property improver, a mold release agent, a thickener, an organic lubricant, an antistatic agent, as long as the gist of the present invention is not impaired. A conductive agent, a light absorber such as ultraviolet light, an antioxidant, a foaming agent, a dye, a pigment and the like may be contained.
 架橋樹脂層中の成分の分析は、例えば、TOF-SIMS、光電子分光(XPS)、蛍光X線等の分析によって行うことができる。 The analysis of the components in the crosslinked resin layer can be performed, for example, by analysis of TOF-SIMS, photoelectron spectroscopy (XPS), fluorescent X-ray or the like.
〈架橋樹脂層の形成〉
 次に、本発明の離型フィルムを構成するポリエステルフィルムの少なくとも片面に設けられる架橋樹脂層の形成について説明する。
 架橋樹脂層に関しては、ポリエステルフィルムの延伸工程中にフィルム表面を処理する、インラインコーティングにより設けられてもよく、一旦製造したフィルム上に系外で塗布する、オフラインコーティングを採用してもよい。製膜と同時に塗布が可能であるため、製造が安価に対応可能であり、架橋樹脂層の厚みを延伸倍率により変化させることができるという点でインラインコーティングが好ましく用いられる。
<Formation of Crosslinked Resin Layer>
Next, the formation of a crosslinked resin layer provided on at least one surface of the polyester film constituting the release film of the present invention will be described.
The crosslinked resin layer may be provided by in-line coating which treats the film surface during the stretching process of the polyester film, or off-line coating may be applied outside the system on the film once produced. Since coating is possible simultaneously with film formation, in-line coating is preferably used from the point that manufacturing can correspond at low cost and that the thickness of the crosslinked resin layer can be changed by the draw ratio.
 インラインコーティングについては、以下に限定するものではないが、例えば、逐次二軸延伸においては、特に縦延伸が終了後、横延伸前にコーティング処理を施すことができる。インラインコーティングによりポリエステルフィルム上に架橋樹脂層が設けられる場合には、製膜と同時に塗布が可能になると共に、横延伸時に高温で処理されることで架橋樹脂組成物の熱硬化によって架橋樹脂層が形成され、ポリエステルフィルムとして好適なフィルムを製造できる。
 架橋樹脂層を形成する際の硬化条件としては、特に限定はされるものではないが、通常170℃以上で2秒間以上を目安にして行うのがよい。
About in-line coating, although it is not limited to the following, for example, in successive biaxial stretching, a coating process can be applied before transverse stretching, especially after longitudinal stretching is completed. When a crosslinked resin layer is provided on a polyester film by in-line coating, coating becomes possible at the same time as film formation, and the crosslinked resin layer is cured by heat curing of the crosslinked resin composition by being treated at high temperature during transverse stretching. It can be formed to produce a film suitable as a polyester film.
The curing conditions for forming the cross-linked resin layer are not particularly limited, but it is generally preferable to conduct at 170 ° C. or more for 2 seconds or more as a standard.
 インラインコーティングによって架橋樹脂層を設ける場合は、上述の一連の化合物を含む架橋樹脂組成物の水溶液又は水分散体として、塗布液をポリエステルフィルム上に塗布する要領にて行うのが好ましい。架橋樹脂組成物を含む塗布液の塗布方法としては、リバースロールコート、グラビアコート、バーコート、ドクターブレードコート等、従来公知の塗工方式を用いることができる。
 また、本発明の主旨を損なわない範囲において、水への分散性改良、造膜性改良等を目的として、塗布液中には少量の有機溶剤を含有していてもよい。有機溶剤は1種又は2種以上を併用することができる。塗布液中の有機溶剤の含有量は10質量%以下が好ましく、さらに好ましくは5質量%以下である。
When providing a crosslinked resin layer by in-line coating, it is preferable to carry out in the way of apply | coating a coating liquid on a polyester film as aqueous solution or aqueous dispersion of the crosslinked resin composition containing the above-mentioned series of compounds. As a method of applying a coating solution containing a crosslinked resin composition, conventionally known coating methods such as reverse roll coating, gravure coating, bar coating, and doctor blade coating can be used.
In addition, a small amount of organic solvent may be contained in the coating solution for the purpose of improving the dispersibility in water, improving the film forming property, and the like, as long as the gist of the present invention is not impaired. The organic solvent can be used alone or in combination of two or more. The content of the organic solvent in the coating solution is preferably 10% by mass or less, more preferably 5% by mass or less.
 またオフラインコーティングによって架橋樹脂層を設ける場合は、有機溶剤を用いた塗布液を用いてもよい。
 具体的な有機溶剤の例としては、n-ブチルアルコール、n-プロピルアルコール、イソプロピルアルコール、エチルアルコール、メチルアルコール等の脂肪族又は脂環族アルコール類、プロピレングリコール、エチレングリコール、ジエチレングリコール等のグリコール類、n-ブチルセロソルブ、エチルセロソルブ、メチルセロソルブ、プロピレングリコールモノメチルエーテル等のグリコール誘導体、ジオキサン、テトラヒドロフラン等のエーテル類、酢酸エチル、酢酸アミル等のエステル類、メチルエチルケトン、アセトン等のケトン類、N-メチルピロリドン等のアミド類が挙げられる。
Moreover, when providing a crosslinked resin layer by off-line coating, you may use the coating liquid using the organic solvent.
Specific examples of the organic solvent include aliphatic or alicyclic alcohols such as n-butyl alcohol, n-propyl alcohol, isopropyl alcohol, ethyl alcohol and methyl alcohol, and glycols such as propylene glycol, ethylene glycol and diethylene glycol Glycol derivatives such as n-butyl cellosolve, ethyl cellosolve, methyl cellosolve, propylene glycol monomethyl ether, ethers such as dioxane and tetrahydrofuran, esters such as ethyl acetate and amyl acetate, ketones such as methyl ethyl ketone and acetone, N-methyl pyrrolidone And the like.
 また、オフラインコーティングあるいはインラインコーティングに係わらず、必要に応じて熱処理と紫外線照射等の活性エネルギー線照射とを併用してもよい。 Further, regardless of the off-line coating or the in-line coating, heat treatment and active energy ray irradiation such as ultraviolet irradiation may be used in combination, as necessary.
 架橋樹脂層を形成する方法としては、例えば、グラビアコート、リバースロールコート、ダイコート、エアドクターコート、ブレードコート、ロッドコート、バーコート、カーテンコート、ナイフコート、トランスファロールコート、スクイズコート、カーテンコート、含浸コート、キスコート、スプレーコート、カレンダコート、押出コート等、従来公知の塗布方式を用いることができる。 As a method of forming a crosslinked resin layer, for example, gravure coat, reverse roll coat, die coat, air doctor coat, blade coat, rod coat, bar coat, curtain coat, knife coat, transfer roll coat, squeeze coat, curtain coat, Conventionally known coating methods such as impregnation coating, kiss coating, spray coating, calender coating, and extrusion coating can be used.
〈架橋樹脂層の膜厚〉
 本発明においてポリエステルフィルム上に設けられる架橋樹脂層の膜厚は、最終的な被膜としてみた際に、各種機能性を発現させる観点から、好ましくは0.01~3μm、より好ましくは0.01~1μm、さらに好ましくは0.01~0.3μmである。
 本発明における架橋樹脂層の膜厚は、例えば離型フィルムをルテニウム化合物やオスミウム化合物等の重金属を用いて染色を行い、超薄切片法により離型フィルムの断面を調整した後、透過型電子顕微鏡にて離型フィルム断面の架橋樹脂層をランダムに複数個所測定し、平均値を算出して求めることができる。
 また、架橋樹脂組成物を含む塗布液の塗布量は、通常0.01~3g/m、好ましくは0.01~1g/m、さらに好ましくは0.01~0.3g/mである。0.01g/m以上であれば離型層への接着性(易接着性能)及び帯電防止性能において十分な性能が得られ、3g/m以下であれば架橋樹脂層は、外観・透明性が良好で、フィルムのブロッキング、ライン速度低下による生産性の低下を招くおそれがない。なお、本発明において塗布量は、塗布した時間あたりの液質量(乾燥前)、塗布液不揮発分濃度、塗布幅、延伸倍率、ライン速度等から計算で求めることができる。
<Film thickness of crosslinked resin layer>
The film thickness of the crosslinked resin layer provided on the polyester film in the present invention is preferably 0.01 to 3 μm, more preferably 0.01 to 3 μm from the viewpoint of exhibiting various functionalities when viewed as a final film. It is preferably 1 μm, more preferably 0.01 to 0.3 μm.
The film thickness of the crosslinked resin layer in the present invention is obtained, for example, by staining the release film with a heavy metal such as a ruthenium compound or an osmium compound and adjusting the cross section of the release film by the ultrathin section method. The cross-linked resin layer of the cross section of the release film can be measured at a plurality of places at random and the average value can be calculated and determined.
The coating amount of the coating solution containing the crosslinked resin composition is usually 0.01 to 3 g / m 2 , preferably 0.01 to 1 g / m 2 , and more preferably 0.01 to 0.3 g / m 2 . is there. When the amount is 0.01 g / m 2 or more, sufficient performance in adhesion to the release layer (adhesion resistance) and antistatic performance can be obtained. When the amount is 3 g / m 2 or less, the crosslinked resin layer has an appearance and transparency There is no possibility that the blocking of the film and the reduction of the productivity due to the reduction of the line speed occur. In the present invention, the coating amount can be calculated from the mass of liquid per application time (before drying), the concentration of the non-volatile portion of the coating liquid, the coating width, the stretching ratio, the line speed and the like.
[表面処理]
 本発明に用いられるポリエステルフィルムには、前記架橋樹脂層とは別に各種表面処理を施すことができる。具体的には前記架橋樹脂層をポリエステルフィルムに形成する前に施すことや、前記架橋樹脂層の裏面側のポリエステルフィルムに施すこと等ができる。各種表面処理や各種機能性層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、マイクロ波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。
[surface treatment]
The polyester film used in the present invention can be subjected to various surface treatments separately from the crosslinked resin layer. Specifically, it can be applied to the polyester film on the back surface side of the crosslinked resin layer, or the like before the crosslinked resin layer is formed on the polyester film. Conventionally known techniques can be used for various surface treatments and various functional layers. For example, surface treatment may be surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet light treatment, high frequency treatment, microwave treatment, glow discharge treatment, active plasma treatment, laser treatment and the like.
