[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019044866A1 - Container with battery, and delivery system - Google Patents

Container with battery, and delivery system Download PDF

Info

Publication number
WO2019044866A1
WO2019044866A1 PCT/JP2018/031856 JP2018031856W WO2019044866A1 WO 2019044866 A1 WO2019044866 A1 WO 2019044866A1 JP 2018031856 W JP2018031856 W JP 2018031856W WO 2019044866 A1 WO2019044866 A1 WO 2019044866A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
battery
unmanned aerial
aerial vehicle
external device
Prior art date
Application number
PCT/JP2018/031856
Other languages
French (fr)
Japanese (ja)
Inventor
和雄 市原
Original Assignee
株式会社プロドローン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロドローン filed Critical 株式会社プロドローン
Publication of WO2019044866A1 publication Critical patent/WO2019044866A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D9/00Equipment for handling freight; Equipment for facilitating passenger embarkation or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/39Battery swapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/20External fittings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G61/00Use of pick-up or transfer devices or of manipulators for stacking or de-stacking articles not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/60UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons
    • B64U2101/64UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons for parcel delivery or retrieval
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a container with a battery and a delivery system using the same.
  • the problem to be solved by the present invention is to provide a battery-equipped container that enables long-term continuous operation of an external device for transporting the container, and a delivery system capable of automating container transshipment work.
  • a container with a battery according to the present invention is a container carried by an external device, comprising: a case body for containing a carried object; a battery for supplying power to the external device; and an electronic and / or magnetic device for the external device. And / or optically readable destination information of the transported item.
  • the battery attached to the container can supply power to the external device.
  • power can be supplied to the external device from the battery attached to the other container.
  • the battery attached to the container can be charged before it is disconnected from the external device and then connected to the external device. Therefore, if a plurality of containers with battery are prepared, the external device can be continuously operated by transferring the containers appropriately.
  • the container has the delivery destination information of the articles, it becomes possible to automatically transport each container to each delivery destination.
  • the external device is an unmanned mobile unit, it is necessary to set delivery destination information of the load on the unmanned mobile unit.
  • the destination information is registered on the container side, and the external device reads the destination information from the container, thereby registering the destination information at an arbitrary timing until the container is attached to the external device. It can be performed.
  • the battery is connected to the external device by attaching the container to the external device.
  • the container includes a guide mechanism that corrects the positional deviation between the external device and the container when the container is attached to the external device.
  • the guide mechanism is a tapered portion provided on the side surface of the container and inclined so as to gradually protrude outward from the top to the bottom.
  • the guide mechanism By providing the guide mechanism in the container, when attaching the container to the external device, it is possible to accurately connect them without adjusting the relative position precisely. This prevents a connection failure between the external device and the battery and a reading failure of the destination information.
  • the guide mechanism which provides a taper part in the side of a container can be provided comparatively easily, and is preferred in terms of cost etc.
  • a delivery system includes an unmanned aerial vehicle having rotary wings, a container transported by the unmanned aerial vehicle, and a container transshipment device, the container including a case body in which a cargo is accommodated.
  • a battery for supplying power to the unmanned aerial vehicle, the container transfer device receives one of the containers transported by the unmanned aerial vehicle from the unmanned aerial vehicle, and the other container to the unmanned aerial vehicle Wearing is the gist.
  • the automatic transshipment of containers capable of supplying electric power to the unmanned aerial vehicle enables automation of the delivery system and long-term continuous operation of the unmanned aerial vehicle.
  • unmanned aerial vehicles flying with rotary wings consume more power than unmanned aerial vehicles equipped with fixed wings and land mobile devices.
  • the battery can be exchanged together with the container at the time of delivery of the goods, even an unmanned aerial vehicle equipped with rotary wings can be operated without any problem.
  • An unmanned aerial vehicle flying with a rotary wing is excellent in the speed of movement and freedom of movement, and can rapidly deliver materials to, for example, remote islands and mountain areas. Moreover, since the unmanned aerial vehicle provided with the rotary wings is capable of vertical take-off and landing, the shock at take-off and landing can be mitigated, and the cargo is less likely to be damaged.
  • a delivery system includes an unmanned aerial vehicle having rotary wings, and a container carried by the unmanned aerial vehicle, wherein the container is a case body in which a cargo is accommodated, and power is supplied to the unmanned aerial vehicle.
  • the unmanned aerial vehicle has an internal battery that is a battery that supplies power to the unmanned aerial vehicle when the battery of the container is not connected, and the unmanned aerial vehicle carries the The gist of the present invention is to automatically attach the other container in the vicinity after separating the one container which has been sent at its destination.
  • the unmanned aerial vehicle can move on its own power by the power supplied from the internal battery, even after being disconnected from the battery of the container. This makes it possible to automate transshipment of the battery-equipped container even when the above-described container transshipment device is not provided.
  • the unmanned aerial vehicle has a photographing means
  • the outer surface of the container is provided with a marker which is a mark distinguishable from the outside by image recognition
  • the unmanned aerial vehicle is by the photographing means It is preferable that the positional relationship between the unmanned aerial vehicle and the container can be specified by recognizing the marker.
  • the unmanned aerial vehicle has a photographing means, and by identifying the marker attached to the outer surface of the container and specifying the relative position to the container, it becomes possible to facilitate the transshipment of the container. Moreover, since it is possible to transpose containers without human intervention, the delivery system can be automated.
  • a pole extending in a bar-like shape is provided on the upper surface of the container, a hole vertically penetrated is formed in an airframe of the unmanned aircraft, and the pole is inserted into the hole. It is also possible to adopt a configuration in which the positional deviation between the unmanned aerial vehicle and the battery-equipped container is corrected.
  • the positional deviation between the unmanned aerial vehicle and the container can be easily corrected.
  • the unmanned moving object is an unmanned aerial vehicle equipped with rotary wings
  • turbulence may occur near the ground, but if the guide mechanism as described above is provided, the position can be adjusted at a height at which the influence of turbulence is small. Therefore, it is particularly preferable.
  • the battery attached to the container supplies power to the external device.
  • the external device When another container is connected to the external device, power is supplied to the external device by a battery attached to the other container. This enables the external device to operate continuously for a long time.
  • the battery attached to the container can be charged before it is disconnected from the external device and then connected to the external device, so that power can be supplied without stopping the operation of the external device.
  • work of the container to a unmanned aerial vehicle can be automated.
  • FIG. 1 is a perspective view showing the appearance of a battery-equipped container 2 (hereinafter, also simply referred to as “container 2”).
  • FIG. 3 is a schematic diagram which shows the transshipment operation
  • the multicopter 1 which is a type of unmanned aerial vehicle, is an external device that is supplied with power from the battery-equipped container 2a and transports the case body 21.
  • the multicopter 1 mounts the container 2a with a battery, and transports the container 2a with a battery to a destination. At the destination, a container transfer device 3 and another battery-equipped container 2b are installed.
  • the battery 22 attached to the battery-equipped container 2b is fully charged, and power is supplied to the multicopter 1 from the fully charged battery 22 by transposing the battery-equipped container 2a and another battery-equipped container 2b. can do. Also, the battery-equipped container 2a separated from the multicopter 1 at the destination can be charged until it is next connected to the multicopter 1 or another external device.
  • the battery-equipped container 2 includes a case body 21 in which a load is stored, and a battery 22.
  • the battery 22 is connected to an external device by an electrode 221 and supplies power to the external device. Note that instead of the electrode 221, it may be connected to an external device through a power cord or the like.
  • the electrode 221 is provided, the container is attached to the external device, whereby the battery attached to the container is connected to the external device, and there is no need to separately connect the external device and the battery.
  • the battery 22 and the multicopter are structured such that at least one of the electrode 221 or the corresponding terminal of the multicopter 1 has an elastic force or a structure in which the container 2 with battery is pressed against the multicopter 1 by the container holder 17
