[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018230017A1 - Power-driven cultivation device - Google Patents

Power-driven cultivation device Download PDF

Info

Publication number
WO2018230017A1
WO2018230017A1 PCT/JP2017/046087 JP2017046087W WO2018230017A1 WO 2018230017 A1 WO2018230017 A1 WO 2018230017A1 JP 2017046087 W JP2017046087 W JP 2017046087W WO 2018230017 A1 WO2018230017 A1 WO 2018230017A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power
liquid
liquid storage
cultivation apparatus
Prior art date
Application number
PCT/JP2017/046087
Other languages
French (fr)
Japanese (ja)
Inventor
賢治郎 橋爪
Original Assignee
株式会社テクノスヤシマ
八洲電業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テクノスヤシマ, 八洲電業株式会社 filed Critical 株式会社テクノスヤシマ
Publication of WO2018230017A1 publication Critical patent/WO2018230017A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • the present invention relates to a power-driven cultivation apparatus for cultivating soybeans, for example.
  • Soybean is a vital agricultural product that is needed around the world. Therefore, various soybean cultivation methods according to needs are known (see, for example, Patent Document 1).
  • the present invention is intended to provide a power-driven cultivation apparatus that can realize a cultivation method with higher productivity in consideration of the above-described conventional problems.
  • the cylindrical housing installed so that it may adjoin the crop grown in a field,
  • a liquid storage unit having a plurality of liquid storage containers for individually storing liquids;
  • a liquid outflow unit for allowing the liquid to flow out by individually opening the plurality of liquid storage containers;
  • a control unit for controlling the liquid outflow unit;
  • a power supply unit for supplying power to the liquid outflow unit and the control unit; It is a power supply drive type cultivation apparatus characterized by comprising.
  • the said liquid storage container is a liquid storage bag
  • the liquid outflow unit is a power-driven cultivation apparatus according to the first aspect of the present invention, having a plurality of electric heating wires provided so as to come into contact with the plurality of liquid storage containers individually.
  • the plurality of liquid storage containers are stored in the cylindrical housing,
  • the cylindrical housing has a housing taper lower end sharpened to pierce the field, In the lower end portion of the housing taper, a liquid outflow hole for allowing the liquid to flow out into the field is formed.
  • this invention is equipped with the sensing unit which performs the sensing regarding the growth state or growth environment of the said crop,
  • the control unit is the power-driven cultivation apparatus according to the first aspect of the present invention, wherein the control unit performs all or part of the control based on the sensing by the sensing unit.
  • this invention is equipped with the communication unit which communicates with the exterior,
  • the control unit is the power-driven cultivation apparatus according to the first aspect of the present invention, wherein the control unit performs all or part of the control based on the communication by the communication unit.
  • the typical perspective view of the soybean cultivation system of embodiment in this invention The block diagram of the power supply drive type cultivation apparatus of embodiment in this invention
  • the typical front view of the power supply drive type cultivation apparatus of embodiment in this invention Schematic left side view of the power supply type cultivation apparatus of the embodiment of the present invention
  • Typical top view of the power supply type cultivation apparatus of embodiment in this invention (A) Schematic end view of the power-driven cultivation apparatus of the embodiment of the present invention (part 1), (b) Schematic end view of the power-driven cultivation apparatus of the embodiment of the present invention (part 2) )
  • the typical perspective view of the liquid storage bag vicinity of the power supply drive type cultivation apparatus of embodiment in this invention The typical perspective view of the liquid storage bag vicinity of the power supply drive type cultivation apparatus of another embodiment in this invention (the 1)
  • the block diagram of the power supply drive type cultivation device of another embodiment in the present invention (the 1)
  • the block diagram of the power supply drive type cultivation apparatus of another embodiment in the present invention (the 2)
  • FIG. 1 is a schematic perspective view of the soybean cultivation system according to the embodiment of the present invention
  • FIG. 2 is a block diagram of the power supply type cultivation apparatus 300 according to the embodiment of the present invention.
  • the soybean cultivation system of the present embodiment includes a multicopter 100, a ground station server 200, and a large number of power-driven cultivation apparatuses 300.
  • the power-driven cultivation apparatus 300 is a robot-type soybean cultivation support apparatus that operates not only actively but also passively using a control signal transmitted by the multicopter 100 or the like.
  • the power-driven cultivating apparatus 300 may operate passively using a control signal, which is also called an IT (Information Technology) post, received from the multicopter 100 and transmitted by a communication post installed in the farm 1.
  • IT Information Technology
  • the control unit 350, the power supply unit 360, the sensing unit 370, and the communication unit 380 are chip built-in batteries having not only an outdoor drip-proof structure, but also a communication function, an external I / O (Input / Output) control function, and an individual identification function. It is desirable to be implemented as a so-called waterproof intelligent secondary battery.
  • a next-generation battery has a specification corresponding to IoT (Internet of Things), and a small printed circuit board on which a micro SD (Secure Digital) memory card or the like that gives the function of the control unit 350 is mounted is a power supply unit. It is built in with a special cell that provides 360 functions.
  • a PCM (Pulse Code Modulation) control chip communication IC (Integrated Circuit) is arranged on a substrate so as to efficiently perform A / D (Analog / Digital) signal processing, and so on, such as an IoT sensor that provides the function of the sensing unit 370 Battery capacity sufficient to drive such built-in equipment for 5 months. Lost power in storage without power supply for 6 months is less than 20 percent, and the results of durability tests aiming at reuse for 5 to 10 years are expected to be good. For example, for the performance of a 26650 lithium ion battery that is 26 millimeters in diameter and 65 millimeters long and can be used for 5 months, the voltage is 3.7 volts and the discharge capacity is 4500 milliamp hours. The maximum discharge rate is 2C. The battery storage temperature is kept constant so that spontaneous discharge is suppressed.
  • the expected price of related devices such as secondary battery chargers and liquid storage bag encapsulating devices used by farmers is less than US $ 4500.
  • the expected robot hardware unit price of the power-driven cultivation apparatus 300 is 3 US dollars in the case of 500 production, 1 US dollar in the case of 10,000 production, and 100,000 production. In the case of 1 million units, it is 0.5 US dollars, and in the case of 10 million units, it is 0.3 US dollars. Therefore, the expected battery price for a production line of 100,000 to 200,000 is less than 3 US dollars, which not only reduces the battery size but also promotes lowering the battery price. Assuming mass production of 1 million to 10 million pieces, it is about US $ 0.4 or less, so that low-priced robot cultivation of high-grade soybeans such as Kurosengoku is realized.
  • the power drive type cultivation apparatus 300 has the specification corresponding to the individual cultivation management of the soybean 10 adjacent to the power supply type cultivation apparatus 300, and is installed by arrangement
  • the power-driven cultivation apparatus 300 is also equipped with a function for sensing the individual growth environment of soybean 10, and scientific precision management such as supply of fertilizer and chemicals without waste according to the data for each soybean 10 Done.
  • a colored LED (Light Emitting Diode) for identifying individual cultivation devices is attached to the outer wall portion of the power-driven cultivation device 300 so that the aerial photography by the multicopter 100 gives an individual cultivation record image of the soybean 10. It may be done.
  • IoT big data also called king data, such as terrestrial environment / underground temperature, solar radiation, rainfall, etc., automatically detected by the sensing unit 370 and recorded on a micro SD memory card, etc., together with the cultivation record image
  • the data is collected in the ground station server 200 by remote monitoring data collection via a multicopter 100 connected to a wireless LAN (Local Area Network).
  • the IoT big data with a data collection period of 4 months is data relating to 500 power-driven cultivation apparatuses 300 in the prototype stage, and more than 100,000 power-driven cultivation apparatuses 300 in the practical test stage. It is data.
  • the cultivation management quantitative analysis by AI (Artificial Intelligence) multiple analysis software is performed using such IoT big data, and parameterization and visualization of the robot cultivation technique are realized. 95% of not only fertilizer but also agricultural chemicals and pest repellents supplied to soybean 10 in outdoor field cultivation was wasted, but cultivation management using a large number of power-driven cultivation devices 300 Therefore, a reduction rate of 90% or more of fertilizers and drugs is expected
  • FIG. 3 is a schematic front view of the power-driven cultivation apparatus 300 according to the embodiment of the present invention.
  • FIG. 4 is a schematic left side view of the power-driven cultivation apparatus 300 according to the embodiment of the present invention.
  • FIG. 5 is a schematic top view of the power-driven cultivation apparatus 300 according to the embodiment of the present invention, and FIGS. 6 (a) and 6 (b) are power-driven types according to the embodiment of the present invention. It is a typical end view (the 1st and 2nd) of the cultivation apparatus 300.
  • FIG. 6 (a) is an AA end view
  • FIG. 6 (b) is a BB end view
  • the liquid outflow unit 340 is not shown.
  • the power-driven cultivation apparatus 300 includes a cylindrical housing 310, a liquid storage unit 320, a liquid outflow unit 340, a control unit 350, a power supply unit 360, a sensing unit 370, and a communication unit 380.
  • the cylindrical housing 310 is a housing that is installed adjacent to the soybean 10 that grows in the field 1.
  • the cylindrical housing 310 is made of paper and is a housing having a pest repellent that is integrally molded or assembled using a plurality of members.
  • the cylindrical housing 310 may be a housing made of resin, integrally molded using a blow molding method or the like, or assembled using a plurality of members and having a pest repellent. Good.
  • the housing main body 311 is a substantially straight cylindrical member having a substantially constant thickness so that the strength against wind and rain is ensured although the weight does not become too large.
  • the housing taper lower end portion 312 is a tubular member that is not heavier but has a substantially constant thickness so that the strength against wind and rain is ensured, and is tapered downward.
  • the housing taper lower end 312 has a length (Equation 4).
  • the cylindrical housing 310 has a housing tapered lower end 312 that is pointed so as to pierce the farm 1.
  • the housing taper lower end 312 is formed with a liquid outflow hole 312 a for allowing the liquid 330 to flow out into the field 1.
  • the number of the liquid outflow holes 312a is arbitrary.