 本発明に用いられるポリエステルフィルムには、前記架橋樹脂層の裏面側に前記架橋樹脂層と同一構成の架橋樹脂層を設けてもよく、別に各種機能性層を設けてもよい。各種機能性層としては、易接着層、帯電防止層、ブリードアウト成分封止層、屈折率調整層、光吸収層、光線透過率向上層、防曇層、バリアコート層、ハードコート層、粘着層及びこれら機能性を複合させた層等を挙げることができる。また前記機能性層は単層でもよいが、2層以上の構成にしてもよい。 In the polyester film used in the present invention, a crosslinked resin layer having the same constitution as the crosslinked resin layer may be provided on the back surface side of the crosslinked resin layer, or various functional layers may be separately provided. As various functional layers, an adhesive layer, an antistatic layer, a bleed-out component sealing layer, a refractive index adjustment layer, a light absorption layer, a light transmittance improving layer, an antifogging layer, a barrier coat layer, a hard coat layer, adhesion Layers, layers in which these functionalities are combined, and the like can be mentioned. The functional layer may be a single layer, or may be configured of two or more layers.
[離型層]
 次に本発明における離型層について説明する。本発明の離型フィルムを構成する離型層は、離型剤組成物を使用して形成されてなるものである。
[Release layer]
Next, the release layer in the present invention will be described. The release layer which comprises the release film of this invention is formed using a release agent composition.
〈ポリジメチルシロキサン〉
 本発明における離型剤組成物は、付加反応型シリコーン樹脂として、1分子中に少なくとも1個のアルケニル基を有する第1のポリジメチルシロキサンと、1分子中に少なくとも1個のヒドロシリル基を有する第2のポリジメチルシロキサンとを含有する。離型剤組成物に第1のポリジメチルシロキサン及び第2のポリジメチルシロキサンが含まれることによって、離型フィルムを構成する架橋樹脂層と離型層との経時での密着性を十分に有することができる。
<Polydimethyl siloxane>
The release agent composition according to the present invention has a first polydimethylsiloxane having at least one alkenyl group in one molecule and an at least one hydrosilyl group in one molecule as an addition reaction type silicone resin. And 2 polydimethylsiloxanes. By having the first polydimethylsiloxane and the second polydimethylsiloxane contained in the release agent composition, the adhesion between the release resin and the crosslinked resin layer constituting the release film over time is sufficiently obtained. Can.
 本発明において使用する第1のポリジメチルシロキサンに含まれるアルケニル基としては、ビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基等の1価炭化水素基が挙げられる。中でもヒドロシリル基との反応性の観点から、ビニル基とヘキセニル基が好ましい。 The alkenyl group contained in the first polydimethylsiloxane used in the present invention is a monovalent hydrocarbon group such as vinyl group, allyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, etc. It can be mentioned. Among them, vinyl and hexenyl are preferable from the viewpoint of the reactivity with the hydrosilyl group.
 第1のポリジメチルシロキサンの30g中に、アルケニル基は好ましくは3~90mmol含まれ、より好ましくは6~45mmol含まれる。また、第2のポリジメチルシロキサンの30g中に、ヒドロシリル基は好ましくは6~450mmol含まれ、より好ましくは15~450mmol含まれる。
 さらに、アルケニル基(a)に対するヒドロシリル基(b)のモル比(b/a)は、好ましくは1.5~5.0であり、より好ましくは1.5~3.0である。
The alkenyl group is preferably contained in 3 to 90 mmol, more preferably 6 to 45 mmol, in 30 g of the first polydimethylsiloxane. Further, in 30 g of the second polydimethylsiloxane, the hydrosilyl group is preferably contained in 6 to 450 mmol, more preferably in 15 to 450 mmol.
Furthermore, the molar ratio (b / a) of the hydrosilyl group (b) to the alkenyl group (a) is preferably 1.5 to 5.0, more preferably 1.5 to 3.0.
 第1のポリジメチルシロキサンの重量平均分子量は、500以上50000以下であり、800以上又は30000以下であることが好ましく、2000以上又は20000以下であることがより好ましい。第1のポリジメチルシロキサンの重量平均分子量が500未満であると、反応性が高く、塗布液中で反応が進行するため、所望の軽剥離力を発現しなくなり、50000を超えると、反応性が悪くなり、所望の軽剥離力を発現しなくなる。 The weight average molecular weight of the first polydimethylsiloxane is 500 or more and 50000 or less, preferably 800 or more or 30000 or less, and more preferably 2000 or more or 20000 or less. If the weight average molecular weight of the first polydimethylsiloxane is less than 500, the reactivity is high, and the reaction proceeds in the coating solution, so the desired light peel strength can not be expressed, and if it exceeds 50,000, the reactivity is not good. It becomes worse and does not develop the desired light peeling force.
 第2のポリジメチルシロキサンの重量平均分子量は、120以上20000以下であり、150以上又は10000以下であることが好ましく、200以上又は5000以下であることがより好ましい。第2のポリジメチルシロキサンの重量平均分子量が120未満であると、反応性が高く、塗布液中で反応が進行するため、所望の軽剥離力を発現しなくなり、20000を超えると、反応性が悪くなり、所望の軽剥離力を発現しなくなる。
 なお、本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定したポリスチレン換算の値である。
The weight average molecular weight of the second polydimethylsiloxane is 120 or more and 20000 or less, preferably 150 or more or 10000 or less, and more preferably 200 or more or 5000 or less. If the weight average molecular weight of the second polydimethylsiloxane is less than 120, the reactivity is high, and the reaction proceeds in the coating liquid, so the desired light peel strength can not be expressed, and if it exceeds 20000, the reactivity is not good. It becomes worse and does not develop the desired light peeling force.
In addition, the weight average molecular weight in this invention is a value of polystyrene conversion measured by the gel permeation chromatography (GPC) method.
 アルケニル基を有するポリジメチルシロキサンと、ヒドロシリル基を有するポリジメチルシロキサンとの間では、アルケニル基とヒドロシリル基が反応することにより架橋構造が形成される。ここで本発明において、第1のポリジメチルシロキサンと第2のポリジメチルシロキサンの重量平均分子量をそれぞれ前記の上限値以下とすることは、従来よりも低分子量の成分を原料として離型層を形成することを意味している。このため、本発明における離型層は、架橋密度が高く、換言すれば、架橋点間分子量を低くすることが出来る。本発明では、離型層をこの様な構造にすれば、被着体との剥離力を小さくする(軽剥離性)ことが可能であるばかりか、その効果が経時的にも安定することを見出したものである。
 アルケニル基を有するポリジメチルシロキサンや、ヒドロシリル基を有するポリジメチルシロキサンの重量平均分子量が本発明で規定する上限値よりも高い場合は、離型フィルムと被着体を密着させた直後には良好な軽剥離性を示していたとしても、経時的には剥離力が高くなってしまう。これは、離型層の架橋点間分子量が大きいと、離型層を構成するジメチルシロキサンの分子鎖と、被着体を構成する物質(通常は粘着層を構成するポリマー鎖)とが相互に分子運動することにより、経時的にミクロな絡み合いを生じるためと考えられる。
 なお、本発明者の検討によれば、離型層の架橋密度を高くすると、軽剥離性は発揮するものの、離型フィルム内部の密着性、すなわち、離型層と架橋樹脂層との密着性が低下し、層間剥離等が生じる場合があることが確認された。これは、上記の離型層が有する特性が、被着体に対してのみならず、架橋樹脂層に対しても同様に寄与してしまう場合があるためであると推測された。
 そこで本発明者は、後述する通り、離型層中に有機珪素化合物を含有することが好ましいことを見出した。すなわち、離型剤組成物として、第1および第2のポリジメチルシロキサンとともに有機珪素化合物を含有させ、これらを硬化させて離型層を形成すれば、被着体に対する軽剥離性を有するとともに、離型フィルム内の層間密着性が良好となることが確認された。本発明では、このように、離型剤組成物中に有機珪素化合物を併用することによって、架橋樹脂層に対するアンカー効果を奏することができることも見出したものである。
 第1および第2のポリジメチルシロキサンの重量平均分子量が規定の範囲であるか否かは、原料段階での分子量測定によって確認することが出来るが、離型フィルムにおいては、例えば以下のような方法によって推定することができる。但し、確認方法は以下に限定されるものではない。
(1)離型層を有機溶媒等で抽出を行い、未反応の成分の分子量を測定する、
(2)テトラエトキシシラン分析によって架橋点の分析を行い、分子量を見積もる、
(3)X線光電子分光(XPS)により離型層の電子状態を分析し、架橋密度の測定を行うことで、架橋点間分子量を見積もる。
 離型剤組成物中における第1のポリジメチルシロキサン及び第2のポリジメチルシロキサンのそれぞれの含有量(第1のポリジメチルシロキサン/第2のポリジメチルシロキサン)は、離型層の形成の観点から、好ましくは20/80~90/10(質量%)であり、より好ましくは50/50~80/20(質量%)である。
Between the polydimethylsiloxane having an alkenyl group and the polydimethylsiloxane having a hydrosilyl group, a crosslinked structure is formed by the reaction of the alkenyl group and the hydrosilyl group. Here, in the present invention, setting the weight average molecular weights of the first polydimethylsiloxane and the second polydimethylsiloxane to the above upper limit or less, respectively, forms a releasing layer using a component having a molecular weight lower than that of the prior art as a raw material. It means to do. Therefore, the release layer in the present invention has a high crosslinking density, in other words, it is possible to lower the molecular weight between crosslinking points. In the present invention, if the release layer has such a structure, it is possible not only to reduce the peeling force with respect to the adherend (light peelability) but also to stabilize the effect over time. I found it.
When the weight average molecular weight of the polydimethylsiloxane having an alkenyl group or the polydimethylsiloxane having a hydrosilyl group is higher than the upper limit defined in the present invention, it is good immediately after the release film and the adherend are adhered. Even if light peelability is exhibited, the peel strength increases with time. This is because, when the molecular weight between the crosslinking points of the release layer is large, the molecular chain of dimethylsiloxane forming the release layer and the substance forming the adherend (usually the polymer chain forming the adhesive layer) are mutually different. It is believed that the molecular motion causes micro entanglement over time.
According to the study of the present inventor, although the light releasability is exhibited when the crosslinking density of the release layer is increased, the adhesion inside the release film, that is, the adhesion between the release layer and the crosslinked resin layer It has been confirmed that there is a possibility that delamination may occur. It is presumed that this is because the above-mentioned properties of the release layer may contribute not only to the adherend but also to the crosslinked resin layer.
