WO2019049453A1 - Deposition mask, method for manufacturing deposition mask, and method for manufacturing display device - Google Patents
Deposition mask, method for manufacturing deposition mask, and method for manufacturing display device Download PDFInfo
- Publication number
- WO2019049453A1 WO2019049453A1 PCT/JP2018/022525 JP2018022525W WO2019049453A1 WO 2019049453 A1 WO2019049453 A1 WO 2019049453A1 JP 2018022525 W JP2018022525 W JP 2018022525W WO 2019049453 A1 WO2019049453 A1 WO 2019049453A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- angle
- deposition
- substrate
- deposition mask
- opening
- Prior art date
Links
- 230000008021 deposition Effects 0.000 title claims abstract description 166
- 238000000034 method Methods 0.000 title claims description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000000758 substrate Substances 0.000 claims abstract description 93
- 229910052751 metal Inorganic materials 0.000 claims abstract description 57
- 239000002184 metal Substances 0.000 claims abstract description 57
- 230000000149 penetrating effect Effects 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims description 72
- 238000007747 plating Methods 0.000 claims description 13
- 238000001704 evaporation Methods 0.000 claims description 9
- 230000008020 evaporation Effects 0.000 claims description 8
- 238000009713 electroplating Methods 0.000 claims description 7
- 229920002120 photoresistant polymer Polymers 0.000 claims description 7
- 238000002834 transmittance Methods 0.000 claims description 7
- 238000000151 deposition Methods 0.000 description 148
- 239000010408 film Substances 0.000 description 66
- 239000010410 layer Substances 0.000 description 60
- 238000007740 vapor deposition Methods 0.000 description 42
- 238000003860 storage Methods 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 238000002347 injection Methods 0.000 description 14
- 239000007924 injection Substances 0.000 description 14
- 239000000956 alloy Substances 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 239000010409 thin film Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000005192 partition Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000008016 vaporization Effects 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005323 electroforming Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
- H10K71/166—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
Definitions
- One of the embodiments of the present invention relates to a deposition mask, a method for manufacturing a deposition mask, or a method for manufacturing a display device using a deposition mask.
- Examples of the flat panel display device include a liquid crystal display device and an organic EL (Electroluminescence) display device.
- These display devices are structures in which thin films containing various materials such as insulators, semiconductors, and conductors are laminated on a substrate, and these thin films are appropriately patterned and connected to exhibit the function as a display device. Be done.
- Methods of forming a thin film are roughly classified into a gas phase method, a liquid phase method, and a solid phase method.
- Vapor phase methods are classified into physical vapor phase methods and chemical vapor phase methods, and vapor deposition methods are known as representative examples of the former.
- the simplest method is vacuum deposition, and heating the material in a high vacuum to sublime or evaporate the material to generate a vapor of the material (hereinafter collectively referred to as vaporization),
- a thin film of the material can be obtained by solidifying and depositing the vapor in a target area (hereinafter, a deposition area).
- a mask vapor deposition mask
- non-vapor deposition region see Patent Documents 1 to 3 .
- JP 2005-154879 A Japanese Patent Application Laid-Open No. 2003-45658 Unexamined-Japanese-Patent No. 2006-152396
- the deposition mask has a metal plate having a top surface, a bottom surface located below the top surface, a bottom surface located farther than the top surface with respect to the substrate to be provided for deposition, and an opening penetrating from the top surface to the bottom surface.
- the sidewall of the opening has a first surface and a second surface located below the first surface.
- a first angle formed by the first surface and the upper surface is larger than a second angle formed by the second surface and the upper surface. The first angle and the second angle are greater than 0 ° and less than 90 °.
- One of the embodiments of the present invention is a method for manufacturing a deposition mask.
- a photoresist is coated on a substrate, a photoresist is exposed using a photomask having a plurality of light transmitting regions, and a light shielding region surrounding the plurality of light transmitting regions, and the photoresist is not exposed.
- One of the embodiments of the present invention is a method of manufacturing a display device.
- the manufacturing method includes forming a plurality of pixel electrodes on a substrate, and placing the substrate on a deposition source configured to be filled with a material such that the pixel electrode is located between the substrate and the deposition source. And disposing a deposition mask between the deposition source and the substrate, vaporizing the material, and forming a film of the material covering the pixel electrode.
- the deposition mask has a metal plate, and the metal plate has an upper surface, a lower surface located below the upper surface and disposed farther than the upper surface with respect to the substrate, and an opening penetrating from the upper surface to the lower surface.
- the sidewall of the opening has a first surface and a second surface located below the first surface.
- a first angle formed by the first surface and the upper surface is larger than a second angle formed by the second surface and the upper surface.
- the first angle and the second angle are greater than 0 ° and less than 90 °.
- the deposition mask has a metal plate having an upper surface, a lower surface located below the upper surface and located farther than the upper surface with respect to the substrate to be provided for evaporation, and a plurality of openings penetrating from the upper surface to the lower surface. .
- the side surface of the metal plate in the region between two adjacent openings of the plurality of openings has a first surface and a second surface located below the first surface.
- a first angle formed by the first surface and the upper surface is larger than a second angle formed by the second surface and the upper surface. The first angle and the second angle are greater than 0 ° and less than 90 °.
- the deposition mask has a metal plate having an upper surface, a lower surface located below the upper surface and located farther than the upper surface with respect to the substrate to be provided for evaporation, and a plurality of openings penetrating from the upper surface to the lower surface. .
- the metal plates In a cross section passing through two adjacent openings of the plurality of openings, the metal plates have a first straight line and a second straight line connected to each other and sandwiched between the upper surface and the lower surface.
- a first angle formed by the first straight line and the upper surface is larger than a second angle formed by the second straight line and the upper surface. The first angle and the second angle are greater than 0 ° and less than 90 °.
- One of the embodiments of the present invention is a method of manufacturing a display device.
- the manufacturing method includes forming a plurality of pixel electrodes on a substrate, and placing the substrate on a deposition source configured to be filled with a material such that the pixel electrode is located between the substrate and the deposition source. And disposing a deposition mask between the deposition source and the substrate, vaporizing the material, and forming a film of the material covering the pixel electrode.
- the deposition mask has a metal plate having an upper surface, a lower surface located below the upper surface, disposed lower than the upper surface with respect to the substrate, and a plurality of openings penetrating from the upper surface to the lower surface.
- the side surface of the metal plate in the region between two adjacent openings of the plurality of openings has a first surface and a second surface located below the first surface.
- a first angle formed by the first surface and the upper surface is larger than a second angle formed by the second surface and the upper surface.
- the first angle and the second angle are greater than 0 ° and less than 90 °.
- One of the embodiments of the present invention is a method of manufacturing a display device.
- the manufacturing method includes forming a plurality of pixel electrodes on a substrate, and placing the substrate on a deposition source configured to be filled with a material such that the pixel electrode is located between the substrate and the deposition source. And disposing a deposition mask between the deposition source and the substrate, vaporizing the material, and forming a film of the material covering the pixel electrode.
- the deposition mask has a metal plate having an upper surface, a lower surface located below the upper surface, disposed lower than the upper surface with respect to the substrate, and a plurality of openings penetrating from the upper surface to the lower surface.
- the metal plates In a cross section passing through two adjacent openings of the plurality of openings, the metal plates have a first straight line and a second straight line connected to each other and sandwiched between the upper surface and the lower surface.
- a first angle formed by the first straight line and the upper surface is larger than a second angle formed by the second straight line and the upper surface.
- the first angle and the second angle are greater than 0 ° and less than 90 °.
- Typical top view and side view of a vapor deposition apparatus Typical top view and side view of a vapor deposition apparatus.
- Typical top view and side view of a vapor deposition apparatus Typical sectional drawing of a vapor deposition source.
- the upper surface schematic diagram of a vapor deposition mask The upper surface schematic diagram of a vapor deposition mask.
- the cross-sectional schematic diagram of a vapor deposition mask The cross-sectional schematic diagram of a vapor deposition mask.
- the cross-sectional schematic diagram of a vapor deposition mask The cross-sectional schematic diagram of a vapor deposition mask.
- the cross-sectional schematic diagram of a vapor deposition mask The cross-sectional schematic diagram of a vapor deposition mask.
- Typical sectional drawing which shows the aspect of the vapor deposition method Typical sectional drawing which shows the aspect of the vapor deposition method.
- Typical sectional drawing which shows the aspect of the vapor deposition method Typical sectional drawing which shows the aspect of the vapor deposition method. Typical sectional drawing which shows the aspect of the vapor deposition method. Typical sectional drawing which shows the aspect of the vapor deposition method. Typical sectional drawing which shows the aspect of the vapor deposition method. Typical sectional drawing which shows the preparation methods of a vapor deposition mask. Typical sectional drawing which shows the preparation methods of a vapor deposition mask. Typical sectional drawing which shows the preparation methods of a vapor deposition mask. Typical sectional drawing which shows the preparation methods of a vapor deposition mask. Typical sectional drawing which shows the preparation methods of a vapor deposition mask. Typical sectional drawing which shows the preparation methods of a vapor deposition mask. Typical sectional drawing which shows the preparation methods of a vapor deposition mask. Typical sectional drawing which shows the preparation methods of a vapor deposition mask. Typical sectional drawing which shows the preparation methods of a vapor deposition mask
- FIG. 7 is a schematic cross-sectional view showing a method for manufacturing a display device. Typical sectional drawing which shows the preparation methods of a vapor deposition mask.
- FIG. 7 is a schematic cross-sectional view showing a method for manufacturing a display device.
- FIG. 7 is a schematic cross-sectional view showing a method for manufacturing a display device.
- Typical sectional drawing which shows the preparation methods of a vapor deposition mask.
- FIG. 7 is a schematic cross-sectional view showing a method for manufacturing a display device. Typical sectional drawing which shows the preparation methods of a vapor deposition mask.
- FIG. 7 is a schematic cross-sectional view showing a method for manufacturing a display device. Typical sectional drawing which shows the preparation methods of a vapor deposition mask.
- the plurality of films when a plurality of films are formed by performing etching or light irradiation on a certain film, the plurality of films may have different functions and roles. However, the plurality of films are derived from the film formed as the same layer in the same step, and have the same layer structure and the same material. Therefore, these multiple films are defined as existing in the same layer.
- FIGS. 1A and 1B are a schematic top view and a side view of the deposition chamber 100 which is a part of the deposition apparatus.
- the deposition chamber 100 is separated from the adjacent chamber by the load lock door 102, and is configured to maintain the inside in a high vacuum reduced pressure state or a state filled with an inert gas such as nitrogen or argon. Therefore, a decompression device (not shown) and a gas suction and discharge mechanism are connected to the deposition chamber 100.
- the deposition chamber 100 has a shape that can accommodate an object to be deposited.
- the deposition source 112 is disposed below the substrate 104.
- the deposition source 112 is filled with a material to be deposited.
- the material is heated and vaporized in the deposition source 112, and the vapor of the material cools and solidifies when it reaches the surface of the substrate 104, and the material is deposited and deposited on the substrate 104 (on the lower surface of the substrate 104 in FIG. 1B) Give a thin film of material.
- FIG. 1B the deposition source 112 is disposed below the substrate 104.
- the deposition source 112 is filled with a material to be deposited.
- the material is heated and vaporized in the deposition source 112, and the vapor of the material cools and solidifies when it reaches the surface of the substrate 104, and the material is deposited and deposited on the substrate 104 (on the lower surface of the substrate 104 in FIG. 1B) Give a thin film of material.
- the deposition source 112 (also referred to as a linear source) having a generally rectangular shape and disposed along one side of the substrate 104 is provided, but the deposition source 112 may have any shape.
- the deposition source 112 may be a so-called point source which selectively overlaps the center of gravity of the substrate 104 and its vicinity. In the case of a point source, the relative positions of the substrate 104 and the deposition source 112 may be fixed, and a mechanism for rotating the substrate 104 may be provided.
- the deposition chamber 100 is configured to move the substrate 104 and the deposition source 112 relative to each other.
- FIG. 1A shows an example in which the deposition source 112 is fixed and the substrate 104 is moved thereon.
- the deposition chamber 100 further includes a holder 108 for holding the substrate 104 and the deposition mask 106, a moving mechanism 110 for moving the holder 108, a shutter 114, and the like.
- the holder 108 maintains the positional relationship between the substrate 104 and the deposition mask 106, and the moving mechanism 110 allows the substrate 104 and the deposition mask 106 to move on the deposition source 112.
- the shutter 114 is provided on the deposition source 112 in order to shield the vapor of the material or allow the substrate 104 to reach, and the opening and closing is controlled by a control device (not shown).
- vertical to the longitudinal direction of the vapor deposition source 112 is shown in FIG.
- the vapor deposition source 112 has a heating unit 122 capable of holding the storage container 120 such as a crucible inside.
- the deposition source 112 may further include a deposition holder 124 for holding the heating unit 122.
- the storage container 120 holds the material to be deposited, and can be removed from the heating unit 122 or from the deposition holder 124.
- the storage container 120 can include, for example, a metal such as tungsten, tantalum, molybdenum, titanium, nickel, or an alloy thereof.
- an inorganic insulator such as alumina, boron nitride, or zirconium oxide can be included.
- the heating unit 122 and the vapor deposition holder 124 can include the above-described metal, an alloy thereof, or an inorganic insulator.
- the heating unit 122 is configured to heat the storage container 120 by a resistance heating method.
- the heater 126 is mounted on the heating unit 122, and when the heater 126 is energized, the heating unit 122 is heated, the material in the storage container 120 is heated and vaporized, and the vapor of the material from the opening 130 is It is injected.
- a mesh-like metal plate 128 may be attached to the top of the storage container 120 so as to cover the opening 130 to prevent bumping of the material.
- a guide portion provided with a pair of guide plates 132 may be provided on the top of the deposition source 112. At least a part of the guide plate 132 is inclined from the side surface of the storage container 120 or from the vertical direction, thereby controlling the spread angle of the material vapor (hereinafter referred to as injection angle) and having directivity in the vapor flight direction.
- injection angle is determined by the angle ⁇ e (in degrees) between the two guide plates 132, and is appropriately adjusted depending on the size of the substrate 104 and the distance between the deposition source 112 and the substrate 104, for example, 40 ° or more and 80 ° or less, 50 ° More than 70 °, typically 60 °.
- the surfaces formed by the inclined surfaces of the guide plate 132 are the critical surfaces 160a and 160b, and the vapor of the material flies in the space sandwiched by the critical surfaces 160a and 160b.
- the guide plate 132 may have a shape that constitutes a part of the surface of a cone.
- the material to be deposited can be selected from various materials, and any of organic compounds and inorganic compounds may be used.
- organic compound for example, a light-emitting material or a carrier-transporting organic compound can be used.
- inorganic compound metals, alloys thereof, metal oxides and the like can be used.
- a plurality of materials may be filled in one storage container 120 for film formation.
- the deposition chamber 100 may be configured to simultaneously heat different materials using a plurality of deposition sources.
- FIG. 3A A schematic top view of the deposition mask 106 is shown in FIG. 3A.
- the deposition mask 106 includes a metal plate 140, and the metal plate 140 includes a plurality of openings 146 penetrating the metal plate 140.
- the area other than the opening 146 of the metal plate 140 is called a non-opening.
- the non-opening surrounds the opening 146.
- the deposition mask 106 further has a frame 142 surrounding the opening 146, and a connection 144 that surrounds the opening 146, contacts the frame 142 and the metal plate 140, and connects them to each other.
- the deposition mask 106 and the substrate 104 are disposed such that the deposition area and the opening 146 overlap, and the non-deposition area and the non-opening overlap, and the vapor of the material passes through the opening 146 and the material is deposited on the deposition area .
- the openings 146 are also provided in a stripe shape.
- the arrangement of the openings 146 is not necessarily limited to the stripe arrangement shown in FIGS. 3A and 3B, and may be formed in an arbitrary shape and arrangement so as to coincide with the deposition regions and not to overlap the openings 146.
- the metal plate 140 and the connection portion 144 contain a zero-valent metal such as nickel, copper, titanium, chromium or the like, and preferably contain nickel.
- the compositions of the materials of the metal plate 140 and the connection portion 144 may be identical to each other.
- the frame 142 also contains a zero-valent metal, and the metal is selected from nickel, iron, cobalt, chromium, manganese and the like.
- the frame 142 may contain an alloy containing iron and chromium, an alloy of iron, nickel and manganese, and the alloy may contain carbon.
- FIG. 4A A schematic cross-sectional view taken along the dashed-dotted line AA 'in FIG. 3B is shown in FIG. 4A.
- the deposition mask 106 is disposed below the substrate 104.
- the deposition mask 106 is disposed between the substrate 104 and the deposition source 112 (not shown).
- the main surface located closer to the substrate 104 at the time of deposition is arranged farther from the upper surface (or first surface) 148 and the substrate 104
- the main surface is defined as the lower surface (or second surface) 150.
- connection portion 144 among the main surfaces facing each other, the main surface located closer to the substrate 104 during deposition is defined as the upper surface (or the first surface), and the main surface located farther from the substrate 104 is defined as the lower surface. .
- the upper surface 148 of the deposition mask 106 and the upper surface of the connection portion 144 are located in the same plane.
- the opening 146 is a through hole penetrating from the upper surface 148 to the lower surface 150, and the shape and the area thereof are defined by the side wall 152 of the non-opening.
- the side wall 152 includes a first surface 152a and a second surface 152b located below the first surface 152a (ie, farther from the substrate 104) (FIG. 4B).
- the first surface 152a and the second surface 152b are both flat or substantially flat.
- the first surface 152 a and the second surface 152 b can touch each other at the boundary 154.
- FIG. 4C the enlarged view of the region 155 of FIG.
- the area between the first surface 152a and the second surface 152b does not affect the overall shape of the side wall 152.
- the first surface 152a and the second surface 152b are both inclined from the direction (vertical direction) perpendicular to the upper surface 148. That is, both the first surface 152 a and the second surface 152 b are inclined from the upper surface 148 or the lower surface 150, and in the non-opening portion between the adjacent openings 146, the metal plate 140 is in the direction from the upper surface 148 toward the lower surface 150 It has a tapered shape that becomes gradually thinner.
- the angle ⁇ 1 (in degrees) between the first surface 152 a and the upper surface 148 and the angle ⁇ 2 (in degrees) between the second surface 152 b and the upper surface 148 are all greater than 0 ° and more than 90 °.
- the angle ⁇ 1 is larger than the angle ⁇ 2 .
- the difference ( ⁇ 1 - ⁇ 2 ) between the angle ⁇ 1 and the angle ⁇ 2 is preferably 8% to 15% of the angle ⁇ 1 and is, for example, 10% or 14%. More specifically, the angle theta 1 is 80 ° 60 ° or more, alternatively at 65 ° or more 75 ° or less, typically 70 °.
- the angle theta 2 is 50 ° to 70 ° or less, alternatively 55 ° or more 65 ° or less, typically 60 °.
- Angle theta 1 is preferably ⁇ 10% of the angle theta e in the same or the angle theta e,.
- the width D 1 of the opening 146 at the upper surface 148 is smaller than the width D 2 at the lower surface 150 (FIG. 4A).
- the width D 1 can be arbitrarily determined in accordance with the deposition area.
- the width D 1 is, for example, 5 ⁇ m or 100 ⁇ m or less, 10 [mu] m or more 50 ⁇ m or less, alternatively at 10 [mu] m or more 30 ⁇ m or less, typically 20 [mu] m.
- the heights of the first surface 152a and the second surface 152b can be arbitrarily adjusted. That is, in the vertical direction, the distance T 1 of the from upper surface 148 to the boundary 154 and the distance T 2 of the from the boundary 154 to the lower surface 150 may be identical to one another or may be different. In the latter case, the distance T 1 may be smaller or larger than the distance T 2.
- the distances T 1 and T 2 are 1 ⁇ m or more and 10 ⁇ m or less, 2.5 ⁇ m or more and 7.5 ⁇ m or less, and typically 5 ⁇ m or 10 ⁇ m, respectively.
- the side wall 152 is a side surface of the metal plate 140 facing the opening 146, and the side surface is a first surface 152a and a second surface 152b. It can be said that in addition, in a cross section parallel to the vertical direction (hereinafter simply referred to as a cut surface) passing through two adjacent openings 146, the metal plates 140 are connected to each other and sandwiched between the upper surface 148 and the lower surface 150. And a second straight line. In this case, the first straight line corresponds to the first surface 152a, and the second straight line corresponds to the second surface 152b.
- the first angle theta 1 is an angle which the first straight line and the upper surface 148 forms in the cut surface
- the second angle theta 2 is the angle formed by the second straight line and the top surface 148.
- the boundary 154 corresponds to the intersection of the first straight line and the second straight line in the cutting plane.
- a curve having a length that does not significantly affect the shape of the side wall 152 may exist between the first straight line and the second straight line. That is, the first straight line and the second straight line may be connected via this curve.
- the sidewall 152 may further include a third surface 152c between the first surface 152a and the second surface 152b.
- the third surface 152c is connected to the first surface 152a and the second surface 152b.
- the side surface of the metal plate 140 has the third surface 152c connected thereto between the first surface 152a and the second surface 152b.
- the metal plate 140 can have a third straight line connected to the first straight line and the second straight line. In this case, the angle theta 1 and the angle theta 2 are the same, or substantially may be the same.
- the third surface 152c (or third straight line) may be parallel to the top surface 148, as shown in FIG. 5A, or may be tilted from the top surface 148, as shown in FIG. 5B. In the latter case, the angle theta 3 to the third surface 152c (or the third straight line) and the upper surface 148 forms a first angle theta 1 and smaller than the second angle theta 2. Although not shown, the area between the first surface 152a and the third surface 152c and between the second surface 152b and the third surface 152c does not significantly affect the shape of the side wall 152.
- first surface 152a and the third surface 152c there may be a curved surface having That is, the first surface 152a and the third surface 152c, and the second surface 152b and the third surface 152c may be connected via these curved surfaces, respectively.
- the length does not affect the overall shape of the side wall 152.
- the material stored in the storage container 120 is heated and vaporized by the heater 126, and the obtained vapor passes through the opening 146 of the deposition mask 106, reaches the substrate 104, and solidifies and deposits.
- a thin film of material can be selectively formed in the deposition region.
- FIGS. 6A and 6B The positional relationship between the opening 146 and the deposition source 112 at the time of deposition will be described using schematic cross-sectional views shown in FIGS. 6A and 6B.
- FIGS. 6A and 6B an aspect in which the deposition source 112 moves from left to right with respect to the substrate 104 and the deposition mask 106 is shown.
- the top-bottom relation of the deposition source 112, the substrate 104, and the deposition mask 106 is opposite to that in FIGS. 4A to 5B in order to facilitate understanding.
- 6A shows an embodiment using a conventional deposition mask in which the side wall 152 is perpendicular to the upper surface 148
- FIG. 6B shows an embodiment using the deposition mask 106 according to the present embodiment.
- one of the two intersections top 148 and side walls 152 make a P 1, the other one facing the P 1 and P 2 across the opening 146.
- the evaporation source 112 is provided with a pair of guide plates 132, it determines the exit angle of the material by the angle theta e of the guide plate 132, the spread of vapors is restricted. Specifically, most of the material vapors are two critical planes that are set at an angle of - ⁇ e / 2 ° to + ⁇ e / 2 ° from the normal through the center of the opening 130 (see FIG. 2) It injects in the range between 160a and 160b. Therefore, as shown in FIG.
- the deposition of material is started from three . Thereafter, (in the figure, rightward) traveling direction of the deposition source 112 to the point P 3 as a starting point (in the figure, left) and its reverse deposition of the material begins in the region of.
- the vapor of the material reaches a point P 1, the opening 130 and the point P1 of the deposition source 112 is time T 2, which overlap in the vertical direction, which is later than time T 1. Therefore, in the period from time T 1 of the T 2, the periphery of the already point P 3 is deposited materials. Further, the deposition of the material at the point P 1, when the critical surface 160b passes through the point P 1, that is, ends at time T 3. However the time T 3 after the critical surface 160b is deposited at the point P 3 in the material until the time T 4 which passes through the point P 3 is continued.
- region 156 (hereinafter, the shadow area hereinafter) of the point P 3 from the point P 1 the thickness of the film of the material is not uniform, also the thickness of the as the film approaches from the point P 3 to the point P 1 Decrease.
- Such a shadow region 156 also occurs on the point P 2 side, and from the intersection point P 4 of the critical surface 160 b and the substrate 104 to the point P 2 at the time when the critical surface 160 b contacts the side on the lower surface 150 of the side wall 152 (time T 5 ) Is the shadow area 156.
- the thickness of the film in the shadow region 156 is uneven, and smaller. Therefore, the thickness of the film becomes uneven in the deposition region.
- Such shadowed areas 156 can be reduced by thinning the metal plate 140.
- the thickness of the metal plate 140 is reduced, the mechanical strength is reduced, and the deposition mask 106 is easily deformed, so that the deformation of the opening 146 or the deviation of the deposition region from the opening 146 is likely to occur.
- the metal plate 140 of the vapor deposition mask 106 of the present embodiment has a tapered shape that gradually narrows in the direction from the upper surface 148 toward the lower surface 150, and the second surface 152 b is angled ⁇ 2 from the upper surface 148. Lean. Therefore, time T'1 is before the time T 1, as a result, the point P 3 becomes closer to a point P 1, the shadow area 156 is narrow.
- the first surface 152a is an angle theta 1 tilts from the top 148. Therefore, the deposition of the material is started at the point P1, not the time T 2, the deposition source 112 passes over the point P 1, from faster time T'2 (opening 130 of the deposition source 112 it Time to pass the tangent of the first surface 152a). Therefore, a small difference in time that deposition of the material begins at the point P 1 from the time at point P 3 material deposition begins.
- the point P 1 since the point P 3 of Oite material deposition is smaller interval time T'3 and T'4 to end, the difference in thickness of the film at the point P 1 and the point P 3 is significantly smaller Become.
- the tendency described above is the same on the point P 2 side, and the point P 4 is closer to the point P 2 , and the difference in film thickness between the point P 2 and the point P 4 is small.
- the present embodiment it is possible to narrow the shadow area 156 and to reduce the difference in film thickness between the shadow area 156 and other areas. Moreover, in the vapor deposition mask 106 of this embodiment, it is not necessary to make the thickness of the metal plate 140 small. For this reason, the nonuniformity of the film thickness in a vapor deposition area
- Material is gradually deposited on the deposition mask 106 by repeating the deposition. Specifically, as shown in FIG. 7A, a deposition film 158 of the material is formed on the deposition mask 106.
- the apparent thickness of the deposition mask 106 is increased, so that the material vapor first reaches the deposition region at a critical plane at the intersection line where the top surface and the side surface of the deposition film 158 intersect. It will be when 160a contacts (FIG. 7A). Therefore, it is between P'4 and the point P 1 point close to the point P 1 than the shadow area 156 between P'3 and the point P 1 point close to the point P 2 than the point P 3, and the point P 4, It expands as the deposited film 158 is formed.
- the shadow region 156 is between the point P ′ 3 and the point P 1 and the point P ′ 4 and the point as the deposited film 158 is formed. It is between P 1, to expand.
- the shadow area 156 in the absence of the deposited film 158 is very small, the enlarged shadow area 156 has less influence on the entire deposition area. For this reason, since it is possible to form the deposition film 158 having a larger thickness as compared with the conventional deposition mask, it becomes possible to lower the frequency of mask replacement, and the efficiency of the deposition process is improved to thereby reduce the deposition cost. It can be reduced. In addition, since the frequency of mask replacement is reduced, the number of deposition masks 106 required can be reduced, and the cost and place for storing the deposition masks 106 can also be reduced.
- the deposited film 158 when the deposited film 158 is formed, if the sidewall 152 is perpendicular to the upper surface 148 as in a conventional deposition mask, the deposited film 158 has a bend having a large angle. (See dashed arrow in FIG. 8A). Therefore, when internal stress is accumulated in the deposited film 158, the deposited film 158 is broken from the bent portion and the vicinity thereof, which causes the generation of foreign matter. On the other hand, in the vapor deposition mask 106 of the present embodiment, the angle of the bent portion of the deposited film 158 is relatively small (see the broken arrow in FIG. 8B). Therefore, since the deposited film 158 can be relatively stably present, the generation of foreign matter due to the destruction of the deposited film 158 can be largely suppressed.
- FIGS. 9A to 11B are schematic cross-sectional views corresponding to FIG. 4A, which are upside down from FIG. 4A. The contents described in the first embodiment may be omitted.
- the deposition mask 106 can be formed by electroforming. Specifically, first, a resist 172 is applied on a substrate 170 which is a base material (FIG. 9A). The surface of the substrate 170 has conductivity. Therefore, the substrate 170 contains copper, metal such as aluminum, titanium, iron, nickel, cobalt, chromium, molybdenum, manganese, or an alloy of these. In the case of an alloy, for example, an alloy containing iron and chromium, an alloy of iron, nickel, and manganese may be used, and the alloy may contain carbon. Alternatively, a substrate in which a film of the above-described metal or alloy is formed on an insulating base material containing glass, quartz, or plastic may be used.
- the resist 172 is a photosensitive resin, and a known material can be used.
- a photosensitive resin negative resin is preferable.
- a photomask 174 is disposed on the resist 172.
- the photomask 174 may be provided in contact with the resist 172 or may be provided so as to be separated from the resist 172.
- the photomask 174 is a halftone mask.
- the photomask 174 has a substrate 175 containing glass or quartz, and includes a light transmitting portion 174a, a light shielding portion 174b, and a halftone portion 174c formed on the substrate 175. In the region where the opening 146 is provided, one light transmitting portion 174a is surrounded by the halftone portion 174c, and the halftone portion 174c is surrounded by the light shielding portion 174b.
- the light transmitting portion 174a preferably has a high transmittance to light (hereinafter, irradiation light) used for exposing the resist 172, and the transmittance is, for example, 75% to 100%, or 80% to 100%.
- the light shielding portion 174b is a region that blocks the irradiation light, and preferably has a small transmittance to the irradiation light.
- the transmittance is, for example, 0% or more and 5% or less, 0% or more and 2% or less, or 0% or more and 1% or less, and may be substantially 0%.
- the halftone unit 174c partially transmits the irradiation light and blocks a part.
- the transmittance to the irradiation light is 20% or more and 60% or less, 30% or more and 50% or less, and typically about 40% or 40%.
- the width of the halftone portion 174c is 1 ⁇ m to 10 ⁇ m, 2 ⁇ m to 8 ⁇ m, 2 ⁇ m to 6 ⁇ m, and typically 6 ⁇ m.
- the resist 172 is exposed using an exposure machine to cure the exposed area. Thereafter, development is performed to obtain a patterned resist mask 176 on the substrate 170 (FIG. 10A).
- the resist mask 176 located in the region corresponding to the opening 146 has a shape such that the width is wider as the distance from the substrate 170 is increased (see the enlarged view). This shape corresponds to the non-opening portion of the metal plate 140 to be formed later.
- the sidewall of the resist mask 176 in this region has two faces, and the angle ⁇ ′ 1 between the face closer to the substrate 170 and the face in which the resist mask 176 and the substrate 170 are in contact with each other is 180 It becomes - ⁇ 1 (unit °).
- a plating pattern is formed in a region not covered by the resist mask 176 using electrolytic plating to form a metal plate 140 (FIG. 10B).
- the formation of the plating pattern may be performed in one step or may be divided into several steps. In the case of multiple steps, electrolytic plating may be performed such that different metals are formed in different steps. Alternatively, electrolytic plating may be performed such that the upper surface of the plating pattern is higher than the upper surface of the resist mask 176, and then the upper surface of the plating pattern may be planarized by polishing the surface.
- the shape of the plating pattern is determined by the shape of the resist mask 176. Therefore, a tapered shape as shown in FIG. 4B can be applied to the non-opening portion of the metal plate 140.
- the resist mask 176 is removed by etching and / or ashing, and the frame 142 is bonded onto the metal plate 140 (FIG. 11A).
- Bonding may be performed using an adhesive containing a resin, or may be performed via a metal adhesive layer. In the latter case, for example, a metal adhesion layer containing a metal having a relatively low melting point such as zinc or tin or an alloy thereof and a few% (eg 3 to 10%, or 5 to 8%) phosphorus is used. Bonding can be performed by applying pressure between the frame 142 and the metal plate 140 through the metal adhesive layer while heating.
- a resist mask 178 is formed in the area other than the region where the connection portion 144 is to be formed, and electrolytic plating is performed to form the connection portion 144 (FIG. 11B).
- the resist mask 178 can be manufactured by using a known method, and either a negative resist or a positive resist may be used.
- the connection part 144 contacts the frame 142 and the metal plate 140 which is a plating pattern, and connects them mutually.
- the resist mask 178 is removed, and the substrate 170 is removed, whereby the deposition mask 106 is obtained.
- the shape of the resist mask 176 described above can be obtained, the following reasons can be considered.
- the resist 172 is a negative type
- polymerization and crosslinking progress by absorbing the irradiation light, and the resin 172 is cured.
- the depth at which the resist 172 covered by the halftone portion 174c can absorb the irradiation light is The distance from the halftone portion 174c) depends on the distance from the light transmitting portion 174a. For this reason, as shown in FIG.
- a region 182 mainly contributing the curing of the resist 172 to the irradiation light which has mainly passed through the halftone portion 174c with the dashed line 180 as a boundary Regions 184 in which the irradiation light transmitted through the portion 174 a contributes to the hardening of the resist 172 are created.
- a photosensitive region and a non-photosensitive region separated by two straight lines 186 and 188 are generated inside the resist 172. Due to the generation of the photosensitive region and the non-photosensitive region, a resist mask 176 having the above-described shape is formed.
- the resist mask 176 is formed from the resist 172 using the photomask 174 which is a halftone mask, and the subsequent deposition using the electroforming plating method facilitates deposition of the embodiment having a specific shape. It is possible to form a mask 106.
- a method of manufacturing the display device 200 to which a thin film formation method using the deposition mask 106 is applied will be described.
- a method of manufacturing an organic EL display device in which a plurality of pixels each having an organic light emitting element (hereinafter, light emitting element) is formed on the substrate 202 as the display device 200 will be described.
- the contents described in the first and second embodiments may be omitted.
- the upper surface schematic diagram of the display apparatus 200 is shown in FIG.
- the display device 200 includes a substrate 202, and a driver circuit 206 (a gate driver circuit 206a and a source driver circuit 206b) for driving the plurality of pixels 204 and the pixels 204 is formed thereon.
- the plurality of pixels 204 are periodically arranged to define a display area 205. As described later, each pixel 204 is provided with a light emitting element 260.
- the drive circuit 206 is disposed outside the display area 205 (peripheral area). From the display area 205 and the drive circuit 206, various wirings (not shown) formed of a patterned conductive film extend to one side of the substrate 202, and are exposed near the end portion of the substrate 202 to form a terminal 207.
- the terminals 207 are electrically connected to a flexible printed circuit (FPC) (not shown), and various signals for driving the display device 200 are input to the driving circuit 206 and the pixels 204 through the terminals 207.
- FPC flexible printed circuit
- a drive IC having an integrated circuit may be further mounted together with the drive circuit 206 or in place of a part thereof.
- FIG. 14 is a schematic cross-sectional view across two adjacent pixels 204.
- a pixel circuit is formed in each pixel 204.
- the configuration of the pixel circuit is arbitrary, and FIG. 14 shows the drive transistor 210, the storage capacitor 230, the additional capacitor 250, and the light emitting element 260.
- the driving transistor 210 includes a semiconductor film 212, a gate insulating film 214, a gate electrode 216, a drain electrode 220, and a source electrode 222.
- the gate electrode 216 is arranged to intersect at least a part of the semiconductor film 212 with the gate insulating film 214 interposed therebetween, and a channel 212 c is formed in a region where the semiconductor film 212 and the gate electrode 216 overlap.
- the semiconductor film 212 further includes a source region 212 a and a drain region 212 b which sandwich the channel 212 c.
- a capacitor electrode 232 present in the same layer as the gate electrode 216 is provided to overlap with the source region 212 a through the gate insulating film 214.
- An interlayer insulating film 218 is provided over the gate electrode 216 and the capacitor electrode 232.
- an opening reaching the drain region 212b and the source region 212a is formed, and the drain electrode 220 and the source electrode 222 are disposed so as to cover the opening.
- a part of the source electrode 222 overlaps with a part of the source region 212a and the capacitor electrode 232 via the interlayer insulating film 218, and a part of the source region 212a, the gate insulating film 214, the capacitor electrode 232, the interlayer insulating film 218, and A part of the source electrode 222 forms a storage capacitor 230.
- a planarization film 240 is further provided on the drive transistor 210 and the storage capacitor 230.
- the planarization film 240 has an opening reaching the source electrode 222, and a connection electrode 242 covering the opening and a part of the top surface of the planarization film 240 is provided in contact with the source electrode 222.
- An additional capacitance electrode 252 is further provided on the planarizing film 240, and a capacitance insulating film 254 is further formed to cover the connection electrode 242 and the additional capacitance electrode 252.
- the capacitive insulating film 254 does not cover a part of the connection electrode 242 at the opening of the planarization film 240, and exposes the upper surface of the connection electrode 242.
- connection electrode 242 electrical connection between the first electrode (hereinafter, pixel electrode) 262 and the source electrode 222 of the light emitting element 260 provided thereon can be enabled through the connection electrode 242.
- the capacitor insulating film 254 may be provided with an opening 256 for permitting contact between the partition wall 258 provided thereover and the planarization film 240. Impurities in the planarization layer 240 can be removed through the openings 256, which can improve the reliability of the light emitting device 260. Note that the formation of the connection electrode 242 and the opening 256 is optional.
- a pixel electrode 262 is provided on the capacitive insulating film 254 so as to cover the connection electrode 242 and the additional capacitance electrode 252.
- the capacitive insulating film 254 is sandwiched between the additional capacitance electrode 252 and the pixel electrode 262, and an additional capacitance 250 is constructed by this structure.
- the pixel electrode 262 is shared by the additional capacitance 250 and the light emitting element 260.
- a partition wall 258 covering an end of the pixel electrode 262 is provided.
- the substrate 202 and the structure from the undercoat 208 to the barrier rib 258 are also collectively referred to as an array substrate.
- the array substrate can be manufactured by applying known materials and methods, and thus the description thereof is omitted.
- An EL layer 264 and a second electrode (hereinafter referred to as an opposing electrode) 272 are provided so as to cover the pixel electrode 262 and the partition 258.
- the EL layer 264 is formed by appropriately combining various functional layers such as a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a hole block layer, an electron block layer, and an exciton block layer.
- a hole injecting / transporting layer 266, a light emitting layer 268 (light emitting layers 268a, 268b), and an electron injecting / transporting layer 270 are shown as representative layers constituting the EL layer 264.
- the structure of the EL layer 264 may be the same between all the pixels 204, and the EL layer 264 may be formed so that a part of the structure is different between the adjacent pixels 204.
- the pixels 204 may be configured such that the structure or material of the light emitting layer 268 differs between adjacent pixels 204, and the other layers have the same structure.
- the hole injection / transport layer 266 and the electron injection / transport layer 270 are provided commonly to all the pixels 204 and shared by all the pixels 204.
- the light emitting layer 268 differs in structure between adjacent pixels 204.
- the counter electrode 272 covers the plurality of pixels 204 and is shared by the plurality of pixels 204.
- the pixel electrode 262, the EL layer 264, and the counter electrode 272 construct a light emitting element 260.
- the EL layer 264 and the counter electrode 272 can be formed using the evaporation mask 106 according to the embodiment of the present invention. The formation of the EL layer 264 and the counter electrode 272 will be described below with reference to FIGS. 15A to 18B. Note that although the EL layer 264 and the counter electrode 272 are illustrated as being formed over the partition wall 258 and the pixel electrode 262 in these drawings, the evaporation source 112 is disposed under the substrate 202 at the time of evaporation. The array substrate is disposed so as to face the deposition source 112, that is, the partition wall 258 and the pixel electrode 262 are closer to the deposition source 112 than the substrate 202.
- the hole injecting / transporting layer 266 is formed on the array substrate using a vapor deposition method. Since the hole injection / transport layer 266 is provided so as to be shared by all the pixels 204, the deposition mask 106 used has one opening 146 overlapping the entire display area 205. Although details are omitted, the deposition mask 106 is disposed between the array substrate and the deposition source 112 so that the opening 146 overlaps the display region 205, and the material contained in the hole injection / transport layer 266 is vaporized in the deposition source 112 Thus, the hole injection / transport layer 266 is formed.
- the light emitting layer 268 is formed.
- a plurality of pixels 204 that emit red light, pixels 204 that emit blue light, and pixels 204 that emit green light are arranged in the display region 205, respectively.
- the pixels 204 having different emission colors are periodically arranged in order, and the light emitting layer 268 is formed at different stages for each emission color. Therefore, when three types of pixels 204 emitting red, blue and green are arranged in stripes, as shown schematically in FIG. 16, the opening 146 overlaps the pixel 204a and the non-opening portion overlaps the pixels 204b and 204c.
- a deposition mask 106 is formed. In this case, the width W of the non-opening portion of the metal plate 140 is twice the pitch of the pixels 204.
- the deposition mask 106 provided with the opening 146 is such that the opening 146 overlaps the pixel 204 a, the non-opening portion overlaps the other pixels 204 b and 204 c, and the upper surface 148 is closer to the substrate 202 than the lower surface 150. (FIG. 17A), and the material of the light emitting layer 268a of the pixel 204a is deposited. Thus, the light emitting layer 268a is selectively formed on the pixel electrode 262 of the pixel 204a (FIG. 17B). In FIG.
- the deposition mask 106 is disposed in contact with the hole injection / transport layer 266 during deposition, but the deposition mask 106 may be disposed in contact with the partition wall 258, or the partition 258 or the hole implantation It may be arranged to be separated from the transport layer 266.
- the light emitting layer 268 b is formed in the same manner as the formation of the light emitting layer 268 a. That is, the deposition mask 106 is disposed such that the opening 146 overlaps the pixel 204b, the non-opening overlaps the other pixels 204a and 204c, and the upper surface 148 is closer to the substrate 202 than the lower surface 150 (FIG. 18A). , The material of the light emitting layer 268 b of the pixel 204 b is deposited. Thus, the light emitting layer 268 b is selectively formed on the pixel electrode 262 of the pixel 204 b (FIG. 18B). The same applies to the formation of the light emitting layer 268c on the pixel 204c.
- the electron injection / transport layer 270 and the counter electrode 272 are formed. Since these are also provided on all the pixels 204 and shared by all the pixels 204, they can be formed using a deposition mask 106 similar to the hole injection / transport layer 266. Thereby, the state shown in FIG. 14 can be obtained.
- an optical adjustment layer or a polarizing plate for preparing light from the light emitting layer 268, a protective film for protecting the light emitting element 260, or an opposite substrate may be provided on the opposite electrode 272.
- the deposition mask 106 As described in the first embodiment, by using the deposition mask 106 according to the embodiment of the present invention, the generation of the shadow region 156 is significantly suppressed in each pixel 204, and the thickness of the obtained film is made uniform. can do. Therefore, uniform light emission can be obtained in each pixel 204, and it is possible to prevent the reduction of the light emitting region in each pixel 204 and reduce the distribution of luminance.
- an EL display device is mainly illustrated as a disclosed example
- an electronic paper type display having another self-light emitting display device, a liquid crystal display device, or an electrophoretic element as another application example Devices include any flat panel type display device. Moreover, it is applicable without particular limitation from medium size to large size.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Physical Vapour Deposition (AREA)
Abstract
The present invention provides a deposition mask. The deposition mask has a metal plate that has: an upper surface; a lower surface, which is positioned below the upper surface, and which is disposed further than the upper surface from a substrate to be subjected to deposition; and an opening penetrating from the upper surface to the lower surface. The side wall of the opening has a first surface, and a second surface positioned below the first surface. A first angle formed between the first surface and the upper surface is larger than a second angle formed between the second surface and the upper surface. The first angle and the second angle are larger than 0° but smaller than 90°.
Description
本発明の実施形態の一つは、蒸着マスク、蒸着マスクの作製方法、あるいは蒸着マスクを利用した表示装置の製造方法に関する。
One of the embodiments of the present invention relates to a deposition mask, a method for manufacturing a deposition mask, or a method for manufacturing a display device using a deposition mask.
フラットパネル型表示装置の一例として、液晶表示装置や有機EL(Electroluminescence)表示装置が挙げられる。これらの表示装置は、絶縁体、半導体、導電体などの様々な材料を含む薄膜が基板上に積層された構造体であり、これらの薄膜が適宜パターニング、接続され、表示装置としての機能が発現される。
Examples of the flat panel display device include a liquid crystal display device and an organic EL (Electroluminescence) display device. These display devices are structures in which thin films containing various materials such as insulators, semiconductors, and conductors are laminated on a substrate, and these thin films are appropriately patterned and connected to exhibit the function as a display device. Be done.
薄膜を形成する方法は、大別すると気相法、液相法、固相法に分類される。気相法は物理的気相法と化学的気相法に分類され、前者の代表的な例として蒸着法が知られている。蒸着法のうち最も簡便な方法が真空蒸着法であり、高真空化において材料を加熱することで材料を昇華、あるいは蒸発させて材料の蒸気を生成し(以下、これらを総じて気化と記す)、この蒸気を目的とする領域(以下、蒸着領域)で固化、堆積することで材料の薄膜を得ることができる。この時、蒸着領域に選択的に薄膜を形成し、それ以外の領域(以下、非蒸着領域)には材料を堆積させないために、マスク(蒸着マスク)が用いられる(特許文献1から3参照)。
Methods of forming a thin film are roughly classified into a gas phase method, a liquid phase method, and a solid phase method. Vapor phase methods are classified into physical vapor phase methods and chemical vapor phase methods, and vapor deposition methods are known as representative examples of the former. Among the vapor deposition methods, the simplest method is vacuum deposition, and heating the material in a high vacuum to sublime or evaporate the material to generate a vapor of the material (hereinafter collectively referred to as vaporization), A thin film of the material can be obtained by solidifying and depositing the vapor in a target area (hereinafter, a deposition area). At this time, a mask (vapor deposition mask) is used in order to selectively form a thin film in the vapor deposition region and not deposit material in the other regions (hereinafter, non-vapor deposition region) (see Patent Documents 1 to 3) .
本発明の実施形態の一つは蒸着マスクである。蒸着マスクは、上面と、上面の下に位置し、蒸着に供される基板に対して上面よりも遠くに配置される下面と、上面から下面へ貫通する開口とを有する金属板を有する。開口の側壁は第1の面、および第1の面の下に位置する第2の面を有する。第1の面と上面がなす第1の角度は、第2の面と上面がなす第2の角度よりも大きい。第1の角度と第2の角度は、0°よりも大きく、90°よりも小さい。
One of the embodiments of the present invention is a deposition mask. The deposition mask has a metal plate having a top surface, a bottom surface located below the top surface, a bottom surface located farther than the top surface with respect to the substrate to be provided for deposition, and an opening penetrating from the top surface to the bottom surface. The sidewall of the opening has a first surface and a second surface located below the first surface. A first angle formed by the first surface and the upper surface is larger than a second angle formed by the second surface and the upper surface. The first angle and the second angle are greater than 0 ° and less than 90 °.
本発明の実施形態の一つは蒸着マスクの作製方法である。この作製方法は、基板上にフォトレジストを塗布すること、複数の透光領域、および複数の透光領域を囲む遮光領域を有するフォトマスクを用いてフォトレジストを露光すること、フォトレジストの未露光部を除去することにより、複数の開口を有するレジストマスクを形成すること、電解めっき法を用いて複数の開口内にめっきパターンを形成すること、およびめっきパターンから基板を除去することを含む。
One of the embodiments of the present invention is a method for manufacturing a deposition mask. In this manufacturing method, a photoresist is coated on a substrate, a photoresist is exposed using a photomask having a plurality of light transmitting regions, and a light shielding region surrounding the plurality of light transmitting regions, and the photoresist is not exposed. Removing the portion to form a resist mask having a plurality of openings, forming a plating pattern in the plurality of openings using electrolytic plating, and removing the substrate from the plating pattern.
本発明の実施形態の一つは表示装置の製造方法である。この製造方法は、基板上に複数の画素電極を形成すること、材料が充填されるように構成される蒸着源上に、画素電極が基板と蒸着源の間に位置するように基板を配置すること、蒸着源と基板の間に蒸着マスクを配置すること、材料を気化し、画素電極を覆う材料の膜を形成することを含む。蒸着マスクは金属板を有し、この金属板は、上面と、上面の下に位置し、基板に対して上面よりも遠くに配置される下面と、上面から下面へ貫通する開口とを有する。開口の側壁は第1の面、および第1の面の下に位置する第2の面を有する。第1の面と上面がなす第1の角度は、第2の面と上面がなす第2の角度よりも大きい。第1の角度と第2の角度は、0°よりも大きく、90°よりも小さい。
One of the embodiments of the present invention is a method of manufacturing a display device. The manufacturing method includes forming a plurality of pixel electrodes on a substrate, and placing the substrate on a deposition source configured to be filled with a material such that the pixel electrode is located between the substrate and the deposition source. And disposing a deposition mask between the deposition source and the substrate, vaporizing the material, and forming a film of the material covering the pixel electrode. The deposition mask has a metal plate, and the metal plate has an upper surface, a lower surface located below the upper surface and disposed farther than the upper surface with respect to the substrate, and an opening penetrating from the upper surface to the lower surface. The sidewall of the opening has a first surface and a second surface located below the first surface. A first angle formed by the first surface and the upper surface is larger than a second angle formed by the second surface and the upper surface. The first angle and the second angle are greater than 0 ° and less than 90 °.
本発明の実施形態の一つは蒸着マスクである。蒸着マスクは、上面と、上面の下に位置し、蒸着に供される基板に対して上面よりも遠くに配置される下面と、上面から下面へ貫通する複数の開口とを有する金属板を有する。複数の開口の隣接する二つの開口の間の領域における金属板の側面は、第1の面と、第1の面の下に位置する第2の面を有する。第1の面と上面がなす第1の角度は、第2の面と上面がなす第2の角度よりも大きい。第1の角度と第2の角度は、0°よりも大きく、90°よりも小さい。
One of the embodiments of the present invention is a deposition mask. The deposition mask has a metal plate having an upper surface, a lower surface located below the upper surface and located farther than the upper surface with respect to the substrate to be provided for evaporation, and a plurality of openings penetrating from the upper surface to the lower surface. . The side surface of the metal plate in the region between two adjacent openings of the plurality of openings has a first surface and a second surface located below the first surface. A first angle formed by the first surface and the upper surface is larger than a second angle formed by the second surface and the upper surface. The first angle and the second angle are greater than 0 ° and less than 90 °.
本発明の実施形態の一つは蒸着マスクである。蒸着マスクは、上面と、上面の下に位置し、蒸着に供される基板に対して上面よりも遠くに配置される下面と、上面から下面へ貫通する複数の開口とを有する金属板を有する。複数の開口の隣接する二つの開口を通る断面において、金属板は、互いに連結し、上面と下面に挟まれる第1の直線と第2の直線を有する。第1の直線と上面がなす第1の角度は、第2の直線と上面がなす第2の角度よりも大きい。第1の角度と第2の角度は、0°よりも大きく、90°よりも小さい。
One of the embodiments of the present invention is a deposition mask. The deposition mask has a metal plate having an upper surface, a lower surface located below the upper surface and located farther than the upper surface with respect to the substrate to be provided for evaporation, and a plurality of openings penetrating from the upper surface to the lower surface. . In a cross section passing through two adjacent openings of the plurality of openings, the metal plates have a first straight line and a second straight line connected to each other and sandwiched between the upper surface and the lower surface. A first angle formed by the first straight line and the upper surface is larger than a second angle formed by the second straight line and the upper surface. The first angle and the second angle are greater than 0 ° and less than 90 °.
本発明の実施形態の一つは表示装置の製造方法である。この製造方法は、基板上に複数の画素電極を形成すること、材料が充填されるように構成される蒸着源上に、画素電極が基板と蒸着源の間に位置するように基板を配置すること、蒸着源と基板の間に蒸着マスクを配置すること、材料を気化し、画素電極を覆う材料の膜を形成することを含む。蒸着マスクは、上面と、上面の下に位置し、基板に対して上面よりも遠くに配置される下面と、上面から下面へ貫通する複数の開口とを有する金属板を有する。複数の開口の隣接する二つの開口の間の領域における金属板の側面は、第1の面と、第1の面の下に位置する第2の面を有する。第1の面と上面がなす第1の角度は、第2の面と上面がなす第2の角度よりも大きい。第1の角度と第2の角度は、0°よりも大きく、90°よりも小さい。
One of the embodiments of the present invention is a method of manufacturing a display device. The manufacturing method includes forming a plurality of pixel electrodes on a substrate, and placing the substrate on a deposition source configured to be filled with a material such that the pixel electrode is located between the substrate and the deposition source. And disposing a deposition mask between the deposition source and the substrate, vaporizing the material, and forming a film of the material covering the pixel electrode. The deposition mask has a metal plate having an upper surface, a lower surface located below the upper surface, disposed lower than the upper surface with respect to the substrate, and a plurality of openings penetrating from the upper surface to the lower surface. The side surface of the metal plate in the region between two adjacent openings of the plurality of openings has a first surface and a second surface located below the first surface. A first angle formed by the first surface and the upper surface is larger than a second angle formed by the second surface and the upper surface. The first angle and the second angle are greater than 0 ° and less than 90 °.
本発明の実施形態の一つは表示装置の製造方法である。この製造方法は、基板上に複数の画素電極を形成すること、材料が充填されるように構成される蒸着源上に、画素電極が基板と蒸着源の間に位置するように基板を配置すること、蒸着源と基板の間に蒸着マスクを配置すること、材料を気化し、画素電極を覆う材料の膜を形成することを含む。蒸着マスクは、上面と、上面の下に位置し、基板に対して上面よりも遠くに配置される下面と、上面から下面へ貫通する複数の開口とを有する金属板を有する。複数の開口の隣接する二つの開口を通る断面において、金属板は、互いに連結し、上面と下面に挟まれる第1の直線と第2の直線を有する。第1の直線と上面がなす第1の角度は、第2の直線と上面がなす第2の角度よりも大きい。第1の角度と第2の角度は、0°よりも大きく、90°よりも小さい。
One of the embodiments of the present invention is a method of manufacturing a display device. The manufacturing method includes forming a plurality of pixel electrodes on a substrate, and placing the substrate on a deposition source configured to be filled with a material such that the pixel electrode is located between the substrate and the deposition source. And disposing a deposition mask between the deposition source and the substrate, vaporizing the material, and forming a film of the material covering the pixel electrode. The deposition mask has a metal plate having an upper surface, a lower surface located below the upper surface, disposed lower than the upper surface with respect to the substrate, and a plurality of openings penetrating from the upper surface to the lower surface. In a cross section passing through two adjacent openings of the plurality of openings, the metal plates have a first straight line and a second straight line connected to each other and sandwiched between the upper surface and the lower surface. A first angle formed by the first straight line and the upper surface is larger than a second angle formed by the second straight line and the upper surface. The first angle and the second angle are greater than 0 ° and less than 90 °.
以下、本発明の各実施形態について、図面等を参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like. However, the present invention can be implemented in various modes without departing from the scope of the present invention, and the present invention is not interpreted as being limited to the description of the embodiments exemplified below.
図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。本明細書と各図において、既出の図に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。
Although the drawings may be schematically represented with respect to the width, thickness, shape, etc. of each part in comparison with the actual embodiment in order to clarify the explanation, the drawings are merely an example, and the interpretation of the present invention is limited. It is not something to do. In the present specification and the drawings, elements having the same functions as those described with reference to the drawings in the drawings may be denoted by the same reference numerals, and overlapping descriptions may be omitted.
本発明において、ある一つの膜に対してエッチングや光照射を行って複数の膜を形成した場合、これら複数の膜は異なる機能、役割を有することがある。しかしながら、これら複数の膜は同一の工程で同一層として形成された膜に由来し、同一の層構造、同一の材料を有する。したがって、これら複数の膜は同一層に存在しているものと定義する。
In the present invention, when a plurality of films are formed by performing etching or light irradiation on a certain film, the plurality of films may have different functions and roles. However, the plurality of films are derived from the film formed as the same layer in the same step, and have the same layer structure and the same material. Therefore, these multiple films are defined as existing in the same layer.
本明細書および特許請求の範囲において、ある構造体の上に他の構造体を配置する態様を表現するにあたり、単に「上に」と表記する場合、特に断りの無い限りは、ある構造体に接するように、直上に他の構造体を配置する場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体を配置する場合との両方を含むものとする。
In the present specification and claims, when expressing an aspect in which another structure is disposed on a certain structure, in the case where it is simply referred to as “above”, in a certain structure, unless otherwise specified. It includes both the case where another structure is arranged immediately above and the case where another structure is arranged above another structure via another structure so as to be in contact with each other.
(第1実施形態)
本発明の本実施形態の一つに係る蒸着マスク、およびそれを用いる蒸着装置と薄膜の形成方法について説明する。 First Embodiment
The vapor deposition mask which concerns on one of this embodiment of this invention, the vapor deposition apparatus using the same, and the formation method of a thin film are demonstrated.
本発明の本実施形態の一つに係る蒸着マスク、およびそれを用いる蒸着装置と薄膜の形成方法について説明する。 First Embodiment
The vapor deposition mask which concerns on one of this embodiment of this invention, the vapor deposition apparatus using the same, and the formation method of a thin film are demonstrated.
[1.蒸着装置]
蒸着装置は種々の機能を有する複数のチャンバーで構成され、図1A、図1Bはそれぞれ、蒸着装置の一部である蒸着チャンバー100の模式的な上面図と側面図である。蒸着チャンバー100は、隣接するチャンバーとロードロック扉102で仕切られ、内部が高真空の減圧状態、あるいは窒素やアルゴンなどの不活性ガスで満たされた状態が維持されるよう構成される。したがって、図示しない減圧装置やガス吸排気機構などが蒸着チャンバー100に接続される。 [1. Deposition apparatus]
The deposition apparatus is composed of a plurality of chambers having various functions, and FIGS. 1A and 1B are a schematic top view and a side view of thedeposition chamber 100 which is a part of the deposition apparatus. The deposition chamber 100 is separated from the adjacent chamber by the load lock door 102, and is configured to maintain the inside in a high vacuum reduced pressure state or a state filled with an inert gas such as nitrogen or argon. Therefore, a decompression device (not shown) and a gas suction and discharge mechanism are connected to the deposition chamber 100.
蒸着装置は種々の機能を有する複数のチャンバーで構成され、図1A、図1Bはそれぞれ、蒸着装置の一部である蒸着チャンバー100の模式的な上面図と側面図である。蒸着チャンバー100は、隣接するチャンバーとロードロック扉102で仕切られ、内部が高真空の減圧状態、あるいは窒素やアルゴンなどの不活性ガスで満たされた状態が維持されるよう構成される。したがって、図示しない減圧装置やガス吸排気機構などが蒸着チャンバー100に接続される。 [1. Deposition apparatus]
The deposition apparatus is composed of a plurality of chambers having various functions, and FIGS. 1A and 1B are a schematic top view and a side view of the
蒸着チャンバー100は、蒸着に供される対象物が収納可能な形状を有する。以下、この対象物として板状の基板104を用いる例を述べる。図1A、図1Bに示した例では基板104の下に蒸着源112が配置される。蒸着源112には蒸着される材料が充填される。蒸着源112において材料が加熱されて気化し、材料の蒸気が基板104の表面へ到達すると冷却されて固化し、材料が堆積して基板104上(図1Bでは基板104の下側の面上)に材料の薄膜を与える。図1Aに示す例では、概ね長方形の形状を有し、基板104の一つの辺に沿って配置された蒸着源112(リニアソースとも呼ばれる)が備えられているが、蒸着源112は任意の形状を持つことが可能であり、基板104の重心とその付近に選択的に重なるような、いわゆるポイントソースと呼ばれる蒸着源112でもよい。ポイントソースの場合には、基板104と蒸着源112の相対的な位置は固定され、基板104を回転するための機構を設けてもよい。
The deposition chamber 100 has a shape that can accommodate an object to be deposited. Hereinafter, an example in which a plate-like substrate 104 is used as the object will be described. In the example shown in FIGS. 1A and 1B, the deposition source 112 is disposed below the substrate 104. The deposition source 112 is filled with a material to be deposited. The material is heated and vaporized in the deposition source 112, and the vapor of the material cools and solidifies when it reaches the surface of the substrate 104, and the material is deposited and deposited on the substrate 104 (on the lower surface of the substrate 104 in FIG. 1B) Give a thin film of material. In the example shown in FIG. 1A, the deposition source 112 (also referred to as a linear source) having a generally rectangular shape and disposed along one side of the substrate 104 is provided, but the deposition source 112 may have any shape. The deposition source 112 may be a so-called point source which selectively overlaps the center of gravity of the substrate 104 and its vicinity. In the case of a point source, the relative positions of the substrate 104 and the deposition source 112 may be fixed, and a mechanism for rotating the substrate 104 may be provided.
リニアソース型の蒸着源112が用いられる場合、蒸着チャンバー100は基板104と蒸着源112が相対的に移動するよう構成される。図1Aでは、蒸着源112が固定され、その上を基板104が移動する例が示されている。図1Bに示すように、蒸着チャンバー100にはさらに、基板104と蒸着マスク106を保持するためのホルダー108、ホルダー108を移動するための移動機構110、シャッター114などが備えられる。ホルダー108によって基板104と蒸着マスク106の互いの位置関係が維持され、移動機構110によって基板104と蒸着マスク106が蒸着源112の上を移動することができる。シャッター114は、材料の蒸気を遮蔽する、あるいは基板104への到達を許容するために蒸着源112の上に設けられ、図示しない制御装置によって開閉が制御される。
When the linear source type deposition source 112 is used, the deposition chamber 100 is configured to move the substrate 104 and the deposition source 112 relative to each other. FIG. 1A shows an example in which the deposition source 112 is fixed and the substrate 104 is moved thereon. As shown in FIG. 1B, the deposition chamber 100 further includes a holder 108 for holding the substrate 104 and the deposition mask 106, a moving mechanism 110 for moving the holder 108, a shutter 114, and the like. The holder 108 maintains the positional relationship between the substrate 104 and the deposition mask 106, and the moving mechanism 110 allows the substrate 104 and the deposition mask 106 to move on the deposition source 112. The shutter 114 is provided on the deposition source 112 in order to shield the vapor of the material or allow the substrate 104 to reach, and the opening and closing is controlled by a control device (not shown).
図2に蒸着源112の長手方向に垂直な面の断面模式図を示す。蒸着源112は、坩堝などの収納容器120を内部に保持できる加熱部122を有している。任意の構成として蒸着源112はさらに、加熱部122を保持するための蒸着ホルダー124を有してもよい。
The cross-sectional schematic diagram of the surface perpendicular | vertical to the longitudinal direction of the vapor deposition source 112 is shown in FIG. The vapor deposition source 112 has a heating unit 122 capable of holding the storage container 120 such as a crucible inside. As an optional configuration, the deposition source 112 may further include a deposition holder 124 for holding the heating unit 122.
収納容器120は蒸着する材料を保持するものであり、加熱部122から、あるいは蒸着ホルダー124から取り外しが可能である。収納容器120は、例えばタングステンやタンタル、モリブデン、チタン、ニッケルなどの金属やその合金を含むことができる。あるいは、アルミナや窒化ホウ素、酸化ジリコニウムなどの無機絶縁物を含むことができる。加熱部122や蒸着ホルダー124も収納容器120と同様、上述した金属やその合金、あるいは無機絶縁物を含むことができる。
The storage container 120 holds the material to be deposited, and can be removed from the heating unit 122 or from the deposition holder 124. The storage container 120 can include, for example, a metal such as tungsten, tantalum, molybdenum, titanium, nickel, or an alloy thereof. Alternatively, an inorganic insulator such as alumina, boron nitride, or zirconium oxide can be included. Similarly to the storage container 120, the heating unit 122 and the vapor deposition holder 124 can include the above-described metal, an alloy thereof, or an inorganic insulator.
加熱部122は、抵抗加熱方式で収納容器120を加熱するように構成される。具体的には、加熱部122にヒーター126が搭載され、ヒーター126に通電することで加熱部122が加熱されて収納容器120内の材料が加熱されて気化し、開口部130から材料の蒸気が射出される。任意の構成として、収納容器120の上部に開口部130を覆うようにメッシュ状の金属板128を取り付け、材料の突沸を防止してもよい。
The heating unit 122 is configured to heat the storage container 120 by a resistance heating method. Specifically, the heater 126 is mounted on the heating unit 122, and when the heater 126 is energized, the heating unit 122 is heated, the material in the storage container 120 is heated and vaporized, and the vapor of the material from the opening 130 is It is injected. As an optional configuration, a mesh-like metal plate 128 may be attached to the top of the storage container 120 so as to cover the opening 130 to prevent bumping of the material.
蒸着源112の上部には、一対のガイド板132を備えるガイド部を設けてもよい。ガイド板132の少なくとも一部は収納容器120の側面、あるいは鉛直方向から傾いており、これにより、材料の蒸気の広がる角度(以下、射出角度)を制御し、蒸気の飛翔方向に指向性を持たせることができる。射出角度は二つのガイド板132のなす角度θe(単位°)によって決まり、基板104の大きさや蒸着源112と基板104との距離などによって適宜調整され、例えば40°以上80°以下、50°以上70°以下、典型的には60°である。ガイド板132の傾いた表面によって形成される面が臨界面160a、160bであり、材料の蒸気はほぼこの臨界面160a、160bに挟まれる空間を飛翔する。図示しないが、蒸着源112がポイントソースの場合、ガイド板132は円錐の表面の一部を構成する形状を有していてもよい。
A guide portion provided with a pair of guide plates 132 may be provided on the top of the deposition source 112. At least a part of the guide plate 132 is inclined from the side surface of the storage container 120 or from the vertical direction, thereby controlling the spread angle of the material vapor (hereinafter referred to as injection angle) and having directivity in the vapor flight direction. You can The injection angle is determined by the angle θ e (in degrees) between the two guide plates 132, and is appropriately adjusted depending on the size of the substrate 104 and the distance between the deposition source 112 and the substrate 104, for example, 40 ° or more and 80 ° or less, 50 ° More than 70 °, typically 60 °. The surfaces formed by the inclined surfaces of the guide plate 132 are the critical surfaces 160a and 160b, and the vapor of the material flies in the space sandwiched by the critical surfaces 160a and 160b. Although not shown, when the deposition source 112 is a point source, the guide plate 132 may have a shape that constitutes a part of the surface of a cone.
蒸着する材料は種々の材料から選択することができ、有機化合物や無機化合物いずれでもよい。有機化合物としては、例えば発光性の材料や、キャリア輸送性の有機化合物を用いることができる。無機化合物としては、金属やその合金、あるいは金属酸化物などを用いることができる。一つの収納容器120に複数の材料を充填し、成膜を行ってもよい。図示しないが、複数の蒸着源を用い、異なる材料を同時に加熱できるよう、蒸着チャンバー100を構成してもよい。
The material to be deposited can be selected from various materials, and any of organic compounds and inorganic compounds may be used. As the organic compound, for example, a light-emitting material or a carrier-transporting organic compound can be used. As the inorganic compound, metals, alloys thereof, metal oxides and the like can be used. A plurality of materials may be filled in one storage container 120 for film formation. Although not illustrated, the deposition chamber 100 may be configured to simultaneously heat different materials using a plurality of deposition sources.
[2.蒸着マスク]
蒸着マスク106の上面模式図を図3Aに示す。蒸着マスク106は金属プレート140を有しており、金属プレート140は、金属プレート140を貫通する複数の開口146を備える。金属プレート140の開口146以外の領域を非開口部と呼ぶ。非開口部は開口146を取り囲む。蒸着マスク106はさらに、開口146を囲むフレーム142、および開口146を囲み、フレーム142と金属プレート140に接し、これらを互いに接続する接続部144を有する。蒸着時には、蒸着領域と開口146が重なり、非蒸着領域と非開口部が重なるように蒸着マスク106と基板104が配置され、材料の蒸気が開口146を通過し、蒸着領域上に材料が堆積する。例えば図3Aの点線で囲った領域の拡大図(図3B)に示すように、蒸着領域がストライプ配列している場合、開口146もストライプ状に設けられる。開口146の配置は必ずしも図3A、図3Bで示すストライプ配列に限られず、蒸着領域と一致し、非蒸着領域が開口146と重ならないよう、任意の形状と配列で形成される。 [2. Deposition mask]
A schematic top view of thedeposition mask 106 is shown in FIG. 3A. The deposition mask 106 includes a metal plate 140, and the metal plate 140 includes a plurality of openings 146 penetrating the metal plate 140. The area other than the opening 146 of the metal plate 140 is called a non-opening. The non-opening surrounds the opening 146. The deposition mask 106 further has a frame 142 surrounding the opening 146, and a connection 144 that surrounds the opening 146, contacts the frame 142 and the metal plate 140, and connects them to each other. During deposition, the deposition mask 106 and the substrate 104 are disposed such that the deposition area and the opening 146 overlap, and the non-deposition area and the non-opening overlap, and the vapor of the material passes through the opening 146 and the material is deposited on the deposition area . For example, as shown in the enlarged view (FIG. 3B) of the region surrounded by the dotted line in FIG. 3A, when the deposition regions are arranged in a stripe, the openings 146 are also provided in a stripe shape. The arrangement of the openings 146 is not necessarily limited to the stripe arrangement shown in FIGS. 3A and 3B, and may be formed in an arbitrary shape and arrangement so as to coincide with the deposition regions and not to overlap the openings 146.
蒸着マスク106の上面模式図を図3Aに示す。蒸着マスク106は金属プレート140を有しており、金属プレート140は、金属プレート140を貫通する複数の開口146を備える。金属プレート140の開口146以外の領域を非開口部と呼ぶ。非開口部は開口146を取り囲む。蒸着マスク106はさらに、開口146を囲むフレーム142、および開口146を囲み、フレーム142と金属プレート140に接し、これらを互いに接続する接続部144を有する。蒸着時には、蒸着領域と開口146が重なり、非蒸着領域と非開口部が重なるように蒸着マスク106と基板104が配置され、材料の蒸気が開口146を通過し、蒸着領域上に材料が堆積する。例えば図3Aの点線で囲った領域の拡大図(図3B)に示すように、蒸着領域がストライプ配列している場合、開口146もストライプ状に設けられる。開口146の配置は必ずしも図3A、図3Bで示すストライプ配列に限られず、蒸着領域と一致し、非蒸着領域が開口146と重ならないよう、任意の形状と配列で形成される。 [2. Deposition mask]
A schematic top view of the
金属プレート140や接続部144はニッケルや銅、チタン、クロムなどの0価の金属を含み、ニッケルを含むことが好ましい。金属プレート140と接続部144の材料の組成は互いに同一でも良い。フレーム142も0価の金属を含み、金属としてはニッケル、鉄、コバルト、クロム、マンガンなどから選択される。例えばフレーム142は鉄とクロムを含む合金、鉄、ニッケル、マンガンの合金を含んでも良く、合金には炭素が含まれていてもよい。
The metal plate 140 and the connection portion 144 contain a zero-valent metal such as nickel, copper, titanium, chromium or the like, and preferably contain nickel. The compositions of the materials of the metal plate 140 and the connection portion 144 may be identical to each other. The frame 142 also contains a zero-valent metal, and the metal is selected from nickel, iron, cobalt, chromium, manganese and the like. For example, the frame 142 may contain an alloy containing iron and chromium, an alloy of iron, nickel and manganese, and the alloy may contain carbon.
図3Bの鎖線A-A´に沿った断面模式図を図4Aに示す。図4Aには、基板104の下に蒸着マスク106が配置される状態が図示されており、この場合、蒸着マスク106は基板104と図示しない蒸着源112の間に配置される。ここで、蒸着マスク106の互いに対向する主面(上面と下面)のうち、蒸着時に基板104により近く配置される主面を上面(あるいは第1の面)148、基板104からより遠く配置される主面を下面(あるいは第2の面)150と定義する。接続部144においても、互いに対向する主面のうち、蒸着時に基板104により近く配置される主面を上面(あるいは第1の面)、基板104からより遠く配置される主面を下面と定義する。蒸着マスク106の上面148と接続部144の上面は同一平面に位置する。
A schematic cross-sectional view taken along the dashed-dotted line AA 'in FIG. 3B is shown in FIG. 4A. In FIG. 4A, the deposition mask 106 is disposed below the substrate 104. In this case, the deposition mask 106 is disposed between the substrate 104 and the deposition source 112 (not shown). Here, among the main surfaces (upper surface and lower surface) of the deposition mask 106 facing each other, the main surface located closer to the substrate 104 at the time of deposition is arranged farther from the upper surface (or first surface) 148 and the substrate 104 The main surface is defined as the lower surface (or second surface) 150. In the connection portion 144, among the main surfaces facing each other, the main surface located closer to the substrate 104 during deposition is defined as the upper surface (or the first surface), and the main surface located farther from the substrate 104 is defined as the lower surface. . The upper surface 148 of the deposition mask 106 and the upper surface of the connection portion 144 are located in the same plane.
一つの開口146に着目すると、開口146は上面148から下面150へ貫通する貫通孔であり、その形状と面積は非開口部の側壁152によって定義される。側壁152は、第1の面152a、および第1の面152aの下に位置する(すなわち、より基板104から遠く位置する)第2の面152bを含む(図4B)。第1の面152aと第2の面152bはいずれも平面、あるいは実質的に平面である。第1の面152aと第2の面152bは、境界154において互いに接することができる。なお、図4Bの領域155の拡大図(図4C)に示すように、第1の面152aと第2の面152bの間には、側壁152の全体的な形状に影響を与えない程度の面積を有する曲面152dが存在していてもよい。すなわち、第1の面152aと第2の面152bは、この曲面152dを介して接続されていてもよい。
Focusing on one opening 146, the opening 146 is a through hole penetrating from the upper surface 148 to the lower surface 150, and the shape and the area thereof are defined by the side wall 152 of the non-opening. The side wall 152 includes a first surface 152a and a second surface 152b located below the first surface 152a (ie, farther from the substrate 104) (FIG. 4B). The first surface 152a and the second surface 152b are both flat or substantially flat. The first surface 152 a and the second surface 152 b can touch each other at the boundary 154. In addition, as shown in the enlarged view (FIG. 4C) of the region 155 of FIG. 4B, the area between the first surface 152a and the second surface 152b does not affect the overall shape of the side wall 152. There may be a curved surface 152 d having That is, the first surface 152a and the second surface 152b may be connected via the curved surface 152d.
図4A、図4Bに示すように、第1の面152aと第2の面152bは、いずれも上面148に垂直な方向(鉛直方向)から傾く。すなわち、第1の面152aと第2の面152bはともに、上面148や下面150から傾き、隣接する開口146の間の非開口部では、金属プレート140は、上面148から下面150へ向かう方向において徐々に細くなるテーパー形状を有する。換言すると、第1の面152aと上面148のなす角度θ1(単位°)、第2の面152bと上面148のなす角度θ2(単位°)はいずれも0°よりも大きく、90°よりも小さく、かつ、角度θ1は角度θ2よりも大きい。角度θ1と角度θ2の差(θ1-θ2)は、角度θ1の8%から15%が好ましく、例えば10%や14%である。より具体的には、角度θ1は60°以上80°、あるいは65°以上75°以下であり、典型的には70°である。一方、角度θ2は50°以上70°以下、あるいは55°以上65°以下であり、典型的には60°である。角度θ1は、好ましくは角度θeと同一、あるいは角度θeの±10%である。このため、上面148における開口146の幅D1は、下面150における幅D2よりも小さい(図4A)。幅D1は、蒸着領域に合わせて任意に決定することができる。蒸着マスク106を用いて有機EL表示装置の発光素子を形成する場合、幅D1は例えば5μm以上100μm以下、10μm以上50μm以下、あるいは10μm以上30μm以下であり、典型的には20μmである。
As shown in FIGS. 4A and 4B, the first surface 152a and the second surface 152b are both inclined from the direction (vertical direction) perpendicular to the upper surface 148. That is, both the first surface 152 a and the second surface 152 b are inclined from the upper surface 148 or the lower surface 150, and in the non-opening portion between the adjacent openings 146, the metal plate 140 is in the direction from the upper surface 148 toward the lower surface 150 It has a tapered shape that becomes gradually thinner. In other words, the angle θ 1 (in degrees) between the first surface 152 a and the upper surface 148 and the angle θ 2 (in degrees) between the second surface 152 b and the upper surface 148 are all greater than 0 ° and more than 90 °. And the angle θ 1 is larger than the angle θ 2 . The difference (θ 1 -θ 2 ) between the angle θ 1 and the angle θ 2 is preferably 8% to 15% of the angle θ 1 and is, for example, 10% or 14%. More specifically, the angle theta 1 is 80 ° 60 ° or more, alternatively at 65 ° or more 75 ° or less, typically 70 °. On the other hand, the angle theta 2 is 50 ° to 70 ° or less, alternatively 55 ° or more 65 ° or less, typically 60 °. Angle theta 1 is preferably ± 10% of the angle theta e in the same or the angle theta e,. Thus, the width D 1 of the opening 146 at the upper surface 148 is smaller than the width D 2 at the lower surface 150 (FIG. 4A). The width D 1 can be arbitrarily determined in accordance with the deposition area. When forming the light-emitting element of the organic EL display device using the evaporation mask 106, the width D 1 is, for example, 5μm or 100μm or less, 10 [mu] m or more 50μm or less, alternatively at 10 [mu] m or more 30μm or less, typically 20 [mu] m.
第1の面152aと第2の面152bの高さは任意に調整することができる。すなわち鉛直方向において、上面148から境界154までの距離T1は、境界154から下面150までの距離T2と互いに同一でもよく、異なっていてもよい。後者の場合、距離T1は距離T2よりも小さくても大きくてもよい。距離T1、T2は、1μm以上10μm以下、2.5μm以上7.5μm以下であり、典型的にはそれぞれが5μm、あるいはその和が10μmである。
The heights of the first surface 152a and the second surface 152b can be arbitrarily adjusted. That is, in the vertical direction, the distance T 1 of the from upper surface 148 to the boundary 154 and the distance T 2 of the from the boundary 154 to the lower surface 150 may be identical to one another or may be different. In the latter case, the distance T 1 may be smaller or larger than the distance T 2. The distances T 1 and T 2 are 1 μm or more and 10 μm or less, 2.5 μm or more and 7.5 μm or less, and typically 5 μm or 10 μm, respectively.
ここで、隣接する二つの開口146の間の非開口部に着目すると、側壁152は、開口146に面する金属プレート140の側面であり、この側面が第1の面152aと第2の面152bを有すると言える。また、隣接する二つの開口146を通過し、かつ、鉛直方向に平行な断面(以下、単に切断面と記す)において、金属プレート140は、互いに接続され、上面148と下面150に挟まれる第1の直線と第2の直線を有すると言える。この場合、第1の直線は第1の面152aに相当し、第2の直線は第2の面152bに相当する。同様に、第1の角度θ1は、上記切断面において第1の直線と上面148がなす角度であり、第2の角度θ2は第2の直線と上面148がなす角度である。また、境界154は、切断面における第1の直線と第2の直線の交点に対応する。なお、図示しないが、切断面において、第1の直線と第2の直線の間には、側壁152の形状に大きな影響を与えない程度の長さを有する曲線が存在していてもよい。すなわち、第1の直線と第2の直線は、この曲線を介して接続されていてもよい。
Here, focusing on the non-opening between two adjacent openings 146, the side wall 152 is a side surface of the metal plate 140 facing the opening 146, and the side surface is a first surface 152a and a second surface 152b. It can be said that In addition, in a cross section parallel to the vertical direction (hereinafter simply referred to as a cut surface) passing through two adjacent openings 146, the metal plates 140 are connected to each other and sandwiched between the upper surface 148 and the lower surface 150. And a second straight line. In this case, the first straight line corresponds to the first surface 152a, and the second straight line corresponds to the second surface 152b. Similarly, the first angle theta 1 is an angle which the first straight line and the upper surface 148 forms in the cut surface, the second angle theta 2 is the angle formed by the second straight line and the top surface 148. Also, the boundary 154 corresponds to the intersection of the first straight line and the second straight line in the cutting plane. Although not shown, in the cut surface, a curve having a length that does not significantly affect the shape of the side wall 152 may exist between the first straight line and the second straight line. That is, the first straight line and the second straight line may be connected via this curve.
開口146間の非開口部の形状は上述した形状に限られない。例えば図5Aに示すように、側壁152は、第1の面152aと第2の面152bの間に第3の面152cをさらに有してもよい。この第3の面152cは第1の面152aと第2の面152bに接続される。換言すると、隣接する二つの開口146の間の非開口部において、金属プレート140の側面は、第1の面152aと第2の面152bの間に、これらに接続される第3の面152cを有すことができる。あるいは、切断面において、金属プレート140は、第1の直線と第2の直線の間に、これらに接続される第3の直線を有することができる。この場合、角度θ1と角度θ2は同一、あるいは実質的に同一でも良い。
The shape of the non-opening portion between the openings 146 is not limited to the above-described shape. For example, as shown in FIG. 5A, the sidewall 152 may further include a third surface 152c between the first surface 152a and the second surface 152b. The third surface 152c is connected to the first surface 152a and the second surface 152b. In other words, in the non-opening between the two adjacent openings 146, the side surface of the metal plate 140 has the third surface 152c connected thereto between the first surface 152a and the second surface 152b. Can be Alternatively, in the cutting plane, the metal plate 140 can have a third straight line connected to the first straight line and the second straight line. In this case, the angle theta 1 and the angle theta 2 are the same, or substantially may be the same.
図5Aに示すように、第3の面152c(あるいは第3の直線)は上面148と平行でも良く、あるいは図5Bに示すように、上面148から傾いていてもよい。後者の場合、第3の面152c(あるいは第3の直線)と上面148がなす角度θ3は第1の角度θ1と第2の角度θ2よりも小さい。なお、図示しないが、第1の面152aと第3の面152cの間、および第2の面152bと第3の面152cの間には、側壁152の形状に大きな影響を与えない程度の面積を有する曲面が存在していてもよい。すなわち、第1の面152aと第3の面152c、および第2の面152bと第3の面152cはそれぞれ、これらの曲面を介して接続されていてもよい。同様に、切断面において、第1の直線と第3の直線の間、および第2の直線と第3の直線の間には、側壁152の全体的な形状に影響を与えない程度の長さを有する曲線が存在していてもよい。すなわち、第1の直線と第3の直線、および第2の直線と第3の直線はそれぞれ、これらの曲線を介して接続されていてもよい。
The third surface 152c (or third straight line) may be parallel to the top surface 148, as shown in FIG. 5A, or may be tilted from the top surface 148, as shown in FIG. 5B. In the latter case, the angle theta 3 to the third surface 152c (or the third straight line) and the upper surface 148 forms a first angle theta 1 and smaller than the second angle theta 2. Although not shown, the area between the first surface 152a and the third surface 152c and between the second surface 152b and the third surface 152c does not significantly affect the shape of the side wall 152. There may be a curved surface having That is, the first surface 152a and the third surface 152c, and the second surface 152b and the third surface 152c may be connected via these curved surfaces, respectively. Similarly, in the cutting plane, between the first straight line and the third straight line, and between the second straight line and the third straight line, the length does not affect the overall shape of the side wall 152. There may be a curve having That is, the first straight line and the third straight line, and the second straight line and the third straight line may be connected via these curves.
収納容器120に収納された材料がヒーター126によって加熱されて気化し、得られた蒸気が蒸着マスク106の開口146を通過した後に基板104に到達し、固化、堆積する。これにより、材料の薄膜を蒸着領域に選択的に形成することができる。
The material stored in the storage container 120 is heated and vaporized by the heater 126, and the obtained vapor passes through the opening 146 of the deposition mask 106, reaches the substrate 104, and solidifies and deposits. Thus, a thin film of material can be selectively formed in the deposition region.
[3.蒸着の均一性とプロセス効率]
蒸着時における開口146と蒸着源112の位置関係を図6A、図6Bに示した模式的断面図を用いて説明する。ここでは、基板104と蒸着マスク106に対し、蒸着源112が左から右に移動する態様が示されている。なお、これらの図では、理解の促進のため、蒸着源112と基板104、蒸着マスク106の上下関係は、図4Aから図5Bにおけるそれと逆になっている。また、図6Aは、側壁152が上面148に垂直である従来の蒸着マスクを用いた態様を示し、図6Bは本実施形態に係る蒸着マスク106を用いた態様を示す。これらの図において、上面148と側壁152が作る二つの交点の一つをP1とし、開口146を挟んでP1と対向する他の一つをP2とする。 [3. Deposition uniformity and process efficiency]
The positional relationship between theopening 146 and the deposition source 112 at the time of deposition will be described using schematic cross-sectional views shown in FIGS. 6A and 6B. Here, an aspect in which the deposition source 112 moves from left to right with respect to the substrate 104 and the deposition mask 106 is shown. In these figures, the top-bottom relation of the deposition source 112, the substrate 104, and the deposition mask 106 is opposite to that in FIGS. 4A to 5B in order to facilitate understanding. 6A shows an embodiment using a conventional deposition mask in which the side wall 152 is perpendicular to the upper surface 148, and FIG. 6B shows an embodiment using the deposition mask 106 according to the present embodiment. In these figures, one of the two intersections top 148 and side walls 152 make a P 1, the other one facing the P 1 and P 2 across the opening 146.
蒸着時における開口146と蒸着源112の位置関係を図6A、図6Bに示した模式的断面図を用いて説明する。ここでは、基板104と蒸着マスク106に対し、蒸着源112が左から右に移動する態様が示されている。なお、これらの図では、理解の促進のため、蒸着源112と基板104、蒸着マスク106の上下関係は、図4Aから図5Bにおけるそれと逆になっている。また、図6Aは、側壁152が上面148に垂直である従来の蒸着マスクを用いた態様を示し、図6Bは本実施形態に係る蒸着マスク106を用いた態様を示す。これらの図において、上面148と側壁152が作る二つの交点の一つをP1とし、開口146を挟んでP1と対向する他の一つをP2とする。 [3. Deposition uniformity and process efficiency]
The positional relationship between the
上述したように、蒸着源112には一対のガイド板132が備えられており、ガイド板132の角度θeによって材料の射出角度が決まり、蒸気の広がりが規制される。具体的には、材料の蒸気の大部分は、開口部130(図2参照)の中心を通る法線から-θe/2°から+θe/2°の角度に設定される二つの臨界面160a、160bの間の範囲内に射出される。したがって図6Aに示すように、開口146に重なる蒸着領域に注目すると、この蒸着領域に材料の蒸気が最初に到達するのは、臨界面160aが金属プレート140の側壁152の上側の頂点(すなわち、側壁152の下面150における辺)に接する時(時刻t=T1)であり、臨界面160aと基板104との交点であり、かつ、点P1と点P2の間の点である点P3から材料の堆積が開始される。この後、点P3を起点として蒸着源112の進行方向(図中、右方向)とその逆方向(図中、左方向)の領域に材料の堆積が始まる。
As described above, the evaporation source 112 is provided with a pair of guide plates 132, it determines the exit angle of the material by the angle theta e of the guide plate 132, the spread of vapors is restricted. Specifically, most of the material vapors are two critical planes that are set at an angle of -θ e / 2 ° to + θ e / 2 ° from the normal through the center of the opening 130 (see FIG. 2) It injects in the range between 160a and 160b. Therefore, as shown in FIG. 6A, focusing on the deposition area overlapping the opening 146, the material vapor first reaches the deposition area when the critical surface 160a is at the top vertex of the upper side wall 152 of the metal plate 140 (ie, a time in contact with the side) of the lower surface 150 of the side wall 152 (time t = T 1), is the intersection of the critical surface 160a and the substrate 104, and a point is a point between points P 1 and point P 2 P The deposition of material is started from three . Thereafter, (in the figure, rightward) traveling direction of the deposition source 112 to the point P 3 as a starting point (in the figure, left) and its reverse deposition of the material begins in the region of.
ここで、材料の蒸気が点P1に達するのは、蒸着源112の開口部130と点P1が鉛直方向で重なる時刻T2であり、これは時刻T1よりも後である。このため、時刻T1からT2の間では、すでに点P3の周辺には材料が堆積されている。また、点P1における材料の堆積は、臨界面160bが点P1を通過するとき、すなわち時刻T3に終了する。しかしながら時刻T3以降、臨界面160bが点P3を通過する時刻T4までは点P3では材料の堆積が継続される。このため、点P1から点P3の領域156(以下、シャドー領域と呼ぶ)では材料の膜の厚さは均一ではなく、また、点P3から点P1に近づくほど膜の厚さが減少する。このようなシャドー領域156は点P2側でも発生し、臨界面160bが側壁152の下面150における辺に接する時(時刻T5)における臨界面160bと基板104の交点P4から点P2までの領域がシャドー領域156となる。点P3から点P4までの領域と比較し、シャドー領域156では膜の厚さが不均一であり、かつ、小さい。このため、蒸着領域において膜の厚さが不均一となる。
Here, the vapor of the material reaches a point P 1, the opening 130 and the point P1 of the deposition source 112 is time T 2, which overlap in the vertical direction, which is later than time T 1. Therefore, in the period from time T 1 of the T 2, the periphery of the already point P 3 is deposited materials. Further, the deposition of the material at the point P 1, when the critical surface 160b passes through the point P 1, that is, ends at time T 3. However the time T 3 after the critical surface 160b is deposited at the point P 3 in the material until the time T 4 which passes through the point P 3 is continued. Therefore, region 156 (hereinafter, the shadow area hereinafter) of the point P 3 from the point P 1 the thickness of the film of the material is not uniform, also the thickness of the as the film approaches from the point P 3 to the point P 1 Decrease. Such a shadow region 156 also occurs on the point P 2 side, and from the intersection point P 4 of the critical surface 160 b and the substrate 104 to the point P 2 at the time when the critical surface 160 b contacts the side on the lower surface 150 of the side wall 152 (time T 5 ) Is the shadow area 156. Compared to the area from the point P 3 to the point P 4, the thickness of the film in the shadow region 156 is uneven, and smaller. Therefore, the thickness of the film becomes uneven in the deposition region.
このようなシャドー領域156は、金属プレート140を薄くすることで縮小することが可能である。しかしながら、金属プレート140の厚さが低下すると機械的な強度が減少し、蒸着マスク106が変形しやすくなるため、開口146の変形や開口146と蒸着領域のずれが発生しやすくなる。
Such shadowed areas 156 can be reduced by thinning the metal plate 140. However, when the thickness of the metal plate 140 is reduced, the mechanical strength is reduced, and the deposition mask 106 is easily deformed, so that the deformation of the opening 146 or the deviation of the deposition region from the opening 146 is likely to occur.
同様に本実施形態でも、図6Bに示すように、蒸着領域に最初に材料の蒸気が到達するのは、臨界面160aが金属プレート140の第2の面152bの上側の頂点(すなわち、第2の面152bの下面150における辺)に接する時(時刻t=T´1)であり、臨界面160aと基板104との交点である点P3から材料の堆積が開始される。しかしながら上述したように、本実施形態の蒸着マスク106の金属プレート140は、上面148から下面150へ向かう方向において徐々に細くなるテーパー形状を有し、第2の面152bは上面148から角度θ2傾く。このため、時刻T´1は時刻T1よりも前であり、その結果、点P3はより点P1に近くなり、シャドー領域156が狭い。
Similarly, in the present embodiment, as shown in FIG. 6B, the vapor of the material first reaches the deposition region when the critical surface 160a is at the top of the second surface 152b of the metal plate 140 (ie, the second a time in contact with the side) of the lower surface 150 of the face 152b of the (time t = T'1), the deposition of the material is started from the point P 3 is the intersection of the critical surface 160a and the substrate 104. However, as described above, the metal plate 140 of the vapor deposition mask 106 of the present embodiment has a tapered shape that gradually narrows in the direction from the upper surface 148 toward the lower surface 150, and the second surface 152 b is angled θ 2 from the upper surface 148. Lean. Therefore, time T'1 is before the time T 1, as a result, the point P 3 becomes closer to a point P 1, the shadow area 156 is narrow.
さらに上述したように、第1の面152aは上面148から角度θ1傾く。したがって、点P1において材料の堆積が開始されるのは、蒸着源112が点P1の上を通過する時刻T2ではなく、それよりも早い時刻T´2(蒸着源112の開口部130が第1の面152aの接線を通過する時刻)である。したがって、点P3において材料の堆積が始まる時刻から点P1において材料の堆積が始まる時刻の差が小さい。同様に、点P1、点P3おいて材料の堆積が終了する時刻T´3とT´4の間隔も小さいため、点P1と点P3における膜の厚さの差が大幅に小さくなる。上述した傾向は点P2側でも同様であり、点P4はより点P2に近くなり、点P2と点P4における膜の厚さの差が小さい。
Further, as described above, the first surface 152a is an angle theta 1 tilts from the top 148. Therefore, the deposition of the material is started at the point P1, not the time T 2, the deposition source 112 passes over the point P 1, from faster time T'2 (opening 130 of the deposition source 112 it Time to pass the tangent of the first surface 152a). Therefore, a small difference in time that deposition of the material begins at the point P 1 from the time at point P 3 material deposition begins. Similarly, the point P 1, since the point P 3 of Oite material deposition is smaller interval time T'3 and T'4 to end, the difference in thickness of the film at the point P 1 and the point P 3 is significantly smaller Become. The tendency described above is the same on the point P 2 side, and the point P 4 is closer to the point P 2 , and the difference in film thickness between the point P 2 and the point P 4 is small.
このように、本実施形態を適用することにより、シャドー領域156が狭くなり、かつ、シャドー領域156と他の領域における膜の厚さの差を低減することが可能となる。また、本実施形態の蒸着マスク106では、金属プレート140の厚さを小さくする必要は無い。このため、蒸着マスク106の機械的強度を維持したまま蒸着領域における膜厚の不均一性を低下させることができ、より精密な薄膜形成が可能となる。
Thus, by applying the present embodiment, it is possible to narrow the shadow area 156 and to reduce the difference in film thickness between the shadow area 156 and other areas. Moreover, in the vapor deposition mask 106 of this embodiment, it is not necessary to make the thickness of the metal plate 140 small. For this reason, the nonuniformity of the film thickness in a vapor deposition area | region can be reduced, maintaining the mechanical strength of the vapor deposition mask 106, and a more precise thin film formation becomes possible.
蒸着を繰り返すことにより、蒸着マスク106上には材料が徐々に堆積する。具体的には図7Aに示すように、蒸着マスク106上に材料の堆積膜158が形成される。堆積膜158が形成されると、蒸着マスク106の見かけの厚さが大きくなるため、蒸着領域に最初に材料の蒸気が到達するのは、堆積膜158の上面と側面が交わる交線に臨界面160aが接するときとなる(図7A)。したがって、シャドー領域156は点P3よりも点P2に近い点P´3と点P1の間、および点P4よりも点P1に近い点P´4と点P1の間となり、堆積膜158の形成とともに拡大する。
Material is gradually deposited on the deposition mask 106 by repeating the deposition. Specifically, as shown in FIG. 7A, a deposition film 158 of the material is formed on the deposition mask 106. When the deposition film 158 is formed, the apparent thickness of the deposition mask 106 is increased, so that the material vapor first reaches the deposition region at a critical plane at the intersection line where the top surface and the side surface of the deposition film 158 intersect. It will be when 160a contacts (FIG. 7A). Therefore, it is between P'4 and the point P 1 point close to the point P 1 than the shadow area 156 between P'3 and the point P 1 point close to the point P 2 than the point P 3, and the point P 4, It expands as the deposited film 158 is formed.
本実施形態の蒸着マスク106を用いた場合でも、図7Bに示すように、堆積膜158の形成に伴ってシャドー領域156は点P´3と点P1の間、および点P´4と点P1の間となり、拡大する。しかしながら、堆積膜158が存在しない状態におけるシャドー領域156が非常に小さいため、拡大したシャドー領域156が蒸着領域全体に及ぼす影響が小さい。このため、従来の蒸着マスクと比較し、より大きな厚さを有する堆積膜158の形成が許容されるため、マスクの交換頻度を下げることが可能となり、蒸着プロセスの効率が向上して蒸着コストを削減することができる。また、マスクの交換頻度の低下により、必要とされる蒸着マスク106の数を削減することができ、蒸着マスク106保管するためのコストや場所も削減することが可能となる。
Even when the deposition mask 106 of the present embodiment is used, as shown in FIG. 7B, the shadow region 156 is between the point P ′ 3 and the point P 1 and the point P ′ 4 and the point as the deposited film 158 is formed. It is between P 1, to expand. However, since the shadow area 156 in the absence of the deposited film 158 is very small, the enlarged shadow area 156 has less influence on the entire deposition area. For this reason, since it is possible to form the deposition film 158 having a larger thickness as compared with the conventional deposition mask, it becomes possible to lower the frequency of mask replacement, and the efficiency of the deposition process is improved to thereby reduce the deposition cost. It can be reduced. In addition, since the frequency of mask replacement is reduced, the number of deposition masks 106 required can be reduced, and the cost and place for storing the deposition masks 106 can also be reduced.
また、堆積膜158が形成されると、従来の蒸着マスクのように側壁152が上面148に対して垂直である場合には、堆積膜158には大きな角度を有する屈曲部が存在することになる(図8Aの破線矢印参照)。このため、堆積膜158内に内部応力が蓄積されると、屈曲部とその付近から堆積膜158が破壊され、異物発生の原因となる。これに対して本実施形態の蒸着マスク106では、堆積膜158の屈曲部の角度は比較的小さい(図8Bの破線矢印参照)。したがって、堆積膜158が比較的安定に存在できるため、堆積膜158の破壊による異物発生を大幅に抑制することができる。
In addition, when the deposited film 158 is formed, if the sidewall 152 is perpendicular to the upper surface 148 as in a conventional deposition mask, the deposited film 158 has a bend having a large angle. (See dashed arrow in FIG. 8A). Therefore, when internal stress is accumulated in the deposited film 158, the deposited film 158 is broken from the bent portion and the vicinity thereof, which causes the generation of foreign matter. On the other hand, in the vapor deposition mask 106 of the present embodiment, the angle of the bent portion of the deposited film 158 is relatively small (see the broken arrow in FIG. 8B). Therefore, since the deposited film 158 can be relatively stably present, the generation of foreign matter due to the destruction of the deposited film 158 can be largely suppressed.
<第2実施形態>
本実施形態では、第1実施形態で述べた蒸着マスク106の作製方法を図9Aから図12を用いて説明する。図9Aから図11Bは図4Aに対応する断面模式図であり、図4Aとは上下が逆になっている。第1実施形態で述べた内容は省略することがある。 Second Embodiment
In this embodiment, a method of manufacturing thedeposition mask 106 described in the first embodiment will be described with reference to FIGS. 9A to 12. 9A to 11B are schematic cross-sectional views corresponding to FIG. 4A, which are upside down from FIG. 4A. The contents described in the first embodiment may be omitted.
本実施形態では、第1実施形態で述べた蒸着マスク106の作製方法を図9Aから図12を用いて説明する。図9Aから図11Bは図4Aに対応する断面模式図であり、図4Aとは上下が逆になっている。第1実施形態で述べた内容は省略することがある。 Second Embodiment
In this embodiment, a method of manufacturing the
以下に述べるように、蒸着マスク106は電鋳めっき法によって形成することができる。具体的には、まず、母材となる基板170上にレジスト172を塗布する(図9A)。基板170の表面は導電性を有する。このため、基板170は銅やアルミニウム、チタン、鉄、ニッケル、コバルト、クロム、モリブデン、マンガンなどの金属、あるいはこれらの合金を含む。合金の場合、例えば鉄とクロムを含む合金、鉄、ニッケル、およびマンガンの合金でも良く、合金には炭素が含まれていてもよい。あるいはガラスや石英、プラスチックを含む絶縁性基材上に上述した金属や合金の膜が形成された基板を用いてもよい。
As described below, the deposition mask 106 can be formed by electroforming. Specifically, first, a resist 172 is applied on a substrate 170 which is a base material (FIG. 9A). The surface of the substrate 170 has conductivity. Therefore, the substrate 170 contains copper, metal such as aluminum, titanium, iron, nickel, cobalt, chromium, molybdenum, manganese, or an alloy of these. In the case of an alloy, for example, an alloy containing iron and chromium, an alloy of iron, nickel, and manganese may be used, and the alloy may contain carbon. Alternatively, a substrate in which a film of the above-described metal or alloy is formed on an insulating base material containing glass, quartz, or plastic may be used.
レジスト172は感光性の樹脂であり、公知の材料を用いることができる。感光性樹脂としては、ネガ型の樹脂が好ましい。
The resist 172 is a photosensitive resin, and a known material can be used. As a photosensitive resin, negative resin is preferable.
次に図9Bに示すように、フォトマスク174をレジスト172上に配置する。フォトマスク174はレジスト172に接するように設けてもよく、レジスト172と離間するように設けてもよい。フォトマスク174はハーフトーンマスクである。具体的には、フォトマスク174はガラス、あるいは石英を含む基板175を有し、この基板175上に形成される透光部174a、遮光部174b、およびハーフトーン部174cを含む。開口146を設ける領域において一つの透光部174aがハーフトーン部174cによって囲まれ、さらにハーフトーン部174cが遮光部174bによって囲まれる。透光部174aは、レジスト172の露光に使用する光(以下、照射光)に対する透過率が高いことが好ましく、透過率は例えば75%以上100%以下、あるいは80%以上100%以下である。遮光部174bは照射光を遮る領域であり、照射光に対する透過率が小さいことが好ましい。透過率は、例えば0%以上5%以下、0%以上2%以下、あるいは0%以上1%以下であり、実質的に0%でもよい。ハーフトーン部174cは照射光を一部透過し、一部を遮る。したがって照射光に対する透過率は、20%以上60%以下、30%以上50%以下であり、典型的には40%、あるいは40%程度である。また、ハーフトーン部174cの幅は1μm以上10μm以下、2μm以上8μm以下、あるいは2μm以上6μm以下であり、典型的には6μmである。
Next, as shown in FIG. 9B, a photomask 174 is disposed on the resist 172. The photomask 174 may be provided in contact with the resist 172 or may be provided so as to be separated from the resist 172. The photomask 174 is a halftone mask. Specifically, the photomask 174 has a substrate 175 containing glass or quartz, and includes a light transmitting portion 174a, a light shielding portion 174b, and a halftone portion 174c formed on the substrate 175. In the region where the opening 146 is provided, one light transmitting portion 174a is surrounded by the halftone portion 174c, and the halftone portion 174c is surrounded by the light shielding portion 174b. The light transmitting portion 174a preferably has a high transmittance to light (hereinafter, irradiation light) used for exposing the resist 172, and the transmittance is, for example, 75% to 100%, or 80% to 100%. The light shielding portion 174b is a region that blocks the irradiation light, and preferably has a small transmittance to the irradiation light. The transmittance is, for example, 0% or more and 5% or less, 0% or more and 2% or less, or 0% or more and 1% or less, and may be substantially 0%. The halftone unit 174c partially transmits the irradiation light and blocks a part. Therefore, the transmittance to the irradiation light is 20% or more and 60% or less, 30% or more and 50% or less, and typically about 40% or 40%. The width of the halftone portion 174c is 1 μm to 10 μm, 2 μm to 8 μm, 2 μm to 6 μm, and typically 6 μm.
こののち、露光機を用いてレジスト172に対して露光を行い、露光された領域を硬化する。その後現像を行い、パターニングされたレジストマスク176を基板170上に得る(図10A)。この時、開口146に対応する領域に位置するレジストマスク176は、基板170から離れるほど幅が広くなるような形状を有する(拡大図参照)。この形状は後に形成される金属プレート140の非開口部に対応する。具体的には、この領域のレジストマスク176の側壁は二つの面を有し、基板170に近い側の面と、レジストマスク176と基板170が互いに接する面の間の角度θ´1は、180-θ1(単位°)となる。一方、基板170から遠い側の面と、上記二つの面の境界面がなす角度θ´2は、180-θ2(単位°)となる。このような形状が形成される理由については後述する。
Thereafter, the resist 172 is exposed using an exposure machine to cure the exposed area. Thereafter, development is performed to obtain a patterned resist mask 176 on the substrate 170 (FIG. 10A). At this time, the resist mask 176 located in the region corresponding to the opening 146 has a shape such that the width is wider as the distance from the substrate 170 is increased (see the enlarged view). This shape corresponds to the non-opening portion of the metal plate 140 to be formed later. Specifically, the sidewall of the resist mask 176 in this region has two faces, and the angle θ ′ 1 between the face closer to the substrate 170 and the face in which the resist mask 176 and the substrate 170 are in contact with each other is 180 It becomes -θ 1 (unit °). On the other hand, the far side of the surface from the substrate 170, the angle [theta] & apos 2 the boundary surface of the two surfaces forms becomes 180-theta 2 (Unit °). The reason why such a shape is formed will be described later.
次に、電解めっき法を利用し、レジストマスク176によって被覆されていない領域にめっきパターンを形成し、金属プレート140を形成する(図10B)。めっきパターンの形成は、一段階で行ってもよく、数段階に分けて行ってもよい。複数の段階で行う場合、異なる段階で異なる金属が形成されるよう、電解めっきを行ってもよい。また、めっきパターンの上面がレジストマスク176の上面よりも高くなるように電解めっきを行い、その後、表面を研磨することでめっきパターン上面の平坦化を行ってもよい。めっきパターンの形状はレジストマスク176の形状によって決定される。したがって、図4Bに示すようなテーパー形状を金属プレート140の非開口部に付与することができる。
Next, a plating pattern is formed in a region not covered by the resist mask 176 using electrolytic plating to form a metal plate 140 (FIG. 10B). The formation of the plating pattern may be performed in one step or may be divided into several steps. In the case of multiple steps, electrolytic plating may be performed such that different metals are formed in different steps. Alternatively, electrolytic plating may be performed such that the upper surface of the plating pattern is higher than the upper surface of the resist mask 176, and then the upper surface of the plating pattern may be planarized by polishing the surface. The shape of the plating pattern is determined by the shape of the resist mask 176. Therefore, a tapered shape as shown in FIG. 4B can be applied to the non-opening portion of the metal plate 140.
その後、レジストマスク176をエッチング、あるいは/およびアッシングによって除去し、フレーム142を金属プレート140上に接合する(図11A)。接合は、樹脂を含む接着剤を用いて行ってもよく、あるいは金属接着層を介して行ってもよい。後者の場合、例えば亜鉛やスズなどの融点の比較的低い金属やその合金などを含む金属と数%(例えば3%から10%、あるいは5%から8%)のりんを含む金属接着層を用い、加熱しながら金属接着層を介してフレーム142と金属プレート140間に圧力をかけることで接合を行うことができる。
Thereafter, the resist mask 176 is removed by etching and / or ashing, and the frame 142 is bonded onto the metal plate 140 (FIG. 11A). Bonding may be performed using an adhesive containing a resin, or may be performed via a metal adhesive layer. In the latter case, for example, a metal adhesion layer containing a metal having a relatively low melting point such as zinc or tin or an alloy thereof and a few% (eg 3 to 10%, or 5 to 8%) phosphorus is used. Bonding can be performed by applying pressure between the frame 142 and the metal plate 140 through the metal adhesive layer while heating.
この後、接続部144を形成する領域以外にレジストマスク178を形成し、電解めっき法を行って接続部144を形成する(図11B)。レジストマスク178の作製は公知の方法を利用することで行うことができ、ネガ型、ポジ型いずれのレジストを用いてもよい。これにより、接続部144は、フレーム142、およびめっきパターンである金属プレート140と接し、これらを互いに接続する。最後にレジストマスク178を除去し、基板170を除去することで蒸着マスク106が得られる。
Thereafter, a resist mask 178 is formed in the area other than the region where the connection portion 144 is to be formed, and electrolytic plating is performed to form the connection portion 144 (FIG. 11B). The resist mask 178 can be manufactured by using a known method, and either a negative resist or a positive resist may be used. Thereby, the connection part 144 contacts the frame 142 and the metal plate 140 which is a plating pattern, and connects them mutually. Finally, the resist mask 178 is removed, and the substrate 170 is removed, whereby the deposition mask 106 is obtained.
上述したレジストマスク176の形状が得られる理由の一つとして、以下のような理由が考えられる。レジスト172がネガ型の場合、照射光を吸収することで重合、架橋が進行し、硬化する。ハーフトーン部174cでは、ハーフトーン部174cを通過した照射光と透光部174aを通過した照射光が干渉する結果、ハーフトーン部174cによって覆われたレジスト172が照射光を吸収できる深さは(ハーフトーン部174cからの距離)、透光部174aからの距離に依存する。このため、図12に示すように、レジスト172の内部には、鎖線180を境界として、主にハーフトーン部174cを通過した照射光がレジスト172の硬化に寄与する領域182と、主に透光部174aを透過した照射光がレジスト172の硬化に寄与する領域184が生まれる。その結果、二つの直線186、188で区切られる感光領域と未感光領域がレジスト172の内部生じる。この感光領域と未感光領域の発生により、上述した形状を有するレジストマスク176が形成される。
As one of the reasons why the shape of the resist mask 176 described above can be obtained, the following reasons can be considered. In the case where the resist 172 is a negative type, polymerization and crosslinking progress by absorbing the irradiation light, and the resin 172 is cured. In the halftone portion 174c, as a result of interference between the irradiation light passing through the halftone portion 174c and the irradiation light passing through the light transmitting portion 174a, the depth at which the resist 172 covered by the halftone portion 174c can absorb the irradiation light is The distance from the halftone portion 174c) depends on the distance from the light transmitting portion 174a. For this reason, as shown in FIG. 12, in the inside of the resist 172, a region 182 mainly contributing the curing of the resist 172 to the irradiation light which has mainly passed through the halftone portion 174c with the dashed line 180 as a boundary Regions 184 in which the irradiation light transmitted through the portion 174 a contributes to the hardening of the resist 172 are created. As a result, a photosensitive region and a non-photosensitive region separated by two straight lines 186 and 188 are generated inside the resist 172. Due to the generation of the photosensitive region and the non-photosensitive region, a resist mask 176 having the above-described shape is formed.
上述したように、ハーフトーンマスクであるフォトマスク174を用いてレジスト172からレジストマスク176を形成し、引き続く電鋳めっき法を利用することで、容易に特異的な形状を有する本実施形態の蒸着マスク106を形成することが可能である。
As described above, the resist mask 176 is formed from the resist 172 using the photomask 174 which is a halftone mask, and the subsequent deposition using the electroforming plating method facilitates deposition of the embodiment having a specific shape. It is possible to form a mask 106.
<第3実施形態>
本実施形態では、蒸着マスク106を利用した薄膜形成法を応用した表示装置200の製造方法を述べる。ここでは、表示装置200として、それぞれ有機発光素子(以下、発光素子)を有する複数の画素が基板202上に形成された有機EL表示装置の製造方法について述べる。第1、第2実施形態で述べた内容については省略することがある。 Third Embodiment
In this embodiment, a method of manufacturing thedisplay device 200 to which a thin film formation method using the deposition mask 106 is applied will be described. Here, a method of manufacturing an organic EL display device in which a plurality of pixels each having an organic light emitting element (hereinafter, light emitting element) is formed on the substrate 202 as the display device 200 will be described. The contents described in the first and second embodiments may be omitted.
本実施形態では、蒸着マスク106を利用した薄膜形成法を応用した表示装置200の製造方法を述べる。ここでは、表示装置200として、それぞれ有機発光素子(以下、発光素子)を有する複数の画素が基板202上に形成された有機EL表示装置の製造方法について述べる。第1、第2実施形態で述べた内容については省略することがある。 Third Embodiment
In this embodiment, a method of manufacturing the
[1.アレイ基板]
図13に表示装置200の上面模式図を示す。表示装置200は基板202を有し、その上に複数の画素204や画素204を駆動するための駆動回路206(ゲート側駆動回路206a、ソース側駆動回路206b)が形成される。複数の画素204は周期的に配置され、これらによって表示領域205が定義される。後述するように、各画素204には発光素子260が設けられる。 [1. Array substrate]
The upper surface schematic diagram of thedisplay apparatus 200 is shown in FIG. The display device 200 includes a substrate 202, and a driver circuit 206 (a gate driver circuit 206a and a source driver circuit 206b) for driving the plurality of pixels 204 and the pixels 204 is formed thereon. The plurality of pixels 204 are periodically arranged to define a display area 205. As described later, each pixel 204 is provided with a light emitting element 260.
図13に表示装置200の上面模式図を示す。表示装置200は基板202を有し、その上に複数の画素204や画素204を駆動するための駆動回路206(ゲート側駆動回路206a、ソース側駆動回路206b)が形成される。複数の画素204は周期的に配置され、これらによって表示領域205が定義される。後述するように、各画素204には発光素子260が設けられる。 [1. Array substrate]
The upper surface schematic diagram of the
駆動回路206は、表示領域205外(周辺領域)に配置される。表示領域205や駆動回路206からはパターニングされた導電膜で形成される種々の配線(図示しない)が基板202の一辺へ延び、基板202の端部付近で露出されて端子207を形成する。これらの端子207は図示しないフレキシブル印刷回路基板(FPC)と電気的に接続され、表示装置200を駆動するための各種信号が端子207を介して駆動回路206や画素204に入力される。図示しないが、駆動回路206とともに、あるいはその一部の替わりに集積回路を有する駆動ICがさらに搭載されてもよい。
The drive circuit 206 is disposed outside the display area 205 (peripheral area). From the display area 205 and the drive circuit 206, various wirings (not shown) formed of a patterned conductive film extend to one side of the substrate 202, and are exposed near the end portion of the substrate 202 to form a terminal 207. The terminals 207 are electrically connected to a flexible printed circuit (FPC) (not shown), and various signals for driving the display device 200 are input to the driving circuit 206 and the pixels 204 through the terminals 207. Although not shown, a drive IC having an integrated circuit may be further mounted together with the drive circuit 206 or in place of a part thereof.
図14は、隣接する二つの画素204にわたる断面模式図である。各画素204には画素回路が形成される。画素回路の構成は任意であり、図14では駆動トランジスタ210、保持容量230、付加容量250、および発光素子260が示されている。
FIG. 14 is a schematic cross-sectional view across two adjacent pixels 204. A pixel circuit is formed in each pixel 204. The configuration of the pixel circuit is arbitrary, and FIG. 14 shows the drive transistor 210, the storage capacitor 230, the additional capacitor 250, and the light emitting element 260.
画素回路に含まれる各素子はアンダーコート208を介し、基板202上に設けられる。駆動トランジスタ210は、半導体膜212、ゲート絶縁膜214、ゲート電極216、ドレイン電極220、ソース電極222を含む。ゲート電極216は、ゲート絶縁膜214を介して半導体膜212の少なくとも一部と交差するように配置され、半導体膜212とゲート電極216が重なる領域にチャネル212cが形成される。半導体膜212はさらに、チャネル212cを挟持するソース領域212a、ドレイン領域212bを有する。
Each element included in the pixel circuit is provided on the substrate 202 via the undercoat 208. The driving transistor 210 includes a semiconductor film 212, a gate insulating film 214, a gate electrode 216, a drain electrode 220, and a source electrode 222. The gate electrode 216 is arranged to intersect at least a part of the semiconductor film 212 with the gate insulating film 214 interposed therebetween, and a channel 212 c is formed in a region where the semiconductor film 212 and the gate electrode 216 overlap. The semiconductor film 212 further includes a source region 212 a and a drain region 212 b which sandwich the channel 212 c.
ゲート絶縁膜214を介し、ゲート電極216と同一の層に存在する容量電極232がソース領域212aと重なるように設けられる。ゲート電極216、容量電極232の上には層間絶縁膜218が設けられる。層間絶縁膜218とゲート絶縁膜214には、ドレイン領域212b、ソース領域212aに達する開口が形成され、この開口を覆うようにドレイン電極220、ソース電極222が配置される。ソース電極222の一部は、層間絶縁膜218を介してソース領域212aの一部と容量電極232と重なり、ソース領域212aの一部、ゲート絶縁膜214、容量電極232、層間絶縁膜218、およびソース電極222の一部によって保持容量230が形成される。
A capacitor electrode 232 present in the same layer as the gate electrode 216 is provided to overlap with the source region 212 a through the gate insulating film 214. An interlayer insulating film 218 is provided over the gate electrode 216 and the capacitor electrode 232. In the interlayer insulating film 218 and the gate insulating film 214, an opening reaching the drain region 212b and the source region 212a is formed, and the drain electrode 220 and the source electrode 222 are disposed so as to cover the opening. A part of the source electrode 222 overlaps with a part of the source region 212a and the capacitor electrode 232 via the interlayer insulating film 218, and a part of the source region 212a, the gate insulating film 214, the capacitor electrode 232, the interlayer insulating film 218, and A part of the source electrode 222 forms a storage capacitor 230.
駆動トランジスタ210や保持容量230の上にはさらに平坦化膜240が設けられる。平坦化膜240は、ソース電極222に達する開口を有し、この開口と平坦化膜240の上面の一部を覆う接続電極242がソース電極222と接するように設けられる。平坦化膜240上にはさらに付加容量電極252が設けられ、接続電極242と付加容量電極252を覆うように容量絶縁膜254がさらに形成される。容量絶縁膜254は、平坦化膜240の開口では接続電極242の一部を覆わず、接続電極242の上面を露出する。これにより、接続電極242を介し、その上に設けられる発光素子260の第1の電極(以下、画素電極)262とソース電極222間の電気的接続が可能となる。容量絶縁膜254には、その上に設けられる隔壁258と平坦化膜240の接触を許容するための開口256を設けてもよい。開口256を通して平坦化膜240中の不純物を除去することができ、これによって発光素子260の信頼性を向上させることができる。なお、接続電極242や開口256の形成は任意である。
A planarization film 240 is further provided on the drive transistor 210 and the storage capacitor 230. The planarization film 240 has an opening reaching the source electrode 222, and a connection electrode 242 covering the opening and a part of the top surface of the planarization film 240 is provided in contact with the source electrode 222. An additional capacitance electrode 252 is further provided on the planarizing film 240, and a capacitance insulating film 254 is further formed to cover the connection electrode 242 and the additional capacitance electrode 252. The capacitive insulating film 254 does not cover a part of the connection electrode 242 at the opening of the planarization film 240, and exposes the upper surface of the connection electrode 242. Accordingly, electrical connection between the first electrode (hereinafter, pixel electrode) 262 and the source electrode 222 of the light emitting element 260 provided thereon can be enabled through the connection electrode 242. The capacitor insulating film 254 may be provided with an opening 256 for permitting contact between the partition wall 258 provided thereover and the planarization film 240. Impurities in the planarization layer 240 can be removed through the openings 256, which can improve the reliability of the light emitting device 260. Note that the formation of the connection electrode 242 and the opening 256 is optional.
容量絶縁膜254上には、接続電極242と付加容量電極252を覆うように、画素電極262が設けられる。容量絶縁膜254は付加容量電極252と画素電極262によって挟持され、この構造によって付加容量250が構築される。画素電極262は、付加容量250と発光素子260によって共有される。画素電極262の上には、画素電極262の端部を覆う隔壁258が設けられる。基板202、およびアンダーコート208から隔壁258までの構造は、総じてアレイ基板とも呼ばれる。アレイ基板の製造は、公知の材料や方法を適用することで行うことができるため、その説明は省略する。
A pixel electrode 262 is provided on the capacitive insulating film 254 so as to cover the connection electrode 242 and the additional capacitance electrode 252. The capacitive insulating film 254 is sandwiched between the additional capacitance electrode 252 and the pixel electrode 262, and an additional capacitance 250 is constructed by this structure. The pixel electrode 262 is shared by the additional capacitance 250 and the light emitting element 260. Over the pixel electrode 262, a partition wall 258 covering an end of the pixel electrode 262 is provided. The substrate 202 and the structure from the undercoat 208 to the barrier rib 258 are also collectively referred to as an array substrate. The array substrate can be manufactured by applying known materials and methods, and thus the description thereof is omitted.
[2.発光素子とその形成方法]
画素電極262、隔壁258を覆うようにEL層264、およびその上の第2の電極(以下、対向電極)272が設けられる。画素電極262や対向電極272、およびEL層264の構造、材料としては、公知のものを適用することができる。例えばEL層264は、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層、ホールブロック層、電子ブロック層、励起子ブロック層など、種々の機能層を適宜組み合わせて形成される。図14に示した例では、EL層264を構成する代表的な層として、ホール注入・輸送層266、発光層268(発光層268a、268b)、電子注入・輸送層270が示されている。 [2. Light emitting element and method for forming the same]
AnEL layer 264 and a second electrode (hereinafter referred to as an opposing electrode) 272 are provided so as to cover the pixel electrode 262 and the partition 258. As structures and materials of the pixel electrode 262, the counter electrode 272, and the EL layer 264, known materials can be applied. For example, the EL layer 264 is formed by appropriately combining various functional layers such as a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a hole block layer, an electron block layer, and an exciton block layer. . In the example shown in FIG. 14, a hole injecting / transporting layer 266, a light emitting layer 268 ( light emitting layers 268a, 268b), and an electron injecting / transporting layer 270 are shown as representative layers constituting the EL layer 264.
画素電極262、隔壁258を覆うようにEL層264、およびその上の第2の電極(以下、対向電極)272が設けられる。画素電極262や対向電極272、およびEL層264の構造、材料としては、公知のものを適用することができる。例えばEL層264は、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層、ホールブロック層、電子ブロック層、励起子ブロック層など、種々の機能層を適宜組み合わせて形成される。図14に示した例では、EL層264を構成する代表的な層として、ホール注入・輸送層266、発光層268(発光層268a、268b)、電子注入・輸送層270が示されている。 [2. Light emitting element and method for forming the same]
An
EL層264の構造は、すべての画素204間で同一でも良く、隣接する画素204間で一部の構造が異なるようにEL層264を形成してもよい。例えば隣接する画素204間で発光層268の構造、あるいは材料が異なり、他の層は同一の構造を有するよう、画素204を構成してもよい。図14に示した例では、ホール注入・輸送層266と電子注入・輸送層270は全ての画素204に共通に設けられ、全ての画素204に共有される。一方、発光層268は、隣接する画素204で構造が異なる。対向電極272は複数の画素204を覆い、複数の画素204によって共有される。画素電極262、EL層264、および対向電極272によって発光素子260が構築される。
The structure of the EL layer 264 may be the same between all the pixels 204, and the EL layer 264 may be formed so that a part of the structure is different between the adjacent pixels 204. For example, the pixels 204 may be configured such that the structure or material of the light emitting layer 268 differs between adjacent pixels 204, and the other layers have the same structure. In the example shown in FIG. 14, the hole injection / transport layer 266 and the electron injection / transport layer 270 are provided commonly to all the pixels 204 and shared by all the pixels 204. On the other hand, the light emitting layer 268 differs in structure between adjacent pixels 204. The counter electrode 272 covers the plurality of pixels 204 and is shared by the plurality of pixels 204. The pixel electrode 262, the EL layer 264, and the counter electrode 272 construct a light emitting element 260.
本発明の実施形態に係る蒸着マスク106を用いてEL層264や対向電極272を形成することができる。以下、EL層264と対向電極272の形成を図15Aから図18Bを用いて説明する。なお、これらの図ではEL層264と対向電極272が隔壁258や画素電極262の上に形成されるよう図示されるが、蒸着時には、基板202の下に蒸着源112が配置され、蒸着領域が蒸着源112に面するように、すなわち、隔壁258や画素電極262が基板202よりもより蒸着源112に近くなるよう、アレイ基板が配置される。
The EL layer 264 and the counter electrode 272 can be formed using the evaporation mask 106 according to the embodiment of the present invention. The formation of the EL layer 264 and the counter electrode 272 will be described below with reference to FIGS. 15A to 18B. Note that although the EL layer 264 and the counter electrode 272 are illustrated as being formed over the partition wall 258 and the pixel electrode 262 in these drawings, the evaporation source 112 is disposed under the substrate 202 at the time of evaporation. The array substrate is disposed so as to face the deposition source 112, that is, the partition wall 258 and the pixel electrode 262 are closer to the deposition source 112 than the substrate 202.
最初に、図15A、図15Bに示すように、アレイ基板上にホール注入・輸送層266を蒸着法を用いて形成する。ホール注入・輸送層266は全ての画素204に共有されるように設けられるため、使用する蒸着マスク106は、表示領域205全体と重なる一つの開口146を有する。詳細は省略するが、この開口146が表示領域205と重なるように蒸着マスク106をアレイ基板と蒸着源112の間に配置し、ホール注入・輸送層266に含まれる材料を蒸着源112において気化させることでホール注入・輸送層266が形成される。
First, as shown in FIGS. 15A and 15B, the hole injecting / transporting layer 266 is formed on the array substrate using a vapor deposition method. Since the hole injection / transport layer 266 is provided so as to be shared by all the pixels 204, the deposition mask 106 used has one opening 146 overlapping the entire display area 205. Although details are omitted, the deposition mask 106 is disposed between the array substrate and the deposition source 112 so that the opening 146 overlaps the display region 205, and the material contained in the hole injection / transport layer 266 is vaporized in the deposition source 112 Thus, the hole injection / transport layer 266 is formed.
引き続き、発光層268を形成する。フルカラー表示を行う場合、表示領域205には赤色に発光する画素204、青色に発光する画素204、および緑色に発光する画素204がそれぞれ複数配置される。画素204がストライプ配列する場合、通常、発光色の異なる画素204が順に周期的に配列され、発光層268は発光色ごとに、異なる段階で形成される。したがって、赤、青、緑色発光する三種類の画素204がストライプ配列する場合、図16に模式的に示すように、開口146が画素204aと重なり、非開口部が画素204b、204cと重なるよう、蒸着マスク106が形成される。この場合、金属プレート140の非開口部の幅Wは画素204のピッチの二倍となる。
Subsequently, the light emitting layer 268 is formed. When full-color display is performed, a plurality of pixels 204 that emit red light, pixels 204 that emit blue light, and pixels 204 that emit green light are arranged in the display region 205, respectively. In the case where the pixels 204 are arranged in a stripe, normally, the pixels 204 having different emission colors are periodically arranged in order, and the light emitting layer 268 is formed at different stages for each emission color. Therefore, when three types of pixels 204 emitting red, blue and green are arranged in stripes, as shown schematically in FIG. 16, the opening 146 overlaps the pixel 204a and the non-opening portion overlaps the pixels 204b and 204c. A deposition mask 106 is formed. In this case, the width W of the non-opening portion of the metal plate 140 is twice the pitch of the pixels 204.
このように開口146が設けられた蒸着マスク106を、開口146が画素204aと重なり、非開口部が他の画素204b、204cと重なり、かつ、下面150よりも上面148が基板202に近くなるように配置し(図17A)、画素204aの発光層268aの材料を蒸着する。これにより、画素204aの画素電極262上に発光層268aが選択的に形成される(図17B)。なお、図17Aでは、蒸着時に蒸着マスク106がホール注入・輸送層266に接するように配置されているが、蒸着マスク106は隔壁258と接するように配置してもよく、あるいは隔壁258やホール注入・輸送層266から離間するように配置してもよい。
Thus, the deposition mask 106 provided with the opening 146 is such that the opening 146 overlaps the pixel 204 a, the non-opening portion overlaps the other pixels 204 b and 204 c, and the upper surface 148 is closer to the substrate 202 than the lower surface 150. (FIG. 17A), and the material of the light emitting layer 268a of the pixel 204a is deposited. Thus, the light emitting layer 268a is selectively formed on the pixel electrode 262 of the pixel 204a (FIG. 17B). In FIG. 17A, the deposition mask 106 is disposed in contact with the hole injection / transport layer 266 during deposition, but the deposition mask 106 may be disposed in contact with the partition wall 258, or the partition 258 or the hole implantation It may be arranged to be separated from the transport layer 266.
こののち、発光層268aの形成と同様に、発光層268bが形成される。すなわち、蒸着マスク106を、開口146が画素204bと重なり、非開口部が他の画素204a、204cと重なり、かつ、下面150よりも上面148が基板202に近くなるように配置し(図18A)、画素204bの発光層268bの材料を蒸着する。これにより、画素204bの画素電極262上に発光層268bが選択的に形成される(図18B)。画素204c上における発光層268cの形成も同様である。
After this, the light emitting layer 268 b is formed in the same manner as the formation of the light emitting layer 268 a. That is, the deposition mask 106 is disposed such that the opening 146 overlaps the pixel 204b, the non-opening overlaps the other pixels 204a and 204c, and the upper surface 148 is closer to the substrate 202 than the lower surface 150 (FIG. 18A). , The material of the light emitting layer 268 b of the pixel 204 b is deposited. Thus, the light emitting layer 268 b is selectively formed on the pixel electrode 262 of the pixel 204 b (FIG. 18B). The same applies to the formation of the light emitting layer 268c on the pixel 204c.
引き続き、電子注入・輸送層270と対向電極272を形成する。これらも全ての画素204上に設けられ、全ての画素204によって共有されるため、ホール注入・輸送層266と同様の蒸着マスク106を用いて形成することができる。これにより、図14に示した状態を得ることができる。図示しないが、対向電極272上には、発光層268からの光を調製する光学調整層や偏光板、発光素子260を保護するための保護膜や対向基板を設けてもよい。
Subsequently, the electron injection / transport layer 270 and the counter electrode 272 are formed. Since these are also provided on all the pixels 204 and shared by all the pixels 204, they can be formed using a deposition mask 106 similar to the hole injection / transport layer 266. Thereby, the state shown in FIG. 14 can be obtained. Although not illustrated, an optical adjustment layer or a polarizing plate for preparing light from the light emitting layer 268, a protective film for protecting the light emitting element 260, or an opposite substrate may be provided on the opposite electrode 272.
第1実施形態で述べたように、本発明の実施形態に係る蒸着マスク106を用いることで、各画素204においてシャドー領域156の発生が大幅に抑制され、得られた膜の厚さを均一にすることができる。このため、各画素204において均一な発光を得ることができ、各画素204内における発光領域の減少を防止し、輝度の分布を低減することが可能となる。
As described in the first embodiment, by using the deposition mask 106 according to the embodiment of the present invention, the generation of the shadow region 156 is significantly suppressed in each pixel 204, and the thickness of the obtained film is made uniform. can do. Therefore, uniform light emission can be obtained in each pixel 204, and it is possible to prevent the reduction of the light emitting region in each pixel 204 and reduce the distribution of luminance.
本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態の表示装置を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
The embodiments described above as the embodiments of the present invention can be implemented in combination as appropriate as long as they do not contradict each other. In addition, those in which a person skilled in the art appropriately adds, deletes or changes the design of components based on the display device of each embodiment or those in which steps are added, omitted or conditions changed are also included in the present invention. As long as it comprises the gist, it is included in the scope of the present invention.
本明細書においては、開示例として主にEL表示装置の場合を例示したが、他の適用例として、その他の自発光型表示装置、液晶表示装置、あるいは電気泳動素子などを有する電子ペーパ型表示装置など、あらゆるフラットパネル型の表示装置が挙げられる。また、中小型から大型まで、特に限定することなく適用が可能である。
In the present specification, although the case of an EL display device is mainly illustrated as a disclosed example, an electronic paper type display having another self-light emitting display device, a liquid crystal display device, or an electrophoretic element as another application example Devices include any flat panel type display device. Moreover, it is applicable without particular limitation from medium size to large size.
上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
Even if other effects or effects different from the effects brought about by the aspects of the above-described embodiments are apparent from the description of the present specification or those which can be easily predicted by those skilled in the art, it is natural. It is understood that the present invention provides.
100:蒸着チャンバー、102:ロードロック扉、104:基板、106:蒸着マスク、108:ホルダー、110:移動機構、112:蒸着源、114:シャッター、120:収納容器、122:加熱部、124:蒸着ホルダー、126:ヒーター、128:金属板、130:開口部、132:ガイド板、140:金属プレート、142:フレーム、144:接続部、146:開口、148:上面、150:下面、152:側壁、152a:第1の面、152b:第2の面、152c:第3の面、152d:曲面、154:境界、領域155、156:シャドー領域、158:堆積膜、160a:臨界面、160b:臨界面、170:基板、172:レジスト、174:フォトマスク、174a:透光部、174b:遮光部、174c:ハーフトーン部、176:レジストマスク、178:レジストマスク、180:鎖線、182:領域、184:領域、186:直線、188:直線、200:表示装置、202:基板、204:画素、204a:画素、204b:画素、204c:画素、205:表示領域、206:駆動回路、206a:ゲート側駆動回路、206b:ソース側駆動回路、207:端子、208:アンダーコート、210:駆動トランジスタ、212:半導体膜、212a:ソース領域、212b:ドレイン領域、212c:チャネル、214:ゲート絶縁膜、216:ゲート電極、218:層間絶縁膜、220:ドレイン電極、222:ソース電極、230:保持容量、232:容量電極、240:平坦化膜、242:接続電極、250:付加容量、252:付加容量電極、254:容量絶縁膜、256:開口、258:隔壁、260:発光素子、262:画素電極、264:EL層、266:ホール注入・輸送層、268:発光層、268a:発光層、268b:発光層、268c:発光層、270:電子注入・輸送層、272:対向電極
100: deposition chamber, 102: load lock door, 104: substrate, 106: deposition mask, 108: holder, 110: moving mechanism, 112: deposition source, 114: shutter, 120: storage container, 122: heating unit, 124: Deposition holder, 126: heater, 128: metal plate, 130: opening, 132: guide plate, 140: metal plate, 142: frame, 144: connection, 146: opening, 148: upper surface, 150: lower surface, 152: Side wall, 152a: first surface, 152b: second surface, 152c: third surface, 152d: curved surface, 154: boundary, region 155, 156: shadow region, 158: deposited film, 160a: critical surface, 160b : Critical plane, 170: Substrate, 172: Resist, 174: Photo mask, 174 a: Translucent part, 174 b: Shading part, 174 c Halftone portion 176: resist mask 178: resist mask 180: chain line 182: area 184: area 186: straight line 188: straight line 200: display device 202: substrate 204: pixel 204a: pixel , 204b: pixel, 204c: pixel, 205: display region, 206: drive circuit, 206a: gate side drive circuit, 206b: source side drive circuit, 207: terminal, 208: undercoat, 210: drive transistor, 212: semiconductor Film 212a: source region 212b: drain region 212c: channel 214: gate insulating film 216: gate electrode 218: interlayer insulating film 220: drain electrode 222: source electrode 230: storage capacity 232: Capacitance electrode, 240: flattening film, 242: connection electrode, 250: additional capacitance, 2 2: Storage capacitor electrode 254: Capacitive insulating film 256: Opening 258: Partition wall 260: Light emitting element 262: Pixel electrode 264: EL layer 266: Hole injection / transport layer 268: Light emitting layer 268a: Light emitting layer, 268b: light emitting layer, 268c: light emitting layer, 270: electron injection / transporting layer, 272: counter electrode
Claims (19)
- 上面と、
前記上面の下に位置し、蒸着に供される基板に対して前記上面よりも遠くに配置される下面と、
前記上面から前記下面へ貫通する開口とを有する金属板を有し、
前記開口の側壁は第1の面、および前記第1の面の下に位置する第2の面を有し、
前記第1の面と前記上面がなす第1の角度は、前記第2の面と前記上面がなす第2の角度よりも大きく、
前記第1の角度と前記第2の角度は、0°よりも大きく、90°よりも小さい、蒸着マスク。 Top surface,
A lower surface located below the upper surface and located farther than the upper surface with respect to a substrate to be subjected to deposition;
And a metal plate having an opening penetrating from the upper surface to the lower surface,
The side wall of the opening has a first surface and a second surface located below the first surface,
A first angle formed by the first surface and the upper surface is larger than a second angle formed by the second surface and the upper surface,
An evaporation mask, wherein the first angle and the second angle are larger than 0 ° and smaller than 90 °. - 前記第1の角度は60°以上80°以下であり、
前記第2の角度は50°以上70°以下である、請求項1に記載の蒸着マスク。 The first angle is 60 degrees or more and 80 degrees or less,
The deposition mask according to claim 1, wherein the second angle is 50 ° or more and 70 ° or less. - 前記上面に垂直な方向において、前記上面から前記第1の面と前記第2の面の境界までの距離は、前記境界から前記下面までの距離より小さい、請求項1に記載の蒸着マスク。 The deposition mask according to claim 1, wherein a distance from the upper surface to the boundary between the first surface and the second surface is smaller than a distance from the boundary to the lower surface in a direction perpendicular to the upper surface.
- 前記側壁は、前記第1の面と前記第2の面の間に第3の面をさらに有し、
前記第3の面と前記上面がなす第3の角度は、前記第1の角度と前記第2の角度よりも小さい、請求項1に記載の蒸着マスク。 The side wall further has a third surface between the first surface and the second surface,
The deposition mask according to claim 1, wherein a third angle formed by the third surface and the upper surface is smaller than the first angle and the second angle. - 前記第3の面は前記上面と平行である、請求項4に記載の蒸着マスク。 The deposition mask according to claim 4, wherein the third surface is parallel to the upper surface.
- 前記開口を囲むフレームと、
前記金属板と前記フレームと接する接続部をさらに有する、請求項1に記載の蒸着マスク。 A frame surrounding the opening;
The deposition mask according to claim 1, further comprising a connection portion in contact with the metal plate and the frame. - 基板上にフォトレジストを塗布し、
複数の透光領域、および前記複数の透光領域を囲む遮光領域を有するフォトマスクを用いて前記フォトレジストを露光し、
前記フォトレジストの未露光部を除去することにより、複数の開口を有するレジストマスクを形成し、
電解めっき法を用いて前記複数の開口内にめっきパターンを形成し、
前記めっきパターンから前記基板を除去することを含む、蒸着マスクの作製方法。 Apply a photoresist on the substrate,
Exposing the photoresist using a photomask having a plurality of light transmitting regions and a light shielding region surrounding the plurality of light transmitting regions;
Forming a resist mask having a plurality of openings by removing the unexposed portion of the photoresist;
Forming a plating pattern in the plurality of openings using electrolytic plating;
A method for producing a deposition mask, comprising removing the substrate from the plating pattern. - 前記透光領域は、
第1の領域と、
前記第1の領域を囲み、前記第1の領域よりも光透過率が低い第2の領域を有する、請求項7に記載の作製方法。 The light transmitting region is
The first area,
The method according to claim 7, further comprising: a second area surrounding the first area and having a light transmittance lower than that of the first area. - 前記第2の領域の前記光透過率は20%以上60%以下である、請求項8に記載の作製方法。 The method according to claim 8, wherein the light transmittance of the second region is 20% or more and 60% or less.
- 前記第2の領域の幅は2μm以上6μm以下である、請求項8に記載の作製方法。 The method according to claim 8, wherein the width of the second region is 2 μm to 6 μm.
- 前記めっきパターン上に、前記複数の開口を囲むフレームを形成することをさらに含む、請求項7に記載の作製方法。 The method according to claim 7, further comprising forming a frame surrounding the plurality of openings on the plating pattern.
- 電解めっき法を用いて前記フレームの側面を前記めっきパターンへ接続することをさらに含む、請求項11に記載の作製方法。 The method according to claim 11, further comprising connecting the side surface of the frame to the plating pattern using an electrolytic plating method.
- 基板上に複数の画素電極を形成し、
材料が充填されるように構成される蒸着源上に、前記画素電極が前記基板と前記蒸着源の間に位置するように前記基板を配置し、
前記蒸着源と前記基板の間に蒸着マスクを配置し、
前記材料を気化し、前記画素電極を覆う前記材料の膜を形成することを含み、
前記蒸着マスクは、
上面と、
前記上面の下に位置し、前記基板に対して前記上面よりも遠くに配置される下面と、
前記上面から前記下面へ貫通する開口とを有する金属板を有し、
前記開口の側壁は第1の面、および前記第1の面の下に位置する第2の面を有し、
前記第1の面と前記上面がなす第1の角度は、前記第2の面と前記上面がなす第2の角度よりも大きく、
前記第1の角度と前記第2の角度は、0°よりも大きく、90°よりも小さい、表示装置の製造方法。 Forming a plurality of pixel electrodes on the substrate;
Placing the substrate on a deposition source configured to be filled with a material such that the pixel electrode is located between the substrate and the deposition source;
Placing a deposition mask between the deposition source and the substrate;
Evaporating the material to form a film of the material covering the pixel electrode;
The deposition mask is
Top surface,
A lower surface located below the upper surface and located farther than the upper surface with respect to the substrate;
And a metal plate having an opening penetrating from the upper surface to the lower surface,
The side wall of the opening has a first surface and a second surface located below the first surface,
A first angle formed by the first surface and the upper surface is larger than a second angle formed by the second surface and the upper surface,
A method of manufacturing a display device, wherein the first angle and the second angle are larger than 0 ° and smaller than 90 °. - 前記第1の角度は60°以上80°以下であり、
前記第2の角度は50°以上70°以下である、請求項13に記載の製造方法。 The first angle is 60 degrees or more and 80 degrees or less,
The method according to claim 13, wherein the second angle is 50 degrees or more and 70 degrees or less. - 前記蒸着源は、
前記材料が充填されるように構成され、前記材料の蒸気が通過する開口部を有する容器と、
前記容器上に位置し、一対のガイド板を備えるガイド部を有し、
前記第2の角度は、前記ガイド板間の角度と同一である、請求項13に記載の製造方法。 The deposition source is
A container configured to be filled with said material and having an opening through which said material vapor passes;
It has a guide part located on the container and provided with a pair of guide plates,
The method according to claim 13, wherein the second angle is the same as the angle between the guide plates. - 前記上面に垂直な方向において、前記上面から前記第1の面と前記第2の面の境界までの距離は、前記境界から前記下面までの距離と同一である、請求項13に記載の製造方法。 The method according to claim 13, wherein the distance from the upper surface to the boundary between the first surface and the second surface in the direction perpendicular to the upper surface is the same as the distance from the boundary to the lower surface. .
- 前記側壁は、前記第1の面と前記第2の面の間に第3の面をさらに有し、
前記第3の面と前記上面がなす第3の角度は、前記第1の角度と前記第2の角度よりも小さい、請求項13に記載の製造方法。 The side wall further has a third surface between the first surface and the second surface,
The method according to claim 13, wherein a third angle formed by the third surface and the upper surface is smaller than the first angle and the second angle. - 前記第3の面は前記上面と平行である、請求項17に記載の製造方法。 The method of claim 17, wherein the third surface is parallel to the top surface.
- 前記蒸着マスクは、
前記開口を囲むフレームと、
前記金属板と前記フレームと接する接続部をさらに有する、請求項13に記載の製造方法。 The deposition mask is
A frame surrounding the opening;
The manufacturing method according to claim 13, further comprising a connection portion in contact with the metal plate and the frame.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-171829 | 2017-09-07 | ||
JP2017171829A JP2019044253A (en) | 2017-09-07 | 2017-09-07 | Vapor deposition mask, manufacturing method of vapor deposition mask, and production method of display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019049453A1 true WO2019049453A1 (en) | 2019-03-14 |
Family
ID=65633707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/022525 WO2019049453A1 (en) | 2017-09-07 | 2018-06-13 | Deposition mask, method for manufacturing deposition mask, and method for manufacturing display device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019044253A (en) |
WO (1) | WO2019049453A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113373405A (en) * | 2020-03-10 | 2021-09-10 | 株式会社日本显示器 | Method for manufacturing evaporation mask assembly |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021143365A (en) * | 2020-03-11 | 2021-09-24 | 株式会社ジャパンディスプレイ | Vapor deposition mask and method for manufacturing the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008116691A (en) * | 2006-11-06 | 2008-05-22 | Mitsubishi Electric Corp | Halftone mask and method of manufacturing pattern substrate using the mask |
JP2010219497A (en) * | 2009-02-20 | 2010-09-30 | Sumitomo Metal Mining Co Ltd | Method for manufacturing substrate for semiconductor device, method for manufacturing semiconductor device, substrate for semiconductor device, and semiconductor device |
JP3164800U (en) * | 2010-10-05 | 2010-12-16 | Tdk株式会社 | mask |
JP2011168805A (en) * | 2010-02-16 | 2011-09-01 | Hitachi High-Technologies Corp | Evaporation source and vacuum deposition device using the same |
CN103556112A (en) * | 2013-10-30 | 2014-02-05 | 昆山允升吉光电科技有限公司 | Mask plate and production method thereof |
JP2014133930A (en) * | 2013-01-11 | 2014-07-24 | Dainippon Printing Co Ltd | Metal mask and metal mask manufacturing method |
JP2014148746A (en) * | 2013-01-11 | 2014-08-21 | Dainippon Printing Co Ltd | Metal mask and metal mask manufacturing method |
JP2015117432A (en) * | 2013-11-14 | 2015-06-25 | 大日本印刷株式会社 | Vapor deposition mask, vapor deposition mask with frame, and production method of organic semiconductor element |
WO2016171075A1 (en) * | 2015-04-22 | 2016-10-27 | シャープ株式会社 | Vapor deposition device and vapor deposition method |
-
2017
- 2017-09-07 JP JP2017171829A patent/JP2019044253A/en active Pending
-
2018
- 2018-06-13 WO PCT/JP2018/022525 patent/WO2019049453A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008116691A (en) * | 2006-11-06 | 2008-05-22 | Mitsubishi Electric Corp | Halftone mask and method of manufacturing pattern substrate using the mask |
JP2010219497A (en) * | 2009-02-20 | 2010-09-30 | Sumitomo Metal Mining Co Ltd | Method for manufacturing substrate for semiconductor device, method for manufacturing semiconductor device, substrate for semiconductor device, and semiconductor device |
JP2011168805A (en) * | 2010-02-16 | 2011-09-01 | Hitachi High-Technologies Corp | Evaporation source and vacuum deposition device using the same |
JP3164800U (en) * | 2010-10-05 | 2010-12-16 | Tdk株式会社 | mask |
JP2014133930A (en) * | 2013-01-11 | 2014-07-24 | Dainippon Printing Co Ltd | Metal mask and metal mask manufacturing method |
JP2014148746A (en) * | 2013-01-11 | 2014-08-21 | Dainippon Printing Co Ltd | Metal mask and metal mask manufacturing method |
CN103556112A (en) * | 2013-10-30 | 2014-02-05 | 昆山允升吉光电科技有限公司 | Mask plate and production method thereof |
JP2015117432A (en) * | 2013-11-14 | 2015-06-25 | 大日本印刷株式会社 | Vapor deposition mask, vapor deposition mask with frame, and production method of organic semiconductor element |
WO2016171075A1 (en) * | 2015-04-22 | 2016-10-27 | シャープ株式会社 | Vapor deposition device and vapor deposition method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113373405A (en) * | 2020-03-10 | 2021-09-10 | 株式会社日本显示器 | Method for manufacturing evaporation mask assembly |
Also Published As
Publication number | Publication date |
---|---|
JP2019044253A (en) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10886492B2 (en) | Array substrate and display panel comprising fracture opening for blocking carrier transportation between adjacent sub-pixels | |
JP4455937B2 (en) | Deposition source, vacuum film formation apparatus, organic EL panel manufacturing method | |
CN112011765B (en) | Vapor deposition apparatus, control method thereof, and film forming method | |
US7902743B2 (en) | Organic electroluminescent display device and method for producing the same | |
JP6897902B2 (en) | An organic light emitting diode display panel, a display device provided with the organic light emitting diode display panel, and a method for manufacturing the organic light emitting diode display panel. | |
WO2012017502A1 (en) | Organic electroluminescence element and method of manufacturing thereof | |
JP2019094528A (en) | Vapor deposition mask, production method of vapor deposition mask, and production method of display device | |
KR20130111626A (en) | Substrate to which film is formed, organic el display device, and vapor deposition method | |
WO2019049453A1 (en) | Deposition mask, method for manufacturing deposition mask, and method for manufacturing display device | |
US9972667B2 (en) | Display device | |
US20200295105A1 (en) | Top emission organic el element and method for producing same | |
WO2014049904A1 (en) | Method for producing el display device and transfer substrate used in producing el display device | |
KR101084255B1 (en) | Organic light emitting diode display | |
KR102475594B1 (en) | Deposition mask and method for manufacturing the same | |
JP2010267416A (en) | Organic electroluminescent display device, method of manufacturing the same, and deposition method | |
JP7332301B2 (en) | Evaporation mask and method for manufacturing the evaporation mask | |
WO2020158236A1 (en) | Deposition mask and method for manufacturing deposition mask | |
JP7149196B2 (en) | Evaporation mask | |
US20240179997A1 (en) | Display device and manufacturing method thereof | |
US20230422583A1 (en) | Display device and manufacturing method of display device | |
US20240284772A1 (en) | Manufacturing device of display device and manufacturing method of display device | |
JP2005093280A (en) | Organic el display | |
JP2011076988A (en) | Display panel device and method of manufacturing the same | |
JP2001022297A (en) | Display device and its production | |
JP2009110776A (en) | Method of manufacturing organic el display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18854552 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18854552 Country of ref document: EP Kind code of ref document: A1 |