WO2018235520A1 - タイヤ - Google Patents
タイヤ Download PDFInfo
- Publication number
- WO2018235520A1 WO2018235520A1 PCT/JP2018/020071 JP2018020071W WO2018235520A1 WO 2018235520 A1 WO2018235520 A1 WO 2018235520A1 JP 2018020071 W JP2018020071 W JP 2018020071W WO 2018235520 A1 WO2018235520 A1 WO 2018235520A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tire
- layer
- cord
- carcass
- core
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/26—Folded plies
- B60C9/263—Folded plies further characterised by an endless zigzag configuration in at least one belt ply, i.e. no cut edge being present
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
- B60C2009/2012—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers
- B60C2009/2019—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers comprising cords at an angle of 30 to 60 degrees to the circumferential direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
- B60C2009/2012—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers
- B60C2009/2022—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers comprising cords at an angle of 60 to 90 degrees to the circumferential direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/26—Folded plies
- B60C9/263—Folded plies further characterised by an endless zigzag configuration in at least one belt ply, i.e. no cut edge being present
- B60C2009/266—Folded plies further characterised by an endless zigzag configuration in at least one belt ply, i.e. no cut edge being present combined with non folded cut-belt plies
Definitions
- the present invention relates to a tire, and more particularly, to a crown portion, a helical cord layer in which reinforcing cords are spirally wound to form an upper layer and a lower layer, and an auxiliary belt layer disposed on the outer side in the tire radial direction. It relates to the improvement of the provided tire.
- an annular core belt formed by winding a reinforcing cord at an angle of substantially 0 degrees with respect to the tire circumferential direction on the outer circumferential side of the carcass layer in the tread portion.
- a pneumatic radial tire is disclosed in which a belt structure comprising a layer and a cover belt layer formed by spirally winding reinforcing cords around the layer is disposed, and the outer peripheral side of the belt structure is optionally provided. It is also disclosed that a belt protective layer is provided.
- Patent Document 1 it is known that a reinforcing cord is spirally wound on the outer peripheral side of a carcass layer to arrange a spiral cord layer consisting of substantially two layers of upper and lower layers. ing.
- the auxiliary belt layer is disposed on the outer side in the tire radial direction of the helical cord layer, the angle of the reinforcing cords of the helical cord layer changes due to repeated input during traveling, and the tire of the helical cord layer and the auxiliary belt layer There were cases where separation occurred with the widthwise end.
- an object of the present invention is to provide a tire having a spiral cord layer formed of reinforcing cords in a tire crown portion, in the case where the auxiliary belt layer is disposed on the outer side in the tire radial direction, between the spiral cord layer and the auxiliary belt layer.
- the present inventor solves the above problems by defining the belt cord angle in a predetermined manner for the auxiliary belt layer disposed on the outer side in the tire radial direction of the helical cord layer. Having found what can be done, the present invention has been completed.
- a carcass extending in a toroidal shape between a pair of bead portions, and a crown portion of the carcass are disposed radially outward of the carcass, and a reinforcing cord is spirally wound to form an upper layer and a lower layer.
- the auxiliary belt layer is disposed on the outer side in the tire radial direction of the helical cord layer, and the angle of the belt cord of the auxiliary belt layer to the circumferential direction of the tire is in the range of 30 ° to 90 °. It is a thing.
- the tire according to the present invention preferably comprises a core cord layer between the upper layer and the lower layer of the spiral cord layer.
- an angle of at least one of the reinforcing cord of the spiral cord layer and the core cord of the core cord layer is less than 30 ° with respect to the tire circumferential direction.
- an angle of the belt cord of the auxiliary belt layer to the circumferential direction of the tire is in a range of 30 ° to less than 45 °, and a reinforcing cord of the helical cord layer and the core cord It is preferable that the angle with respect to the tire circumferential direction of at least one of the core cords of the layer is less than 30 °.
- BRIEF DESCRIPTION OF THE DRAWINGS It is tire width direction sectional drawing which shows one structural example of the tire for trucks and buses of this invention. It is a tire width direction sectional view showing an example of composition of a tire for passenger cars of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS It is a tire width direction sectional view which shows one structural example of the tire for construction vehicles of this invention. It is a graph which shows the relationship between the angle with respect to the tire peripheral direction of the belt cord of an auxiliary belt layer, and the distortion of the cord direction in the tire width direction end of an auxiliary belt layer.
- FIG. 1 is a cross-sectional view in the tire width direction showing a truck / bus tire as an example of a tire according to the present invention.
- the tire 10 shown in the figure includes a tread portion 11 forming a ground contact portion, a pair of sidewall portions 12 continuously extending inward in the radial direction of the tire continuously on both sides of the tread portion 11, and inner circumferences of the sidewall portions 12. And a continuous bead portion 13 on the side.
- the tread portion 11, the sidewall portion 12 and the bead portion 13 are reinforced by a carcass 14 made of a carcass ply which extends in a toroidal shape from one bead portion 13 to the other bead portion 13.
- bead cores 15 are embedded in the pair of bead portions 13, respectively, and the carcass 14 is folded around the bead cores 15 from the inside to the outside of the tire and engaged. Further, a bead filler 16 is disposed on the outer side in the tire radial direction of the bead core 15.
- the tire according to the present invention is further provided with a spiral cord layer 1 having a structure in which an upper layer 1A and a lower layer 1B are formed by spirally winding a reinforcing cord on the radially outer side of the crown portion tire of the carcass 14 There is. Further, in the example shown in FIG. 1, the core material cord layer 2 is disposed between the upper layer 1A and the lower layer 1B of the helical cord layer 1.
- the auxiliary belt layer 17 is disposed on the outer side in the tire radial direction of the spiral cord layer 1, and the angle of the belt cord of the auxiliary belt layer 17 with respect to the tire circumferential direction is in the range of 30 ° to 90 °. is important. As a result, it is possible to suppress the change in the angle of the belt cord of the auxiliary belt layer 17 during traveling, and to reduce the distortion generated at the end of the auxiliary belt layer 17 in the tire width direction. It is possible to suppress the occurrence of separation with the belt layer.
- FIG. 4 is a graph showing the relationship between the angle of the belt cord of the auxiliary belt layer 17 with respect to the tire circumferential direction and the strain in the cord direction at the end of the auxiliary belt layer 17 in the tire width direction.
- the solid line shows the case where the inclination direction of the belt cord of the auxiliary belt layer 17 with respect to the tire circumferential direction is the same direction as the upper layer 1A of the helical cord layer 1, and the dotted line shows the inclination of the belt cord of the auxiliary belt layer 17 with respect to the tire circumferential direction.
- the case where the direction is opposite to the upper layer 1A of the helical cord layer 1 is shown.
- the distortion in the cord direction at the end of the auxiliary belt layer 17 in the tire width direction is such that the angle of the belt cord of the auxiliary belt 17 to the tire circumferential direction is in the range of about 0 ° to 30 °, ie, the belt of the auxiliary belt 17
- the direction of the cord is significantly high when it is close to the tire circumferential direction.
- the auxiliary belt by setting the angle of the belt cord of the auxiliary belt layer 17 with respect to the tire circumferential direction to be in the range of 30 ° to 90 °, even if stress is applied in the tire circumferential direction during traveling, the auxiliary belt Since the angle of the belt cord of the layer 17 changes with the change of the angle of the reinforcing cord of the spiral cord layer 1, the rubber in the width direction end portion of the auxiliary belt layer 17 is less likely to be strained. It is possible to effectively suppress the occurrence.
- the angle of the belt cord of the auxiliary belt layer 17 with respect to the tire circumferential direction is in the range of 30 ° to 90 °, the effect of suppressing separation at the widthwise end of the auxiliary belt 17 is obtained.
- the angle of at least one of the reinforcing cords of the helical cord layer 1 and the core cords of the core cord layer 2 with respect to the tire circumferential direction is less than 30 °, particularly 12 ° to 30 °. It is preferable to make it less than. As a result, since tension can be applied to any one of these cords close to the tire circumferential direction, the tension applied to the auxiliary belt layer 17 can be reduced, and the separation suppressing effect can be further improved.
- the angle of the belt cord of the auxiliary belt layer 17 with respect to the tire circumferential direction is in the range of 30 ° to less than 45 °, as described above, the reinforcing cord and core cord layer of the spiral cord layer 1 It is preferable to set the angle of at least one of the core cords of 2 with respect to the tire circumferential direction to less than 30 °, because the separation suppression effect can be obtained better.
- the auxiliary belt layer 17 provided on the outer side in the tire radial direction of the helical cord layer 1, and thereby the intended effect of the present invention
- the present invention when two or more layers corresponding to the auxiliary belt layer are provided, only the auxiliary belt layer disposed adjacent to the outer side in the tire radial direction of the spiral cord layer has the above-described belt cord angle condition. If it is satisfactory, the intended effect of the present invention can be obtained.
- the spiral cord layer 1 is formed by spirally winding a rubber-cord composite formed by pulling one or a plurality of reinforcing cords in parallel, for example, 2 to 100, and coating with rubber. It is formed by turning into a flat band or spirally winding around the core cord layer 2.
- the number of reinforcement cords in the spiral cord layer 1 is preferably, for example, in the range of 5 to 60/50 mm.
- the angle of the reinforcing cords of the helical cord layer 1 is preferably in the range of 12 ° to 90 ° with respect to the tire circumferential direction. Since the upper layer 1A and the lower layer 1B are not separated at the end in the tire width direction, the spiral cord layer 1 exhibits a tension when the tire is loaded with internal pressure, and has a characteristic that it is difficult to grow in diameter. If the cord layer 1 is provided, the crown tends to be rounded, but by making the angle of the reinforcing cord of the spiral cord layer 1 12 ° or more, the diameter growth under internal pressure load can be made within the allowable range It is possible to suppress the occurrence of wear at the shoulder portion.
- the angle of the reinforcing cord of the helical cord layer 1 a value measured on the tire equatorial plane can be used. This angle is preferably in the range of 12 ° to 45 °. As described above, when the angle of the core cord of the core cord layer 2 is not less than 30 °, the angle of the reinforcement cord of the spiral cord layer 1 is in the range of less than 30 ° with respect to the tire circumferential direction. It is preferable to
- the spiral cord layer 1 includes the core cord layer 2 between the upper layer 1A and the lower layer 1B, that is, the reinforcing cord is spirally wound on the core cord layer 2 to form a spiral cord.
- the layer 1 is formed, the present invention is not limited thereto, and the core cord layer 2 may not be provided.
- the core cord layer 2 is provided, the rigidity in the tire circumferential direction is enhanced and the tag effect is improved.
- the tension in the tire circumferential direction of the reinforcing cord at the tire width direction end of the helical cord layer 1 is easily increased. Become.
- the core cord layer 2 may be provided as a single layer, or may be provided by laminating a plurality of layers, for example, 2 to 10 layers.
- the core cord layer 2 is manufactured by arranging a large number of core cords in parallel, arranging unvulcanized rubber on the upper and lower sides, and rubber-coating the core cord.
- the number of core cords in the core cord layer 2 is preferably in the range of 5 to 60/50 mm, for example.
- the angle of the core cord of the core cord layer 2 with respect to the tire circumferential direction can be in the range of 40 ° to 90 °.
- the tension of the core cord is reduced, and the surplus until the core cord breaks is increased.
- the core material cord is less likely to be broken even if an obstacle is received.
- the inclination angle of the core cord of the core cord layer 2 is more preferably 50 ° to 90 °.
- the angle of the core cord of the core cord layer 2 with respect to the tire circumferential direction becomes close to the tire width direction as described above, the tension of the reinforcing cord at the tire width direction end of the spiral cord layer 1 is increased.
- the application of the present invention is useful because the problem of When a plurality of core material code layers 2 are provided, the core material code layers 2 of a plurality of layers may constitute an intersecting belt layer.