Then, the present inventor found that it is preferable to contain an organic silicon compound in the mold release layer, as described later. That is, as a release agent composition, an organosilicon compound is contained together with the first and second polydimethylsiloxanes, and when these are cured to form a release layer, it has light releasability to an adherend, It was confirmed that the interlayer adhesion in the release film is good. In the present invention, it has also been found that, by using an organosilicon compound in combination with the release agent composition as described above, it is possible to exhibit an anchor effect on the crosslinked resin layer.
Whether or not the weight average molecular weight of the first and second polydimethylsiloxanes falls within the specified range can be confirmed by molecular weight measurement at the raw material stage, but in the case of a release film, for example, the following method It can be estimated by However, the confirmation method is not limited to the following.
(1) Extract the release layer with an organic solvent or the like, and measure the molecular weight of the unreacted component,
(2) Analysis of the crosslinking point by tetraethoxysilane analysis to estimate the molecular weight,
(3) The electronic state of the release layer is analyzed by X-ray photoelectron spectroscopy (XPS), and the crosslink density is measured to estimate the molecular weight between crosslink points.
The content of each of the first polydimethylsiloxane and the second polydimethylsiloxane in the release agent composition (the first polydimethylsiloxane / the second polydimethylsiloxane) is from the viewpoint of the formation of the release layer. And preferably 20/80 to 90/10 (% by mass), and more preferably 50/50 to 80/20 (% by mass).
〈白金系触媒〉
 離型剤組成物は、離型層を平滑でかつ頑丈にするため、付加型の反応を促進する白金系触媒を含有することが好ましい。白金系触媒としては、塩化白金酸、塩化白金酸のアルコール溶液、塩化白金酸とオレフィンとの錯体、塩化白金酸とアルケニルシロキサンとの錯体等の白金系化合物、白金黒、白金担持シリカ、白金担持活性炭が例示される。白金系触媒は1種又は2種以上を併用してもよい。
Platinum-based catalyst
The release agent composition preferably contains a platinum-based catalyst that promotes addition type reaction in order to make the release layer smooth and robust. As platinum-based catalysts, platinum-based compounds such as chloroplatinic acid, alcohol solutions of chloroplatinic acid, complexes of chloroplatinic acid and olefin, complexes of chloroplatinic acid and alkenyl siloxane, platinum black, platinum-supported silica, supported platinum An activated carbon is illustrated. The platinum-based catalyst may be used alone or in combination of two or more.
 離型剤組成物中における白金系触媒の含有量は、好ましくは0.3~3.0質量%、より好ましくは0.5~2.0質量%である。離型層中の白金系触媒含有量が0.3質量%以上であれば、剥離力の不具合や、架橋樹脂層での硬化反応が不十分となることによる、面状悪化等の不具合が生じるおそれがなく、また、離型層中の白金系触媒含有量が3.0質量%以下であれば、反応性が高まり、ゲル異物が発生する等の工程不具合を生じるおそれがない。 The content of the platinum-based catalyst in the release agent composition is preferably 0.3 to 3.0% by mass, more preferably 0.5 to 2.0% by mass. If the content of the platinum-based catalyst in the release layer is 0.3% by mass or more, problems such as surface deterioration may occur due to defects in peeling force and insufficient curing reaction in the crosslinked resin layer. There is no fear, and if the content of the platinum-based catalyst in the release layer is 3.0% by mass or less, the reactivity is enhanced, and there is no risk of causing process defects such as generation of gel foreign matter.
 離型層が上記の条件を満たす離型剤組成物を使用して形成されることで、基材レス両面粘着シートの使用において、離型フィルムを極めてスムーズに剥離することができる。 By forming a release layer using the release agent composition which satisfy | fills said conditions, in use of a substrate-less double-sided adhesive sheet, a release film can be peeled extremely smoothly.
〈反応性基含有の有機珪素化合物〉
 また、本発明における離型層を形成する離型剤組成物中には、離型層とポリエステルフィルムとの塗膜密着性を良好とするために、前記第1及び第2のポリジメチルシロキサン以外に、反応性基含有の有機珪素化合物(以下、単に有機珪素化合物と略記することがある。)を含有することが好ましい。
<Reactive group-containing organosilicon compounds>
In addition, in the release agent composition for forming the release layer in the present invention, in order to improve the adhesion of the coating film between the release layer and the polyester film, it is possible to use ones other than the first and second polydimethylsiloxanes. It is preferable to contain a reactive group-containing organic silicon compound (hereinafter sometimes simply referred to as an organic silicon compound).
 反応性基含有の有機珪素化合物とは、エポキシ基、メルカプト基、(メタ)アクリロイル基、ハロアルキル基、及びアミノ基等の反応性基を分子構造に有する有機珪素化合物のことで、本発明においては高分子量の化合物でも低分子量の化合物でも使用することができる。なお、反応性基含有の有機珪素化合物には、前記第1及び第2のポリジメチルシロキサンは含まない。 The reactive group-containing organic silicon compound is an organic silicon compound having a reactive group such as an epoxy group, a mercapto group, a (meth) acryloyl group, a haloalkyl group, and an amino group in the molecular structure in the present invention. Both high molecular weight compounds and low molecular weight compounds can be used. The reactive group-containing organic silicon compound does not include the first and second polydimethylsiloxanes.
 上記有機珪素化合物の中でも、下記一般式(I)で表される有機珪素化合物を用いることが好ましい。
 Si(X(Y)(R …(I)
[上記式中、Xはエポキシ基、メルカプト基、(メタ)アクリロイル基、アルケニル基、ハロアルキル基及びアミノ基から選ばれる少なくとも1種を有する有機基、Rは一価炭化水素基であり、かつ炭素数1~10のものであり、Yは加水分解性基であり、dは1又は2の整数、eは2又は3の整数、fは0又は1の整数であり、d+e+f=4である]
Among the above organic silicon compounds, it is preferable to use an organic silicon compound represented by the following general formula (I).
Si (X 1 ) d (Y) e (R 1 ) f (I)
[In the above-mentioned formula, X 1 is an organic group having at least one selected from an epoxy group, a mercapto group, a (meth) acryloyl group, an alkenyl group, a haloalkyl group and an amino group, R 1 is a monovalent hydrocarbon group, And Y is a hydrolyzable group, d is an integer of 1 or 2, e is an integer of 2 or 3, f is an integer of 0 or 1, and d + e + f = 4 is there]
 前記一般式(I)で表される有機珪素化合物は、加水分解・縮合反応によりシロキサン結合を形成しうる加水分解性基Yを2個有するもの(D単位源)あるいは3個有するもの(T単位源)を使用することができる。 The organic silicon compound represented by the above general formula (I) has two (D unit source) or three (D unit source) having a hydrolyzable group Y capable of forming a siloxane bond by hydrolysis / condensation reaction Source) can be used.
 一般式(I)において、一価炭化水素基Rは、炭素数が1~10のもので、特にメチル基、エチル基、プロピル基が好ましい。 In the general formula (I), the monovalent hydrocarbon group R 1 is one having 1 to 10 carbon atoms, and in particular, a methyl group, an ethyl group or a propyl group is preferable.
 一般式(I)において、加水分解性基Yとしては、以下のものを例示できる。すなわち、メトキシ基、エトキシ基、ブトキシ基、イソプロペノキシ基、アセトキシ基、ブタノキシム基及びアミノ基等である。これらの加水分解性基は、1種又は2種以上を併用してもよい。メトキシ基あるいはエトキシ基を適用すると、コーティング材に良好な保存安定性を付与でき、また適当な加水分解性があるため、特に好ましい。 In the general formula (I), examples of the hydrolyzable group Y include the following. That is, they are methoxy group, ethoxy group, butoxy group, isopropenoxy group, acetoxy group, butanoxym group, amino group and the like. These hydrolyzable groups may be used alone or in combination of two or more. The application of a methoxy group or an ethoxy group is particularly preferable because it can impart good storage stability to the coating material and has adequate hydrolyzability.
 本発明において、離型剤組成物中に含有する有機珪素化合物の具体例として、ビニルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メタアクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、5-ヘキセニルトリメトキシシラン、p-スチリルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等を例示することができる。 In the present invention, vinyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (specific examples of the organic silicon compound contained in the release agent composition in the present invention 3,4-Epoxycyclohexyl) ethyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, 5-hexenyl Examples thereof include trimethoxysilane, p-styryltrimethoxysilane, trifluoropropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and γ-glycidoxypropylmethyldiisopropenoxysilane.
 離型剤組成物中における有機珪素化合物の含有量は、好ましくは0.1~5.0質量%であり、より好ましくは0.3~2.0質量%、更に好ましくは0.3~1.5質量%である。有機珪素化合物の含有量が0.1質量%以上であれば、所望する密着性を確保することができ、また、5.0質量%以下であれば、貼り合わせる相手方の架橋樹脂層に対する接着性が強くなりすぎず、本来剥離する必要がある場面において、容易に剥離できない等の不具合を生じるおそれがない。 The content of the organic silicon compound in the release agent composition is preferably 0.1 to 5.0% by mass, more preferably 0.3 to 2.0% by mass, and still more preferably 0.3 to 1 .5 mass%. If the content of the organosilicon compound is 0.1% by mass or more, desired adhesion can be secured, and if it is 5.0% by mass or less, the adhesiveness to the cross-linked resin layer of the other member to be bonded There is no risk of problems such as being unable to be easily peeled off in situations where it is necessary to originally peel off.
〈無反応性シリコーン樹脂〉
 離型剤組成物は、離型フィルムに軽剥離性を付与するため、さらに無反応性シリコーン樹脂を含有してもよい。
 無反応性シリコーン樹脂の重量平均分子量は、50000以上500000以下であることが好ましい。
<Non-reactive silicone resin>
The release agent composition may further contain a non-reactive silicone resin in order to impart light releasability to the release film.