  • the connection with 1 is stable, and power can be prevented from being interrupted during transportation.
  • the battery 22 of the battery-equipped container 2 may be detachable from the case body 21 or may be integrated with the case body 21 in an inseparable manner. When the battery 22 is charged, the battery 22 may be removed from the case body 21 for charging, or may be charged in a state where the battery 22 and the case body 21 are integrated. Moreover, although the battery 22 is arrange
  • the container transfer device 3 includes a pallet 31 for receiving the battery-equipped container 2a, a pallet 32 for mounting another battery-equipped container 2b to the multicopter 1, a lift 33 for raising and lowering the pallet, and a conveyor device for moving the pallet. 34 and a landing board 35 supporting the multicopter 1.
  • the pallet 31 receives the battery-equipped container 2a and is lowered by the lift 33 onto the conveyor.
  • the conveyor device 34 moves the pallets 31 and 32.
  • the pallet 32 and the battery-equipped container 2 b on the pallet 32 move immediately below the multicopter 1, they are lifted by the lift 33, and the battery-equipped container 2 b on the pallet 32 is mounted on the multicopter 1.
  • the battery-equipped containers 2a and 2b be provided with an inclined tapered portion so that the side surfaces gradually project outward from the top to the bottom.
  • the tapered portion is provided, it is possible to correct the positional deviation from the multicopter 1 and to easily mount the container 2.
  • the container 2 can be transshipped.
  • the container transfer unit 35 is not limited to the present embodiment, as long as it can transfer the container 2. When the container transfer unit 35 is not provided, the transfer of the container 2 may be performed manually.
  • FIG. 4 is a schematic view showing the transfer work of the container 2 in the delivery system of the second embodiment.
  • the multicopter 1 is an external device that is supplied with power from the battery-equipped container 2 and transports the case body 21.
  • the multicopter 1 mounts the container 2a with a battery, and transports the container 2a with a battery to a destination. At the destination, another battery-equipped container 2b is installed.
  • the multicopter 1 of the present embodiment has the internal battery 11 mounted in addition to the battery 22 attached to the container 2, and after separating the container 2a with a battery, it flies by itself and mounts another container 2b with a battery can do.
  • the battery-equipped container 2 b preferably has a guide pole 25 extending upward.
  • the guide pole 25 By inserting the guide pole 25 into the guide pole insertion hole 16 provided in the multicopter 1, it is possible to correct the positional deviation between the multicopter 1 and the battery-equipped container 2 b.
  • unmanned aerial vehicles equipped with rotary blades such as multicopter may generate turbulence in the vicinity of the ground, such a guide mechanism can adjust the position at a height where the influence of turbulence is small.
  • the battery-equipped container 2 b preferably includes the marker 24 described in FIG. 1.
  • the multicopter 1 can automatically recognize the position of the battery-equipped container 2b and mount it.
  • the marker 24 is not particularly limited as long as it can be recognized by the multicopter 1, and a characteristic mark may be printed on the surface of the container 2, or a light source such as an LED light may be embedded and displayed.
  • the internal battery 11 can also be used as a spare battery when the battery 22 of the battery-equipped container 2 is broken during transportation, or when the power supply from the battery 22 is interrupted or interrupted due to poor contact or the like. . If the internal battery 11 can be charged by supplying power from the battery 22 attached to the battery-equipped container 2, the internal battery 11 can be charged while the container 2 is transported, which is excellent in convenience.
  • FIG. 2 is a block diagram schematically showing a functional configuration of a multicopter 1 which is a kind of unmanned aerial vehicle which is an external device of the present invention.
  • the basic configuration and flight function of the multicopter 1 will be described below.
  • the multicopter 1 mainly includes a flight controller FC which is a control unit of the multicopter 1, a receiver 141 which receives a steering signal from an operator (transmitter 120), a rotor R which is a plurality of rotors, and a rotor R. And a driving circuit of the above-described circuit 151 (Electric Speed Controller).
  • FC flight controller
  • a receiver 141 which receives a steering signal from an operator (transmitter 120)
  • a rotor R which is a plurality of rotors
  • a rotor R which is a plurality of rotors
  • a rotor R a driving circuit of the above-described circuit 151 (Electric Speed Controller).
  • the multicopter 1 may further have an internal battery 11 to supply power to the above-mentioned respective engines.
  • the battery 11 can be charged by power supply from the battery 22 attached to the battery-equipped container 2, the internal battery 11 can be charged while the container 2 is being transported, which is excellent in convenience.
  • the battery 22 and the internal battery 11 are preferably Li-Po batteries from the viewpoint of light weight and relatively large capacity, but there is no particular limitation as long as they can be charged and used repeatedly.
  • Each rotor R is composed of a motor 152 which is a drive source, and a propeller 153 mounted on the output shaft thereof.
  • the ESC 151 is connected to the motor 152 and controls the number of rotations of the motor 152 at a speed instructed by the flight controller FC.
  • the flight controller FC includes a controller 130 which is a microcontroller.
  • the control device 130 has a CPU 132 which is a central processing unit, a memory 131 which is a storage device such as a ROM or RAM, a flash memory, and a PWM (Pulse Width Modulation) controller 133 which sends a PWM signal to the ESC 151.
  • a CPU 132 which is a central processing unit
  • a memory 131 which is a storage device such as a ROM or RAM, a flash memory
  • PWM Pulse Width Modulation
  • the flight controller FC further includes a flight control sensor group 142 and a GPS receiver 143 (hereinafter collectively referred to as “sensor etc.”), which are connected to the control device 130.
  • the GPS receiver 143 is exactly the receiver of the Navigation Satellite System (NSS).
  • the GPS receiver 143 acquires current longitude and latitude values and time information from a global navigation satellite system (GNSS) or a regional navigation satellite system (RNSS).
  • the flight control sensor group 142 of the multicopter 1 in this example includes an IMU (Inertial Measurement Unit: inertial measurement device) having a 3-axis acceleration sensor and a 3-axis angular velocity sensor, an air pressure sensor (altitude sensor), a 3-axis geomagnetic sensor (azimuth Sensor etc. are included.
  • the control device 130 can acquire the position information of the own aircraft including the latitude and longitude during flight, the altitude, and the azimuth angle of the nose other than the inclination and rotation of the airframe by these sensors and the like.
  • the memory 131 of the control device 130 stores a flight control program FCP, which is a program for controlling the attitude of the multicopter 1 during flight and basic flight operations.
  • the flight control program FCP adjusts the number of revolutions of each rotor R based on the information obtained from sensors and the like, and causes the multicopter 1 to fly while correcting the attitude and position of the airframe.
  • the maneuvering of the multicopter 1 may be performed manually by the operator using the transmitter 120, but a flight plan consisting of the autonomous flight program APP with the flight path and velocity of the multicopter 1, altitude parameters, and commands of defined operations It is preferable to register the FP and make the multicopter 1 fly autonomously (hereinafter, such autonomous flight is referred to as "autopilot"). When maneuvering with an autopilot, it is excellent in terms of personnel reduction and operation continuity.
  • the flight plan FP can also be registered by reading the information of the information display unit 23 of the battery-equipped container 2 through the reading device 144.
  • the multicopter 1 which is an external device, can acquire information of the goods by reading the information of the information display unit 23 of the battery-equipped container 2.
  • the information display unit 23 records the information of the transported item in an electronically, magnetically or optically readable form. It is preferable to provide delivery destination information of the conveyance as the information on the conveyance.
  • the destination information is, for example, information capable of guiding the multicopter 1 to the destination, such as coordinate values such as the latitude and longitude of the destination, a flight plan FP to the destination, or information convertible to information equivalent thereto. I hope there is.
  • information such as the name, quantity, weight and tracking number of the goods may be provided.
  • the external device connected to the battery-equipped container 2 is not limited to the form of the multicopter 1.
  • a tractor, a forklift, an aircraft, a ship, etc. may be used, and either a manned or unmanned may be used.
  • the battery-equipped container 2 preferably includes a wheel or the like.
  • the unmanned aerial vehicle of the present invention is not limited to a multicopter, and may be a helicopter or a Vertical Take-Off and Landing (VTOL) aircraft.
  • VTOL Vertical Take-Off and Landing

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

L'invention concerne un récipient comprenant une batterie et un système de distribution faisant appel au récipient comprenant la batterie, apte à fonctionner en continu pendant une longue période. L'objet de l'invention est de fournir un récipient qui comprend un corps de boîtier pour contenir un matériau à transporter et qui est transporté par un dispositif externe, le récipient ayant une batterie servant à alimenter en énergie le dispositif externe.The invention relates to a container comprising a battery and a dispensing system using the container comprising the battery, able to operate continuously for a long time. The object of the invention is to provide a container which comprises a housing body for containing a material to be transported and which is transported by an external device, the container having a battery for supplying power to the external device.