- the angle of the reinforcing cords of the spiral cord layer 1 is not less than 30 °
- the angle of the core cords of the core cord layer 2 is in the range of less than 30 ° with respect to the tire circumferential direction. It is preferable to
- the material of the reinforcing cord of the helical cord layer 1 and the material of the core cord of the core cord layer 2 are not particularly limited, and various metal cords and organic fiber cords of general purpose can be used appropriately.
- the metal cord a steel filament or a steel cord in which a plurality of steel filaments are twisted can be used.
- various designs can be made for the twist structure of the cord, and various cross-sectional structures, twist pitches, twist directions, and distances between adjacent filaments can be used.
- various twist structures such as single twist, layer twist, double twist, etc. can be adopted, and a cord having a flat cross-sectional shape can also be used.
- the steel filament which comprises a steel cord has iron as a main component, and may contain various trace components, such as carbon, manganese, silicon, phosphorus, sulfur, copper, chromium.
- the surface of the steel filament may be plated with brass in order to improve adhesion to rubber.
- aramid fibers aromatic polyamide fibers
- polyketone (PK) fibers polyparaphenylene benzobisoxazole (PBO) fibers
- polyarylate fibers and the like can be used.
- carbon fibers such as polyacrylonitrile (PAN) carbon fiber, pitch carbon fiber, rayon carbon fiber (carbon fiber), glass fiber (glass fiber), rock fiber such as basalt fiber and andesite fiber (rock wool), etc.
- PAN polyacrylonitrile
- PAN polyacrylonitrile
- pitch carbon fiber rayon carbon fiber (carbon fiber), glass fiber (glass fiber), rock fiber such as basalt fiber and andesite fiber (rock wool), etc.
- These reinforcing cords are preferably treated with an adhesive to improve the adhesion to rubber.
- This adhesive treatment can be performed according to a conventional method using a general-purpose adhesive such as an RFL adhesive.
- a hybrid code consisting of any two or more of the above may be used.
- the rubber composition used for the coating rubber of the helical cord layer 1 and the core material cord layer 2 known ones can be used, and it is not particularly limited.
- a rubber component of a rubber composition used for coating rubber other than natural rubber; vinyl aromatic hydrocarbon / conjugated diene copolymer, polyisoprene rubber, butadiene rubber, butyl rubber, halogenated butyl rubber, ethylene-propylene rubber All known rubber components such as synthetic rubber can be used.
- the rubber component may be used alone or in combination of two or more. From the viewpoint of adhesion characteristics with the metal cord and fracture characteristics of the rubber composition, the rubber component is made of at least one of natural rubber and polyisoprene rubber, or contains 50% by mass or more of natural rubber and the rest is synthetic rubber Is preferred.
- the rubber composition used for the coating rubber includes fillers such as carbon black and silica, softeners such as aromatic oil, and methoxymethylated melamines such as hexamethylenetetramine, pentamethoxymethylmelamine and hexamethylenemethylmelamine.
- Compounding agents usually used in the rubber industry such as methylene donors, vulcanization accelerators, vulcanization accelerators, anti-aging agents, etc. can be suitably compounded in the usual compounding amounts.
- the method of preparing the rubber composition used as a coating rubber in the present invention is not particularly limited, and according to a conventional method, for example, using a Banbury mixer or a roll, sulfur, organic acid cobalt salt and various combinations in rubber components. An agent etc. may be kneaded and prepared.
- the auxiliary belt layer 17 can be an inclined belt in which the belt cords form a predetermined angle with the circumferential direction of the tire, and a large number of belt cords are aligned and made of rubber. It is formed by coating.
- the reinforcing cords of the inclined belt layer for example, metal cords, in particular steel cords, are most commonly used, but organic fiber cords may be used.
- the steel cord may be made of a steel filament mainly composed of iron and containing various trace inclusions such as carbon, manganese, silicon, phosphorus, sulfur, copper and chromium.
- a steel monofilament cord may be used other than a cord in which a plurality of filaments are twisted together.
- various designs are possible for the twist structure of a steel cord, and various cross-sections, a twist pitch, a twist direction, and the distance between adjacent steel cords can also be used.
- a cord obtained by twisting filaments of different materials may be employed, and the cross-sectional structure is not particularly limited, and various twist structures such as single twist, layer twist, and double twist can be adopted.
- the width of the auxiliary belt layer 17 is preferably 40% to 115% of the tread width, and more preferably 50% to 70%.
- a belt under cushion rubber 18 is provided on the inner side in the tire radial direction of the end portion of the spiral cord layer 1. Thereby, distortion and temperature of the edge part of the helical cord layer 1 can be reduced, and tire durability can be improved.
- the carcass 14 can adopt various configurations including the conventional configuration, and may be either a radial configuration or a bias configuration.
- the carcass 14 it is preferable to use one or two carcass plies made of a steel cord layer.
- the carcass maximum width position in the tire radial direction may be closer to the bead portion 13 side or may be closer to the tread portion 11 side.
- the maximum width position of the carcass 14 can be provided on the outer side in the tire radial direction from the bead base portion in the range of 50% to 90% relative to the height of the tire.
- the carcass 14 generally has a structure that extends uninterruptedly between the pair of bead cores 15 as shown in the drawing, and is preferably formed by using a pair of carcass pieces that extend from the bead core 15 and break near the tread portion 11. You can also.
- the folded portion of the carcass 14 can adopt various structures.
- the folded end of the carcass 14 can be positioned inward of the upper end of the bead filler 16 in the tire radial direction, and the carcass folded end extends outward of the upper end of the bead filler 16 or the tire maximum width position. In this case, it may extend to the tire width direction inner side than the tire width direction end of the spiral cord layer 1.
- the positions in the tire radial direction of the bent end of the carcass 14 can be made different.
- a structure in which a plurality of bead core members sandwich the carcass 14 may be employed without the folded portion of the carcass 14 or a structure in which the bead core 15 is wound may be employed.
- the number of the carcass 14 to be driven is generally in the range of 5 to 60/50 mm, it is not limited thereto.
- a circumferential cord layer (not shown) may be provided on the outer side in the tire radial direction of the helical cord layer 1 and the auxiliary belt layer 17.
- the tire maximum width position can be provided in the range of 50% to 90% relative to the height of the tire on the outer side in the tire radial direction from the bead base portion.
- a smooth curve which is convex in the tire width direction is formed without forming a recess in contact with a rim flange.
- the tread pattern may be a rib-like land-based pattern, a block pattern, an asymmetrical pattern, or designation of a rotational direction.
- the rib-like land portion main pattern is a pattern mainly having a rib-like land portion which is divided in the tire width direction by one or more circumferential grooves or circumferential grooves and a tread end.
- the rib-like land portion means a land portion extending in the circumferential direction of the tire without having a transverse groove crossing in the tire width direction, but the rib-like land portion has a lateral groove terminating in a sipe or a rib-like land portion May be Since the radial tire has a high contact pressure particularly when using a high internal pressure, it is considered that the contactability on a wet road surface is improved by increasing the circumferential shear rigidity.
- a tread pattern consisting of only rib-like lands in an area of 80% of the tread width centered on the equatorial plane, that is, a pattern having no lateral groove it can.
- Such a pattern is particularly responsible for the drainage performance in this area, particularly for the wet performance.
- the block pattern is a pattern having a block land portion divided by a circumferential groove and a width direction groove, and the tire of the block pattern is excellent in basic ice performance and on-snow performance.
- the asymmetric pattern is a pattern in which the left and right tread patterns are asymmetric with respect to the equatorial plane.
- a negative ratio may be provided between the tire half in the vehicle mounting direction inside and the vehicle mounting direction outside the equatorial plane.
- the number of circumferential grooves may be different between the tire half portions on the inner side in the mounting direction and the outer side in the vehicle mounting direction.
- gum conventionally used can be used.
- the tread rubber may be formed of a plurality of different rubber layers in the tire radial direction, and may have, for example, a so-called cap-base structure.
- the plurality of rubber layers those having different tangent loss, modulus, hardness, glass transition temperature, material and the like can be used.
- the ratio of the thickness in the tire radial direction of the plurality of rubber layers may be changed in the tire width direction, and only the circumferential groove bottom or the like may be made a rubber layer different from its periphery.
- the tread rubber may be formed of a plurality of different rubber layers in the tire width direction, and may have a so-called split tread structure.
- the plurality of rubber layers described above those having different tangent loss, modulus, hardness, glass transition temperature, material and the like can be used.
- the ratio of the length in the tire width direction of the plurality of rubber layers may change in the tire radial direction, and only in the vicinity of the circumferential groove, only in the vicinity of the tread end, only in the shoulder land, only in the center land Only a limited part of the area may be a rubber layer different from the surrounding area.
- the corner part 11a is formed in the edge part of the tire width direction in the tread part.
- the tire shown in FIG. 1 is a tire for trucks and buses, but the present invention is not limited to this, and may be suitably applied to tires for passenger cars, construction vehicles, motorcycles, aircrafts, and agriculture etc. it can. Moreover, as a tire, it is not limited to a pneumatic tire, It is applicable also to a solid tire and a non-pneumatic tire.
- FIG. 2 is a cross-sectional view in the tire width direction showing one structural example of the passenger car tire according to the present invention.
- the passenger car tire 20 shown in the figure includes a tread portion 21 forming a ground contact portion, a pair of sidewall portions 22 continuously extending inward in the tire radial direction continuously on both sides of the tread portion 21, and each sidewall portion 22. And a bead portion 23 continuous to the inner circumferential side.
- the tread portion 21, the sidewall portion 22 and the bead portion 23 are reinforced by a carcass 24 formed of a carcass ply extending from the one bead portion 23 to the other bead portion 23 in a toroidal shape.
- the bead cores 25 are embedded in the pair of bead portions 23, respectively, and the carcass 24 is folded around the bead cores 25 from the inside of the tire to the outside and engaged. Further, a bead filler 26 is disposed on the outer side in the tire radial direction of the bead core 25.
- a spiral cord layer 1 having a structure in which a reinforcing cord is spirally wound to form an upper layer 1A and a lower layer 1B on the outer side in the crown portion tire radial direction of the carcass 24;
- the auxiliary belt layer 27 is sequentially disposed.
- the angle of the belt cord of the auxiliary belt layer 27 with respect to the tire circumferential direction satisfies the above-mentioned conditions, whereby the intended effect of the present invention can be obtained.
- the cap layer 27 a disposed over the entire width or more of the helical cord layer 1 or a region covering both ends of the helical cord layer 1
- positioned is mentioned.
- the cap layer 27a and the layer layer 27b are usually formed by spirally winding a wide-width strip formed by aligning a large number of cords and covering with a rubber.
- the cap layer 27a and the layer layer 27b may be provided alone or in combination. Alternatively, a combination of two or more cap layers or two or more layer layers may be used.
- a reinforcing cord for the cap layer 27a and the layer layer 27b can be adopted as a reinforcing cord for the cap layer 27a and the layer layer 27b, and representative examples thereof include rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, glass fiber , Carbon fiber, steel and the like. From the viewpoint of weight reduction, organic fiber cords are particularly preferred.
- the reinforcing cord may be a monofilament cord, a cord in which a plurality of filaments are twisted, or a hybrid cord in which filaments of different materials are twisted.
- a wavy cord may be used as the reinforcing cord in order to increase the breaking strength.
- a high elongation cord having an elongation at break of 4.5 to 5.5% may be used.
- the number of implantations of the cap layer 27a and the layer layer 27b is generally in the range of 20 to 60/50 mm, but is not limited to this range.
- distribution of rigidity, material, number of layers, driving density, etc. can be provided in the tire width direction, for example, the number of layers can be increased only at the end portion in the tire width direction. Only the number of layers can be increased.
- the cap layer 27a and the layer layer 27b are particularly advantageous from the viewpoint of manufacture to be configured as a spiral layer.
- a plurality of core wires arranged in parallel with each other in a plane may be formed by a strip-like cord bundled by a wrapping wire while maintaining the parallel arrangement.
- the carcass 24 can adopt various configurations including the conventional configuration, and may have either a radial configuration or a bias configuration.
- the carcass 24 it is preferable to use one or two carcass plies made of an organic fiber cord layer.