The weight average molecular weight of the non-reactive silicone resin is preferably 50000 or more and 500000 or less.
 前記の無反応性シリコーン樹脂としては、下記一般式(II)で示される、オルガノポリシロキサンが好ましい。
  R SiO(R SiO)SiR ……(II)
(式中、Rは脂肪族不飽和結合を有しない同一又は異種の一価炭化水素基、mは正の整数を表す。)
As said non-reactive silicone resin, organopolysiloxane shown by following General formula (II) is preferable.
R 2 3 SiO (R 2 2 SiO) m SiR 2 3 ... (II)
(Wherein R 2 is the same or different monovalent hydrocarbon group having no aliphatic unsaturated bond, and m is a positive integer)
 離型剤組成物中における無反応性シリコーン樹脂の含有量は、好ましくは1~10質量%であり、より好ましくは1~5質量%である。無反応性シリコーン樹脂の含有量が1質量%以上であれば十分な軽剥離効果が発現し、10質量%以下であれば十分な硬化性、密着性を得ることができる。 The content of the nonreactive silicone resin in the release agent composition is preferably 1 to 10% by mass, and more preferably 1 to 5% by mass. If the content of the non-reactive silicone resin is 1% by mass or more, a sufficient light peeling effect is exhibited, and if 10% by mass or less, sufficient curability and adhesiveness can be obtained.
〈剥離コントロール剤〉
 離型剤組成物は、離型層の剥離性等を調整するため、各種剥離コントロール剤を含有してもよい。剥離力を重剥離化させる場合は、一般的にシリカ粒子、重剥離力のシリコーン種等を所望の剥離力を得るために離型剤組成物に適当な量を含有させて調整を行う。
 市販されている重剥離化剤の具体例を挙げると、信越化学工業(株)製KS-3800、X-92-183、東レダウコーニング(株)製SDY7292、BY24-843、BY24-4980が例示される。
<Peeling control agent>
The release agent composition may contain various release control agents in order to adjust the release property and the like of the release layer. When the peeling force is to be made to be heavy peeling, adjustment is usually carried out by incorporating an appropriate amount of a silica particle, a silicone type having a heavy peeling force, or the like into the releasing agent composition in order to obtain a desired peeling force.
Shin-Etsu Chemical Co., Ltd. KS-3800, X-92-183, Toray Dow Corning Co., Ltd. SDY7292, BY24-843, BY24-4980 are examples of the heavy peeling agent marketed. Be done.
 剥離力を軽剥離化させる場合は、低分子シロキサン(無反応性の低分子シリコーン化合物)を種々選択し、離型層に適当な含有量調整を行い、シロキサン移行成分が離型性能を発揮する様にする。低分子シロキサン化合物の例としては、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等が挙げられる。また、低分子環状シロキサンの他の化合物としては、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサンオリゴマー;分子鎖両末端ジメチルヒドロキシシロキシ基封鎖ジメチルシロキサンオリゴマー等があり、必要に応じて前記化合物は混合して使用してもよい。 In the case of lightening the peeling force, various low molecular weight siloxanes (non-reactive low molecular weight silicone compounds) are selected, the content is adjusted appropriately for the releasing layer, and the siloxane transfer component exerts releasing performance. Like. Examples of low molecular weight siloxane compounds include hexamethyl cyclotrisiloxane, octamethyl cyclotetrasiloxane, decamethyl cyclopentasiloxane and the like. In addition, as other compounds of low molecular weight cyclic siloxanes, there are a molecular chain both terminal trimethylsiloxy group-capped dimethylsiloxane oligomer; a molecular chain both terminal dimethylhydroxysiloxy group-capped dimethylsiloxane oligomer etc., and the above-mentioned compounds are mixed if necessary. You may use it.
 離型剤組成物中におけるこれら低分子シロキサン化合物の含有量は、好ましくは0.1~15.0質量%であり、より好ましくは0.1~10.0質量%、さらに好ましくは0.1~5.0質量%である。低分子シロキサンの含有量が、0.1質量%以上であれば、移行性成分が少なくなりすぎず離型性を発揮することができ、15.0質量%以下であれば、移行性成分が過剰に析出することなく、工程汚染を引き起こすおそれもない。 The content of these low molecular weight siloxane compounds in the releasing agent composition is preferably 0.1 to 15.0% by mass, more preferably 0.1 to 10.0% by mass, still more preferably 0.1. It is ̃5.0 mass%. When the content of the low molecular weight siloxane is 0.1% by mass or more, the releasable component is not too small and the releasability can be exhibited, and when it is 15.0% by mass or less, the mobilizable component is There is no possibility of causing process contamination without excessive precipitation.
〈反応抑制剤〉
 また、第1のポリジメチルシロキサンと第2のポリジメチルシロキサンによる付加型の反応は非常に反応性が高いため、必要に応じて、離型剤組成物は、反応抑制剤としてアセチレンアルコールを含有してもよい。アセチレンアルコールは、炭素-炭素3重結合と水酸基を有する有機化合物であるが、好ましくは3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、及びフェニルブチノールからなる群から選択される化合物である。反応抑制剤は1種又は2種以上を併用してもよい。
<Reaction inhibitor>
In addition, since the addition type reaction between the first polydimethylsiloxane and the second polydimethylsiloxane is very reactive, the releasing agent composition optionally contains acetylene alcohol as a reaction inhibitor, as needed. May be The acetylene alcohol is an organic compound having a carbon-carbon triple bond and a hydroxyl group, preferably 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, and phenyl. It is a compound selected from the group consisting of butynol. The reaction inhibitor may be used alone or in combination of two or more.
〈その他〉
 さらに本発明の主旨を損なわない範囲において、離型層を形成する離型剤組成物には必要に応じて消泡剤、塗布性改良剤、増粘剤、無機系有機系粒子、有機系潤滑剤、帯電防止剤、導電剤、紫外線吸収剤、酸化防止剤、発泡剤、染料、顔料等が含有されてもよい。
<Others>
Furthermore, to the extent that the gist of the present invention is not impaired, the release agent composition for forming the release layer may, if necessary, be an antifoamer, a coatability improver, a thickener, inorganic organic particles, organic lubrication An agent, an antistatic agent, a conductive agent, an ultraviolet absorber, an antioxidant, a foaming agent, a dye, a pigment and the like may be contained.
<離型層の形成>
 続いて、本発明の離型フィルムを構成する離型層の形成について説明する。
 本発明の離型フィルムは、少なくとも一軸方向に延伸されたポリエステルフィルムの少なくとも片面に架橋樹脂層を設け、さらに該架橋樹脂層の上に離型層を積層させて製造される。
 離型層は、架橋樹脂層と同様にインラインコーティングでもオフラインコーティングでもよいが、離型層組成物を高速で均一に塗布できる点からオフラインコーティングが好ましく用いられる。
 離型層組成物を設ける方法としては、架橋樹脂層と同様にリバースロールコート、グラビアコート、バーコート、ドクターブレードコート等、従来公知の塗工方式を用いることができる。
<Formation of Release Layer>
Then, formation of the mold release layer which comprises the mold release film of this invention is demonstrated.
The release film of the present invention is produced by providing a crosslinked resin layer on at least one surface of a polyester film stretched at least in a uniaxial direction, and further laminating a release layer on the crosslinked resin layer.
The release layer may be in-line coating or off-line coating as in the case of the cross-linked resin layer, but off-line coating is preferably used in that the release layer composition can be uniformly applied at high speed.
As a method of providing a release layer composition, conventionally known coating methods such as reverse roll coating, gravure coating, bar coating, and doctor blade coating can be used as in the case of the crosslinked resin layer.
 オフラインコーティングによって離型層を設ける場合は、上述の一連の化合物を含む離型剤組成物の溶液又は分散体として、塗布液を架橋樹脂層上に塗布する要領にて行うのが好ましい。離型剤組成物を含む塗布液を製造するにあたり、溶媒は水でも有機溶媒でもよいが、離型剤組成物との相溶性の観点から有機溶媒が好ましい。
 具体的な有機溶媒の例としては、n-ブチルアルコール、n-プロピルアルコール、イソプロピルアルコール、エチルアルコール、メチルアルコール等の脂肪族又は脂環族アルコール類、プロピレングリコール、エチレングリコール、ジエチレングリコール等のグリコール類、n-ブチルセロソルブ、エチルセロソルブ、メチルセロソルブ、プロピレングリコールモノメチルエーテル等のグリコール誘導体、ジオキサン、テトラヒドロフラン等のエーテル類、酢酸エチル、酢酸アミル等のエステル類、メチルエチルケトン、アセトン等のケトン類、N-メチルピロリドン等のアミド類が挙げられる。
When the release layer is provided by off-line coating, it is preferable to apply the coating solution on the crosslinked resin layer as a solution or dispersion of a release agent composition containing the above-mentioned series of compounds. The solvent may be water or an organic solvent in producing a coating solution containing the release agent composition, but an organic solvent is preferable from the viewpoint of compatibility with the release agent composition.
Specific examples of the organic solvent include aliphatic or alicyclic alcohols such as n-butyl alcohol, n-propyl alcohol, isopropyl alcohol, ethyl alcohol and methyl alcohol, and glycols such as propylene glycol, ethylene glycol and diethylene glycol Glycol derivatives such as n-butyl cellosolve, ethyl cellosolve, methyl cellosolve, propylene glycol monomethyl ether, ethers such as dioxane and tetrahydrofuran, esters such as ethyl acetate and amyl acetate, ketones such as methyl ethyl ketone and acetone, N-methyl pyrrolidone And the like.
 また、ポリエステルフィルムの架橋樹脂層上に離型層を形成する際の硬化条件に関しては特に限定されるわけではなく、オフラインコーティングにより離型層を設ける場合、通常、80℃以上で10秒以上、好ましくは100~200℃で3~40秒間、より好ましくは120~180℃で3~40秒間を目安として熱処理を行うのがよい。また、必要に応じて熱処理と紫外線照射等の活性エネルギー線照射とを併用してもよい。なお、活性エネルギー線照射による硬化のためのエネルギー源としては、公知の装置,エネルギー源を用いることができる。 The curing conditions for forming the release layer on the cross-linked resin layer of the polyester film are not particularly limited, and when the release layer is provided by off-line coating, usually 80 ° C. or more for 10 seconds or more, The heat treatment is preferably carried out with a temperature of 100 to 200 ° C. for 3 to 40 seconds, more preferably 120 to 180 ° C. for 3 to 40 seconds. Moreover, you may use together heat processing and active energy ray irradiations, such as ultraviolet irradiation, as needed. In addition, as an energy source for hardening by active energy ray irradiation, a well-known apparatus and energy source can be used.
