[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018229992A1 - 光コネクタモジュール - Google Patents

光コネクタモジュール Download PDF

Info

Publication number
WO2018229992A1
WO2018229992A1 PCT/JP2017/022406 JP2017022406W WO2018229992A1 WO 2018229992 A1 WO2018229992 A1 WO 2018229992A1 JP 2017022406 W JP2017022406 W JP 2017022406W WO 2018229992 A1 WO2018229992 A1 WO 2018229992A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical connector
optical
connector module
transmission line
refractive index
Prior art date
Application number
PCT/JP2017/022406
Other languages
English (en)
French (fr)
Inventor
勝健 角田
和美 中水流
貴大 鈴木
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP17913577.7A priority Critical patent/EP3640692B9/en
Priority to US16/622,247 priority patent/US11143820B2/en
Priority to CN201780092017.6A priority patent/CN110741295B/zh
Priority to PCT/JP2017/022406 priority patent/WO2018229992A1/ja
Priority to JP2018500348A priority patent/JP6401888B1/ja
Priority to KR1020197036947A priority patent/KR102316398B1/ko
Priority to EP24152064.2A priority patent/EP4350405A3/en
Publication of WO2018229992A1 publication Critical patent/WO2018229992A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3897Connectors fixed to housings, casing, frames or circuit boards
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/40Mechanical coupling means having fibre bundle mating means
    • G02B6/403Mechanical coupling means having fibre bundle mating means of the ferrule type, connecting a pair of ferrules

Definitions

  • the present invention relates to an optical connector module for optically coupling an optical transmission line and an optical connector.
  • Patent Document 1 discloses providing a lens member in order to suppress a coupling loss between an optical fiber and an optical waveguide.
  • An object of the present invention made in view of such problems is to provide an optical connector module that can contribute to miniaturization while reducing coupling loss.
  • an optical connector module is An optical transmission line having a core and a cladding; An optical connector optically coupled to the optical transmission path, the first side surface facing the end surface of the core; A refractive index adjusting agent that adjusts the refractive index of the air gap between the core and the first side surface; With The refractive index adjusting agent is interposed between the first side surface and the end surface, The first side surface is provided with a first lens portion that is curved at a position facing the core.
  • the optical connector In the light propagation direction, the optical connector has a second side surface opposite to the first side surface, A second lens portion that is curved may be provided on the second side surface.
  • the first lens unit may be formed in a concave shape on the first side surface.
  • the second lens portion may be formed in a convex shape on the second side surface.
  • the refractive index adjusting agent may be in close contact with the first lens portion and the end surface.
  • the refractive index adjusting agent may fix the optical connector and the optical transmission line.
  • the end surface of the optical transmission line may be a curved surface protruding toward the optical connector.
  • the end surface of the core may be a curved surface that protrudes closer to the optical connector than the end surface of the clad.
  • the optical connector module according to one embodiment of the present invention can contribute to downsizing while reducing coupling loss.
  • FIG. 6 is an enlarged view corresponding to a VI part in FIG. 5. It is an enlarged view corresponding to the VII part of FIG. It is the enlarged view corresponding to FIG. 7 which showed the mode of the end surface of the optical transmission line which concerns on a modification. It is a perspective view which shows the optical connector module which concerns on 2nd Embodiment.
  • FIG. 14 It is a perspective view which shows the optical connector single-piece
  • FIG. 1 is a perspective view showing an optical connector module 1 according to the first embodiment.
  • the optical connector module 1 includes an optical transmission path 10, an optical connector 20 that is optically coupled to the optical transmission path 10, and a refractive index adjustment that adjusts the refractive index of the gap S between the optical transmission path 10 and the optical connector 20.
  • Agent 30 In the first embodiment, the optical transmission line 10 will be described as an optical waveguide formed on a substrate.
  • FIG. 2 is an enlarged perspective view of the single optical transmission line 10 shown in FIG.
  • the optical transmission line 10 is formed on the upper surface of a base 40 constituted by, for example, a rigid printed wiring board.
  • the optical transmission line 10 is disposed so as to protrude upward from a recess formed in the upper surface of the base body 40.
  • the optical transmission line 10 is formed so that the front end face coincides with the front end face of the base body 40 in order to optically couple with the optical connector 20. That is, the front end surface of the optical transmission line 10 is formed in a substantially planar shape along the front end surface of the base body 40.
  • the waveguide mode of the optical transmission line 10 may be either single mode or multimode.
  • the optical transmission line 10 will be described as being formed on the upper surface of the base body 40, but the present invention is not limited to this.
  • the optical transmission line 10 may be embedded in the base body 40.
  • the front end face of the optical transmission line 10 may be formed so as to coincide with the front end face of the base body 40 so that the end face of the core 12 described later is exposed from the base body 40.
  • the optical transmission line 10 includes a clad 11 formed so as to be laminated on the upper surface of the base body 40, and a plurality of cores 12 spaced from each other at a predetermined interval in the left-right direction.
  • the clad 11 and the core 12 are made of, for example, quartz glass.
  • the refractive index of the core 12 is higher than the refractive index of the cladding 11.
  • the optical transmission line 10 will be described as an embedded optical waveguide, for example.
  • the optical transmission line 10 is not limited to this, and may be an optical waveguide of an appropriate type such as a slab type or a semi-embedded type.
  • FIG. 3 is a perspective view showing a single optical connector 20 of FIG.
  • the optical connector 20 is made of a material having a refractive index substantially the same as the refractive index of the core 12 of the optical transmission line 10.
  • the optical connector 20 is substantially L-shaped.
  • the optical connector 20 has a first base 21 that extends in the front-rear direction.
  • the first base portion 21 has a concave portion 21b that is recessed by one step from the substantially central portion of the lower surface 21a toward the inside.
  • the optical connector 20 has a second base portion 22 that protrudes in front of the first base portion 21 and is continuous with the first base portion 21.
  • the second base 22 is formed so as to protrude downward from the first base 21.
  • the optical connector 20 has a pair of through holes 22 a that penetrate from the front surface to the rear surface of the second base portion 22. A pair of through holes 22 a are formed at the left and right ends of the second base 22.
  • the optical connector 20 has a first lens portion 23 provided on a first side surface A1 that constitutes a part of the inner surface of the second base portion 22.
  • the first lens unit 23 includes a plurality of curvature lenses 23a.
  • the number of lenses 23 a constituting the first lens unit 23 is equal to or greater than the number of cores 12 of the optical transmission line 10.
  • the optical connector 20 has a second lens portion 24 provided on the second side surface A2 opposite to the first side surface A1 in the light propagation direction.
  • the second lens unit 24 includes a plurality of curvature lenses 24a.
  • the number of lenses 24 a constituting the second lens unit 24 is equal to or greater than the number of cores 12 of the optical transmission path 10.
  • the optical connector 20 has a notch 25 in which the inner surface of the second base 22 is notched to the first side face A1. That is, the notch 25 is formed as a concave shape.
  • the optical connector 20 has an adhesive portion 26 constituted by four side surfaces, that is, the top, bottom, left, and right sides constituting the cutout portion 25, the first side surface A ⁇ b> 1, and the outer surface of the second base portion 22 located immediately below the cutout portion 25.
  • the refractive index adjusting agent 30 is made of a material having substantially the same refractive index as that of the core 12 of the optical transmission line 10.
  • the refractive index adjusting agent 30 may serve as an adhesive.
  • FIG. 4 is an exploded perspective view showing the optical connector module 1 of FIG. 1 in an exploded manner.
  • FIG. 5 is a cross-sectional view taken along the line VV in FIG.
  • FIG. 6 is an enlarged view corresponding to the VI part of FIG.
  • the optical connector 20 is mounted on the base body 40 from above the optical transmission line 10. That is, the optical connector 20 is disposed in a state where the lower surface 21 a of the first base portion 21 is in contact with the upper surface of the base body 40 and covers a part of the optical transmission path 10.
  • the second base portion 22 is disposed so as to protrude forward from the front end portion of the base body 40 and project downward from the first base portion 21. That is, the second base portion 22 protrudes so that the lower surface thereof is located further below the vertical position of the optical transmission line 10.
  • a gap S is formed between the optical transmission line 10 and the base 40 and the adhesive portion 26 of the optical connector 20 (see FIG. 5).
  • the refractive index adjuster 30 is filled from below so as to fill the gap S. That is, the refractive index adjuster 30 adjusts the refractive index of the gap S between the core 12 and the first side surface A1.
  • the bonding portion 26 of the optical connector 20 and the refractive index adjusting agent 30 are bonded.
  • the optical transmission line 10 and the front end surfaces of the base body 40 are bonded to the refractive index adjusting agent 30.
  • the refractive index adjusting agent 30 is in close contact with the first lens portion 23 and the end face of the core 12. Thereby, the optical transmission line 10 and the optical connector 20 are fixed by the refractive index adjusting agent 30.
  • the refractive index adjusting agent 30 is not limited to a configuration that fills only the gap S, and may be filled, for example, between the lower surface 21 a of the optical connector 20 and the upper surface of the substrate 40. Similarly, the refractive index adjusting agent 30 may be filled so as to fill the recess 21 b of the optical connector 20 that covers the optical transmission line 10. At least one of the base body 40 and the optical transmission line 10 and the optical connector 20 may be fixed by the refractive index adjusting agent 30 in this manner.
  • the optical connector 20 When attaching to the base body 40, the optical connector 20 may be positioned by an appropriate method.
  • the optical connector 20 may be positioned by contacting at least one of the inner side surfaces along the front-rear direction of the recess 21b with the end surface in the left-right direction of the optical transmission line 10 protruding from the base body 40.
  • the optical connector 20 may have a recess having a shape corresponding to a stud pin formed on the base body 40. At this time, the optical connector 20 may be positioned by engaging a recess with the stud pin.
  • the optical connector 20 may have a convex portion having a shape corresponding to the concave portion formed on the base body 40. At this time, the optical connector 20 may be positioned by fitting a convex portion into the concave portion.
  • the first side face A ⁇ b> 1 faces the front end face of the core 12 in a state where the optical connector module 1 is completed.
  • the first lens portion 23 faces the front end surface of the core 12.
  • the refractive index adjusting agent 30 is interposed between the first lens portion 23 and the front end surface of the core 12.
  • the lens 23a which comprises the 1st lens part 23 is formed in concave shape in 1st side surface A1. That is, the lens 23a is formed as a concave lens.
  • the lens 23a may be formed in a substantially semicircular shape in a plan view as shown in FIG. 6 along the light propagation direction, that is, the front-rear direction.
  • the vertical half width r 1 of the lens 23 a may be larger than the radius of the core 12 of the optical transmission line 10.
  • the second lens portion 24 faces the first lens portion 23 via the second base portion 22 of the optical connector 20.
  • the lens 24a which comprises the 2nd lens part 24 is formed in convex shape in 2nd side surface A2. That is, the lens 24a is formed as a convex lens.
  • the lens 24a may be formed in a substantially semicircular shape in a plan view as shown in FIG. 6 along the light propagation direction, that is, the front-rear direction.
  • the half width r 2 in the vertical direction of the lens 24 a may be larger than the radius of the core 12 of the optical transmission line 10.
  • the state of light propagation when light is emitted from the front end face of the optical transmission line 10 will be described with reference to FIG. That is, the optical transmission line 10 will be described as transmitting light from a light emitting element. However, the light transmission path 10 may transmit light to the light receiving element. In this case, it should be understood that the following description can be applied with the light propagation direction being reversed.
  • the refractive index adjusting agent 30 is made of a material having substantially the same refractive index as that of the core 12, the Fresnel reflection of light incident on the boundary surface between the refractive index adjusting agent 30 and the core 12 is Suppressed by matching. Therefore, the light incident on the boundary surface is emitted into the refractive index adjusting agent 30 with high transmittance. The emitted light is incident on the lens 23 a while spreading by the diffraction effect inside the refractive index adjusting agent 30.
  • the optical connector 20 is made of a material having substantially the same refractive index as that of the refractive index adjusting agent 30, the Fresnel reflection of light incident on the interface between the optical connector 20 and the refractive index adjusting agent 30 is refracted.
  • the light incident on the boundary surface is emitted to the inside of the optical connector 20, particularly the second base portion 22 with a high transmittance.
  • the lens 23a is formed as a concave lens
  • the light emitted into the second base portion 22 enters the lens 24a while further spreading.
  • the lens 24a is formed as a convex lens
  • the light incident on the boundary surface between the outside and the optical connector 20 is collimated by the lens 24a.
  • the optical connector module 1 propagates the light emitted from the optical transmission line 10 to the outside in a collimated state.
  • FIG. 7 is an enlarged view corresponding to the VII part of FIG.
  • FIG. 7 shows the state of the end face of the optical transmission line 10 of FIG.
  • FIG. 8 is an enlarged view corresponding to FIG. 7 showing the state of the end face of the optical transmission line 10 according to the modification.
  • the front end face of the optical transmission line 10 coincides with the front end face of the base body 40. That is, the front end surfaces of the cladding 11 and the core 12 are formed on the same plane along the front end surface of the base body 40.
  • the end face of the optical transmission line 10, particularly the end face of the core 12 may be a curved surface protruding toward the optical connector 20.
  • the end surface of the core 12 may be a curved surface that protrudes closer to the optical connector 20 than the end surface of the clad 11.
  • the optical connector module 1 can contribute to downsizing while reducing the coupling loss. That is, the optical connector module 1 is provided with the first lens portion 23 at a position facing the core 12 on the first side face A1, so that the distance at which the light diffraction effect occurs can be shortened and the coupling loss can be reduced.
  • the optical connector module 1 has a short distance between the first lens unit 23 and the optical transmission line 10 and can contribute to the overall size reduction. In particular, the optical connector module 1 can reduce the width along the light propagation direction.
  • the optical connector module 1 can reduce the coupling loss by interposing the refractive index adjusting agent 30. That is, the optical connector module 1 can reduce the loss due to the diffraction effect, the loss due to the scattering or absorption of light by the foreign matter from the outside, and the loss due to Fresnel reflection.
  • the optical connector module 1 has a refractive index adjusting agent 30 having a refractive index substantially the same as the refractive index of the core 12 and is arranged in the optical path, so that the optical connector module 1 has a diffraction effect as compared with the case in the air.
  • the spread of light can be suppressed.
  • the optical connector module 1 can reduce the ratio of the light which is not couple
  • the refractive index adjusting agent 30 also plays a role of preventing foreign matters from being mixed. That is, the optical connector module 1 can prevent foreign matters from being mixed in by filling the gap S with the refractive index adjusting agent 30. Thereby, the optical connector module 1 can prevent the loss accompanying the scattering or absorption of the light by the foreign material from the outside, and can reduce a coupling loss.
  • the optical connector module 1 can suppress Fresnel reflection at the boundary surface. That is, the optical connector module 1 can emit light from the core 12 with high transmittance and improve the coupling efficiency.
  • the optical connector module 1 includes the second lens portion 24 that is curved, thereby enabling optical adjustment by two lens portions combined with the first lens portion 23. That is, the optical connector module 1 can improve the degree of freedom of optical adjustment by the two lens portions. Thereby, the optical connector module 1 can easily provide outgoing light having a desired beam state.
  • the optical connector module 1 can forcibly spread the light emitted from the core 12 by forming the first lens portion 23 as a concave lens.
  • the optical connector module 1 is provided with a concave lens at a position facing the core 12 on the first side face A1, thereby forcibly spreading the light whose spread is suppressed by the refractive index adjusting agent 30 at an early stage after emission. be able to.
  • the optical connector module 1 can convert the light expanded by the first lens portion 23 of the concave lens into collimated light by forming the second lens portion 24 as a convex lens.
  • the optical connector module 1 can provide collimated light having a large aperture by combining a concave lens and a convex lens by the first lens unit 23 and the second lens unit 24.
  • the optical connector module 1 can provide the collimated light which can be efficiently condensed into a smaller spot. That is, the optical connector module 1 can emit collimated light with good characteristics.
  • the optical connector module 1 can widen the tolerance
  • the optical connector module 1 can more effectively suppress the spread of light due to the diffraction effect when the refractive index adjusting agent 30 is in close contact with the first lens portion 23 and the end face of the core 12. Thereby, the optical connector module 1 can further reduce the proportion of light that is not coupled to the first lens unit 23 due to the diffraction effect. Moreover, the optical connector module 1 can reduce the width
  • the optical transmission line 10 and the optical connector 20 are fixed by the refractive index adjusting agent 30, so that the optical axis shift due to use, aging deterioration, or the like can be suppressed. Therefore, the optical connector module 1 can maintain substantially the same optical characteristics over a long period in a state where the relative positions are determined by the initial positioning. Thus, the optical connector module 1 can improve the quality as a product.
  • the optical connector module 1 contributes to the improvement of productivity by maintaining the end surface of the optical transmission line 10 as a curved surface protruding toward the optical connector 20 side. That is, the optical connector module 1 does not need to polish the end face of the optical transmission line 10, and a part of the production process can be omitted. Thereby, the optical connector module 1 also contributes to reduction of production cost. In this case, compared to the case where the flatness is small, Fresnel reflection tends to increase on the end face of the optical transmission line 10. However, the optical connector module 1 can suppress Fresnel reflection by bringing the end face of the optical transmission line 10 into contact with the refractive index adjusting agent 30. The optical connector module 1 can exhibit the lens effect even on the end surface because the end surface of the optical transmission line 10 is a curved surface protruding toward the optical connector 20 side.
  • the optical connector module 1 exhibits the above-described effects more remarkably because the end surface of the core 12 is a curved surface protruding toward the optical connector 20 side than the end surface of the clad 11.
  • the optical connector module 1 allows the first lens part 23 to receive the light that has spread out from the end face of the core 12 without leakage because the half width r 1 of the first lens part 23 is larger than the radius of the core 12. . Thereby, the optical connector module 1 can suppress the coupling loss by diffraction. The optical connector module 1 can further suppress the coupling loss due to diffraction by adopting the same configuration for the second lens unit 24.
  • the optical connector 20 as well as the refractive index adjusting agent 30 is made of a material having substantially the same refractive index as that of the core 12, thereby suppressing Fresnel reflection and reducing coupling loss.
  • FIG. 9 is a perspective view showing the optical connector module 1 according to the second embodiment.
  • the optical connector module 1 according to the second embodiment is different from the first embodiment in that the optical transmission line 10 is configured by an optical fiber 13.
  • symbol is attached
  • the optical transmission line 10 is composed of a plurality of optical fibers 13 as shown in FIG.
  • Each optical fiber 13 has a cladding 11 and a core 12 (see FIG. 14), and a coating as necessary.
  • the clad 11 may be made of glass or resin.
  • the core 12 may be made of glass or may be made of resin.
  • the waveguide mode of each optical fiber 13 may be either single mode or multimode.
  • Each optical fiber 13 may be any type of optical fiber such as a general-purpose single mode fiber, a dispersion-shifted single mode fiber, or a step index multimode optical fiber.
  • the plurality of optical fibers 13 may be bundled so as to be covered by the sheath, or may not be bundled. For example, the plurality of optical fibers 13 are arranged in a line in the left-right direction inside the optical connector 20.
  • FIG. 10 is a perspective view showing a single optical connector 20 of FIG.
  • the optical connector 20 may be made of a material having substantially the same refractive index as that of the core 12 of the optical transmission line 10.
  • the optical connector 20 includes a base 51 and an opening component 52 formed so as to be continuous with the base 51 forward.
  • the optical connector 20 has a holding portion 54 in the base portion 51 for holding the plurality of optical fibers 13.
  • the optical connector 20 has a plurality of guide grooves 55 in the holding portion 54.
  • the plurality of guide grooves 55 are grooves for respectively holding the plurality of optical fibers 13 constituting the optical transmission path 10.
  • the number of guide grooves 55 is equal to or greater than the number of optical fibers 13 constituting the optical transmission line 10.
  • the optical connector 20 has a plurality of through holes 56 that are respectively continuous behind the plurality of guide grooves 55.
  • the optical connector 20 includes a holding hole 57 that holds the guide pin 60.
  • a pair of holding holes 57 are formed at both left and right ends of the optical connector 20 so as to penetrate both the left and right ends of the base 51 and the opening component 52.
  • the optical connector 20 has a notch 25 in which the upper surface of the base 51 is notched. That is, the notch 25 is formed in a substantially concave shape.
  • the optical connector 20 includes a first lens portion 23 provided on a first side surface A1 that constitutes a part of the inner surface of the cutout portion 25.
  • the optical connector 20 includes a second lens portion 24 provided on a second side surface A2 opposite to the first side surface A1 in the light propagation direction.
  • FIG. 11 is an exploded perspective view showing the optical connector module 1 of FIG. 9 in an exploded manner.
  • 12 is a cross-sectional view taken along the line XII-XII in FIG.
  • FIG. 13 is an enlarged view corresponding to the XIII portion of FIG.
  • the optical transmission line 10 is inserted into the optical connector 20 from the front.
  • the optical transmission line 10 is held by the optical connector 20 with the clad 11 and the end of the core 12 of the optical transmission line 10 exposed behind the through hole 56.
  • the refractive index adjusting agent 30 is filled from above so as to fill the notch 25.
  • a pair of left and right guide pins 60 are inserted into the holding holes 57 of the optical connector 20 that holds the optical transmission path 10.
  • the first lens unit 23, the second lens unit 24, and the refractive index adjusting agent 30 are configured in the same manner as in the first embodiment in a state where the optical connector module 1 is completed.
  • FIG. 14 is an enlarged view corresponding to the XIV portion of FIG.
  • FIG. 14 shows the state of the end face of the optical transmission line 10 of FIG.
  • FIG. 15 is an enlarged view corresponding to FIG. 14 showing the state of the end face of the optical transmission line 10 according to the modification.
  • the end face of the optical transmission line 10 is a curved surface protruding toward the optical connector 20 side, particularly the first side face A1 side.
  • the end surface of the optical transmission line 10 is configured such that the end surfaces of the clad 11 and the core 12 are the same curved surface.
  • the present invention is not limited to this, and as shown in FIG. 15, the end face of the optical transmission line 10, particularly the end face of the core 12, may be a curved surface that protrudes further toward the first side face A ⁇ b> 1 than the end face of the cladding 11.
  • optical connector module 1 according to the second embodiment as described above has the same effects as those of the first embodiment.
  • FIG. 16 is a perspective view showing the optical connector module 1 according to the third embodiment.
  • FIG. 17 is an enlarged cross-sectional view in which a part of the cross section taken along the arrow XVII-XVII in FIG. 16 is enlarged.
  • the optical connector module 1 according to the third embodiment is a combination of the optical system according to the first embodiment and the optical system according to the second embodiment.
  • symbol is attached
  • the optical connector module 1 connects the optical connector 20 a according to the first embodiment and the optical connector 20 b according to the second embodiment, and the optical according to the first embodiment.
  • the transmission line 10a and the optical transmission line 10b according to the second embodiment are optically coupled.
  • the optical connector 20a and the optical connector 20b are arranged in the front-rear direction so that the positions in the vertical and horizontal directions substantially coincide.
  • the pair of guide pins 60 are inserted into the through holes 22a.
  • the optical connector 20a and the optical connector 20b are connected.
  • the position of the optical connector 20b with respect to the optical connector 20a is determined by the through hole 22a.
  • the end face of the optical transmission line 10a and the end face of the optical transmission line 10b are arranged on substantially the same optical axis, and the optical waveguide constituting the optical transmission line 10a and the optical transmission line 10b are configured.
  • the corresponding optical fibers 13 are respectively optically coupled.
  • the light emitted from the optical transmission line 10a passes through the refractive index adjusting agent 30a, the first lens unit 231 and the second lens unit 241, and is emitted as collimated light.
  • the collimated light passes through the second lens portion 242, the first lens portion 232, and the refractive index adjusting agent 30 b and enters the optical fiber 13.
  • the same explanation is applied even when the light propagation direction is the opposite.
  • the optical connector module 1 according to the third embodiment as described above has the same effects as those of the first embodiment and the second embodiment.
  • the optical connector module 1 according to the third embodiment transmits light to two different optical transmission lines 10a and 10b in a state where efficient condensing capability and a wide range of optical coupling are realized by collimated light having a large diameter. Can be combined.
  • the refractive index adjusting agent 30 is described as being filled in the entire space S, but is not limited thereto.
  • the refractive index adjusting agent 30 may be disposed only in a part of the gap S if it is interposed between the first side face A1 and the end face of the core 12 and a desired optical characteristic is obtained.
  • first lens portion 23 and the second lens portion 24 have been described as being substantially semicircular in plan view, but are not limited thereto.
  • the first lens unit 23 and the second lens unit 24 may be spherical or aspherical.
  • the first lens portion 23 has been described as a concave lens, it is not limited to this. As long as desired optical characteristics can be obtained, the first lens unit 23 may be any type of lens such as a convex lens.
  • the optical connector 20 may not have the second lens portion 24.
  • the second lens unit 24 is not limited to a convex lens, and may be any type of lens such as a concave lens.
  • the end face of the optical transmission line 10 constituted by the optical waveguide or the optical fiber 13 may be a flat surface or a curved surface.
  • the end surface When the end surface is formed by a curved surface, the end surface may be a concave surface or a convex surface.
  • the shapes and positions of the end faces of the cladding 11 and the core 12 of the optical transmission line 10 are not limited to those shown in FIGS. If desired optical characteristics can be obtained, the end faces of the clad 11 and the core 12 of the optical transmission line 10 may be arranged in any shape and in any position. For example, if the core 12 and the first lens portion 23 are separated from each other and the refractive index adjusting agent 30 is filled therebetween, the clad 11 is in contact with the optical connector 20, particularly the first side surface A 1. Also good.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

結合損失を低減しつつ、小型化に寄与できる光コネクタモジュールを提供する。 本発明に係る光コネクタモジュール(1)は、コア(12)及びクラッド(11)を有する光伝送路(10)と、コア(12)の端面と対向する第1側面(A1)が設けられた、光伝送路(10)と光学的に結合する光コネクタ(20)と、コア(12)と第1側面(A1)との間の空隙(S)の屈折率を調整する屈折率調整剤(30)と、を備え、屈折率調整剤(30)は、第1側面(A1)と端面との間に介在し、第1側面(A1)には、コア(12)と対向する位置に曲率する第1レンズ部(23)が設けられる。

Description

光コネクタモジュール
 本発明は、光伝送路及び光コネクタを光結合する光コネクタモジュールに関する。
 従来、光伝送路同士を光結合するための光接続用コネクタが知られている。例えば、特許文献1には、光ファイバと光導波路との結合損失を抑制するために、レンズ部材を設けることが開示されている。
特開2016-009081
 異なる光伝送路同士を光結合する際には、結合損失をできる限り低減させることが望ましい。しかしながら、例えば特許文献1に記載されているような光接続用コネクタでは、レンズ部材において、光伝送路との対向面と反対側の外面にレンズが形成されており、より長い距離で光の回折効果が生じる。これにより、結合損失が増大する恐れがあった。
 また、光伝送路及び光接続用コネクタを含むモジュール全体を小型化するために、光接続用コネクタをできる限り小型化することが望ましい。しかしながら、例えば特許文献1に記載されているような光接続用コネクタでは、所望のビーム状態へと光学調整を行うレンズと光伝送路との間の距離が長い。したがって、このような配置が小型化の妨げとなっていた。
 このような問題点に鑑みてなされた本発明の目的は、結合損失を低減しつつ、小型化に寄与できる光コネクタモジュールを提供することにある。
 上記課題を解決するために、第1の観点に係る光コネクタモジュールは、
 コア及びクラッドを有する光伝送路と、
 前記コアの端面と対向する第1側面が設けられた、前記光伝送路と光学的に結合する光コネクタと、
 前記コアと前記第1側面との間の空隙の屈折率を調整する屈折率調整剤と、
 を備え、
 前記屈折率調整剤は、前記第1側面と前記端面との間に介在し、
 前記第1側面には、前記コアと対向する位置に曲率する第1レンズ部が設けられる。
 第2の観点に係る光コネクタモジュールでは、
 光の伝搬方向において、前記光コネクタは、前記第1側面と反対側に第2側面を有しており、
 前記第2側面には、曲率する第2レンズ部が設けられてもよい。
 第3の観点に係る光コネクタモジュールでは、
 前記第1レンズ部は、前記第1側面において凹形状として形成されてもよい。
 第4の観点に係る光コネクタモジュールでは、
 前記第2レンズ部は、前記第2側面において凸形状として形成されてもよい。
 第5の観点に係る光コネクタモジュールでは、
 前記屈折率調整剤は、前記第1レンズ部及び前記端面と密着してもよい。
 第6の観点に係る光コネクタモジュールでは、
 前記屈折率調整剤は、前記光コネクタと前記光伝送路とを固定してもよい。
 第7の観点に係る光コネクタモジュールでは、
 前記光伝送路の端面は、前記光コネクタ側に突出する曲面であってもよい。
 第8の観点に係る光コネクタモジュールでは、
 前記コアの前記端面は、前記クラッドの端面よりも前記光コネクタ側に突出する曲面であってもよい。
 本発明の一実施形態に係る光コネクタモジュールによれば、結合損失を低減しつつ、小型化に寄与できる。
第1実施形態に係る光コネクタモジュールを示す斜視図である。 図1の光伝送路単体を拡大して示した斜視図である。 図1の光コネクタ単体を示す斜視図である。 図1の光コネクタモジュールを分解して示した分解斜視図である。 図1のV-V矢線に沿う断面図である。 図5のVI部に対応する拡大図である。 図6のVII部に対応する拡大図である。 変形例に係る光伝送路の端面の様子を示した、図7に対応する拡大図である。 第2実施形態に係る光コネクタモジュールを示す斜視図である。 図9の光コネクタ単体を示す斜視図である。 図9の光コネクタモジュールを分解して示した分解斜視図である。 図9のXII-XII矢線に沿う断面図である。 図12のXIII部に対応する拡大図である。 図13のXIV部に対応する拡大図である。 変形例に係る光伝送路の端面の様子を示した、図14に対応する拡大図である。 第3実施形態に係る光コネクタモジュールを示す斜視図である。 図16のXVII-XVII矢線に沿う断面の一部を拡大した拡大断面図である。
 以降、添付図面を参照しながら、本発明の一実施形態について詳細に説明する。以下の説明中の前後、左右及び上下の方向は、図中の矢印の方向を基準とする。
(第1実施形態)
 図1は、第1実施形態に係る光コネクタモジュール1を示す斜視図である。光コネクタモジュール1は、光伝送路10と、光伝送路10と光学的に結合する光コネクタ20と、光伝送路10と光コネクタ20との間の空隙Sの屈折率を調整する屈折率調整剤30とを有する。第1実施形態では、光伝送路10は、基板上に形成される光導波路であるものとして説明する。
 図2は、図1の光伝送路10単体を拡大して示した斜視図である。
 光伝送路10は、図2に示すとおり、例えば、リジッド式のプリント配線基板によって構成される基体40の上面に形成される。特に、光伝送路10は、基体40の上面に形成された凹部から上方に突出するように配置される。光伝送路10は、光コネクタ20と光結合するために、前端面が基体40の前端面と一致するように形成される。すなわち、光伝送路10の前端面は、基体40の前端面に沿って略平面状に形成される。光伝送路10の導波モードは、シングルモード及びマルチモードのいずれであってもよい。以下では、光伝送路10は、基体40の上面に形成されるものとして説明するが、これに限定されない。例えば、光伝送路10は、基体40の内部に埋め込まれてもよい。この場合、光伝送路10の前端面は、基体40の前端面と一致し、後述するコア12の端面が基体40から露出するように形成されてもよい。
 光伝送路10は、基体40の上面に積層するように形成されたクラッド11と、左右方向に所定の間隔で互いに離間する複数のコア12とを有する。クラッド11及びコア12は、例えば、石英系のガラスにより形成される。コア12の屈折率は、クラッド11の屈折率よりも高い。以下では、光伝送路10は、例えば、埋め込み型の光導波路であるものとして説明するが、これに限定されず、スラブ型又は半埋め込み型などの適宜な方式の光導波路であってよい。
 図3は、図1の光コネクタ20単体を示す斜視図である。
 一例として、光コネクタ20は、光伝送路10のコア12の屈折率と略同一の屈折率を有する材料によって構成される。光コネクタ20は、略L字状である。光コネクタ20は、前後方向に延伸する第1基部21を有する。第1基部21は、下面21aの略中央部から内側に向けて一段凹んだ凹部21bを有する。光コネクタ20は、第1基部21の前方に突出し、第1基部21と連続するように形成される第2基部22を有する。第2基部22は、第1基部21から下方に張り出すように形成される。光コネクタ20は、第2基部22の前面から後面まで貫通する一対の貫通孔22aを有する。貫通孔22aは、第2基部22の左右両端に一対形成される。
 光コネクタ20は、第2基部22の内面の一部を構成する第1側面A1に設けられた第1レンズ部23を有する。第1レンズ部23は、複数の曲率するレンズ23aにより構成される。第1レンズ部23を構成するレンズ23aの数は、光伝送路10のコア12の数以上である。
 光コネクタ20は、光の伝搬方向において第1側面A1と反対側の第2側面A2に設けられた第2レンズ部24を有する。第2レンズ部24は、複数の曲率するレンズ24aにより構成される。第2レンズ部24を構成するレンズ24aの数は、光伝送路10のコア12の数以上である。
 光コネクタ20は、第2基部22の内面を第1側面A1まで切欠いた切欠部25を有する。すなわち、切欠部25は、凹形状として形成される。光コネクタ20は、切欠部25を構成する上下左右の4つの側面と、第1側面A1と、切欠部25の直下に位置する第2基部22の外面とによって構成される接着部26を有する。
 屈折率調整剤30は、光伝送路10のコア12の屈折率と略同一の屈折率を有する材料によって構成される。屈折率調整剤30は、接着剤としての役割を果たしてもよい。
 図4は、図1の光コネクタモジュール1を分解して示した分解斜視図である。図5は、図1のV-V矢線に沿う断面図である。図6は、図5のVI部に対応する拡大図である。
 図4に示すとおり、光コネクタ20は、光伝送路10の上方から基体40上に取り付けられる。すなわち、光コネクタ20は、第1基部21の下面21aが基体40の上面と当接して、光伝送路10の一部を覆った状態で配置される。第2基部22は、基体40の前端部から前方に突出し、第1基部21から下方に張り出すように配置される。すなわち、第2基部22は、その下面が光伝送路10の上下位置よりもさらに下方に位置するように突出する。
 このとき、光伝送路10及び基体40と光コネクタ20の接着部26との間には、空隙Sが形成される(図5参照)。屈折率調整剤30は、空隙Sを満たすように下方から充填される。すなわち、屈折率調整剤30は、コア12と第1側面A1との間の空隙Sの屈折率を調整する。このとき、光コネクタ20の接着部26と屈折率調整剤30とが接着する。同様に、光伝送路10及び基体40の前端面と屈折率調整剤30とが接着する。特に、屈折率調整剤30は、第1レンズ部23及びコア12の端面と密着する。これにより、光伝送路10と光コネクタ20とは、屈折率調整剤30によって固定される。
 屈折率調整剤30は、空隙Sのみを満たす構成に限定されず、例えば光コネクタ20の下面21aと基体40の上面との間に充填されてもよい。同様に、屈折率調整剤30は、光伝送路10を覆う光コネクタ20の凹部21bを満たすように充填されてもよい。基体40及び光伝送路10の少なくとも一方と光コネクタ20とは、このような方法で、屈折率調整剤30によって固定されてもよい。
 基体40への取り付けの際に、光コネクタ20は、適宜な方法により位置決めされてもよい。例えば、光コネクタ20は、凹部21bの前後方向に沿った内側面の少なくとも一方が基体40から突出した光伝送路10の左右方向の端面と当接することで位置決めされてもよい。例えば、光コネクタ20は、基体40上に形成されたスタッドピンに対応する形状の凹部を有してもよい。このとき、光コネクタ20は、当該スタッドピンに凹部を係合させることで位置決めされてもよい。例えば、光コネクタ20は、基体40上に形成された凹部に対応する形状の凸部を有してもよい。このとき、光コネクタ20は、当該凹部に凸部を嵌合させることで位置決めされてもよい。
 以上により、光コネクタモジュール1の組み立てが完了する。
 図6に示すとおり、光コネクタモジュール1が完成した状態で、第1側面A1は、コア12の前端面と対向する。特に、第1レンズ部23は、コア12の前端面と対向する。屈折率調整剤30は、第1レンズ部23とコア12の前端面との間に介在する。一例として、第1レンズ部23を構成するレンズ23aは、第1側面A1において凹形状として形成される。すなわち、レンズ23aは、凹レンズとして形成される。特に、レンズ23aは、光の伝搬方向、すなわち前後方向に沿った図6のような平面視において、略半円形状に形成されてもよい。レンズ23aの上下方向の半幅r1は、光伝送路10のコア12の半径よりも大きくてもよい。レンズ23aにおいて、上下方向の全幅2r1に対する伝搬方向に沿った幅dの比率が、1/2以下であってもよい。すなわち、d≦(2r1)/2=r1である。
 一方で、第2レンズ部24は、光コネクタ20の第2基部22を介して第1レンズ部23と対向する。一例として、第2レンズ部24を構成するレンズ24aは、第2側面A2において凸形状として形成される。すなわち、レンズ24aは、凸レンズとして形成される。特に、レンズ24aは、光の伝搬方向、すなわち前後方向に沿った図6のような平面視において、略半円形状に形成されてもよい。レンズ24aの上下方向の半幅r2は、光伝送路10のコア12の半径よりも大きくてもよい。
 図6を用いて、一例として、光伝送路10の前端面から光が出射する場合の光の伝搬の様子について説明する。すなわち、光伝送路10は、発光素子からの光を伝送するものとして説明する。これに限定されず、光伝送路10は、受光素子へと光を伝送してもよい。この場合、光の伝搬方向を真逆にした状態で以下の説明が適用され得るものと理解されたい。
 屈折率調整剤30がコア12の屈折率と略同一の屈折率を有する材料によって構成される場合、屈折率調整剤30とコア12との境界面に入射した光のフレネル反射は、屈折率の整合によって抑制される。したがって、当該境界面に入射した光は、高い透過率で屈折率調整剤30の内部へと出射する。出射した光は、屈折率調整剤30の内部で回折効果によって拡がりながらレンズ23aへと入射する。光コネクタ20が屈折率調整剤30の屈折率と略同一の屈折率を有する材料によって構成される場合、光コネクタ20と屈折率調整剤30との境界面に入射した光のフレネル反射は、屈折率の整合によって抑制される。したがって、当該境界面に入射した光は、高い透過率で光コネクタ20、特に第2基部22の内部へと出射する。レンズ23aが凹レンズとして形成される場合、第2基部22の内部へと出射した光は、さらに拡がりながらレンズ24aへと入射する。レンズ24aが凸レンズとして形成される場合、外部と光コネクタ20との境界面に入射した光は、レンズ24aによってコリメートされる。このように、光コネクタモジュール1は、光伝送路10から出射した光をコリメートした状態で外部へと伝搬させる。
 図7は、図6のVII部に対応する拡大図である。図7は、図1の光伝送路10の端面の様子を示す。図8は、変形例に係る光伝送路10の端面の様子を示した、図7に対応する拡大図である。
 図7に示すとおり、光伝送路10の前端面は、基体40の前端面と一致する。すなわち、クラッド11及びコア12の前端面が、基体40の前端面に沿って、同一平面上に形成される。しかしながらこれに限定されず、図8に示すとおり、光伝送路10の端面、特にコア12の端面は、光コネクタ20側に突出する曲面であってもよい。特に、コア12の端面は、クラッド11の端面よりも光コネクタ20側に突出する曲面であってもよい。
 以上のような第1実施形態に係る光コネクタモジュール1は、結合損失を低減しつつ、小型化に寄与できる。すなわち、光コネクタモジュール1は、第1側面A1においてコア12と対向する位置に第1レンズ部23が設けられることで、光の回折効果が生じる距離を短くして結合損失を低減できる。光コネクタモジュール1は、第1レンズ部23と光伝送路10との間の距離が短く、全体の小型化に寄与できる。特に、光コネクタモジュール1は、光の伝搬方向に沿った幅を低減できる。
 光コネクタモジュール1は、屈折率調整剤30を介在させることで、結合損失を低減できる。すなわち、光コネクタモジュール1は、回折効果による損失、外部からの異物による光の散乱又は吸収に伴う損失及びフレネル反射による損失を低減できる。
 具体的には、光コネクタモジュール1は、コア12の屈折率と略同一の屈折率を有する屈折率調整剤30が光路中に配置されることで、空気中の場合と比較して回折効果による光の拡がりを抑制できる。これにより、光コネクタモジュール1は、回折効果によって第1レンズ部23と結合しない光の割合を低減できる。
 また、屈折率調整剤30は、異物の混入を防止する役割も果たす。すなわち、光コネクタモジュール1は、空隙Sが屈折率調整剤30によって充填されることで、外部からの異物の混入を防止できる。これにより、光コネクタモジュール1は、外部からの異物による光の散乱又は吸収に伴う損失を防止して、結合損失を低減できる。
 さらに、光コネクタモジュール1は、屈折率調整剤30の屈折率がコア12の屈折率と略同一であるので、互いの境界面におけるフレネル反射を抑制できる。すなわち、光コネクタモジュール1は、高い透過率で光をコア12から出射させ、結合効率を向上できる。
 光コネクタモジュール1は、曲率する第2レンズ部24を有することで、第1レンズ部23と組み合わせた2つのレンズ部による光学調整を可能とする。すなわち、光コネクタモジュール1は、2つのレンズ部によって光学調整の自由度を向上できる。これにより、光コネクタモジュール1は、所望のビーム状態を有する出射光を容易に提供できる。
 光コネクタモジュール1は、第1レンズ部23が凹レンズとして形成されることで、コア12から出射された光を強制的に拡げることができる。特に、光コネクタモジュール1は、第1側面A1においてコア12と対向する位置に凹レンズが設けられることで、屈折率調整剤30によって拡がりが抑制された光を出射後の早い段階で強制的に拡げることができる。
 光コネクタモジュール1は、第2レンズ部24が凸レンズとして形成されることで、凹レンズの第1レンズ部23によって拡げられた光をコリメート光に変換できる。特に、光コネクタモジュール1は、第1レンズ部23及び第2レンズ部24による凹レンズ及び凸レンズの組合せによって、大口径のコリメート光を提供できる。これにより、光コネクタモジュール1は、より小さなスポットに効率良く集光可能なコリメート光を提供できる。すなわち、光コネクタモジュール1は、特性の良いコリメート光を出射できる。また、光コネクタモジュール1は、大口径のコリメート光によって光結合の許容範囲を広げることができる。換言すると、光コネクタモジュール1は、光結合の対象となる他のモジュールとの間で光軸がずれていたとしても、所定の許容範囲において光結合を可能とする。
 光コネクタモジュール1は、屈折率調整剤30が第1レンズ部23及びコア12の端面と密着することで、回折効果による光の拡がりをより効果的に抑制できる。これにより、光コネクタモジュール1は、回折効果によって第1レンズ部23と結合しない光の割合をさらに低減できる。また、光コネクタモジュール1は、当該構成によって光の伝搬方向に沿った空隙Sの幅を低減できる。これにより、光コネクタモジュール1は、全体の小型化、特に光の伝搬方向に沿った幅の低減に寄与できる。
 光コネクタモジュール1は、屈折率調整剤30によって光伝送路10と光コネクタ20とが固定されることで、使用、経年劣化などによる光軸ずれを抑制できる。したがって、光コネクタモジュール1は、最初の位置決めによって互いの相対位置が定められた状態で、長期にわたって略同一の光学特性を維持できる。このように、光コネクタモジュール1は、製品としての品質を向上できる。
 光コネクタモジュール1は、光伝送路10の端面を光コネクタ20側に突出する曲面として維持することで、生産性の向上に寄与する。すなわち、光コネクタモジュール1は、光伝送路10の端面を研磨する必要がなく、生産工程の一部を省略できる。これにより、光コネクタモジュール1は、生産コストの削減にも寄与する。この場合、平面度が小さい平面である場合と比較して、光伝送路10の端面ではフレネル反射が増大する傾向にある。しかしながら、光コネクタモジュール1は、光伝送路10の端面を屈折率調整剤30と当接させることで、フレネル反射を抑制できる。光コネクタモジュール1は、光伝送路10の端面が光コネクタ20側に突出する曲面であることで、当該端面においてもレンズ効果を発揮できる。
 光コネクタモジュール1は、コア12の端面がクラッド11の端面よりも光コネクタ20側に突出する曲面であることで、上記の関連する効果をより顕著に奏する。
 光コネクタモジュール1は、第1レンズ部23の半幅r1がコア12の半径よりも大きいことで、コア12の端面から出射して拡がった光を第1レンズ部23によって漏れなく受けることができる。これにより、光コネクタモジュール1は、回折による結合損失を抑制できる。光コネクタモジュール1は、第2レンズ部24も同様の構成とすることで、回折による結合損失をさらに抑制できる。
 光コネクタモジュール1は、屈折率調整剤30と共に光コネクタ20もコア12の屈折率と略同一の屈折率を有する材料によって構成されることで、フレネル反射を抑制して、結合損失を低減できる。
(第2実施形態)
 図9は、第2実施形態に係る光コネクタモジュール1を示す斜視図である。第2実施形態に係る光コネクタモジュール1は、光伝送路10が光ファイバ13により構成される点で第1実施形態と異なる。以下では、第2実施形態に係る光コネクタモジュール1において、第1実施形態と共通する構成部については同一の符号を付す。共通する構成部及びその機能の説明については省略し、第1実施形態と異なる点について主に説明する。
 光伝送路10は、図9に示すとおり、複数の光ファイバ13により構成される。各光ファイバ13は、クラッド11及びコア12(図14参照)、並びに必要に応じて被膜を有している。クラッド11は、ガラスにより構成されてもよいし、樹脂によって構成されてもよい。同様に、コア12は、ガラスにより構成されてもよいし、樹脂によって構成されてもよい。各光ファイバ13の導波モードは、シングルモード及びマルチモードのいずれであってもよい。各光ファイバ13は、汎用のシングルモードファイバ、分散シフトシングルモードファイバ、ステップインデックスマルチモード光ファイバなど、任意の種類の光ファイバであってよい。複数の光ファイバ13は、シースによって覆われるように束ねられてもよいし、束ねられていなくてもよい。複数の光ファイバ13は、例えば、光コネクタ20の内部において、左右方向に一列に配列されている。
 図10は、図9の光コネクタ20単体を示す斜視図である。
 光コネクタ20は、光伝送路10のコア12の屈折率と略同一の屈折率を有する材料によって構成されてもよい。光コネクタ20は、基部51と、基部51と前方に連続するように形成される開口構成部52と、を有する。
 開口構成部52には、光伝送路10を挿通するための開口部53が形成される。光コネクタ20は、複数の光ファイバ13を保持するための保持部54を基部51内に有する。光コネクタ20は、保持部54内において、複数のガイド溝55を有する。複数のガイド溝55は、光伝送路10を構成する複数の光ファイバ13をそれぞれ保持するための溝である。ガイド溝55の数は、光伝送路10を構成する光ファイバ13の本数以上である。
 光コネクタ20は、複数のガイド溝55の後方にそれぞれ連続する複数の貫通孔56を有する。光コネクタ20は、ガイドピン60を保持する保持孔57を備える。保持孔57は、基部51及び開口構成部52の左右両端を貫通するように、光コネクタ20の左右両端に一対形成される。
 光コネクタ20は、基部51の上面を切欠いた切欠部25を有する。すなわち、切欠部25は、略凹形状として形成される。光コネクタ20は、切欠部25の内面の一部を構成する第1側面A1に設けられた第1レンズ部23を有する。光コネクタ20は、光の伝搬方向において第1側面A1と反対側の第2側面A2に設けられた第2レンズ部24を有する。
 図11は、図9の光コネクタモジュール1を分解して示した分解斜視図である。図12は、図9のXII-XII矢線に沿う断面図である。図13は、図12のXIII部に対応する拡大図である。
 図11に示すとおり、光伝送路10は、光コネクタ20に前方から挿入される。光伝送路10は、光伝送路10のクラッド11及びコア12の端部が貫通孔56より後方に露出した状態で光コネクタ20により保持される。屈折率調整剤30は、切欠部25を満たすように上方から充填される。左右一対のガイドピン60が、光伝送路10を保持した光コネクタ20の保持孔57に挿入される。
 以上により、光コネクタモジュール1の組み立てが完了する。
 図12及び図13に示すとおり、光コネクタモジュール1が完成した状態で、第1レンズ部23、第2レンズ部24及び屈折率調整剤30は、第1実施形態と同様に構成される。光伝送路10の後端面から光が出射する場合の光の伝搬の様子についても同様である。第2レンズ部24から光が入射する場合の光の伝搬の様子についても同様であり、光の伝搬方向を真逆にした状態で第1実施形態における説明が適用され得るものと理解されたい。
 図14は、図13のXIV部に対応する拡大図である。図14は、図9の光伝送路10の端面の様子を示す。図15は、変形例に係る光伝送路10の端面の様子を示した、図14に対応する拡大図である。
 図14に示すとおり、光伝送路10の端面は、光コネクタ20側、特に第1側面A1側に突出する曲面である。一例として、光伝送路10の端面は、クラッド11及びコア12の端面が同一曲面となるように構成される。しかしながらこれに限定されず、図15に示すとおり、光伝送路10の端面、特にコア12の端面は、クラッド11の端面よりも第1側面A1側に突出する曲面であってもよい。
 以上のような第2実施形態に係る光コネクタモジュール1は、第1実施形態と同様の効果を奏する。
(第3実施形態)
 図16は、第3実施形態に係る光コネクタモジュール1を示す斜視図である。図17は、図16のXVII-XVII矢線に沿う断面の一部を拡大した拡大断面図である。第3実施形態に係る光コネクタモジュール1は、第1実施形態に係る光学系と第2実施形態に係る光学系とを組み合わせたものである。以下では、第3実施形態に係る光コネクタモジュール1において、第1実施形態及び第2実施形態と共通する構成部については同一の符号を付す。共通する構成部及びその機能の説明については省略し、第1実施形態及び第2実施形態と異なる点について主に説明する。
 図16に示すとおり、第3実施形態に係る光コネクタモジュール1は、第1実施形態に係る光コネクタ20aと第2実施形態に係る光コネクタ20bとを接続して、第1実施形態に係る光伝送路10aと第2実施形態に係る光伝送路10bとを光結合する。
 より具体的には、光コネクタ20aと光コネクタ20bとを上下左右方向の位置が略一致するように、前後方向に並べる。この状態で、一対のガイドピン60が、貫通孔22aに挿入される。これにより、光コネクタ20aと光コネクタ20bとが接続する。このとき、貫通孔22aによって、光コネクタ20aに対する光コネクタ20bの位置が決定される。これにより、図17に示すとおり、光伝送路10aの端面及び光伝送路10bの端面が略同一の光軸上に配置され、光伝送路10aを構成する光導波路と、光伝送路10bを構成する対応する複数の光ファイバ13とが、それぞれ光結合する。
 例えば、光伝送路10aから出射した光は、屈折率調整剤30a、第1レンズ部231及び第2レンズ部241を通過して、コリメート光として出射する。コリメート光は、第2レンズ部242、第1レンズ部232及び屈折率調整剤30bを通過して、光ファイバ13へと入射する。光の伝搬方向が真逆の場合であっても同様の説明が適用されるものとする。
 以上のような第3実施形態に係る光コネクタモジュール1は、第1実施形態及び第2実施形態と同様の効果を奏する。第3実施形態に係る光コネクタモジュール1は、大口径のコリメート光によって、効率良い集光可能性かつ広範な光結合の許容範囲を実現した状態で、異なる2つの光伝送路10a、10bを光結合できる。
 本発明は、その精神又はその本質的な特徴から離れることなく、上述した実施形態以外の他の所定の形態で実現できることは当業者にとって明白である。したがって、先の記述は例示的なものであり、これに限定されるものではない。発明の範囲は、先の記述によってではなく、付加した請求項によって定義される。あらゆる変更のうちその均等の範囲内にあるいくつかの変更は、その中に包含されるものとする。
 例えば、上記では、屈折率調整剤30は、空隙S全体に充填されるものとして説明したが、これに限定されない。屈折率調整剤30は、第1側面A1とコア12の端面との間に介在し、かつ、所望の光学特性が得られるのであれば、空隙Sの一部にのみ配置されてもよい。
 上記では、第1レンズ部23及び第2レンズ部24の形状は、平面視において略半円形であるものとして説明したが、これに限定されない。第1レンズ部23及び第2レンズ部24の形状は、球面であってもよいし、非球面であってもよい。
 第1レンズ部23は、d≦(2r1)/2=r1の条件を満たす構成に限定されない。所望の光学特性が得られるのであれば、第1レンズ部23において、全幅2r1に対する幅dの比率が、1/2よりも大きくてもよい。
 第1レンズ部23は、凹レンズであるものとして説明したがこれに限定されない。所望の光学特性が得られるのであれば、第1レンズ部23は、凸レンズなどの任意のタイプのレンズであってもよい。
 所望の光学特性が得られるのであれば、光コネクタ20は、第2レンズ部24を有さなくてもよい。また、第2レンズ部24は、凸レンズであることに限定されず、凹レンズなどの任意のタイプのレンズであってもよい。
 光導波路又は光ファイバ13によって構成される光伝送路10の端面は、平面であってもよいし、曲面であってもよい。当該端面は、曲面により形成される場合、凹面であってもよいし、凸面であってもよい。特に、光伝送路10のクラッド11及びコア12の端面の形状及び位置は、図7、8、14及び15に示したものに限定されない。所望の光学特性が得られるのであれば、光伝送路10のクラッド11及びコア12の端面は、任意の形状で任意の位置に配置されてもよい。例えば、コア12と第1レンズ部23とが離間しており、その間に屈折率調整剤30が充填されているのであれば、クラッド11は、光コネクタ20、特に第1側面A1と当接してもよい。
1   光コネクタモジュール
10、10a、10b 光伝送路
11  クラッド
12  コア
13  光ファイバ
20、20a、20b 光コネクタ
21  第1基部
21a 下面
21b 凹部
22  第2基部
22a 貫通孔
23、231、232 第1レンズ部
23a レンズ
24、241、242 第2レンズ部
24a レンズ
25  切欠部
26  接着部
30、30a、30b 屈折率調整剤
40  基体
51  基部
52  開口構成部
53  開口部
54  保持部
55  ガイド溝
56  貫通孔
57  保持孔
60  ガイドピン
A1  第1側面
A2  第2側面
S   空隙

Claims (8)

  1.  コア及びクラッドを有する光伝送路と、
     前記コアの端面と対向する第1側面が設けられた、前記光伝送路と光学的に結合する光コネクタと、
     前記コアと前記第1側面との間の空隙の屈折率を調整する屈折率調整剤と、
     を備え、
     前記屈折率調整剤は、前記第1側面と前記端面との間に介在し、
     前記第1側面には、前記コアと対向する位置に曲率する第1レンズ部が設けられる、
     光コネクタモジュール。
  2.  光の伝搬方向において、前記光コネクタは、前記第1側面と反対側に第2側面を有しており、
     前記第2側面には、曲率する第2レンズ部が設けられる、
     請求項1に記載の光コネクタモジュール。
  3.  前記第1レンズ部は、前記第1側面において凹形状として形成される、
     請求項1または請求項2に記載の光コネクタモジュール。
  4.  前記第2レンズ部は、前記第2側面において凸形状として形成される、
     請求項2または請求項3に記載の光コネクタモジュール。
  5.  前記屈折率調整剤は、前記第1レンズ部及び前記端面と密着する、
     請求項1乃至4のいずれか1項に記載の光コネクタモジュール。
  6.  前記屈折率調整剤は、前記光コネクタと前記光伝送路とを固定する、
     請求項5に記載の光コネクタモジュール。
  7.  前記光伝送路の端面は、前記光コネクタ側に突出する曲面である、
     請求項1乃至6のいずれか1項に記載の光コネクタモジュール。
  8.  前記コアの前記端面は、前記クラッドの端面よりも前記光コネクタ側に突出する曲面である、
     請求項1乃至7のいずれか1項に記載の光コネクタモジュール。
PCT/JP2017/022406 2017-06-16 2017-06-16 光コネクタモジュール WO2018229992A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17913577.7A EP3640692B9 (en) 2017-06-16 2017-06-16 Optical connector module
US16/622,247 US11143820B2 (en) 2017-06-16 2017-06-16 Optical connector module
CN201780092017.6A CN110741295B (zh) 2017-06-16 2017-06-16 光连接器模块
PCT/JP2017/022406 WO2018229992A1 (ja) 2017-06-16 2017-06-16 光コネクタモジュール
JP2018500348A JP6401888B1 (ja) 2017-06-16 2017-06-16 光コネクタモジュール
KR1020197036947A KR102316398B1 (ko) 2017-06-16 2017-06-16 광 커넥터 모듈
EP24152064.2A EP4350405A3 (en) 2017-06-16 2017-06-16 Optical connector module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022406 WO2018229992A1 (ja) 2017-06-16 2017-06-16 光コネクタモジュール

Publications (1)

Publication Number Publication Date
WO2018229992A1 true WO2018229992A1 (ja) 2018-12-20

Family

ID=63788205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022406 WO2018229992A1 (ja) 2017-06-16 2017-06-16 光コネクタモジュール

Country Status (6)

Country Link
US (1) US11143820B2 (ja)
EP (2) EP4350405A3 (ja)
JP (1) JP6401888B1 (ja)
KR (1) KR102316398B1 (ja)
CN (1) CN110741295B (ja)
WO (1) WO2018229992A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348390A (zh) * 2019-01-24 2021-09-03 京瓷株式会社 光连接器模块以及光波导基板的制造方法
USD933614S1 (en) 2020-05-27 2021-10-19 Kyocera Corporation Optical connector ferrule
WO2021230294A1 (ja) * 2020-05-14 2021-11-18 ヌヴォトンテクノロジージャパン株式会社 光源モジュール
WO2022014419A1 (ja) * 2020-07-17 2022-01-20 京セラ株式会社 光コネクタ及び光コネクタモジュール
WO2023100899A1 (ja) * 2021-11-30 2023-06-08 株式会社エンプラス 光コネクタおよび光コネクタモジュール

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112041718B (zh) 2018-04-26 2023-09-05 索尼公司 光通信连接器、光发射器、光接收器、光通信系统和光通信线缆
WO2020105258A1 (ja) * 2018-11-22 2020-05-28 株式会社フジクラ フェルール、ファイバ付きフェルール及びファイバ付きフェルールの製造方法
WO2020121769A1 (ja) * 2018-12-13 2020-06-18 ソニー株式会社 光コネクタ、光ケーブルおよび電子機器
KR102105496B1 (ko) * 2019-09-24 2020-05-29 정재호 광케이블
JP7449808B2 (ja) * 2020-07-29 2024-03-14 京セラ株式会社 光コネクタ及び光コネクタモジュール
US11446776B2 (en) * 2020-08-27 2022-09-20 Northrop Grumman Systems Corporation Method for assembling a hollow core optical fiber array launcher
KR20230070498A (ko) * 2020-10-23 2023-05-23 애플 인크. 행잉 커넥터를 갖는 빠른-축 시준기

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304966A (ja) * 1999-04-21 2000-11-02 Nippon Telegr & Teleph Corp <Ntt> 光導波路用コネクタ及び光結合装置
JP2003005230A (ja) * 2001-06-20 2003-01-08 Fujitsu Ltd 光回路装置
JP2004004487A (ja) * 2002-04-26 2004-01-08 Ibiden Co Ltd 光伝送構造体、および、光導波路の形成方法
JP2013020027A (ja) * 2011-07-08 2013-01-31 Fujitsu Ltd 光伝送路及び光伝送路の製造方法
JP2014115352A (ja) * 2012-12-07 2014-06-26 Furukawa Electric Co Ltd:The レンズ付き接続体、光ファイバ接続構造体、及び光コネクタ
JP2014164270A (ja) * 2013-02-27 2014-09-08 Sumitomo Bakelite Co Ltd フェルール、光電気混載基板および電子機器
US20150063755A1 (en) * 2013-08-27 2015-03-05 International Business Machines Corporation Multicore fiber waveguide coupler
JP2016009081A (ja) 2014-06-24 2016-01-18 富士通コンポーネント株式会社 光コネクタの製造方法及び光コネクタ
JP2016057588A (ja) * 2014-09-12 2016-04-21 住友電気工業株式会社 光コネクタ
JP2017040887A (ja) * 2015-08-21 2017-02-23 富士通株式会社 光導波路コネクタ
WO2017072993A1 (ja) * 2015-10-28 2017-05-04 京セラコネクタプロダクツ株式会社 光コネクタ及び光コネクタシステム並びにこれらを備えたアクティブ光ケーブル

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL172188C (nl) 1977-02-11 1983-07-18 Deutsch Co Elec Comp Stelsel voor het koppelen van een optische vezel aan een optisch onderdeel dat optische energie levert of opneemt.
JPS578005Y2 (ja) * 1977-12-27 1982-02-16
JPS579766Y2 (ja) * 1978-07-10 1982-02-25
JPS5988713A (ja) 1982-11-12 1984-05-22 Nippon Denso Co Ltd 光コネクタ
US4707063A (en) 1984-02-02 1987-11-17 Polaroid Corporation Widely spaced fiber optic connector and multiplexer/demultiplexer using same
US5039193A (en) * 1990-04-03 1991-08-13 Focal Technologies Incorporated Fibre optic single mode rotary joint
JPH0572444A (ja) * 1991-09-17 1993-03-26 Fujitsu Ltd 多心光コネクタ
US6044187A (en) * 1998-04-01 2000-03-28 Duck; Gary S. Multi-port fiber optical device
US6567583B2 (en) * 1999-03-30 2003-05-20 Lucent Technologies Inc. Mode converter and method
US7068882B2 (en) * 2000-07-04 2006-06-27 Namiki Seimitsu Houseki Kabushiki Kaisha Optical fiber microlens, optical fiber and method of positioning optical fiber
JP2004530927A (ja) * 2001-06-15 2004-10-07 コーニング インコーポレイテッド 集束及び集光器用のテーパ型レンズ付ファイバ
EP1326107A3 (en) * 2002-01-04 2004-03-10 JDS Uniphase Corporation Athermal optical coupler
US7418174B2 (en) * 2002-04-26 2008-08-26 Ibiden Co., Ltd. Optical transmission structural body, optical waveguide, optical waveguide formation method, and optical wiring connection body
US7218812B2 (en) * 2003-10-27 2007-05-15 Rpo Pty Limited Planar waveguide with patterned cladding and method for producing the same
JP2007241093A (ja) 2006-03-10 2007-09-20 Tyco Electronics Amp Kk 光コネクタ
US20130177280A1 (en) * 2006-06-19 2013-07-11 Commscope, Inc. Of North Carolina Expanded Beam Connector Concepts
JP2008151843A (ja) * 2006-12-14 2008-07-03 Omron Corp 光伝送用光学部品及びその製造方法
JP4301335B2 (ja) * 2007-10-23 2009-07-22 オムロン株式会社 光導波路、光伝送モジュール、及び電子機器
TWI368768B (en) * 2007-12-28 2012-07-21 Ind Tech Res Inst Optical intermediary component and optical daughter card module
JP5296484B2 (ja) 2008-10-15 2013-09-25 矢崎総業株式会社 光ファイバモジュール及びその製造方法
US8057106B1 (en) * 2009-06-12 2011-11-15 Applied Micro Circuits Corporation Fiber optic connector microlens with focal plane aligning fiber trap
US8061904B1 (en) * 2009-06-12 2011-11-22 Applied Micro Circuits Corporation Fiber optic connector microlens with self-aligning optical fiber cavity
US8787714B2 (en) * 2009-12-22 2014-07-22 Enplas Corporation Lens array and optical module provided therewith
CN101813806B (zh) * 2010-04-16 2011-08-31 中国人民解放军国防科学技术大学 光互连芯片间的微型转向耦合元件
JP5750997B2 (ja) 2010-05-17 2015-07-22 住友電気工業株式会社 光コネクタモジュール
JP5357845B2 (ja) 2010-08-31 2013-12-04 アンリツ株式会社 偏波モード分散ストレス発生方法および装置
CN103874947B (zh) * 2011-07-29 2017-05-10 莫列斯公司 光纤组件和制造该光纤组件的方法
JP5754317B2 (ja) * 2011-09-15 2015-07-29 富士通株式会社 光コネクタ
JP2013156337A (ja) * 2012-01-27 2013-08-15 Mitsubishi Pencil Co Ltd 光結合部材および光コネクタ
US20130287342A1 (en) * 2012-04-30 2013-10-31 Paulo Clóvis Dainese Júnior Lead-in formations in optical fiber segments and methods of forming lead-in formations
JP2014059479A (ja) * 2012-09-18 2014-04-03 Fujitsu Ltd 光コネクタの製造方法及び光コネクタ
JP2014174245A (ja) * 2013-03-07 2014-09-22 Hirose Electric Co Ltd 光コネクタ及び該光コネクタを用いてプラグを生成する現場結線方法
US10698165B2 (en) * 2013-03-15 2020-06-30 Te Connectivity Corporation Multi-fiber ferrule connector
JP6207881B2 (ja) * 2013-05-30 2017-10-04 株式会社エンプラス 光レセプタクルおよびこれを備えた光モジュール
US20160195677A1 (en) * 2013-08-21 2016-07-07 Hewlett Packard Enterprise Development Lp Device including mirrors and filters to operate as a multiplexer or de-multiplexer
JP6491418B2 (ja) * 2014-03-14 2019-03-27 日立金属株式会社 光ファイバコネクタ
JP6457723B2 (ja) 2014-03-28 2019-01-23 富士通株式会社 光導波路結合器及びその製造方法
JP6410551B2 (ja) * 2014-10-17 2018-10-24 古河電気工業株式会社 フェルール、フェルール付光ファイバ芯線、フェルールの製造方法、およびフェルール付光ファイバ芯線の製造方法
JP6878770B2 (ja) * 2016-04-05 2021-06-02 東洋製罐グループホールディングス株式会社 レンズ付き光ファイバ及び光結合器
US9726824B1 (en) * 2016-09-15 2017-08-08 Google Inc. Optical circuit switch collimator
JP2018092152A (ja) * 2016-11-30 2018-06-14 株式会社フジクラ フェルール構造体、ファイバ付きフェルール構造体及びファイバ付きフェルール構造体の製造方法
JP2018194671A (ja) * 2017-05-17 2018-12-06 コニカミノルタ株式会社 光コネクタ
KR20200040788A (ko) * 2017-08-30 2020-04-20 엔지케이 인슐레이터 엘티디 광학 부품 및 투명 밀봉 부재
JP6510619B1 (ja) * 2017-11-16 2019-05-08 株式会社フジクラ フェルール構造体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304966A (ja) * 1999-04-21 2000-11-02 Nippon Telegr & Teleph Corp <Ntt> 光導波路用コネクタ及び光結合装置
JP2003005230A (ja) * 2001-06-20 2003-01-08 Fujitsu Ltd 光回路装置
JP2004004487A (ja) * 2002-04-26 2004-01-08 Ibiden Co Ltd 光伝送構造体、および、光導波路の形成方法
JP2013020027A (ja) * 2011-07-08 2013-01-31 Fujitsu Ltd 光伝送路及び光伝送路の製造方法
JP2014115352A (ja) * 2012-12-07 2014-06-26 Furukawa Electric Co Ltd:The レンズ付き接続体、光ファイバ接続構造体、及び光コネクタ
JP2014164270A (ja) * 2013-02-27 2014-09-08 Sumitomo Bakelite Co Ltd フェルール、光電気混載基板および電子機器
US20150063755A1 (en) * 2013-08-27 2015-03-05 International Business Machines Corporation Multicore fiber waveguide coupler
JP2016009081A (ja) 2014-06-24 2016-01-18 富士通コンポーネント株式会社 光コネクタの製造方法及び光コネクタ
JP2016057588A (ja) * 2014-09-12 2016-04-21 住友電気工業株式会社 光コネクタ
JP2017040887A (ja) * 2015-08-21 2017-02-23 富士通株式会社 光導波路コネクタ
WO2017072993A1 (ja) * 2015-10-28 2017-05-04 京セラコネクタプロダクツ株式会社 光コネクタ及び光コネクタシステム並びにこれらを備えたアクティブ光ケーブル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3640692A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348390A (zh) * 2019-01-24 2021-09-03 京瓷株式会社 光连接器模块以及光波导基板的制造方法
CN113348390B (zh) * 2019-01-24 2023-09-19 京瓷株式会社 光连接器模块以及光波导基板的制造方法
WO2021230294A1 (ja) * 2020-05-14 2021-11-18 ヌヴォトンテクノロジージャパン株式会社 光源モジュール
USD933614S1 (en) 2020-05-27 2021-10-19 Kyocera Corporation Optical connector ferrule
WO2022014419A1 (ja) * 2020-07-17 2022-01-20 京セラ株式会社 光コネクタ及び光コネクタモジュール
JP2022019384A (ja) * 2020-07-17 2022-01-27 京セラ株式会社 光コネクタ及び光コネクタモジュール
JP7566519B2 (ja) 2020-07-17 2024-10-15 京セラ株式会社 光コネクタ及び光コネクタモジュール
EP4184227A4 (en) * 2020-07-17 2024-10-16 Kyocera Corp OPTICAL CONNECTOR AND OPTICAL CONNECTOR MODULE
WO2023100899A1 (ja) * 2021-11-30 2023-06-08 株式会社エンプラス 光コネクタおよび光コネクタモジュール

Also Published As

Publication number Publication date
EP3640692B9 (en) 2024-05-29
US11143820B2 (en) 2021-10-12
KR20200003925A (ko) 2020-01-10
EP3640692A1 (en) 2020-04-22
EP4350405A3 (en) 2024-10-09
EP3640692B1 (en) 2024-02-14
EP3640692A4 (en) 2021-01-27
EP4350405A2 (en) 2024-04-10
KR102316398B1 (ko) 2021-10-22
JP6401888B1 (ja) 2018-10-10
CN110741295A (zh) 2020-01-31
US20200103596A1 (en) 2020-04-02
CN110741295B (zh) 2022-03-18
JPWO2018229992A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6401888B1 (ja) 光コネクタモジュール
US20070230868A1 (en) Optical reflector, optical system and optical multiplexer/demultiplexer device
JP6979381B2 (ja) 光コネクタモジュール
US10139566B2 (en) Optical waveguide connector
JP2017161577A (ja) 光レセプタクルおよび光モジュール
JP2005024617A (ja) 光送信器
JP2008233556A (ja) レンズ筐体及び光モジュール
WO2022024855A1 (ja) 光コネクタ及び光コネクタモジュール
JP7566519B2 (ja) 光コネクタ及び光コネクタモジュール
JP4905252B2 (ja) 光通信モジュール
TW201341878A (zh) 光插座及具備它之光模組
WO2016175126A1 (ja) 光伝送モジュール
JP2019105736A (ja) モジュール及び電子機器
JP5035081B2 (ja) 光接続モジュール
KR100493098B1 (ko) 평면 도파로 구조의 광 모듈
JP2010169755A (ja) 光路変換ミラー
WO2018097072A1 (ja) 光モジュールおよび光モジュールの製造方法
JP2007212902A (ja) 光送受信装置
CA2552417A1 (en) Optical functional circuit
JP2008026811A (ja) 光結合装置
JP2005338297A (ja) 光結合レンズ及び光通信装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018500348

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197036947

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017913577

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017913577

Country of ref document: EP

Effective date: 20200116