WO2018232695A1 - 触摸屏当前基准值的更新方法、装置、触摸屏及电子终端 - Google Patents
触摸屏当前基准值的更新方法、装置、触摸屏及电子终端 Download PDFInfo
- Publication number
- WO2018232695A1 WO2018232695A1 PCT/CN2017/089559 CN2017089559W WO2018232695A1 WO 2018232695 A1 WO2018232695 A1 WO 2018232695A1 CN 2017089559 W CN2017089559 W CN 2017089559W WO 2018232695 A1 WO2018232695 A1 WO 2018232695A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- reference value
- touch screen
- fitting
- current
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/0418—Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
Definitions
- the present application relates to the field of touch technologies, and in particular, to a method, an apparatus, a touch screen, and an electronic terminal for updating a current reference value of a touch screen.
- the touch coordinates of the touch position are the key technologies for the input/output of the touch screen.
- the prior art uses background subtraction to calculate touch coordinates. Taking the capacitive touch as an example, the specific process of calculating the touch coordinates using the background subtraction method is briefly described as follows: when the touch screen is powered on, the original value of the capacitance on each sampling node on the touch screen is obtained, and the original value is taken as the sampling node.
- the reference value of the upper capacitor for example, when the power switch of the smart phone is turned on, the original value of the corresponding capacitance of each sampling node on the touch screen of the smart phone is obtained, so that the original value is used as the reference value of the corresponding sampling node; After the user operates the touch screen after power-on, the current value of each sampling node on the touch screen is obtained, and the change value of the capacitance on each sampling node is obtained by subtracting the current value from the reference value, and the change amount may identify the user on the touch screen.
- the current touch position therefore, by analyzing the amount of change in capacitance on each sampling node, the touch coordinates of the current touch position of the user on the touch screen can be determined.
- the reference value of the capacitance when the sampling node is powered on, but in practical applications, the reference value usually has a deviation, which may not accurately determine the touch corresponding to the touch position.
- Control coordinates For example, when the touch screen of the smart phone is in the state of being turned off, and the touch screen is in a foreign object pressing state, for example, the touch screen of the mobile phone is squeezed by the user's handbag or other objects in the pocket, and if there is a caller ID, the touch screen will be clicked. Bright, the reference value is updated.
- the reference value at this time is a reference value when an object is pressed against the touch screen, it is an erroneous reference value, and the amount of change in the corresponding capacitance of the sampling node is also wrong. Therefore, the determined touch coordinates may also have an error. When the user unlocks, the screen cannot be unlocked.
- the premise is: theoretically assume that the materials and manufacturing processes of the electrodes in the same touch screen are completely consistent, and the sampling values of the corresponding capacitors at each sampling node when powered up and not pressed With certain regularity, such as sampling points corresponding to the same sensing channel, the current reference values are the same or similar, that is, the current reference values have ideal consistency.
- the scheme obtains a reference by calculating a difference between current reference values of capacitances on adjacent sampling nodes when powering up the touch screen.
- Consistency value when the touch is detected after the power-on is completed, calculating the difference between the current original values of the capacitors on the adjacent sampling nodes to obtain the current consistency value, and determining whether the difference between the current consistency value and the reference consistency value is greater than a preset threshold. If the difference between the current consistency value and the reference consistency is greater than the preset threshold, it is determined that the touch screen has a foreign object pressing or a foreign body pressing when the power is turned on, and the current reference value of the touch screen is updated.
- the current reference values of the corresponding capacitances of the sampling nodes are not the same or not similar, and the touch screen is powered when the touch screen is powered up and there is a foreign object pressing.
- the current reference value of the corresponding capacitor of the upsampling node has a certain regularity. For example, the current reference value is the same or similar, that is, the reference consistency value is small, and the current consistency value corresponding to the sampling node is consistent with the reference when the user operates the touch screen after power-on.
- the difference between the sex values is greater than the preset threshold, so that the current reference value of the touch screen is erroneously updated, that is, the current reference value of the touch screen is not actually updated in this case, but the current reference value is performed according to the above scheme. Updated. This may result in the inability to provide a basis for calculating the touch coordinates, further causing the touch screen to be determined to have been pressed when not pressed, or to be determined not to be pressed when pressed.
- the present application provides a method, an apparatus, a touch screen and an electronic terminal for updating a current reference value of a touch screen for customer service to avoid the above-mentioned defects of the prior art.
- the present application provides a method for updating a current reference value of a touch screen, including:
- Whether the trigger condition of the reference value update is satisfied is determined according to the fitting residual value, and if so, the current reference value of the touch screen is updated.
- determining, according to a fitting relationship between the backup reference value and the current original value, the fitting original value of the sampling node includes: using the backup reference value as an independent variable, Determining, according to the dependent variable, a fitting function model between the backup reference value and the current original value; determining a fitting of the sampling node according to the fitting function model and the backup reference value Original value.
- determining, according to a fitting relationship between the backup reference value and the current original value, the fitting original value of the sampling node includes: sampling, according to all sampling nodes or partial sampling on the touch screen.
- a fitting relationship between the backup reference value of the node and the current original value determines a fitted original value of the sampling node.
- determining, according to a fitting relationship between the backup reference value and the current original value, the fitting original value of the sampling node includes: belonging to the driving channel on the touch screen and/or A fitting relationship between the backup reference value of all sampling nodes of the sensing channel and all of the current original values determines a fitting original value of the sampling node; or, the driving channel and/or sensing on the touch screen A fitting relationship between the backup reference value of the partial sampling node of the channel and a portion of the current original value determines a fitted original value of the sampling node.
- the triggering condition for determining whether the reference value update is satisfied according to the fitting residual value comprises: indexing all of the values of all the fitting residual values that are the largest The residual value is fitted to determine whether the largest fit residual is not less than the fit residual threshold, and if so, the current reference value of the touch screen is updated.
- the method further includes: determining that the touch screen is powered on if the fitting residual value that is determined to be the largest when the touch screen is powered on is not less than a fitting residual threshold There is a foreign body pressing.
- the triggering condition for determining whether the reference value update is satisfied according to the fitting residual value comprises: determining whether the fitting residual value is not less than a fitting residual a sampling node of the threshold, if yes, satisfying a trigger condition for updating the reference value; updating the current reference value of the touch screen includes: updating a current reference value when the touch screen is powered on.
- the method further includes: determining, when the touch screen is powered on, that the sampling node having the fitting residual value is not less than a fitting residual threshold, The current reference value corresponding to the power-on is abnormal after the power-on is completed;
- Updating the current reference value of the touch screen includes: updating a current reference value after the touch screen is powered on.
- the current reference value of the touch screen is updated.
- the method includes: updating the current reference value according to a weighting operation result on the current original value and the current reference value.
- updating the current reference value includes: updating a current reference value of all sampling nodes on the touch screen, or directly sampling a current sampling node on the touch screen The baseline value is updated.
- the backup reference value is obtained by sampling the sampling node when the touch screen is not touched.
- An embodiment of the present application provides an apparatus for updating a current reference value of a touch screen, including:
- An obtaining unit configured to acquire a current original value of the sampling node on the touch screen
- a fitting unit configured to determine a fitting original value of the sampling node according to a fitting relationship between the backup reference value and the current original value
- a calculating unit configured to calculate a fitting residual value of the fitting original value and the current original value
- an updating unit configured to determine, according to the fitting residual value, whether a trigger condition of the reference value update is satisfied, and if yes, update a current reference value of the touch screen.
- the embodiment of the present invention provides a touch screen, which includes a touch chip and a touch sensor, where the touch sensor is used to collect a current original value of a sampling node on a touch screen, and the touch chip is configured to: acquire a sampling node on a touch screen. a current original value, determining a fitting original value of the sampling node according to a fitting relationship between the backup reference value and the current original value, calculating a fitting residual value of the fitting original value and the current original value, and The fitting residual value is used to determine whether the trigger condition for updating the reference value is satisfied, and if so, the current reference value of the touch screen is updated.
- An embodiment of the present application provides an electronic terminal including the touch screen described above.
- the current original value of the sampling node on the touch screen is obtained; and the fitting original of the sampling node is determined according to the fitting relationship between the backup reference value and the current original value. a value; calculating a fitting residual value of the fitting original value and the current original value; determining, according to the fitting residual value, whether a trigger condition of the reference value update is satisfied, and if yes, performing a current reference value of the touch screen
- the update avoids the inability to provide a basis for calculating touch coordinates caused by the erroneous update of the current reference value in the above prior art.