  • a liquid outflow hole position marker 311a indicating the position of the liquid outflow hole 312a is formed in the housing body 311. Since the cylindrical housing 310 is installed using the liquid outflow hole position marker 311a so that the liquid outflow hole 312a is close to the soybean 10, the liquid 330 flows out toward the soybean 10 without waste.
  • a grounding ring may be attached to the upper portion of the housing taper lower end 312 so that the housing taper lower end 312 does not pierce the farm field 1 too deeply.
  • a wing for stabilizing the apparatus posture may be attached to the outer wall portion of the cylindrical housing 310 at the time of installation by dropping on the farm field 1. If the wing is attached to the outer wall portion of the cylindrical housing 310, the air fall curve of the power-driven cultivation apparatus 300 is controlled even during installation by spraying from a helicopter, etc. Pierce almost vertically into 1.
  • the liquid storage unit 320 is a unit having six liquid storage bags 321 that individually store the liquid 330.
  • Six liquid storage bags 321 are accommodated in a cylindrical housing 310.
  • the string 321 a suspends the liquid storage bag 321 from the cylindrical housing 310.
  • the string 321a formed using the electric heating wire may not only suspend the liquid storage bag 321 from the cylindrical housing 310 but may also play the role of the liquid outflow unit 340.
  • the liquid storage bag 321 may be attached to the outer wall portion of the cylindrical housing 310. Of course, the number of the liquid storage bags 321 is arbitrary.
  • the liquid 330 stored in the liquid storage bag 321 is supplied to the soybean 10 through the liquid outflow hole 312a.
  • the liquid 330 is an organic or inorganic compound that is granular, liquid, or jelly, and is a fertilizer such as a growth promoting nutrient.
  • the liquid 330 may be a chemical such as pesticide or water.
  • the six liquid storage bags 321 may individually store a plurality of types of liquids 330.
  • the liquid outflow unit 340 has six electric heating wires 341 provided so as to be individually in contact with the six liquid storage bags 321, and individually opens the six liquid storage bags 321 to cause the liquid 330 to flow. This is a unit to be drained.
  • FIG. 7 is a schematic perspective view of the vicinity of the liquid storage bag 321 of the power-driven cultivation apparatus 300 according to the embodiment of the present invention.
  • FIG. 8 is a schematic perspective view (No. 1) of the vicinity of the liquid storage bag 321 of the power-driven cultivation apparatus 300 according to another embodiment of the present invention.
  • a part P of the electric heating wire 341 may not be in contact with the liquid storage bag 321 so that the lower part of the liquid storage bag 321 is not cut off from the upper part even if the liquid storage bag 321 is incised. .
  • the control unit 350 is a unit that controls the liquid outflow unit 340.
  • the control unit 350 is a unit constituted by a control board with a built-in sensor made of, for example, PCB (Poly Chlorinated Biphenyl).
  • the control unit 350 may be attached to the housing main body 311 or the housing tapered lower end 312 so as to be accommodated in the cylindrical housing 310, or may be attached to the outer wall portion of the cylindrical housing 310.
  • the control unit 350 performs control regarding the outflow amount and outflow timing of the liquid 330 stored using the liquid outflow unit 340, for example.
  • the power supply unit 360 is a unit that supplies power to the liquid outflow unit 340 and the control unit 350.
  • the power supply unit 360 may be a chemical battery such as an artificial manganese battery that uses chemical reaction energy, or a physical battery that uses physical energy in the natural world such as wind, geothermal, sunlight, or vibration. This unit is composed of a simple battery.
  • the power supply unit 360 may be attached to the housing main body 311 or the housing taper lower end 312 so as to be accommodated in the cylindrical housing 310, or may be attached to the outer wall portion of the cylindrical housing 310. It is desirable that the mounting position of the power supply unit 360 is determined in consideration of the type of battery.
  • the sensing unit 370 is a unit that performs sensing related to the growing state or growing environment of the soybean 10.
  • the sensing unit 370 is configured by a sensing device that measures (1) the degree of plant growth, or (2) the temperature, humidity, CO 2 (carbon dioxide) concentration, pH (potential hydrogen), or the like of air or soil. Unit.
  • the sensing unit 370 may be attached to the housing main body 311 or the housing taper lower end 312 so as to be accommodated in the cylindrical housing 310, or may be attached to the outer wall portion of the cylindrical housing 310. It is desirable that the mounting position of the sensing unit 370 is determined in consideration of the type of the sensing device.
  • the control unit 350 performs all or part of the control based on sensing by the sensing unit 370.
  • the sensing unit 370 plays an important role particularly in the active operation of the power-driven cultivation apparatus 300.
  • the communication unit 380 is a unit that performs communication with the outside.
  • the communication unit 380 has specifications corresponding to IoT for performing individual communication in real time as well as communication by multicast transmission, and radio wave communication such as RF (Radio Frequency) communication or IR (infrared) communication.
  • It is a unit constituted by a non-contact type or contact type communication device using optical communication such as. It may be attached to the housing main body 311 or the housing taper lower end 312 so as to be accommodated in the communication unit 380 and the cylindrical housing 310, or may be attached to the outer wall portion of the cylindrical housing 310. It is desirable that the mounting position of the communication unit 380 be determined in consideration of the type of communication device.
  • the control unit 350 performs all or part of the control based on communication by the communication unit 380.
  • the communication unit 380 plays an important role particularly in the passive operation of the power-driven cultivation apparatus 300.
  • the outflow of the liquid 330 is performed, for example, approximately two weeks after the planting to the field 1 is performed.
  • the control unit 350 may perform control for causing the liquid 330 to flow out based on sensing by the sensing unit 370, or may perform control for causing the liquid 330 to flow out based on communication by the communication unit 380. More specifically, the power-driven cultivating apparatus 300 (1) recognizes sensing related to the degree of growth of a plant detected using an optical sensor or the like, and autonomously performs an active operation for causing the liquid 330 to flow out. (2) A control signal for causing the liquid 330 to flow out may be received from the multicopter 100 side and a passive operation may be performed. Of course, sensing regarding the degree of growth of the plant body may be transmitted to the multicopter 100 side, and a control signal for causing the liquid 330 to flow out may be generated based on the sensing and transmitted to the power supply type cultivation apparatus 300.
  • the soybean yield in the present embodiment is approximately 34 times the soybean yield by the conventional soybean cultivation method, and a highly productive soybean cultivation method is realized by application of the semiconductor process.
  • the crop of this invention is the soybean 10 in this Embodiment mentioned above, for example, corn, an open field melon, or an open field strawberry may be sufficient.
  • liquid storage container of the present invention is the liquid storage bag 321 in the above-described embodiment, but may be an ampoule or a syringe, for example.
  • the power-driven cultivation apparatus of the present invention is the power-driven cultivation apparatus 300 including the sensing unit 370.
  • the power-driven cultivation apparatus 300 including the sensing unit 370.
  • FIG. 9 is a block diagram (part 1) of a power supply type cultivation apparatus 300 according to another embodiment of the present invention.
  • the sensing unit is unnecessary if the cost performance of the apparatus is important.
  • FIG. 10 is a block diagram (No. 2) of a power-driven cultivation apparatus 300 according to another embodiment of the present invention.
  • the communication unit is unnecessary if the cost performance of the apparatus is important.
  • the shape and dimensions of the cylindrical housing 310 are arbitrary.
  • the cylindrical housing 310 does not have to have a housing tapered lower end 312.
  • a column-shaped housing body having a diameter ( ⁇ ) of 60 mm and a length of 800 mm is used.
  • FIG. 11 is a schematic front view of a power supply type cultivation apparatus 300 according to another embodiment of the present invention.
  • Three vinyl color insulating tapes are affixed to the upper end portion of the cylindrical housing 310 on the ground as a field identification code portion 311b having a length of 50 millimeters.
  • a field identification code portion 311b having a length of 50 millimeters.
  • the scale pattern for estimating the plant height of soybean 10 is printed on the outer wall portion of the cylindrical housing 310.
  • the scale pattern is a striped pattern in which a colorless portion having a length of 10 mm and a colored portion having a length of 10 mm appear alternately.
  • the label etc. which give the color information corresponding to the one-dimensional and two-dimensional barcode for cultivation apparatus individual identification may be affixed on the outer wall part of the cylindrical housing 310.
  • the field identification code unit 311b which is an element technology for image identification, is not individually changed in the actual production stage, but the amount of liquid 330 flowing out and the timing of outflow are individually changed to determine the optimal robot cultivation parameters.
  • the experimenter records individual cultivation record images of soybean 10 as digital image data with a digital camera or the like.
  • the optimal robot cultivation parameters employed in the actual production stage may be used for frost control when the underground temperature is low, or used for additional fertilizer supply to soybean 10 according to the growing state. May be.
  • the growth state can also be obtained as a result of protein analysis by remote sensing image analysis using aerial photography with the multicopter 100, but the mark for teaching workers 10 of the need for additional fertilizer supply is the power source
  • FIG. Such color development at night such as the color LED can be taken not only from the multicopter 100 but also from an artificial satellite or the like.
  • the shapes and dimensions of the liquid storage unit 320 and the liquid outflow unit 340 are arbitrary.
  • the liquid storage unit 320 is a liquid storage that is suspended by a horizontal fold 321 b on an electric heating wire 341 that is horizontally mounted on the surface of the field 1.
  • a bag 321 may be included.
  • FIG. 12A is a schematic perspective view (No. 2) of the vicinity of the liquid storage bag 321 of the power-driven cultivation apparatus 300 according to another embodiment of the present invention, and FIG. It is a typical bottom view of the liquid storage bag 321 vicinity of the power supply type cultivation apparatus 300 of another embodiment in this invention.
  • the configuration of the present invention may be realized by software or hardware.
  • the power-driven cultivation apparatus in the present invention can realize a more productive cultivation method, and is useful for the purpose of, for example, being used in a power-driven cultivation apparatus for cultivating soybeans and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Soil Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