- the maximum width position of the carcass 24 in the tire radial direction may be, for example, closer to the bead portion 23 side, or may be closer to the tread portion 21 side.
- the maximum width position of the carcass 24 can be provided in the range of 50% to 90% relative to the height of the tire on the outer side in the tire radial direction from the bead base portion.
- the carcass 24 generally has a structure extending uninterruptedly between the pair of bead cores 25 as shown in the drawing, and it is preferable to use a pair of carcass ply pieces which extend from the bead core 25 and are interrupted near the tread portion 21. It is also possible (not shown).
- the folded portion of the carcass 24 can adopt various structures.
- the folded end of the carcass 24 can be positioned inward of the upper end of the bead filler 26 in the tire radial direction, and the folded end of the carcass 24 is radially outward of the upper end of the bead filler 26 or the tire maximum width position. In this case, it may be extended further inward in the tire width direction than the tire width direction end of the spiral cord layer 1.
- the carcass ply has a plurality of layers, the positions in the tire radial direction of the folded end of the carcass 24 can be made different.
- a structure in which a plurality of bead core members sandwich the carcass 24 may be employed without the folded portion of the carcass 24, or a structure in which the bead core 25 is wound may be employed.
- the number of implanted carcasses 24 is generally in the range of 5 to 60/50 mm, but is not limited thereto.
- the point P on the tread surface in the tire equatorial plane CL in the tire width direction cross section A straight line parallel to the tire width direction is m1, a straight line parallel to the tire width direction passing the ground contact end E is m2, a distance in the tire radial direction between the straight line m1 and the straight line m2 is a falling height LCR, and the tread width of the tire
- the ratio LCR / TW is 0.045 or less.
- the crown portion of the tire is flattened (flattened), the ground contact area is increased, and the input (pressure) from the road surface is alleviated, and the deflection in the tire radial direction Rate can be reduced and tire durability and wear resistance can be improved.
- the tread end be smooth.
- the tread pattern may be a full lug pattern, a rib-like land-based pattern, a block pattern, an asymmetrical pattern, or designation of a rotational direction.
- the full lug pattern may be a pattern having a width direction groove extending in the tire width direction from the vicinity of the equatorial plane to the ground contact end, and in this case, the circumferential direction groove may not be included.
- Such a pattern mainly composed of lateral grooves can exhibit the performance on snow particularly effectively.
- the rib-like land portion main pattern is a pattern mainly having a rib-like land portion which is divided in the tire width direction by one or more circumferential grooves or circumferential grooves and a tread end.
- the rib-like land portion means a land portion extending in the circumferential direction of the tire without having a transverse groove crossing in the tire width direction, but the rib-like land portion has a lateral groove terminating in a sipe or a rib-like land portion May be Since the radial tire has a high contact pressure particularly when using a high internal pressure, it is considered that the contactability on a wet road surface is improved by increasing the circumferential shear rigidity.
- a tread pattern consisting of only rib-like lands in an area of 80% of the tread width centered on the equatorial plane, that is, a pattern having no lateral groove it can.
- Such a pattern is particularly responsible for the drainage performance in this area, particularly for the wet performance.
- the block pattern is a pattern having a block land portion divided by a circumferential groove and a width direction groove, and the tire of the block pattern is excellent in basic ice performance and on-snow performance.
- the asymmetric pattern is a pattern in which the left and right tread patterns are asymmetric with respect to the equatorial plane.
- a negative ratio may be provided between the tire half in the vehicle mounting direction inside and the vehicle mounting direction outside the equatorial plane.
- the number of circumferential grooves may be different between the tire half portions on the inner side in the mounting direction and the outer side in the vehicle mounting direction.
- the tread rubber may be formed of a plurality of different rubber layers in the tire radial direction, and may have, for example, a so-called cap-base structure.
- the plurality of rubber layers those having different tangent loss, modulus, hardness, glass transition temperature, material and the like can be used.
- the ratio of the thickness in the tire radial direction of the plurality of rubber layers may be changed in the tire width direction, and only the circumferential groove bottom or the like may be made a rubber layer different from its periphery.
- the tread rubber may be formed of a plurality of different rubber layers in the tire width direction, and may have a so-called split tread structure.
- the plurality of rubber layers described above those having different tangent loss, modulus, hardness, glass transition temperature, material and the like can be used.
- the ratio of the length in the tire width direction of the plurality of rubber layers may change in the tire radial direction, and only in the vicinity of the circumferential groove, only in the vicinity of the tread end, only in the shoulder land, only in the center land Only a limited part of the area may be a rubber layer different from the surrounding area.
- the tire maximum width position can be provided in the range of 50% to 90% relative to the height of the tire on the outer side in the tire radial direction from the bead base portion.
- a structure having a rim guard may be used.
- the bead core 25 can employ
- the bead portion 23 may have a structure in which the carcass 24 is sandwiched by a plurality of bead core members in addition to a structure in which the carcass 24 is wound around the bead core 25.
- the bead filler 26 is disposed on the tire radial direction outer side of the bead core 25.
- the bead filler 26 may not be provided.
- the passenger car tire of the present invention may have an inner liner generally disposed on the innermost layer of the tire.
- the inner liner can be formed by a film layer mainly composed of a resin, in addition to a rubber layer mainly composed of butyl rubber.
- a porous member may be disposed on the inner surface of the tire to reduce cavity resonance noise, or electrostatic flocking may be performed.
- the inner surface of the tire may be provided with a sealant member for preventing air leakage at the time of puncture.
- the use of the passenger tire tire 20 is not particularly limited. It can be applied to tires for summer, all season, and winter. Moreover, it is also possible to use for a passenger car tire having a special structure such as a side reinforced run flat tire having a crescent-shaped reinforcing rubber layer in the sidewall portion 22 or a stud tire.
- FIG. 3 is a cross-sectional view in the tire width direction showing one structural example of the construction vehicle tire of the present invention.
- a tread portion 31 forming a ground contact portion, a pair of sidewall portions 32 continuously extending inward in the tire radial direction continuously on both sides of the tread portion 31, and respective sidewall portions And 32.
- a bead portion 33 continuous to the inner peripheral side of 32 is provided.
- the tread portion 31, the sidewall portion 32 and the bead portion 33 are reinforced by a carcass 34 formed of a carcass ply which extends in a toroid shape from one bead portion 33 to the other bead portion 33.
- the bead cores 35 are embedded in the pair of bead portions 33, and the carcass 34 is folded around the bead cores 35 from the inside to the outside of the tire and engaged. Furthermore, a bead filler 36 is disposed on the outer side in the tire radial direction of the bead core 35.
- a spiral cord layer 1 having a structure in which a reinforcement cord is spirally wound on the outer side in the tire radial direction of the crown region of the carcass 34 to form an upper layer 1A and a lower layer 1B.
- four belt layers 37a to 37d are sequentially disposed.
- the four belt layers 37 correspond to the auxiliary belt layer in the present invention.
- the tire for construction vehicles comprises four or six belt layers and comprises six belt layers
- the first belt layer and the second belt layer form the inner crossing belt layer group
- the layer and the fourth belt layer form an intermediate crossing belt layer group
- the fifth belt layer and the sixth belt layer form an outer crossing belt layer group.
- the inner crossing belt layer group is replaced with the spiral cord layer 1
- the auxiliary belt layers 37a to 37d are arranged as the middle crossing belt layer group and the outer crossing belt layer group.
- the first belt layer and the second belt layer are replaced with the spiral cord layer 1
- the third belt layer and the fourth belt layer are auxiliary belt layers 37a, It should be 37b.
- the width of the spiral cord layer 1 is 25% to 70% of the width of the tread surface in the tread width direction
- the width of the auxiliary belt layers 37a and 37b is the width of the tread surface
- the width of the auxiliary belt layers 37c and 37d can be 60% to 115% of the width of the tread surface.
- the angle of the belt cord of the auxiliary belt layer 37 with respect to the tire circumferential direction satisfies the above-mentioned conditions, whereby the intended effect of the present invention can be obtained.
- the auxiliary belt layer 37 may be formed of a rubberized layer of reinforcing cords, and may be an inclined belt forming a predetermined angle with the circumferential direction of the tire.
- the reinforcing cords of the inclined belt layer for example, metal cords, in particular steel cords, are most commonly used, but organic fiber cords may be used.
- the steel cord may be made of a steel filament mainly composed of iron and containing various trace inclusions such as carbon, manganese, silicon, phosphorus, sulfur, copper and chromium.
- a steel monofilament cord may be used other than a cord in which a plurality of filaments are twisted together.
- various designs are possible for the twist structure of a steel cord, and various cross-sections, a twist pitch, a twist direction, and the distance between adjacent steel cords can also be used.
- a cord obtained by twisting filaments of different materials may be employed, and the cross-sectional structure is not particularly limited, and various twist structures such as single twist, layer twist, and double twist can be adopted.
- the inclination angle of the reinforcing cords of the other belt layers is preferably 10 ° or more with respect to the tire circumferential direction.
- the width of the largest-width inclined belt layer having the largest width among the auxiliary belt layers 37 is preferably 90% to 115% of the tread width, and particularly preferably 100% to 105%.
- a belt under cushion rubber 39 is provided on the inner side in the tire radial direction of the end portion of the auxiliary belt layer 37.
- the carcass 34 can adopt various configurations including the conventional structure, and may be either a radial structure or a bias structure.
- the carcass 34 it is preferable to use one or two carcass plies made of a steel cord layer.
- the carcass maximum width position in the tire radial direction may be closer to the bead portion 33 side or may be closer to the tread portion 31 side.
- the maximum width position of the carcass 34 can be provided in the range of 50% to 90% relative to the height of the tire on the outer side in the tire radial direction from the bead base portion.
- the carcass 34 generally has a structure extending uninterruptedly between the pair of bead cores 35 as shown in the figure, and is preferably formed by using a pair of carcass pieces which extend from the bead core 35 and break near the tread portion 31. It can also be done.
- the folded portion of the carcass 34 can adopt various structures.
- the folded end of the carcass 34 can be positioned inward of the upper end of the bead filler 36 in the tire radial direction, and the folded end of the carcass 34 is radially outward of the upper end of the bead filler 36 or the tire maximum width position. In this case, it may be extended further inward in the tire width direction than the tire width direction end of the helical cord layer 1.
- the positions in the tire radial direction of the folded end of the carcass 34 can be made different.
- a structure in which a plurality of bead core members sandwich the carcass 34 may be employed without the folded portion of the carcass 34, or a structure in which the bead core 35 is wound may be employed.
- the number of the carcass 34 to be driven is generally in the range of 10 to 60/50 mm, it is not limited thereto.
- the tire maximum width position can be provided in the range of 50% to 90% relative to the height of the tire on the outer side in the tire radial direction from the bead base portion.
- the bead core 35 can employ
- the carcass 34 may be sandwiched by a plurality of bead core members.
- the bead filler 36 is disposed on the outer side in the tire radial direction of the bead core 35.
- the bead filler 36 is composed of a plurality of rubber members divided in the tire radial direction Good.
- the tread pattern may be a lug pattern, a block pattern, an asymmetrical pattern, or designation of a rotational direction.
- the lug pattern may be a pattern having a width direction groove extending in the tire width direction from the vicinity of the equatorial plane to the ground contact end, and in this case, the circumferential direction groove may not be included.
- the block pattern is a pattern having a block land portion divided by a circumferential groove and a width direction groove.
- the block is preferably enlarged from the viewpoint of durability.
- the width of the block measured in the tire width direction is preferably 25% or more and 50% or less of the tread width.
- the asymmetric pattern is a pattern in which the left and right tread patterns are asymmetric with respect to the equatorial plane.
- a negative ratio may be provided between the tire half in the vehicle mounting direction inside and the vehicle mounting direction outside the equatorial plane.
- the number of circumferential grooves may be different between the tire half portions on the inner side in the mounting direction and the outer side in the vehicle mounting direction.
- gum conventionally used can be used.