- FIG. 1 is a schematic flowchart of a method for updating a current reference value of a touch screen according to Embodiment 1 of the present application;
- FIG. 2 is a schematic flowchart of a method for updating a current reference value of a touch screen according to Embodiment 2 of the present application;
- FIG. 3 is a schematic flowchart of a method for updating a current reference value of a touch screen according to Embodiment 3 of the present application;
- FIG. 4 is a schematic diagram of a program module of an apparatus for updating a current reference value of a touch screen according to Embodiment 4 of the present application;
- FIG. 5 is a schematic structural diagram of a touch screen according to Embodiment 5 of the present application.
- the current original value of the sampling node on the touch screen is obtained; and the fitting original of the sampling node is determined according to the fitting relationship between the backup reference value and the current original value. a value; calculating a fitting residual value of the fitting original value and the current original value; determining, according to the fitting residual value, whether a trigger condition of the reference value update is satisfied, and if yes, performing a current reference value of the touch screen Update.
- the current reference value has changed when the current reference value difference is performed on the adjacent sampling node, and in the present application, since the backup reference value is the reference value when there is no touch, the current The reference value is constant when updated, thus avoiding the inability to provide a basis for calculating the touch coordinates caused by the erroneous update of the current reference value in the prior art.
- FIG. 1 is a schematic flowchart of a method for updating a current reference value of a touch screen according to Embodiment 1 of the present application; as shown in FIG. 1, the method includes:
- the backup reference value may be a sampled value obtained by sampling the sampling node when the touch screen is not touched.
- the sampling node is sampled, and the obtained sampling value is used as the backup reference value, and therefore, the backup reference value is stable under normal conditions; It should be noted that, if the backup reference value is also a backup reference value that is corrected in real time in consideration of an environment or the like.
- the backup function value is an independent variable
- the current original value is a dependent variable
- a fitting function model between the backup reference value and the current original value is determined;
- the ensemble model and the backup reference value determine a fitted raw value for the sample node.
- the backup reference value and the current original value of all sampling nodes or partial sampling nodes on the touch screen may be A fitting relationship between the determinations determines the fitted original value of the sampling node.
- determining the fitting original value may be: using the backup reference value and all the current original values of all sampling nodes belonging to the driving channel and/or the sensing channel on the touch screen. a fitting relationship between the sampling values of the sampling node; or the backup reference value of the partial sampling node belonging to the driving channel and/or the sensing channel on the touch screen and a portion of the current original value The fitting relationship between the determinations determines the fitted original value of the sampling node.
- the fitting relationship between the backup reference value of all or part of the sampling nodes corresponding to the driving channel and all the current original values may be determined in units of driving channels, thereby determining a fitting original value of the sampling node.
- the matching relationship between the backup reference value of all or part of the sampling nodes corresponding to the sensing channel and all the current original values may be determined, thereby determining the sampling node. The original value.
- the fitting function model when fitting, may be a linear fitting function model or a nonlinear fitting function model.
- fitting original value is subtracted from the current original value and then the absolute value is obtained, thereby calculating the fitting residual value.
- the update trigger condition and the scenario that requires the current reference value to be updated are Off, for example, for foreign matter pressing, there are water droplets on the touch screen.
- the capacitance value of the mutual capacitance on the sampling node becomes smaller, and the sampling is obtained at this time.
- the current original value is smaller than the original value when there is no foreign matter pressing or no water drop, and if it is self-contained, the current original value obtained by sampling is compared with the original value when there is no foreign matter pressing or no water drop. Will get bigger.
- the method when setting an update trigger condition, may be uniformly configured to: determine whether the fit residual value is greater than a fitting residual threshold, and if so, The current reference value of the touch screen is updated, otherwise, the current reference value of the touch screen does not need to be updated.
- different touch implementations may be set for different touch implementations, for example, for mutual compatibility and self-capacity, for example, by automatically modifying or manually modifying the system, the details are not described in detail.
- the fitting residual threshold is not necessarily fixed, and the fitting residual threshold can be adjusted in real time.
- the current reference value of the touch screen when the current reference value of the touch screen is updated, the current reference value of all sampling nodes on the touch screen is updated, or the current reference value of the partial sampling node on the touch screen is updated.
- the partial sampling node includes at least a sampling node whose fitting residual value is greater than a fitting residual threshold.
- the current reference value when the specific update is performed, the current reference value may be updated according to the weighted operation result of the current original value and the current reference value (or the current reference value to be updated) to obtain the updated current
- the reference value for example, weights the current original value and the current reference value, and takes the value obtained by the weighting operation as the new current reference value.
- the current reference value before the update may be the reference value that has been updated after the last power-on and before the current power-on.
- the updated current reference value may be after the current power-on is completed and the next power-on.
- the reference value obtained by re-updating the current reference value before the update is calculated based on the updated current reference value when calculating the touch coordinates. It should be noted that when the first update is made, the backup reference value can be used as the current reference value.
- FIG. 2 is a schematic flowchart of a method for updating a current reference value of a touch screen according to Embodiment 2 of the present application; as shown in FIG. 2, the method includes:
- the backup reference value is specifically obtained by sampling the sampling node when the touch screen is not touched.
- Table 1 is an example of a backup reference value when the touch panel is implemented by mutual capacitance when the power is turned on.
- the driving electrode and the sensing electrode may both be strip electrodes, and the mutual capacitance is formed at the intersection of the driving electrode and the sensing electrode.
- the magnitude of the values in Table 1 corresponds to the magnitude of the capacitance at the sampling node when the touch screen is not touched.
- the power-on state may be a process in which the power module starts to provide power for the touch screen.
- the power module at this time is when the touch screen is powered on to illuminate the screen.
- the backup reference value shown in Table 1 can be stored in a non-volatile storage medium, thereby improving storage security, and can also be quickly and accurately obtained.
- the nonvolatile storage medium may be a Flash Memory, a PROM (Programmable Read Only Memory), an EAROM (Electrically alterable read-only memory), or an EPROM (Erasable).
- Programmable read-only memory, erasable programmable read-only memory or EEPROM Electrically erasable programmable read only memory, etc.
- the nonvolatile storage medium in this embodiment is specifically a Flash Memory.
- Table 2 is an example of the current original value at the time of power-on of the embodiment.
- the value of the value in the table 2 corresponds to the capacitance value of the sampling node when the touch screen is at the current time.
- the driving signal is injected into the driving electrode, and the sensing electrode is used to obtain the driving signal. .
- the backup reference values are respectively substituted into the fitting function model, and the fitting original values can be obtained.
- Table 3 is an example of fitting the original values when powering up in the embodiment.
- one driving electrode corresponds to one driving channel
- one sensing electrode corresponds to one sensing channel. Therefore, in this embodiment, the current original value corresponding to the sampling node of each driving electrode can be And the backup reference value is fitted, the backup reference value of the eight driving electrodes in Table 1 is taken as the independent variable x, and the current original values of the eight driving electrodes in Table 2 corresponding thereto are respectively used as the dependent variable y, and the independent variable
- the fit of x and the dependent variable y yields a fitted function model:
- f i represents a fitting function model corresponding to the ith driving electrode.
- the current original value corresponding to the sampling node of each sensing electrode and the backup reference value may be matched, and the backup reference value of the six sensing electrodes in Table 1 is used as an independent variable.
- x with the current original values of the six sensing electrodes in Table 2 corresponding thereto as the dependent variable y, fitting the independent variable x and the dependent variable y to obtain a fitted function model:
- the backup reference value is again taken as an independent variable to obtain a fitting original value.
- f j represents the corresponding j-th sensing electrode. Fit the function model.
- Table 4 is an example of fitting the residual value at the time of power-on of the present embodiment, that is, using the fitted original value in Table 3 minus the current original value and taking the absolute value to obtain the fitted residual value.
- TX1 to TX8 are the numbers of the drive electrodes
- RX1 to RX6 are the numbers of the sense electrodes.
- the current reference value can be quickly updated.
- the fitting residual value of all sampling nodes is maximized.
- the value index processing that is, finds the largest fitting residual value among all the fitting residual values, so that it is possible to quickly determine whether the trigger condition of the reference update is satisfied in the subsequent step S203.
- step S203 Determine whether the maximum fitting residual value is not less than a fitting residual threshold, and if yes, representing a trigger condition that satisfies the current reference value update, proceeding to step S204; otherwise, representing that the current reference value is not satisfied.
- the trigger condition continues to step S205;
- the fitting residual threshold is exemplarily 160
- the fitting residual value of the largest value is 219, which is greater than the fitting residual threshold 160, and therefore, the update trigger condition is satisfied.
- the value obtained by performing weighting processing on the current original value and the current reference value of the touch screen may be used as the updated current reference value.