Description

バッテリー付きコンテナおよび配送システムBattery-powered container and delivery system

 本発明は、バッテリー付きコンテナおよびそれを用いた配送システムに関する。 The present invention relates to a container with a battery and a delivery system using the same.

 人手不足が深刻化している物流業界では、配送作業や倉庫作業など、様々な作業の自動化が望まれている。こうした動きは、単に人手不足を解消するだけでなく、中長期的には、事業者の競争力を大きく左右し、業界構造にも変化をもたらす可能性があるとの指摘もあり、注目を集めている。 In the logistics industry where labor shortages are becoming serious, automation of various operations such as delivery operations and warehouse operations is desired. These movements not only resolve the labor shortage, but in the medium- and long-term, it is pointed out that they may greatly influence the competitiveness of the business and may bring about changes in the structure of the industry. ing.

 特に近年、無人航空機の姿勢制御や自律飛行に用いられるセンサ類およびソフトウェアの改良が進み、無人航空機の操作性が飛躍的に向上した。これにより、無人航空機を活用した配送システムに期待が寄せられている(例えば、特許文献1、2)。無人航空機のような無人移動体を用いた配送システムでは、人手不足を解消するだけでなく、長時間の稼働が可能となる利点もある。 In particular, in recent years, improvements in sensors and software used for attitude control of an unmanned aerial vehicle and autonomous flight progressed, and the operability of the unmanned aerial vehicle has dramatically improved. As a result, a delivery system utilizing unmanned aircraft has been expected (for example, Patent Documents 1 and 2). A delivery system using an unmanned mobile unit such as an unmanned aerial vehicle has the advantage that it can be operated for a long time as well as eliminating the shortage of labor.

 しかし、無人移動体を休みなく稼働させるためには、無人移動体へのエネルギー供給が問題となる。例えば、エンジンで駆動する場合には、燃料の供給が不可欠である。また、モータを用いた場合でも、バッテリーへの充電或いは、有線給電により常時電力を供給する必要がある。 However, in order to operate the unmanned mobile unit without interruption, energy supply to the unmanned mobile unit is a problem. For example, when driven by an engine, fuel supply is essential. Further, even when a motor is used, it is necessary to always supply power by charging the battery or by wire feeding.

特開2015-009709号公報JP, 2015-009709, A 特開2016-088675号公報JP, 2016-088675, A

 有線給電により無人移動体に電力を供給する場合、無人移動体の移動範囲が著しく制限されてしまう。一方、エンジンやバッテリーを用いる場合には、定期的に給油をしたり、充電スポットに立ち寄ったりする必要があり、非効率である。特に無人航空機の場合には、軽量化の観点からバッテリーの大型化が困難であり、このことが長時間の連続稼働の妨げとなっている。 When power is supplied to the unmanned mobile unit by wire feeding, the movement range of the unmanned mobile unit is significantly restricted. On the other hand, when using an engine or a battery, it is necessary to periodically refuel or stop at a charging spot, which is inefficient. In the case of unmanned aerial vehicles in particular, it is difficult to increase the size of the battery from the viewpoint of weight reduction, which hinders long-term continuous operation.

 本発明が解決しようとする課題は、コンテナを運搬する外部機器の長時間の連続稼働を可能とするバッテリー付きコンテナと、コンテナの積換え作業を自動化可能な配送システムを提供することにある。 The problem to be solved by the present invention is to provide a battery-equipped container that enables long-term continuous operation of an external device for transporting the container, and a delivery system capable of automating container transshipment work.

 本発明に係るバッテリー付きコンテナは、外部機器によって運搬されるコンテナであって、運搬物が収容されるケース体と、前記外部機器に電力を供給するバッテリーと、前記外部機器が電子的、磁気的、または光学的に読み取り可能な、前記運搬物の届け先情報と、を有することを要旨とする。 A container with a battery according to the present invention is a container carried by an external device, comprising: a case body for containing a carried object; a battery for supplying power to the external device; and an electronic and / or magnetic device for the external device. And / or optically readable destination information of the transported item.

 コンテナがバッテリーを備えることで、コンテナに付属するバッテリーから外部機器に電力を供給することが可能となる。外部機器に別のコンテナを接続すれば別のコンテナに付属するバッテリーから同外部機器に電力を供給することができる。コンテナに付属するバッテリーは、外部機器から切り離されて次に外部機器に接続されるまでの間に充電することができる。よって、バッテリー付きコンテナを複数用意すれば、外部機器は、適宜コンテナを積換えることにより連続的に稼働し続けることができる。 By providing the battery with the container, the battery attached to the container can supply power to the external device. By connecting another container to the external device, power can be supplied to the external device from the battery attached to the other container. The battery attached to the container can be charged before it is disconnected from the external device and then connected to the external device. Therefore, if a plurality of containers with battery are prepared, the external device can be continuously operated by transferring the containers appropriately.

 外部機器が運搬物を運搬している間はバッテリーが使用されているためバッテリーを交換することは困難である。バッテリーとコンテナとを一体化し、コンテナの積み換え時にコンテナと共にバッテリーを交換することは、運用上親和性が高く、効率的である。 It is difficult to replace the battery while the external device is transporting the goods because the battery is used. Integrating the battery and the container, and exchanging the battery with the container at the time of transferring the container is highly compatible in operation and efficient.

 そして、コンテナが運搬物の届け先情報を有することにより、各コンテナをそれぞれの届け先に自動的に運搬することが可能となる。特に、外部機器が無人移動体である場合、無人移動体に運搬物の届け先情報を設定する必要がある。無人移動体に届け先情報を直接設定する場合、無人移動体が移動している最中にこれを設定することは困難であるため、コンテナの積み換え時などの限られたタイミングで設定作業を行う必要がある。本発明では、コンテナ側に届け先情報を登録しておき、外部機器がコンテナからその届け先情報を読み取る構成とすることにより、コンテナが外部機器に装着されるまでの任意のタイミングで届け先情報の登録作業を行うことができる。 And, when the container has the delivery destination information of the articles, it becomes possible to automatically transport each container to each delivery destination. In particular, when the external device is an unmanned mobile unit, it is necessary to set delivery destination information of the load on the unmanned mobile unit. When setting the destination information directly to the unmanned mobile unit, it is difficult to set this while the unmanned mobile unit is moving, so perform the setting operation at a limited timing, such as when loading containers. There is a need. In the present invention, the destination information is registered on the container side, and the external device reads the destination information from the container, thereby registering the destination information at an arbitrary timing until the container is attached to the external device. It can be performed.

 また、前記バッテリーは、前記コンテナが前記外部機器に装着されることにより、該外部機器に接続されることが好ましい。 Preferably, the battery is connected to the external device by attaching the container to the external device.

 コンテナが外部機器に装着されることでコンテナに付属するバッテリーが該外部機器に接続される構成とすることにより、外部機器とバッテリーとを別途接続する手間を省くことができる。 By attaching the container to the external device so that the battery attached to the container is connected to the external device, it is possible to save the trouble of separately connecting the external device and the battery.