Generally, it is desirable to further increase crop yields. This power-driven cultivation device (300) is provided with: a tubular housing (310) which is placed adjacent to a soy bean plant (10) growing in a field (1); a liquid storage unit (320) having six liquid storage bags (321), each storing a liquid (330); a liquid discharge unit (340) for opening the six liquid storage bags (321) individually to allow the liquid (330) to be discharged; a control unit (350) for controlling the liquid discharge unit (340); and a power supply unit (360) for powering the liquid discharge unit (340) and the control unit (350).

Description

電源駆動型栽培装置Power-driven cultivation device
 本発明は、たとえば、ダイズなどを栽培するための電源駆動型栽培装置に関する。 The present invention relates to a power-driven cultivation apparatus for cultivating soybeans, for example.
 ダイズは、世界中で必要とされる極めて重要な農産物である。
 そこで、ニーズに応じたさまざまなダイズ栽培方法が、知られている(たとえば、特許文献1参照)。
Soybean is a vital agricultural product that is needed around the world.
Therefore, various soybean cultivation methods according to needs are known (see, for example, Patent Document 1).
特開2011-200155号公報JP 2011-2000155 A
 しかしながら、一般的に言って、作物の生産性をより向上させることが望まれていることは言うまでもない。
 そこで、本発明者は、より生産性の高い栽培方法を実現することが望ましいと考えている。
However, in general, it goes without saying that it is desirable to further improve crop productivity.
Therefore, the present inventor believes that it is desirable to realize a cultivation method with higher productivity.
 本発明は、上述された従来の課題を考慮し、より生産性の高い栽培方法を実現することができる電源駆動型栽培装置を提供することを目的とする。 The present invention is intended to provide a power-driven cultivation apparatus that can realize a cultivation method with higher productivity in consideration of the above-described conventional problems.
 第1の本発明は、圃場において生育する作物に隣接するように設置される筒状ハウジングと、
 液体を個別的に貯留する複数個の液体貯留容器を有する液体貯留ユニットと、
 前記複数個の液体貯留容器を個別的に開くことにより前記液体を流出させる液体流出ユニットと、
 前記液体流出ユニットの制御を行う制御ユニットと、
 前記液体流出ユニットおよび前記制御ユニットに電源を供給する電源供給ユニットと、
 を備えることを特徴とする電源駆動型栽培装置である。
 第2の本発明は、前記液体貯留容器は、液体貯留袋であり、
 前記液体流出ユニットは、前記複数個の液体貯留容器と個別的に接触するように設けられた複数個の電熱ワイヤーを有することを特徴とする第1の本発明の電源駆動型栽培装置である。
 第3の本発明は、前記複数個の液体貯留容器は、前記筒状ハウジングに収納されており、
 前記筒状ハウジングは、前記圃場へ突刺さるように尖ったハウジングテーパー下端部を有し、
 前記ハウジングテーパー下端部には、前記圃場に前記液体を流出させるための液体流出孔が形成されていることを特徴とする第1の本発明の電源駆動型栽培装置である。
 第4の本発明は、前記作物の生育状態または生育環境に関するセンシングを行うセンシングユニットを備え、
 前記制御ユニットは、前記センシングユニットによる前記センシングに基づいて前記制御の全部または一部を行うことを特徴とする第1の本発明の電源駆動型栽培装置である。
 第5の本発明は、外部との通信を行う通信ユニットを備え、
 前記制御ユニットは、前記通信ユニットによる前記通信に基づいて前記制御の全部または一部を行うことを特徴とする第1の本発明の電源駆動型栽培装置である。
1st this invention, The cylindrical housing installed so that it may adjoin the crop grown in a field,
A liquid storage unit having a plurality of liquid storage containers for individually storing liquids;
A liquid outflow unit for allowing the liquid to flow out by individually opening the plurality of liquid storage containers;
A control unit for controlling the liquid outflow unit;
A power supply unit for supplying power to the liquid outflow unit and the control unit;
It is a power supply drive type cultivation apparatus characterized by comprising.
As for 2nd this invention, the said liquid storage container is a liquid storage bag,
The liquid outflow unit is a power-driven cultivation apparatus according to the first aspect of the present invention, having a plurality of electric heating wires provided so as to come into contact with the plurality of liquid storage containers individually.
According to a third aspect of the present invention, the plurality of liquid storage containers are stored in the cylindrical housing,
The cylindrical housing has a housing taper lower end sharpened to pierce the field,
In the lower end portion of the housing taper, a liquid outflow hole for allowing the liquid to flow out into the field is formed.
4th this invention is equipped with the sensing unit which performs the sensing regarding the growth state or growth environment of the said crop,
The control unit is the power-driven cultivation apparatus according to the first aspect of the present invention, wherein the control unit performs all or part of the control based on the sensing by the sensing unit.
5th this invention is equipped with the communication unit which communicates with the exterior,
The control unit is the power-driven cultivation apparatus according to the first aspect of the present invention, wherein the control unit performs all or part of the control based on the communication by the communication unit.
 本発明により、より生産性の高い栽培方法を実現することが可能な電源駆動型栽培装置を提供することができる。 According to the present invention, it is possible to provide a power-driven cultivation apparatus capable of realizing a cultivation method with higher productivity.
本発明における実施の形態のダイズ栽培システムの模式的な斜視図The typical perspective view of the soybean cultivation system of embodiment in this invention 本発明における実施の形態の電源駆動型栽培装置のブロック図The block diagram of the power supply drive type cultivation apparatus of embodiment in this invention 本発明における実施の形態の電源駆動型栽培装置の模式的な正面図The typical front view of the power supply drive type cultivation apparatus of embodiment in this invention 本発明における実施の形態の電源駆動型栽培装置の模式的な左側面図Schematic left side view of the power supply type cultivation apparatus of the embodiment of the present invention 本発明における実施の形態の電源駆動型栽培装置の模式的な上面図Typical top view of the power supply type cultivation apparatus of embodiment in this invention (a)本発明における実施の形態の電源駆動型栽培装置の模式的な端面図(その一)、(b)本発明における実施の形態の電源駆動型栽培装置の模式的な端面図(その二)(A) Schematic end view of the power-driven cultivation apparatus of the embodiment of the present invention (part 1), (b) Schematic end view of the power-driven cultivation apparatus of the embodiment of the present invention (part 2) ) 本発明における実施の形態の電源駆動型栽培装置の液体貯留袋近傍の模式的な斜視図The typical perspective view of the liquid storage bag vicinity of the power supply drive type cultivation apparatus of embodiment in this invention 本発明における別の実施の形態の電源駆動型栽培装置の液体貯留袋近傍の模式的な斜視図(その一)The typical perspective view of the liquid storage bag vicinity of the power supply drive type cultivation apparatus of another embodiment in this invention (the 1) 本発明における別の実施の形態の電源駆動型栽培装置のブロック図(その一)The block diagram of the power supply drive type cultivation device of another embodiment in the present invention (the 1) 本発明における別の実施の形態の電源駆動型栽培装置のブロック図(その二)The block diagram of the power supply drive type cultivation apparatus of another embodiment in the present invention (the 2) 本発明における別の実施の形態の電源駆動型栽培装置の模式的な正面図The typical front view of the power supply drive type cultivation apparatus of another embodiment in the present invention. (a)本発明における別の実施の形態の電源駆動型栽培装置の液体貯留袋近傍の模式的な斜視図(その二)、(b)本発明における別の実施の形態の電源駆動型栽培装置の液体貯留袋近傍の模式的な下面図(A) The typical perspective view of the liquid storage bag vicinity of the power drive type cultivation apparatus of another embodiment in this invention (the 2), (b) The power supply type cultivation apparatus of another embodiment in this invention Schematic bottom view near the liquid storage bag
 以下、図面を参照しながら、本発明における実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 はじめに、図1および2を参照しながら、本実施の形態のダイズ栽培システムの構成および動作について具体的に説明する。
 ここに、図1は本発明における実施の形態のダイズ栽培システムの模式的な斜視図であり、図2は本発明における実施の形態の電源駆動型栽培装置300のブロック図である。
First, the configuration and operation of the soybean cultivation system of the present embodiment will be specifically described with reference to FIGS. 1 and 2.
Here, FIG. 1 is a schematic perspective view of the soybean cultivation system according to the embodiment of the present invention, and FIG. 2 is a block diagram of the power supply type cultivation apparatus 300 according to the embodiment of the present invention.
 以下同様であるが、いくつかの構成要素は図面において示されていないこともあるし省略的に示されていることもある。 Hereafter the same, but some components may not be shown in the drawing or may be omitted.
 本実施の形態のダイズ栽培システムは、マルチコプター100、地上局サーバー200、および多数の電源駆動型栽培装置300を含む。
 電源駆動型栽培装置300は、アクティブに動作するのみならず、マルチコプター100が送信した制御信号などを利用してパッシブに動作するロボット型のダイズ栽培支援装置である。
 電源駆動型栽培装置300は、IT(Information Technology)ポストとも呼ばれる、圃場1に設置された通信ポストがマルチコプター100から受信し送信した制御信号などを利用してパッシブに動作してもよい。
 制御ユニット350、電源供給ユニット360、センシングユニット370および通信ユニット380は、屋外防滴構造のみならず、通信機能、外部I/O(Input/Output)制御機能および個体識別機能を有するチップ内蔵電池である、いわゆる防水インテリジェント二次電池として実装されることが望ましい。
 このような次世代の電池はIoT(Internet of Things)に対応した仕様を有し、制御ユニット350の機能を与える、マイクロSD(Secure Digital)メモリーカードなどが搭載される小型プリント基板が電源供給ユニット360の機能を与える特殊セルとともに内蔵される。
 PCM(Pulse Code Modulation)制御チップ通信IC(Integrated Circuit)はA/D(Analog/Digital)信号処理が効率的に行われるように基板に配置され、センシングユニット370の機能を与えるIoTセンサーなどのような内蔵機器を5か月にわたって駆動するために十分である電池容量が確保される。
 給電なしの6か月のストレージにおけるロストパワーは20パーセント以下であり、5~10年の再利用を目指した耐久性テストの結果も良好であると期待される。たとえば、直径が26ミリメートルであり、長さが65ミリメートルである、5か月にわたって使用可能な26650リチウムイオン電池の性能については、電圧が3.7ボルトであり、放電容量が4500ミリアンペア時であり、最大放電レートが2Cである。
 電池保存温度は、自然放電が抑えられるように一定に保たれる。
The soybean cultivation system of the present embodiment includes a multicopter 100, a ground station server 200, and a large number of power-driven cultivation apparatuses 300.
The power-driven cultivation apparatus 300 is a robot-type soybean cultivation support apparatus that operates not only actively but also passively using a control signal transmitted by the multicopter 100 or the like.
The power-driven cultivating apparatus 300 may operate passively using a control signal, which is also called an IT (Information Technology) post, received from the multicopter 100 and transmitted by a communication post installed in the farm 1.
The control unit 350, the power supply unit 360, the sensing unit 370, and the communication unit 380 are chip built-in batteries having not only an outdoor drip-proof structure, but also a communication function, an external I / O (Input / Output) control function, and an individual identification function. It is desirable to be implemented as a so-called waterproof intelligent secondary battery.
Such a next-generation battery has a specification corresponding to IoT (Internet of Things), and a small printed circuit board on which a micro SD (Secure Digital) memory card or the like that gives the function of the control unit 350 is mounted is a power supply unit. It is built in with a special cell that provides 360 functions.