- the updated current reference value As shown in formula (3):
- Ref new is the updated current reference value
- Ref now is the current reference value (or the current reference value to be updated) when the touch screen is currently powered on, and Ref now is updated after the last power-on.
- the base value, Rawdata now is the current original value.
- ⁇ is an adjustable update coefficient
- the value of ⁇ is [0, 1]
- the current reference value is directly replaced by the current original value, that is, the current original value is directly used as the updated current reference value.
- the obtained Ref new is assigned to Ref PowerOn to update the current reference value when the touch screen is powered on.
- the touch point coordinates are calculated using the current reference value as a reference during the period before the next power-on.
- the maximum residual fitting residual value is not less than the fitting residual threshold when the touch screen is powered on, it is determined that the touch screen is powered on.
- the foreign matter pressing if the fitting residual value determined to be the largest when the touch screen is powered on is smaller than the fitting residual threshold, it can be determined that the touch screen has been removed, and the steps S201, S202, and S203 are further performed for this purpose.
- a method for determining whether there is a foreign object pressing when the touch screen is powered on can be formed, and details are not described in detail.
- FIG. 3 is a schematic flowchart of a method for updating a current reference value of a touch screen according to Embodiment 3 of the present application; as shown in FIG. 3, different from the above embodiment, after the touch screen is powered on,
- the current reference value is updated when a conventional touch operation is performed on the touch screen, specifically, it includes:
- the backup reference value, the current original value, the fitting original value, and the fitting residual value are still taken as an example in the above embodiment of FIG. 2, namely:
- step S302. Determine whether the sampling node whose fitting residual value is not less than the fitting residual threshold value represents a trigger condition that satisfies the current reference value update, and then proceeds to step S303; otherwise, represents that the current reference value update is not satisfied. After the trigger condition, proceed to step S304;
- the fitting residual threshold is still 160, which is different from the above embodiment.
- the fitting residual values of all sampling nodes are fitted one by one.
- the residual threshold is compared to determine whether there is a sampling node whose fitting residual value is not less than a fitting residual threshold.
- the fitting residual threshold 160 is greater than or equal to: the fitting residual value is 161 (corresponding to the mutual capacitance formed between TX4 and RX4), and the fitting residual value is specifically 219 (corresponding to TX5).
- the mutual tolerance formed between RX4 and the fitting residual is specifically 170 (corresponding to the mutual capacitance formed between TX5 and RX5).
- the update is performed by using the current original value and the current reference value of the touch screen as the new current reference value as the new current reference value.
- the formula of the second weighting process is specifically:
- Ref new is the updated current reference value of the touch screen
- Ref now is the current reference value of the touch screen, that is, the current reference value to be updated
- the current reference value to be updated may be updated when the last power-on
- the current reference value, Rawdata now is the current original value.
- ⁇ is an adjustable update coefficient. When ⁇ is 1, the current reference value is replaced with the current original value to obtain the updated current reference value, and the ⁇ value range is [0, 1].
- the current reference value corresponding to the fitting residual value specifically 161, 219, and 170 may be updated, or the fitting residual value may be specifically 161, 219, 170 and its surroundings.
- the current reference value within a certain range is updated, and all current reference values can be updated.
- the ⁇ in the above formula (4) is taken as 0, that is, it is equivalent to not updating the current reference value after the touch screen is powered on.
- the current reference value after Ref new is updated
- the current reference value of Ref now is the current reference value to be updated
- k is a weighting coefficient determined according to environmental data such as temperature and humidity.
- a timing update mechanism of the current reference value may be set, for example, setting a time interval in the timer Timer. It is 100ms, when the arrival timing determines whether an update is needed, when the update is needed, the current reference value of the touch screen is updated.
- FIG. 4 is a schematic diagram of a program module of an apparatus for updating a current reference value of a touch screen according to Embodiment 4 of the present application; as shown in FIG. 4, the method includes:
- the obtaining unit 401 is configured to acquire a current original value of the sampling node on the touch screen
- a fitting unit 402 configured to determine, according to a fitting relationship between the backup reference value and the current original value a fitting original value of the sampling node
- a calculating unit 403 configured to calculate a fitting residual value of the fitting original value and the current original value
- the updating unit 404 is configured to determine, according to the fitting residual value, whether a trigger condition of the reference value update is satisfied, and if yes, update the current reference value of the touch screen.
- the obtaining unit 401, the fitting unit 402, the calculating unit 403, and the updating unit 404 can perform the functions further implemented in the foregoing method embodiments, and details are not described herein again.
- FIG. 5 is a schematic structural diagram of a touch screen according to Embodiment 5 of the present application; as shown in FIG. 5, the touch sensor 502 is configured to collect the current original value of the sampling node on the touch screen.
- the touch chip 501 is configured to acquire a current original value of the sampling node on the touch screen, determine a fitting original value of the sampling node according to a fitting relationship between the backup reference value and the current original value, and calculate the original value of the fitting.
- the touch sensor 502 specifically includes a plurality of driving electrodes 512 and a plurality of sensing electrodes 522 distributed perpendicular to the driving electrodes 512. As shown in FIG. 5, the driving electrodes 512 are disposed along the lateral direction, and the sensing electrodes 522 are disposed along the vertical direction. The node at which the driving electrode 512 and the sensing electrode 522 meet forms a mutual capacitance, and the mutual capacitance serves as a sampling node.
- the touch chip 501 inputs a driving signal of a preset frequency to the driving electrode 512, and the driving signal forms an sensing signal through the sensing electrode 522 to return to the touch chip 501.
- the touch chip 501 converts the sensing signal into a digital signal through an analog-to-digital converter (ADC) disposed inside thereof, and parses the digital signal to generate the current original value.
- ADC analog-to-digital converter
- the touch sensor may also be based on self-capacitance, and details are not described herein again.
- the embodiment of the present application further provides an electronic terminal, which includes the touch screen described in the foregoing embodiment.
- the device embodiments described above are merely illustrative, wherein the modules described as separate components may or may not be physically separate, and the components displayed as modules may or may not be physical modules, ie may be located A place, or it can be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those skilled in the art can do without creative labor. Understand and implement.
- a machine-readable medium includes read only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash storage media, electrical, optical, acoustic, or other forms of propagation signals (eg, carrier waves) , an infrared signal, a digital signal, etc., etc., the computer software product comprising instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the various embodiments or portions of the embodiments described Methods.
- ROM read only memory
- RAM random access memory
- magnetic disk storage media e.g., magnetic disks, magnetic disk storage media, optical storage media, flash storage media, electrical, optical, acoustic, or other forms of propagation signals (eg, carrier waves) , an infrared signal, a digital signal, etc., etc.