- the tread rubber may be formed of a plurality of different rubber layers in the tire radial direction, and may have, for example, a so-called cap-base structure.
- the plurality of rubber layers those having different tangent loss, modulus, hardness, glass transition temperature, material and the like can be used.
- the ratio of the thickness in the tire radial direction of the plurality of rubber layers may be changed in the tire width direction, and only the circumferential groove bottom or the like may be made a rubber layer different from its periphery.
- the tread rubber may be formed of a plurality of different rubber layers in the tire width direction, and may have a so-called split tread structure.
- the plurality of rubber layers described above those having different tangent loss, modulus, hardness, glass transition temperature, material and the like can be used.
- the ratio of the length in the tire width direction of the plurality of rubber layers may change in the tire radial direction, and only in the vicinity of the circumferential groove, only in the vicinity of the tread end, only in the shoulder land, only in the center land Only a limited part of the area may be a rubber layer different from the surrounding area.
- the rubber gauge of the tread portion 31 is preferably thick from the viewpoint of durability, and is preferably 1.5% to 4% of the outer diameter of the tire, and more preferably 2% to 3%. . Further, the ratio (negative ratio) of the groove area to the ground contact surface of the tread portion 31 is preferably 20% or less. This is because the construction vehicle tire 30 is mainly used in a low-speed and arid area, and there is no need to increase the negative rate for drainage. As a tire size of a construction vehicle tire, for example, a rim diameter of 20 inches or more, in particular, a large one is a rim diameter of 40 inches or more.
- the reinforcing cord was spirally wound around one core cord layer, and a reinforcing member having a core cord layer between the upper layer and the lower layer of the spiral cord layer was produced.
- the reinforcing member is disposed on the radially outer side of the crown portion of the carcass, and the auxiliary belt layer is disposed on the radially outer side of the tire, and the track size as shown in FIG. A tire for bus was produced.
- a steel cord of a 1 + 6 structure using a steel filament with a wire diameter of 1.13 mm was used as a core cord of the core cord layer and a belt cord of the auxiliary belt layer.
- the inclination direction of the steel cords of the auxiliary belt layer was the same as the reinforcing cords of the upper layer of the adjacent helical cord layers, and the inclination direction of the steel cords of the core cord layer was reverse. Further, the number of core cord layers was 18.06 / 50 mm, and the number of auxiliary belt layers was 24.21 / 50 mm.
- the helical cord layer in the case where the auxiliary belt layer is arranged on the outer side in the tire radial direction. It has been confirmed that the occurrence of separation between the belt and the auxiliary belt layer can be suppressed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
タイヤクラウン部に補強コードからなる螺旋状コード層を備えるタイヤであって、そのタイヤ半径方向外側に補助ベルト層を配置した場合における、螺旋状コード層と補助ベルト層との間でのセパレーションの発生を抑制したタイヤを提供する。一対のビード部(13)間にトロイド状に延在するカーカス(14)と、そのクラウン部タイヤ半径方向外側に配置され、補強コードを螺旋状に巻回して上層(1A)と下層(1B)とを形成した螺旋状コード層(1)と、備えるタイヤである。螺旋状コード層のタイヤ半径方向外側に補助ベルト層(17)が配置され、かつ、補助ベルト層のベルトコードのタイヤ周方向に対する角度が、30°以上90°以下の範囲である。
Description
本発明はタイヤに関し、詳しくは、クラウン部に、補強コードを螺旋状に巻回して上層と下層とを形成した螺旋状コード層と、そのタイヤ半径方向外側に配置された補助ベルト層と、を設けたタイヤの改良に関する。
従来より、タイヤの補強部材に関しては、種々検討がなされてきている。例えば、乗用車用タイヤの補強部材であるベルトの構造としては、タイヤの骨格部材となるカーカスのクラウン部タイヤ半径方向外側に、補強コードのコード方向が互いに交錯する2層以上のベルト交錯層を配設した構造が一般的である。これ以外にも、ベルトの構造として、上下2層のベルト層を補強コードを互いに交差するように配置するとともに、補強コードをベルト層端部で折り返して、一方から他方のベルト層に延在する螺旋巻き構造とする形態も知られている。
このような構造として、例えば、特許文献1には、トレッド部におけるカーカス層の外周側に、タイヤ周方向に対して実質的に0度の角度で補強コードを巻回してなる環状の芯体ベルト層と、その周りに補強コードを螺旋状に巻き付けてなる被覆ベルト層とからなるベルト構造体を配置した空気入りラジアルタイヤが開示されており、ベルト構造体の外周側には、必要に応じてベルト保護層が設けられることも開示されている。
特許文献1に開示されているように、カーカス層の外周側に、補強コードを螺旋状に巻回して実質的に上層と下層との2層からなる螺旋状コード層を配置することは知られている。しかしながら、螺旋状コード層のタイヤ半径方向外側に補助ベルト層を配置した場合、走行中の繰り返し入力により螺旋状コード層の補強コードの角度が変化して、螺旋状コード層と補助ベルト層のタイヤ幅方向端との間でセパレーションが発生する場合があった。
そこで本発明の目的は、タイヤクラウン部に補強コードからなる螺旋状コード層を備えるタイヤにおいて、そのタイヤ半径方向外側に補助ベルト層を配置した場合における、螺旋状コード層と補助ベルト層との間でのセパレーションの発生を抑制することにある。
本発明者は、上記課題を解消するために鋭意検討した結果、螺旋状コード層のタイヤ半径方向外側に配置する補助ベルト層について、ベルトコードの角度を所定に規定することで、上記課題を解決できることを見出して、本発明を完成するに至った。
すなわち、本発明のタイヤは、一対のビード部間にトロイド状に延在するカーカスと、該カーカスのクラウン部タイヤ半径方向外側に配置され、補強コードを螺旋状に巻回して上層と下層とを形成した螺旋状コード層と、を備えるタイヤであって、
前記螺旋状コード層のタイヤ半径方向外側に補助ベルト層が配置され、かつ、該補助ベルト層のベルトコードのタイヤ周方向に対する角度が、30°以上90°以下の範囲であることを特徴とするものである。
前記螺旋状コード層のタイヤ半径方向外側に補助ベルト層が配置され、かつ、該補助ベルト層のベルトコードのタイヤ周方向に対する角度が、30°以上90°以下の範囲であることを特徴とするものである。
本発明のタイヤは、前記螺旋状コード層の上層と下層との間に、芯材コード層を備えることが好ましい。また、本発明のタイヤにおいては、前記螺旋状コード層の補強コードおよび前記芯材コード層の芯材コードのうち少なくともいずれか一方の、タイヤ周方向に対する角度が30°未満であることが好ましい。さらに、本発明のタイヤにおいては、前記補助ベルト層のベルトコードのタイヤ周方向に対する角度が30°以上45°未満の範囲であって、かつ、前記螺旋状コード層の補強コードおよび前記芯材コード層の芯材コードのうち少なくともいずれか一方の、タイヤ周方向に対する角度が30°未満であることが好ましい。
本発明によれば、タイヤクラウン部に補強コードからなる螺旋状コード層を備えるタイヤにおいて、そのタイヤ半径方向外側に補助ベルト層を配置した場合における、螺旋状コード層と補助ベルト層との間でのセパレーションの発生を抑制することが可能となった。
以下、本発明について、図面を用いて詳細に説明する。
図1は、本発明のタイヤの一例のトラック・バス用タイヤを示すタイヤ幅方向断面図である。図示するタイヤ10は、接地部を形成するトレッド部11と、このトレッド部11の両側部に連続してタイヤ半径方向内方へ延びる一対のサイドウォール部12と、各サイドウォール部12の内周側に連続するビード部13と、を備えている。トレッド部11、サイドウォール部12およびビード部13は、一方のビード部13から他方のビード部13にわたってトロイド状に延在する一枚のカーカスプライからなるカーカス14により補強されている。また、図示するトラック・バス用タイヤ10においては、一対のビード部13にはそれぞれビードコア15が埋設され、カーカス14は、このビードコア15の周りにタイヤ内側から外側に折り返して係止されている。さらに、ビードコア15のタイヤ半径方向外側には、ビードフィラー16が配置されている。
図1は、本発明のタイヤの一例のトラック・バス用タイヤを示すタイヤ幅方向断面図である。図示するタイヤ10は、接地部を形成するトレッド部11と、このトレッド部11の両側部に連続してタイヤ半径方向内方へ延びる一対のサイドウォール部12と、各サイドウォール部12の内周側に連続するビード部13と、を備えている。トレッド部11、サイドウォール部12およびビード部13は、一方のビード部13から他方のビード部13にわたってトロイド状に延在する一枚のカーカスプライからなるカーカス14により補強されている。また、図示するトラック・バス用タイヤ10においては、一対のビード部13にはそれぞれビードコア15が埋設され、カーカス14は、このビードコア15の周りにタイヤ内側から外側に折り返して係止されている。さらに、ビードコア15のタイヤ半径方向外側には、ビードフィラー16が配置されている。