A PCM (Pulse Code Modulation) control chip communication IC (Integrated Circuit) is arranged on a substrate so as to efficiently perform A / D (Analog / Digital) signal processing, and so on, such as an IoT sensor that provides the function of the sensing unit 370 Battery capacity sufficient to drive such built-in equipment for 5 months.
Lost power in storage without power supply for 6 months is less than 20 percent, and the results of durability tests aiming at reuse for 5 to 10 years are expected to be good. For example, for the performance of a 26650 lithium ion battery that is 26 millimeters in diameter and 65 millimeters long and can be used for 5 months, the voltage is 3.7 volts and the discharge capacity is 4500 milliamp hours. The maximum discharge rate is 2C.
The battery storage temperature is kept constant so that spontaneous discharge is suppressed.
 農家において使用される二次電池充電装置および液体貯留袋封入装置などの関連装置の予想価格は、4500米国ドル以下である。
 電源駆動型栽培装置300のロボットハードウェア予想単価は、500個の生産の場合においては3米国ドルであり、1万個の生産の場合においては1米国ドルであり、10万個の生産の場合においては0.8米国ドルであるが、100万個の生産の場合においては0.5米国ドルであり、1000万個の生産の場合においては0.3米国ドルである。
 したがって、10万~20万個のロット生産ラインにおける電池予想価格は3米国ドル以下であり、電池小型化のみならず電池低価格化が促進され、電源駆動型栽培装置300のロボットハードウェア予想単価は、100万個~1000万個の大量生産を前提とすれば、ほぼ0.4米国ドル以下であるので、黒千石などのような高級ダイズの低価格ロボット栽培が実現される。
The expected price of related devices such as secondary battery chargers and liquid storage bag encapsulating devices used by farmers is less than US $ 4500.
The expected robot hardware unit price of the power-driven cultivation apparatus 300 is 3 US dollars in the case of 500 production, 1 US dollar in the case of 10,000 production, and 100,000 production. In the case of 1 million units, it is 0.5 US dollars, and in the case of 10 million units, it is 0.3 US dollars.
Therefore, the expected battery price for a production line of 100,000 to 200,000 is less than 3 US dollars, which not only reduces the battery size but also promotes lowering the battery price. Assuming mass production of 1 million to 10 million pieces, it is about US $ 0.4 or less, so that low-priced robot cultivation of high-grade soybeans such as Kurosengoku is realized.
 そして、電源駆動型栽培装置300は、電源駆動型栽培装置300に隣接するダイズ10の個別的な栽培管理に対応した仕様を有し、人的なまたは機械的な圃場1への配置によって設置される。 And the power drive type cultivation apparatus 300 has the specification corresponding to the individual cultivation management of the soybean 10 adjacent to the power supply type cultivation apparatus 300, and is installed by arrangement | positioning to the farm field 1 by human or mechanical. The
 電源駆動型栽培装置300にはダイズ10の個別的な生育環境に関するセンシングを行う機能も実装されており、無駄のない肥料および薬剤の供給などの科学的な精密管理がダイズ10ごとのデータに応じて行われる。
 電源駆動型栽培装置300の外壁部には、マルチコプター100による空中撮影がダイズ10の個別的な栽培記録画像を与えるように、栽培装置個体識別のための発色LED(Light Emitting Diode)などが取付けられていてもよい。
 センシングユニット370により自動的に検出されてマイクロSDメモリーカードなどに記録された、地上環境/地中温度、日射量および降雨量などのような、キングデータとも呼ばれるIoTビッグデータは、栽培記録画像とともに、無線LAN(Local Area Network)に接続されたマルチコプター100を介する遠隔監視データ収集により地上局サーバー200に収集される。
 データ収集期間が4か月であるIoTビッグデータは、試作段階においては500台の電源駆動型栽培装置300に関するデータであり、実用化テスト段階においては10万台以上の電源駆動型栽培装置300に関するデータである。
 AI(Artificial Intelligence)多重解析ソフトウェアによる栽培管理定量分析がこのようなIoTビッグデータを利用して行われ、ロボット栽培技術のパラメーター化およびビジュアル化が実現される。
 屋外露地栽培におけるダイズ10に供給された、肥料のみならず、農薬および害虫忌避剤などのような薬剤の95%は無駄になっていたが、多数の電源駆動型栽培装置300を利用する栽培管理が個別的に行われるので、90%以上の肥料および薬剤の削減率が期待される。
The power-driven cultivation apparatus 300 is also equipped with a function for sensing the individual growth environment of soybean 10, and scientific precision management such as supply of fertilizer and chemicals without waste according to the data for each soybean 10 Done.
A colored LED (Light Emitting Diode) for identifying individual cultivation devices is attached to the outer wall portion of the power-driven cultivation device 300 so that the aerial photography by the multicopter 100 gives an individual cultivation record image of the soybean 10. It may be done.
IoT big data, also called king data, such as terrestrial environment / underground temperature, solar radiation, rainfall, etc., automatically detected by the sensing unit 370 and recorded on a micro SD memory card, etc., together with the cultivation record image The data is collected in the ground station server 200 by remote monitoring data collection via a multicopter 100 connected to a wireless LAN (Local Area Network).
The IoT big data with a data collection period of 4 months is data relating to 500 power-driven cultivation apparatuses 300 in the prototype stage, and more than 100,000 power-driven cultivation apparatuses 300 in the practical test stage. It is data.
The cultivation management quantitative analysis by AI (Artificial Intelligence) multiple analysis software is performed using such IoT big data, and parameterization and visualization of the robot cultivation technique are realized.
95% of not only fertilizer but also agricultural chemicals and pest repellents supplied to soybean 10 in outdoor field cultivation was wasted, but cultivation management using a large number of power-driven cultivation devices 300 Therefore, a reduction rate of 90% or more of fertilizers and drugs is expected.
 かくして、従来のダイズ栽培方法とは大きく異なったダイズ栽培方法が、電源駆動型栽培装置300を利用して効率的に実現される。 Thus, a soybean cultivation method that is significantly different from the conventional soybean cultivation method is efficiently realized by using the power-driven cultivation apparatus 300.
 つぎに、図1~6を主として参照しながら、電源駆動型栽培装置300の構成および動作について具体的に説明する。
 ここに、図3は本発明における実施の形態の電源駆動型栽培装置300の模式的な正面図であり、図4は本発明における実施の形態の電源駆動型栽培装置300の模式的な左側面図であり、図5は本発明における実施の形態の電源駆動型栽培装置300の模式的な上面図であり、図6(a)および6(b)は本発明における実施の形態の電源駆動型栽培装置300の模式的な端面図(その一および二)である。
Next, the configuration and operation of the power-driven cultivation apparatus 300 will be specifically described with reference mainly to FIGS.
FIG. 3 is a schematic front view of the power-driven cultivation apparatus 300 according to the embodiment of the present invention. FIG. 4 is a schematic left side view of the power-driven cultivation apparatus 300 according to the embodiment of the present invention. FIG. 5 is a schematic top view of the power-driven cultivation apparatus 300 according to the embodiment of the present invention, and FIGS. 6 (a) and 6 (b) are power-driven types according to the embodiment of the present invention. It is a typical end view (the 1st and 2nd) of the cultivation apparatus 300.
 図6(a)はA-A端面図であり、図6(b)はB-B端面図である。図6(b)においては、液体流出ユニット340は示されていない。 FIG. 6 (a) is an AA end view, and FIG. 6 (b) is a BB end view. In FIG. 6B, the liquid outflow unit 340 is not shown.
 電源駆動型栽培装置300の動作について説明しながら、本発明に関連した発明の電源駆動型栽培方法についても説明する。 While explaining the operation of the power-driven cultivation apparatus 300, the power-driven cultivation method of the invention related to the present invention will also be explained.
 電源駆動型栽培装置300は、筒状ハウジング310、液体貯留ユニット320、液体流出ユニット340、制御ユニット350、電源供給ユニット360、センシングユニット370、および通信ユニット380を含む。 The power-driven cultivation apparatus 300 includes a cylindrical housing 310, a liquid storage unit 320, a liquid outflow unit 340, a control unit 350, a power supply unit 360, a sensing unit 370, and a communication unit 380.
 筒状ハウジング310は、圃場1において生育するダイズ10に隣接するように設置されるハウジングである。
 筒状ハウジング310は、紙製であり、一体的に成型された、または複数の部材を利用して組立てられた、害虫忌避剤を有するハウジングである。
 筒状ハウジング310は、たとえば、樹脂製であり、ブロー成型方法などを利用して一体的に成型された、または複数の部材を利用して組立てられた、害虫忌避剤を有するハウジングであってもよい。
 筒状ハウジング310は、長さ
 (数1)
 λ=1000[mm]
および直径
 (数2)
 δ=60[mm]
を有する。
 地上における筒状ハウジング310の上端面は、開放されていてもよいし、封止されていてもよい。
 地中における筒状ハウジング310の下端面は、開放されていてもよいし、封止されていてもよい。
 ハウジング本体部311は、重さが大きくなりすぎないが、風雨に対する強度が保証されるようなほぼ一定の厚みを有する、ほぼ真っ直ぐな筒状部材である。
 ハウジング本体部311は、長さ
 (数3)
 λ1=600[mm]
を有する。
 ハウジングテーパー下端部312は、重さが大きくなりすぎないが、風雨に対する強度が保証されるようなほぼ一定の厚みを有する、下方ですぼまった筒状部材である。
 ハウジングテーパー下端部312は、長さ
 (数4)
 λ2=λ-λ1=400[mm]
を有する。
The cylindrical housing 310 is a housing that is installed adjacent to the soybean 10 that grows in the field 1.
The cylindrical housing 310 is made of paper and is a housing having a pest repellent that is integrally molded or assembled using a plurality of members.
For example, the cylindrical housing 310 may be a housing made of resin, integrally molded using a blow molding method or the like, or assembled using a plurality of members and having a pest repellent. Good.
The cylindrical housing 310 has a length (Equation 1)
λ = 1000 [mm]
And diameter (Equation 2)
δ = 60 [mm]
Have
The upper end surface of the cylindrical housing 310 on the ground may be opened or sealed.
The lower end surface of the cylindrical housing 310 in the ground may be opened or sealed.
The housing main body 311 is a substantially straight cylindrical member having a substantially constant thickness so that the strength against wind and rain is ensured although the weight does not become too large.
The housing body 311 has a length (Equation 3)
λ1 = 600 [mm]
Have
The housing taper lower end portion 312 is a tubular member that is not heavier but has a substantially constant thickness so that the strength against wind and rain is ensured, and is tapered downward.
The housing taper lower end 312 has a length (Equation 4).
λ2 = λ−λ1 = 400 [mm]
Have
 より具体的に説明すると、つぎの通りである。 More specifically, it is as follows.
 筒状ハウジング310は、圃場1へ突刺さるように尖ったハウジングテーパー下端部312を有する。
 ハウジングテーパー下端部312には、圃場1に液体330を流出させるための液体流出孔312aが形成されている。
 もちろん、液体流出孔312aの個数などは、任意である。
 ハウジング本体部311には、液体流出孔312aの位置を示す液体流出孔位置マーカー311aが形成されている。
 筒状ハウジング310は、液体流出孔位置マーカー311aを利用して、液体流出孔312aがダイズ10に近接するように設置されるので、液体330は無駄なくダイズ10へ向かって流出する。
 そして、ハウジングテーパー下端部312が過度に深く圃場1へ突刺さらないように、ハウジングテーパー下端部312の上部には接地リングが取付けられていてもよい。
 筒状ハウジング310の外壁部には、圃場1への投下による設置の際に装置姿勢を安定させるためのウイングが取付けられていてもよい。ウイングが筒状ハウジング310の外壁部に取付けられていると、電源駆動型栽培装置300の空中落下曲線がヘリコプターからの散布などによる設置の際にも制御されるので、ハウジングテーパー下端部312が圃場1へほぼ垂直に突刺さる。
The cylindrical housing 310 has a housing tapered lower end 312 that is pointed so as to pierce the farm 1.
The housing taper lower end 312 is formed with a liquid outflow hole 312 a for allowing the liquid 330 to flow out into the field 1.
Of course, the number of the liquid outflow holes 312a is arbitrary.
A liquid outflow hole position marker 311a indicating the position of the liquid outflow hole 312a is formed in the housing body 311.