- the computer software product comprising instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the various embodiments or portions of the embodiment
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
一种触摸屏当前基准值的更新方法、更新装置、触摸屏及电子终端,方法包括:获取触摸屏上采样节点的当前原始值(S101);根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值(S102);计算所述拟合原始值与当前原始值的拟合残差值(S103);根据所述拟合残差值判断是否满足基准值更新的触发条件(S104),若是,则对所述触摸屏的当前基准值进行更新(S105)。避免了现有技术中对当前基准值的错误更新导致的无法为计算触控坐标提供依据的问题。
Description
本申请属于触控技术领域,尤其涉及一种触摸屏当前基准值的更新方法、装置、触摸屏及电子终端。
触摸位置的触控坐标是触摸屏实现输入/输出的关键技术。为此,现有技术中使用背景减除法计算触控坐标。以电容触控为例,使用背景减除法计算触控坐标的具体过程简要说明如下:在给触摸屏上电时,获得触摸屏上每个采样节点上电容的原始值,并将该原始值作为采样节点上电容的基准值,例如,在按下智能手机的电源开关点亮屏幕时,获取智能手机触摸屏上每个采样节点对应电容的原始值,从而将该原始值作为对应采样节点的基准值;在上电之后当用户操作触摸屏时,获取触摸屏上每个采样节点的当前值,使用基准值减去当前值可获得每个采样节点上电容的变化量,该变化量可标识出用户在触摸屏上的当前触摸位置,因此,通过对每个采样节点上电容的变化量进行分析,进而可确定出用户在触摸屏上的当前触摸位置的触控坐标。
由上述可见,使用背景减除法计算触控坐标时,需要使用采样节点上电时电容的基准值,但是在实际应用中,基准值通常会有偏差从而导致而无法准确的确定触摸位置对应的触控坐标。比如当智能手机的触摸屏为熄屏状态时,且此时触摸屏若处于异物按压状态,如手机的触摸屏被用户手提包或口袋内的其它物体挤压,此时如果有来电显示,触摸屏将被点亮,基准值更新。由于此时的基准值为有物体挤压触摸屏时的基准值,是一个错误的基准值,导致采样节点对应电容的变化量也出现错误,因此,确定出的触控坐标也会出现错误,当用户进行解锁操作时,却无法解锁屏幕。
为此,现有技术中提供了一种解决方案,其前提是:理论上假设同一块触摸屏中电极的材料及制作工艺完全一致,当上电且没有按压时各采样节点处对应电容的采样值具有一定规律性,比如对应于同一感应通道的采样点,当前基准值均相同或者相似,即当前基准值具有理想一致性。该方案通过在给触摸屏上电时,计算相邻采样节点上电容的当前基准值的差分,获得参考
一致性值,在上电完成后检测触摸时,计算相邻采样节点上电容的当前原始值的差分获得当前一致性值,判断当前一致性值和参考一致性值的差值是否大于预设阈值,如果当前一致性值和参考一致性的差值大于预设阈值,则判定触摸屏在上电时有异物按压或者类似异物按压,则对触摸屏的当前基准值更新。
但是,实际中由于触摸屏中电极材料及制作工艺往往存在差异,在上电无按压时,采样节点对应电容的当前基准值并不相同或者并不相似,而当触摸屏上电且有异物按压时触摸屏上采样节点对应电容的当前基准值具有一定规律,比如当前基准值反而相同或者相似,即参考一致性值较小,而当上电之后用户操作触摸屏时采样节点对应的当前一致性值和参考一致性值的差值大于预设阈值,从而对触摸屏的当前基准值进行错误更新,即这种情况下实际上并不需要对触摸屏的当前基准值进行更新,但是根据上述方案却对当前基准值进行了更新。由此会导致无法为计算触控坐标提供依据,进一步导致触摸屏在没有被按压时会被判定为已经被按压,或在被按压时会被判定为没被按压。
因此,如何正确地更新当前基准值,成为现有技术中亟需解决的技术问题。
发明内容
本申请提供一种触摸屏当前基准值的更新方法、装置、触摸屏及电子终端,用以客服现有技术的上述缺陷。
本申请提供一种触摸屏当前基准值的更新方法,其包括:
获取触摸屏上采样节点的当前原始值;
根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值;
计算所述拟合原始值与当前原始值的拟合残差值;
根据所述拟合残差值判断是否满足基准值更新的触发条件,若是,则对所述触摸屏的当前基准值进行更新。
可选地,本申请的任一实施例中,根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值包括:以所述备份基准值为自变量、
所述当前原始值为因变量,确定所述备份基准值和所述当前原始值之间的拟合函数模型;根据所述拟合函数模型以及所述备份基准值确定所述采样节点的拟合原始值。
可选地,本申请的任一实施例中,根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值包括:根据所述触摸屏上所有采样节点或者部分采样节点的所述备份基准值和所述当前原始值之间的拟合关系确定所述采样节点的拟合原始值。
可选地,本申请的任一实施例中,根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值包括:以所述触摸屏上属于驱动通道和/或感应通道的所有采样节点的所述备份基准值和所有所述当前原始值之间的拟合关系确定所述采样节点的拟合原始值;或者,以所述触摸屏上属于驱动通道和/或感应通道的部分采样节点的所述备份基准值和部分所述当前原始值之间的拟合关系确定所述采样节点的拟合原始值。
可选地,本申请的任一实施例中,所述根据所述拟合残差值判断是否满足基准值更新的触发条件包括:索引出所有所述拟合残差值中值最大的所述拟合残差值,判断最大的所述拟合残差值是否不小于拟合残差阈值,如果是,则对所述触摸屏的当前基准值进行更新。
可选地,本申请的任一实施例中,还包括:若在所述触摸屏上电时判定最大的所述拟合残差值不小于拟合残差阈值,则确定所述触摸屏在上电时有异物按压。
可选地,本申请的任一实施例中,所述根据所述拟合残差值判断是否满足基准值更新的触发条件包括:判断是否存在所述拟合残差值不小于拟合残差阈值的采样节点,如果是,则满足基准值更新的触发条件;对所述触摸屏的当前基准值进行更新包括:对所述触摸屏上电时的当前基准值进行更新。
可选地,本申请的任一实施例中,还包括:若在所述触摸屏上电完成后判定存在所述拟合残差值不小于拟合残差阈值的采样节点,则确定所述触摸屏在上电完成后对应的所述当前基准值存在异常;
对所述触摸屏的当前基准值进行更新包括:对所述触摸屏上电完成后的当前基准值进行更新。
可选地,本申请的任一实施例中,对所述触摸屏的当前基准值进行更新
包括:根据对当前原始值和当前基准值的加权运算结果,对所述当前基准值进行更新。
可选地,本申请的任一实施例中,对所述当前基准值进行更新包括:对所述触摸屏上所有采样节点的当前基准值进行更新,或者,对所述触摸屏上部分采样节点的当前基准值进行更新。
可选地,本申请的任一实施例中,所述备份基准值为在所述触摸屏处于未被触压时对采样节点进行采样获得的。
本申请实施例提供一种触摸屏当前基准值的更新装置,其包括:
获取单元,用于获取触摸屏上采样节点的当前原始值;
拟合单元,用于根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值;
计算单元,用于计算所述拟合原始值与当前原始值的拟合残差值;
更新单元,用于根据所述拟合残差值判断是否满足基准值更新的触发条件,若是,则对所述触摸屏的当前基准值进行更新。
本申请实施例提供一种触摸屏,其包括触控芯片以及触控传感器,所述触控传感器用于采集触摸屏上采样节点的当前原始值,所述触控芯片用于:获取触摸屏上采样节点的当前原始值,根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值,计算所述拟合原始值与当前原始值的拟合残差值,以及根据所述拟合残差值判断是否满足基准值更新的触发条件,若是,则对所述触摸屏的当前基准值进行更新。
本申请实施例提供一种电子终端,其包括上述所述的触摸屏。
本申请下述实施例触摸屏当前基准值的更新技术方案中,通过获取触摸屏上采样节点的当前原始值;根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值;计算所述拟合原始值与当前原始值的拟合残差值;根据所述拟合残差值判断是否满足基准值更新的触发条件,若是,则对所述触摸屏的当前基准值进行更新,避免了上述现有技术中对当前基准值的错误更新导致的无法为计算触控坐标提供依据。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实
施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一中触摸屏当前基准值的更新方法的流程示意图;
图2为本申请实施例二中触摸屏当前基准值的更新方法的流程示意图;
图3为本申请实施例三中触摸屏当前基准值的更新方法的流程示意图;
图4为本申请实施例四中触摸屏当前基准值的更新装置的程序模块示意图;
图5为本申请实施例五中触摸屏的结构示意图。
为使得本申请的发明目的、特征、优点能够更加的明显和易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而非全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请下述实施例触摸屏当前基准值的更新技术方案中,通过获取触摸屏上采样节点的当前原始值;根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值;计算所述拟合原始值与当前原始值的拟合残差值;根据所述拟合残差值判断是否满足基准值更新的触发条件,若是,则对所述触摸屏的当前基准值进行更新。对比与现有技术中,在进行相邻采样节点上当前基准值差分时,当前基准值已经发生了变化,而本申请中,由于备份基准值是在无触压时的基准值,在进行当前基准值更新时是恒定不变的,因此避免了现有技术中对当前基准值的错误更新导致的无法为计算触控坐标提供依据。
图1为本申请实施例一中触摸屏当前基准值的更新方法的流程示意图;如图1所示,其包括:
S101、获取触摸屏上采样节点的当前原始值;
S102、根据备份基准值和当前原始值之间的拟合关系确定所述采样节点
的拟合原始值;
本实施例中,所述备份基准值可为在触摸屏处于未被触压时对采样节点进行采样获得的采样值。例如,在将触摸屏设置为输入设备智能终端出厂时,对采样节点进行采样,将获得的采样值作为所述备份基准值,因此,所述备份基准值在正常情况下是稳定不变的;但是需要说明的是,如果所述备份基准值还可以是考虑到环境等影响实时进行校正了的备份基准值。