また、本発明のタイヤは、カーカス14のクラウン部タイヤ半径方向外側に、補強コードを螺旋状に巻回して上層1Aと下層1Bとを形成してなる構造を有する螺旋状コード層1を備えている。また、図1に示す例では、螺旋状コード層1の上層1Aと下層1Bとの間に、芯材コード層2が配置されている。
本発明においては、螺旋状コード層1のタイヤ半径方向外側に補助ベルト層17が配置され、この補助ベルト層17のベルトコードのタイヤ周方向に対する角度が30°以上90°以下の範囲である点が重要である。これにより、走行時における補助ベルト層17のベルトコードの角度変化を抑制して、補助ベルト層17のタイヤ幅方向端に生ずる歪を低減することができるので、結果として、螺旋状コード層と補助ベルト層との間でのセパレーションの発生を抑制することができる。
図4に、補助ベルト層17のベルトコードのタイヤ周方向に対する角度と、補助ベルト層17のタイヤ幅方向端におけるコード方向の歪との関係を示すグラフを示す。実線は補助ベルト層17のベルトコードのタイヤ周方向に対する傾斜方向が、螺旋状コード層1の上層1Aと同方向である場合を示し、点線は補助ベルト層17のベルトコードのタイヤ周方向に対する傾斜方向が、螺旋状コード層1の上層1Aと逆方向である場合を示す。図示するように、補助ベルト層17のタイヤ幅方向端におけるコード方向の歪は、補助ベルト17のベルトコードのタイヤ周方向に対する角度が0°~30°程度の範囲、すなわち、補助ベルト17のベルトコードの方向がタイヤ周方向に近い場合に顕著に高くなっている。これは、補助ベルト層17のコード方向がタイヤ周方向に近いと、走行時の繰り返し入力に起因する螺旋状コード層1の上層1Aの補強コードの角度の変化量と補助ベルト層17のベルトコードの角度の変化量とに差が生じて、補助ベルト層17の幅方向端部のゴムに歪が集中するためと考えられる。これに対し、本発明においては、補助ベルト層17のベルトコードのタイヤ周方向に対する角度を30°以上90°以下の範囲としたことで、走行時にタイヤ周方向に応力がかかっても、補助ベルト層17のベルトコードの角度が螺旋状コード層1の補強コードの角度変化とともに変化するので、補助ベルト層17の幅方向端部のゴムに歪が生じ難くなって、この歪に起因するセパレーションの発生を効果的に抑えることが可能となる。
本発明においては、補助ベルト層17のベルトコードのタイヤ周方向に対する角度を30°以上90°以下の範囲とするものであれば、補助ベルト17の幅方向端部におけるセパレーション発生の抑制効果を得ることができるが、さらに、螺旋状コード層1の補強コードおよび芯材コード層2の芯材コードのうち少なくともいずれか一方の、タイヤ周方向に対する角度を30°未満、特には12°以上30°未満とすることが好ましい。これにより、タイヤ周方向に近いこれらコードのうちのいずれかに張力を負担させることができるので、補助ベルト層17にかかる張力を低減して、セパレーションの抑制効果をより向上することができる。
ここで、図4から、補助ベルト層17のベルトコードのタイヤ周方向に対する角度を45°以上90°以下の範囲として、タイヤ幅方向により近い範囲とする場合には、補助ベルト層17の幅方向端部における歪量はかなり低くなるので、螺旋状コード層1および芯材コード層2のコード角度はあまり問題にならないと考えられる。これに対し、補助ベルト層17のベルトコードのタイヤ周方向に対する角度が30°以上45°未満の範囲である場合には、上記のように、螺旋状コード層1の補強コードおよび芯材コード層2の芯材コードのうち少なくともいずれか一方の、タイヤ周方向に対する角度を30°未満とすることが、セパレーションの抑制効果をより良好に得ることができるために、好ましい。
本発明のタイヤにおいては、螺旋状コード層1のタイヤ半径方向外側に設ける補助ベルト層17について、上記ベルトコード角度の条件を満足する点のみが重要であり、これにより本発明の所期の効果を得ることができる。それ以外の構成については特に制限はなく、常法に従い適宜構成することが可能である。本発明においては、補助ベルト層に相当する層を2層以上設ける場合には、螺旋状コード層のタイヤ半径方向外側に隣り合って配設された補助ベルト層のみが上記ベルトコード角度の条件を満足するものであれば、本発明の所期の効果を得ることができる。
本発明において、螺旋状コード層1は、補強コードを1本または複数本、例えば、2~100本で並列に引き揃えて、ゴムにより被覆してなるゴム-コード複合体を、螺旋状に巻回して平坦な帯状体とするか、または、芯材コード層2の周囲に螺旋状に巻き付けることにより形成される。螺旋状コード層1における補強コードの打ち込み数は、例えば、5~60本/50mmの範囲が好ましい。
また、本発明において、螺旋状コード層1の補強コードの角度は、タイヤ周方向に対し12°~90°の範囲であることが好ましい。螺旋状コード層1は、タイヤ幅方向端部において上層1Aと下層1Bとが切り離されていないので、タイヤの内圧負荷時に張力を発揮し、径成長しにくいという特性を有し、その結果、螺旋状コード層1を設けるとクラウン部が丸くなる傾向にあるが、螺旋状コード層1の補強コードの角度を12°以上とすることで、内圧負荷時における径成長を許容範囲内とすることができ、ショルダー部における摩耗の発生を抑制することができる。なお、本発明において、螺旋状コード層1の補強コードの角度は、タイヤ赤道面上で測定した値を用いることができる。この角度は、好適には12°~45°の範囲である。なお、前述したように、芯材コード層2の芯材コードの角度を30°未満としない場合には、螺旋状コード層1の補強コードの角度は、タイヤ周方向に対し30°未満の範囲とすることが好ましい。
図示する例では、螺旋状コード層1は、上層1Aと下層1Bとの間に芯材コード層2を備え、すなわち、芯材コード層2に対し補強コードが螺旋状に巻き付けられて螺旋状コード層1が形成されているが、本発明においては、これに制限されず、芯材コード層2は設けなくてもよい。芯材コード層2を備えると、タイヤ周方向の剛性が高くなってタガ効果が向上する半面、上述した螺旋状コード層1のタイヤ幅方向端部における補強コードのタイヤ周方向の張力が高まりやすくなる。芯材コード層2を設ける場合、芯材コード層2は1層で設けてもよく、複数層、例えば、2~10層で積層して設けることもできる。ここで、芯材コード層2は、芯材コードを多数本並行に引き揃え、この上下に未加硫ゴムを配置して、芯材コードをゴム被覆することにより製造される。芯材コード層2における芯材コードの打ち込み数は、例えば、5~60本/50mmの範囲が好ましい。
本発明において、芯材コード層2の芯材コードのタイヤ周方向に対する角度は、40°~90°の範囲であるものとすることができる。芯材コードの角度を上記範囲とすることで、芯材コードの張力が低下して、芯材コードの破断に至るまでの余剰が多くなる。その結果、障害物の入力を受けても芯材コードは破断しにくくなる。このような効果を良好に得るためには、芯材コード層2の芯材コードの傾斜角度は、50°~90°であることがより好ましい。一方で、芯材コード層2の芯材コードのタイヤ周方向に対する角度が、上記の通りタイヤ幅方向に近くなると、前述した螺旋状コード層1のタイヤ幅方向端部における補強コードの張力の上昇の課題が顕著となるので、特に本発明の適用が有用といえる。なお、芯材コード層2を複数層設ける場合には、複数層の芯材コード層2が交錯ベルト層を構成してもよい。なお、前述したように、螺旋状コード層1の補強コードの角度を30°未満としない場合には、芯材コード層2の芯材コードの角度は、タイヤ周方向に対し30°未満の範囲とすることが好ましい。
本発明において、螺旋状コード層1の補強コードおよび芯材コード層2の芯材コードの材質としては、特に制限はなく、従来汎用の各種の金属コードや有機繊維コードなどを適宜用いることができる。具体的には例えば、金属コードとしては、スチールフィラメントや、スチールフィラメントを複数本撚り合わせたスチールコードを用いることができる。この場合、コードの撚り構造についても種々の設計が可能であり、断面構造、撚りピッチ、撚り方向、隣接するフィラメント同士の距離も様々なものが使用できる。断面構造としては、単撚り、層撚り、複撚りなど様々な撚り構造を採用することができ、また、断面形状が偏平のコードを使用することもできる。なお、スチールコードを構成するスチールフィラメントは、鉄を主成分とし、炭素、マンガン、ケイ素、リン、硫黄、銅、クロムなど種々の微量成分を含んでいてもよい。また、スチールフィラメントの表面には、ゴムとの接着性を改善するため、ブラスめっきが施されていてもよい。
有機繊維としては、アラミド繊維(芳香族ポリアミド繊維)、ポリケトン(PK)繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、ポリアリレート繊維等を用いることができる。また、ポリアクリロニトリル(PAN)系炭素繊維やピッチ系炭素繊維、レーヨン系炭素繊維等の炭素繊維(カーボンファイバー)、ガラス繊維(グラスファイバー)、玄武岩繊維や安山岩繊維等の岩石繊維(ロックウール)などを用いることもできる。なお、これらの補強コードには、接着剤処理を施してゴムとの接着性を向上させることが好ましい。この接着剤処理は、RFL系接着剤等の汎用の接着剤を用いて、常法に従って行うことができる。さらに、上記のうちのいずれか2種以上からなるハイブリッドコードを用いてもよい。
本発明において、螺旋状コード層1や芯材コード層2のコーティングゴムに用いるゴム組成物としては、既知のものを用いることができ、特に制限されない。例えば、コーティングゴムに用いられるゴム組成物のゴム成分としては、天然ゴムの他;ビニル芳香族炭化水素/共役ジエン共重合体、ポリイソプレンゴム、ブタジエンゴム、ブチルゴム、ハロゲン化ブチルゴム、エチレン-プロピレンゴム等の合成ゴム等の公知のゴム成分の全てを用いることができる。ゴム成分は1種単独で用いても、2種以上を併用してもよい。金属コードとの接着特性およびゴム組成物の破壊特性の観点からは、ゴム成分としては、天然ゴムおよびポリイソプレンゴムの少なくとも一方よりなるか、50質量%以上の天然ゴムを含み残部が合成ゴムからなるものが好ましい。
本発明において、コーティングゴムに用いられるゴム組成物には、カーボンブラックやシリカ等の充填剤、アロマオイル等の軟化剤、ヘキサメチレンテトラミン、ペンタメトキシメチルメラミン、ヘキサメチレンメチルメラミン等のメトキシメチル化メラミン等のメチレン供与体、加硫促進剤、加硫促進助剤、老化防止剤等のゴム業界で通常使用される配合剤を通常の配合量で適宜配合することができる。また、本発明においてコーティングゴムとして用いられるゴム組成物の調製方法に特に制限はなく、常法に従い、例えば、バンバリーミキサーやロール等を用いて、ゴム成分に、硫黄、有機酸コバルト塩および各種配合剤等を練り込んで調製すればよい。
また、図示するトラック・バス用タイヤ10において、補助ベルト層17は、ベルトコードがタイヤ周方向に対し所定の角度をなす傾斜ベルトとすることができ、ベルトコードを多数本引き揃えて、ゴムにより被覆することによって形成される。傾斜ベルト層の補強コードとしては、例えば、金属コード、特にスチールコードを用いるのが最も一般的であるが、有機繊維コードを用いてもよい。スチールコードは鉄を主成分とし、炭素、マンガン、ケイ素、リン、硫黄、銅、クロムなど種々の微量含有物を含むスチールフィラメントからなるものを用いることができる。
スチールコードとしては、複数のフィラメントを撚り合せたコード以外にも、スチールモノフィラメントコードを用いてもよい。なお、スチールコードの撚り構造も種々の設計が可能であり、断面構造、撚りピッチ、撚り方向、隣接するスチールコード同士の距離も様々なものが使用できる。また、異なる材質のフィラメントを撚り合せたコードを採用することもでき、断面構造としても特に限定されず、単撚り、層撚り、複撚りなど様々な撚り構造を取ることができる。また、補助ベルト層17の幅は、トレッド幅の40%~115%とすることが好ましく、特に50%~70%が好ましい。なお、螺旋状コード層1の端部のタイヤ径方向内側には、ベルトアンダークッションゴム18を設けることが好ましい。これにより、螺旋状コード層1の端部の歪・温度を低減して、タイヤ耐久性を向上させることができる。
本発明のトラック・バス用タイヤ10においては、カーカス14は従来構造を含めて種々の構成を採用することができ、ラジアル構造、バイアス構造のいずれであってもよい。カーカス14としては、スチールコード層からなるカーカスプライを1~2層とすることが好ましい。また、例えば、タイヤ径方向におけるカーカス最大幅位置は、ビード部13側に近づけてもよく、トレッド部11側に近づけてもよい。例えば、カーカス14の最大幅位置は、ビードベース部からタイヤ径方向外側に、タイヤ高さ対比で50%~90%の範囲に設けることができる。また、カーカス14は、図示するように、一対のビードコア15間を途切れずに延びる構造が一般的であり好ましいが、ビードコア15から延びてトレッド部11付近で途切れるカーカス片を一対用いて形成することもできる。
また、カーカス14の折り返し部は、さまざまな構造を採用することができる。例えば、カーカス14の折り返し端をビードフィラー16の上端よりもタイヤ径方向内側に位置させることができ、また、カーカス折り返し端をビードフィラー16の上端やタイヤ最大幅位置よりもタイヤ径方向外側まで延ばしてもよく、この場合、螺旋状コード層1のタイヤ幅方向端よりもタイヤ幅方向内側まで延ばすこともできる。さらに、カーカスプライが複数層の場合には、カーカス14の折り返し端のタイヤ径方向位置を異ならせることもできる。また、カーカス14の折り返し部を存在させずに、複数のビードコア部材で挟み込んだ構造としてもよく、ビードコア15に巻きつけた構造を採用することもできる。なお、カーカス14の打ち込み数としては、一般的には5~60本/50mmの範囲であるが、これに限定されるものではない。
また、本発明のトラック・バス用タイヤ10においては、螺旋状コード層1および補助ベルト層17のタイヤ径方向外側に、周方向コード層(図示せず)を設けてもよい。
本発明のトラック・バス用タイヤ10においては、サイドウォール部12の構成についても既知の構造を採用することができる。例えば、タイヤ最大幅位置は、ビードベース部からタイヤ径方向外側に、タイヤ高さ対比で50%~90%の範囲に設けることができる。本発明のトラック・バス用タイヤ10においては、乗用車用タイヤとは異なり、リムフランジと接触する凹部が形成されずに、タイヤ幅方向に凸となる滑らかな曲線として形成されていることが好ましい。
また、ビードコア15は、円形や多角形状など、さまざまな構造を採用することができる。なお、上述のとおり、ビード部13としては、カーカス14をビードコア15に巻きつける構造のほか、カーカス14を複数のビードコア部材で挟みこむ構造としてもよい。図示するトラック・バス用タイヤ10においては、ビードコア15のタイヤ半径方向外側にビードフィラー16が配置されているが、このビードフィラー16は、タイヤ径方向に分かれた複数のゴム部材から構成されていてもよい。
本発明のトラック・バス用タイヤ10においては、トレッドパターンとしては、リブ状陸部主体のパターン、ブロックパターン、非対称パターンでもよく、回転方向指定であってもよい。
リブ状陸部主体パターンは、一本以上の周方向溝もしくは周方向溝とトレッド端部によりタイヤ幅方向を区画された、リブ状陸部を主体とするパターンである。ここでリブ状陸部とはタイヤ幅方向に横断する横溝を有さずにタイヤ周方向に延びる陸部をいうが、リブ状陸部はサイプやリブ状陸部内で終端する横溝を有していてもよい。ラジアルタイヤは特に高内圧使用下において高接地圧となるため、周方向剪断剛性を増加させることによりウェット路面上での接地性が向上するためと考えられる。リブ状陸部を主体とするパターンの例としては、赤道面を中心とするトレッド幅の80%の領域においてリブ状陸部のみからなるトレッドパターン、すなわち、横溝を有さないパターンとすることができる。このようなパターンは、この領域における排水性能が特にウェット性能への寄与が大きい。
ブロックパターンは、周方向溝と幅方向溝によって区画されたブロック陸部を有するパターンであり、ブロックパターンのタイヤは、基本的な氷上性能および雪上性能に優れている。
非対称パターンは、赤道面を境として左右のトレッドパターンが非対称のパターンである。例えば、装着方向指定のタイヤの場合には、赤道面を境とした車両装着方向内側と車両装着方向外側のタイヤ半部においてネガティブ率に差を設けたものでもよく、赤道面を境とした車両装着方向内側と車両装着方向外側のタイヤ半部において、周方向溝の数が異なる構成のものであってもよい。
トレッドゴムとしては、特に制限はなく、従来から用いられているゴムを用いることができる。また、トレッドゴムはタイヤ径方向に異なる複数のゴム層で形成されていてもよく、例えば、いわゆるキャップ・ベース構造であってもよい。複数のゴム層としては正接損失、モジュラス、硬度、ガラス転移温度、材質等が異なっているものを使用することができる。また、複数のゴム層のタイヤ径方向の厚みの比率は、タイヤ幅方向に変化していてもよく、また周方向溝底のみ等をその周辺と異なるゴム層とすることもできる。
さらに、トレッドゴムはタイヤ幅方向に異なる複数のゴム層で形成されていてもよく、いわゆる、分割トレッド構造でもよい。上記の複数のゴム層としては正接損失、モジュラス、硬度、ガラス転移温度、材質等が異なっているものを使用することができる。また、複数のゴム層のタイヤ幅方向の長さの比率は、タイヤ径方向に変化していてもよく、また周方向溝近傍のみ、トレッド端近傍のみ、ショルダー陸部のみ、センター陸部のみといった限定された一部の領域のみをその周囲とは異なるゴム層とすることもできる。また、トレッド部は、タイヤ幅方向の端部に角部11aが形成されていることが好ましい。
図1に示すタイヤはトラック・バス用タイヤであるが、本発明は、これに限られず、乗用車用、建設車両用、二輪車用、航空機用、農業用のタイヤ等にも好適に適用することができる。また、タイヤとしては、空気入りタイヤに限定されず、ソリッドタイヤや非空気入りタイヤにも適用することができる。
図2は、本発明の乗用車用タイヤの一構成例を示すタイヤ幅方向断面図である。図示する乗用車用タイヤ20は、接地部を形成するトレッド部21と、このトレッド部21の両側部に連続してタイヤ半径方向内方へ延びる一対のサイドウォール部22と、各サイドウォール部22の内周側に連続するビード部23と、を備えている。トレッド部21、サイドウォール部22およびビード部23は、一方のビード部23から他方のビード部23にわたってトロイド状に延びる一枚のカーカスプライからなるカーカス24により補強されている。また、図示する乗用車用タイヤ20においては、一対のビード部23にはそれぞれビードコア25が埋設され、カーカス24は、このビードコア25の周りにタイヤ内側から外側に折り返して係止されている。さらに、ビードコア25のタイヤ半径方向外側には、ビードフィラー26が配置されている。
図示する乗用車用タイヤ20においては、カーカス24のクラウン部タイヤ径方向外側に、補強コードを螺旋状に巻回して上層1Aと下層1Bとを形成してなる構造を有する螺旋状コード層1と、補助ベルト層27とが、順次配設されている。
本発明においては、補助ベルト層27のベルトコードのタイヤ周方向に対する角度が上記条件を満足することが重要であり、これにより、本発明の所期の効果を得ることができる。ここで、図2に示す乗用車用タイヤの場合、補助ベルト層27としては、螺旋状コード層1の全幅以上にわたって配置されるキャップ層27a、または、螺旋状コード層1の両端部を覆う領域に配置されるレイヤー層27bが挙げられる。キャップ層27aおよびレイヤー層27bは、通常、多数本のコードを引き揃えてゴムにより被覆してなる一定幅のストリップを、螺旋状に巻回することにより形成される。キャップ層27aおよびレイヤー層27bはそれぞれ単独で設けてもよく、併用してもよい。または、2層以上のキャップ層や2層以上のレイヤー層の組み合わせであってもよい。
キャップ層27aおよびレイヤー層27bの補強コードとしては、種々の材質が採用可能であり、代表的な例としては、レーヨン、ナイロン、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、アラミド、ガラス繊維、炭素繊維、スチール等が挙げられる。軽量化の点から、有機繊維コードが特に好ましい。補強コードはモノフィラメントコードや、複数のフィラメントを撚り合せたコード、さらには異なる材質のフィラメントを撚り合せたハイブリットコードを採用することもできる。また、補強コードには、破断強度を高めるために波状のコードを用いてもよい。同様に破断強度を高めるために、例えば、破断時の伸びが4.5~5.5%のハイエロンゲーションコードを用いてもよい。
キャップ層27aおよびレイヤー層27bの打ち込み数は、一般的には20~60本/50mmの範囲であるが、この範囲に限定されるものではない。また、キャップ層27aにおいては、タイヤ幅方向に剛性・材質・層数・打ち込み密度等の分布を持たせることもでき、例えばタイヤ幅方向端部のみ層数を増やすこともでき、一方でセンター部のみ層数を増やすこともできる。
キャップ層27aおよびレイヤー層27bは、スパイラル層として構成することが製造の観点から特に有利である。この場合、平面内において互いに平行に配列された複数本のコアワイヤを、上記平行配列を維持したままラッピングワイヤによって束ねた、ストリップ状のコードによって形成してもよい。
本発明の乗用車用タイヤ20においては、カーカス24は従来構造を含めて種々の構成を採用することができ、ラジアル構造、バイアス構造のいずれであってもよい。カーカス24としては、有機繊維コード層からなるカーカスプライを1~2層とすることが好ましい。また、タイヤ径方向におけるカーカス24の最大幅位置は、例えば、ビード部23側に近づけてもよく、トレッド部21側に近づけてもよい。例えば、カーカス24の最大幅位置は、ビードベース部からタイヤ径方向外側に、タイヤ高さ対比で50%~90%の範囲に設けることができる。また、カーカス24は、図示するように、一対のビードコア25間を途切れずに延びる構造が一般的であり好ましいが、ビードコア25から延びてトレッド部21付近で途切れるカーカスプライ片を一対用いて形成することもできる(図示せず)。
また、カーカス24の折り返し部は、さまざまな構造を採用することができる。例えば、カーカス24の折り返し端をビードフィラー26の上端よりもタイヤ径方向内側に位置させることができ、また、カーカス24の折り返し端をビードフィラー26の上端やタイヤ最大幅位置よりもタイヤ径方向外側まで延ばしてもよく、この場合、螺旋状コード層1のタイヤ幅方向端よりもタイヤ幅方向内側まで伸ばすこともできる。さらに、カーカスプライが複数層の場合には、カーカス24の折り返し端のタイヤ径方向位置を異ならせることもできる。また、カーカス24の折り返し部を存在させずに、複数のビードコア部材で挟み込んだ構造としてもよく、ビードコア25に巻きつけた構造を採用することもできる。なお、カーカス24の打ち込み数としては、一般的には5~60本/50mmの範囲であるが、これに限定されるものではない。
本発明の乗用車用タイヤ20において、トレッド部21の形状としては、狭幅大径サイズの乗用車用タイヤの場合には、タイヤ幅方向断面にて、タイヤ赤道面CLにおけるトレッド表面上の点Pを通りタイヤ幅方向に平行な直線をm1とし、接地端Eを通りタイヤ幅方向に平行な直線をm2として、直線m1と直線m2とのタイヤ径方向の距離を落ち高LCRとし、タイヤのトレッド幅をTWとするとき、比LCR/TWを0.045以下とすることが好ましい。比LCR/TWを上記の範囲とすることにより、タイヤのクラウン部がフラット化(平坦化)し、接地面積が増大して、路面からの入力(圧力)を緩和して、タイヤ径方向の撓み率を低減し、タイヤの耐久性および耐摩耗性を向上させることができる。また、トレッド端部がなめらかであることが好ましい。
また、トレッドパターンとしては、フルラグパターン、リブ状陸部主体のパターン、ブロックパターン、非対称パターンでもよく、回転方向指定であってもよい。
フルラグパターンとしては、赤道面近傍から接地端までタイヤ幅方向に延びる幅方向溝を有するパターンとしてもよく、この場合に周方向溝を含まなくてもよい。このような横溝が主体のパターンは、特に雪上性能を効果的に発揮することができる。
リブ状陸部主体パターンは、一本以上の周方向溝もしくは周方向溝とトレッド端部によりタイヤ幅方向を区画された、リブ状陸部を主体とするパターンである。ここでリブ状陸部とはタイヤ幅方向に横断する横溝を有さずにタイヤ周方向に延びる陸部をいうが、リブ状陸部はサイプやリブ状陸部内で終端する横溝を有していてもよい。ラジアルタイヤは特に高内圧使用下において高接地圧となるため、周方向剪断剛性を増加させることによりウェット路面上での接地性が向上するためと考えられる。リブ状陸部を主体とするパターンの例としては、赤道面を中心とするトレッド幅の80%の領域においてリブ状陸部のみからなるトレッドパターン、すなわち、横溝を有さないパターンとすることができる。このようなパターンは、この領域における排水性能が特にウェット性能への寄与が大きい。
ブロックパターンは、周方向溝と幅方向溝によって区画されたブロック陸部を有するパターンであり、ブロックパターンのタイヤは、基本的な氷上性能および雪上性能に優れている。
非対称パターンは、赤道面を境として左右のトレッドパターンが非対称のパターンである。例えば、装着方向指定のタイヤの場合には、赤道面を境とした車両装着方向内側と車両装着方向外側のタイヤ半部においてネガティブ率に差を設けたものでもよく、赤道面を境とした車両装着方向内側と車両装着方向外側のタイヤ半部において、周方向溝の数が異なる構成のものであってもよい。
トレッドゴムとしては、特に制限はなく、従来から用いられているゴムを用いることができ、発泡ゴムを用いてもよい。また、トレッドゴムはタイヤ径方向に異なる複数のゴム層で形成されていてもよく、例えば、いわゆるキャップ・ベース構造であってもよい。複数のゴム層としては正接損失、モジュラス、硬度、ガラス転移温度、材質等が異なっているものを使用することができる。また、複数のゴム層のタイヤ径方向の厚みの比率は、タイヤ幅方向に変化していてもよく、また周方向溝底のみ等をその周辺と異なるゴム層とすることもできる。
さらに、トレッドゴムはタイヤ幅方向に異なる複数のゴム層で形成されていてもよく、いわゆる、分割トレッド構造でもよい。上記の複数のゴム層としては正接損失、モジュラス、硬度、ガラス転移温度、材質等が異なっているものを使用することができる。また、複数のゴム層のタイヤ幅方向の長さの比率は、タイヤ径方向に変化していてもよく、また周方向溝近傍のみ、トレッド端近傍のみ、ショルダー陸部のみ、センター陸部のみといった限定された一部の領域のみをその周囲とは異なるゴム層とすることもできる。
本発明の乗用車用タイヤ20においては、サイドウォール部22の構成についても既知の構造を採用することができる。例えば、タイヤ最大幅位置は、ビードベース部からタイヤ径方向外側に、タイヤ高さ対比で50%~90%の範囲に設けることができる。また、リムガードを有する構造としてもよい。本発明の乗用車用タイヤ20においては、リムフランジと接触する凹部23aが形成されていることが好ましい。
また、ビードコア25は、円形や多角形状など、さまざまな構造を採用することができる。なお、上述のとおり、ビード部23としては、カーカス24をビードコア25に巻きつける構造のほか、カーカス24を複数のビードコア部材で挟みこむ構造としてもよい。図示する乗用車用タイヤ20においては、ビードコア25のタイヤ半径方向外側に、ビードフィラー26が配置されているが、本発明の乗用車用タイヤ20においては、ビードフィラー26は設けなくてもよい。
本発明の乗用車用タイヤは、図示はしないが、タイヤの最内層には通常インナーライナーが配置されていてもよい。インナーライナーは、ブチルゴムを主体としたゴム層のほか、樹脂を主成分とするフィルム層によって形成することができる。また、図示はしないが、タイヤ内面には、空洞共鳴音を低減するために、多孔質部材を配置したり、静電植毛加工を行うこともできる。さらに、タイヤ内面には、パンク時の空気の漏れを防ぐためのシーラント部材を備えることもできる。
乗用車用タイヤ20は、特に用途は限定されない。サマー用、オールシーズン用、冬用といった用途のタイヤに適用することができる。また、サイドウォール部22に三日月型の補強ゴム層を有するサイド補強型ランフラットタイヤや、スタッドタイヤといった特殊な構造の乗用車用タイヤに使用することも可能である。
図3は、本発明の建設車両用タイヤの一構成例を示すタイヤ幅方向断面図である。図示する建設車両用タイヤ30においては、接地部を形成するトレッド部31と、このトレッド部31の両側部に連続してタイヤ半径方向内方へ延びる一対のサイドウォール部32と、各サイドウォール部32の内周側に連続するビード部33と、を備えている。トレッド部31、サイドウォール部32およびビード部33は、一方のビード部33から他方のビード部33にわたってトロイド状に延びる一枚のカーカスプライからなるカーカス34により補強されている。また、図示する建設車両タイヤ30においては、一対のビード部33にはそれぞれビードコア35が埋設され、カーカス34は、このビードコア35の周りにタイヤ内側から外側に折り返して係止されている。さらに、ビードコア35のタイヤ半径方向外側には、ビードフィラー36が配置されている。
図示する建設車両用タイヤ30においては、カーカス34のクラウン領域のタイヤ径方向外側に、補強コードを螺旋状に巻回して上層1Aと下層1Bとを形成してなる構造を有する螺旋状コード層1と、4層のベルト層37a~37dとが、順次配設されている。建設車両用タイヤ30においては、この4層のベルト層37が、本発明における補助ベルト層に対応する。一般に、建設車両用タイヤは、4層または6層のベルト層からなり、6層のベルト層からなる場合は、第1ベルト層と第2ベルト層とが内側交錯ベルト層群を、第3ベルト層と第4ベルト層とが中間交錯ベルト層群を、第5ベルト層と第6ベルト層とが外側交錯ベルト層群を、それぞれ形成している。本発明の建設車両用タイヤにおいては、内側交錯ベルト層群を螺旋状コード層1で置き換え、中間交錯ベルト層群および外側交錯ベルト層群として補助ベルト層37a~37dを配置している。また、4層のベルト層からなる建設車両用タイヤの場合は、第1ベルト層および第2ベルト層を螺旋状コード層1と置き換え、第3ベルト層および第4ベルト層を補助ベルト層37a,37bとすればよい。
なお、6層のベルト層の場合、トレッド幅方向において、螺旋状コード層1の幅は、トレッド踏面の幅の25%以上70%以下、補助ベルト層37a,37bの幅は、トレッド踏面の幅の55%以上90%以下、補助ベルト層37c,37dの幅は、トレッド踏面の幅の60%以上115%以下とすることができる。
本発明においては、補助ベルト層37のベルトコードのタイヤ周方向に対する角度が上記条件を満足することが重要であり、これにより、本発明の所期の効果を得ることができる。
本発明の建設車両用タイヤ30において、補助ベルト層37は、補強コードのゴム引き層からなり、タイヤ周方向に対し所定の角度をなす傾斜ベルトとすることができる。傾斜ベルト層の補強コードとしては、例えば、金属コード、特にスチールコードを用いるのが最も一般的であるが、有機繊維コードを用いてもよい。スチールコードは鉄を主成分とし、炭素、マンガン、ケイ素、リン、硫黄、銅、クロムなど種々の微量含有物を含むスチールフィラメントからなるものを用いることができる。
スチールコードとしては、複数のフィラメントを撚り合せたコード以外にも、スチールモノフィラメントコードを用いてもよい。なお、スチールコードの撚り構造も種々の設計が可能であり、断面構造、撚りピッチ、撚り方向、隣接するスチールコード同士の距離も様々なものが使用できる。また、異なる材質のフィラメントを撚り合せたコードを採用することもでき、断面構造としても特に限定されず、単撚り、層撚り、複撚りなど様々な撚り構造を取ることができる。なお、他のベルト層の補強コードの傾斜角度は、タイヤ周方向に対して10°以上とすることが好ましい。また、補助ベルト層37のうち最も幅の大きい最大幅傾斜ベルト層の幅は、トレッド幅の90%~115%とすることが好ましく、特に100%~105%が好ましい。なお、補助ベルト層37端部のタイヤ径方向内側には、ベルトアンダークッションゴム39を設けることが好ましい。これにより、補助ベルト層37端部の歪・温度を低減して、タイヤ耐久性を向上させることができる。
本発明の建設車両用タイヤにおいては、カーカス34は従来構造を含めて種々の構成を採用することができ、ラジアル構造、バイアス構造のいずれであってもよい。カーカス34としては、スチールコード層からなるカーカスプライを1~2層とすることが好ましい。また、例えば、タイヤ径方向におけるカーカス最大幅位置は、ビード部33側に近づけてもよく、トレッド部31側に近づけてもよい。例えば、カーカス34の最大幅位置は、ビードベース部からタイヤ径方向外側に、タイヤ高さ対比で50%~90%の範囲に設けることができる。また、カーカス34は、図示するように、1対のビードコア35間を途切れずに延びる構造が一般的であり好ましいが、ビードコア35から延びてトレッド部31付近で途切れるカーカス片を一対用いて形成することもできる。
また、カーカス34の折り返し部は、さまざまな構造を採用することができる。例えば、カーカス34の折り返し端をビードフィラー36の上端よりもタイヤ径方向内側に位置させることができ、また、カーカス34の折り返し端をビードフィラー36の上端やタイヤ最大幅位置よりもタイヤ径方向外側まで伸ばしてもよく、この場合、螺旋状コード層1のタイヤ幅方向端よりもタイヤ幅方向内側まで伸ばすこともできる。さらに、カーカスプライが複数層の場合には、カーカス34の折り返し端のタイヤ径方向位置を異ならせることもできる。また、カーカス34の折り返し部を存在させずに、複数のビードコア部材で挟み込んだ構造としてもよく、ビードコア35に巻きつけた構造を採用することもできる。なお、カーカス34の打ち込み数としては、一般的には10~60本/50mmの範囲であるが、これに限定されるものではない。
本発明の建設車両用タイヤ30においては、サイドウォール部32の構成についても既知の構造を採用することができる。例えば、タイヤ最大幅位置は、ビードベース部からタイヤ径方向外側に、タイヤ高さ対比で50%~90%の範囲に設けることができる。本発明の建設車両用タイヤ30においては、リムフランジと接触する凹部が形成されていることが好ましい。
また、ビードコア35は、円形や多角形状など、さまざまな構造を採用することができる。なお、上述のとおり、ビード部33としては、カーカス34をビードコア35に巻きつける構造のほか、カーカス34を複数のビードコア部材で挟みこむ構造としてもよい。図示する建設車両用タイヤ30においては、ビードコア35のタイヤ半径方向外側にビードフィラー36が配置されているが、このビードフィラー36は、タイヤ径方向に分かれた複数のゴム部材から構成されていてもよい。
本発明の建設車両用タイヤ30においては、トレッドパターンとしては、ラグパターン、ブロックパターン、非対称パターンでもよく、回転方向指定であってもよい。
ラグパターンとしては、赤道面近傍から接地端までタイヤ幅方向に延びる幅方向溝を有するパターンとしてもよく、この場合に周方向溝を含まなくてもよい。
ブロックパターンは、周方向溝と幅方向溝によって区画されたブロック陸部を有するパターンである。特に建設車両用タイヤの場合には、耐久性の観点からブロックを大きくすることが好ましく、例えば、ブロックのタイヤ幅方向に測った幅はトレッド幅の25%以上50%以下とすることが好ましい。
非対称パターンは、赤道面を境として左右のトレッドパターンが非対称のパターンである。例えば、装着方向指定のタイヤの場合には、赤道面を境とした車両装着方向内側と車両装着方向外側のタイヤ半部においてネガティブ率に差を設けたものでもよく、赤道面を境とした車両装着方向内側と車両装着方向外側のタイヤ半部において、周方向溝の数が異なる構成のものであってもよい。
トレッドゴムとしては、特に制限はなく、従来から用いられているゴムを用いることができる。また、トレッドゴムはタイヤ径方向に異なる複数のゴム層で形成されていてもよく、例えば、いわゆるキャップ・ベース構造であってもよい。複数のゴム層としては正接損失、モジュラス、硬度、ガラス転移温度、材質等が異なっているものを使用することができる。また、複数のゴム層のタイヤ径方向の厚みの比率は、タイヤ幅方向に変化していてもよく、また周方向溝底のみ等をその周辺と異なるゴム層とすることもできる。
さらに、トレッドゴムはタイヤ幅方向に異なる複数のゴム層で形成されていてもよく、いわゆる、分割トレッド構造でもよい。上記の複数のゴム層としては正接損失、モジュラス、硬度、ガラス転移温度、材質等が異なっているものを使用することができる。また、複数のゴム層のタイヤ幅方向の長さの比率は、タイヤ径方向に変化していてもよく、また周方向溝近傍のみ、トレッド端近傍のみ、ショルダー陸部のみ、センター陸部のみといった限定された一部の領域のみをその周囲とは異なるゴム層とすることもできる。
建設車両用タイヤ30においては、トレッド部31のゴムゲージは耐久性の観点から厚い方が好ましく、タイヤ外径の1.5%以上4%以下が好ましく、より好ましくは2%以上3%以下である。また、トレッド部31の接地面に対する溝面積の割合(ネガティブ率)は、20%以下が好ましい。これは、建設車両用タイヤ30は、低速かつ乾燥地域での使用が主体であるため、排水性のためネガティブ率を大きくする必要がないためである。建設車両用タイヤのタイヤサイズとしては、例えばリム径が20インチ以上、特に大型とされるものはリム径が40インチ以上のものである。
以下、本発明を、実施例を用いてより詳細に説明する。
1層の芯材コード層に対し補強コードを螺旋状に巻き付けて、螺旋状コード層の上層と下層との間に芯材コード層を備える構造の補強部材を作製した。この補強部材をカーカスのクラウン部タイヤ半径方向外側に配置し、さらに、そのタイヤ半径方向外側に補助ベルト層を配置して、タイヤサイズ275/80R22.5にて、図1に示すようなトラック・バス用タイヤを作製した。
1層の芯材コード層に対し補強コードを螺旋状に巻き付けて、螺旋状コード層の上層と下層との間に芯材コード層を備える構造の補強部材を作製した。この補強部材をカーカスのクラウン部タイヤ半径方向外側に配置し、さらに、そのタイヤ半径方向外側に補助ベルト層を配置して、タイヤサイズ275/80R22.5にて、図1に示すようなトラック・バス用タイヤを作製した。
芯材コード層の芯材コードおよび補助ベルト層のベルトコードとしては、線径1.13mmのスチールフィラメントを用いた1+6構造のスチールコードを用いた。
また、補助ベルト層のスチールコードの傾斜方向は、隣接する螺旋状コード層の上層の補強コードと同方向とし、芯材コード層のスチールコードの傾斜方向は逆方向とした。さらに、芯材コード層の打込み本数は18.06本/50mm、補助ベルト層の打込み本数は24.21本/50mmとした。
<補助ベルト層の幅方向端部におけるセパレーションの評価>
以下のようにして、補助ベルト層の幅方向端部におけるセパレーションの状態について評価した。その結果を、下記の表中に併せて示す。
得られた各供試タイヤをリムに組み、規定内圧を充填した後、室温38℃、正規荷重の150%を負荷した状態でドラム上を時速65km/hで走行させ、螺旋状コード層と補助ベルト層との層間におけるセパレーションに起因する故障が発生するまでの走行距離を測定した。結果は、実施例1を100とする指数にて示した。数値が大きいほど走行距離が長く、結果は良好である。
以下のようにして、補助ベルト層の幅方向端部におけるセパレーションの状態について評価した。その結果を、下記の表中に併せて示す。
得られた各供試タイヤをリムに組み、規定内圧を充填した後、室温38℃、正規荷重の150%を負荷した状態でドラム上を時速65km/hで走行させ、螺旋状コード層と補助ベルト層との層間におけるセパレーションに起因する故障が発生するまでの走行距離を測定した。結果は、実施例1を100とする指数にて示した。数値が大きいほど走行距離が長く、結果は良好である。
<螺旋状コード層の補強コードとしてPAN系炭素繊維コードを適用した場合>
螺旋状コード層の補強コードとしてPAN系炭素繊維コード(コード構造:12000dtex/1)を用いた場合の評価結果を、下記の表1,2中に示す。螺旋状コード層の打込み本数は27.65本/50mmとした。
螺旋状コード層の補強コードとしてPAN系炭素繊維コード(コード構造:12000dtex/1)を用いた場合の評価結果を、下記の表1,2中に示す。螺旋状コード層の打込み本数は27.65本/50mmとした。
*2)芯材コード層の芯材コードのタイヤ周方向に対する角度である。
*3)補助ベルト層のベルトコードのタイヤ周方向に対する角度である。
<螺旋状コード層の補強コードとしてアラミドコードを適用した場合>
螺旋状コード層の補強コードとしてアラミドコード(コード構造:3340dtex//2/3)を用いた場合の評価結果を、下記の表3,4中に示す。螺旋状コード層の打込み本数は25本/50mmとした。
螺旋状コード層の補強コードとしてアラミドコード(コード構造:3340dtex//2/3)を用いた場合の評価結果を、下記の表3,4中に示す。螺旋状コード層の打込み本数は25本/50mmとした。
上記表中に示すように、本発明によれば、タイヤクラウン部に補強コードからなる螺旋状コード層を備えるタイヤにおいて、そのタイヤ半径方向外側に補助ベルト層を配置した場合における、螺旋状コード層と補助ベルト層との間でのセパレーションの発生を抑制できることが確かめられた。
1 螺旋状コード層
1A 上層
1B 下層
2 芯材コード層
10 トラック・バス用タイヤ
11,21,31 トレッド部
11a 角部
12,22,32 サイドウォール部
13,23,33 ビード部
14,24,34 カーカス
15,25,35 ビードコア
16,26,36 ビードフィラー
17,27,37,37a~37d 補助ベルト層
27a キャップ層
27b レイヤー層
20 乗用車用タイヤ
23a 凹部
18,39 ベルトアンダークッションゴム
30 建設車両用タイヤ
1A 上層
1B 下層
2 芯材コード層
10 トラック・バス用タイヤ
11,21,31 トレッド部
11a 角部
12,22,32 サイドウォール部
13,23,33 ビード部
14,24,34 カーカス
15,25,35 ビードコア
16,26,36 ビードフィラー
17,27,37,37a~37d 補助ベルト層
27a キャップ層
27b レイヤー層
20 乗用車用タイヤ
23a 凹部
18,39 ベルトアンダークッションゴム
30 建設車両用タイヤ
Claims (4)
- 一対のビード部間にトロイド状に延在するカーカスと、該カーカスのクラウン部タイヤ半径方向外側に配置され、補強コードを螺旋状に巻回して上層と下層とを形成した螺旋状コード層と、を備えるタイヤであって、
前記螺旋状コード層のタイヤ半径方向外側に補助ベルト層が配置され、かつ、該補助ベルト層のベルトコードのタイヤ周方向に対する角度が、30°以上90°以下の範囲であることを特徴とするタイヤ。 - 前記螺旋状コード層の上層と下層との間に、芯材コード層を備える請求項1記載のタイヤ。
- 前記螺旋状コード層の補強コードおよび前記芯材コード層の芯材コードのうち少なくともいずれか一方の、タイヤ周方向に対する角度が30°未満である請求項1または2記載のタイヤ。
- 前記補助ベルト層のベルトコードのタイヤ周方向に対する角度が30°以上45°未満の範囲であって、かつ、前記螺旋状コード層の補強コードおよび前記芯材コード層の芯材コードのうち少なくともいずれか一方の、タイヤ周方向に対する角度が30°未満である請求項1~3のうちいずれか一項記載のタイヤ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880041013.XA CN110770039A (zh) | 2017-06-19 | 2018-05-24 | 轮胎 |
EP18820764.1A EP3643515A4 (en) | 2017-06-19 | 2018-05-24 | TIRES |
US16/619,720 US20200198400A1 (en) | 2017-06-19 | 2018-05-24 | Tire |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017119984A JP6811684B2 (ja) | 2017-06-19 | 2017-06-19 | タイヤ |
JP2017-119984 | 2017-06-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018235520A1 true WO2018235520A1 (ja) | 2018-12-27 |
Family
ID=64737160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/020071 WO2018235520A1 (ja) | 2017-06-19 | 2018-05-24 | タイヤ |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200198400A1 (ja) |
EP (1) | EP3643515A4 (ja) |
JP (1) | JP6811684B2 (ja) |
CN (1) | CN110770039A (ja) |
WO (1) | WO2018235520A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240123766A1 (en) * | 2021-03-12 | 2024-04-18 | Zhejiang Geely Holding Group Co., Ltd | Flat-spot-proof tire, and vehicle having the same |
JP2023001588A (ja) * | 2021-06-21 | 2023-01-06 | 株式会社ブリヂストン | タイヤ |
JP2023001584A (ja) * | 2021-06-21 | 2023-01-06 | 株式会社ブリヂストン | タイヤ |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09220908A (ja) * | 1996-02-15 | 1997-08-26 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
JP2003231403A (ja) * | 2002-02-12 | 2003-08-19 | Bridgestone Corp | 空気入りタイヤ |
JP2004001609A (ja) | 2002-05-31 | 2004-01-08 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
JP2005319955A (ja) * | 2004-05-11 | 2005-11-17 | Toyo Tire & Rubber Co Ltd | 空気入りラジアルタイヤ |
JP2006069283A (ja) * | 2004-08-31 | 2006-03-16 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
WO2014057551A1 (ja) * | 2012-10-10 | 2014-04-17 | 横浜ゴム株式会社 | 空気入りタイヤ |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5332018A (en) * | 1989-09-01 | 1994-07-26 | The Goodyear Tire & Rubber Company | Folded belt reinforcing assembly including spirally wound strip for a pneumatic tire |
JP3644728B2 (ja) * | 1995-07-26 | 2005-05-11 | 横浜ゴム株式会社 | 空気入りラジアルタイヤ |
JP3611395B2 (ja) * | 1996-03-11 | 2005-01-19 | 横浜ゴム株式会社 | 空気入りラジアルタイヤ |
JPH11321233A (ja) * | 1998-05-18 | 1999-11-24 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
AU2001279773A1 (en) * | 2000-07-24 | 2002-02-05 | Michelin Recherche Et Technique S.A. | Tyre with aramid fibre protective crown ply |
JP4295795B2 (ja) * | 2007-12-07 | 2009-07-15 | 住友ゴム工業株式会社 | 空気入りタイヤ |
CN103717410B (zh) * | 2011-07-29 | 2015-04-15 | 横滨橡胶株式会社 | 充气轮胎 |
CN107614286B (zh) * | 2015-05-25 | 2020-07-28 | 株式会社普利司通 | 轮胎用加强构件以及使用了该轮胎用加强构件的轮胎 |
JP2018083595A (ja) * | 2016-11-25 | 2018-05-31 | 株式会社ブリヂストン | タイヤ |
JPWO2018147450A1 (ja) * | 2017-02-13 | 2019-12-12 | 株式会社ブリヂストン | タイヤ |
-
2017
- 2017-06-19 JP JP2017119984A patent/JP6811684B2/ja active Active
-
2018
- 2018-05-24 US US16/619,720 patent/US20200198400A1/en not_active Abandoned
- 2018-05-24 CN CN201880041013.XA patent/CN110770039A/zh active Pending
- 2018-05-24 WO PCT/JP2018/020071 patent/WO2018235520A1/ja unknown
- 2018-05-24 EP EP18820764.1A patent/EP3643515A4/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09220908A (ja) * | 1996-02-15 | 1997-08-26 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
JP2003231403A (ja) * | 2002-02-12 | 2003-08-19 | Bridgestone Corp | 空気入りタイヤ |
JP2004001609A (ja) | 2002-05-31 | 2004-01-08 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
JP2005319955A (ja) * | 2004-05-11 | 2005-11-17 | Toyo Tire & Rubber Co Ltd | 空気入りラジアルタイヤ |
JP2006069283A (ja) * | 2004-08-31 | 2006-03-16 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
WO2014057551A1 (ja) * | 2012-10-10 | 2014-04-17 | 横浜ゴム株式会社 | 空気入りタイヤ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3643515A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN110770039A (zh) | 2020-02-07 |
JP6811684B2 (ja) | 2021-01-13 |
US20200198400A1 (en) | 2020-06-25 |
JP2019001420A (ja) | 2019-01-10 |
EP3643515A1 (en) | 2020-04-29 |
EP3643515A4 (en) | 2021-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6718867B2 (ja) | タイヤ用補強部材およびこれを用いたタイヤ | |
JP6423312B2 (ja) | タイヤ用補強部材およびこれを用いたタイヤ | |
WO2018100961A1 (ja) | ゴム-コード複合体、タイヤ用補強部材およびこれを用いたタイヤ | |
WO2018235520A1 (ja) | タイヤ | |
WO2018147450A1 (ja) | タイヤ | |
WO2020121731A1 (ja) | タイヤ | |
WO2018097083A1 (ja) | タイヤ | |
WO2018097084A1 (ja) | タイヤ | |
JP6701060B2 (ja) | ゴム−コード複合体、タイヤ用補強部材およびこれを用いたタイヤ | |
JP2019001197A (ja) | 補強部材およびそれを用いたタイヤ | |
WO2019117010A1 (ja) | タイヤ | |
WO2018230264A1 (ja) | 補強部材およびそれを用いたタイヤ | |
WO2019116650A1 (ja) | タイヤ | |
CN109996686B (zh) | 轮胎 | |
JP2019001195A (ja) | 補強部材およびそれを用いたタイヤ | |
WO2018235521A1 (ja) | タイヤ | |
WO2019116841A1 (ja) | タイヤ用補強部材およびこれを用いたタイヤ | |
WO2019116766A1 (ja) | タイヤ用補強部材およびこれを用いたタイヤ | |
WO2018230265A1 (ja) | タイヤ | |
JP2019104277A (ja) | タイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18820764 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018820764 Country of ref document: EP Effective date: 20200120 |