 また、前記コンテナは、該コンテナが前記外部機器に装着される際の、該外部機器と該コンテナとの位置のずれを補正するガイド機構を備えることが好ましい。このとき、前記ガイド機構は、前記コンテナの側面に設けられた、上から下に向かって次第に外側に張り出すように傾斜したテーパ部であることが好ましい。 Preferably, the container includes a guide mechanism that corrects the positional deviation between the external device and the container when the container is attached to the external device. At this time, it is preferable that the guide mechanism is a tapered portion provided on the side surface of the container and inclined so as to gradually protrude outward from the top to the bottom.

 コンテナにガイド機構を設けることにより、外部機器にコンテナを装着する際にその相対位置を精密に調整しなくても、これらを正確に接続することが可能となる。これにより外部機器とバッテリーとの接続不良や、届け先情報の読み取り不良が防止される。コンテナの側面にテーパ部を設けるガイド機構は、比較的容易に設けることができ、コストなどの観点から好ましい。 By providing the guide mechanism in the container, when attaching the container to the external device, it is possible to accurately connect them without adjusting the relative position precisely. This prevents a connection failure between the external device and the battery and a reading failure of the destination information. The guide mechanism which provides a taper part in the side of a container can be provided comparatively easily, and is preferred in terms of cost etc.

 また、本発明に係る配送システムは、回転翼を有する無人航空機と、前記無人航空機によって運搬されるコンテナと、コンテナ積換え装置と、を備え、前記コンテナは、運搬物が収容されるケース体と、前記無人航空機に電力を供給するバッテリーと、を有し、前記コンテナ積換え装置は、前記無人航空機が運搬してきた一の前記コンテナを該無人航空機から受け取り、他の前記コンテナを前記無人航空機に装着することを要旨とする。 In addition, a delivery system according to the present invention includes an unmanned aerial vehicle having rotary wings, a container transported by the unmanned aerial vehicle, and a container transshipment device, the container including a case body in which a cargo is accommodated. A battery for supplying power to the unmanned aerial vehicle, the container transfer device receives one of the containers transported by the unmanned aerial vehicle from the unmanned aerial vehicle, and the other container to the unmanned aerial vehicle Wearing is the gist.

 無人航空機に電力を供給可能なコンテナを自動的に積み換えることにより、配送システムの自動化、および無人航空機の長時間の連続稼働が可能となる。 The automatic transshipment of containers capable of supplying electric power to the unmanned aerial vehicle enables automation of the delivery system and long-term continuous operation of the unmanned aerial vehicle.

 一般に、回転翼で飛行する無人航空機は、固定翼を備える無人航空機や陸上移動装置に比べて電力の消費が激しい。また、軽量化等の観点から、バッテリーを大容量化することも難しいため、バッテリーを頻繁に交換する必要がある。本発明によれば、運搬物の受け渡しの際に、コンテナと共にバッテリーも交換できるため、回転翼を備える無人航空機であっても、問題なく運用できる。 In general, unmanned aerial vehicles flying with rotary wings consume more power than unmanned aerial vehicles equipped with fixed wings and land mobile devices. In addition, it is also difficult to increase the capacity of the battery from the viewpoint of weight reduction and the like, so it is necessary to replace the battery frequently. According to the present invention, since the battery can be exchanged together with the container at the time of delivery of the goods, even an unmanned aerial vehicle equipped with rotary wings can be operated without any problem.

 回転翼で飛行する無人航空機は、移動の速度や移動の自由度に優れ、例えば、離島や山岳地帯等にも迅速に運搬物を届けることができる。また、回転翼を備える無人航空機は、垂直離着陸が可能であるため、離着陸時の衝撃を緩和することができ、運搬物に損傷を与えにくい。 An unmanned aerial vehicle flying with a rotary wing is excellent in the speed of movement and freedom of movement, and can rapidly deliver materials to, for example, remote islands and mountain areas. Moreover, since the unmanned aerial vehicle provided with the rotary wings is capable of vertical take-off and landing, the shock at take-off and landing can be mitigated, and the cargo is less likely to be damaged.

 また、本発明に係る配送システムは、回転翼を有する無人航空機と、前記無人航空機によって運搬されるコンテナと、を備え、前記コンテナは、運搬物が収容されるケース体と、前記無人航空機に電力を供給するバッテリーと、を有し、前記無人航空機は、前記コンテナのバッテリーが接続されていないときに、該無人航空機に電力を供給するバッテリーである内部バッテリーを有し、前記無人航空機は、運搬してきた一の前記コンテナをその届け先で切り離した後で、その近傍にある他の前記コンテナを自動的に装着することを要旨とする。 In addition, a delivery system according to the present invention includes an unmanned aerial vehicle having rotary wings, and a container carried by the unmanned aerial vehicle, wherein the container is a case body in which a cargo is accommodated, and power is supplied to the unmanned aerial vehicle. The unmanned aerial vehicle has an internal battery that is a battery that supplies power to the unmanned aerial vehicle when the battery of the container is not connected, and the unmanned aerial vehicle carries the The gist of the present invention is to automatically attach the other container in the vicinity after separating the one container which has been sent at its destination.

 無人航空機が内部バッテリーを備えることにより、該無人航空機は、コンテナのバッテリーから切り離された後も、内部バッテリーから供給される電力によって自力で移動することができる。これにより、上記のようなコンテナ積換え装置を備えない場合であっても、バッテリー付きコンテナの積換えを自動化することができる。 By providing the internal battery with the unmanned aerial vehicle, the unmanned aerial vehicle can move on its own power by the power supplied from the internal battery, even after being disconnected from the battery of the container. This makes it possible to automate transshipment of the battery-equipped container even when the above-described container transshipment device is not provided.

 そして、本発明の配送システムは、前記無人航空機が撮影手段を有し、前記コンテナの外面には、外部から画像認識により識別可能な目印であるマーカーが設けられ、前記無人航空機が前記撮影手段により前記マーカーを認識することで、該無人航空機と前記コンテナとの位置関係を特定可能であることが好ましい。 And in the delivery system according to the present invention, the unmanned aerial vehicle has a photographing means, the outer surface of the container is provided with a marker which is a mark distinguishable from the outside by image recognition, and the unmanned aerial vehicle is by the photographing means It is preferable that the positional relationship between the unmanned aerial vehicle and the container can be specified by recognizing the marker.

 無人航空機が撮影手段を有し、コンテナの外面に付されたマーカーを認識してコンテナとの相対的な位置を特定することにより、コンテナの積換えを円滑に行えるようになる。また、人手を介さずにコンテナの積換えを行うことが可能であるため、配送システムの自動化を図ることができる。 The unmanned aerial vehicle has a photographing means, and by identifying the marker attached to the outer surface of the container and specifying the relative position to the container, it becomes possible to facilitate the transshipment of the container. Moreover, since it is possible to transpose containers without human intervention, the delivery system can be automated.

 その他、前記コンテナの上面に上方に棒状に延出したポールが設けられ、前記無人航空機の機体には上下方向に貫通された穴が形成され、前記ポールが前記穴に挿通されることにより、前記無人航空機と前記バッテリー付きコンテナとの位置のずれが補正される構成とすることもできる。 In addition, a pole extending in a bar-like shape is provided on the upper surface of the container, a hole vertically penetrated is formed in an airframe of the unmanned aircraft, and the pole is inserted into the hole. It is also possible to adopt a configuration in which the positional deviation between the unmanned aerial vehicle and the battery-equipped container is corrected.

 コンテナの上面のポールを、無人航空機の機体に設けられた穴に挿通することにより、無人航空機とコンテナとの位置のずれを容易に補正することができる。特に、無人移動体が回転翼を備える無人航空機である場合、地上付近では乱気流が発生する場合があるが、上記のようなガイド機構を備えると、乱気流の影響の小さい高さで位置を調整できるため、特に好ましい。 By inserting the pole on the upper surface of the container into a hole provided in the airframe of the unmanned aerial vehicle, the positional deviation between the unmanned aerial vehicle and the container can be easily corrected. In particular, when the unmanned moving object is an unmanned aerial vehicle equipped with rotary wings, turbulence may occur near the ground, but if the guide mechanism as described above is provided, the position can be adjusted at a height at which the influence of turbulence is small. Therefore, it is particularly preferable.