本实施例中,具体以所述备份基准值为自变量、所述当前原始值为因变量,确定所述备份基准值和所述当前原始值之间的拟合函数模型;再根据所述拟合函数模型以及所述备份基准值确定所述采样节点的拟合原始值。
进一步地,在确定所述备份基准值和所述当前原始值之间的拟合函数模型时,可以通过所述触摸屏上所有采样节点或者部分采样节点的所述备份基准值和所述当前原始值之间的拟合关系确定所述采样节点的拟合原始值。
可选地,本实施例中,确定所述拟合原始值具体可以为:以所述触摸屏上属于驱动通道和/或感应通道的所有采样节点的所述备份基准值和所有所述当前原始值之间的拟合关系确定所述采样节点的拟合原始值;或者,以所述触摸屏上属于驱动通道和/或感应通道的部分采样节点的所述备份基准值和部分所述当前原始值之间的拟合关系确定所述采样节点的拟合原始值。
换言之,可以以驱动通道为单位,确定驱动通道对应的所有或者部分采样节点的所述备份基准值和所有所述当前原始值之间的拟合关系,从而确定所述采样节点的拟合原始值;同理,也可以以感应通道为单位,确定感应通道对应的所有或者部分采样节点的所述备份基准值和所有所述当前原始值之间的拟合关系,从而确定所述采样节点的拟合原始值。
本实施例中,在拟合时,拟合函数模型可以是线性拟合函数模型,也可以是非线性拟合函数模型。
S103、计算所述拟合原始值与当前原始值的拟合残差值;
需要说明的是,拟合原始值减去当前原始值再取绝对值,从而计算得到拟合残差值。
S104、根据拟合残差值判断是否满足当前基准值更新的触发条件,若是,则执行步骤S105;否则,执行步骤S106;
本实施例中,更新触发条件跟导致需要对当前基准值需要更新的场景有
关,比如为异物按压、触摸屏上有水滴,对于基于互容实现的电容屏来说,当有触摸屏上异物按压、有水滴时,采样节点上互容的电容值会变小,此时采样得到的当前原始值与没有异物按压、没有水滴情形时的原始值相比会变小,而如果对于自容来说,采样得到的当前原始值与没有异物按压、没有水滴情形时的原始值相比会变大。需要说明的是,对于互容实现的电容屏来说,可能还存在当前原始值变大的情形,对于自容实现的电容屏来说,可能还存在采样原始值变小的情形,详细不再赘述。
为此,为了尽可能的通用于上述不同的情形,本实施例中,在设置更新触发条件时,统一设置成:判断拟合残差值是否不小于拟合残差阈值,如果是,则需要对所述触摸屏的当前基准值进行更新,否则,则不需要对所述触摸屏的当前基准值进行更新。
本实施例或其他实施例中,可以根据实际需要,还可以在设定更新触发条件时,统一设置成:判断拟合残差值是否大于拟合残差阈值,如果是,则需要对所述触摸屏的当前基准值进行更新,否则,则不需要对所述触摸屏的当前基准值进行更新。
本实施例或其他实施例中,针对不同的触控实现方式,比如针对互容、自容,可以设置不同的拟合残差阈值,比如通过系统自动修改或者人为修改的方式,详细不再赘述。另外,在实施的过程中,拟合残差阈值并不一定固定不变,还可以对拟合残差阈值进行实时调整。
S105、对所述触摸屏的当前基准值进行更新;
本实施例中,在对所述触摸屏的当前基准值进行更新时,对所述触摸屏上所有采样节点的当前基准值进行更新,或者,对所述触摸屏上部分采样节点的当前基准值进行更新,所述部分采样节点至少包括拟合残差值大于拟合残差阈值对应的采样节点。
本实施例中,在具体更新时,可以根据对当前原始值和当前基准值(或称之为待更新的当前基准值)的加权运算结果,对所述当前基准值进行更新得到更新后的当前基准值,比如,对当前原始值和当前基准值进行加权运算,将加权运算得到的数值作为新的当前基准值。
更新前的当前基准值可以是上一次上电完成后、当前上电之前经过更新处理的基准值,更新后的当前基准值可以是当前上电完成后、下一次上电之
前对更新前的当前基准值进行再次更新处理得到的基准值,在计算触控坐标时,以更新后的当前基准值为依据。需要说明是,在首次更新时,可以将备份基准值作为当前基准值。
S106、对所述触摸屏的当前基准值不进行更新。
图2为本申请实施例二中触摸屏当前基准值的更新方法的流程示意图;如图2所示,其包括:
S201、确定触摸屏上电时采样节点的拟合原始值与当前原始值的拟合残差值;
具体地,在本实施例中,所述备份基准值具体为在触摸屏处于未被触压时对采样节点进行采样获得的。表1为本实施例上电时以互容实现触摸屏为例时备份基准值的示例,驱动电极和感应电极可以均为条状电极,驱动电极和感应电极的交叉点处形成互容。表1中数值的大小对应于触摸屏处于未被触压时采样节点处电容值大小。
表1
编号 | TX1 | TX2 | TX3 | TX4 | TX5 | TX6 | TX7 | TX8 |
RX1 | 2932 | 2927 | 2932 | 2935 | 2934 | 2933 | 2939 | 2942 |
RX2 | 2786 | 2778 | 2783 | 2789 | 2787 | 2790 | 2794 | 2798 |
RX3 | 2708 | 2703 | 2706 | 2711 | 2712 | 2712 | 2715 | 2720 |
RX4 | 2792 | 2788 | 2792 | 2791 | 2796 | 2798 | 2803 | 2803 |
RX5 | 2775 | 2770 | 2777 | 2779 | 2781 | 2782 | 2790 | 2789 |
RX6 | 2597 | 2593 | 2608 | 2604 | 2604 | 2605 | 2609 | 2609 |
具体地,在本实施例中,所述上电状态可以为电源模块为所述触摸屏开始提供电能的过程。例如,当按下手机的电源开关,或者有来电显示时,此时电源模块为所述触摸屏上电点亮屏幕时。
具体地,在本申请实施例中,表1所示的备份基准值可以存储于非易失性存储介质中,从而提高存储的安全性,而且还可被快速准确地获取。所述非易失性存储介质可以是Flash Memory(闪存)、PROM(Programmable read only memory,可编程只读存储器)、EAROM(Electrically alterable read-only memory,电可改写只读存储器)、EPROM(Erasable programmable read-only memory,可擦可编程只读存储器)或EEPROM(Electrically erasable programmable read-only
memory,电可擦可编程只读存储器)等。本实施例中非易失性存储介质具体为Flash Memory。
表2为本实施例上电时当前原始值的示例,表2中数值的大小对应于触摸屏处于当前时刻时采样节点处电容值大小,具体通过向驱动电极灌入驱动信号,通过感应电极感应获取。
表2
编号 | TX1 | TX2 | TX3 | TX4 | TX5 | TX6 | TX7 | TX8 |
RX1 | 2931 | 2927 | 2703 | 2937 | 2935 | 2935 | 2942 | 2943 |
RX2 | 2784 | 2778 | 2783 | 2787 | 2788 | 2791 | 2796 | 2796 |
RX3 | 2710 | 2703 | 2708 | 2712 | 2634 | 2712 | 2715 | 2718 |
RX4 | 2793 | 2788 | 2795 | 2644 | 2610 | 2710 | 2804 | 2803 |
RX5 | 2775 | 2771 | 2777 | 2778 | 2650 | 2700 | 2790 | 2788 |
RX6 | 2599 | 2595 | 2609 | 2605 | 2604 | 2606 | 2612 | 2610 |
具体地,在本实施例中,将备份基准值分别代入拟合函数模型中,可得到拟合原始值,表3为本实施例上电时拟合原始值的示例。
表3
编号 | TX1 | TX2 | TX3 | TX4 | TX5 | TX6 | TX7 | TX8 |
RX1 | 2933 | 2927 | 2933 | 2919 | 2702 | 2704 | 2937 | 2942 |
RX2 | 2786 | 2778 | 2782 | 2804 | 2824 | 2813 | 2792 | 2798 |
RX3 | 2707 | 2702 | 2705 | 2742 | 2775 | 2743 | 2714 | 2721 |
RX4 | 2792 | 2788 | 2792 | 2805 | 2829 | 2820 | 2801 | 2803 |
RX5 | 2775 | 2770 | 2776 | 2796 | 2820 | 2805 | 2788 | 2789 |
RX6 | 2595 | 2592 | 2606 | 2658 | 2704 | 2647 | 2608 | 2610 |
具体地,由于采用的是条状电极,因此,一条驱动电极对应一个驱动通道,一条感应电极对应一个感应通道,因此,在本实施例中,可以每条驱动电极上采样节点对应的当前原始值和与备份基准值进行拟合,将表1中8条驱动电极的备份基准值作为自变量x,将与其对应的表2中8条驱动电极的当前原始值分别作为因变量y,对自变量x和因变量y进行拟合,获得拟合函数模型:
获得上述公式(1)所示的拟合函数模型后,重新将备份基准值作为自变
量带入,从而求得拟合原始值。公式(1)中,fi表示第i条驱动电极对应的拟合函数模型。
需要说明的是,在另外实施例中,还可以以每条感应电极上采样节点对应的当前原始值和与备份基准值进行拟合,以表1中6条感应电极的备份基准值作为自变量x,以与其对应的表2中6条感应电极的当前原始值分别作为因变量y,对自变量x和因变量y进行拟合,获得拟合函数模型:
获得上述公式(2)所示的拟合函数模型后,重新将备份基准值作为自变量带入,从而求得拟合原始值,公式(2)中,fj表示第j条感应电极对应的拟合函数模型。
表4为本实施例上电时拟合残差值的示例,即使用表3中的拟合原始值减去当前原始值再取绝对值得到拟合残差值。
表4
编号 | TX1 | TX2 | TX3 | TX4 | TX5 | TX6 | TX7 | TX8 |
RX1 | 2 | 0 | 3 | 18 | 15 | 5 | 5 | 1 |
RX2 | 2 | 0 | 1 | 17 | 36 | 22 | 4 | 2 |
RX3 | 3 | 1 | 3 | 30 | 141 | 31 | 1 | 3 |
RX4 | 1 | 0 | 3 | 161 | 219 | 110 | 3 | 0 |
RX5 | 0 | 1 | 1 | 18 | 170 | 12 | 2 | 1 |
RX6 | 4 | 3 | 3 | 53 | 100 | 41 | 4 | 0 |
其中,在上述表1-表4中,TX1~TX8为驱动电极的编号,RX1~RX6为感应电极的编号。
S202、索引出所有所述拟合残差值中最大的所述拟合残差值;