Since the cylindrical housing 310 is installed using the liquid outflow hole position marker 311a so that the liquid outflow hole 312a is close to the soybean 10, the liquid 330 flows out toward the soybean 10 without waste.
A grounding ring may be attached to the upper portion of the housing taper lower end 312 so that the housing taper lower end 312 does not pierce the farm field 1 too deeply.
A wing for stabilizing the apparatus posture may be attached to the outer wall portion of the cylindrical housing 310 at the time of installation by dropping on the farm field 1. If the wing is attached to the outer wall portion of the cylindrical housing 310, the air fall curve of the power-driven cultivation apparatus 300 is controlled even during installation by spraying from a helicopter, etc. Pierce almost vertically into 1.
 液体貯留ユニット320は、液体330を個別的に貯留する六個の液体貯留袋321を有するユニットである。
 六個の液体貯留袋321は、筒状ハウジング310に収納されている。
 ストリング321aは、液体貯留袋321を筒状ハウジング310から吊下げる。
 電熱ワイヤーを利用して形成されたストリング321aが、液体貯留袋321を筒状ハウジング310から吊下げるのみならず、液体流出ユニット340の役割を演じてもよい。
 液体貯留袋321は、筒状ハウジング310の外壁部に取付けられていてもよい。もちろん、液体貯留袋321の個数は、任意である。
 液体貯留袋321に貯留されている液体330は、液体流出孔312aを通ってダイズ10に供給される。
 液体330は、粒状、液状、またはゼリー状である有機または無機化合物であり、成長促進栄養素などのような肥料である。
 液体330は、たとえば、農薬または水などのような薬剤であってもよい。
 六個の液体貯留袋321は、複数種類の液体330を個別的に貯留してもよい。
 液体流出ユニット340は、六個の液体貯留袋321と個別的に接触するように設けられた六個の電熱ワイヤー341を有する、六個の液体貯留袋321を個別的に開くことにより液体330を流出させるユニットである。
The liquid storage unit 320 is a unit having six liquid storage bags 321 that individually store the liquid 330.
Six liquid storage bags 321 are accommodated in a cylindrical housing 310.
The string 321 a suspends the liquid storage bag 321 from the cylindrical housing 310.
The string 321a formed using the electric heating wire may not only suspend the liquid storage bag 321 from the cylindrical housing 310 but may also play the role of the liquid outflow unit 340.
The liquid storage bag 321 may be attached to the outer wall portion of the cylindrical housing 310. Of course, the number of the liquid storage bags 321 is arbitrary.
The liquid 330 stored in the liquid storage bag 321 is supplied to the soybean 10 through the liquid outflow hole 312a.
The liquid 330 is an organic or inorganic compound that is granular, liquid, or jelly, and is a fertilizer such as a growth promoting nutrient.
The liquid 330 may be a chemical such as pesticide or water.
The six liquid storage bags 321 may individually store a plurality of types of liquids 330.
The liquid outflow unit 340 has six electric heating wires 341 provided so as to be individually in contact with the six liquid storage bags 321, and individually opens the six liquid storage bags 321 to cause the liquid 330 to flow. This is a unit to be drained.
 図7に示されているように、電熱ワイヤー341は、熱に弱い液体貯留袋321のワイヤー通電による穿孔が行われるように、液体貯留袋321の下先端部に接触する。
 ここに、図7は、本発明における実施の形態の電源駆動型栽培装置300の液体貯留袋321近傍の模式的な斜視図である。
As shown in FIG. 7, the electric heating wire 341 contacts the lower tip of the liquid storage bag 321 so that the heat-sensitive liquid storage bag 321 is pierced by energizing the wire.
FIG. 7 is a schematic perspective view of the vicinity of the liquid storage bag 321 of the power-driven cultivation apparatus 300 according to the embodiment of the present invention.
 図8に示されているように、電熱ワイヤー341は、熱に弱い液体貯留袋321のワイヤー通電による切開が行われるように、液体貯留袋321の中央部に接触してもよい。
 ここに、図8は、本発明における別の実施の形態の電源駆動型栽培装置300の液体貯留袋321近傍の模式的な斜視図(その一)である。
As shown in FIG. 8, the electric heating wire 341 may contact the central portion of the liquid storage bag 321 so that incision is performed by energizing the wire of the liquid storage bag 321 that is vulnerable to heat.
FIG. 8 is a schematic perspective view (No. 1) of the vicinity of the liquid storage bag 321 of the power-driven cultivation apparatus 300 according to another embodiment of the present invention.
 電熱ワイヤー341の一部Pは、液体貯留袋321の切開が行われても液体貯留袋321の下部が上部から切離されて落下しないように、液体貯留袋321に接触していなくてもよい。 A part P of the electric heating wire 341 may not be in contact with the liquid storage bag 321 so that the lower part of the liquid storage bag 321 is not cut off from the upper part even if the liquid storage bag 321 is incised. .
 制御ユニット350は、液体流出ユニット340の制御を行うユニットである。
 制御ユニット350は、たとえば、PCB(Poly Chlorinated Biphenyl)製であるセンサー内臓の制御基板によって構成されたユニットである。制御ユニット350は、筒状ハウジング310に収容されるようにハウジング本体部311またはハウジングテーパー下端部312に取付けられていてもよいし、筒状ハウジング310の外壁部に取付けられていてもよい。
 制御ユニット350は、たとえば、液体流出ユニット340を利用して貯留されている液体330の流出量および流出タイミングに関する制御を行う。
The control unit 350 is a unit that controls the liquid outflow unit 340.
The control unit 350 is a unit constituted by a control board with a built-in sensor made of, for example, PCB (Poly Chlorinated Biphenyl). The control unit 350 may be attached to the housing main body 311 or the housing tapered lower end 312 so as to be accommodated in the cylindrical housing 310, or may be attached to the outer wall portion of the cylindrical housing 310.
The control unit 350 performs control regarding the outflow amount and outflow timing of the liquid 330 stored using the liquid outflow unit 340, for example.
 電源供給ユニット360は、液体流出ユニット340および制御ユニット350に電源を供給するユニットである。
 電源供給ユニット360は、化学反応エネルギーを利用する人工的なマンガン乾電池などのような化学電池、または風、地熱、太陽光、または振動などのような自然界の物理エネルギーを利用する物理電池などのような電池によって構成されたユニットである。電源供給ユニット360は、筒状ハウジング310に収容されるようにハウジング本体部311またはハウジングテーパー下端部312に取付けられていてもよいし、筒状ハウジング310の外壁部に取付けられていてもよい。電源供給ユニット360の取付け位置は電池の種類などを考慮して決定されていることが、望ましい。
The power supply unit 360 is a unit that supplies power to the liquid outflow unit 340 and the control unit 350.
The power supply unit 360 may be a chemical battery such as an artificial manganese battery that uses chemical reaction energy, or a physical battery that uses physical energy in the natural world such as wind, geothermal, sunlight, or vibration. This unit is composed of a simple battery. The power supply unit 360 may be attached to the housing main body 311 or the housing taper lower end 312 so as to be accommodated in the cylindrical housing 310, or may be attached to the outer wall portion of the cylindrical housing 310. It is desirable that the mounting position of the power supply unit 360 is determined in consideration of the type of battery.
 センシングユニット370は、ダイズ10の生育状態または生育環境に関するセンシングを行うユニットである。
 センシングユニット370は、(1)植物体の成長度、または(2)空気または土壌の、温度、湿度、CO2(二酸化炭素)濃度、またはpH(potential Hydrogen)などを計測するセンシングデバイスによって構成されたユニットである。センシングユニット370は、筒状ハウジング310に収容されるようにハウジング本体部311またはハウジングテーパー下端部312に取付けられていてもよいし、筒状ハウジング310の外壁部に取付けられていてもよい。センシングユニット370の取付け位置はセンシングデバイスの種類などを考慮して決定されていることが、望ましい。
The sensing unit 370 is a unit that performs sensing related to the growing state or growing environment of the soybean 10.
The sensing unit 370 is configured by a sensing device that measures (1) the degree of plant growth, or (2) the temperature, humidity, CO 2 (carbon dioxide) concentration, pH (potential hydrogen), or the like of air or soil. Unit. The sensing unit 370 may be attached to the housing main body 311 or the housing taper lower end 312 so as to be accommodated in the cylindrical housing 310, or may be attached to the outer wall portion of the cylindrical housing 310. It is desirable that the mounting position of the sensing unit 370 is determined in consideration of the type of the sensing device.
 制御ユニット350は、センシングユニット370によるセンシングに基づいて制御の全部または一部を行う。
 このように、センシングユニット370は、特に電源駆動型栽培装置300のアクティブな動作において重要な役割を演じる。
The control unit 350 performs all or part of the control based on sensing by the sensing unit 370.
Thus, the sensing unit 370 plays an important role particularly in the active operation of the power-driven cultivation apparatus 300.
 通信ユニット380は、外部との通信を行うユニットである。
 通信ユニット380は、マルチキャスト送信による通信のみならず個別的な通信をリアルタイムで行うためのIoTに対応した仕様を有し、RF(Radio Frequency)通信などのような電波通信、またはIR(infrared)通信などのような光通信を利用する非接触式または接触式の通信デバイスによって構成されたユニットである。通信ユニット380、筒状ハウジング310に収容されるようにハウジング本体部311またはハウジングテーパー下端部312に取付けられていてもよいし、筒状ハウジング310の外壁部に取付けられていてもよい。通信ユニット380の取付け位置は通信デバイスの種類などを考慮して決定されていることが、望ましい。
The communication unit 380 is a unit that performs communication with the outside.
The communication unit 380 has specifications corresponding to IoT for performing individual communication in real time as well as communication by multicast transmission, and radio wave communication such as RF (Radio Frequency) communication or IR (infrared) communication. It is a unit constituted by a non-contact type or contact type communication device using optical communication such as. It may be attached to the housing main body 311 or the housing taper lower end 312 so as to be accommodated in the communication unit 380 and the cylindrical housing 310, or may be attached to the outer wall portion of the cylindrical housing 310. It is desirable that the mounting position of the communication unit 380 be determined in consideration of the type of communication device.
 制御ユニット350は、通信ユニット380による通信に基づいて制御の全部または一部を行う。
 このように、通信ユニット380は、特に電源駆動型栽培装置300のパッシブな動作において重要な役割を演じる。
The control unit 350 performs all or part of the control based on communication by the communication unit 380.
Thus, the communication unit 380 plays an important role particularly in the passive operation of the power-driven cultivation apparatus 300.
 液体330の流出は、たとえば、圃場1への定植が行われたときからほぼ二週間後に行われる。制御ユニット350は、センシングユニット370によるセンシングに基づいて液体330を流出させるための制御を行ってもよいし、通信ユニット380による通信に基づいて液体330を流出させるための制御を行ってもよい。より具体的には、電源駆動型栽培装置300は、(1)光学センサーなどを利用して検出された植物体の成長度に関するセンシングを認識し、液体330を流出させるためのアクティブな動作を自律的に行ってもよいし、(2)液体330を流出させるための制御信号をマルチコプター100の側から受信し、パッシブな動作を行ってもよい。もちろん、植物体の成長度に関するセンシングがマルチコプター100の側に送信され、液体330を流出させるための制御信号がセンシングに基づいて生成され電源駆動型栽培装置300に送信されてもよい。 The outflow of the liquid 330 is performed, for example, approximately two weeks after the planting to the field 1 is performed. The control unit 350 may perform control for causing the liquid 330 to flow out based on sensing by the sensing unit 370, or may perform control for causing the liquid 330 to flow out based on communication by the communication unit 380. More specifically, the power-driven cultivating apparatus 300 (1) recognizes sensing related to the degree of growth of a plant detected using an optical sensor or the like, and autonomously performs an active operation for causing the liquid 330 to flow out. (2) A control signal for causing the liquid 330 to flow out may be received from the multicopter 100 side and a passive operation may be performed. Of course, sensing regarding the degree of growth of the plant body may be transmitted to the multicopter 100 side, and a control signal for causing the liquid 330 to flow out may be generated based on the sensing and transmitted to the power supply type cultivation apparatus 300.
 本実施の形態におけるダイズの収穫量は従来のダイズ栽培方法によるダイズの収穫量のほぼ三四倍であり、生産性の高いダイズ栽培方法が半導体工程の応用によって実現される。 The soybean yield in the present embodiment is approximately 34 times the soybean yield by the conventional soybean cultivation method, and a highly productive soybean cultivation method is realized by application of the semiconductor process.
 なお、本発明の作物は、上述された本実施の形態においては、ダイズ10であるが、たとえば、トウモロコシ、露地栽培メロンまたは露地栽培イチゴであってもよい。 In addition, although the crop of this invention is the soybean 10 in this Embodiment mentioned above, for example, corn, an open field melon, or an open field strawberry may be sufficient.
 また、本発明の液体貯留容器は、上述された本実施の形態においては、液体貯留袋321であるが、たとえば、アンプルまたはシリンジであってもよい。 Further, the liquid storage container of the present invention is the liquid storage bag 321 in the above-described embodiment, but may be an ampoule or a syringe, for example.
 また、本発明の電源駆動型栽培装置は、上述された本実施の形態においては、センシングユニット370を含む電源駆動型栽培装置300であるが、たとえば、図9に示されているように、センシングユニットを含まない電源駆動型栽培装置であってもよい。
 ここに、図9は、本発明における別の実施の形態の電源駆動型栽培装置300のブロック図(その一)である。
Moreover, in the present embodiment described above, the power-driven cultivation apparatus of the present invention is the power-driven cultivation apparatus 300 including the sensing unit 370. For example, as shown in FIG. It may be a power-driven cultivation apparatus that does not include a unit.
FIG. 9 is a block diagram (part 1) of a power supply type cultivation apparatus 300 according to another embodiment of the present invention.
 たとえば、制御ユニット350が通信に基づいて制御を行うパッシブ動作モードが実装されている場合には、装置のコストパフォーマンスなどが重視されるのであれば、センシングユニットは不要である。 For example, when the passive operation mode in which the control unit 350 performs control based on communication is mounted, the sensing unit is unnecessary if the cost performance of the apparatus is important.
 また、本発明の電源駆動型栽培装置は、上述された本実施の形態においては、通信ユニット380を含む電源駆動型栽培装置300であるが、たとえば、図10に示されているように、通信ユニットを含まない電源駆動型栽培装置であってもよい。
 ここに、図10は、本発明における別の実施の形態の電源駆動型栽培装置300のブロック図(その二)である。
Moreover, although the power supply type cultivation apparatus of this invention is the power supply type cultivation apparatus 300 containing the communication unit 380 in this Embodiment mentioned above, as shown in FIG. It may be a power-driven cultivation apparatus that does not include a unit.
FIG. 10 is a block diagram (No. 2) of a power-driven cultivation apparatus 300 according to another embodiment of the present invention.
 たとえば、制御ユニット350がセンシングに基づいて制御を行うアクティブ動作モードが実装されている場合には、装置のコストパフォーマンスなどが重視されるのであれば、通信ユニットは不要である。 For example, when the active operation mode in which the control unit 350 performs control based on sensing is mounted, the communication unit is unnecessary if the cost performance of the apparatus is important.
 また、筒状ハウジング310の形状および寸法などが任意であることは、言うまでもない。 Needless to say, the shape and dimensions of the cylindrical housing 310 are arbitrary.
 筒状ハウジング310は、ハウジングテーパー下端部312を有しなくてもよいし、たとえば、図11に示されているように、直径(φ)60ミリメートルおよび長さ800ミリメートルのカラム形状のハウジング本体部311と、長さ400ミリメートルのペンシル形状のハウジングテーパー下端部312と、を有してもよい。
 ここに、図11は、本発明における別の実施の形態の電源駆動型栽培装置300の模式的な正面図である。
The cylindrical housing 310 does not have to have a housing tapered lower end 312. For example, as shown in FIG. 11, a column-shaped housing body having a diameter (φ) of 60 mm and a length of 800 mm is used. 311 and a pencil-shaped housing taper lower end 312 having a length of 400 millimeters.
FIG. 11 is a schematic front view of a power supply type cultivation apparatus 300 according to another embodiment of the present invention.
 地上における筒状ハウジング310の上端部には、三枚のビニール製のカラー絶縁テープが長さ50ミリメートルを有する圃場識別コード部311bとして貼付されている。絶縁テープのカラー数が10であるときには、1000(=103)の圃場識別コードが生成可能である。
 筒状ハウジング310の外壁部には、ダイズ10の植物体高さの推定などのためのスケール模様が印刷されている。スケール模様は、長さ10ミリメートルの無色部分と、長さ10ミリメートルの有色部分と、が交互に現れる縞状模様である。
 そして、筒状ハウジング310の外壁部には、栽培装置個体識別のための1次元および2次元バーコードに対応した色情報を与えるラベルなどが貼付されていてもよい。
Three vinyl color insulating tapes are affixed to the upper end portion of the cylindrical housing 310 on the ground as a field identification code portion 311b having a length of 50 millimeters. When the number of colors of the insulating tape is 10, 1000 (= 10 3 ) field identification codes can be generated.
A scale pattern for estimating the plant height of soybean 10 is printed on the outer wall portion of the cylindrical housing 310. The scale pattern is a striped pattern in which a colorless portion having a length of 10 mm and a colored portion having a length of 10 mm appear alternately.
And the label etc. which give the color information corresponding to the one-dimensional and two-dimensional barcode for cultivation apparatus individual identification may be affixed on the outer wall part of the cylindrical housing 310. FIG.
 画像識別のための要素技術である圃場識別コード部311bなどは、実際の生産段階においてではなく、液体330の流出量および流出タイミングなどが最適なロボット栽培パラメーターを決定するために個別的に変更される実験段階においては、実験者がデジタルカメラなどでダイズ10の個別的な栽培記録画像をデジタル画像データとして記録する。 The field identification code unit 311b, which is an element technology for image identification, is not individually changed in the actual production stage, but the amount of liquid 330 flowing out and the timing of outflow are individually changed to determine the optimal robot cultivation parameters. In the experiment stage, the experimenter records individual cultivation record images of soybean 10 as digital image data with a digital camera or the like.
 実験段階においては、たとえば、550個の電源駆動型栽培装置によるダイズ10の個別的な栽培管理が行われ、栽培期間の4か月間において撮影された20枚のデジタル写真は、センシングユニット370により自動的に検出された地上環境/地中積算温度、および積算日射量などの検出気象データ、および気象庁またはJAXA(Japan Aerospace eXploration Agency)などの統計気象データとともに、AI多重解析ソフトウェアによる機械学習および統計解析に利用される。 In the experimental stage, for example, individual cultivation management of soybean 10 is performed by 550 power-driven cultivation apparatuses, and 20 digital photographs taken during four months of the cultivation period are automatically performed by the sensing unit 370. Machine learning and statistical analysis using AI multi-analysis software, together with detected weather data such as the detected ground environment / underground accumulated temperature and accumulated solar radiation, and statistical weather data such as Japan Meteorological Agency or Japan Aerospace eXporration Agency (JAXA) Used for
 実際の生産段階において採用される最適なロボット栽培パラメーターは、地中温度が低い場合には霜対策に利用されてもよいし、生育状態に応じた追加的なダイズ10への肥料供給に利用されてもよい。生育状態はマルチコプター100による空中撮影が利用されるリモートセンシング画像解析などで蛋白質分析の結果としても得られるが、追加的な肥料供給を必要とするダイズ10を作業者に教えるための目印は電源駆動型栽培装置300の外壁部に取付けられている栽培装置個体識別のための発色LEDなどで与えられてもよい。このような発色LEDなどの夜間発色は、マルチコプター100からのみならず人工衛星などからも撮影可能である。 The optimal robot cultivation parameters employed in the actual production stage may be used for frost control when the underground temperature is low, or used for additional fertilizer supply to soybean 10 according to the growing state. May be. The growth state can also be obtained as a result of protein analysis by remote sensing image analysis using aerial photography with the multicopter 100, but the mark for teaching workers 10 of the need for additional fertilizer supply is the power source You may give by the color development LED etc. for the cultivation apparatus individual identification attached to the outer wall part of the drive type cultivation apparatus 300. FIG. Such color development at night such as the color LED can be taken not only from the multicopter 100 but also from an artificial satellite or the like.
 また、液体貯留ユニット320および液体流出ユニット340の形状および寸法などが任意であることも、言うまでもない。 Needless to say, the shapes and dimensions of the liquid storage unit 320 and the liquid outflow unit 340 are arbitrary.
 液体貯留ユニット320は、たとえば、図12(a)および12(b)に示されているように、圃場1の表面に平行に横架される電熱ワイヤー341に横折り目321bで懸架される液体貯留袋321を有してもよい。
 ここに、図12(a)は本発明における別の実施の形態の電源駆動型栽培装置300の液体貯留袋321近傍の模式的な斜視図(その二)であり、図12(b)は本発明における別の実施の形態の電源駆動型栽培装置300の液体貯留袋321近傍の模式的な下面図である。
For example, as shown in FIGS. 12A and 12B, the liquid storage unit 320 is a liquid storage that is suspended by a horizontal fold 321 b on an electric heating wire 341 that is horizontally mounted on the surface of the field 1. A bag 321 may be included.
FIG. 12A is a schematic perspective view (No. 2) of the vicinity of the liquid storage bag 321 of the power-driven cultivation apparatus 300 according to another embodiment of the present invention, and FIG. It is a typical bottom view of the liquid storage bag 321 vicinity of the power supply type cultivation apparatus 300 of another embodiment in this invention.
 液体貯留袋321の切断が行われ、液体貯留袋321の下部が上部から切離されて落下すると、ほぼ100ミリリットルの液体330は、液体貯留袋321から流出してハウジングテーパー下端部312の内部に撒布され、開放された筒状ハウジング310の下端面を通って、または液体流出孔312aを通ってダイズ10に供給される。 When the liquid storage bag 321 is cut and the lower part of the liquid storage bag 321 is separated from the upper part and falls, almost 100 ml of the liquid 330 flows out of the liquid storage bag 321 and enters the lower end portion 312 of the housing taper. It is supplied to the soybean 10 through the lower end surface of the tubular housing 310 that has been spread and opened, or through the liquid outflow hole 312a.
 なお、上述されたように、本発明の構成は、ソフトウェア的に実現されてもよいし、ハードウェア的に実現されてもよい。 Note that, as described above, the configuration of the present invention may be realized by software or hardware.
 本発明における電源駆動型栽培装置は、より生産性の高い栽培方法を実現することができ、たとえば、ダイズなどを栽培するための電源駆動型栽培装置に利用する目的に有用である。 The power-driven cultivation apparatus in the present invention can realize a more productive cultivation method, and is useful for the purpose of, for example, being used in a power-driven cultivation apparatus for cultivating soybeans and the like.
 1 圃場
 10 ダイズ
 100 マルチコプター
 200 地上局サーバー
 300 電源駆動型栽培装置
DESCRIPTION OF SYMBOLS 1 Farm 10 Soybean 100 Multicopter 200 Ground station server 300 Power drive type cultivation device