 本発明において架橋樹脂層上に設けられる離型層の膜厚は、最終的な被膜としてみた際に、架橋樹脂層との密着性を良好にし、基材レス両面粘着シートとの軽剥離性を良好にする観点から、通常0.005~1μm、好ましくは0.01~1μm、さらに好ましくは0.15~0.70μmである。
 また、離型層の塗布量(乾燥後)は塗工性の面から、通常、0.005~5g/m、好ましくは0.01~1g/m、より好ましくは0.15~0.70g/mの範囲である。塗布量(乾燥後)が0.005g/m以上であれば、塗工性の面において安定性に欠けることなく、均一な塗膜を得ることが可能となる。また、5g/m以下であれば、離型層自体の塗膜密着性、硬化性等が低下するおそれがない。なお、塗布量は、塗布した時間あたりの液質量(乾燥前)、塗工液不揮発分濃度、塗布幅、延伸倍率、ライン速度等から計算で求めることができる。
In the present invention, the film thickness of the release layer provided on the crosslinked resin layer improves the adhesion with the crosslinked resin layer when viewed as a final film, and the light releasability from the substrateless double-sided pressure-sensitive adhesive sheet From the viewpoint of improvement, the thickness is usually 0.005 to 1 μm, preferably 0.01 to 1 μm, and more preferably 0.15 to 0.70 μm.
The amount of the release layer applied (after drying) is usually from 0.005 to 5 g / m 2 , preferably from 0.01 to 1 g / m 2 , more preferably from 0.15 to 0, from the viewpoint of coatability. It is in the range of .70 g / m 2 . When the coating amount (after drying) is 0.005 g / m 2 or more, it becomes possible to obtain a uniform coating film without lack of stability in terms of coating property. Moreover, if it is 5 g / m < 2 > or less, there is no possibility that the coating-film adhesiveness of a release layer itself, hardening property, etc. may fall. The application amount can be calculated from the liquid mass per application time (before drying), the concentration of non-volatile matter in the application liquid, the application width, the draw ratio, the line speed, and the like.
<離型フィルムの性能>
 本発明の離型フィルムは、離型フィルムと粘着剤との離型性及び帯電防止性が良好であり、経時でも離型層に密着性があり、溶融リサイクル可能で生産性が良好であるため、その工業的価値は高い。
<Performance of release film>
The release film of the present invention has good releasability and antistatic properties between the release film and the pressure-sensitive adhesive, has adhesion to the release layer even with time lapse, is melt recyclable, and has good productivity. , Its industrial value is high.
[剥離力]
 本発明の離型フィルムの剥離力は、該離型フィルム(離型層側の表面)と粘着剤テープとの剥離力が、引張速度300mm/minの条件の下、180°剥離で、4g/25mm以下である。該剥離力が4g/25mmを超えると、剥離力が重くなりすぎるため離型フィルムを剥がす際の利便性が低下する。該剥離力は、離型フィルムの利便性の観点から、さらに好ましくは3g/25mm以下である。なお、該剥離力の下限は特に限定されないが、搬送性の観点から、離型フィルムと被着体である粘着フィルムとの密着性を有することが好ましく、0.5g/25mm以上であることがより好ましい。
 本発明の離型フィルムの剥離力は、180°剥離で4g/25mm以下であることによって、離型フィルムの離型層を構成する離型剤組成物に、重量平均分子量が500以上50000以下であり1分子中に少なくとも1個のアルケニル基を有する第1のポリジメチルシロキサンと、重量平均分子量が120以上20000以下であり1分子中に少なくとも1個のヒドロシリル基を有する第2のポリジメチルシロキサンとを含有することが示唆される。
[Peeling force]
The release force of the release film of the present invention is 4 g / g at 180 ° release under the conditions of a release speed of 300 mm / min between the release film (surface on the release layer side) and the adhesive tape. It is 25 mm or less. When the peeling force exceeds 4 g / 25 mm, the peeling force is too heavy, so the convenience at the time of peeling the release film is lowered. The peeling force is more preferably 3 g / 25 mm or less from the viewpoint of the convenience of the release film. The lower limit of the peeling force is not particularly limited, but from the viewpoint of transportability, it preferably has adhesiveness between the release film and the pressure-sensitive adhesive film which is the adherend, and is 0.5 g / 25 mm or more More preferable.
The release force of the release film of the present invention is 4 g / 25 mm or less at 180 ° peeling, so that the release agent composition constituting the release layer of the release film has a weight average molecular weight of 500 to 50,000. A first polydimethylsiloxane having at least one alkenyl group in one molecule, and a second polydimethylsiloxane having a weight average molecular weight of 120 or more and 20,000 or less and at least one hydrosilyl group in one molecule; Is suggested to contain.
 本発明の離型フィルムの剥離力は、詳しくは実施例において後述する方法により測定する。
 なお、本発明の離型フィルムは良好な離型性、すなわち軽剥離性を有するが、本発明において軽剥離とは、幅25mm程度のテープを粘着して剥がす際の力が、4g/25mm以下で剥離可能なものをいう。
The peeling force of the release film of the present invention is measured in detail by the method described later in the examples.
In addition, although the release film of the present invention has good releasability, that is, light releasability, in the present invention, light releasability means that the force at the time of adhering and peeling a tape about 25 mm wide is 4 g / 25 mm or less In what is peelable.
 離型フィルムと離型性が良好な粘着剤としては、特に限定はされないが、アクリル系粘着剤であることが好ましい。アクリル系粘着剤は、官能基含有モノマーと、アクリル酸エステル、メタアクリル酸エステル等の他のモノマーとを共重合して得られるアクリル系共重合体が主成分として構成されるものが挙げられる。 The pressure-sensitive adhesive having good releasability and release film is not particularly limited, but an acrylic pressure-sensitive adhesive is preferable. The acrylic pressure-sensitive adhesive includes, as a main component, an acrylic copolymer obtained by copolymerizing a functional group-containing monomer with another monomer such as acrylic acid ester and methacrylic acid ester.
[表面固有抵抗]
 本発明の離型フィルムの離型層表面における表面固有抵抗は、離型フィルムを剥離した際に生じる剥離帯電を防止し、粘着面に塵芥等を付着させない観点から、好ましくは1×1011Ω以下であり、より好ましくは1×1010Ω以下である。一方、表面固有抵抗の下限は特に限定されないが、1×10Ω以上が好ましい。
 本発明の離型フィルムの表面固有抵抗は、詳しくは実施例において後述する方法により測定することができる。
[Surface resistivity]
The surface specific resistance on the surface of the release layer of the release film of the present invention is preferably 1 × 10 11 Ω from the viewpoint of preventing peeling charge generated when releasing the release film and preventing adhesion of dust etc. to the adhesive surface. Or less, more preferably 1 × 10 10 Ω or less. On the other hand, the lower limit of the surface specific resistance is not particularly limited, but 1 × 10 1 Ω or more is preferable.
The surface resistivity of the release film of the present invention can be measured in detail by the method described later in the examples.
[経時塗膜密着性及び生産性]
 例えば、本発明の離型フィルムを23℃、50%RH雰囲気下、30日間放置した後に離型層に負荷を与えても、離型層の脱落がほとんど生じず実用可能な密着性を維持することができる。
 また、架橋樹脂層が設けられたポリエステルフィルムを溶融リサイクルしても、架橋樹脂組成物とポリエステルとの相溶性がよいため、実用不可能な水準の異物が発生せず再生利用することができ、離型フィルムの生産性が良好となる。
[Adhesive film adhesion over time and productivity]
For example, even if a load is applied to the release layer after leaving the release film of the present invention in an atmosphere of 23 ° C. and 50% RH for 30 days, the release layer hardly comes off and maintains practicable adhesion. be able to.
In addition, even if the polyester film provided with the crosslinked resin layer is melt recycled, the compatibility between the crosslinked resin composition and the polyester is good, so that non-practical foreign matter is not generated and can be recycled. The productivity of the release film is good.
<積層体>
 本発明の積層体は、少なくとも一軸方向に延伸されたポリエステルフィルムの少なくとも片面に架橋樹脂層を有し、さらに該架橋樹脂層の上に離型層が積層された離型フィルムと、両面粘着シートとを積層させた積層体である。本発明の積層体において、前記離型フィルムの架橋樹脂層はカチオン性基を有するイオン性ポリマー(A)を含有し、離型層はポリジメチルシロキサンを含有し、膜厚が0.01~1μmである。前記離型層の膜厚が前記範囲内であることによって、離型フィルムを構成する離型層と架橋樹脂層との密着性を十分に有することができる。一方、前記離型層の膜厚が1μmを超えると、離型フィルムを構成する離型層と架橋樹脂層との密着性が不十分となり、離型層の表面が剥がれやすくなるなどの不具合が生じやすい。前記離型層の膜厚は、さらに好ましくは0.15~0.70μmである。
<Laminate>
The laminate of the present invention comprises a release film having a crosslinked resin layer on at least one side of a polyester film stretched in at least one uniaxial direction, and further having a release layer laminated on the crosslinked resin layer, and a double-sided pressure-sensitive adhesive sheet And a laminated body. In the laminate of the present invention, the crosslinked resin layer of the release film contains an ionic polymer (A) having a cationic group, and the release layer contains polydimethylsiloxane and has a film thickness of 0.01 to 1 μm. It is. By the film thickness of the said mold release layer being in the said range, it can fully have adhesiveness of the mold release layer which comprises a mold release film, and a crosslinked resin layer. On the other hand, when the film thickness of the release layer exceeds 1 μm, the adhesion between the release layer constituting the release film and the cross-linked resin layer becomes insufficient, and the surface of the release layer is easily peeled off. It is easy to occur. The thickness of the release layer is more preferably 0.15 to 0.70 μm.
 さらに本発明の積層体は、前記離型フィルムと前記両面粘着シートとの間で軽剥離性を有することができる。前記離型フィルムの離型層表面と前記両面粘着シートとの剥離力が、引張速度300mm/minの条件の下、180°剥離で4g/25mm以下である。前記剥離力は、離型フィルムの利便性の観点から、さらに好ましくは3g/25mm以下である。なお、該剥離力の下限は特に限定されないが、搬送性の観点から、離型フィルムと被着体である粘着フィルムとの密着性を有することが好ましく、0.5g/25mm以上であることがより好ましい。 Furthermore, the laminate of the present invention can have light releasability between the release film and the double-sided pressure-sensitive adhesive sheet. The peel force between the release layer surface of the release film and the double-sided pressure-sensitive adhesive sheet is 4 g / 25 mm or less at 180 ° peeling under the condition of 300 mm / min tensile speed. The peeling force is more preferably 3 g / 25 mm or less from the viewpoint of convenience of the release film. The lower limit of the peeling force is not particularly limited, but from the viewpoint of transportability, it preferably has adhesiveness between the release film and the pressure-sensitive adhesive film which is the adherend, and is 0.5 g / 25 mm or more More preferable.
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of Examples and Comparative Examples, but the present invention is not limited thereto.
 本発明で用いた測定法及び評価法は次のとおりである。
(1)ポリエステルの極限粘度の測定方法
 ポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(質量比)の混合溶媒100mLを加えて溶解させ、全自動溶液粘度計(センテック社製、「DT553」)を用いて30℃で測定した。
The measurement method and evaluation method used in the present invention are as follows.
(1) Measuring Method of Intrinsic Viscosity of Polyester 1 g of polyester is precisely weighed, 100 mL of mixed solvent of phenol / tetrachloroethane = 50/50 (mass ratio) is added and dissolved, and a fully automatic solution viscometer (manufactured by Sentech Co., Ltd. It measured at 30 degreeC using DT553 ").
(2)粒子の平均粒径(d50:μm)の測定
 遠心沈降式粒度分布測定装置((株)島津製作所社製、「SA-CP3型」)を使用して測定した等価球形分布における積算(質量基準)50%の値を平均粒径とした。
(2) Measurement of average particle diameter (d50: μm) of particles Integration in equivalent spherical distribution measured using a centrifugal sedimentation type particle size distribution measuring apparatus (manufactured by Shimadzu Corporation, "SA-CP type 3") The value of 50% of mass basis was made into the average particle diameter.
(3)離型フィルムの剥離性評価
 実施例及び比較例で得られた離型フィルムの離型層表面に、粘着剤テープ(日東電工(株)製、「No.502」、アクリル系粘着剤)の片面を貼り付けた後、25mm×300mmのサイズにカットし、室温にて1時間放置後の剥離力を測定した。剥離力は、引張試験機((株)インテスコ製「インテスコモデル2001型」)を使用し、引張速度300mm/分の条件下、180°剥離で評価した。
(判定基準)
 A(good):剥離力値が4g/25mm以下。
 C(poor):剥離力値が4g/25mmを超える。
(3) Evaluation of releasability of release film On the surface of the release layer of the release film obtained in Examples and Comparative Examples, an adhesive tape (manufactured by Nitto Denko Corp., "No. 502", acrylic adhesive) After sticking one side of the above, it cut into size of 25 mm x 300 mm, and measured exfoliation power after leaving to stand at room temperature for 1 hour. Peeling force was evaluated by 180 ° peeling under a tensile speed of 300 mm / min using a tensile tester (“Intesco model 2001 type” manufactured by Intesco Corporation).
(Judgment criteria)
A (good): Peeling force value is 4 g / 25 mm or less.
C (poor): Peeling force value exceeds 4 g / 25 mm.
(4)離型フィルムの表面固有抵抗
 実施例及び比較例で得られた離型フィルムについて、日本ヒューレット・パッカード社製高抵抗測定器:HP4339B及び測定電極:HP16008Bを使用し、23℃,50%RHの測定雰囲気で30分間調湿後、表面固有抵抗値を測定した。表面固有抵抗値が低いほど、帯電を防止する作用に優れる。
(評価基準)
 A:R(Ω)が1×1010以下。
 B:R(Ω)が1×1010を超え、1×1011以下。
 C:R(Ω)が1×1011を超える。
(4) Surface specific resistance of release film The release films obtained in Examples and Comparative Examples were measured using a high resistance measuring device HP4339B manufactured by Nippon Hewlett-Packard Co. and measuring electrode: HP16008B at 23 ° C., 50%. After adjusting the humidity for 30 minutes in a measurement atmosphere of RH, the surface specific resistance value was measured. The lower the surface specific resistance value, the better the action of preventing charging.
(Evaluation criteria)
A: R (Ω) is 1 × 10 10 or less.
B: R (Ω) exceeds 1 × 10 10 and 1 × 10 11 or less.
C: R (Ω) exceeds 1 × 10 11
(5)離型フィルムの経時塗膜密着性評価(実用特性代用評価)
 実施例及び比較例で得られた離型フィルムを、恒温恒湿槽中、23℃、50%RH雰囲気下、30日間放置した後に該フィルムを取り出した。その後、該フィルムの離型面を触手により5回擦り、離型層の脱落程度を以下の評価基準によって評価を行った。
(評価基準)
 A:離型層の脱落が見られない。
 B:離型層が白くなるが脱落はしていない。
 C:離型層の脱落が確認された。
(5) Evaluation of film adhesion over time of release film (practice characteristic substitution evaluation)
The release films obtained in Examples and Comparative Examples were left in an atmosphere of constant temperature and humidity, at 23 ° C. and 50% RH for 30 days, and the films were taken out. Thereafter, the release surface of the film was rubbed five times with a tentacle, and the degree of removal of the release layer was evaluated according to the following evaluation criteria.
(Evaluation criteria)
A: There is no falling off of the release layer.
B: The release layer turned white but did not drop off.
C: Dropping of the release layer was confirmed.
(6)離型フィルムの生産性(リサイクル性)
 実施例及び比較例における架橋樹脂層が設けられたポリエステルフィルムを、機械的に断裁・粉砕して再生フレークとし、この再生フレークを加熱乾燥せずにそのまま、押出機の中間層に添加した。その後、実施例1の製膜時と全く同様に行って、厚み38μmの二軸配向ポリエステルフィルムを作製し、該ポリエステルフィルムの異物の有無を光学顕微鏡により観察した。
 異物が観察された場合は、溶融リサイクルをすることができないため、離型フィルムの製造コストが高くなり生産性が低くなることを示唆する。
(評価基準)
 A:異物が観察されない。
 C:異物が観察される。
(6) Productivity of mold release film (recyclability)
The polyester film provided with the crosslinked resin layer in Examples and Comparative Examples was mechanically cut and crushed to be regenerated flakes, and the regenerated flakes were directly added to the intermediate layer of the extruder without being heat-dried. Thereafter, the process was carried out in exactly the same manner as in the film formation of Example 1 to prepare a 38 μm-thick biaxially oriented polyester film, and the presence or absence of foreign matter in the polyester film was observed with an optical microscope.
If foreign matter is observed, it can not be melt-recycled, which suggests that the manufacturing cost of the release film is high and the productivity is low.
(Evaluation criteria)
A: Foreign matter is not observed.
C: Foreign matter is observed.
〈ポリエステルの製造〉
[製造例1](ポリエステル(I))
 テレフタル酸ジメチル100質量部とエチレングリコール60質量部とを出発原料とし、エステル交換触媒として酢酸マグネシウム・四水塩0.09質量部を反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物にエチルアシッドフォスフェート0.04質量部を添加した後、重合触媒として三酸化アンチモン0.04質量部を加えて、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度が0.63dL/gに相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させた。得られたポリエステル(I)の極限粘度は0.63dL/gであった。
<Production of polyester>
Production Example 1 (Polyester (I))
Using 100 parts by mass of dimethyl terephthalate and 60 parts by mass of ethylene glycol as starting materials, 0.09 parts by mass of magnesium acetate tetrahydrate as an ester exchange catalyst is placed in a reactor, the reaction start temperature is 150 ° C., methanol is distilled off The reaction temperature was gradually raised with this and brought to 230 ° C. after 3 hours. After 4 hours, the transesterification was substantially terminated. After 0.04 parts by mass of ethyl acid phosphate was added to the reaction mixture, 0.04 parts by mass of antimony trioxide was added as a polymerization catalyst, and a polycondensation reaction was performed for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally it was 0.3 mmHg. After the start of the reaction, the reaction was stopped when the intrinsic viscosity corresponded to 0.63 dL / g due to the change of the stirring power of the reaction tank, and the polymer was discharged under nitrogen pressure. The intrinsic viscosity of the obtained polyester (I) was 0.63 dL / g.
[製造例2](ポリエステル(II))
 ポリエステル(I)の製造方法において、エチルアシッドフォスフェート0.04質量部を添加後、エチレングリコールに分散させた平均粒子径1.6μmのシリカ粒子を0.3質量部、三酸化アンチモン0.04質量部を加えて、極限粘度が0.65dL/gに相当する時点で重縮合反応を停止した以外は、ポリエステル(I)の製造方法と同様の方法を用いてポリエステル(II)を得た。得られたポリエステル(II)の極限粘度は0.65dL/gであった。
Production Example 2 (Polyester (II))
In the production method of polyester (I), after adding 0.04 parts by mass of ethyl acid phosphate, 0.3 parts by mass of silica particles having an average particle diameter of 1.6 μm dispersed in ethylene glycol, 0.04 of antimony trioxide A polyester (II) was obtained using the same method as the polyester (I) production method, except that the polycondensation reaction was stopped when a mass part was added and the polycondensation reaction was stopped when the intrinsic viscosity corresponded to 0.65 dL / g. The intrinsic viscosity of the obtained polyester (II) was 0.65 dL / g.
〈架橋樹脂層〉
 架橋樹脂層を形成する架橋樹脂組成物には、以下の原料を用いた。
(A)イオン性ポリマー
A1:ポリ(ジアリルジメチルアンモニウムクロライド)(数平均分子量:約30000)
A2:下記式1の構成単位と、下記式2の構成単位と、下記式3の構成単位を質量比率で80/10/10の比率で共重合した高分子化合物(数平均分子量:21000)
A3:下記式4の構成単位からなる側鎖にカチオンを有するポリマー(数平均分子量:40000)
<Crosslinked resin layer>
The following raw materials were used for the crosslinked resin composition which forms a crosslinked resin layer.
(A) Ionic Polymer A1: Poly (diallyldimethylammonium chloride) (number average molecular weight: about 30,000)
A2: A polymer compound (number average molecular weight: 21000) obtained by copolymerizing the constitutional unit of the following formula 1, the constitutional unit of the following formula 2, and the constitutional unit of the following formula 3 in a mass ratio of 80/10/10.
A3: A polymer having a cation in the side chain consisting of the structural units of the following formula 4 (number average molecular weight: 40000)
Figure JPOXMLDOC01-appb-C000001

 
Figure JPOXMLDOC01-appb-C000001

 
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
(B)バインダーポリマー
B1:ケン化度が88%、重合度500のポリビニルアルコール
B2:アクリル樹脂(下記組成で重合したアクリル樹脂の水分散体)
 エチルアクリレート/n-ブチルアクリレート/メチルメタクリレート/N-メチロールアクリルアミド/アクリル酸=65/21/10/2/2(質量%)の乳化重合体(乳化剤:アニオン系界面活性剤)
B3:ポリウレタン樹脂
 テレフタル酸を664質量部、イソフタル酸を631質量部、1,4-ブタンジオールを472質量部、ネオペンチルグリコールを447質量部からなるポリエステルポリオールを得た。次いで、得られたポリエステルポリオールに、アジピン酸を321質量部、ジメチロールプロピオン酸を268質量部加え、ペンダントカルボキシル基含有ポリエステルポリオールAを得た。さらに、前記ポリエステルポリオールAを1880質量部に、ヘキサメチレンジイソシアネートを160質量部加えてポリウレタン樹脂を得た。
(B) Binder polymer B1: polyvinyl alcohol B2 having a degree of saponification of 88% and a degree of polymerization of 500: acrylic resin (water dispersion of acrylic resin polymerized according to the following composition)
Emulsion polymer of ethyl acrylate / n-butyl acrylate / methyl methacrylate / N-methylol acrylamide / acrylic acid = 65/21/10/2/2 (% by mass) (emulsifier: anionic surfactant)
B3: Polyurethane resin A polyester polyol comprising 664 parts by mass of terephthalic acid, 631 parts by mass of isophthalic acid, 472 parts by mass of 1,4-butanediol, and 447 parts by mass of neopentyl glycol was obtained. Subsequently, 321 parts by mass of adipic acid and 268 parts by mass of dimethylol propionic acid were added to the obtained polyester polyol to obtain a pendant carboxyl group-containing polyester polyol A. Furthermore, 160 parts by mass of hexamethylene diisocyanate was added to 1880 parts by mass of the polyester polyol A to obtain a polyurethane resin.
(C)架橋剤
C1:ヘキサメトキシメチロールメラミン
C2:ポリグリセロールポリグリシジルエーテル
C3:3-グリシドキシプロピルトリメトキシシラン
(C) Crosslinking agent C1: hexamethoxymethylolmelamine C2: polyglycerol polyglycidyl ether C3: 3-glycidoxypropyltrimethoxysilane
(その他)
D1:ポリエチレンジオキシチオフェンとポリスチレンスルホン酸からなる混合物(スタルク(株)製、BaytronPAG)
E1:グリセリン
F1:平均粒径0.02μmのアルミナ表面変性シリカゾル水分散体
F2:平均粒径0.07μmのシリカ粒子
(Others)
D1: Mixture of polyethylene dioxythiophene and polystyrene sulfonic acid (Stark Co., Ltd., Baytron PAG)
E1: Glycerin F1: Alumina surface-modified silica sol aqueous dispersion F2 having an average particle size of 0.02 μm: Silica particles having an average particle size of 0.07 μm
〈離型層〉
 離型層を形成する離型剤組成物には、以下の原料を用いた。
 なお、原料の重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)によりポリスチレン換算で測定した。
(ビニル基含有ポリジメチルシロキサン(ビニル基含有PDMS))
a1:ポリジメチルシロキサンの構造中にビニル基を少なくとも2個有するビニル変性シリコーン樹脂(重量平均分子量:2000、PDMS30g中ビニル基30mmol)
a2:ポリジメチルシロキサンの構造中にビニル基を少なくとも2個有するビニル変性シリコーン樹脂(重量平均分子量:20000、PDMS30g中ビニル基3mmol)
a3:ポリジメチルシロキサンの構造中にビニル基を少なくとも2個有するビニル変性シリコーン樹脂(重量平均分子量:1000、PDMS30g中ビニル基60mmol)
a4:ポリジメチルシロキサンの構造中にビニル基を少なくとも2個有するビニル変性シリコーン樹脂(重量平均分子量:60000、PDMS30g中ビニル基1mmol)
a5:ポリジメチルシロキサンの構造中にビニル基を少なくとも2個有するビニル変性シリコーン樹脂(重量平均分子量:300、PDMS30g中ビニル基200mmol)
<Release layer>
The following raw materials were used for the mold release agent composition which forms a mold release layer.
The weight average molecular weight of the raw material was measured by gel permeation chromatography (GPC) in terms of polystyrene.
(Vinyl group-containing polydimethylsiloxane (vinyl group-containing PDMS))
a1: Vinyl-modified silicone resin having at least two vinyl groups in the structure of polydimethylsiloxane (weight average molecular weight: 2000, 30 mmol of vinyl group in 30 g of PDMS)
a2: Vinyl-modified silicone resin having at least two vinyl groups in the structure of polydimethylsiloxane (weight average molecular weight: 20000, 3 mmol of vinyl group in 30 g of PDMS)
a3: Vinyl-modified silicone resin having at least two vinyl groups in the structure of polydimethylsiloxane (weight average molecular weight: 1000, 60 mmol of vinyl group in 30 g of PDMS)
a4: Vinyl-modified silicone resin having at least two vinyl groups in the structure of polydimethylsiloxane (weight average molecular weight: 60000, 1 mmol of vinyl group in 30 g of PDMS)
a5: Vinyl-modified silicone resin having at least two vinyl groups in the structure of polydimethylsiloxane (weight average molecular weight: 300, vinyl group 200 mmol in 30 g of PDMS)
(ヒドロシリル基含有ポリジメチルシロキサン(ヒドロシリル基含有PDMS))
b1:ポリジメチルシロキサンの構造中にヒドロシリル基を少なくとも2個有するポリメチルハイドロジェンシロキサン(重量平均分子量:200、PDMS30g中ヒドロシリル基300mmol)
b2:ポリジメチルシロキサンの構造中にヒドロシリル基を少なくとも1個有するポリメチルハイドロジェンシロキサン(重量平均分子量:5000、PDMS30g中ヒドロシリル基6mmol)
b3:ポリジメチルシロキサンの構造中にヒドロシリル基を少なくとも1個有するポリメチルハイドロジェンシロキサン(重量平均分子量:30000、PDMS30g中ヒドロシリル基1mmol)
b4:ポリジメチルシロキサンの構造中にヒドロシリル基を少なくとも2個有するポリメチルハイドロジェンシロキサン(重量平均分子量:100、PDMS30g中ヒドロシリル基600mmol)
(Hydrosilyl group-containing polydimethylsiloxane (hydrosilyl group-containing PDMS))
b1: Polymethyl hydrogen siloxane having at least two hydrosilyl groups in the structure of polydimethylsiloxane (weight average molecular weight: 200, 300 mmol of hydrosilyl group in 30 g of PDMS)
b2: Polymethyl hydrogen siloxane having at least one hydrosilyl group in the structure of polydimethylsiloxane (weight average molecular weight: 5000, hydrosilyl group 6 mmol in 30 g of PDMS)
b3: Polymethyl hydrogen siloxane having at least one hydrosilyl group in the structure of polydimethylsiloxane (weight average molecular weight: 30,000, 1 mmol of hydrosilyl group in 30 g of PDMS)
b4: polymethyl hydrogen siloxane having at least two hydrosilyl groups in the structure of polydimethylsiloxane (weight average molecular weight: 100, 600 mmol of hydrosilyl group in 30 g of PDMS)
(その他)
c1:白金系触媒(東レ・ダウコーニング社製「SRX-212」)
d1:反応性基含有の有機珪素化合物(エポキシシロキサン、Momentive社製「Anchorsil3000」)
d2:反応性基含有の有機珪素化合物(β-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン)
d3:反応性基含有の有機珪素化合物(γ-グリシドキシプロピルトリメトキシシラン)
(Others)
c1: Platinum-based catalyst (Toray · Dow Corning “SRX-212”)
d1: Reactive group-containing organosilicon compound (epoxy siloxane, manufactured by Momentive, “Anchorsil 3000”)
d2: Reactive group-containing organosilicon compound (β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane)
d3: Reactive group-containing organosilicon compound (γ-glycidoxypropyltrimethoxysilane)
〈離型フィルムの製造〉
[実施例1]
(1)積層ポリエステルフィルム
 ポリエステル(I)、(II)をそれぞれ90%、10%の割合で混合した混合原料を最外層(表層)の原料とし、ポリエステル(I)を中間層の原料として、2台の押出機に各々を供給し、各々285℃で溶融した後、40℃に設定した冷却ロール上に、2種3層(表層/中間層/表層)の層構成で共押出しし、冷却固化させて未延伸シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.4倍延伸した後、表1の塗布剤組成からなる塗布液(水分散、固形分濃度5質量%)を塗布量(乾燥後)が所定量となるように、フィルム片面に塗布した後に、テンターに導き、横方向に120℃で4.3倍延伸し、225℃で熱処理を行った後、ポリエステルフィルムの厚さが38μm(表層5μm/中間層28μm/表層5μm)であり、架橋樹脂層1が設けられた積層ポリエステルフィルムを得た。
(2)離型剤組成物
 表2に示す組成にしたがい、第1のポリジメチルシロキサンとして、ポリジメチルシロキサンの構造中にビニル基を少なくとも2個有するビニル変性シリコーン樹脂a1(重量平均分子量:2000)と、第2のポリジメチルシロキサンとして、ポリジメチルシロキサンの構造中にヒドロシリル基を少なくとも2個有するポリメチルハイドロジェンシロキサンb1(重量平均分子量:200)を第1のポリジメチルシロキサン/第2のポリジメチルシロキサン=77/22(質量部)となるように混ぜ合わせ、固形分3質量%となるようにトルエン/メチルエチルケトン/ヘキサン=1/1/18の配合比(質量比)の溶剤で希釈したのち、白金系触媒C1を1質量部加えて、離型剤組成物を得た。
(3)離型フィルム
 上記で得られた積層ポリエステルフィルムの架橋樹脂層1の上に、オフラインにより、離型層1の膜厚が0.2μmとなるように上記離型剤組成物をリバースグラビアコート方式により塗布し、180℃で10秒間熱処理した後、離型フィルムを得た。
 得られた離型フィルムの評価結果を表3に示す。本発明における離型層および架橋樹脂層の膜厚は、離型フィルムをルテニウム化合物やオスミウム化合物等の重金属を用いて染色を行い、超薄切片法により離型フィルムの断面を調整した後、透過型電子顕微鏡にて離型フィルム断面の架橋樹脂層をランダムに複数個所を測定し、平均値を算出した。
<Production of release film>
Example 1
(1) Laminated polyester film A mixed raw material in which polyesters (I) and (II) are mixed at a ratio of 90% and 10%, respectively, is used as the raw material for the outermost layer (surface layer), and polyester (I) is used as the raw material for the intermediate layer. Each is supplied to a platform extruder and melted at 285 ° C., and then co-extruded in a layer configuration of two types and three layers (surface layer / interlayer / surface layer) on a cooling roll set at 40 ° C., and solidified by cooling The unstretched sheet was obtained. Then, after stretching by 3.4 times in the longitudinal direction at a film temperature of 85 ° C. using the roll peripheral speed difference, the coating amount (water dispersion, solid content concentration 5 mass%) of the coating agent composition in Table 1 is applied The film is coated on one side of the film so that it has a predetermined amount (after drying), and then guided to a tenter, stretched 4.3 times in the lateral direction at 120 ° C., heat-treated at 225 ° C., and then the thickness of the polyester film There were obtained a laminated polyester film having a thickness of 38 μm (surface layer 5 μm / intermediate layer 28 μm / surface layer 5 μm) and the crosslinked resin layer 1 provided.
(2) Releasing Agent Composition According to the composition shown in Table 2, vinyl-modified silicone resin a1 having at least two vinyl groups in the structure of polydimethylsiloxane as the first polydimethylsiloxane (weight average molecular weight: 2000) And polymethyl hydrogen siloxane b1 (weight average molecular weight: 200) having at least two hydrosilyl groups in the structure of polydimethylsiloxane as a second polydimethylsiloxane, as a first polydimethylsiloxane / second polydimethyl Mix so that siloxane = 77/22 (parts by mass), dilute with a solvent with a compounding ratio (mass ratio) of toluene / methyl ethyl ketone / hexane = 1/1/18 so that the solid content becomes 3 mass%, One part by mass of the platinum-based catalyst C1 was added to obtain a release agent composition.
(3) Release film On the crosslinked resin layer 1 of the laminated polyester film obtained above, the release agent composition is reverse-gravure so that the film thickness of the release layer 1 becomes 0.2 μm offline. After coating by a coating method and heat treatment at 180 ° C. for 10 seconds, a release film was obtained.
The evaluation results of the obtained release film are shown in Table 3. The film thickness of the release layer and the cross-linked resin layer in the present invention is obtained by dyeing the release film with a heavy metal such as a ruthenium compound or osmium compound and adjusting the cross section of the release film by the ultrathin section method. The cross-linked resin layer of the cross section of the release film was randomly measured at a plurality of places with a scanning electron microscope, and the average value was calculated.
[実施例2~14及び比較例1~8]
 架橋樹脂層については表1に示す架橋樹脂層に変更し、離型層については表2に示す離型剤組成物に変更した以外は実施例1と同様にして製造し、離型フィルムを得た。
 得られた離型フィルムの評価結果を表3に示す。
[Examples 2 to 14 and Comparative Examples 1 to 8]
A crosslinked film was produced in the same manner as in Example 1 except that the crosslinked resin layer was changed to the crosslinked resin layer shown in Table 1, and the release layer was changed to the release agent composition shown in Table 2, to obtain a release film. The
The evaluation results of the obtained release film are shown in Table 3.
[比較例9,10]
 架橋樹脂層は表1に示す架橋樹脂層に変更し、離型層は下記離型剤組成物(離型層17)に変更した以外は実施例1と同様にして製造し、離型フィルムを得た。得られた離型フィルムの評価結果を表3に示す。
 なお、離型層17について、前述のビニル基含有ポリジメチルシロキサン、ヒドロシリル基含有ポリジメチルシロキサンとは異なる付加型硬化シリコーン樹脂を用いた。
<離型剤組成物>
 付加型硬化シリコーン樹脂(KS-847H、信越化学工業(株)製):20質量部
 付加型白金触媒(CAT-PL-50T、信越化学工業(株)製):0.2質量部
 メチルエチルケトン/トルエン混合溶媒(混合比率=1:1(質量比))
[Comparative Examples 9, 10]
The crosslinked resin layer is changed to the crosslinked resin layer shown in Table 1, and the release layer is manufactured in the same manner as in Example 1 except that it is changed to the following release agent composition (release layer 17), and a release film is obtained. Obtained. The evaluation results of the obtained release film are shown in Table 3.
For the release layer 17, an addition-type cured silicone resin different from the vinyl group-containing polydimethylsiloxane and the hydrosilyl group-containing polydimethylsiloxane described above was used.
<Mold Release Agent Composition>
Addition-type cured silicone resin (KS-847H, Shin-Etsu Chemical Co., Ltd.): 20 parts by mass Addition-type platinum catalyst (CAT-PL-50T, Shin-Etsu Chemical Co., Ltd.): 0.2 parts by mass methyl ethyl ketone / toluene Mixed solvent (mixing ratio = 1: 1 (mass ratio))
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例は、軽剥離離型フィルムとしての剥離力、表面固有抵抗、経時塗膜密着性及び生産性の全ての評価において良好である。一方、比較例は、全ての評価を満足するものではなく、本発明の評価基準を満たさず実用性に欠けるものとなった。 The examples are good in all evaluations of peel strength as a light release release film, surface specific resistance, adhesion with time of coating film, and productivity. On the other hand, the comparative examples did not satisfy all the evaluations, and did not satisfy the evaluation criteria of the present invention, and were not practical.
 本発明の離型フィルムは、液晶ディスプレイ用偏光板、位相差板、プラズマディスプレイ構成部材、及び有機EL構成部材等の各種ディスプレイ構成部材製造用等、各種光学用途等に利用可能である。 The release film of the present invention can be used for various optical applications, for example, for manufacturing various display components such as a polarizing plate for liquid crystal display, a retardation plate, a plasma display component, and an organic EL component.

Claims (9)

  1.  少なくとも一軸方向に延伸されたポリエステルフィルムの少なくとも片面に架橋樹脂層を有し、さらに該架橋樹脂層の上に離型層が積層された離型フィルムであり、
     該架橋樹脂層は、カチオン性基を有するイオン性ポリマー(A)、及び架橋剤(C)を含有する架橋樹脂組成物から形成され、
     該離型層は、重量平均分子量が500以上50000以下であり1分子中に少なくとも1個のアルケニル基を有する第1のポリジメチルシロキサンと、重量平均分子量が120以上20000以下であり1分子中に少なくとも1個のヒドロシリル基を有する第2のポリジメチルシロキサンとを含有する離型剤組成物から形成され、かつ、
     下記の方法で測定した際の剥離力が4g/25mm以下である、離型フィルム。
     <剥離力の測定> 離型フィルムの離型層と粘着剤テープ(日東電工(株)製、「No.502」、アクリル系粘着剤)とを貼り合せ、引張速度300mm/minの条件下で180°剥離試験を行う。
    A release film comprising a crosslinked resin layer on at least one side of a polyester film stretched in at least one uniaxial direction, and further having a release layer laminated on the crosslinked resin layer,
    The crosslinked resin layer is formed of a crosslinked resin composition containing an ionic polymer (A) having a cationic group and a crosslinking agent (C),
    The release layer has a weight average molecular weight of 500 to 50,000, and a first polydimethylsiloxane having at least one alkenyl group in one molecule, and a weight average molecular weight of 120 to 20,000, in one molecule. Formed from a release agent composition containing a second polydimethylsiloxane having at least one hydrosilyl group, and
    A release film having a peeling force of 4 g / 25 mm or less when measured by the following method.
    <Measurement of Peeling Force> A release layer of a release film and a pressure-sensitive adhesive tape (Nitto Denko Co., Ltd., “No. 502, acrylic adhesive) are attached to each other, and the tensile speed is 300 mm / min. Conduct a 180 ° peel test.
  2.  前記イオン性ポリマー(A)が、4級アンモニウム塩基含有ポリマーである、請求項1に記載の離型フィルム。 The release film according to claim 1, wherein the ionic polymer (A) is a quaternary ammonium base-containing polymer.
  3.  前記架橋樹脂組成物が、さらにバインダーポリマー(B)を含有する、請求項1又は2に記載の離型フィルム。 The release film according to claim 1, wherein the crosslinked resin composition further contains a binder polymer (B).
  4.  前記バインダーポリマー(B)が、アクリル樹脂及びビニル樹脂から選ばれる1種以上である、請求項3に記載の離型フィルム。 The release film according to claim 3, wherein the binder polymer (B) is at least one selected from an acrylic resin and a vinyl resin.
  5.  前記離型剤組成物が、さらに白金系触媒を含有する、請求項1~4のいずれか1項に記載の離型フィルム。 The release film according to any one of claims 1 to 4, wherein the release agent composition further contains a platinum-based catalyst.
  6.  前記離型剤組成物が、さらに反応性基含有の有機珪素化合物を含有する、請求項1~5のいずれか1項に記載の離型フィルム。 The release film according to any one of claims 1 to 5, wherein the release agent composition further contains a reactive group-containing organic silicon compound.
  7.  前記離型剤組成物が、さらに無反応性シリコーン樹脂を含有する、請求項1~6のいずれか1項に記載の離型フィルム。 The release film according to any one of claims 1 to 6, wherein the release agent composition further contains a non-reactive silicone resin.
  8.  前記離型層の膜厚が0.01~1μmである、請求項1~7のいずれか1項に記載の離型フィルム。 The release film according to any one of claims 1 to 7, wherein the thickness of the release layer is 0.01 to 1 μm.
  9.  少なくとも一軸方向に延伸されたポリエステルフィルムの少なくとも片面に架橋樹脂層を有し、さらに該架橋樹脂層の上に離型層が積層された離型フィルムと、両面粘着シートとを積層させた積層体であり、
     該架橋樹脂層は、カチオン性基を有するイオン性ポリマー(A)を含有し、
     該離型層は、ポリジメチルシロキサンを含有し、膜厚が0.01~1μmであり、
     該離型フィルムの離型層表面と該両面粘着シートとの剥離力が、引張速度300mm/minの条件の下、180°剥離で4g/25mm以下である積層体。
     
    A laminate comprising a release film having a crosslinked resin layer on at least one surface of a polyester film stretched in at least one uniaxial direction, and a release layer laminated on the crosslinked resin layer, and a double-sided adhesive sheet And
    The crosslinked resin layer contains an ionic polymer (A) having a cationic group,
    The release layer contains polydimethylsiloxane and has a film thickness of 0.01 to 1 μm,
    The layered product whose exfoliation power of the mold release layer surface of this mold release film, and this double-sided adhesive sheet is 4 g / 25 mm or less by 180 degrees exfoliation under conditions of tensile speed 300 mm / min.
PCT/JP2018/034953 2017-09-21 2018-09-21 Mold release film and laminate WO2019059329A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880058517.2A CN111051061B (en) 2017-09-21 2018-09-21 Mold release film and laminate
JP2019543719A JP7234929B2 (en) 2017-09-21 2018-09-21 release film and laminate
KR1020207007778A KR102535755B1 (en) 2017-09-21 2018-09-21 Release films and laminates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017181764 2017-09-21
JP2017-181764 2017-09-21

Publications (1)

Publication Number Publication Date
WO2019059329A1 true WO2019059329A1 (en) 2019-03-28

Family

ID=65810372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034953 WO2019059329A1 (en) 2017-09-21 2018-09-21 Mold release film and laminate

Country Status (5)

Country Link
JP (1) JP7234929B2 (en)
KR (1) KR102535755B1 (en)
CN (1) CN111051061B (en)
TW (1) TWI778135B (en)
WO (1) WO2019059329A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111873588A (en) * 2019-12-23 2020-11-03 江苏东材新材料有限责任公司 Release film base film for high-adhesion MLCC (multilayer ceramic capacitor) manufacturing process and preparation method thereof
JPWO2021182150A1 (en) * 2020-03-09 2021-09-16
WO2023080026A1 (en) * 2021-11-08 2023-05-11 東洋紡株式会社 Release film for manufacturing ceramic green sheet
WO2024084825A1 (en) * 2022-10-18 2024-04-25 東洋紡株式会社 Mold release film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724765B (en) 2020-01-21 2021-04-11 達興材料股份有限公司 Laser-debondable composition, laminate thereof, and laser-debonding method
JPWO2022138485A1 (en) * 2020-12-23 2022-06-30
US20240222146A1 (en) * 2021-05-31 2024-07-04 Siltech Co., Ltd. Release film for semiconductor package, manufacturing method thereof, and manufacturing method of semiconductor package using the same
CN114350260B (en) * 2022-01-18 2023-03-28 美氟新材料科技(常州)有限公司 Fluorine release coating with wear resistance and high stability and preparation method thereof
KR102465979B1 (en) * 2022-05-09 2022-11-10 김진성 PET film with adjustable gloss and release force
KR102465980B1 (en) * 2022-05-09 2022-11-09 김진성 PET film coating method with adjustable gloss and release force
CN115322426B (en) * 2022-08-30 2023-12-08 扬州万润光电科技股份有限公司 Wear-resistant and chemical reagent-resistant PET release film and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186804A (en) * 2006-01-11 2007-07-26 Shin Etsu Chem Co Ltd Solventless curable silicone releasing agent composition
JP2008174693A (en) * 2007-01-22 2008-07-31 Lintec Corp Self-adhesive body and production method of self-adhesive body
JP2009154457A (en) * 2007-12-27 2009-07-16 Teijin Dupont Films Japan Ltd Release film
JP2015208898A (en) * 2014-04-25 2015-11-24 三菱樹脂株式会社 Polyester film
JP2017061037A (en) * 2015-09-24 2017-03-30 三菱樹脂株式会社 Mold release polyester film and green sheet laminate
JP2017149048A (en) * 2016-02-25 2017-08-31 リンテック株式会社 Release sheet and method for producing release sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626055B2 (en) 2000-12-25 2011-02-02 東洋紡績株式会社 Release film
JP4766949B2 (en) 2005-08-11 2011-09-07 三菱樹脂株式会社 Antistatic roughening polyester film for mold release
WO2011078239A1 (en) 2009-12-22 2011-06-30 三菱化学株式会社 Material for a molded resin body for use in a semiconductor light-emitting device
JP2012183811A (en) 2011-03-08 2012-09-27 Toyobo Co Ltd Antistatic film
JP2012000993A (en) 2011-07-26 2012-01-05 Mitsubishi Plastics Inc Polyester film having antistatic coated layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186804A (en) * 2006-01-11 2007-07-26 Shin Etsu Chem Co Ltd Solventless curable silicone releasing agent composition
JP2008174693A (en) * 2007-01-22 2008-07-31 Lintec Corp Self-adhesive body and production method of self-adhesive body
JP2009154457A (en) * 2007-12-27 2009-07-16 Teijin Dupont Films Japan Ltd Release film
JP2015208898A (en) * 2014-04-25 2015-11-24 三菱樹脂株式会社 Polyester film
JP2017061037A (en) * 2015-09-24 2017-03-30 三菱樹脂株式会社 Mold release polyester film and green sheet laminate
JP2017149048A (en) * 2016-02-25 2017-08-31 リンテック株式会社 Release sheet and method for producing release sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111873588A (en) * 2019-12-23 2020-11-03 江苏东材新材料有限责任公司 Release film base film for high-adhesion MLCC (multilayer ceramic capacitor) manufacturing process and preparation method thereof
JPWO2021182150A1 (en) * 2020-03-09 2021-09-16
WO2021182150A1 (en) * 2020-03-09 2021-09-16 東洋紡株式会社 White easy-adhesive polyester film
JP7164046B2 (en) 2020-03-09 2022-11-01 東洋紡株式会社 White easy-adhesive polyester film
WO2023080026A1 (en) * 2021-11-08 2023-05-11 東洋紡株式会社 Release film for manufacturing ceramic green sheet
WO2024084825A1 (en) * 2022-10-18 2024-04-25 東洋紡株式会社 Mold release film

Also Published As

Publication number Publication date
KR102535755B1 (en) 2023-05-24
CN111051061B (en) 2022-04-05
JPWO2019059329A1 (en) 2020-09-03
KR20200056997A (en) 2020-05-25
JP7234929B2 (en) 2023-03-08
CN111051061A (en) 2020-04-21
TW201920561A (en) 2019-06-01
TWI778135B (en) 2022-09-21

Similar Documents

Publication Publication Date Title
JP7234929B2 (en) release film and laminate
TWI360477B (en) Hard-coated film and optical functional film
JP6390150B2 (en) Polyester film
JP5536378B2 (en) Laminated polyester film
WO2010041384A1 (en) Multilayer polyester film
JP6326816B2 (en) Biaxially stretched laminated polyester film
JP7003915B2 (en) Release film
JP5536379B2 (en) Laminated polyester film
WO2017013891A1 (en) Mold release film
JP6550771B2 (en) Sealing film for electronic components
JP5344744B2 (en) Laminated polyester film
TW201412538A (en) Laminated polyester film
JP2010253715A (en) Laminated polyester film
TW202413105A (en) Release film
JP6720600B2 (en) Release film
JP7383903B2 (en) Laminated film and its manufacturing method
JP2013237275A (en) Laminated polyester film
JP2017100399A (en) Laminated film
JP5748833B2 (en) Laminated polyester film
JP5734405B2 (en) Laminated polyester film
JP7020042B2 (en) Laminated polyester film
JP2012166376A (en) Mold release film
JP5344746B2 (en) Laminated polyester film
WO2016121161A1 (en) Coated film
CN117916085A (en) Release film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543719

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858485

Country of ref document: EP

Kind code of ref document: A1