本实施例中,由于是在触摸屏上电时还没有对触摸屏进行触压操作,因此,可以对当前基准值进行快速的更新,为了达到此目的,对所有采样节点的拟合残差值进行最大值索引处理,即找出所有的拟合残差值中最大的拟合残差值,从而可以在后续步骤S203中快速判断出是否满足基准更新的触发条件。
参见表四,所有拟合残差值中的最大值为219。
S203、判断最大的所述拟合残差值是否不小于拟合残差阈值,如果是,则代表满足当前基准值更新的触发条件,则继续执行步骤S204;否则,代表不满足当前基准值更新的触发条件,则继续执行步骤S205;
本实施例中,假如拟合残差阈值示例性地为160,则由于值最大的拟合残差值为219,大于拟合残差阈值160,因此,满足更新触发条件。
S204、对所述触摸屏上电时的当前基准值进行更新;
具体地,在本实施例中,在进行当前基准值的更新时,可以将所述当前原始值和所述触摸屏的当前基准值进行加权处理后获得的数值作为更新后的当前基准值。具体如公式(3)所示:
Refnew=(1-β)Refnow+β*Rawdatanow(3)
其中,Refnew是更新后的当前基准值,Refnow是所述触摸屏当前上电时的当前基准值(或称之为待更新的当前基准值),Refnow是沿用上一次上电后更新的基准值,Rawdatanow是当前原始值。其中β为可调更新系数,β值范围为[0,1],当β为1时,用当前原始值直接替换掉当前基准值,即把当前原始值直接作为更新后的当前基准值。
其中,将获得的Refnew赋值给RefPowerOn,以完成触摸屏上电时当前基准值的更新。
S205、对所述触摸屏上电时的当前基准值不进行更新。
本次上电后,在下一次上电之前的期间内,以当前基准值作为基准计算触摸点坐标。
当上述公式(3)中的β为0时,相当于不对当前基准值进行更新。
需要说明的是,在图2所示实施例中,若在所述触摸屏上电时判定最大的所述拟合残差值不小于拟合残差阈值,则确定所述触摸屏在上电时有异物按压,若在所述触摸屏上电时判定最大的所述拟合残差值小于拟合残差阈值,则可判定以为从触摸屏上已移开,为此再与上述步骤S201、S202、S203可形成一种判断触摸屏上电时是否有异物按压的方法,详细不再赘述。
图3为本申请实施例三中触摸屏当前基准值的更新方法的流程示意图;如图3所示,与上述实施例不同的是,本实施例在触摸屏上电完成过之后,
在对触摸屏进行常规的触控操作时对当前基准值进行更新,具体地,其包括:
S301、确定触摸屏上电完成后采样节点的拟合原始值与当前原始值的拟合残差值;
本实施例中,备份基准值、当前原始值、拟合原始值、拟合残差值仍以上述图2实施例中的为例,即:
本实施例上电完成后以互容实现触摸屏为例时备份基准值的示例如表1所示。
本实施例上电完成后以互容实现触摸屏为例时当前原始值的示例如表2所示。
本实施例上电完成后以互容实现触摸屏为例时拟合原始值的示例如表3所示。本实施例中,拟合原始值的方法类似图2所示的实施例,在此不再赘述。
本实施例上电完成后以互容实现触摸屏为例时拟合原始值的示例如表4所示。
S302、判断是否存在所述拟合残差值不小于拟合残差阈值的采样节点,则代表满足当前基准值更新的触发条件,则继续执行步骤S303;否则,代表不满足当前基准值更新的触发条件,则继续执行步骤S304;
与上述图2实施例相同的是,本实施例中,拟合残差阈值仍为160,与上述实施例不同是,本实施例中,将所有采样节点的拟合残差值逐一与拟合残差阈值进行比对,判断是否存在所述拟合残差值不小于拟合残差阈值的采样节点。具体如表4所示,大于等于拟合残差阈值160的有:拟合残差值具体为161(对应TX4与RX4之间形成的互容),拟合残差值具体为219(对应TX5与RX4之间形成的互容),拟合残差值具体为170(对应TX5与RX5之间形成的互容)。
S303、对所述触摸屏上电完成后的当前基准值进行更新。
具体地,在本实施例中,通过将所述当前原始值和所述触摸屏的当前基准值进行加权处理后的数值作为新的当前基准值,从而完成更新。第二加权处理的公式具体为:
Refnew=(1-β)Refnow+β*Rawdatanow(4)
其中,Refnew是所述触摸屏的更新后的当前基准值,Refnow是所述触摸屏的当前基准值即待更新的当前基准值,该待更新的当前基准值可能是上一次上电时已经更新过的当前基准值,Rawdatanow是当前原始值。其中β为可调更新系数,当β为1时,即用当前原始值替换当前基准值得到更新后的当前基准值,β值范围为[0,1]。
如前所述,本实施例中,可以对拟合残差值具体为161、219、170对应的当前基准值进行更新,也可以对拟合残差值具体为161、219、170及其周围一定范围内的当前基准值进行更新,还可以对所有的当前基准值进行更新。
S304、对所述触摸屏上电完成后的当前基准值不进行更新。
在具体实施时,将上述公式(4)中的β取0,即相当于对所述触摸屏上电完成后的当前基准值不进行更新。
需要说明的是,也可以参考上述实施例的技术方案,对所述由于温度、湿度等环境数据因此的当前基准值进行再次更新。具体的更新处理如公式(5)所示:
Refnew=k×Refnow(5)
其中,Refnew更新后的当前基准值,Refnow所述当前基准值即待更新的当前基准值,k为根据温度、湿度等环境数据确定的加权系数。
需要说明的是,在上述实施例的基础上,为确保所述上电完成后的触摸屏的当前基准值具备有效性,可以设置当前基准值的定时更新机制,比如在定时器Timer中设置时间间隔为100ms,当到达定时判断是否需要更新,当需要更新时,对所述触摸屏的当前基准值进行更新。
图4为本申请实施例四中触摸屏当前基准值的更新装置的程序模块示意图;如图4所示,其包括:
获取单元401,用于获取触摸屏上采样节点的当前原始值;
拟合单元402,用于根据备份基准值和当前原始值之间的拟合关系确定
所述采样节点的拟合原始值;
计算单元403,用于计算所述拟合原始值与当前原始值的拟合残差值;
更新单元404,用于根据所述拟合残差值判断是否满足基准值更新的触发条件,若是,则对所述触摸屏的当前基准值进行更新。
需要说明的是,获取单元401、拟合单元402、计算单元403、更新单元404可以执行上述方法实施例中进一步实现的功能,详细不再赘述。
图5为本申请实施例五中触摸屏的结构示意图;如图5所示,包括触控芯片501以及触控传感器502,所述触控传感器502用于采集触摸屏上采样节点的当前原始值,所述触控芯片501用于获取触摸屏上采样节点的当前原始值,根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值,计算所述拟合原始值与当前原始值的拟合残差值,以及根据所述拟合残差值判断是否满足基准值更新的触发条件,若是,则对所述触摸屏的当前基准值进行更新。
触控传感器502具体包括若干个驱动电极512以及与所述驱动电极512垂直的分布的若干感应电极522,如图5所示,驱动电极512沿着横向设置,感应电极522沿着纵向设置,其中,所述驱动电极512和所述感应电极522交汇的节点形成互电容,该互电容作为采样节点。
触控芯片501将预设频率的驱动信号输入到驱动电极512,驱动信号经过感应电极522形成感应信号返回到触控芯片501。触控芯片501通过设置于其内部的模数转换器(ADC,Analog-to-Digital Converter)将所述感应信号转换为数字信号,解析所述数字信号,从而生成所述当前原始值。
在另外一实施例中,触控传感器还可以还是基于自电容,详细不再赘述。
本申请实施例还提供一种电子终端,其包括上述实施例中所述的触摸屏。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以
理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,所述计算机可读记录介质包括用于以计算机(例如计算机)可读的形式存储或传送信息的任何机制。例如,机器可读介质包括只读存储器(ROM)、随机存取存储器(RAM)、磁盘存储介质、光存储介质、闪速存储介质、电、光、声或其他形式的传播信号(例如,载波、红外信号、数字信号等)等,该计算机软件产品包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (14)
- 一种触摸屏当前基准值的更新方法,其特征在于,包括:获取触摸屏上采样节点的当前原始值;根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值;计算所述拟合原始值与当前原始值的拟合残差值;根据所述拟合残差值判断是否满足基准值更新的触发条件,若是,则对所述触摸屏的当前基准值进行更新。
- 根据权利要求1所述的方法,其特征在于,根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值包括:以所述备份基准值为自变量、所述当前原始值为因变量,确定所述备份基准值和所述当前原始值之间的拟合函数模型;根据所述拟合函数模型以及所述备份基准值确定所述采样节点的拟合原始值。
- 根据权利要求1所述的方法,其特征在于,根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值包括:根据所述触摸屏上所有采样节点或者部分采样节点的所述备份基准值和所述当前原始值之间的拟合关系确定所述采样节点的拟合原始值。
- 根据权利伊要求3所述的方法,其特征在于,根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值包括:以所述触摸屏上属于驱动通道和/或感应通道的所有采样节点的所述备份基准值和所有所述当前原始值之间的拟合关系确定所述采样节点的拟合原始值;或者,以所述触摸屏上属于驱动通道和/或感应通道的部分采样节点的所述备份基准值和部分所述当前原始值之间的拟合关系确定所述采样节点的拟合原始值。
- 根据权利要求1所述的方法,其特征在于,所述根据所述拟合残差值判断是否满足基准值更新的触发条件包括:索引出所有所述拟合残差值中最大的所述拟合残差值,判断最大的所述拟合残差值是否不小于拟合残差阈值,如果是,则对所述触摸屏的当前基准值进行更新。
- 根据权利要求5所述的方法,其特征在于,还包括:若在所述触摸屏上电时判定最大的所述拟合残差值不小于拟合残差阈值,则确定所述触摸屏在上电时有异物按压。
- 根据权利要求1所述的方法,其特征在于,所述根据所述拟合残差值判断是否满足基准值更新的触发条件包括:判断是否存在所述拟合残差值不小于拟合残差阈值的采样节点,如果是,则满足基准值更新的触发条件;对所述触摸屏的当前基准值进行更新包括:对所述触摸屏上电时的当前基准值进行更新。
- 根据权利要求7所述的方法,其特征在于,还包括:若在所述触摸屏上电完成后判定存在所述拟合残差值不小于拟合残差阈值的采样节点,则确定所述触摸屏在上电完成后对应的所述当前基准值存在异常;对所述触摸屏的当前基准值进行更新包括:对所述触摸屏上电完成后的当前基准值进行更新。