Claims (5)

  1.  圃場において生育する作物に隣接するように設置される筒状ハウジングと、
     液体を個別的に貯留する複数個の液体貯留容器を有する液体貯留ユニットと、
     前記複数個の液体貯留容器を個別的に開くことにより前記液体を流出させる液体流出ユニットと、
     前記液体流出ユニットの制御を行う制御ユニットと、
     前記液体流出ユニットおよび前記制御ユニットに電源を供給する電源供給ユニットと、
     を備えることを特徴とする電源駆動型栽培装置。
    A cylindrical housing installed adjacent to the crop growing in the field;
    A liquid storage unit having a plurality of liquid storage containers for individually storing liquids;
    A liquid outflow unit for allowing the liquid to flow out by individually opening the plurality of liquid storage containers;
    A control unit for controlling the liquid outflow unit;
    A power supply unit for supplying power to the liquid outflow unit and the control unit;
    A power-driven cultivation apparatus comprising:
  2.  前記液体貯留容器は、液体貯留袋であり、
     前記液体流出ユニットは、前記複数個の液体貯留容器と個別的に接触するように設けられた複数個の電熱ワイヤーを有することを特徴とする請求項1に記載の電源駆動型栽培装置。
    The liquid storage container is a liquid storage bag,
    The power-driven cultivation apparatus according to claim 1, wherein the liquid outflow unit includes a plurality of electric heating wires provided so as to come into contact with the plurality of liquid storage containers individually.
  3.  前記複数個の液体貯留容器は、前記筒状ハウジングに収納されており、
     前記筒状ハウジングは、前記圃場へ突刺さるように尖ったハウジングテーパー下端部を有し、
     前記ハウジングテーパー下端部には、前記圃場に前記液体を流出させるための液体流出孔が形成されていることを特徴とする請求項1に記載の電源駆動型栽培装置。
    The plurality of liquid storage containers are housed in the cylindrical housing,
    The cylindrical housing has a housing taper lower end sharpened to pierce the field,
    The power-driven cultivation apparatus according to claim 1, wherein a liquid outflow hole for allowing the liquid to flow out into the field is formed at a lower end portion of the housing taper.
  4.  前記作物の生育状態または生育環境に関するセンシングを行うセンシングユニットを備え、
     前記制御ユニットは、前記センシングユニットによる前記センシングに基づいて前記制御の全部または一部を行うことを特徴とする請求項1に記載の電源駆動型栽培装置。
    A sensing unit for sensing the growing state or growing environment of the crop,
    The power-driven cultivation apparatus according to claim 1, wherein the control unit performs all or part of the control based on the sensing by the sensing unit.
  5.  外部との通信を行う通信ユニットを備え、
     前記制御ユニットは、前記通信ユニットによる前記通信に基づいて前記制御の全部または一部を行うことを特徴とする請求項1に記載の電源駆動型栽培装置。
    It has a communication unit that communicates with the outside,
    The power-driven cultivation apparatus according to claim 1, wherein the control unit performs all or part of the control based on the communication by the communication unit.
PCT/JP2017/046087 2017-06-13 2017-12-22 Power-driven cultivation device WO2018230017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-115911 2017-06-13
JP2017115911A JP6337245B1 (en) 2017-06-13 2017-06-13 Power-driven cultivation device

Publications (1)

Publication Number Publication Date
WO2018230017A1 true WO2018230017A1 (en) 2018-12-20

Family

ID=62487501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046087 WO2018230017A1 (en) 2017-06-13 2017-12-22 Power-driven cultivation device

Country Status (2)

Country Link
JP (1) JP6337245B1 (en)
WO (1) WO2018230017A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525937U (en) * 1975-06-24 1977-01-17
JPS6153781U (en) * 1984-09-13 1986-04-11
JP3007231U (en) * 1994-07-27 1995-02-14 元 池田 Water replenisher for plants
US20020020111A1 (en) * 2000-08-03 2002-02-21 Peretz Rosenberg Liquid dispensing devices particularly useful for irrigating plants
JP2005102667A (en) * 2003-09-29 2005-04-21 Yoshio Fujino Horticultural simple water-sprinkling device of type of discriminating empty tank and switching to new tank one by one automatically
EP2832209A1 (en) * 2013-07-30 2015-02-04 Gabriel Escudero Archilla Portable device for drip irrigation and treatment of plants

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525937U (en) * 1975-06-24 1977-01-17
JPS6153781U (en) * 1984-09-13 1986-04-11
JP3007231U (en) * 1994-07-27 1995-02-14 元 池田 Water replenisher for plants
US20020020111A1 (en) * 2000-08-03 2002-02-21 Peretz Rosenberg Liquid dispensing devices particularly useful for irrigating plants
JP2005102667A (en) * 2003-09-29 2005-04-21 Yoshio Fujino Horticultural simple water-sprinkling device of type of discriminating empty tank and switching to new tank one by one automatically
EP2832209A1 (en) * 2013-07-30 2015-02-04 Gabriel Escudero Archilla Portable device for drip irrigation and treatment of plants

Also Published As

Publication number Publication date
JP6337245B1 (en) 2018-06-06
JP2019000013A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
Krishnan et al. Robotics, IoT, and AI in the automation of agricultural industry: a review
Modu et al. A survey of smart hydroponic systems
US10863681B2 (en) Aeroponics system with microfluidic die and sensors for feedback control
Iyer et al. Living IoT: A flying wireless platform on live insects
Visconti et al. Development of sensors-based agri-food traceability system remotely managed by a software platform for optimized farm management
Kassim et al. Wireless Sensor Network in precision agriculture application
Saha et al. Development of IoT‐based smart security and monitoring devices for agriculture
Swamidason et al. Futuristic IoT based Smart Precision Agriculture: Brief Analysis.
CN112179413A (en) Space positioning and Internet of things automatic planting system
JP6337245B1 (en) Power-driven cultivation device
CN106768063A (en) Plantation monitor
CN108573298B (en) Greenhouse production management information interaction label and system
KR20210029868A (en) System for managing crops using balloon-drone
KR20200055609A (en) Customized plant factory through bar code recognition
JP6519800B2 (en) Power supply drive type cultivation device
KR102430319B1 (en) A smart-farm that based on cloud computing system for cultivating mushroom
CN208421665U (en) A kind of agricultural Internet of Things network control system
Janani et al. Automatic indoor hydroponic plant grow pot using Arduino
Rajmane et al. Precision agriculture and robotics
Kamthania Use of drones in agriculture
Kanaya et al. Battery less soil moisture sensors for strawberry seedlings
CN207008443U (en) A kind of remote management family declines farm
CN206321276U (en) One kind plantation monitor
Shoba et al. Survey on IoT based E-farming technology enabled farming
Moses et al. A Cyber Physical System Enabled Intelligent Farming System with Artificial Intelligence, Machine Learning and Cloud Computing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 12/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17913378

Country of ref document: EP

Kind code of ref document: A1