 本発明に係るバッテリー付きコンテナによれば、コンテナに付属するバッテリーによって、外部機器に電力が供給される。外部機器に別のコンテナを接続すると、別のコンテナに付属するバッテリーによって該外部機器に電力が供給される。これにより外部機器は、長時間の連続稼働が可能となる。 According to the battery-equipped container of the present invention, the battery attached to the container supplies power to the external device. When another container is connected to the external device, power is supplied to the external device by a battery attached to the other container. This enables the external device to operate continuously for a long time.

 コンテナに付属するバッテリーは、外部機器から切り離されて次に外部機器に接続されるまでの間に充電することができるため、該外部機器の運転を止めることなく電力を供給することができる。 The battery attached to the container can be charged before it is disconnected from the external device and then connected to the external device, so that power can be supplied without stopping the operation of the external device.

 本発明に係る配送システムによれば、無人航空機へのコンテナの装着作業を自動化することができる。 ADVANTAGE OF THE INVENTION According to the delivery system which concerns on this invention, the installation operation | work of the container to a unmanned aerial vehicle can be automated.

第1実施形態のコンテナの外観を示す斜視図である。It is a perspective view which shows the external appearance of the container of 1st Embodiment. 本発明の外部機器である無人航空機の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the unmanned aerial vehicle which is an external apparatus of this invention. 第1実施形態の配送システムに係る、コンテナの積換え作業を示す模式図である。It is a schematic diagram which shows the transshipment operation | work of a container based on the delivery system of 1st Embodiment. 第2実施形態の配送システムに係る、コンテナの積換え作業を示す模式図である。It is a schematic diagram which shows the transshipment operation | work of a container based on the delivery system of 2nd Embodiment.

 以下、本発明の第1実施形態の配送システムについて図面を用いて説明する。図1はバッテリー付きコンテナ2(以下、単に「コンテナ2」ともいう。)の外観を示す斜視図である。図3は本実施形態に係るコンテナの積換え作業を示す模式図である。 Hereinafter, the delivery system of a first embodiment of the present invention will be described using the drawings. FIG. 1 is a perspective view showing the appearance of a battery-equipped container 2 (hereinafter, also simply referred to as “container 2”). FIG. 3: is a schematic diagram which shows the transshipment operation | work of the container which concerns on this embodiment.

 無人航空機の一種であるマルチコプター1は、バッテリー付きコンテナ2aから電力を供給され、ケース体21を運搬する外部機器である。マルチコプター1はバッテリー付きコンテナ2aを装着し、バッテリー付きコンテナ2aを目的地まで運搬する。目的地には、コンテナ積換え装置3と、別のバッテリー付きコンテナ2bとが設置されている。 The multicopter 1, which is a type of unmanned aerial vehicle, is an external device that is supplied with power from the battery-equipped container 2a and transports the case body 21. The multicopter 1 mounts the container 2a with a battery, and transports the container 2a with a battery to a destination. At the destination, a container transfer device 3 and another battery-equipped container 2b are installed.

 バッテリー付きコンテナ2bに付属されるバッテリー22は、十分に充電されており、バッテリー付きコンテナ2aと別のバッテリー付きコンテナ2bとを積換えることにより、十分に充電されたバッテリー22からマルチコプター1に給電することができる。また、目的地でマルチコプター1から切り離されたバッテリー付きコンテナ2aは、次にマルチコプター1または他の外部機器に接続されるまでの間に充電することができる。 The battery 22 attached to the battery-equipped container 2b is fully charged, and power is supplied to the multicopter 1 from the fully charged battery 22 by transposing the battery-equipped container 2a and another battery-equipped container 2b. can do. Also, the battery-equipped container 2a separated from the multicopter 1 at the destination can be charged until it is next connected to the multicopter 1 or another external device.

 バッテリー付きコンテナ2は、運搬物が収容されるケース体21と、バッテリー22とを備える。バッテリー22は、電極221によって外部機器に接続され、外部機器に電力を供給する。なお、電極221の代わりに電源コード等を通じて外部機器と接続されてもよい。電極221を有すると、コンテナが外部機器に装着されることにより、コンテナに付属するバッテリーが外部機器に接続され、外部機器とバッテリーとを別途接続する手間がない。このとき、電極221またはマルチコプター1の対応する端子の少なくとも一方が弾性力を有する構造あるいは、コンテナ保持部17によってバッテリー付きコンテナ2をマルチコプター1に押し付ける構造とすることにより、バッテリー22とマルチコプター1との接続が安定し、運搬中に電力が遮断することを防止できる。 The battery-equipped container 2 includes a case body 21 in which a load is stored, and a battery 22. The battery 22 is connected to an external device by an electrode 221 and supplies power to the external device. Note that instead of the electrode 221, it may be connected to an external device through a power cord or the like. When the electrode 221 is provided, the container is attached to the external device, whereby the battery attached to the container is connected to the external device, and there is no need to separately connect the external device and the battery. At this time, the battery 22 and the multicopter are structured such that at least one of the electrode 221 or the corresponding terminal of the multicopter 1 has an elastic force or a structure in which the container 2 with battery is pressed against the multicopter 1 by the container holder 17 The connection with 1 is stable, and power can be prevented from being interrupted during transportation.

 なお、バッテリー付きコンテナ2のバッテリー22は、ケース体21に着脱可能であってもよく、ケース体21と分離不能に一体化されていてもよい。また、バッテリー22を充電するときはケース体21からバッテリー22を取り外して充電してもよく、バッテリー22とケース体21とが一体化された状態で充電してもよい。また、本例ではバッテリー22がケース体21の外に配置されているが、バッテリー22はケース体21の中に収容されていてもよい。この場合は、バッテリー22の電極221のみがケース体21の外部に露出しているか、または、バッテリー22と電気的に接続された他の端子・接点がケース体21の外部に設けられていればよい。将来的には端子・接点の物理的な接触を伴わないワイヤレス給電も可能になるものと考えられる。また、ケース体21の形状は、運搬物が収容されるものであれば特に限定しない。例えば、箱状、袋状、皿状などの形状であってもよい。 The battery 22 of the battery-equipped container 2 may be detachable from the case body 21 or may be integrated with the case body 21 in an inseparable manner. When the battery 22 is charged, the battery 22 may be removed from the case body 21 for charging, or may be charged in a state where the battery 22 and the case body 21 are integrated. Moreover, although the battery 22 is arrange | positioned out of the case body 21 in this example, the battery 22 may be accommodated in the case body 21. FIG. In this case, if only the electrode 221 of the battery 22 is exposed to the outside of the case body 21 or if other terminals and contacts electrically connected to the battery 22 are provided on the outside of the case body 21 Good. In the future, wireless power supply without physical contact between terminals and contacts is considered to be possible. Further, the shape of the case body 21 is not particularly limited as long as the articles to be transported can be accommodated. For example, the shape may be box-like, bag-like, plate-like or the like.

 コンテナ積換え装置3は、バッテリー付きコンテナ2aを受け取るパレット31と、別のバッテリー付きコンテナ2bをマルチコプター1に装着するパレット32と、パレットの昇降を行うリフト33と、パレットの移動を行うコンベヤ装置34と、マルチコプター1を支える着陸台35とを備える。 The container transfer device 3 includes a pallet 31 for receiving the battery-equipped container 2a, a pallet 32 for mounting another battery-equipped container 2b to the multicopter 1, a lift 33 for raising and lowering the pallet, and a conveyor device for moving the pallet. 34 and a landing board 35 supporting the multicopter 1.