- 根据权利要求1所述的方法,其特征在于,对所述触摸屏的当前基准值进行更新包括:根据对当前原始值和当前基准值的加权运算结果,对所述当前基准值进行更新。
- 根据权利要求1所述的方法,其特征在于,对所述当前基准值进行更新包括:对所述触摸屏上所有采样节点的当前基准值进行更新,或者,对所述触摸屏上部分采样节点的当前基准值进行更新。
- 根据权利要求1~10任一项所述的方法,其特征在于,所述备份基准值为在所述触摸屏处于未被触压时对采样节点进行采样获得的。
- 一种触摸屏当前基准值的更新装置,其特征在于,包括:获取单元,用于获取触摸屏上采样节点的当前原始值;拟合单元,用于根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值;计算单元,用于计算所述拟合原始值与当前原始值的拟合残差值;更新单元,用于根据所述拟合残差值判断是否满足基准值更新的触发条件,若是,则对所述触摸屏的当前基准值进行更新。
- 一种触摸屏,其特征在于,包括触控芯片以及触控传感器,所述触控传感器用于采集触摸屏上采样节点的当前原始值,所述触控芯片用于:获取触摸屏上采样节点的当前原始值,根据备份基准值和当前原始值之间的拟合关系确定所述采样节点的拟合原始值,计算所述拟合原始值与当前原始值的拟合残差值,以及根据所述拟合残差值判断是否满足基准值更新的触发条 件,若是,则对所述触摸屏的当前基准值进行更新。
- 一种电子终端,其特征在于,包括权利要求13所述的触摸屏。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780000521.9A CN109564481A (zh) | 2017-06-22 | 2017-06-22 | 触摸屏当前基准值的更新方法、装置、触摸屏及电子终端 |
PCT/CN2017/089559 WO2018232695A1 (zh) | 2017-06-22 | 2017-06-22 | 触摸屏当前基准值的更新方法、装置、触摸屏及电子终端 |
EP17901319.8A EP3506064A4 (en) | 2017-06-22 | 2017-06-22 | METHOD AND DEVICE FOR UPDATING THE CURRENT REFERENCE VALUE OF A TOUCH SCREEN, TOUCH SCREEN AND ELECTRONIC END DEVICE |
US16/139,051 US20190025962A1 (en) | 2017-06-22 | 2018-09-23 | Method and apparatus for updating current reference value of touch screen, and electronic terminal thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/089559 WO2018232695A1 (zh) | 2017-06-22 | 2017-06-22 | 触摸屏当前基准值的更新方法、装置、触摸屏及电子终端 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/139,051 Continuation US20190025962A1 (en) | 2017-06-22 | 2018-09-23 | Method and apparatus for updating current reference value of touch screen, and electronic terminal thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018232695A1 true WO2018232695A1 (zh) | 2018-12-27 |
Family
ID=64735415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/089559 WO2018232695A1 (zh) | 2017-06-22 | 2017-06-22 | 触摸屏当前基准值的更新方法、装置、触摸屏及电子终端 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20190025962A1 (zh) |
EP (1) | EP3506064A4 (zh) |
CN (1) | CN109564481A (zh) |
WO (1) | WO2018232695A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111897449A (zh) * | 2020-06-19 | 2020-11-06 | 上海美仁半导体有限公司 | 触控信号的抗干扰处理方法、系统、芯片以及家用电器 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112905034B (zh) * | 2019-12-03 | 2023-09-19 | 敦泰电子(深圳)有限公司 | 触控侦测方法、装置及电子设备 |
CN111338516B (zh) * | 2020-02-26 | 2022-05-10 | 业成科技(成都)有限公司 | 手指触控的检测方法和装置、电子设备、存储介质 |
CN113835558A (zh) * | 2021-09-24 | 2021-12-24 | 维沃移动通信有限公司 | 屏幕参数调整方法、装置及电子设备 |
CN114237727B (zh) * | 2021-12-21 | 2024-05-14 | 深圳市有方科技股份有限公司 | 驱动加载方法、装置、计算机设备和存储介质 |
CN114706602B (zh) * | 2022-04-01 | 2023-03-24 | 珠海读书郎软件科技有限公司 | 一种基于Android的通过app更新触摸屏参数的方法 |
CN115164361B (zh) * | 2022-06-13 | 2024-06-07 | 中国电信股份有限公司 | 一种数据中心控制方法、装置、电子设备和存储介质 |
CN118012288B (zh) * | 2024-01-31 | 2024-09-06 | 杭州哈乐德科技有限公司 | 触摸屏参数自适应校正方法、系统、电子设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100060609A1 (en) * | 2008-09-08 | 2010-03-11 | Hitachi Displays, Ltd. | Touched Position Detection Method for Touch Panel |
CN101976135A (zh) * | 2010-07-27 | 2011-02-16 | 苏州瀚瑞微电子有限公司 | 触摸屏校正方法 |
CN102520819A (zh) * | 2011-11-25 | 2012-06-27 | 苏州瀚瑞微电子有限公司 | 一种单层ito的自动校准方法 |
CN102722286A (zh) * | 2012-06-08 | 2012-10-10 | 深圳市汇顶科技有限公司 | 可排除大面积干扰的触摸检测终端的基准更新方法及系统 |
CN102968217A (zh) * | 2012-12-07 | 2013-03-13 | 深圳市汇顶科技股份有限公司 | 触摸屏的基准更新方法、系统及触控终端 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8482545B2 (en) * | 2008-10-02 | 2013-07-09 | Wacom Co., Ltd. | Combination touch and transducer input system and method |
US8339286B2 (en) * | 2010-03-31 | 2012-12-25 | 3M Innovative Properties Company | Baseline update procedure for touch sensitive device |
CN102262470A (zh) * | 2010-05-28 | 2011-11-30 | 安国国际科技股份有限公司 | 触控面板上的触控点判断方法及其系统 |
US8884631B2 (en) * | 2010-05-31 | 2014-11-11 | Egalax—Empia Technology Inc. | Method and device for automatically calibrating touch detection |
US20120026123A1 (en) * | 2010-07-30 | 2012-02-02 | Grunthaner Martin Paul | Compensation for Capacitance Change in Touch Sensing Device |
CN102402316B (zh) * | 2010-09-07 | 2015-04-15 | 群康科技(深圳)有限公司 | 触控面板的感测值辨识方法与驱动装置 |
US10001883B2 (en) * | 2010-12-22 | 2018-06-19 | Elo Touch Solutions, Inc. | Mechanical deflection compensation for a capacitive touch input device |
US9152278B2 (en) * | 2010-12-22 | 2015-10-06 | Elo Touch Solutions, Inc. | Background capacitance compensation for a capacitive touch input device |
CN102707821B (zh) * | 2011-03-28 | 2015-04-22 | 深圳市汇顶科技股份有限公司 | 触摸检测装置的降噪处理方法及系统 |
CN102799321B (zh) * | 2011-05-25 | 2015-05-27 | 深圳市汇顶科技股份有限公司 | 电容式多点触摸屏基准数据更新的方法及系统 |
JP5738707B2 (ja) * | 2011-07-28 | 2015-06-24 | 株式会社ジャパンディスプレイ | タッチパネル |
CN103168281B (zh) * | 2011-08-10 | 2016-08-10 | 赛普拉斯半导体公司 | 检测传导体的存在的方法和装置 |
US9182860B2 (en) * | 2012-02-08 | 2015-11-10 | Sony Corporation | Method for detecting a contact |
CN102722285B (zh) * | 2012-06-08 | 2015-05-27 | 深圳市汇顶科技股份有限公司 | 触摸检测装置检测数据中的形变噪声的消除方法及系统 |
CN103677452B (zh) * | 2012-08-30 | 2017-05-24 | 华为终端有限公司 | 一种电容式触摸屏的校准方法和电容式触摸装置 |
JP6025528B2 (ja) * | 2012-11-29 | 2016-11-16 | 三菱電機株式会社 | タッチパネル装置 |
CN103092448A (zh) * | 2013-01-22 | 2013-05-08 | 上海艾为电子技术有限公司 | 触摸数据处理方法 |
CN103970719B (zh) * | 2013-01-30 | 2017-02-22 | 华为技术有限公司 | 一种拟合方法及拟合装置 |
US9075477B2 (en) * | 2013-02-11 | 2015-07-07 | Texas Instruments Incorporated | Touch panel apparatus and methods |
JP6177026B2 (ja) * | 2013-06-28 | 2017-08-09 | キヤノン株式会社 | タッチパネルの制御装置、タッチパネルの制御方法、及びプログラム |
MX2016009800A (es) * | 2014-01-27 | 2017-01-23 | Tactual Labs Co | Estrategias de decimacion para procesamiento de eventos de entrada. |
US10073543B2 (en) * | 2014-03-07 | 2018-09-11 | Htc Corporation | Image segmentation device and image segmentation method |
EP3146415B1 (en) * | 2014-05-20 | 2019-06-26 | Advanced Silicon SA | Method, apparatus and computer program for localizing an active stylus on a capacitive touch device |
US9524067B2 (en) * | 2014-09-12 | 2016-12-20 | Stmicroelectronics Asia Pacific Pte Ltd | Capacitive touch screen with adaptive touch sensing threshold based on sharpness of the capacitive data |
CN104461136B (zh) * | 2014-12-03 | 2017-09-29 | 无锡华润矽科微电子有限公司 | 触控装置中动态阈值调整电路 |
US20170090670A1 (en) * | 2015-09-30 | 2017-03-30 | Synaptics Incorporated | Mitigating interference in capacitance sensing |
US10481723B2 (en) * | 2016-10-28 | 2019-11-19 | Stmicroelectronics Asia Pacific Pte Ltd | Hover rejection through dynamic thresholding |
-
2017
- 2017-06-22 WO PCT/CN2017/089559 patent/WO2018232695A1/zh active Application Filing
- 2017-06-22 CN CN201780000521.9A patent/CN109564481A/zh active Pending
- 2017-06-22 EP EP17901319.8A patent/EP3506064A4/en not_active Ceased
-
2018
- 2018-09-23 US US16/139,051 patent/US20190025962A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100060609A1 (en) * | 2008-09-08 | 2010-03-11 | Hitachi Displays, Ltd. | Touched Position Detection Method for Touch Panel |
CN101976135A (zh) * | 2010-07-27 | 2011-02-16 | 苏州瀚瑞微电子有限公司 | 触摸屏校正方法 |
CN102520819A (zh) * | 2011-11-25 | 2012-06-27 | 苏州瀚瑞微电子有限公司 | 一种单层ito的自动校准方法 |
CN102722286A (zh) * | 2012-06-08 | 2012-10-10 | 深圳市汇顶科技有限公司 | 可排除大面积干扰的触摸检测终端的基准更新方法及系统 |
CN102968217A (zh) * | 2012-12-07 | 2013-03-13 | 深圳市汇顶科技股份有限公司 | 触摸屏的基准更新方法、系统及触控终端 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111897449A (zh) * | 2020-06-19 | 2020-11-06 | 上海美仁半导体有限公司 | 触控信号的抗干扰处理方法、系统、芯片以及家用电器 |
CN111897449B (zh) * | 2020-06-19 | 2024-07-26 | 上海美仁半导体有限公司 | 触控信号的抗干扰处理方法、系统、芯片以及家用电器 |
Also Published As
Publication number | Publication date |
---|---|
EP3506064A1 (en) | 2019-07-03 |
EP3506064A4 (en) | 2019-07-31 |
CN109564481A (zh) | 2019-04-02 |
US20190025962A1 (en) | 2019-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018232695A1 (zh) | 触摸屏当前基准值的更新方法、装置、触摸屏及电子终端 | |
US10345980B2 (en) | Capacitive detection device, method and pressure detection system | |
US9529475B2 (en) | Method for calibration of capacitive touch screen and capacitive touch apparatus | |
US10990230B2 (en) | Circuit, touch chip, and electronic device for capacitance detection | |
CN101963873B (zh) | 电容式触控面板电容基线值设定及校准方法 | |
US9600128B2 (en) | Touch sensitive device and touch determination method thereof | |
CN107463289B (zh) | 一种触摸屏的校准方法、装置、存储介质及终端 | |
US9323407B2 (en) | Electronic device and method of processing user actuation of a touch-sensitive input surface | |
US9007334B2 (en) | Baseline capacitance calibration | |
CN106681553B (zh) | 一种触控压力阈值的调节方法及终端 | |
CN112346593B (zh) | 一种触摸屏校准方法及触摸屏校准装置 | |
US20180307359A1 (en) | Touch determining device and method, and display device | |
US9606685B2 (en) | Touch sensing device and 2D sensing information update method used in same | |
CN106980402B (zh) | 复位校准的判断方法及装置、终端 | |
US10474273B2 (en) | Method and apparatus for detecting a force | |
KR20200072263A (ko) | 기생 커패시턴스를 식별하기 위한 전자 장치 및 방법 | |
CN111241022B (zh) | Gpio状态查询方法、装置及存储介质 | |
CN113950817B (zh) | 内容推送方法及相关产品 | |
CN109065145B (zh) | 心电数据处理方法、装置及存储介质 | |
CN110337629A (zh) | 触摸检测电路、电子设备及触摸屏的环境温度的检测方法 | |
TW201621604A (zh) | 電子裝置、電子裝置套件以及使用者介面操作方法 | |
CN105786090B (zh) | 电子装置、电子装置套件以及用户接口操作方法 | |
CN116839463A (zh) | 一种电容传感器、电子设备及其处理方法 | |
WO2020257989A1 (zh) | 设备价值评估方法及相关产品 | |
CN117234364A (zh) | 数据处理方法、装置、电子设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2017901319 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017901319 Country of ref document: EP Effective date: 20180927 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |