WO2019054118A1 - 血圧推定装置 - Google Patents
血圧推定装置 Download PDFInfo
- Publication number
- WO2019054118A1 WO2019054118A1 PCT/JP2018/030411 JP2018030411W WO2019054118A1 WO 2019054118 A1 WO2019054118 A1 WO 2019054118A1 JP 2018030411 W JP2018030411 W JP 2018030411W WO 2019054118 A1 WO2019054118 A1 WO 2019054118A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pulse wave
- blood pressure
- contact electrode
- belt
- pressure estimation
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0015—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
- A61B5/0022—Monitoring a patient using a global network, e.g. telephone networks, internet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/02108—Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
- A61B5/02116—Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/022—Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/0295—Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/339—Displays specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/683—Means for maintaining contact with the body
- A61B5/6831—Straps, bands or harnesses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/742—Details of notification to user or communication with user or patient ; user input means using visual displays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0247—Pressure sensors
Definitions
- the present invention relates to a blood pressure estimation device, and more particularly to a blood pressure estimation device that estimates blood pressure based on the propagation time of a pulse wave.
- Patent Document 1 JP-A-2017-500069
- the mobile device described in Patent Document 1 includes an exterior body, a processor, and a plurality of sensors physically coupled to the exterior body. At least one of the plurality of sensors is configured to obtain a PPG measurement and is housed in a contact button coupled to the housing. At least one of the plurality of sensors is configured to obtain an ECG measurement and comprises a first electrode and a second electrode. The first electrode and the second electrode are contact electrodes that contact the body of the subject to obtain an ECG measurement.
- each of the contact button, the first electrode, and the second electrode is provided in a display unit having a display function.
- the outer portion of the display unit is formed of a hard member and has a certain shape, so it is difficult to bring a contact electrode for obtaining an ECG measurement value in close contact with the measurement site. If the contact electrode for obtaining the ECG measurement value is not in close contact with the measurement site, the accuracy of the blood pressure estimation result decreases.
- the present invention has been made in view of the above problems, and it is an object of the present invention to provide a blood pressure estimation device with high accuracy, in which a contact electrode for obtaining an ECG measurement value can be closely attached to a measurement site. I assume.
- the blood pressure estimation device includes a display unit, a belt unit, a first contact electrode and a second contact electrode for detecting an electrocardiographic waveform, and a pulse wave sensor.
- the display unit displays the blood pressure estimation result.
- the belt unit is connected to the display unit and surrounds the measurement site.
- the pulse wave sensor has a pulse wave detection unit that detects an arterial pulse wave passing through the measurement site.
- the first contact electrode and the pulse wave detection unit are provided on the inner circumferential portion of the belt portion.
- the second contact electrode is provided on the outer peripheral portion of the belt portion.
- the first contact electrode and the pulse wave detection unit are provided at a position where the second contact electrode is pressed against the measurement site when the second contact electrode is pressed from the outer peripheral side of the belt portion.
- each of the pulse wave detection unit and the second contact electrode is opposed to each other with the belt portion interposed therebetween.
- the belt portion includes a belt body and an expandable and contractable fluid bag provided on the inner peripheral side of the belt body. Inside the fluid bag, a pressure detection unit that detects the pressure in the fluid bag for blood pressure measurement by the oscillometric method is provided.
- the first contact electrode and the pulse wave detection unit are provided on the outer surface portion of the fluid bag that constitutes the inner peripheral portion of the belt portion.
- the second contact electrode is provided on the outer surface portion of the belt main body which constitutes the outer peripheral portion of the belt portion.
- the belt portion further includes a solid member disposed between the belt body and the fluid bag.
- the solid member is opposed to at least a portion of the second contact electrode with the belt body interposed therebetween, and opposed to at least a portion of the pulse wave detection portion with the fluid bag interposed therebetween.
- the solid member is curved to conform to the shape of the measurement site.
- the pulse wave detection unit detects a pulse wave based on a change in impedance of an artery passing through the measurement site.
- the information processing apparatus further includes a notification unit that reports the determination result as to whether the pulse wave detection accuracy by the pulse wave detection unit satisfies a reference value.
- the second contact electrode is located on the outer peripheral part of the belt part in a state of being wound around the measured part, on the opposite side to the display part in the circumferential direction of the belt part.
- a contact electrode for obtaining an ECG measurement value can be closely attached to a measurement site, and the accuracy of the blood pressure estimation device can be enhanced.
- FIG. 1 It is a perspective view which shows the external appearance of the blood pressure estimation apparatus which concerns on Embodiment 1 of this invention. It is a sectional view showing the state where the blood pressure estimating device concerning Embodiment 1 of the present invention was attached to a measuring part. It is a figure which shows arrangement
- FIG. 2 It is a perspective view which shows the external appearance of the blood pressure estimation apparatus which concerns on Embodiment 2 of this invention. It is sectional drawing which shows the state with which the blood-pressure estimation apparatus based on Embodiment 2 of this invention was mounted
- FIG. 1 is a perspective view showing an appearance of a blood pressure estimation apparatus according to a first embodiment of the present invention.
- FIG. 2 is a cross-sectional view showing a state in which the blood pressure estimation apparatus according to Embodiment 1 of the present invention is mounted on a measurement site.
- a cross section perpendicular to the longitudinal direction of the left wrist is illustrated.
- the measurement site is the left wrist.
- the measurement site may be the right wrist.
- the blood pressure estimating apparatus 1 includes a display unit 10, a belt unit 20, and a first contact electrode 61 and a first contact electrode 61 for detecting an electrocardiographic waveform.
- a two-contact electrode 62 and a pulse wave sensor are provided.
- the display unit 10 displays the blood pressure estimation result of the blood pressure estimation device 1.
- the belt unit 20 is connected to the display unit 10 and surrounds the left wrist 90 which is a measurement site.
- the pulse wave sensor has a pulse wave detection unit 40E that detects a pulse wave of an artery passing through the measurement site.
- the blood pressure estimation device 1 is roughly divided into a belt unit 20 surrounding a left wrist 90 which is a measurement site, and a display unit 10 connected to the belt unit 20.
- the display unit 10 has a quadrangular truncated pyramidal outer shape protruding outward from the belt unit 20.
- the display unit 10 is preferably small and thin so as not to interfere with the activity of the subject.
- the display unit 10 is provided with a display 50, a notification unit 58, and an operation unit 52.
- the display 50 and the notification unit 58 are disposed on the top surface 10 a of the display unit 10.
- the operation unit 52 is disposed on the side surface 10 f of the display unit 10.
- the display unit 10 is integrally formed with one end 20 e of the belt unit 20 by integral molding.
- the belt unit 20 and the display unit 10 may be separately formed, and the display unit 10 and the belt unit 20 may be connected to each other by an engagement member such as a hinge.
- an engagement member such as a hinge.
- the bottom surface 10 b of the display unit 10 and the end 20 f of the belt unit 20 are connected to each other by a buckle 15.
- the buckle 15 includes a plate-like member 25 disposed on the outer circumferential side and a plate-like member 26 disposed on the inner circumferential side.
- One end 25 e of the plate-like member 25 is rotatably attached to the display unit 10 via a connecting rod 27 extending along the width direction Y.
- the other end 25 f of the plate 25 is rotatably attached to the other end 26 f of the plate 26 via a connecting rod 28 extending in the width direction Y.
- One end 26 e of the plate member 26 is fixed near the end 20 f of the belt portion 20 by the fixing portion 29.
- the blood pressure estimation device 1 has a substantially annular shape as a whole. Between the bottom surface 10 b of the display unit 10 and the end 20 f of the belt unit 20, the buckle 15 can be opened and closed in the arrow B direction in FIG. 1.
- the belt portion 20 includes a belt body 23 and an expandable and contractable fluid bag 21 provided on the inner peripheral side of the belt body 23.
- the dimension of the belt portion 20 in the width direction Y is, for example, about 30 mm.
- the belt main body 23 is an elongated belt-like member surrounding the left wrist 90 along the circumferential direction.
- the belt body 23 has an outer peripheral portion 20b.
- the belt body 23 is made of a plastic material that is flexible in the thickness direction and inelastic in the circumferential direction.
- the fluid bag 21 is attached along the inner circumferential portion 23 a of the belt main body 23 and has an outer surface portion constituting the inner circumferential portion 20 a of the belt portion 20 in contact with the left wrist 90.
- the fluid bag 21 is formed in a bag shape capable of containing a fluid by welding its peripheral portion in a state where two stretchable polyurethane sheets are stacked.
- the fluid includes both liquid and gas, and for example, water or air can be used as the fluid.
- the blood pressure estimation device 1 is provided with a pressure sensor that detects the pressure in the fluid bag 21.
- a first contact electrode 61 and a pulse wave detection unit 40E of a pulse wave sensor are provided on an inner peripheral portion 20a of the belt portion 20 between one end 20e of the belt portion 20 and the other end 20f.
- the first contact electrode 61 and the pulse wave detection unit 40E of the pulse wave sensor are provided on the outer surface of the fluid bag 21 that constitutes the inner peripheral portion 20a of the belt unit 20.
- the pulse wave detection unit 40E of the pulse wave sensor is configured by four electrodes arranged in a line at intervals in the width direction Y of the belt unit 20. Specifically, from the one side in the width direction Y, the current electrodes 41, the detection electrodes 42, the detection electrodes 43, and the current electrodes 44 are arranged in a line. The distance between the detection electrode 42 and the detection electrode 43 in the width direction Y of the belt portion 20 is, for example, 2 mm. Each of the current electrode 41, the detection electrode 42, the detection electrode 43, and the current electrode 44 has a rectangular outer shape, and is thin and flexible.
- the pulse wave detection unit 40E is disposed corresponding to the radial artery 91 of the left wrist 90.
- the radial artery 91 passes in the vicinity of the palm lateral surface 90a of the left wrist 90, which is a palm-side surface.
- the pulse wave detection unit 40E detects a pulse wave based on a change in impedance of the radial artery 91 passing through the left wrist 90.
- the detection method of the pulse wave by a pulse wave detection part is not restricted to the method of detecting a pulse wave from the change of the impedance of an artery.
- the pulse wave sensor includes a light emitting element for emitting light toward an artery passing through a corresponding portion of the measurement site, and a light receiving element for receiving reflected light or transmitted light of the light, A change in may be detected as a pulse wave.
- the pulse wave sensor may include a piezoelectric sensor in contact with the measurement site to detect distortion due to pressure of an artery passing through a corresponding portion of the measurement site as a change in electrical resistance.
- the pulse wave sensor includes a transmitting element for transmitting a radio wave toward an artery passing through a corresponding part of the measurement site, and a receiving element for receiving a reflected wave of the radio wave, and A change in distance between the sensor and the sensor may be detected as a phase shift between the transmission wave and the reflected wave.
- the first contact electrode 61 is disposed adjacent to the pulse wave detection unit 40E of the pulse wave sensor in the circumferential direction of the belt unit 20.
- the first contact electrode 61 has a rectangular outer shape and is thin and flexible.
- a second contact electrode 62 is provided on the outer peripheral portion 20b of the belt portion 20 between one end 20e of the belt portion 20 and the other end 20f.
- the second contact electrode 62 is provided on the outer surface portion of the belt main body 23 which constitutes the outer peripheral portion 20 b of the belt portion 20.
- the second contact electrode 62 is positioned on the side opposite to the display unit 10 in the circumferential direction of the belt unit 20 at the outer peripheral portion 20 b of the belt unit 20 in a state of being wound around the measurement target portion.
- the second contact electrode 62 has a rectangular outer shape and is thin and flexible.
- each of the pulse wave detection unit 40E and the second contact electrode 62 is opposed to each other with the belt unit 20 interposed therebetween.
- the entire pulse wave detection unit 40E is opposed to the second contact electrode 62 with the belt unit 20 interposed therebetween.
- a portion of the first contact electrode 61 is opposed to the second contact electrode 62 with the belt portion 20 interposed therebetween. Note that the entire first contact electrode 61 may be opposed to the second contact electrode 62 with the belt portion 20 interposed therebetween.
- the subject When wearing the blood pressure estimation device 1 on the left wrist 90, the subject opens the buckle 15 and enlarges the ring diameter of the belt portion 20, and the left side of the belt portion 20 from the direction shown by arrow A in FIG. Pass through. Next, as shown in FIG. 2, the subject adjusts the angular position of the belt portion 20 around the left wrist 90 so that the pulse wave sensor pulse is opposed to the radial artery 91 passing through the left wrist 90.
- the wave detection unit 40E is positioned.
- the pulse wave detection unit 40E of the pulse wave sensor abuts on a portion 90a1 of the palm lateral surface 90a of the left wrist 90 that corresponds to the radial artery 91.
- the subject closes and fixes the buckle 15.
- the subject wears the blood pressure estimation device 1 on the left wrist 90.
- the display unit 10 is disposed corresponding to the back side 90b of the left wrist 90 which is the back side of the hand.
- FIG. 3 is a view showing the arrangement of the pulse wave detection unit of the pulse wave sensor, the first contact electrode, and the second contact electrode in a state where the blood pressure estimation device according to Embodiment 1 of the present invention is attached to the measurement site. is there.
- the pulse wave detection unit 40E of the pulse wave sensor is located along the radial artery 91.
- FIG. 4 is a block diagram showing the configuration of the blood pressure estimation apparatus according to the first embodiment of the present invention.
- the display unit 10 is provided with a central processing unit (CPU) 100, a display unit 50, a memory 51, an operation unit 52, a battery 53, and a communication unit 59. Further, in the display unit 10, a pressure sensor 31, a pump 32, and an on-off valve 33 are provided. Furthermore, the display unit 10 is provided with an oscillation circuit 310 that converts the output of the pressure sensor 31 into a frequency, and a pump drive circuit 320 that drives the pump 32.
- CPU central processing unit
- the pulse wave sensor 40 includes a pulse wave detection unit 40E and an energization / voltage detection circuit 49. Each of the current electrode 41, the detection electrode 42, the detection electrode 43 and the current electrode 44 is connected to the conduction and voltage detection circuit 49.
- the power supply and voltage detection circuit 49 is connected to the CPU 100 through the signal wiring 72.
- the ECG measurement unit 60 for detecting an electrocardiogram waveform includes a first contact electrode 61, a second contact electrode 62, and a voltage detection circuit 69. Each of the first contact electrode 61 and the second contact electrode 62 is connected to a voltage detection circuit 69. The voltage detection circuit 69 is connected to the CPU 100 through the signal line 73.
- the display 50 is, for example, an organic EL (Electro Luminescence) display, and displays information related to blood pressure estimation such as a blood pressure estimation result and other information in accordance with a control signal from the CPU 100.
- the display 50 is not limited to the organic EL display, and may be configured of another type of display such as, for example, an LCD (Liquid Cristal Display).
- Operation unit 52 is formed of, for example, a push-type switch, and inputs to CPU 100 an operation signal according to an instruction of blood pressure estimation start or stop by the subject.
- the operation unit 52 is not limited to the push switch, and may be, for example, a pressure-sensitive or capacitive touch panel switch.
- a microphone may be provided in the display unit 10, and an instruction to start or stop blood pressure estimation based on the voice of the subject may be input to the CPU 100 through the microphone.
- the memory 51 is a program for controlling the blood pressure estimation device 1, data used to control the blood pressure estimation device 1, setting data for setting various functions of the blood pressure estimation device 1, and estimation results of blood pressure values. Non-temporarily store data such as The memory 51 is also used as a work memory or the like when a program is executed.
- the CPU 100 controls various functions of the blood pressure estimation device 1 according to a program for controlling the blood pressure estimation device 1 stored in the memory 51. For example, when performing blood pressure measurement by oscillometric method, the CPU 100 drives the pump 32 based on a signal from the pressure sensor 31 in response to an instruction to start blood pressure measurement from the operation unit 52, and the on-off valve 33 Close the door. The CPU 100 calculates a blood pressure value based on the signal from the pressure sensor 31.
- the CPU 100 When performing blood pressure estimation based on pulse wave propagation time, the CPU 100 opens the on-off valve 33 in order to discharge the air in the fluid bag 21 in response to the instruction to start blood pressure estimation from the operation unit 52.
- the communication unit 59 is controlled by the CPU 100, transmits predetermined information to an external device through the network 900, or transmits information received from an external device through the network 900 to the CPU 100.
- Communication performed in the network 900 may be either wireless or wired.
- the network 900 is the Internet, but is not limited thereto, and may be another type of network such as a LAN (Local Area Network), or one-to-one communication using a USB cable or the like. It may be.
- the communication unit 59 may include a micro USB connector.
- the notification unit 58 notifies a determination result as to whether the pulse wave detection accuracy by the pulse wave detection unit 40E satisfies a reference value as described later.
- the notification unit 58 is configured of an LED (light emitting diode) light, a speaker, or the like.
- the pump 32 and the on-off valve 33 are connected to the fluid bag 21 through an air pipe 39.
- the pump 32 is, for example, a piezoelectric pump.
- the pump 32 supplies air into the fluid bladder 21 through the air pipe 39 in order to pressurize the fluid bladder 21.
- the pressure sensor 31 is connected to the fluid bladder 21 through an air pipe 38.
- the pressure sensor 31 detects the pressure in the fluid bladder 21 through the air pipe 38.
- the pressure sensor 31 is, for example, a piezoresistive pressure sensor.
- the pressure sensor 31 outputs, for example, the pressure detected with the atmospheric pressure as a zero point as a time-series signal.
- the on-off valve 33 is mounted on the pump 32 and configured to open and close in conjunction with the driving of the pump 32. Specifically, the on-off valve 33 is closed while the pump 32 is driven. During this time, air is sealed in the fluid bag 21. The on-off valve 33 is open while the pump 32 is stopped. During this time, the air in the fluid bladder 21 is exhausted to the atmosphere through the air pipe 39.
- the on-off valve 33 has a function of a check valve, and the discharged air does not flow back.
- Pump drive circuit 320 drives pump 32 based on a control signal supplied from CPU 100.
- the oscillation circuit 310 outputs, to the CPU 100, a frequency signal having a frequency corresponding to an electrical signal value based on a change in electrical resistance due to the piezoresistive effect from the pressure sensor 31.
- the output of the pressure sensor 31 is used to control the pressure in the fluid bladder 21 and to calculate the blood pressure value by oscillometric method.
- Oscillometric blood pressure values include systolic blood pressure (SBP) and diastolic blood pressure (DBP).
- the battery 53 supplies power to various elements mounted on the display unit 10.
- the battery 53 also supplies power to the energization of the pulse wave sensor 40 and the voltage detection circuit 49 through the wiring 71.
- the wire 71 is placed between the belt body 23 of the belt unit 20 and the fluid bag 21 together with the signal wire 72, and the display unit 10 and the pulse wave sensor 40 along the circumferential direction of the belt unit 20. Between the two.
- the battery 53 is also connected to the CPU 100.
- the operation of the blood pressure estimation device 1 at the time of estimating the blood pressure using the blood pressure estimation device 1 according to the first embodiment of the present invention will be described.
- FIG. 5 is a cross-sectional view showing a state in which the blood pressure estimation device according to Embodiment 1 of the present invention is mounted on a measurement site and measuring pulse wave propagation time.
- FIG. 6 is a view showing pulse wave propagation times of an ECG pulse and a pulse wave of a radial artery, which are detected by the blood pressure estimation apparatus according to the first embodiment of the present invention.
- the cross section along the longitudinal direction of the left wrist is illustrated.
- the position of the 1st contact electrode 61 is changed and shown in figure for convenience of explanation.
- the vertical axis represents voltage (V) and the horizontal axis represents time.
- the subject presses the second contact electrode 62 with the finger of the right hand.
- the pressing force P1 is loaded on the second contact electrode 62, and the pulse wave detection unit 40E is pressed against the measurement site. That is, when the second contact electrode 62 is pressed from the outer peripheral side of the belt portion 20, the pulse wave detection unit 40E is provided at a position to be pressed by the measurement target portion.
- the 1st contact electrode 61 is also pressed by the to-be-measured site
- the first contact electrode 61 is provided at a position to be pressed against the measurement site.
- the voltage detection circuit 69 detects a voltage signal v1 between the first contact electrode 61 and the second contact electrode 62.
- the voltage signal v1 is output to the CPU 100 through the wiring 73.
- the CPU 100 performs signal processing on the input voltage signal v1 to generate an ECG pulse shown in FIG.
- the energizing and voltage detection circuit 49 applies a voltage between the current electrode 41 and the current electrode 44, for example, at a frequency of 50 kHz. , A current i of 1 mA is applied. In this state, the energization and voltage detection circuit 49 detects a voltage signal v2 between the detection electrode 42 and the detection electrode 43.
- the voltage signal v2 represents the change in electrical impedance due to the pulse wave of the blood flow of the radial artery 91 in the portion of the palm side 90a of the left wrist 90 to which the pulse wave detection unit 40E faces.
- the voltage signal v2 is output to the CPU 100 through the wiring 72.
- the CPU 100 performs signal processing on the input voltage signal v2 to generate a pulse wave of the radial artery shown in FIG. Furthermore, the CPU 100 calculates a time difference ⁇ t between the peak of the ECG pulse and the rise time of the pulse wave of the radial artery. This time difference ⁇ t is the pulse wave propagation time. In addition, you may calculate time difference (DELTA) t between the peak of an ECG pulse and the peak of the pulse wave of radial artery as pulse wave propagation time.
- DELTA time difference
- FIG. 7 is a cross-sectional view showing a state in which the blood pressure estimation device according to Embodiment 1 of the present invention is mounted on a measurement site and measuring blood pressure by the oscillometric method.
- FIG. 7 a cross section along the longitudinal direction of the left wrist is illustrated.
- the CPU 100 of the blood pressure estimation device 1 stops the pump 32 through the pump drive circuit 320, opens the on-off valve 33, and discharges the air in the fluid bladder 21. .
- the current output value of the pressure sensor 31 is set as a value corresponding to the atmospheric pressure.
- the CPU 100 closes the on-off valve 33 and drives the pump 32 through the pump drive circuit 320 to supply air into the fluid bag 21.
- the fluid bladder 21 is expanded and the fluid bladder 21 is gradually pressurized.
- the fluid bag 21 extends in the circumferential direction of the left wrist 90, and by being pressurized by the pump 32, the circumferential direction of the left wrist 90 is uniformly compressed by the pressure Pc. .
- the CPU 100 monitors the pressure Pc in the fluid bag 21 by the pressure sensor 31 to calculate the blood pressure value, and the arterial volume fluctuation component generated in the radial artery 91 of the left wrist 90 is Acquire as a wave signal.
- the CPU 100 applies a known algorithm by oscillometric method based on the acquired pulse wave signal to try to calculate the blood pressure value of each of the systolic blood pressure and the diastolic blood pressure. If the CPU 100 can not calculate the blood pressure value because of insufficient data, the pressure Pc in the fluid bag 21 is further increased unless the pressure Pc in the fluid bag 21 reaches the upper limit pressure of, for example, about 300 mmHg. Try to calculate the blood pressure value again.
- the CPU 100 stops the pump 32 through the pump drive circuit 320, opens the on-off valve 33, and discharges the air in the fluid bladder 21.
- the CPU 100 displays the measurement result of the blood pressure value on the display 50 and records it on the memory 51.
- the calculation of the blood pressure value is not limited to the pressurization process, and may be performed in the depressurization process.
- the CPU 100 correlates the blood pressure value with the pulse wave propagation time ⁇ t by calibrating the blood pressure value measured by the oscillometric method with the pulse wave propagation time ⁇ t. As a result, it is possible to estimate the blood pressure value based on the pulse wave propagation time ⁇ t.
- the second contact electrode 62 is pressed by the subject from the outer peripheral side of the belt portion 20, so that the pulse wave detection unit 40E is It is configured to be pressed and in close contact with the measurement site.
- the pulse wave detection unit 40E is It is configured to be pressed and in close contact with the measurement site.
- the second contact electrode 62 is positioned opposite to the display unit 10 in the circumferential direction of the belt unit 20 at the outer peripheral portion 20b of the belt unit 20 in a state of being wound around the measurement site.
- the pulse wave of the radial artery 91 can be effectively detected while being positioned on the back side of the left wrist 90 of the subject.
- the notification unit 58 reports the determination result as to whether the pulse wave detection accuracy by the pulse wave detection unit 40E satisfies the reference value. Specifically, the CPU 100 determines whether the SN ratio (signal-noise ratio) of the detected pulse wave of the radial artery 91 satisfies a reference value.
- the CPU 100 transmits a signal to the notification unit 58, for example, causes the LED light as the notification unit 58 to emit red light.
- the CPU 100 transmits a signal to the notification unit 58, and for example, causes the LED light as the notification unit 58 to emit blue light. Thereby, it is possible to notify the subject of whether or not the pressing of the second contact electrode 62 is sufficient.
- the blood pressure value is estimated, for example, by using the time difference ⁇ t as the pulse wave propagation time (PTT) between the peak of the ECG pulse and the peak of the pulse wave of the radial artery. It is possible to maintain high blood pressure estimation accuracy under valsalva load or cold load.
- PTT pulse wave propagation time
- the blood pressure estimation apparatus 1 includes the fluid bag 21, the pressure sensor 31, the oscillation circuit 310, the pump 32, the pump drive circuit 320, and the on-off valve 33 in order to measure blood pressure by the oscillometric method. However, they do not necessarily have to be provided. If the blood pressure estimation device 1 does not have these, the blood pressure measurement by the oscillometric method is performed by another device, and the blood pressure value and the pulse wave time ⁇ t are calibrated to calibrate the blood pressure value and the pulse. The wave propagation times ⁇ t are associated with one another. Also in this case, it is possible to estimate the blood pressure value based on the pulse wave propagation time ⁇ t. In this case, the first contact electrode 61 and the pulse wave detection unit 40E of the pulse wave sensor are provided on the inner circumferential portion 23a of the belt main body 23.
- the blood pressure estimation apparatus according to the second embodiment of the present invention differs from the blood pressure estimation apparatus 1 according to the first embodiment only in that the blood pressure estimation apparatus according to the second embodiment includes the solid member disposed between the belt main body and the fluid bag. The description of the same configuration as that of the blood pressure estimation device 1 will not be repeated.
- FIG. 8 is a perspective view showing an appearance of a blood pressure estimation apparatus according to a second embodiment of the present invention.
- FIG. 9 is a cross-sectional view showing a state in which the blood pressure estimation apparatus according to Embodiment 2 of the present invention is attached to a measurement site.
- the measurement site is the left wrist.
- a cross section perpendicular to the longitudinal direction of the left wrist is shown.
- the measurement site may be the right wrist.
- the blood pressure estimating apparatus 2 includes a display unit 10, a belt unit 20, and a first contact electrode 61 and a first contact electrode 61 for detecting an electrocardiographic waveform.
- a two-contact electrode 62 and a pulse wave sensor are provided.
- the belt portion 20 includes a belt body 23 and an expandable and contractable fluid bag 21 provided on the inner peripheral side of the belt body 23.
- the belt portion 20 further includes a solid member 22 disposed between the belt main body 23 and the fluid bag 21.
- the solid member 22 is opposed to at least a portion of the second contact electrode 62 with the belt body 23 interposed therebetween, and opposed to at least a portion of the pulse wave detection unit 40E interposed with the fluid bag 21 interposed therebetween. .
- the solid member 22 is curved to conform to the shape of the measurement site.
- the entire pulse wave detection unit 40E faces the solid member 22 with the fluid bag 21 interposed therebetween.
- the entire first contact electrode 61 faces the solid member 22 with the fluid bag 21 interposed therebetween.
- the entire second contact electrode 62 is opposed to the solid member 22 with the belt body 23 interposed therebetween.
- the solid member 22 is joined to the inner circumferential portion 23 a of the belt body 23 and the outer surface 21 a of the fluid bag 21 facing the inner circumferential portion 23 a of the belt body 23.
- the solid member 22 is made of, for example, a plate-like resin such as polypropylene having a thickness of 1 mm or more and 2 mm or less.
- FIG. 10 is a cross-sectional view showing a state in which the blood pressure estimation device according to Embodiment 2 of the present invention is mounted on a measurement site and measuring pulse wave propagation time.
- FIG. 10 a cross section along the longitudinal direction of the left wrist is illustrated.
- the position of the 1st contact electrode 61 is changed and shown in figure for convenience of explanation.
- the subject presses the second contact electrode 62 with the finger of the right hand.
- the pressing force P1 is loaded on the second contact electrode 62, and the pulse wave detection unit 40E is pressed against the measurement site via the solid member 22.
- current electrode 41, detection electrode 42, detection electrode 43 and current electrode 44 are each pressed against the measurement site with uniform pressing force.
- the detection accuracy of the pulse wave of the radial artery 91 can be increased, and the measurement accuracy of the pulse wave propagation time (PTT) can be improved. As a result, the accuracy of the blood pressure estimation device 2 can be enhanced.
- the current electrode 41, the detection electrode 42, the detection electrode 43, and the current electrode 44 can be measured at a more uniform pressing force. Can be pressed.
- the whole of the first contact electrode 61 is opposed to the solid member 22 with the fluid bag 21 interposed therebetween, the whole of the first contact electrode 61 can be brought into close contact with the portion to be measured.
- the detection accuracy of the ECG pulse can be enhanced, and the measurement accuracy of the pulse wave transit time (PTT) can be enhanced.
- the accuracy of the blood pressure estimation device 2 can be enhanced.
- 1, 2 blood pressure estimation device 10 display portion, 10a top surface portion, 10b bottom surface, 10f side surface portion, 15 buckle, 20 belt portion, 20a, 23a inner peripheral portion, 20b outer peripheral portion, 20e, 20f, 25e, 25f, 26e, 26f end portion, 21 fluid bag, 21a outer surface portion, 22 solid member, 23 belt body, 25, 26 plate member, 27, 28 connecting rod, 29 fixing portion, 31 pressure sensor, 32 pump, 33 on-off valve, 38, DESCRIPTION OF SYMBOLS 39 Air piping, 40 pulse wave sensor, 40 E pulse wave detection part, 41, 44 current electrode, 42, 43 detection electrode, 49, 69 voltage detection circuit, 50 display, 51 memory, 52 operation part, 53 battery, 58 notification Part, 59 communication part, 60 measuring part, 61 first contact electrode, 62 second contact electrode, 71, 72, 73 wiring, 0 left wrist, 90a palm side, 90a1 portion, 90b back side, 91 the radial artery, 310 oscillator, 320 a pump driving circuit,
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Physiology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Ophthalmology & Optometry (AREA)
- Hematology (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
血圧推定装置は、表示部(10)と、ベルト部(20)と、心電波形を検出するための、第1接触電極(61)および第2接触電極(62)と、脈波センサとを備える。表示部(10)は、血圧推定結果を表示する。ベルト部(20)は、表示部(10)に接続され、被測定部位を取り巻く。脈波センサは、被測定部位を通る動脈(91)の脈波を検出する脈波検出部(40E)を有する。第1接触電極(61)および脈波検出部(40E)は、ベルト部(20)の内周部(20a)に設けられている。第2接触電極(62)は、ベルト部(20)の外周部(20b)に設けられている。第1接触電極(61)および脈波検出部(40E)は、第2接触電極(62)がベルト部(20)の外周側から押圧された際に、被測定部位に押圧される位置に設けられている。
Description
本発明は、血圧推定装置に関し、特に、脈波の伝搬時間に基づいて血圧を推定する血圧推定装置に関する。
光電式容積脈波記録法(PPG:photoplethysmography)によるPPG測定値と、心電図記録法(ECG:electrocardiography)によるECG測定値と、パルス伝搬時間(PTT:pulse transit time)とを用いて、血圧を推定することができるモバイルデバイスを開示した先行文献として、特表2017-500069号公報(特許文献1)がある。
特許文献1に記載されたモバイルデバイスは、外装体と、プロセッサと、外装体に物理的に結合された複数のセンサとを備える。複数のセンサのうちの少なくとも1つは、PPG測定値を得るように構成され、外装体に結合されるコンタクトボタンに収容されている。複数のセンサのうちの少なくとも1つは、ECG測定値を得るように構成され、第1電極および第2電極を備えている。第1電極および第2電極は、ECG測定値を得るために被測定者の身体に接触する接触電極である。
特許文献1に記載されたモバイルデバイスにおいては、コンタクトボタン、第1電極および第2電極の各々は、表示機能を有する表示部に設けられている。一般的に、表示部の外側部分は硬い部材で構成されて一定の形状を有するため、被測定部位にECG測定値を得るための接触電極を密着させることが難しい。ECG測定値を得るための接触電極が被測定部位に密着していない場合、血圧推定結果の精度が低下する。
本発明は、上記の問題点に鑑みてなされたものであって、被測定部位にECG測定値を得るための接触電極を密着させることができ、精度の高い血圧推定装置を提供することを目的とする。
本発明に基づく血圧推定装置は、表示部と、ベルト部と、心電波形を検出するための、第1接触電極および第2接触電極と、脈波センサとを備える。表示部は、血圧推定結果を表示する。ベルト部は、表示部に接続され、被測定部位を取り巻く。脈波センサは、被測定部位を通る動脈の脈波を検出する脈波検出部を有する。第1接触電極および脈波検出部は、ベルト部の内周部に設けられている。第2接触電極は、ベルト部の外周部に設けられている。第1接触電極および脈波検出部は、第2接触電極がベルト部の外周側から押圧された際に、被測定部位に押圧される位置に設けられている。
本発明の一形態においては、脈波検出部および第2接触電極の各々の少なくとも一部が、ベルト部を間に挟んで互いに対向している。
本発明の一形態においては、ベルト部は、ベルト本体と、ベルト本体の内周側に設けられた膨縮可能な流体袋とを含む。流体袋の内部には、オシロメトリック法による血圧測定のために流体袋内の圧力を検出する圧力検出部が設けられている。第1接触電極および脈波検出部は、ベルト部の内周部を構成する流体袋の外表部に設けられている。第2接触電極は、ベルト部の外周部を構成するベルト本体の外表部に設けられている。
本発明の一形態においては、ベルト部は、ベルト本体と流体袋との間に配置された固形部材をさらに含む。固形部材は、ベルト本体を間に挟んで第2接触電極の少なくとも一部と対向し、かつ、流体袋を間に挟んで脈波検出部の少なくとも一部と対向している。
本発明の一形態においては、固形部材は、被測定部位の形状に沿うように湾曲している。
本発明の一形態においては、脈波検出部は、被測定部位を通る動脈のインピーダンスの変化に基づいて脈波を検出する。
本発明の一形態においては、脈波検出部による脈波の検出精度が基準値を満たしているかどうかの判定結果を報知する報知部をさらに備える。
本発明の一形態においては、第2接触電極は、被測定部位を取り巻いた状態のベルト部の外周部において、表示部とはベルト部の周方向の反対側に位置している。
本発明によれば、被測定部位にECG測定値を得るための接触電極を密着させることができ、血圧推定装置の精度を高めることができる。
以下、本発明の各実施形態に係る血圧推定装置について図面を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
(実施形態1)
図1は、本発明の実施形態1に係る血圧推定装置の外観を示す斜視図である。図2は、本発明の実施形態1に係る血圧推定装置が被測定部位に装着された状態を示す断面図である。図2においては、左手首の長手方向に対して垂直な断面を図示している。本実施形態においては、被測定部位は、左手首である。なお、被測定部位は、右手首であってもよい。
図1は、本発明の実施形態1に係る血圧推定装置の外観を示す斜視図である。図2は、本発明の実施形態1に係る血圧推定装置が被測定部位に装着された状態を示す断面図である。図2においては、左手首の長手方向に対して垂直な断面を図示している。本実施形態においては、被測定部位は、左手首である。なお、被測定部位は、右手首であってもよい。
図1および図2に示すように、本発明の実施形態1に係る血圧推定装置1は、表示部10と、ベルト部20と、心電波形を検出するための、第1接触電極61および第2接触電極62と、脈波センサとを備える。
表示部10は、血圧推定装置1の血圧推定結果を表示する。ベルト部20は、表示部10に接続され、被測定部位である左手首90を取り巻く。脈波センサは、被測定部位を通る動脈の脈波を検出する脈波検出部40Eを有する。
血圧推定装置1は、大別して、被測定部位である左手首90を取り巻くベルト部20と、ベルト部20に接続された表示部10とから構成されている。
図1に示すように、表示部10は、ベルト部20から外側に突出した四角錐台状の外形を有する。表示部10は、被測定者の活動の妨げとならないように、小型かつ薄型であることが好ましい。
表示部10には、表示器50、報知部58および操作部52が設けられている。表示器50および報知部58は、表示部10の天面部10aに配置されている。操作部52は、表示部10の側面部10fに配置されている。
表示部10は、ベルト部20の一方の端部20eと一体成形により一体に設けられている。なお、ベルト部20と表示部10とが別々に形成され、たとえばヒンジなどの係合部材によって、表示部10とベルト部20とが互いに接続される構成であってもよい。図1に示すように、表示部10の底面10bと、ベルト部20の端部20fとは、バックル15によって互いに接続されている。
バックル15は、外周側に配置された板状部材25と、内周側に配置された板状部材26とを含む。板状部材25の一方の端部25eは、幅方向Yに沿って延びる連結棒27を介して表示部10に対して回動自在に取り付けられている。板状部材25の他方の端部25fは、幅方向Yに沿って延びる連結棒28を介して、板状部材26の他方の端部26fに対して回動自在に取り付けられている。板状部材26の一方の端部26eは、固定部29によってベルト部20の端部20fの近傍に固定されている。
ベルト部20の周方向に関して、固定部29の取り付け位置は、被測定者の左手首90の周囲長に合わせて予め調節されている。血圧推定装置1は、全体として略環状の形状を有する。表示部10の底面10bとベルト部20の端部20fとの間は、バックル15によって図1中の矢印B方向に開閉可能に構成されている。
ベルト部20は、ベルト本体23と、ベルト本体23の内周側に設けられた膨縮可能な流体袋21とを含む。ベルト部20の幅方向Yの寸法は、たとえば、約30mmである。ベルト本体23は、左手首90を周方向に沿って取り巻く細長い帯状の部材である。ベルト本体23は、外周部20bを有する。ベルト本体23は、厚さ方向に関して可撓性を有し、周方向に関して非伸縮性を有するプラスチック材料から構成されている。
流体袋21は、ベルト本体23の内周部23aに沿って取り付けられており、左手首90に接するベルト部20の内周部20aを構成する外表部を有する。流体袋21は、伸縮可能な2枚のポリウレタンシートを重ねた状態で、その周縁部を溶着することにより流体を収容可能な袋状に形成されている。流体とは、液体および気体の両方を含み、たとえば、流体として、水または空気などを用いることができる。血圧推定装置1には、流体袋21内の圧力を検出する圧力センサが設けられている。
ベルト部20の一方の端部20eと他方の端部20fとの間におけるベルト部20の内周部20aに、第1接触電極61および脈波センサの脈波検出部40Eが設けられている。本実施形態においては、ベルト部20の内周部20aを構成する流体袋21の外表部に、第1接触電極61および脈波センサの脈波検出部40Eが設けられている。
脈波センサの脈波検出部40Eは、ベルト部20の幅方向Yにおいて互いに間隔をあけて並ぶ4個の電極で構成されている。具体的には、幅方向Yの一方側から順に、電流電極41、検出電極42、検出電極43および電流電極44が1列に並んで配置されている。ベルト部20の幅方向Yにおける検出電極42と検出電極43との間隔は、たとえば、2mmである。電流電極41、検出電極42、検出電極43および電流電極44の各々は、矩形状の外形を有し、薄く柔軟に形成されている。
血圧推定装置1が左手首90に装着された状態において、脈波検出部40Eは、左手首90の橈骨動脈91に対応して配置される。なお、橈骨動脈91は、左手首90内において、手の平側の面である左手首90の掌側面90aの近傍を通っている。本実施形態においては、脈波検出部40Eは、左手首90を通る橈骨動脈91のインピーダンスの変化に基づいて脈波を検出する。
なお、脈波検出部による脈波の検出方法は、動脈のインピーダンスの変化から脈波を検出する方法に限られない。たとえば、脈波センサは、被測定部位のうち対応する部分を通る動脈へ向けて光を照射する発光素子と、その光の反射光または透過光を受光する受光素子とを備えて、動脈の容積の変化を脈波として検出してもよい。
または、脈波センサは、被測定部位に当接された圧電センサを備えて、被測定部位のうち対応する部分を通る動脈の圧力による歪みを電気抵抗の変化として検出してもよい。さらに、脈波センサは、被測定部位のうち対応する部分を通る動脈へ向けて電波を送る送信素子と、その電波の反射波を受信する受信素子とを備えて、動脈の脈波による動脈とセンサとの間の距離の変化を送信波と反射波との間の位相のずれとして検出してもよい。
第1接触電極61は、ベルト部20の周方向において、脈波センサの脈波検出部40Eに隣接して配置されている。第1接触電極61は、矩形状の外形を有し、薄く柔軟に形成されている。
ベルト部20の一方の端部20eと他方の端部20fとの間におけるベルト部20の外周部20bに、第2接触電極62が設けられている。本実施形態においては、第2接触電極62は、ベルト部20の外周部20bを構成するベルト本体23の外表部に設けられている。第2接触電極62は、被測定部位を取り巻いた状態のベルト部20の外周部20bにおいて、表示部10とはベルト部20の周方向の反対側に位置している。第2接触電極62は、矩形状の外形を有し、薄く柔軟に形成されている。
脈波検出部40Eおよび第2接触電極62の各々の少なくとも一部は、ベルト部20を間に挟んで互いに対向している。本実施形態においては、脈波検出部40Eの全体が、ベルト部20を間に挟んで第2接触電極62と対向している。第1接触電極61の一部が、ベルト部20を間に挟んで第2接触電極62と対向している。なお、第1接触電極61の全体が、ベルト部20を間に挟んで第2接触電極62と対向していてもよい。
被測定者は、血圧推定装置1を左手首90に装着する際、バックル15を開いてベルト部20の環径を大きくした状態で、図1中の矢印Aで示す方向からベルト部20に左手を通す。次に、図2に示すように、被測定者は、左手首90の周りのベルト部20の角度位置を調節して、左手首90を通る橈骨動脈91に対向するように脈波センサの脈波検出部40Eを位置させる。
これにより、脈波センサの脈波検出部40Eは、左手首90の掌側面90aのうち橈骨動脈91に対応する部分90a1に当接する状態となる。この状態で、被測定者は、バックル15を閉じて固定する。このようにして、被測定者は血圧推定装置1を左手首90に装着する。血圧推定装置1が左手首90に装着された状態において、表示部10は、手の甲側の面である左手首90の背側面90bに対応して配置される。
図3は、本発明の実施形態1に係る血圧推定装置が被測定部位に装着された状態における、脈波センサの脈波検出部、第1接触電極および第2接触電極の配置を示す図である。図3に示すように、血圧推定装置1が左手首90に装着された状態において、脈波センサの脈波検出部40Eは、橈骨動脈91に沿って位置している。
ここで、血圧推定装置1の各構成について詳細に説明する。図4は、本発明の実施形態1に係る血圧推定装置の構成を示すブロック図である。
図4に示すように、表示部10には、CPU(Central Processing Unit)100と、表示器50と、メモリ51と、操作部52と、電池53と、通信部59とが設けられている。また、表示部10には、圧力センサ31と、ポンプ32と、開閉弁33とが設けられている。さらに、表示部10には、圧力センサ31の出力を周波数に変換する発振回路310と、ポンプ32を駆動するポンプ駆動回路320とが設けられている。
脈波センサ40は、脈波検出部40Eと、通電および電圧検出回路49とを含む。電流電極41、検出電極42、検出電極43および電流電極44の各々は、通電および電圧検出回路49と接続されている。通電および電圧検出回路49は、信号用の配線72を通じて、CPU100と接続されている。
心電波形を検出するためのECG測定部60は、第1接触電極61と、第2接触電極62と電圧検出回路69とを含む。第1接触電極61および第2接触電極62の各々は、電圧検出回路69と接続されている。電圧検出回路69は、信号用の配線73を通じて、CPU100と接続されている。
表示器50は、たとえば、有機EL(Electro Luminescence)ディスプレイで構成されており、CPU100からの制御信号に従って、血圧推定結果などの血圧推定に関する情報、および、その他の情報を表示する。なお、表示器50は、有機ELディスプレイに限られず、たとえば、LCD(Liquid Cristal Display)など、他のタイプのディスプレイで構成されていてもよい。
操作部52は、たとえば、プッシュ式スイッチで構成され、被測定者による血圧推定開始または停止の指示に応じた操作信号をCPU100に入力する。なお、操作部52は、プッシュ式スイッチに限られず、たとえば、感圧式または静電容量式のタッチパネル式スイッチなどであってもよい。また、表示部10にマイクロフォンが設けられており、被測定者の音声による血圧推定開始または停止の指示が、マイクロフォンを通じてCPU100に入力されてもよい。
メモリ51は、血圧推定装置1を制御するためのプログラム、血圧推定装置1を制御するために用いられるデータ、血圧推定装置1の各種機能を設定するための設定データ、および、血圧値の推定結果のデータなどを非一時的に記憶する。また、メモリ51は、プログラムが実行されるときのワークメモリなどとして用いられる。
CPU100は、メモリ51に記憶された血圧推定装置1を制御するためのプログラムに従って、血圧推定装置1の各種機能を制御する。たとえば、オシロメトリック法による血圧測定を実行する場合は、CPU100は、操作部52からの血圧測定開始の指示に応じて、圧力センサ31からの信号に基づいて、ポンプ32を駆動させ、開閉弁33を閉状態にする。CPU100は、圧力センサ31からの信号に基づいて、血圧値を算出する。
CPU100は、脈波伝播時間に基づく血圧推定を実行する場合、操作部52からの血圧推定開始の指示に応じて、流体袋21内の空気を排出させるために開閉弁33を開状態にする。
通信部59は、CPU100によって制御され、ネットワーク900を通じて所定の情報を外部の装置に送信する、または、ネットワーク900を通じて外部の装置から受信した情報をCPU100に伝送する。ネットワーク900で行なわれる通信は、無線および有線のいずれでもよい。たとえば、ネットワーク900は、インターネットであるが、これに限定されず、LAN(Local Area Network)のような他の種類のネットワークであってもよいし、USBケーブルなどを用いた1対1の通信であってもよい。通信部59は、マイクロUSBコネクタを含んでいてもよい。
報知部58は、後述するように脈波検出部40Eによる脈波の検出精度が基準値を満たしているかどうかの判定結果を報知する。報知部58は、LED(light emitting diode)ライトまたはスピーカなどで構成されている。
ポンプ32および開閉弁33は、エア配管39を通じて、流体袋21に接続されている。ポンプ32は、たとえば、圧電ポンプである。ポンプ32は、流体袋21内を加圧するために、エア配管39を通して流体袋21内に空気を供給する。
圧力センサ31は、エア配管38を通じて、流体袋21に接続されている。圧力センサ31は、エア配管38を通じて、流体袋21内の圧力を検出する。圧力センサ31は、たとえば、ピエゾ抵抗式圧力センサである。圧力センサ31は、たとえば、大気圧を0点として検出した圧力を時系列の信号として出力する。
開閉弁33は、ポンプ32に搭載され、ポンプ32の駆動に連動して開閉する構成になっている。具体的には、開閉弁33は、ポンプ32が駆動されている間は閉じている。この間に、流体袋21内に空気が封入される。開閉弁33は、ポンプ32が停止している間は開いている。この間に、流体袋21内の空気がエア配管39を通じて大気中に排出される。開閉弁33は、逆止弁の機能を有しており、排出された空気が逆流することはない。
ポンプ駆動回路320は、ポンプ32をCPU100から与えられる制御信号に基づいて駆動する。
発振回路310は、圧力センサ31からのピエゾ抵抗効果による電気抵抗の変化に基づく電気信号値に応じた周波数を有する周波数信号を、CPU100に出力する。圧力センサ31の出力は、流体袋21内の圧力を制御するため、および、オシロメトリック法によって血圧値を算出するために用いられる。オシロメトリック法による血圧値としては、収縮期血圧(SBP:Systolic Blood Pressure)と、拡張期血圧(DBP:Diastolic Blood Pressure)とが含まれる。
電池53は、表示部10に搭載された各種要素に電力を供給する。電池53は、配線71を通じて、脈波センサ40の通電および電圧検出回路49にも電力を供給する。配線71は、信号用の配線72とともに、ベルト部20のベルト本体23と流体袋21との間に挟まれた状態で、ベルト部20の周方向に沿って表示部10と脈波センサ40との間に延在して設けられている。電池53は、CPU100とも接続されている。
以下、本発明の実施形態1に係る血圧推定装置1を用いて血圧を推定する際の血圧推定装置1の動作について説明する。
図5は、本発明の実施形態1に係る血圧推定装置が被測定部位に装着されて脈波伝播時間を測定している状態を示す断面図である。図6は、本発明の実施形態1に係る血圧推定装置が検出した、ECGパルスと橈骨動脈の脈波との脈波伝搬時間を示す図である。図5においては、左手首の長手方向に沿った断面を図示している。なお、説明の便宜上、第1接触電極61の位置を変えて図示している。図6においては、縦軸に電圧(V)、横軸に時間を示している。
まず、ECGパルスおよび橈骨動脈91の脈波を検出する際には、図5に示すように、流体袋21は、内部の空気が排出されて非加圧状態になっている。
ECGパルスを検出するために、被測定者は、第2接触電極62を右手の指で押圧する。その結果、図5に示すように、第2接触電極62に押圧力P1が負荷され、脈波検出部40Eが被測定部位に押圧される。すなわち、脈波検出部40Eは、第2接触電極62がベルト部20の外周側から押圧された際に、被測定部位に押圧される位置に設けられている。なお、第2接触電極62に押圧力P1が負荷されることにより、第1接触電極61も被測定部位に押圧される。すなわち、第1接触電極61は、第2接触電極62がベルト部20の外周側から押圧された際に、被測定部位に押圧される位置に設けられている。
電圧検出回路69は、第1接触電極61と第2接触電極62との間の電圧信号v1を検出する。電圧信号v1は、配線73を通じてCPU100に出力される。CPU100は、入力された電圧信号v1に対して信号処理を施して、図6に示すECGパルスを生成する。
ECGパルスの検出と略同時に、橈骨動脈の脈波を検出するために、通電および電圧検出回路49は、電流電極41と電流電極44との間に、電圧を印加して、たとえば、周波数が50kHz、電流値が1mAである電流iを流す。この状態で、通電および電圧検出回路49は、検出電極42と検出電極43との間の電圧信号v2を検出する。電圧信号v2は、左手首90の掌側面90aのうち、脈波検出部40Eが対向する部分における、橈骨動脈91の血流の脈波による電気インピーダンスの変化を表す。
電圧信号v2は、配線72を通じてCPU100に出力される。CPU100は、入力された電圧信号v2に対して信号処理を施して、図6に示す橈骨動脈の脈波を生成する。さらに、CPU100は、ECGパルスのピークと、橈骨動脈の脈波の立ち上がり時点との間の、時間差Δtを算出する。この時間差Δtが、脈波伝播時間となる。なお、脈波伝播時間として、ECGパルスのピークと、橈骨動脈の脈波のピークとの間の、時間差Δtを算出してもよい。
図7は、本発明の実施形態1に係る血圧推定装置が被測定部位に装着されてオシロメトリック法によって血圧を測定している状態を示す断面図である。図7においては、左手首の長手方向に沿った断面を図示している。
血圧推定装置1のCPU100は、操作部52から血圧測定開始の指示が入力されると、ポンプ駆動回路320を通じてポンプ32を停止させ、開閉弁33を開いて、流体袋21内の空気を排出させる。なお、圧力センサ31の現時点での出力値が、大気圧に相当する値として設定される。
続いて、CPU100は、開閉弁33を閉じさせ、ポンプ駆動回路320を通じてポンプ32を駆動させて、流体袋21内に空気を供給する。これにより、流体袋21を膨張させるとともに流体袋21内を徐々に加圧する。図7に示すように、流体袋21は、左手首90の周方向に延在しており、ポンプ32により加圧されることにより、左手首90の周方向を一様に圧力Pcで圧迫する。
加圧過程において、CPU100は、血圧値を算出するために、圧力センサ31によって、流体袋21内の圧力Pcをモニタし、左手首90の橈骨動脈91で発生する動脈容積の変動成分を、脈波信号として取得する。
CPU100は、取得された脈波信号に基づいて、オシロメトリック法により公知のアルゴリズムを適用して、収縮期血圧および拡張期血圧の各々の血圧値の算出を試みる。CPU100は、データ不足のために未だ血圧値を算出できない場合には、流体袋21内の圧力Pcが、たとえば300mmHg程度の上限圧力に達していない限り、さらに流体袋21内の圧力Pcを上昇させて血圧値の算出を再度試みる。
CPU100は、血圧値を算出できた場合、ポンプ駆動回路320を通じてポンプ32を停止させ、開閉弁33を開いて、流体袋21内の空気を排出させる。CPU100は、血圧値の測定結果を表示器50に表示するとともに、メモリ51に記録する。なお、血圧値の算出は、加圧過程に限られず、減圧過程において行なわれてもよい。
ベルト部20の内周部20aを構成する流体袋21の外表部と左手首90との間には、脈波検出部40Eおよび第1接触電極61しか存在していないので、流体袋21による圧迫が他の部材により阻害されることがなく、血管を充分に閉じることができる。したがって、オシロメトリック法による血圧測定を精度良く行うことができる。
CPU100は、オシロメトリック法によって測定された血圧値と脈波伝播時間Δtとのキャリブレーションを行なうことにより、血圧値と脈波伝播時間Δtとを互いに対応づける。その結果、脈波伝播時間Δtに基づいて血圧値を推定することが可能となる。
本実施形態に係る血圧推定装置1においては、ECGパルスを検出する際に、第2接触電極62がベルト部20の外周側から被測定者によって押圧されることにより、脈波検出部40Eが被測定部位に押圧されて密着する構成となっている。この状態で橈骨動脈91の脈波が検出されることにより、橈骨動脈91の脈波の検出精度が上がり、脈波伝播時間(PTT)の測定精度を高めることができる。ひいては、血圧推定装置1の精度を高めることができる。第2接触電極62が、被測定部位を取り巻いた状態のベルト部20の外周部20bにおいて、表示部10とはベルト部20の周方向の反対側に位置していることにより、表示部10を被測定者の左手首90の甲側に位置させた状態で橈骨動脈91の脈波を効果的に検出することができる。
本実施形態に係る血圧推定装置1においては、報知部58は、脈波検出部40Eによる脈波の検出精度が基準値を満たしているかどうかの判定結果を報知する。具体的には、CPU100は、検出された橈骨動脈91の脈波のSN比(signal-noise ratio)が基準値を満たしているかどうかを判定する。
CPU100は、SN比が基準値未満の場合は、報知部58に信号を送信し、たとえば、報知部58であるLEDライトを赤色に発光させる。CPU100は、SN比が基準値以上の場合は、報知部58に信号を送信し、たとえば、報知部58であるLEDライトを青色に発光させる。これにより、被測定者に第2接触電極62の押圧が十分であるかどうかを知らせることができる。
本実施形態に係る血圧推定装置1においては、ECGパルスのピークと、橈骨動脈の脈波のピークとの間の、時間差Δtを脈波伝播時間(PTT)として血圧値を推定することにより、たとえば、バルサルバ負荷時、または、寒冷負荷時における血圧推定精度を高く維持することができる。
本実施形態に係る血圧推定装置1においては、オシロメトリック法による血圧測定を行なうために、流体袋21、圧力センサ31、発振回路310、ポンプ32、ポンプ駆動回路320および開閉弁33を備えているが、必ずしもこれらを備えていなくてもよい。血圧推定装置1がこれらを備えていない場合は、他の装置によってオシロメトリック法による血圧測定が行なわれ、その血圧測定値と脈波伝播時間Δtとのキャリブレーションを行なうことにより、血圧値と脈波伝播時間Δtとを互いに対応づける。このようにした場合にも、脈波伝播時間Δtに基づいて血圧値を推定することが可能となる。なお、この場合は、第1接触電極61および脈波センサの脈波検出部40Eは、ベルト本体23の内周部23aに設けられる。
(実施形態2)
以下、本発明の実施形態2に係る血圧推定装置について図を参照して説明する。なお、本発明の実施形態2に係る血圧推定装置は、ベルト本体と流体袋との間に配置された固形部材を備える点のみ実施形態1に係る血圧推定装置1と異なるため、実施形態1に係る血圧推定装置1と同様である構成については説明を繰り返さない。
以下、本発明の実施形態2に係る血圧推定装置について図を参照して説明する。なお、本発明の実施形態2に係る血圧推定装置は、ベルト本体と流体袋との間に配置された固形部材を備える点のみ実施形態1に係る血圧推定装置1と異なるため、実施形態1に係る血圧推定装置1と同様である構成については説明を繰り返さない。
図8は、本発明の実施形態2に係る血圧推定装置の外観を示す斜視図である。図9は、本発明の実施形態2に係る血圧推定装置が被測定部位に装着された状態を示す断面図である。本実施形態においては、被測定部位は、左手首である。図9においては、左手首の長手方向に対して垂直な断面を図示している。なお、被測定部位は、右手首であってもよい。
図8および図9に示すように、本発明の実施形態2に係る血圧推定装置2は、表示部10と、ベルト部20と、心電波形を検出するための、第1接触電極61および第2接触電極62と、脈波センサとを備える。
ベルト部20は、ベルト本体23と、ベルト本体23の内周側に設けられた膨縮可能な流体袋21とを含む。ベルト部20は、ベルト本体23と流体袋21との間に配置された固形部材22をさらに含む。
固形部材22は、ベルト本体23を間に挟んで第2接触電極62の少なくとも一部と対向し、かつ、流体袋21を間に挟んで脈波検出部40Eの少なくとも一部と対向している。固形部材22は、被測定部位の形状に沿うように湾曲している。
本実施形態においては、脈波検出部40Eの全体が、流体袋21を間に挟んで固形部材22と対向している。第1接触電極61の全体が、流体袋21を間に挟んで固形部材22と対向している。第2接触電極62の全体が、ベルト本体23を間に挟んで固形部材22と対向している。
固形部材22は、ベルト本体23の内周部23a、および、ベルト本体23の内周部23aと対向する流体袋21の外表部21aの、各々と接合されている。固形部材22は、たとえば、厚さが1mm以上2mm以下の板状のポリプロピレンなどの樹脂で構成されている。
図10は、本発明の実施形態2に係る血圧推定装置が被測定部位に装着されて脈波伝播時間を測定している状態を示す断面図である。図10においては、左手首の長手方向に沿った断面を図示している。なお、説明の便宜上、第1接触電極61の位置を変えて図示している。
図10に示すように、ECGパルスおよび橈骨動脈91の脈波を検出する際には、被測定者は、第2接触電極62を右手の指で押圧する。その結果、第2接触電極62に押圧力P1が負荷され、固形部材22を介して脈波検出部40Eが被測定部位に押圧される。固形部材22を介して脈波検出部40Eを被測定部位に押圧することにより、電流電極41、検出電極42、検出電極43および電流電極44の各々を均一な押圧力で被測定部位に押圧することができ、橈骨動脈91の脈波の検出精度が上がり、脈波伝播時間(PTT)の測定精度を高めることができる。ひいては、血圧推定装置2の精度を高めることができる。
また、固形部材22が、被測定部位の形状に沿うように湾曲していることによって、電流電極41、検出電極42、検出電極43および電流電極44の各々をより均一な押圧力で被測定部位に押圧することができる。
さらに、第1接触電極61の全体が、流体袋21を間に挟んで固形部材22と対向していることにより、第1接触電極61の全体を被測定部位に密着させることができる。その結果、ECGパルスの検出精度が上がり、脈波伝播時間(PTT)の測定精度を高めることができる。これによっても、血圧推定装置2の精度を高めることができる。
なお、今回開示した上記実施形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、請求の範囲の記載に基づいて画定される。また、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
1,2 血圧推定装置、10 表示部、10a 天面部、10b 底面、10f 側面部、15 バックル、20 ベルト部、20a,23a 内周部、20b 外周部、20e,20f,25e,25f,26e,26f 端部、21 流体袋、21a 外表部、22 固形部材、23 ベルト本体、25,26 板状部材、27,28 連結棒、29 固定部、31 圧力センサ、32 ポンプ、33 開閉弁、38,39 エア配管、40 脈波センサ、40E 脈波検出部、41,44 電流電極、42,43 検出電極、49,69 電圧検出回路、50 表示器、51 メモリ、52 操作部、53 電池、58 報知部、59 通信部、60 測定部、61 第1接触電極、62 第2接触電極、71,72,73 配線、90 左手首、90a 掌側面、90a1 部分、90b 背側面、91 橈骨動脈、310 発振回路、320 ポンプ駆動回路、900 ネットワーク。
Claims (8)
- 血圧推定結果を表示する表示部と、
前記表示部に接続され、被測定部位を取り巻くベルト部と、
心電波形を検出するための、第1接触電極および第2接触電極と、
前記被測定部位を通る動脈の脈波を検出する脈波検出部を有する脈波センサとを備え、
前記第1接触電極および前記脈波検出部は、前記ベルト部の内周部に設けられており、
前記第2接触電極は、前記ベルト部の外周部に設けられており、
前記第1接触電極および前記脈波検出部は、前記第2接触電極が前記ベルト部の外周側から押圧された際に、前記被測定部位に押圧される位置に設けられている、血圧推定装置。 - 前記脈波検出部および前記第2接触電極の各々の少なくとも一部が、前記ベルト部を間に挟んで互いに対向している、請求項1に記載の血圧推定装置。
- 前記ベルト部は、ベルト本体と、該ベルト本体の内周側に設けられた膨縮可能な流体袋とを含み、
前記流体袋内の圧力を検出する圧力センサが設けられており、
前記第1接触電極および前記脈波検出部は、前記ベルト部の前記内周部を構成する前記流体袋の外表部に設けられており、
前記第2接触電極は、前記ベルト部の前記外周部を構成する前記ベルト本体の外表部に設けられている、請求項1または請求項2に記載の血圧推定装置。 - 前記ベルト部は、前記ベルト本体と前記流体袋との間に配置された固形部材をさらに含み、
前記固形部材は、前記ベルト本体を間に挟んで前記第2接触電極の少なくとも一部と対向し、かつ、前記流体袋を間に挟んで前記脈波検出部の少なくとも一部と対向している、請求項3に記載の血圧推定装置。 - 前記固形部材は、前記被測定部位の形状に沿うように湾曲している、請求項4に記載の血圧推定装置。
- 前記脈波検出部は、前記被測定部位を通る前記動脈のインピーダンスの変化に基づいて脈波を検出する、請求項1から請求項5のいずれか1項に記載の血圧推定装置。
- 前記脈波検出部による脈波の検出精度が基準値を満たしているかどうかの判定結果を報知する報知部をさらに備える、請求項1から請求項6のいずれか1項に記載の血圧推定装置。
- 前記第2接触電極は、前記被測定部位を取り巻いた状態の前記ベルト部の外周部において、前記表示部とは前記ベルト部の周方向の反対側に位置している、請求項1から請求項7のいずれか1項に記載の血圧推定装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112018004121.2T DE112018004121T5 (de) | 2017-09-12 | 2018-08-16 | Blutdruckschätzvorrichtung |
CN201880058349.7A CN111093489A (zh) | 2017-09-12 | 2018-08-16 | 血压推定装置 |
US16/813,904 US11589757B2 (en) | 2017-09-12 | 2020-03-10 | Blood pressure estimation device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017174919A JP2019048009A (ja) | 2017-09-12 | 2017-09-12 | 血圧推定装置 |
JP2017-174919 | 2017-09-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/813,904 Continuation US11589757B2 (en) | 2017-09-12 | 2020-03-10 | Blood pressure estimation device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019054118A1 true WO2019054118A1 (ja) | 2019-03-21 |
Family
ID=65723609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/030411 WO2019054118A1 (ja) | 2017-09-12 | 2018-08-16 | 血圧推定装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11589757B2 (ja) |
JP (1) | JP2019048009A (ja) |
CN (1) | CN111093489A (ja) |
DE (1) | DE112018004121T5 (ja) |
WO (1) | WO2019054118A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7124552B2 (ja) * | 2018-08-21 | 2022-08-24 | オムロンヘルスケア株式会社 | 測定装置 |
WO2022067118A1 (en) * | 2020-09-25 | 2022-03-31 | Gregory D. Olsen, Dds, Msd, Llc | Tamper-resistant wearable caretaking device |
JP7525064B2 (ja) | 2021-05-28 | 2024-07-30 | オムロンヘルスケア株式会社 | 生体情報測定装置 |
JP2024014477A (ja) * | 2022-07-22 | 2024-02-01 | オムロンヘルスケア株式会社 | 生体情報測定装置 |
JP2024031078A (ja) * | 2022-08-25 | 2024-03-07 | オムロンヘルスケア株式会社 | 生体情報測定装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10243929A (ja) * | 1997-03-06 | 1998-09-14 | Mitsubishi Electric Corp | 血圧計測装置および血圧計測方法 |
JP2008536545A (ja) * | 2005-03-21 | 2008-09-11 | ヘルス−スマート リミテッド | 連続血圧モニタリングのためのシステム |
JP2009072242A (ja) * | 2007-09-19 | 2009-04-09 | Parama Tec:Kk | 生体情報測定装置 |
JP2013150691A (ja) * | 2012-01-25 | 2013-08-08 | Omron Healthcare Co Ltd | 測定装置および測定方法 |
JP2017500069A (ja) * | 2013-10-25 | 2017-01-05 | クアルコム,インコーポレイテッド | モバイルデバイスを用いて身体機能測定値を得るためのシステムおよび方法 |
US20170251935A1 (en) * | 2016-03-07 | 2017-09-07 | Fitbit, Inc. | Blood pressure sensors |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008136655A (ja) | 2006-12-01 | 2008-06-19 | Omron Healthcare Co Ltd | 脈波測定用電極ユニットおよび脈波測定装置 |
KR101007354B1 (ko) | 2008-08-25 | 2011-01-13 | 한국전자통신연구원 | 혈압 측정 장치 및 방법 |
KR20100060141A (ko) * | 2008-11-27 | 2010-06-07 | 삼성전자주식회사 | 휴대용 혈압측정 장치 및 방법 |
KR101038432B1 (ko) * | 2009-07-31 | 2011-06-01 | 주식회사 바이오넷 | 맥파와 심전도가 측정가능한 시계형 혈압 변화 측정장치 |
WO2014089665A1 (en) * | 2012-12-13 | 2014-06-19 | Cnv Systems Ltd. | System for measurement of cardiovascular health |
US20140257049A1 (en) * | 2013-02-25 | 2014-09-11 | Texas Instruments Incorporated | Wearable heart monitoring apparatus |
US20160270668A1 (en) | 2013-09-30 | 2016-09-22 | Huinno, Co.,Ltd. | Systems and apparatuses for monitoring blood pressure in real time |
US9380949B2 (en) | 2013-12-09 | 2016-07-05 | Samsung Electronics Co., Ltd. | Modular sensor platform |
KR20150067047A (ko) * | 2013-12-09 | 2015-06-17 | 삼성전자주식회사 | 모듈러 센서 플랫폼 |
US10278592B2 (en) | 2013-12-09 | 2019-05-07 | Samsung Electronics Co., Ltd. | Modular sensor platform |
US9848825B2 (en) * | 2014-09-29 | 2017-12-26 | Microsoft Technology Licensing, Llc | Wearable sensing band |
JP6366462B2 (ja) * | 2014-10-31 | 2018-08-01 | オムロンヘルスケア株式会社 | 血圧測定装置 |
US10709383B2 (en) * | 2015-04-02 | 2020-07-14 | Microsoft Technology Licnesing, Llc | Wrist-worn pulse transit time sensor |
TWI535416B (zh) * | 2015-06-02 | 2016-06-01 | 國立中央大學 | 非侵入且非加壓式血壓波量測裝置及方法 |
JP6854612B2 (ja) * | 2015-10-06 | 2021-04-07 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 生体情報測定装置及び生体情報測定方法並びにコンピュータ読み取り可能な記録媒体 |
CA3001628A1 (en) * | 2015-10-13 | 2017-04-20 | Salu Design Group Inc. | Wearable health monitors and methods of monitoring health |
KR102584577B1 (ko) * | 2015-12-07 | 2023-10-05 | 삼성전자주식회사 | 혈압 측정 장치 및 이를 이용한 혈압 측정 방법 |
US11213212B2 (en) | 2015-12-07 | 2022-01-04 | Samsung Electronics Co., Ltd. | Apparatus for measuring blood pressure, and method for measuring blood pressure by using same |
WO2017136772A1 (en) * | 2016-02-03 | 2017-08-10 | Angilytics Inc. | Non-invasive and non-occlusive blood pressure monitoring devices and methods |
CN106618537B (zh) * | 2016-12-21 | 2020-09-01 | 天津普仁万合信息技术有限公司 | 一种基于脉搏波传导的连续动态血压监测装置和方法 |
-
2017
- 2017-09-12 JP JP2017174919A patent/JP2019048009A/ja active Pending
-
2018
- 2018-08-16 CN CN201880058349.7A patent/CN111093489A/zh active Pending
- 2018-08-16 DE DE112018004121.2T patent/DE112018004121T5/de active Pending
- 2018-08-16 WO PCT/JP2018/030411 patent/WO2019054118A1/ja active Application Filing
-
2020
- 2020-03-10 US US16/813,904 patent/US11589757B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10243929A (ja) * | 1997-03-06 | 1998-09-14 | Mitsubishi Electric Corp | 血圧計測装置および血圧計測方法 |
JP2008536545A (ja) * | 2005-03-21 | 2008-09-11 | ヘルス−スマート リミテッド | 連続血圧モニタリングのためのシステム |
JP2009072242A (ja) * | 2007-09-19 | 2009-04-09 | Parama Tec:Kk | 生体情報測定装置 |
JP2013150691A (ja) * | 2012-01-25 | 2013-08-08 | Omron Healthcare Co Ltd | 測定装置および測定方法 |
JP2017500069A (ja) * | 2013-10-25 | 2017-01-05 | クアルコム,インコーポレイテッド | モバイルデバイスを用いて身体機能測定値を得るためのシステムおよび方法 |
US20170251935A1 (en) * | 2016-03-07 | 2017-09-07 | Fitbit, Inc. | Blood pressure sensors |
Also Published As
Publication number | Publication date |
---|---|
US11589757B2 (en) | 2023-02-28 |
US20200205678A1 (en) | 2020-07-02 |
JP2019048009A (ja) | 2019-03-28 |
DE112018004121T5 (de) | 2020-05-07 |
CN111093489A (zh) | 2020-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019054118A1 (ja) | 血圧推定装置 | |
US11426085B2 (en) | Blood pressure measuring cuff and sphygmomanometer | |
US11172834B2 (en) | Sensor assembly | |
US20190307336A1 (en) | Pulse wave measurement device, pulse wave measurement method, and blood pressure measurement device | |
JP2017209433A5 (ja) | ||
JP6991022B2 (ja) | 表示制御装置およびプログラム | |
WO2018123275A1 (ja) | 血圧計および血圧測定方法並びに機器 | |
JP2018102869A (ja) | 脈波測定装置および脈波測定方法、並びに血圧測定装置 | |
WO2019124025A1 (ja) | 測定装置およびプログラム | |
US20200205682A1 (en) | Pulse wave measurement device, blood pressure measurement device, equipment, method for measuring pulse wave, and method for measuring blood pressure | |
JP2017209434A5 (ja) | ||
US11317818B2 (en) | Blood pressure measurement device and blood pressure measurement method | |
US20190290142A1 (en) | Pulse wave measurement device, pulse wave measurement method, and blood pressure measurement device | |
US11457828B2 (en) | Pulse wave measurement electrode unit and pulse wave measurement device | |
US20200205679A1 (en) | Health device flow path formation member, health device flow path formation unit, and health device | |
JP6970605B2 (ja) | 血圧推定装置 | |
JP6866251B2 (ja) | 生体測定用アンテナ装置、脈波測定装置、血圧測定装置、機器、生体情報測定方法、脈波測定方法、および血圧測定方法 | |
JP2015177917A (ja) | 血圧計 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18856856 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18856856 Country of ref document: EP Kind code of ref document: A1 |