 マルチコプター1が着陸台35に着陸した後、パレット31がバッテリー付きコンテナ2aを受け取り、リフト33によってコンベヤ上に降ろされる。コンベヤ装置34によって、パレット31及びパレット32が移動する。パレット32及び、パレット32上のバッテリー付きコンテナ2bがマルチコプター1の直下に移動すると、リフト33によって持ち上げられ、パレット32上のバッテリー付きコンテナ2bがマルチコプター1に装着される。 After the multicopter 1 lands on the landing board 35, the pallet 31 receives the battery-equipped container 2a and is lowered by the lift 33 onto the conveyor. The conveyor device 34 moves the pallets 31 and 32. When the pallet 32 and the battery-equipped container 2 b on the pallet 32 move immediately below the multicopter 1, they are lifted by the lift 33, and the battery-equipped container 2 b on the pallet 32 is mounted on the multicopter 1.

 バッテリー付きコンテナ2aおよび2bは、側面が上から下に向かって次第に外側に張り出すように傾斜したテーパ部が設けられているとことが好ましい。テーパ部を有すると、マルチコプター1との位置のずれを補正でき、コンテナ2の装着が容易である。 It is preferable that the battery-equipped containers 2a and 2b be provided with an inclined tapered portion so that the side surfaces gradually project outward from the top to the bottom. When the tapered portion is provided, it is possible to correct the positional deviation from the multicopter 1 and to easily mount the container 2.

 本実施形態によれば、マルチコプター1がコンテナ2に付属するバッテリー22の他に内部バッテリーを有していない場合であっても、コンテナ2の積換えを行うことができる。コンテナ積換え装置35は、本実施形態に限定されず、コンテナ2の積換えを行えるものであればよい。また、コンテナ積換え装置35を備えない場合、手動でコンテナ2の積換えを行ってもよい。 According to this embodiment, even when the multicopter 1 does not have an internal battery other than the battery 22 attached to the container 2, the container 2 can be transshipped. The container transfer unit 35 is not limited to the present embodiment, as long as it can transfer the container 2. When the container transfer unit 35 is not provided, the transfer of the container 2 may be performed manually.

 図4は第2実施形態の配送システムについて、そのコンテナ2の積換え作業を示す模式図である。 FIG. 4 is a schematic view showing the transfer work of the container 2 in the delivery system of the second embodiment.

 マルチコプター1は、バッテリー付きコンテナ2から電力を供給され、ケース体21を運搬する外部機器である。マルチコプター1はバッテリー付きコンテナ2aを装着し、バッテリー付きコンテナ2aを目的地まで運搬する。目的地には、別のバッテリー付きコンテナ2bが設置されている。 The multicopter 1 is an external device that is supplied with power from the battery-equipped container 2 and transports the case body 21. The multicopter 1 mounts the container 2a with a battery, and transports the container 2a with a battery to a destination. At the destination, another battery-equipped container 2b is installed.

 本実施形態のマルチコプター1は、コンテナ2に付属するバッテリー22の他に内部バッテリー11を搭載しており、バッテリー付きコンテナ2aを切り離した後に、自力で飛行し、別のバッテリー付きコンテナ2bを装着することができる。 The multicopter 1 of the present embodiment has the internal battery 11 mounted in addition to the battery 22 attached to the container 2, and after separating the container 2a with a battery, it flies by itself and mounts another container 2b with a battery can do.

 このとき、バッテリー付きコンテナ2bは、上方に延出したガイドポール25を有することが好ましい。ガイドポール25が、マルチコプター1に設けられたガイドポール挿通孔16に挿通されることで、マルチコプター1とバッテリー付きコンテナ2bとの位置のずれを補正することができる。マルチコプターなどの回転翼を備える無人航空機は地上付近では乱気流が発生する場合があるが、このようなガイド機構を備えると、乱気流の影響の小さい高さで位置を調整できる。 At this time, the battery-equipped container 2 b preferably has a guide pole 25 extending upward. By inserting the guide pole 25 into the guide pole insertion hole 16 provided in the multicopter 1, it is possible to correct the positional deviation between the multicopter 1 and the battery-equipped container 2 b. Although unmanned aerial vehicles equipped with rotary blades such as multicopter may generate turbulence in the vicinity of the ground, such a guide mechanism can adjust the position at a height where the influence of turbulence is small.

 また、バッテリー付きコンテナ2bは、図1に記載のマーカー24を備えることが好ましい。これにより、マルチコプター1は、自動でバッテリー付きコンテナ2bの位置を認識し、装着することができる。マーカー24としては、マルチコプター1が認識できるものであれば特に限定されず、コンテナ2表面に特徴的な印を印刷してもよく、LEDライトのような光源を埋め込んで表示してもよい。 In addition, the battery-equipped container 2 b preferably includes the marker 24 described in FIG. 1. Thus, the multicopter 1 can automatically recognize the position of the battery-equipped container 2b and mount it. The marker 24 is not particularly limited as long as it can be recognized by the multicopter 1, and a characteristic mark may be printed on the surface of the container 2, or a light source such as an LED light may be embedded and displayed.

 マルチコプター1が内部バッテリー11を搭載していると、図3に示すようなコンテナ積換え装置3を必要とせず、自動でコンテナ2の積換えを行うことができる。また、内部バッテリー11は、バッテリー付きコンテナ2のバッテリー22が運搬中に切れてしまったときや、接触不良などによりバッテリー22から給電が瞬断・遮断された際の予備バッテリーとして使用することもできる。内部バッテリー11は、バッテリー付きコンテナ2に付属されるバッテリー22からの電力供給により充電できる構成とすると、コンテナ2の運搬中に充電することが可能であり利便性に優れる。 When the multicopter 1 is equipped with the internal battery 11, it is possible to automatically transfer the container 2 without requiring the container transfer device 3 as shown in FIG. Further, the internal battery 11 can also be used as a spare battery when the battery 22 of the battery-equipped container 2 is broken during transportation, or when the power supply from the battery 22 is interrupted or interrupted due to poor contact or the like. . If the internal battery 11 can be charged by supplying power from the battery 22 attached to the battery-equipped container 2, the internal battery 11 can be charged while the container 2 is transported, which is excellent in convenience.

 図2は、本発明の外部機器である無人航空機の一種であるマルチコプター1の機能構成を模式的に表すブロック図である。以下、マルチコプター1の基本的な構成と飛行機能について説明する。マルチコプター1は、主に、マルチコプター1の制御部であるフライトコントローラFC、オペレータ(送信機120)からの操縦信号を受信する受信器141、複数の回転翼であるロータR、および、ロータRの駆動回路であるESC151(Electric Speed Controller)により構成されている。上記各機関は、バッテリー付きコンテナ2に付属されるバッテリー22により電力を供給される。また、マルチコプター1はさらに、バッテリー付きコンテナ2に付属されるバッテリー22の他に内部バッテリー11を有し、上記各機関に電力を供給してもよい。この場合、バッテリー付きコンテナ2に付属されるバッテリー22からの電力供給により、バッテリー11を充電できる構成とすると、コンテナ2の運搬中に内部バッテリー11を充電することが可能であり利便性に優れる。バッテリー22および内部バッテリー11としては、軽量で比較的大容量であるなどの観点からLi-Poバッテリーが好適であるが、充電して繰り返し使用できるものであれば特に限定されない。 FIG. 2 is a block diagram schematically showing a functional configuration of a multicopter 1 which is a kind of unmanned aerial vehicle which is an external device of the present invention. The basic configuration and flight function of the multicopter 1 will be described below. The multicopter 1 mainly includes a flight controller FC which is a control unit of the multicopter 1, a receiver 141 which receives a steering signal from an operator (transmitter 120), a rotor R which is a plurality of rotors, and a rotor R. And a driving circuit of the above-described circuit 151 (Electric Speed Controller). Each of the above-mentioned engines is supplied with power by a battery 22 attached to the battery-equipped container 2. In addition to the battery 22 attached to the battery-equipped container 2, the multicopter 1 may further have an internal battery 11 to supply power to the above-mentioned respective engines. In this case, if the battery 11 can be charged by power supply from the battery 22 attached to the battery-equipped container 2, the internal battery 11 can be charged while the container 2 is being transported, which is excellent in convenience. The battery 22 and the internal battery 11 are preferably Li-Po batteries from the viewpoint of light weight and relatively large capacity, but there is no particular limitation as long as they can be charged and used repeatedly.

 各ロータRは、駆動源であるモータ152と、その出力軸に装着されたプロペラ153とにより構成されている。ESC151はモータ152に接続されており、フライトコントローラFCから指示された速度でモータ152の回転数を制御する。 Each rotor R is composed of a motor 152 which is a drive source, and a propeller 153 mounted on the output shaft thereof. The ESC 151 is connected to the motor 152 and controls the number of rotations of the motor 152 at a speed instructed by the flight controller FC.

 フライトコントローラFCはマイクロコントローラである制御装置130を備えている。制御装置130は、中央処理装置であるCPU132、ROMやRAM、フラッシュメモリなどの記憶装置であるメモリ131、および、ESC151にPWM信号を送出するPWM(Pulse Width Modulation)コントローラ133を有している。 The flight controller FC includes a controller 130 which is a microcontroller. The control device 130 has a CPU 132 which is a central processing unit, a memory 131 which is a storage device such as a ROM or RAM, a flash memory, and a PWM (Pulse Width Modulation) controller 133 which sends a PWM signal to the ESC 151.

 フライトコントローラFCはさらに、飛行制御センサ群142およびGPS受信機143(以下、これらを総称して「センサ等」ともいう。)を備えており、これらは制御装置130に接続されている。GPS受信機143は、正確には航法衛星システム(NSS)の受信器である。GPS受信機143は、全地球航法衛星システム(GNSS)または地域航法衛星システム(RNSS)から現在の経緯度値および時刻情報を取得する。本例におけるマルチコプター1の飛行制御センサ群142には、3軸加速度センサおよび3軸角速度センサを有するIMU(Inertial Measurement Unit:慣性計測装置)、気圧センサ(高度センサ)、3軸地磁気センサ(方位センサ)などが含まれている。制御装置130は、これらセンサ等により、機体の傾きや回転のほか、飛行中の緯度経度、高度、および機首の方位角を含む自機の位置情報を取得することができる。 The flight controller FC further includes a flight control sensor group 142 and a GPS receiver 143 (hereinafter collectively referred to as “sensor etc.”), which are connected to the control device 130. The GPS receiver 143 is exactly the receiver of the Navigation Satellite System (NSS). The GPS receiver 143 acquires current longitude and latitude values and time information from a global navigation satellite system (GNSS) or a regional navigation satellite system (RNSS). The flight control sensor group 142 of the multicopter 1 in this example includes an IMU (Inertial Measurement Unit: inertial measurement device) having a 3-axis acceleration sensor and a 3-axis angular velocity sensor, an air pressure sensor (altitude sensor), a 3-axis geomagnetic sensor (azimuth Sensor etc. are included. The control device 130 can acquire the position information of the own aircraft including the latitude and longitude during flight, the altitude, and the azimuth angle of the nose other than the inclination and rotation of the airframe by these sensors and the like.

 制御装置130のメモリ131には、マルチコプター1の飛行時における姿勢や基本的な飛行動作を制御するプログラムである飛行制御プログラムFCPが記憶されている。飛行制御プログラムFCPは、センサ等から取得した情報を基に個々のロータRの回転数を調節し、機体の姿勢や位置の乱れを補正しながらマルチコプター1を飛行させる。 The memory 131 of the control device 130 stores a flight control program FCP, which is a program for controlling the attitude of the multicopter 1 during flight and basic flight operations. The flight control program FCP adjusts the number of revolutions of each rotor R based on the information obtained from sensors and the like, and causes the multicopter 1 to fly while correcting the attitude and position of the airframe.

 マルチコプター1の操縦は、オペレータが送信機120を用いて手動で行ってもよいが、自律飛行プログラムAPPにマルチコプター1の飛行経路や速度、高度のパラメータ、および規定動作のコマンドからなる飛行計画FPを登録し、マルチコプター1を自律的に飛行させる(以下、このような自律飛行のことを「オートパイロット」という。)ことが好ましい。オートパイロットにより操縦すると、人員の削減や稼働の連続性の観点で優れる。飛行計画FPは、バッテリー付きコンテナ2の情報表示部23の情報を読み取り装置144を介して読み取ることで登録することもできる。 The maneuvering of the multicopter 1 may be performed manually by the operator using the transmitter 120, but a flight plan consisting of the autonomous flight program APP with the flight path and velocity of the multicopter 1, altitude parameters, and commands of defined operations It is preferable to register the FP and make the multicopter 1 fly autonomously (hereinafter, such autonomous flight is referred to as "autopilot"). When maneuvering with an autopilot, it is excellent in terms of personnel reduction and operation continuity. The flight plan FP can also be registered by reading the information of the information display unit 23 of the battery-equipped container 2 through the reading device 144.

 外部機器であるマルチコプター1は、バッテリー付きコンテナ2の情報表示部23の情報を読み取ることにより運搬物の情報を取得することができる。情報表示部23は、電子的、磁気的または光学的に読み取り可能な形態で運搬物の情報を記録するものである。運搬物に関する情報としては、運搬物の届け先情報を備えることが好ましい。届け先情報は、例えば目的地の経緯度などの座標値、目的地までの飛行計画FP、またはこれらに相当する情報に変換可能な情報など、マルチコプター1を目的地まで誘導することのできる情報であればよい。他に、運搬物の名称、数量、重量、追跡番号などの情報を備えてもよい。 The multicopter 1, which is an external device, can acquire information of the goods by reading the information of the information display unit 23 of the battery-equipped container 2. The information display unit 23 records the information of the transported item in an electronically, magnetically or optically readable form. It is preferable to provide delivery destination information of the conveyance as the information on the conveyance. The destination information is, for example, information capable of guiding the multicopter 1 to the destination, such as coordinate values such as the latitude and longitude of the destination, a flight plan FP to the destination, or information convertible to information equivalent thereto. I hope there is. In addition, information such as the name, quantity, weight and tracking number of the goods may be provided.

 バッテリー付きコンテナ2に接続される外部機器は、マルチコプター1の形態には限定されず、例えば、牽引車、フォークリフト、航空機、船舶などを用いることも可能であり、有人、無人のいずれでもよい。牽引車等を用いた場合、バッテリー付きコンテナ2は、車輪等を備えることが好ましい。 The external device connected to the battery-equipped container 2 is not limited to the form of the multicopter 1. For example, a tractor, a forklift, an aircraft, a ship, etc. may be used, and either a manned or unmanned may be used. When a tow truck or the like is used, the battery-equipped container 2 preferably includes a wheel or the like.

 以上、本発明の実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改変が可能である。例えば、本発明の無人航空機はマルチコプターには限られず、ヘリコプターやVTOL(Vertical Take-Off and Landing)機であってもよい。
 

 
As mentioned above, although embodiment of this invention was described, this invention is not limited at all to the said embodiment, A various change is possible within the range which does not deviate from the meaning of this invention. For example, the unmanned aerial vehicle of the present invention is not limited to a multicopter, and may be a helicopter or a Vertical Take-Off and Landing (VTOL) aircraft.


Claims (8)

 外部機器によって運搬されるコンテナであって、
 運搬物が収容されるケース体と、
 前記外部機器に電力を供給するバッテリーと、
 前記外部機器が電子的、磁気的、または光学的に読み取り可能な、前記運搬物の届け先情報と、を有することを特徴とするバッテリー付きコンテナ。
A container carried by an external device,
A case body in which the goods are accommodated;
A battery for supplying power to the external device;
A container with a battery, wherein the external device has electronic, magnetic, or optically readable destination information of the transported object.
 前記バッテリーは、前記コンテナが前記外部機器に装着されることにより、該外部機器に接続されることを特徴とする請求項1に記載のバッテリー付きコンテナ。 The battery-equipped container according to claim 1, wherein the battery is connected to the external device by attaching the container to the external device.  前記コンテナが前記外部機器に装着される際の、該外部機器と該コンテナとの位置のずれを補正するガイド機構を備えることを特徴とする請求項1に記載のバッテリー付きコンテナ。 The battery-equipped container according to claim 1, further comprising: a guide mechanism that corrects the positional deviation between the external device and the container when the container is attached to the external device.  前記コンテナの側面に、上から下に向かって次第に外側に張り出すように傾斜したテーパ部が設けられていることによって、前記外部機器と前記コンテナとの位置のずれを補正する前記ガイド機構を備えることを特徴とする請求項3に記載のバッテリー付きコンテナ。 The side surface of the container is provided with a tapered portion which is sloped so as to gradually project outward from the top to the bottom, thereby providing the guide mechanism for correcting the positional deviation between the external device and the container A container with a battery according to claim 3, characterized in that.  回転翼を有する無人航空機と、
 前記無人航空機によって運搬されるコンテナと、
 コンテナ積換え装置と、を備える配送システムであって、
 前記コンテナは、
  運搬物が収容されるケース体と、
  前記無人航空機に電力を供給するバッテリーと、を有し、
 前記コンテナ積換え装置は、前記無人航空機が運搬してきた一の前記コンテナを該無人航空機から受け取り、他の前記コンテナを前記無人航空機に装着することを特徴とする配送システム。
An unmanned aerial vehicle with rotors,
A container carried by the unmanned aerial vehicle;
A delivery system comprising: a container transshipment device;
The container is
A case body in which the goods are accommodated;
And a battery for supplying power to the unmanned aerial vehicle.
The delivery system according to claim 1, wherein the container transshipment device receives one container transported by the unmanned aerial vehicle from the unmanned aerial vehicle and mounts the other container on the unmanned aerial vehicle.
 回転翼を有する無人航空機と、
 前記無人航空機によって運搬されるコンテナと、を備える配送システムであって、
 前記コンテナは、
  運搬物が収容されるケース体と、
  前記無人航空機に電力を供給するバッテリーと、を有し、
 前記無人航空機は、前記コンテナのバッテリーが接続されていないときに、該無人航空機に電力を供給するバッテリーである内部バッテリーを有し、
 前記無人航空機は、運搬してきた一の前記コンテナをその届け先で切り離した後で、その近傍にある他の前記コンテナを自動的に装着することを特徴とする配送システム。
An unmanned aerial vehicle with rotors,
A delivery system comprising: a container carried by the unmanned aerial vehicle;
The container is
A case body in which the goods are accommodated;
And a battery for supplying power to the unmanned aerial vehicle.
The unmanned aerial vehicle has an internal battery which is a battery for supplying power to the unmanned aerial vehicle when the battery of the container is not connected,
The delivery system according to claim 1, wherein the unmanned aerial vehicle automatically mounts the other container in the vicinity after the unshipped vehicle separates the transported container at its destination.
 前記無人航空機は撮影手段を有しており、
 前記コンテナの外面には、外部から画像認識により識別可能な目印であるマーカーが設けられており、
 前記無人航空機は、前記撮影手段により前記マーカーを認識することで、該無人航空機と前記コンテナとの位置関係を特定可能であることを特徴とする請求項6に記載の配送システム。
The unmanned aerial vehicle has a photographing means,
The outer surface of the container is provided with a marker which is a mark that can be identified by image recognition from the outside,
The delivery system according to claim 6, wherein the unmanned aerial vehicle can specify the positional relationship between the unmanned aerial vehicle and the container by recognizing the marker by the photographing means.
 前記コンテナの上面には、上方に棒状に延出したポールが設けられており、
 前記無人航空機の機体には、上下方向に貫通された穴が形成されており、
 前記ポールが前記穴に挿通されることにより、前記無人航空機と前記コンテナとの位置のずれが補正されることを特徴とする請求項6に記載の配送システム。

 
The upper surface of the container is provided with a pole extending upward in a bar shape,
The airframe of the unmanned aerial vehicle is formed with vertically penetrating holes,
The delivery system according to claim 6, wherein the pole is inserted into the hole to correct the positional deviation between the unmanned aerial vehicle and the container.

PCT/JP2018/031856 2017-08-30 2018-08-29 Container with battery, and delivery system WO2019044866A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017165119 2017-08-30
JP2017-165119 2017-08-30

Publications (1)

Publication Number Publication Date
WO2019044866A1 true WO2019044866A1 (en) 2019-03-07

Family

ID=65525599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031856 WO2019044866A1 (en) 2017-08-30 2018-08-29 Container with battery, and delivery system

Country Status (1)

Country Link
WO (1) WO2019044866A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186110A (en) * 2019-05-16 2020-11-19 三菱ロジスネクスト株式会社 Transport system using unmanned aerial vehicle
WO2021101735A1 (en) * 2019-11-21 2021-05-27 Electric Power Systems, Inc. Container integrated battery assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019046A (en) * 2006-07-12 2008-01-31 Sankyu Inc Transportation vehicle and container control system
JP2014031118A (en) * 2012-08-03 2014-02-20 Tsubakimoto Chain Co Flying body and flying body system
US20160244187A1 (en) * 2015-02-25 2016-08-25 Cisco Technology, Inc. PRE-FLIGHT SELF TEST FOR UNMANNED AERIAL VEHICLES (UAVs)
JP2017058937A (en) * 2015-09-16 2017-03-23 株式会社デンソーウェーブ Air delivery system
JP2017105242A (en) * 2015-12-07 2017-06-15 高木 賀子 Transport system using unmanned flying body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019046A (en) * 2006-07-12 2008-01-31 Sankyu Inc Transportation vehicle and container control system
JP2014031118A (en) * 2012-08-03 2014-02-20 Tsubakimoto Chain Co Flying body and flying body system
US20160244187A1 (en) * 2015-02-25 2016-08-25 Cisco Technology, Inc. PRE-FLIGHT SELF TEST FOR UNMANNED AERIAL VEHICLES (UAVs)
JP2017058937A (en) * 2015-09-16 2017-03-23 株式会社デンソーウェーブ Air delivery system
JP2017105242A (en) * 2015-12-07 2017-06-15 高木 賀子 Transport system using unmanned flying body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186110A (en) * 2019-05-16 2020-11-19 三菱ロジスネクスト株式会社 Transport system using unmanned aerial vehicle
WO2021101735A1 (en) * 2019-11-21 2021-05-27 Electric Power Systems, Inc. Container integrated battery assembly

Similar Documents

Publication Publication Date Title
US12054260B2 (en) Unmanned vehicle cargo handling and carrying system
US12100061B2 (en) Dynamic UAV transport tasks for pickup and delivery of non-specifically assigned packages
CN110104139B (en) Unmanned ship carrying unmanned aerial vehicle offshore patrol equipment and use method thereof
US10099778B2 (en) Unmanned aerial vehicle
JP4222510B2 (en) Transport method by unmanned air vehicle
JP6538214B2 (en) Method of supplying energy to UAV, and UAV
CN113165551B (en) Power communication to regulate charging of unmanned aerial vehicle
EP3786061B1 (en) Unmanned aerial vehicle, aerial vehicle control system, and transport method
EP2799336A1 (en) Device and method for use with unmanned aerial vehicles
CN115280398B (en) Special georeference pad for landing UAV
JP2017036102A (en) Forklift work assisting system
CN107203863B (en) Intelligent unmanned aerial vehicle express delivery system
KR20190125130A (en) The drone docking station vehicle configured to automatically take off, landing and charging the drones in the vehicle
CN112638770B (en) Safe unmanned aerial vehicle
WO2019044866A1 (en) Container with battery, and delivery system
EP3797071A1 (en) Method for automatic drone package pickup
JP6760704B2 (en) Power supply system for unmanned aerial vehicles
JP6813251B2 (en) Transport system using unmanned aerial vehicles
CN118434634A (en) Package retrieval system with channels for engaging payload retrievers
JP6760705B2 (en) Power supply system for unmanned aerial vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP