[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018228522A1 - 发送参考信号的方法、接收参考信号的方法和通信装置 - Google Patents

发送参考信号的方法、接收参考信号的方法和通信装置 Download PDF

Info

Publication number
WO2018228522A1
WO2018228522A1 PCT/CN2018/091447 CN2018091447W WO2018228522A1 WO 2018228522 A1 WO2018228522 A1 WO 2018228522A1 CN 2018091447 W CN2018091447 W CN 2018091447W WO 2018228522 A1 WO2018228522 A1 WO 2018228522A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
reference signal
resource group
offset
Prior art date
Application number
PCT/CN2018/091447
Other languages
English (en)
French (fr)
Inventor
夏金环
吕永霞
张永平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710910063.4A external-priority patent/CN109150387B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019569352A priority Critical patent/JP7246327B2/ja
Priority to EP18816854.6A priority patent/EP3627732A4/en
Priority to BR112019026840-5A priority patent/BR112019026840A2/pt
Publication of WO2018228522A1 publication Critical patent/WO2018228522A1/zh
Priority to US16/712,566 priority patent/US11239970B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present application relates to field communication and, more particularly, to a method and apparatus for transmitting a reference signal and a method and apparatus for receiving a reference signal.
  • the transmitting end device transmits the demodulation reference signal while transmitting the data
  • the receiving end device first performs channel estimation according to the demodulation reference signal, and further demodulates the data according to the result of the channel estimation.
  • the design of the reference signal is mainly for a service with a large amount of data, for example, an Evolved Mobile Broadband (eMBB) service, which has higher reliability requirements for data demodulation. Low (for example, 90%).
  • eMBB Evolved Mobile Broadband
  • the present application provides a method and apparatus for transmitting a reference signal and a method and apparatus for receiving a reference signal, which can meet the configuration requirements of a service with different reliability requirements for a reference signal.
  • a method for transmitting a reference signal includes: the network device transmitting configuration information first indication information to the terminal device, where the first indication information indicates at least two configuration information corresponding to the first demodulation reference signal
  • the first configuration information, the configuration information of the at least two configuration information includes at least one of the following parameters: a sequence used by the demodulation reference signal, and a time-frequency resource carrying the demodulation reference signal in a time-frequency resource group
  • the density, the antenna port associated with the demodulation reference signal, the location of the time-frequency resource carrying the demodulation reference signal, and the at least one parameter included in any two configuration information is different; the network device passes the first time according to the first configuration information.
  • the frequency resource group sends the first downlink information and the first demodulation reference signal to the terminal device, where the first downlink information includes first downlink data or first downlink control information, and the first demodulation reference The signal is used to demodulate the first downlink information.
  • the second aspect provides a method for receiving a reference signal, where the method includes: receiving, by the terminal device, the first indication information, where the first indication information is in the at least two configuration information corresponding to the first demodulation reference signal.
  • First configuration information each of the at least two configuration information includes at least one of a parameter: a sequence used by the demodulation reference signal, a density of a time-frequency resource carrying the demodulation reference signal in a time-frequency resource group, An antenna port associated with the demodulation reference signal, a location of the time-frequency resource carrying the demodulation reference signal, and at least one parameter between the two types of configuration information is different; the terminal device passes the first time-frequency according to the first configuration information.
  • the terminal device receives, by the network device, the first downlink information and the first demodulation reference signal, where the first downlink information includes the first downlink data or the first downlink control information; the terminal device is configured according to the first Demodulating the reference signal and demodulating the first downlink information.
  • the first indication information indicates the first configuration information of the at least two types of configuration information corresponding to the first demodulation reference signal, and the at least one parameter included in any two types of configuration information is different, so as to be used for demodulating data reference.
  • the signal corresponds to a plurality of configuration information, or the reference signal used for demodulating the control information corresponds to multiple configuration information, and in the actual service transmission, the network device can be selected to select one of the multiple configuration information and the reliability of the current service.
  • the matching configuration information is required to transmit the reference signal to meet the configuration requirements of the demodulation reference signal for services with different reliability requirements.
  • the first downlink information includes the first downlink control information
  • the first configuration information is determined according to an information format of the first downlink control information and a first mapping relationship, where the first mapping relationship is It is a mapping relationship between at least two information formats and the at least two configuration information.
  • the first downlink information includes the first downlink control information
  • the network device determines the first configuration information from the at least two configuration information corresponding to the first demodulation reference signal, including: the network device is configured according to Determining, by the information format and the first mapping relationship of the first downlink control information, the first configuration information, where the first mapping relationship is between the at least two information formats and the at least two configuration information Mapping relationship.
  • the mapping relationship between the multiple information formats and the multiple configuration information is obtained in advance, so that the network device can select the service that is currently transmitted according to the information format of the current control information to be transmitted.
  • the matching configuration information in turn, can improve the efficiency and achievability of determining the configuration information.
  • the first configuration information is determined according to the service type of the service corresponding to the first downlink information, and the second mapping relationship, where the second mapping relationship is at least two service types and the at least two configuration information.
  • the mapping relationship between them is determined according to the service type of the service corresponding to the first downlink information, and the second mapping relationship, where the second mapping relationship is at least two service types and the at least two configuration information. The mapping relationship between them.
  • the network device determines, according to the at least two types of configuration information corresponding to the first demodulation reference signal, the first configuration information, where the network device is configured according to the service type and the second mapping of the service corresponding to the first downlink information.
  • the relationship determines the first configuration information from the at least two types of configuration information, where the second mapping relationship is a mapping relationship between the at least two service types and the at least two types of configuration information.
  • the first downlink information includes the first downlink control information
  • the first configuration information is a control channel format (or aggregation level) and a first according to a downlink control channel that carries the first downlink control information.
  • the third mapping relationship is a mapping relationship between the at least two control channel formats (or aggregation levels) and the at least two configuration information.
  • the first downlink information includes the first downlink control information
  • the network device determines the first configuration information from the at least two configuration information corresponding to the first demodulation reference signal, including: the network device is configured according to The control channel format (or aggregation level) of the downlink control channel carrying the first downlink control information and the third mapping relationship determine the first configuration information from the at least two types of configuration information, where the third mapping relationship is at least two A mapping relationship between the control channel format (or aggregation level) and the at least two configuration information.
  • the first time-frequency resource group belongs to the first resource set
  • the first downlink information includes the first downlink control information
  • the first demodulation reference signal is further used to demodulate the second downlink data.
  • the second downlink data is data that is sent by the network device by using the second resource set
  • the second downlink data is data that is received by the terminal device from the network device by using the second resource set, where the second resource set and the second resource set
  • the set of resources is consecutive in the time domain, or the interval between the second resource set and the first resource set in the time domain is less than or equal to a first threshold
  • the second resource set and the first resource set are in the frequency domain Continuously, or the interval between the second resource set and the first resource set in the frequency domain is less than or equal to a second threshold.
  • the method further includes: the terminal device demodulating the second downlink data according to the first demodulation reference signal.
  • the first demodulation reference signal is obtained by performing precoding processing based on the first precoding matrix, and the method further includes: the network device performing the second downlink data according to the first precoding matrix. Precoding processing.
  • the second downlink data is specifically sent by the network device by using a third time-frequency resource group in the second resource set, where the third time-frequency resource group and the first time-frequency resource group are in the time domain. Continuously, or the interval between the third time-frequency resource group and the first time-frequency resource group in the time domain is less than or equal to a third threshold, and the third time-frequency resource group and the first time-frequency resource group are in frequency The interval in the domain is continuous, or the interval between the third time-frequency resource group and the first time-frequency resource group in the frequency domain is less than or equal to a fourth threshold.
  • the first time-frequency resource group belongs to the first resource set, the first resource set includes at least two time-frequency resource groups, the first downlink information includes the first downlink control information, and the method further include:
  • the network device sends a second demodulation reference signal and a third downlink data to the terminal device by using a second time-frequency resource group in the first resource set, where the second demodulation reference signal is used for the solution of the third downlink data. Tune.
  • the method further includes: receiving, by the terminal device, the second demodulation reference signal and the third downlink data from the network device by using the second time-frequency resource group in the first resource set; the terminal device according to the second solution The reference signal is demodulated for the third downlink data.
  • the terminal device receives the second demodulation reference signal and the third downlink data from the network device by using the second time-frequency resource group in the first resource set, where the terminal device: according to the first configuration information, Receiving the second demodulation reference signal from the network device by using the second time-frequency resource group in the first resource set; or the second device according to the second demodulation reference signal corresponding to the second demodulation reference signal And configured to receive the second demodulation reference signal from the network device by using the second time-frequency resource group in the first resource set.
  • the configuration information of the second demodulation reference signal in the second time-frequency resource group is the first configuration information.
  • the configuration information of the second demodulation reference signal in the second time-frequency resource group is the second configuration information of the at least two configuration information corresponding to the second demodulation reference signal.
  • the network device sends the first indication information to the terminal device, and correspondingly, the terminal device receives the first indication information from the network side device.
  • the first indication information is used to indicate configuration information used by the second demodulation reference signal in the second time-frequency resource group.
  • the at least two configuration information corresponding to the first demodulation reference signal further includes fifth configuration information, where the first density is less than the second density, and the first location is a partial location in the second location, where The first density is a density of a time-frequency resource of the bearer reference signal included in the first configuration information in a time-frequency resource group, and the time-frequency resource of the bearer reference signal included in the fifth configuration information is at the second density
  • the density of the time-frequency resource group, the first location is the location of the time-frequency resource of the bearer reference signal included in the first configuration information
  • the second location is the location of the time-frequency resource of the bearer reference signal included in the fifth configuration information.
  • the time-frequency resource corresponding to the first location is a subset of time-frequency resources corresponding to the second location.
  • intersection of the time-frequency resource corresponding to the first location and the time-frequency resource corresponding to the second location does not include 0.
  • the at least two configuration information corresponding to the first demodulation reference signal is in one-to-one correspondence with the at least two types of density, and the at least two configuration information corresponding to the first demodulation reference signal and the at least two locations are one by one.
  • the density corresponding to the third configuration information of the at least two configuration information corresponding to the first demodulation reference signal is smaller than the fourth configuration information of the at least two configuration information corresponding to the first demodulation reference signal.
  • the density, and at least part of the locations corresponding to the third configuration information belong to a location corresponding to the fourth configuration information.
  • the “density corresponding to the configuration information” refers to: “the density of the time-frequency resource carrying the demodulation reference signal in a time-frequency resource group” of the configuration information including (or indicating).
  • the “location corresponding to the configuration information” means that the configuration information includes (or indicates) the “position of the time-frequency resource carrying the demodulation reference signal”.
  • the first configuration information is the third configuration information or the fourth configuration information.
  • the method further includes: the network device sending the second indication information to the terminal device, where the second indication information is used to indicate that the first demodulation reference signal is used to demodulate the second downlink data.
  • the terminal device demodulates the second downlink data according to the first demodulation reference signal, where the terminal device receives the second indication information from the network device, where the second indication information is used to indicate the first demodulation reference
  • the signal is used to demodulate the second downlink data; the terminal device demodulates the second downlink data by using the first demodulation reference signal according to the second indication information.
  • the processing load of the terminal device can be reduced, and the reliability of the communication can be improved.
  • the first time-frequency resource group belongs to the first resource set, the first downlink information includes the first downlink control information, and the first resource set further includes a fourth time-frequency resource group, where the fourth time The frequency resource group is configured to carry a third demodulation reference signal, where the third demodulation reference signal is used to demodulate the fourth downlink data, where the fourth downlink data is carried in the third resource set.
  • the method further includes: when the fourth time-frequency resource group has an overlapping portion with the first time-frequency resource in the first time-frequency resource, the network device is configured according to the location of the fourth time-frequency resource group. And determining, by the preset offset, the fifth time-frequency resource group; the network device sends the third demodulation reference signal by using the fifth time-frequency resource group, where the first time-frequency resource is the first time-frequency resource A time-frequency resource for carrying the first demodulation reference signal in the resource group.
  • the method further includes: when the fourth time-frequency resource group has an overlapping portion with the first time-frequency resource in the first time-frequency resource group, the terminal device is configured according to the location of the fourth time-frequency resource group Determining, by the preset offset, a fifth time-frequency resource group; the terminal device receives the third demodulation reference signal from the network device by using the fifth time-frequency resource group, where the first time-frequency resource is A time-frequency resource for carrying the first demodulation reference signal in the first time-frequency resource group.
  • the fifth time-frequency resource group includes at least one second time-frequency resource and at least one third time-frequency resource, where the second time-frequency resource is not in the fourth time-frequency resource group a time-frequency resource in which the time-frequency resource is overlapped, and the third time-frequency resource is a time-frequency in which the time-frequency resource overlapping the first time-frequency resource in the fourth time-frequency resource group is offset by the preset offset
  • the time-frequency resource in the fifth time-frequency resource group is the time-frequency resource after each time-frequency resource in the fourth time-frequency resource group is offset by the preset offset.
  • the demodulation reference signal for demodulating the control information overlaps with the bearer resource of the demodulation reference signal used for demodulating the downlink data
  • the demodulation reference signal for carrying the downlink data is used according to the specified offset amount. Since the resources are shifted, the transmission of the demodulation reference signals of both the control information and the downlink data can be reliably realized, and the reliability of the communication can be improved.
  • the offset includes an offset in the time domain.
  • the offset based on the offset comprises shifting one or more symbols backwards in the time domain.
  • the offset comprises a frequency domain offset.
  • the offset based on the offset comprises shifting one or more REs in the high frequency direction or the low frequency direction in the frequency domain.
  • the method further includes: sending, by the network device, the third indication information to the terminal device, where the third indication information is used to indicate that the fourth downlink data is demodulated by the third demodulation reference signal.
  • the method further includes: the terminal device receiving, by the network device, third indication information, where the third indication information is used to indicate that the fourth downlink data is demodulated by the third demodulation reference signal;
  • the third indication information is used to demodulate the fourth downlink data by using the third demodulation reference signal.
  • the “preset offset” may mean that the offset may be determined according to a preset rule.
  • the “preset offset” may mean that the offset may be configured by the network device and indicate the terminal device.
  • the network device may semi-statically indicate the preset offset by using high layer signaling (such as SIB or RRC signaling).
  • high layer signaling such as SIB or RRC signaling
  • the network device can dynamically indicate the preset offset by physical layer signaling (the following line control information DCI).
  • a third aspect provides a method for transmitting a reference signal, where the method includes: the network device sends downlink control information and a demodulation reference signal to the terminal device by using the first resource set, where the demodulation reference signal is used to demodulate the downlink control information.
  • the network device sends downlink data to the terminal device through the second resource set, where the demodulation reference signal is further used to demodulate the downlink data.
  • a fourth aspect provides a method for receiving a reference signal, the method comprising: receiving, by a terminal device, downlink control information and a demodulation reference signal from a network device by using a first resource set; the terminal device receiving, by using the second resource set, the network device The second downlink data; the terminal device demodulates the downlink control information and the downlink data according to the first demodulation reference signal.
  • the second resource set is consecutive with the first resource set in the time domain, or the interval between the second resource set and the first resource set in the time domain is less than or equal to a first threshold, and the first The two resource sets are consecutive with the first resource set in the frequency domain, or the interval between the second resource set and the first resource set in the frequency domain is less than or equal to a second threshold.
  • the method for transmitting a reference signal it is possible to demodulate both control information and data based on the same reference signal, thereby reducing the occupation of resources by the reference signal, and improving communication efficiency.
  • the precoding matrix used for the precoding process of the downlink data is the same as the precoding matrix used for the precoding process for the demodulation reference signal (or the downlink control information).
  • a fifth aspect provides a method for transmitting a reference signal, where the method includes: determining, by the network device, a resource set, where the resource set is used to carry a demodulation reference signal and downlink information, where the downlink information is downlink control information or downlink data,
  • the demodulation reference signal is used to demodulate the downlink information, where the resource set includes a first time-frequency resource group and a second time-frequency resource group, where the first time-frequency resource group is a reserved time-frequency resource, and the second time
  • the frequency resource group is configured to carry the demodulation reference signal; when the first time-frequency resource group and the second time-frequency resource group have overlapping portions, the network device is configured according to the location of the second time-frequency resource group and the preset
  • the offset determines a third time-frequency resource group; the network device sends the demodulation reference signal by using the third time-frequency resource group.
  • the sixth aspect provides a method for receiving a reference signal, where the method includes: determining, by the terminal device, a resource set, where the resource set is used to carry a demodulation reference signal and downlink information, where the downlink information is downlink control information or downlink data,
  • the demodulation reference signal is used to demodulate the downlink information, where the resource set includes a first time-frequency resource group and a second time-frequency resource group, where the first time-frequency resource group is a reserved time-frequency resource, and the second time
  • the frequency resource group is configured to carry the demodulation reference signal; when the first time-frequency resource group and the second time-frequency resource group have overlapping portions, the terminal device is configured according to the location of the second time-frequency resource group and the preset
  • the offset determines a third time-frequency resource group; the terminal device receives the demodulation reference signal by using the third time-frequency resource group.
  • the resource of the demodulation reference signal for carrying the downlink information is offset according to a predetermined offset, thereby being reliably implemented
  • the transmission of the demodulation reference signal further improves the reliability of the communication.
  • the method further includes: the network device sending the indication information to the terminal device
  • the indication information is used to indicate that the first time-frequency resource group is a reserved time-frequency resource.
  • the terminal device determines the third time according to the location of the second time-frequency resource group and the preset offset.
  • the frequency resource group includes: the terminal device receives the indication information from the network device, where the indication information is used to indicate that the first time-frequency resource group is a reserved time-frequency resource; and the terminal device determines the first time according to the indication information. After the frequency resource is reserved for the time-frequency resource, when the first time-frequency resource group and the second time-frequency resource group have overlapping portions, determining, according to the location of the second time-frequency resource group and the preset offset, determining The third time-frequency resource group.
  • the reserved time-frequency resource may be a time-frequency resource that is determined by the terminal device not to carry the reference signal.
  • the reserved time-frequency resource may refer to a time-frequency resource that is not used by the network device to send or receive.
  • the “preset offset” may mean that the offset may be determined according to a preset rule.
  • the “preset offset” may mean that the offset may be configured by the network device and indicate the terminal device.
  • the network device may semi-statically indicate the preset offset by using high layer signaling (such as SIB or RRC signaling).
  • high layer signaling such as SIB or RRC signaling
  • the network device can dynamically indicate the offset indicating the preset by physical layer signaling (the following line control information DCI).
  • the one resource set includes multiple control channel units CCE.
  • Each of the control channel units includes at least one resource unit group REG or a physical resource block PRB.
  • one resource set includes multiple resource unit groups REG.
  • one resource set includes multiple physical resource blocks PRB.
  • one time-frequency resource group is one or more resource unit groups REG.
  • the first resource set is a control resource set CORESET.
  • the first resource set occupies at least one physical resource block PRB group.
  • the first resource set and the second resource set belong to the same PRB group.
  • the PRB group occupied by the first resource set and the PRB group occupied by the second resource set are consecutive in the frequency domain, for example, the first resource set
  • the occupied PRB group and the PRB group occupied by the second resource set are adjacent or have overlapping portions in the frequency domain.
  • the interval between the PRB group occupied by the first resource set and the PRB group occupied by the second resource set in the frequency domain is less than or equal to a preset frequency. Domain threshold.
  • the PRB group occupied by the first resource set and the PRB group occupied by the second resource set are consecutive in the time domain, for example, the first resource set.
  • the occupied PRB group and the PRB group occupied by the second resource set are adjacent or have overlapping portions in the time domain.
  • the interval between the PRB group occupied by the first resource set and the PRB group occupied by the second resource set in the time domain is less than or equal to a preset time. Domain threshold.
  • the first time-frequency resource group and the third time-frequency resource group occupy different symbols in the time domain, and occupy the same sub-carrier in the frequency domain.
  • the interval between the first time-frequency resource group and the symbol occupied by the third time-frequency resource group in the time domain is less than or equal to a predetermined time threshold, for example, the first time-frequency resource group and the third time The symbols occupied by the frequency resource group in the time domain are adjacent.
  • the first time-frequency resource group and the third time-frequency resource group occupy the same symbol in the time domain, and occupy different sub-carriers in the frequency domain.
  • the first time-frequency resource group is adjacent to or has an overlapping portion of the sub-carriers occupied by the third time-frequency resource group in the frequency domain.
  • the method when the first demodulation reference signal is further used for demodulation of the second downlink data, the method further includes: the network device prohibiting the second resource set A reference signal for demodulating the second downlink data is transmitted.
  • the method further includes: the network device prohibiting transmitting, by the third time-frequency resource group, a reference signal for demodulating the second downlink data.
  • a seventh aspect provides a method for transmitting a reference signal, the method comprising: the network device transmitting downlink control information and a first demodulation reference signal to a terminal device by using a first time-frequency resource group in the resource set, the first demodulation The reference signal is used to demodulate the downlink control information, where the configuration information of the first demodulation reference signal is the first configuration information of the at least two configuration information, and each of the at least two configuration information includes at least one of the following Parameters: a sequence used for demodulating the reference signal, a density of a time-frequency resource carrying the demodulation reference signal in a time-frequency resource group, an antenna port associated with the demodulation reference signal, and a position of a time-frequency resource carrying the demodulation reference signal, And the at least one parameter included in any two types of configuration information is different; the network device sends the second demodulation reference signal and the downlink data to the terminal device by using the second time-frequency resource group in the resource set, the second demodulation reference signal Used to de
  • the configuration information used by the second demodulation reference signal in the second time-frequency resource group is the first configuration information.
  • the configuration information used by the second demodulation and demodulation reference signal in the second time-frequency resource group is the second configuration information of the at least two configuration information.
  • the network device sends, to the terminal device, first indication information, where the first indication information is used to indicate configuration information used by the second demodulation reference signal in the second time-frequency resource group.
  • the remaining time-frequency resource group can be passed.
  • the data is transmitted, and the data and the control information are demodulated based on different reference signals, and demodulation of both data and control information can be ensured, and resource utilization efficiency can be improved.
  • the eighth aspect provides a method for receiving a reference signal, where the method includes: receiving, by a terminal device, downlink control information and a first demodulation reference signal from a network device by using a first time-frequency resource group in a resource set, where the terminal device passes the The second time-frequency resource group in the resource set receives the second demodulation reference signal and the downlink data from the network device, where the configuration information of the first demodulation reference signal is the first configuration information in the at least two configuration information,
  • Each of the at least two configuration information includes at least one of the following: a sequence used by the demodulation reference signal, a density of a time-frequency resource carrying the demodulation reference signal in a time-frequency resource group, and a demodulation reference signal correlation.
  • the antenna port, the location of the time-frequency resource carrying the demodulation reference signal, and the at least one parameter included in any two types of configuration information is different; the terminal device demodulates the downlink control information according to the first demodulation reference signal, according to The second demodulation reference signal demodulates the second downlink data.
  • the configuration information used by the second demodulation reference signal in the second time-frequency resource group is the first configuration information.
  • the configuration information used by the second demodulation reference signal in the second time-frequency resource group is the second configuration information of the at least two configuration information.
  • the terminal device receives the first indication information sent by the network device, where the first indication information is used to indicate configuration information used by the second demodulation reference signal in the second time-frequency resource group.
  • the first demodulation reference signal and the second demodulation reference signal are processed by the same precoding matrix.
  • the downlink control information and the downlink data are processed by using the same precoding matrix.
  • the first demodulation reference signal and the second demodulation reference signal are processed by the same precoding matrix.
  • an apparatus for transmitting a reference signal comprising means for performing the steps of any of the first, third, fifth, and seventh aspects above and embodiments thereof.
  • the device comprises a chip or circuit, such as a chip or circuit that can be disposed within a network device.
  • the device is a network device.
  • an apparatus for receiving a reference signal comprising means for performing the steps of any of the second, fourth, sixth and eighth aspects above and embodiments thereof.
  • the device comprises a chip or circuit, such as a chip or circuit that can be disposed within the terminal device.
  • the device is a terminal device.
  • a communication device comprising a memory and a processor for storing a computer program for calling and running the computer program from a memory, such that the communication device performs the first aspect to the first Any of the six aspects and methods of the embodiments thereof.
  • a chip system comprising a memory and a processor for storing a computer program for calling and running the computer program from the memory such that the communication device on which the chip system is installed performs The method of any of the above first to sixth aspects and embodiments thereof.
  • a computer program product comprising: computer program code, when the computer program code is communicated by a communication unit (eg, a network device or a terminal device), a processing unit or a transceiver, The processor, when executed, causes the communication device to perform the method of any of the first to sixth aspects above and embodiments thereof.
  • a communication unit eg, a network device or a terminal device
  • the processor when executed, causes the communication device to perform the method of any of the first to sixth aspects above and embodiments thereof.
  • a fourteenth aspect there is provided a computer readable storage medium storing a program causing a communication device (eg, a network device or a terminal device) to perform the above-described first to sixth aspects Any of the aspects and methods thereof.
  • a communication device eg, a network device or a terminal device
  • the method and apparatus for transmitting a reference signal and the method and apparatus for receiving a reference signal according to an embodiment of the present application can flexibly implement a transmission process of a reference signal, and can meet requirements of a service with different reliability requirements for a reference signal.
  • FIG. 1 is a schematic diagram showing an example of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic interaction diagram of an example of a transmission process of a reference signal according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the density and position of a reference signal in an embodiment of the present application.
  • FIG. 4 is a schematic diagram showing an example of resource distribution in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another example of resource distribution in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of still another example of resource distribution in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of still another example of resource distribution in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of still another example of resource distribution in the embodiment of the present application.
  • FIG. 9 is a schematic interaction diagram of another example of a transmission process of a reference signal according to an embodiment of the present application.
  • FIG. 10 is a schematic interaction diagram of still another example of a transmission process of a reference signal according to an embodiment of the present application.
  • FIG. 11 is a schematic interaction diagram of still another example of a transmission process of a reference signal according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram showing an example of an apparatus for transmitting a reference signal according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of another example of an apparatus for receiving a reference signal according to an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G future fifth generation
  • 5G fifth generation
  • NR new radio
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • Embodiments of the present application describe various embodiments in connection with a network device and a terminal device, where:
  • a terminal device may also be called a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user.
  • Agent or user device can be a station in the WLAN (STAION, ST), which can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, and a personal digital processing.
  • WLAN STAION, ST
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld device with wireless communication capabilities computing device or other processing device connected to a wireless modem, in-vehicle device, wearable device, and next-generation communication system, for example, a terminal device in a 5G network or Terminal equipment in the future evolution of the Public Land Mobile Network (PLMN) network.
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the network device may be a device for communicating with the mobile device, such as a network device, and the network device may be an access point (AP) in the WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, It may be a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or an access point, or an in-vehicle device, a wearable device, and a future 5G network.
  • AP access point
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB evolved base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • Network equipment or network equipment in a future evolved PLMN network may be a device for communicating with the mobile device, such as a network device, and the network device may be an access point (AP) in the WLAN, a base station (Base
  • the network device provides a service for the cell
  • the terminal device communicates with the network device by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) used by the cell
  • a transmission resource for example, a frequency domain resource, or a spectrum resource
  • the cell may be a network device.
  • a cell corresponding to a cell may belong to a macro base station, or may belong to a base station corresponding to a small cell, where the small cell may include: a metro cell, a micro cell, and a pico cell. (Pico cell), femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • multiple carriers can work at the same frequency on the carrier in the LTE system or the 5G system.
  • the concept of the carrier and the cell can be considered to be equivalent.
  • CA carrier aggregation
  • the concept of the carrier and the cell can be considered to be equivalent, for example, the UE accessing one carrier and accessing one cell are equivalent.
  • the method and apparatus provided by the embodiments of the present application may be applied to a terminal device or a network device, where the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the specific structure of the execution body of the method provided by the embodiment of the present application is not particularly limited as long as the program of the code of the method provided by the embodiment of the present application can be run by using the program according to the present application.
  • the method can be communicated.
  • the execution body of the method provided by the embodiment of the present application may be a terminal device or a network device, or a function module that can call a program and execute a program in the terminal device or the network device.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of a wireless communication system according to an embodiment of the present application.
  • the communication system 100 includes a network device 102, which may include one antenna or multiple antennas such as antennas 104, 106, 108, 110, 112, and 114.
  • network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or terminal device 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over a forward link (also referred to as downlink) 118 and through the reverse link (also Information referred to as uplink 120 receives information from terminal device 116.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • forward link 118 can use a different frequency band than reverse link 120, and forward link 124 can be used differently than reverse link 126. Frequency band.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the network device can transmit signals to all of the terminal devices in its corresponding sector through a single antenna or multiple antenna transmit diversity.
  • the transmit antenna of network device 102 may also utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 utilizes beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the associated coverage area, as compared to the manner in which the network device transmits signals to all of its terminal devices through single antenna or multi-antenna transmit diversity, Mobile devices in neighboring cells are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 can be a PLMN network or a D2D network or an M2M network or other network.
  • FIG. 1 is only a simplified schematic diagram of an example, and other network devices may also be included in the network, which are not shown in FIG.
  • FIG. 2 is a schematic interaction diagram of a method 200 for transmitting and receiving a reference signal according to an embodiment of the present application.
  • a communication system e.g., communication system 100 described above
  • the reference signal may be used for channel measurement, and then used for demodulation.
  • the reference signal in the embodiment of the present application may include a Demodulation Reference Signal (DMRS). .
  • DMRS Demodulation Reference Signal
  • the at least two types of reference signals include: a reference signal for demodulating control information (or control channel) (hereinafter, referred to as reference signal #1 for ease of understanding and distinction), and, by way of example and not limitation
  • the control information may include Downlink Control Information (DCI), and the control channel may include a Physical Downlink Control Channel (PDCCH).
  • DCI Downlink Control Information
  • PDCH Physical Downlink Control Channel
  • the at least two types of reference signals include: a reference signal for demodulating data (or a data channel) (hereinafter, referred to as reference signal #2 for ease of understanding and distinction), and, as an example,
  • the data may include downlink data
  • the data channel may include a Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • reference signal as a reference signal for channel measurement or channel estimation is merely exemplary, and should not be construed as limiting the embodiments of the present application. This application does not exclude the use of other in existing or future protocols. The name replaces the reference signal to achieve its possible function.
  • the reference signal of the at least one type of the at least two types of reference signals corresponds to at least two types of configuration information.
  • the reference signal #1 may have two or more types of configuration information
  • / or the above reference signal #2 may have two or more types of configuration information.
  • configuration information is an example of a general term of various parameters described below, and the present application is not particularly limited.
  • configuration information may also be referred to as “mode”.
  • the “configuration information” may include one or more of the following parameters.
  • Density specifically, the density of the time-frequency resource carrying the reference signal in a time-frequency resource group
  • each time-frequency resource group may include at least two time-frequency resources.
  • the time-frequency resource may be a resource element (Resource Element, RE).
  • the time-frequency resource group may be a Resource Element Group (REG).
  • the “density” may also be referred to as a reference signal density, and may refer to a time-frequency resource (eg, RE) used to carry a reference signal in a time-frequency resource group (eg, REG). proportion.
  • a time-frequency resource eg, RE
  • REG time-frequency resource group
  • B represents the number of time-frequency resources (eg, REs) carrying reference signals in a time-frequency resource group (eg, REG)
  • P represents the number of all time-frequency resources included in the time-frequency resource group.
  • time-frequency resources listed above are merely exemplary descriptions, and the present application is not limited thereto. Any one of the technical solutions in the art may define the time-frequency resources in arbitrary units as needed, and correspondingly, the times listed above.
  • the elements included in the frequency resource group may also define time-frequency resources in any form.
  • the time-frequency resource group may be defined as a time-frequency resource corresponding to a predetermined number of symbols in the time domain and corresponding to a predetermined number of sub-carriers in the frequency domain.
  • the reference signal density may also refer to a ratio of subcarriers carrying the reference signal in all subcarriers included in the time-frequency resource group in one time-frequency resource group.
  • the reference signal density may also refer to a ratio of symbols carrying the reference signal in all symbols included in the time-frequency resource group in a time-frequency resource group.
  • the difference between the parameters of the two types of configuration information may be: the reference signal density corresponding to one of the two types of configuration information is different from the reference signal density corresponding to the other of the two types of configuration information.
  • FIG. 3 shows a schematic diagram of an example of possible reference signal densities of an embodiment of the present application.
  • the number of REs carrying the reference signal is 4,
  • Parameter B Location (specifically, the location of the time-frequency resource carrying the reference signal in a time-frequency resource group)
  • the “location” may also be referred to as a reference signal location, and may refer to a time-frequency resource (eg, RE) used to carry a reference signal in a time-frequency resource group (eg, REG).
  • a time-frequency resource eg, RE
  • the location in the time-frequency resource is similar to the description of the "density".
  • a detailed description thereof will be omitted.
  • the time-frequency resource group may be defined as corresponding to a predetermined number of symbols in the time domain, corresponding to the frequency domain.
  • the reference signal location may also refer to a frequency domain location of all subcarriers included in the time-frequency resource group in a time-frequency resource group.
  • the reference signal density may also refer to a time domain position of a symbol carrying the reference signal in all symbols included in the time-frequency resource group in a time-frequency resource group.
  • the parameter differences of the two types of configuration information may indicate that the reference signal position corresponding to one of the two types of configuration information is different from the reference signal position corresponding to the other of the two types of configuration information.
  • FIG. 3 shows a schematic diagram of an example of possible reference signal locations for an embodiment of the present application.
  • the position of the reference signal may be different between any two configuration information having different densities, for example, any configuration information of the configuration information a and the configuration information b.
  • the reference signal position corresponding to the density (1/3) may be different from the reference signal position corresponding to any of the configuration information d, the configuration information c, the configuration information e, and the configuration information f (density is 1/2). .
  • the position of the reference signal may be different between two configuration information having the same density, for example, the reference signal position corresponding to the configuration information a and the configuration information b (density of 1/3). Can be different.
  • the reference signal positions corresponding to any two of the configuration information d, the configuration information c, the configuration information e, and the configuration information f may be different.
  • a part of the reference signal positions corresponding to the less dense configuration information may belong to The reference signal position corresponding to the denser configuration information (or the time-frequency resource corresponding to the reference signal position).
  • the partial reference signal position in the reference signal position corresponding to the configuration information a may belong to the reference signal position corresponding to the configuration information d or the configuration information c.
  • the partial reference signal position in the reference signal position corresponding to the configuration information d may belong to the reference signal position corresponding to the configuration information e or the configuration information f.
  • the reference signal position corresponding to the less dense configuration information may also be a subset of the reference signal locations corresponding to the denser configuration information.
  • Parameter C Sequence (specifically, the sequence used by the reference signal)
  • a “sequence” may also be referred to as a reference signal sequence, and may refer to a sequence used by a reference signal.
  • the sequence used by the reference signal may include a pseudo-noise (PN) sequence.
  • PN pseudo-noise
  • the reference signal can be calculated by using the following formula:
  • n' s n s .
  • the form presented is a complex form of the PN sequence obtained by modulation.
  • c init_1 and c init_3 for determining the sequence of the reference signal on a symbol c init_2 reference signal sequence for determining a unit of time (e.g., subframes) on.
  • h denotes the number of reference signals carried in each PRB, or h denotes the number of resources (eg, REs) of reference signals used for bearer in each PRB.
  • h r ⁇ h′
  • h′ represents the number of reference signals carried in each PRB
  • h′ represents a resource of a reference signal used for bearer in each PRB (for example, The number of RE).
  • the symbol may be an orthogonal frequency division multiplexing (OFDM) symbol, or may be a symbol for indicating a time unit defined in a future protocol, which is not used in this embodiment of the present application.
  • OFDM orthogonal frequency division multiplexing
  • Specially limited. Indicates the maximum number of Resource Blocks (RBs) included in the downlink channel.
  • c is a PN sequence that can be generated by a PN sequence generator (eg, a gold sequence generator) based on the initialization sequence c init .
  • a PN sequence generator eg, a gold sequence generator
  • n RNTI is the identity of the UE.
  • the PN sequence can be obtained.
  • the PN sequence includes Sequence elements, each sequence element being a complex signal, each sequence element being referred to as a value of a demodulation reference signal, Sequence elements can be called sequence length
  • the parameters of the two types of configuration information may be different: the sequence of the reference signal corresponding to one of the two types of configuration information and the sequence of the reference signal corresponding to the other of the two types of configuration information different.
  • sequence difference may mean that the lengths of the sequences are different.
  • sequence difference may mean that when the pseudo-random sequence generator is initialized with different initialization values, the generated pseudo-random sequences are different (even if the sequence length is the same).
  • Parameter D Port (specifically, the antenna port corresponding to the reference signal)
  • the same network device can distinguish different antenna ports by means of CDM, frequency division multiplexing (FDM), and time division multiplexing (TDM). If FDM or TDM is used, the frequency domain resources or time domain resources occupied by the reference signals of different antenna ports may be different. If CDM is used, the time-frequency resources occupied by the reference signals of different antenna ports may be the same, and different antenna ports are distinguished by multiplexing codes.
  • CDM frequency division multiplexing
  • TDM time division multiplexing
  • the CDM may include a frequency domain CDM and a time domain CDM.
  • different reference signals may be configured to be configured in the same symbol, that is, multiple (two or more) reference signals may be sent according to a frequency domain CDM manner.
  • the antenna port may also be referred to as a reference signal port, or, more specifically, may be understood as a reference signal port that has not been beamformed and precoded.
  • the reference signal is defined by the reference signal port, and each reference signal corresponds to one antenna port.
  • the difference between the parameters of the two types of configuration information may indicate that the antenna port corresponding to one of the two types of configuration information is different from the antenna port corresponding to the other of the two types of configuration information.
  • the same type of reference signal may correspond to multiple (two or more) configuration information, or the same reference signal (for example, The reference signal #1 or the reference signal #2) may correspond to a plurality of configuration information, wherein at least one of the parameter A, the parameter B, the parameter C, and the parameter D between the plurality of configuration information corresponding to the same reference signal The parameters are different.
  • the reference signal #1 may correspond to a plurality of configuration information.
  • the reference signal #2 may correspond to multiple configuration information.
  • each configuration information corresponding to the reference signal #1 and each configuration information corresponding to the reference signal #2 may be different, and the present application is not particularly limited.
  • the network device may determine the reference #A corresponding to a plurality of (two or more) signal configuration information #A. 1, specifically, the network device may determine the reference signal #A #A belongs. 1
  • the reference signal type (or demodulation object) is referenced, and a plurality of configuration information corresponding to the reference signal #A 1 is determined according to the reference signal type to which the reference signal #A 1 belongs.
  • the network device #A may determine that the reference signal #1 corresponds to the plurality of configuration information corresponding to the reference signal #1.
  • Reference signal #A 1 corresponds to a plurality of configuration information.
  • the network device #A may determine the reference according to the plurality of configuration information corresponding to the reference signal #2.
  • #A 1 signals corresponding to the plurality of configuration information.
  • the network device may be configured from a plurality #A #A. 1 corresponding to the reference signal information, send configuration information to determine the reference signal used when #A. 1 (hereinafter, the terminal device #A, for ease of understanding and differentiate , as: configuration information #A).
  • the network device #A may determine the configuration information #A by using any one of the following methods.
  • the network device #A may save the mapping relationship #1 (that is, an example of the first mapping relationship), and the mapping relationship #1 may be used to indicate multiple (two or more) information formats and A one-to-one mapping relationship between multiple (two or more) configuration information.
  • the information format may refer to an information format of control information (for example, downlink control information).
  • control information may include, but is not limited to, the following aspects: scheduling of uplink transmission or downlink transmission, requesting a channel quality indicator (CQI), reporting an uplink power control command, and the like.
  • CQI channel quality indicator
  • Different information formats can have different functions.
  • different services may use different information formats.
  • multiple information formats may have a one-to-one mapping relationship with multiple service types.
  • the multiple service types may include, but are not limited to:
  • eMBB Evolved Mobile Broadband
  • the International Telecommunications Union-Radio Communications Sector defines three major types of application scenarios for the future 5G, namely eMBB services and massively connected Internet of Things (mMTC, Massive Machine Type). Communication) Service and Ultra Reliable & Low Latency Communication (URLLC) services, and define the capabilities of 5G networks in eight dimensions: throughput, delay, connection density and spectrum efficiency improvement.
  • eMBB services mainly require large speed, wide coverage, transmission delay and mobility.
  • the main requirements of the URLLC service are extremely high reliability, extremely low mobility, and transmission delay.
  • the wireless air interface requires 99.999% transmission reliability in 1 millisecond (ms). That is, since different services (or service types) have different requirements for transmission reliability, different services (or service types) can be used to use reference signals of different configuration information.
  • different service types may correspond to different information formats, for example, the information format A is used for scheduling transmission of the eMBB service, and the information format B is used for scheduling transmission of the eMBB service.
  • Table 1 below shows an example of the above-described mapping relationship #1.
  • Control information Reference signal configuration information
  • Information format A Configuration information #1 for example, density is 1/2
  • Information format B Configuration information #2 for example, density is 1/3
  • the network device #A can determine the information format of the control information demodulated by the reference signal #A 1 (hereinafter, referred to as downlink control information #A for ease of understanding and distinction).
  • the network device may be based on information format #A downlink control information #A, the plurality of reference signals corresponding to the configuration information. 1 #A format information and downlink control information #A corresponding configuration information as configuration information #A.
  • the network device #A may save the mapping relationship #3 (that is, an example of the third mapping relationship), and the mapping relationship #3 may be used to indicate multiple (two or more) channel formats and A one-to-one mapping relationship between multiple (two or more) configuration information.
  • the channel format may refer to a resource usage form (for example, an aggregation level) for carrying control information.
  • multiple channel formats may be determined according to the number of Control Channel Elements (CCEs) and REGs occupied by the control information, and Table 2 below shows different channel formats. difference between.
  • CCEs Control Channel Elements
  • REGs REGs occupied by the control information
  • control information “occupying” CCE may refer to: part of resources in which the control information is carried in the “occupied” CCE (or REG), or control information.
  • the occupation of the CCE (or REG) may also mean that all the resources of the CCE (or REG) that the control information is carried in the "occupied” are not specifically limited.
  • Channel format for control information Reference signal configuration information Channel format 0 Configuration information #1 (for example, density is 1/3) Channel format 1 Configuration information #2 (for example, density is 1/3) Channel format 2 Configuration information #3 (for example, density is 1/2)
  • Channel format 3 Configuration information #4 (for example, density is 1/2)
  • the network device #A can determine the control information demodulated by the reference signal #A 1 (hereinafter, referred to as downlink control information #A for ease of understanding and distinction) (specifically, the channel carried by the channel) Channel format (or aggregation level).
  • downlink control information #A specifically, the channel carried by the channel
  • Channel format or aggregation level
  • the network device #A may be based on a channel format #A downlink control information corresponding to the plurality of reference signals corresponding to the configuration. 1 #A channel format information corresponding to the downlink control information #A corresponding configuration information as configuration information # A.
  • multiple channel formats may have a one-to-one mapping relationship with multiple service types.
  • the multiple service types may include, but are not limited to, the above URLLC type and eMBB type.
  • the reference signal #1 is used for demodulating the URLLC service.
  • Control information when transmitting the reference signal #1, configuration information having a larger density (for example, 1/2) can be used.
  • the control information of the channel format 2 or the channel format 3 may be used to transmit the control information.
  • the configuration information corresponding to the channel format 2 or the channel format 3 may be determined. Transfer the reference signal.
  • the reference signal #1 is used to demodulate the control information of the eMBB service, and when the reference signal #1 is transmitted, a configuration having a smaller density (for example, 1/3) may be used. information.
  • a configuration having a smaller density for example, 1/3
  • the configuration information corresponding to the channel format 0 or the channel format 1 may be determined. Transfer the reference signal.
  • the network device #A may save the mapping relationship #2 (that is, an example of the second mapping relationship), and the mapping relationship #2 may be used to indicate multiple (two or more) service types and A one-to-one mapping relationship between multiple (two or more) configuration information.
  • the multiple service types may include, but are not limited to:
  • the reference signal #1 when the density of the reference signal is high, the probability of successful demodulation increases, and thus the reliability of the transmission is large. Therefore, for example, for the reference signal #1, the reference signal #1 is used for demodulating the URLLC service. Control information, when transmitting the reference signal #1, configuration information having a large density (for example, 1/2) can be used.
  • the reference signal #1 is used to demodulate the control information of the eMBB service, and when the reference signal #1 is transmitted, the configuration information having a smaller density (for example, 1/3) may be used. .
  • configuration information having a larger density for example, 1/2 can be used when transmitting the reference signal #2.
  • the reference signal #2 is used to demodulate the data of the eMBB service, and when the reference signal #2 is transmitted, the configuration information having a smaller density (for example, 1/3) can be used.
  • Table 4 below shows an example of the above mapping relationship #2.
  • eMBB Configuration information #1 for example, density is 1/3
  • eMBB Configuration information #2 for example, density is 1/3
  • URLLC Configuration information #3 for example, density is 1/2
  • URLLC Configuration information #4 for example, density is 1/2
  • the network device may determine the service type #A reference signal #A. 1 as control information or data demodulated belongs (hereinafter, for ease of understanding, referred to as: service type #A).
  • the network device may be based on traffic type #A #A, a plurality of reference signals. 1 #A configuration information corresponding to the service type #A information as the configuration corresponding to the configuration information #A.
  • the network device #A may transmit the indication information of the configuration information #A (that is, an example of the first indication information) to the terminal device #A.
  • the network device #A learn #A transmits a reference signal (specifically, when a resource group is # 1 transmits a reference signal through the following frequency #A) using configuration 1 Information (ie, configuration information #A).
  • the network device #A may transmit one or more time-frequency resource groups (hereinafter, referred to as time-frequency resource group #1 for ease of understanding and differentiation) to the terminal device #A based on the configuration information #A.
  • the reference signal #A 1 and the network device can transmit downlink information that needs to be demodulated by the reference signal #A 1 to the terminal device #A.
  • the density of the reference signal is the configuration information #A.
  • Corresponding reference signal density is the configuration information #A.
  • the position of the reference signal #A 1 in the one or more time-frequency resource groups #1 is the reference signal position corresponding to the configuration information #A.
  • the sequence used by the reference signal #A 1 in the one or more time-frequency resource groups #1 is a sequence corresponding to the configuration information #A.
  • the antenna port used by the one or more time-frequency resource group #1 to transmit the reference signal #A 1 is corresponding to the configuration information #A.
  • Antenna port when the parameter of the configuration information #A includes an antenna port associated with the reference signal, the antenna port used by the one or more time-frequency resource group #1 to transmit the reference signal #A 1 is corresponding to the configuration information #A. Antenna port.
  • the terminal device #A can receive the reference signal #A 1 from the network device #A using one or more time-frequency resource groups #1 based on the configuration information #A, and the terminal device #A can be from the network device # a receives the reference signal need #A demodulated downlink message 1, based on the reference signal and the downlink information #A a demodulated.
  • the network device can be selected to select one of the multiple configuration information to match the current service.
  • configuration information capable of ensuring the reliability of the current service transmission, thereby being able to satisfy the requirements of the reference signal for the service having different reliability requirements.
  • the downlink information that needs to be demodulated by the reference signal #A may include downlink data #A 1 (that is, an example of the first downlink data) or downlink control information #A. (ie, an example of the first downlink control information).
  • the reference signal #A can also be used to demodulate the downlink data #A 2 (that is, an example of the second downlink data).
  • data or information may be sent through a resource set, where one resource set may include one or more time-frequency resource groups.
  • a resource set for transmitting control information may also be referred to as a Control Resource Set (CORESET).
  • CORESET Control Resource Set
  • one CORESET may include a plurality of REGs (ie, an example of a time-frequency resource group).
  • resource set #1 that is, an example of the first resource set.
  • the resource set #1 may occupy one symbol in the time domain and 6 subcarriers in the frequency domain.
  • the resource set #1 can occupy one symbol in the time domain and 16 subcarriers in the frequency domain.
  • the structure of the resource set #1 enumerated above (for example, the number of occupied subcarriers or symbols) is only an exemplary description, and the present application is not particularly limited, and those skilled in the art may select the resource set #1 as needed.
  • the number of occupied symbols or subcarriers is arbitrarily set or changed.
  • the network device #A may also send the downlink data #A 2 to the terminal device #A through the resource set # 2 .
  • the downlink data #A 2 can be transmitted in two ways.
  • the downlink data #A 2 is demodulated based on the reference signal #A.
  • resource set # two resource sets (for example, resource set #) respectively occupied by control information (for example, downlink control information #A) and data (for example, downlink data #A 2 ) demodulated based on the same reference signal are respectively used. 2 and the resource set #1) need to meet the specified (time domain or frequency domain) positional relationship.
  • the interval between the resource set #2 and the resource set #1 in the frequency domain needs to be less than or equal to a preset threshold #1 (ie, an example of the second threshold), as an example instead
  • the threshold #1 may be a value specified by a communication system or a protocol.
  • the threshold #1 may be a size of a frequency domain resource corresponding to one RB or an RB group (for example, 6 subcarriers).
  • the subcarrier occupied by the resource set #2_1 (that is, an example of the resource set #2) and the child occupied by the resource set #1_1 (that is, an example of the resource set #1) are occupied.
  • the carriers may be the same (ie, an example where the interval in the frequency domain is 0).
  • the subcarrier occupied by the resource set #2_2 may be adjacent to the subcarrier occupied by the resource set #1_1 (ie, the interval in the frequency domain is 0). Another example).
  • the subcarriers occupied by the resource set #2_3 may be adjacent to the subcarriers occupied by the resource set #1_1 (ie, the interval in the frequency domain is 0).
  • the interval in the frequency domain is 0.
  • the subcarriers occupied by the resource set #2_4 may be the same as the subcarriers occupied by the resource set #1_2 (that is, another example of the resource set #1). (That is, an example in which the interval in the frequency domain is 0).
  • the location relationship between the resource set #2 and the resource set #1 listed in FIG. 4 or FIG. 5 above is only an exemplary description, and the present application is not limited thereto, for example, the child occupied by the resource set #2.
  • the subcarriers occupied by the carrier and resource set #1 may also be separated by one or more (less than or equal to the threshold #1) subcarriers.
  • the interval between the resource set #2 and the resource set #1 in the time domain needs to be less than or equal to a preset threshold #2 (ie, an example of the first threshold), as an example instead.
  • the threshold #2 may be a communication system configuration or a preset value.
  • the configuration means that the network device needs to send configuration information to the terminal terminal.
  • the threshold #2 may be the size of the time domain resource corresponding to one RB or the RB group (for example, 1 or 2 symbols).
  • the symbol occupied by the resource set #2_1 or the resource set #2_3 may be adjacent to the symbol occupied by the resource set #1_1 (ie, an example in which the interval in the frequency domain is 0) .
  • the symbol occupied by the resource set #2_2 and the symbol occupied by the resource set #1_1 may be the same (that is, another example in which the interval in the frequency domain is 0).
  • the subcarriers occupied by the resource set #2_4 and the symbols occupied by the resource set #1_2 may be adjacent (that is, another example in which the interval in the frequency domain is 0).
  • a resource set is an RB or RB group.
  • the interval between the partial REG) and the partial time-frequency resource group in the resource set #2 (hereinafter, referred to as time-frequency resource group #2 for ease of understanding and explanation) is larger (in the frequency domain or in the time domain).
  • time-frequency resource group #2 for ease of understanding and explanation
  • time-frequency resource group #3 when the time-frequency resource group #1 and the resource set #2 for carrying the control information #A and the reference signal #A are used to carry the downlink data #A 2 in the resource set #1
  • the frequency resource group (that is, an example of the third time-frequency resource group, hereinafter, for convenience of understanding and explanation, referred to as time-frequency resource group #3) needs to satisfy a predetermined (time-domain or frequency-domain) positional relationship.
  • the location relationship may be that the interval between the time-frequency resource group #1 and the time-frequency resource group #3 in the frequency domain needs to be less than or equal to a preset threshold #3 (ie, an example of the fourth threshold).
  • the threshold #3 may be a value specified by a communication system or protocol, for example, the threshold #3 may be the size of a frequency domain resource corresponding to 1 RB or RB group (eg, 6 subcarriers).
  • the location relationship may be that the interval between the time-frequency resource group #1 and the time-frequency resource group #3 in the time domain needs to be less than or equal to a preset threshold #4 (ie, an example of the third threshold).
  • the threshold #4 may be a value specified by a communication system or protocol, for example, the threshold #4 may be the size of a time domain resource corresponding to 1 RB or RB group (eg, 1 or 2 symbols) .
  • a sequence length (hereinafter, referred to as reference signal #X) for demodulating downlink data (hereinafter, for ease of understanding and distinction) is set (for example, the length of a sequence on one symbol) Is t, wherein the sequence length t of the reference signal #X may be determined according to the number of time-frequency resources (for example, PRBs) for carrying the reference signal #X, for example, the length t may be determined based on the formula (1).
  • the (for example, continuous) time-frequency resources for carrying the reference signal #X are time-frequency resources #0 to time-frequency resources #n (for example, the time-frequency resource #0 to the time-frequency resource #n correspond to one symbol) , wherein the time-frequency resource #m to the time-frequency resource #n in the time-frequency resource #0 to the time-frequency resource #n are configured as a CORESET for carrying control information, and
  • the reference signal for demodulating the control information carried by the time-frequency resource #m to the time-frequency resource #k (hereinafter, for ease of understanding and distinction, referred to as: reference signal #Y) has a sequence length of u.
  • the network device may carry the first p sequences in the sequence of the reference signal #X in the time-frequency resource #0 to the time-frequency resource #m-1 (or, in the sequence of the reference signal #X having the length t)
  • the first sequence to the pth sequence wherein the specific values of the p sequences may correspond to the sizes of the time-frequency resources #0 to the time-frequency resources #m-1.
  • the network device may not carry the u sequences from the p sequences in the sequence of the reference signal #X in the time-frequency resource #m to the time-frequency resource #k (or the sequence of the reference signal #X having the length t)
  • the p+1th sequence to the p+uth sequence and the downlink data may be demodulated based on the reference signal #Y carried in the time-frequency resource #m to the time-frequency resource #k.
  • the network device may carry the post-tpu sequence in the sequence of the reference signal #X in the time-frequency resource #k to the time-frequency resource #n (or the p+u in the sequence of the reference signal #X having the length t) +1 sequence to t-th sequence).
  • the length of the reference sequence may refer to the length of the sequence on one symbol, that is, the length of the sequence generated based on the above formula (1) is the length of the sequence on one symbol,
  • the value of t may be the length of the sequence generated based on the above formula (1).
  • the length of the above reference sequence may refer to the length of a sequence on a plurality of symbols (for example, a plurality of symbols included in one transmission time interval TTI), that is, the length of the sequence generated based on the above formula (1) is a plurality of symbols.
  • the length of the sequence, the value of t above may be the length of the sequence located on a symbol including the CORESET based on the length of the sequence generated by the above formula (1).
  • the downlink data and the downlink control information are carried on the same symbol (for example, symbol #1)
  • the time-frequency resource for example, RE#1 to which the DMRS needs to be mapped and the time-frequency resource (for example, RE) to be mapped by the DMRS for demodulating downlink control information (for example, downlink control information #A) #1
  • the DMRS for demodulating the downlink data is not mapped on the RE#1.
  • the downlink data (for example, downlink data #A 2 ) may be demodulated based on the DMRS for demodulating downlink control information (for example, downlink control information #A).
  • the downlink data (for example, downlink data #A 2 ) needs to be mapped to the frequency range corresponding to the time-frequency resource (for example, RE#2) and the DMRS for demodulating the downlink control information (for example, the downlink control information #A). If the frequency range corresponding to the time-frequency resource (for example, RE#3) to be mapped is the same, the DMRS for demodulating the downlink data is not mapped on RE#2. In this case, the downlink data (for example, downlink data #A 2 ) may be demodulated based on the DMRS for demodulating downlink control information (for example, downlink control information #A).
  • the network device #A may perform precoding processing on the reference signal #A and the downlink control information #A based on the precoding matrix #A (ie, an example of the first precoding matrix).
  • the network device #A can also pre-code the data (including the downlink data #A 2 ) carried in the resource set (ie, the resource set #2) for carrying the downlink data #A 2 based on the precoding matrix #A. deal with.
  • the network device #A can also base the reference signal #A based on the precoding matrix #A 2 Perform precoding processing.
  • configuration information of the reference signal #A 2 and the reference signal #A 1 may be the same or different, and the present application is not particularly limited.
  • the resource set # 1 may also be a network device #A performs precoding processing of data carried in one RB group #A according to the precoding matrix #A, wherein The RB group #A 1 includes the RB (or RB group) occupied by the resource set #1.
  • the network device #A can also base the reference signal based on the precoding matrix #A# A 3 performs precoding processing.
  • the network device #A may further perform precoding processing on the data carried in the RB group #A 2 according to the precoding matrix #A, where The RB group #A 2 includes the RB (or RB group) occupied by the resource set #2.
  • the network device #A can also base the reference signal based on the precoding matrix #A# A 4 performs precoding processing.
  • resource set #1 occupies RB group #1 and RB group #2 (specifically, RB group #1 and RB group # Part RE of 2), therefore, the network device #A can perform precoding processing on the reference signals and data carried in the RB group #1 and the RB group #2 based on the precoding matrix #A.
  • resource set #1 does not occupy the time-frequency resource in RB group #3, and RB group #3 does not carry the demodulation required based on reference signal #A.
  • the network device #A may perform precoding processing on the reference signals and data carried in the RB group #3 without based on the precoding matrix #A.
  • resource set #2 occupies RB group #4 and RB group #5 (specifically, RB group #4 and RB group) Part RE of #5), or RB group #4 and RB group #5, carries data that needs to be demodulated based on reference signal #A. Therefore, network device #A can be based on precoding matrix #A, The reference signals and data carried in the RB group #4 and the RB group #5 are subjected to precoding processing.
  • resource set #6 does not occupy the time-frequency resource in RB group #3, and RB group #6 does not carry the demodulation required based on reference signal #A.
  • the network device #A may perform precoding processing on the reference signals and data carried in the RB group #6 without based on the precoding matrix #A.
  • the downlink control channel and its associated DMRS use the same precoding matrix, where N may be a preset value of the system.
  • N may be the number of REGs included in one RB group.
  • the same precoding matrix is used for the downlink data channel and its associated DMRS in the same or consecutive M RBs, where M may be a preset value of the system, for example, N may be The number of RBs included in an RB group.
  • the same precoding matrix is used in one resource unit group REG in resource set #1, and in the downlink data channel mapping on the symbol #B, the downlink data channel and its association are in one RB group.
  • the DMRS uses the same precoding matrix. Since resource elements 5 and 6 and resource set #1 on symbol #B are located at the same location in the frequency domain, all REs in PRB group 4 use the same precoding matrix as the downlink control channel within the REG. Similarly, all REs in the PRB group 5 also use the same precoding matrix as the downlink control channel in the REG.
  • the processing object of the downlink physical channel processing is a codeword, and the codeword is usually a bitstream that is encoded (including at least channel coding).
  • the code word is scrambling to generate a scrambled bit stream.
  • the scrambled bit stream is subjected to modulation mapping to obtain a stream of modulation symbols.
  • the modulation symbol stream is mapped to a plurality of layers by layer mapping.
  • the symbol stream after layer mapping may be referred to as a layer mapping space layer. (Or, layer mapping spatial stream, layer mapping symbol stream).
  • the layer mapping spatial layer is subjected to precoding processing based on a precoding matrix to obtain a plurality of precoded data streams (or precoded symbol streams).
  • the precoded symbol stream is mapped to multiple REs via a resource particle (RE) map. These REs are then subjected to orthogonal frequency division multiplexing (OFDM) modulation to generate an OFDM symbol stream.
  • OFDM orthogonal frequency division multiplexing
  • the precoding process can be reduced.
  • the complexity and the complexity of the channel design can reduce the processing load of the network device and improve the communication efficiency.
  • downlink data #A 2 is demodulated based on reference signal #A'.
  • the resources (ie, the resource set #2) carried by the downlink data #A 2 may be similar to those in the foregoing mode 2, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the time-frequency resource group for carrying the reference signal #A' is the time-frequency resource group #1'.
  • the time-frequency resource group #1' may belong to the resource set #1.
  • the time-frequency resource group #1' may belong to the above-mentioned resource set #2.
  • the transmission mode of the downlink data #A 2 and the reference signal #A' can be similar to the prior art.
  • the details are omitted. Description.
  • the precoding matrix used by the reference signal #A' and the reference signal #A may be different. In this case, in order to ensure the accuracy and reliability of the communication, it is preferable not to make the reference signal #A' and the reference.
  • the signal #A multiplexes the time-frequency resources, or preferably does not make the time-frequency resource group #1' and the time-frequency resource group #1 intersect.
  • the time-frequency resource group #1' and the time-frequency resource group #1 have overlapping portions in the resource set #1, or
  • the time-frequency resource group #1' and the time-frequency resource group #1 include at least one identical time-frequency resource.
  • the time-frequency resource that the DMRS used to demodulate the downlink data (for example, the downlink data #A 2 ) needs to be mapped based on the preset offset, for example, the time-frequency resource group #1'
  • the time-frequency resource in the medium is offset, and the DMRS for demodulating downlink data (for example, downlink data #A 2 ) is transmitted on the offset time-frequency resource.
  • the offset may include an offset (for example, one or more symbols) in the time domain.
  • Shifting may include shifting the time-frequency resource backwards by the offset (one or more symbols) in the time domain, or may, in the time domain, the interval between the time-frequency resource and the offset
  • the time-frequency resource corresponding to the shift is used as the time-frequency resource of the DMRS for transmitting the downlink data.
  • the offset may include an offset in the frequency domain (for example, one or more REs).
  • the time-frequency resource to be mapped by the DMRS used for demodulating the downlink data is biased. Shifting may include shifting the time-frequency resource in a frequency domain to a high (or low frequency) direction by the offset (one or more REs), or may be between the frequency domain and the time-frequency resource The time-frequency resource corresponding to the offset is used as the time-frequency resource of the DMRS for transmitting the downlink data.
  • time-frequency resource offset in the time-frequency resource group #1 may mean that each time-frequency resource in the time-frequency resource group #1' is offset.
  • the “time-frequency resource offset in the time-frequency resource group #1′” may refer to when the time-frequency resource group #1′ overlaps with the time-frequency resource group #1.
  • the frequency resource is offset.
  • the network device may further send, to the terminal device, indication information for the transmission mode of the downlink data #A 2 (for example, the foregoing mode 1 or the foregoing mode 2), that is, the indication information may be It is used to indicate whether the reference signal for demodulating the downlink data #A 2 and the reference signal for demodulating the downlink control information #A are the same.
  • indication information for the transmission mode of the downlink data #A 2 for example, the foregoing mode 1 or the foregoing mode 2
  • the indication information may be It is used to indicate whether the reference signal for demodulating the downlink data #A 2 and the reference signal for demodulating the downlink control information #A are the same.
  • the terminal device can determine the reference signal for demodulating the downlink data #A 2 based on the indication information.
  • the preset offset may be specified by a communication system or a communication protocol, so that the network device and the terminal device may determine the offset based on a specification of the communication system or the communication protocol, and Make the offset determined by the network device and the terminal device consistent.
  • the offset may be determined by the network device and notified to the terminal device.
  • the network device may semi-statically indicate the preset offset by using high layer signaling (such as SIB or RRC signaling).
  • high layer signaling such as SIB or RRC signaling
  • the network device can dynamically indicate the preset offset by physical layer signaling (the following line control information DCI).
  • the time-frequency resource group #1 is a partial time-frequency resource group in the resource set #1, the generality is not lost, and the resource set #1 is other than the time-frequency resource group #1.
  • the one or more time-frequency resource groups are time-frequency resource group #4 (ie, an example of the second time-frequency resource group), and the network device #A can also pass the terminal device #A in the time-frequency resource group #4.
  • the downlink data #A 4 and the reference signal #A 4 i.e., an example of the second demodulation reference signal
  • the configuration information used by the reference signal #A 4 in the time-frequency resource set #1 may be configured with the reference signal #A 1 in the time-frequency resource set #1. the same.
  • the configuration information used by the reference signal #A 4 in the time-frequency resource set #1 may be used in the time-frequency resource set #1 with the reference signal #A 1
  • the configuration information is different.
  • the network device #A may configure a resource set for transmitting control information (for example, control information #A) for the terminal device #A (ie, CORESET, for example, resource set #1). And, the network device #A may transmit the configuration information #A to the terminal device #A, which may include information #A_1 indicating the resource (for example, symbol) occupied by the resource set #1 in the time domain. And, the configuration information #A may include information #A_2 for indicating a resource (for example, a subcarrier) occupied by the resource set #1 in the frequency domain.
  • the information (or the indicated content) included in the configuration information #A enumerated above is only an exemplary description, and the present application is not limited thereto.
  • the configuration information #A may also be used to indicate the resource collection #1. Occupied RE, REG or PRB, etc.
  • the configuration information #A may further include the indication information of the configuration information #A.
  • the network device #A when the network device #A specifically transmits the downlink control information, there may be a case where there are remaining resources in the resource set #1, and thus, the network device #A may use the remaining resources to transmit data.
  • the configuration information of the DMRS for demodulating the data may be the same as the configuration information of the DMRS for demodulating the downlink control information.
  • the configuration information of the DMRS for demodulating the data may be different from the configuration information of the DMRS for demodulating the downlink control information.
  • the reference signal, the downlink control information, and the data carried in the resource set #1 may be pre-coded based on the same precoding matrix.
  • the resource set #1 occupies the symbol # ⁇ in the time domain, and the data transmitted by the network device #A to the terminal device #A (for example, the data scheduled by the control information #A) occupies the symbol # ⁇ .
  • the DMRS associated with the downlink data transmitted in the resource set #1 is the same as the DMRS associated with the control information #A (specifically, reference)
  • the configuration information of the signal is the same).
  • the DMRS associated with the downlink data transmitted in the resource set #1 on the symbol # ⁇ is the same as the DMRS associated with the downlink data transmitted on the symbol # ⁇ . Thereby the density of the DMRS can be reduced.
  • the network device #A may further send the indication information #A to the terminal device #A, where the indication information #A is used to indicate that the network device #A uses the remaining resources of the resource set #1 to transmit data, and the data is associated with the DMRS.
  • the configuration information, or the indication information #A is used to indicate whether the DMRS associated with the data is a DMRS associated with the control information or a DMRS associated with the data channel at symbol # ⁇ .
  • the DMRS associated with the data carried on the remaining resources can be configured using the DMRS associated with the control information; or if If there are many remaining resources in the resource set #1, the DMRS associated with the data carried on the remaining resources may use the configuration information of the DMRS associated with the data carried on the symbol # ⁇ .
  • a DMRS associated with the control information may be: the DMRS associated with the control information is used to demodulate the control information.
  • a data-associated DMRS may mean that the DMRS associated with the data is used to demodulate the data.
  • the reference signal may also correspond to multiple #A. 4 configuration information, and the reference signal #A various configuration settings and usage information may be similar to the above-described reference signal #A 4 4, where, in order to avoid repeated The detailed description thereof is omitted, and the configuration information used by the reference signal #A 4 in the resource set #1 may be the above-described configuration information #A, or the configuration information used by the reference signal #A 4 in the resource set #1 may be from the network device.
  • the reference signal #A 4 corresponds to a plurality of types of configuration information which are configuration information different from the configuration information #A.
  • FIG. 9 is a schematic interaction diagram of a method 300 for transmitting and receiving a reference signal according to an embodiment of the present application.
  • a communication system e.g., communication system 100 described above
  • the reference signal may be used for channel measurement, and then used for demodulation.
  • the reference signal in the embodiment of the present application may include a DMRS.
  • the at least two types of reference signals include: a reference information number (ie, reference signal #1) for demodulating control information (or control channel), and, by way of example and not limitation, the control information may include a downlink Control information, the control channel may include a physical downlink control channel.
  • a reference information number ie, reference signal #1
  • the control information may include a downlink Control information
  • the control channel may include a physical downlink control channel.
  • the at least two types of reference signals include: a reference information number (ie, reference signal #2) for demodulating data (or a data channel), and, by way of example and not limitation, the data may include a downlink Data, the data channel can include a physical downlink data channel.
  • a reference information number ie, reference signal #2
  • the data may include a downlink Data
  • the data channel can include a physical downlink data channel.
  • the configuration information of the reference signal #1 and the reference signal #2 are different.
  • the reference signal #1 may have a configuration information, and the reference signal #1 may have a configuration information.
  • the definition and related description of the configuration information of the reference signal in the method 300 may be similar to the description of the “configuration information” in the method 200 described above, for example, the configuration in the method 300, except that each reference signal only corresponds to one type of configuration information.
  • the parameters included in the information may be similar to those included in the configuration information described in the method 200, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the difference between the configuration information of the reference signal #1 and the reference signal #2 may mean that at least one different parameter exists between the configuration information of the reference signal #1 and the configuration information of the reference signal #2.
  • the network device #B may transmit the reference signal #B to the terminal device #B through the resource set #A (ie, an example of the first resource set), and the network device #B may transmit the need to pass to the terminal device #B.
  • the downlink control information #B demodulated by the reference signal #B that is, an example of the first downlink control information.
  • the method and structure for determining the resource set #A may be similar to the method and structure for determining the resource set #1 in the method 200. Here, in order to avoid redundancy, detailed description thereof is omitted.
  • the network device #B may transmit the downlink data #B (ie, an example of the second downlink data) to the terminal device #B through the resource set #B, wherein the downlink data #B is based on the reference signal #B Tune.
  • the method and structure for determining the resource set #B may be similar to the method and structure for determining the resource set #2 in the method 200. Here, in order to avoid redundancy, a detailed description thereof will be omitted.
  • the preset (frequency domain or time domain) location relationship needs to be met between the resource set #B and the resource set #A, where the resource set #B and the resource set #A are
  • the positional relationship that needs to be satisfied may be similar to the positional relationship that needs to be satisfied between the resource collection #2 and the resource collection #1.
  • detailed description thereof will be omitted.
  • the reference signal #B and the downlink control information #B are carried in the time-frequency resource group #A in the resource set #A, and the downlink data #B is carried in the time-frequency resource group in the resource set #B.
  • #B, the time-frequency resource group #A and the time-frequency resource group #B need to meet a preset (frequency domain or time domain) location relationship, where the time-frequency resource group #A and the time-frequency resource group
  • the positional relationship that needs to be satisfied between #B and the time-frequency resource group #1 and the time-frequency resource group #3 may be similar to the positional relationship that needs to be satisfied.
  • detailed description thereof will be omitted.
  • the network device #B may perform precoding processing on the reference signal #B and the downlink control information #B based on the precoding matrix #B (ie, another example of the first precoding matrix).
  • the network device #A may further perform precoding processing on data carried in the resource set (ie, resource set #B) for carrying the downlink data #B based on the precoding matrix #B.
  • the network device #B may further perform precoding processing on the reference signal based on the precoding matrix #B.
  • network device #B may also be in the RB (or RB group) according to precoding matrix #B.
  • the carried data is precoded.
  • the network device #B may further perform precoding processing on the reference signal based on the precoding matrix #B.
  • the precoding process can be reduced.
  • the complexity and the complexity involved in the channel can reduce the processing load of the network device and improve the communication efficiency.
  • the reference signal #B and the downlink control information #B may be sent by using at least one time-frequency resource group #A, and when the time-frequency resource group #A is a resource set # For a part of the time-frequency resource group in A, without loss of generality, one or more time-frequency resource groups other than the time-frequency resource group #A in resource set #A are time-frequency resource group #B (ie, second In an example of the time-frequency resource group, the network device #A may also transmit the downlink data #C and the reference signal #C to the terminal device #B in the time-frequency resource group #B (that is, an example of the second demodulation reference signal) ). Among them, the downlink data #C is demodulated based on the reference signal #C.
  • the reference signal #C configuration information may be the same as the configuration information of the reference signal #B.
  • the configuration information of the reference signal #C may be different from the configuration information of the reference signal #B.
  • the relationship between the reference signal #C and the reference signal #B may be different from the reference signal #A 4 described in the above method 200, except that the reference signal #C and the reference signal #B may correspond to only one type of configuration information.
  • the relationship with the reference signal #A 1 is similar, and a detailed description thereof will be omitted herein to avoid redundancy.
  • FIG. 10 is a schematic interaction diagram of a method 400 for transmitting and receiving a reference signal according to an embodiment of the present application.
  • a communication system e.g., communication system 100 described above
  • the reference signal may be used for channel measurement, and then used for demodulation.
  • the reference signal in the embodiment of the present application may include a DMRS.
  • the at least two types of reference signals include: a reference information number (ie, reference signal #1) for demodulating control information (or control channel), and, by way of example and not limitation, the control information may include a downlink Control information, the control channel may include a physical downlink control channel.
  • a reference information number ie, reference signal #1
  • the control information may include a downlink Control information
  • the control channel may include a physical downlink control channel.
  • the at least two types of reference signals include: a reference information number (ie, reference signal #2) for demodulating data (or a data channel), and, by way of example and not limitation, the data may include a downlink Data, the data channel can include a physical downlink data channel.
  • a reference information number ie, reference signal #2
  • the data may include a downlink Data
  • the data channel can include a physical downlink data channel.
  • the configuration information of the reference signal #1 and the reference signal #2 are different.
  • the reference signal #1 may have a configuration information, and the reference signal #1 may have a configuration information.
  • the definition and related description of the configuration information of the reference signal in the method 400 may be similar to the description of the "configuration information" in the method 200 described above, except for each reference signal corresponding to only one configuration information, for example, the configuration in the method 400.
  • the parameters included in the information may be similar to those included in the configuration information described in the method 200, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the difference between the configuration information of the reference signal #1 and the reference signal #2 may mean that at least one different parameter exists between the configuration information of the reference signal #1 and the configuration information of the reference signal #2.
  • the network device #C may transmit the reference signal # ⁇ to the terminal device #C through the resource set # ⁇ (ie, an example of the first resource set), and the network device #C may transmit the need to pass to the terminal device #C.
  • the downlink control information # ⁇ demodulated by the reference signal # ⁇ that is, an example of the first downlink control information.
  • the method and structure for determining the resource set # ⁇ may be similar to the method and structure for determining the resource set #1 in the above method 200. Here, in order to avoid redundancy, detailed description thereof will be omitted.
  • the reference signal # ⁇ and the downlink control information # ⁇ may be sent by at least one time-frequency resource group # ⁇ , and when the time-frequency resource group # ⁇ is the resource set # ⁇ For the partial time-frequency resource group, without loss of generality, it is assumed that one or more time-frequency resource groups other than the time-frequency resource group # ⁇ in the resource set # ⁇ are the time-frequency resource group # ⁇ (ie, the second time)
  • the network device #C may also transmit the downlink data # ⁇ and the reference signal # ⁇ to the terminal device #C in the time-frequency resource group # ⁇ (that is, an example of the second demodulation reference signal). .
  • the downlink data # ⁇ is demodulated based on the reference signal # ⁇ .
  • the reference signal # ⁇ configuration information may be the same as the configuration information of the reference signal # ⁇ .
  • the reference signal # ⁇ configuration information may be different from the configuration information of the reference signal # ⁇ .
  • the relationship between the reference signal # ⁇ and the reference signal # ⁇ may be different from the reference signal #A 4 described in the above method 200, except that the reference signal # ⁇ and the reference signal # ⁇ may correspond to only one type of configuration information.
  • the relationship with the reference signal #A 1 is similar, and a detailed description thereof will be omitted herein to avoid redundancy.
  • FIG. 11 is a schematic interaction of the method 700 for transmitting and receiving a reference signal in the embodiment of the present application.
  • a communication system e.g., communication system 100 described above
  • the reference signal may be used for channel measurement, and then used for demodulation.
  • the reference signal in the embodiment of the present application may include a DMRS.
  • the at least two types of reference signals include: a reference information number (ie, reference signal #1) for demodulating control information (or control channel), and, by way of example and not limitation, the control information may include a downlink Control information, the control channel may include a physical downlink control channel.
  • a reference information number ie, reference signal #1
  • the control information may include a downlink Control information
  • the control channel may include a physical downlink control channel.
  • the at least two types of reference signals include: a reference information number (ie, reference signal #2) for demodulating data (or a data channel), and, by way of example and not limitation, the data may include a downlink Data, the data channel can include a physical downlink data channel.
  • a reference information number ie, reference signal #2
  • the data may include a downlink Data
  • the data channel can include a physical downlink data channel.
  • the configuration information of the reference signal #1 and the reference signal #2 are different.
  • the reference signal #1 may have a configuration information, and the reference signal #1 may have a configuration information.
  • the definition and related description of the configuration information of the reference signal in the method 700 may be similar to the description of the “configuration information” in the method 200 described above, for example, in the method 700, except that each reference signal only corresponds to one type of configuration information.
  • the parameters included in the information may be similar to those included in the configuration information described in the method 200, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the difference between the configuration information of the reference signal #1 and the reference signal #2 may mean that at least one different parameter exists between the configuration information of the reference signal #1 and the configuration information of the reference signal #2.
  • the downlink information #E may be downlink control information or downlink data.
  • network device #D may determine resource set #D.
  • the resource set #D may include a time-frequency resource group #D and a time-frequency resource group #E, wherein the time-frequency resource group #D is a reserved resource, and the time-frequency resource group #E is determined based on a pre-configured configuration pattern.
  • the reserved time-frequency resource may be a time-frequency resource that the terminal device determines to not carry the reference signal.
  • the network device #D may send the indication information Y to the terminal device #D, where the indication information Y is used to indicate that the time-frequency resource in the time-frequency resource group #D is reserved time-frequency. Resources.
  • the terminal device can determine, according to the indication information Y, the time-frequency resource in the time-frequency resource group #D as the reserved time-frequency resource, and further determine whether the time-frequency resource group #D and the time-frequency resource group #E have overlapping portions. .
  • the method and structure for determining the resource set #D may be similar to the method and structure for determining the resource set #1 in the above method 200. Here, in order to avoid redundancy, detailed description thereof will be omitted.
  • time-frequency resource #D is a reserved resource, it is preferable to make the intersection of the time-frequency resource group #D and the time-frequency resource group #E empty.
  • the network device #D may offset the time-frequency resource in the time-frequency resource group #E based on the preset offset.
  • the network device #D may transmit the reference signal #E on the offset time-frequency resource (hereinafter, referred to as time-frequency resource group #F for ease of understanding and differentiation).
  • the offset may include an offset in the time domain (for example, one or more symbols).
  • “offset the time-frequency resource in the time-frequency resource group #E” may be included in the time.
  • the time-frequency resource is backward offset by the offset (one or more symbols), or the interval between the time-frequency resource and the time-frequency resource may be the time-frequency corresponding to the offset.
  • the resource is used as the time-frequency resource group #F.
  • the offset may include an offset in the frequency domain (eg, one or more REs).
  • “offset the time-frequency resource in the time-frequency resource group #E” may include the frequency.
  • the time-frequency resource is offset from the high-frequency (or low-frequency) direction by the offset (one or more REs), or the interval between the time-frequency resource in the frequency domain and the offset may be The corresponding time-frequency resource is used as the time-frequency resource group #F.
  • “shifting the time-frequency resource in the time-frequency resource group #E” may mean that each time-frequency resource in the time-frequency resource group #E is offset. That is, in this case, each time-frequency resource in the time-frequency resource group #F is obtained by offsetting the time-frequency resource in the time-frequency resource group #E.
  • “offsetting the time-frequency resource in the time-frequency resource group #E” may refer to only when the time-frequency resource group #D overlaps with the time-frequency resource group #D.
  • the frequency resource is offset, that is, in this case, the time-frequency resource in the time-frequency resource group #F includes the time-frequency resource in the time-frequency resource group #E that does not overlap with the time-frequency resource group #D, and the time-frequency resource
  • the time-frequency resource in the group #F includes the time-frequency resource obtained by the offset of the time-frequency resource overlapping with the time-frequency resource group #D in the time-frequency resource group #E.
  • the preset offset may be specified by a communication system or a communication protocol, so that the network device #D and the terminal device #D may determine the offset based on a specification of the communication system or the communication protocol. And, the offsets determined by the network device #D and the terminal device #D can be made uniform. Alternatively, in the embodiment of the present application, the offset may be determined by the network device #D, and the terminal device #D is notified.
  • the network device may semi-statically indicate the preset offset by using high layer signaling (such as SIB or RRC signaling).
  • high layer signaling such as SIB or RRC signaling
  • the network device can dynamically indicate the preset offset by physical layer signaling (the following line control information DCI).
  • the method and procedure of the terminal device #D determining the resource set #D, the resource set #E, and the time-frequency resource group #F may be similar to the processing of the network device #D, and a detailed description thereof will be omitted herein to avoid redundancy.
  • FIG. 12 is a schematic block diagram of an apparatus 500 for transmitting a reference signal according to an embodiment of the present application.
  • the apparatus 500 for transmitting a reference signal may correspond to (for example, may be configured or itself) the above method 200, 300, 400 or 700.
  • the network device is described, and each module or unit in the device 500 for transmitting the reference signal is used to perform each action or process performed by the network device in the above method 200, 300, 400 or 700, and is omitted here for avoiding redundancy. Its detailed description.
  • the device 500 may be a network device.
  • the device 500 may include: a processor and a transceiver, and the processor and the transceiver are communicatively coupled.
  • the device further includes a memory, and the memory Connected to the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the transceiver unit in the apparatus 500 shown in FIG. 12 can correspond to the transceiver
  • the processing unit in the apparatus 500 shown in FIG. 12 can correspond to the processor
  • the device 500 may be a chip (or a chip system) installed in a network device.
  • the device 500 may include: a processor and an input and output interface, and the processor may pass input and output.
  • the interface is communicatively coupled to the transceiver of the network device.
  • the device further includes a memory in communication with the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the transceiver unit in the apparatus 500 shown in FIG. 12 can correspond to the input/output interface
  • the processing unit in the apparatus 500 shown in FIG. 12 can correspond to the processor
  • FIG. 13 shows a schematic block diagram of an apparatus 600 for receiving a reference signal, which may correspond to (eg, may be configured to implement) the above described method 200, 300, 400 or 700, in accordance with an embodiment of the present application.
  • the terminal device, and each module or unit in the device 600 for receiving the reference signal is used to perform each action or process performed by the terminal device in the above method 200, 300, 400 or 700.
  • the details are omitted. Description.
  • the device 600 may be a terminal device.
  • the device 600 may include: a processor and a transceiver, and the processor and the transceiver are communicatively coupled.
  • the device further includes a memory, and the memory Connected to the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the transceiver unit in the apparatus 600 shown in FIG. 13 can correspond to the transceiver
  • the processing unit in the apparatus 600 shown in FIG. 13 can correspond to the processor
  • the device 600 may be a chip (or a chip system) installed in a network device.
  • the device 600 may include: a processor and an input and output interface, and the processor may pass input and output.
  • the interface is communicatively coupled to the transceiver of the network device.
  • the device further includes a memory in communication with the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the transceiver unit in the device 600 shown in FIG. 13 can correspond to the input input interface
  • the processing unit in the device 600 shown in FIG. 12 can correspond to the processor
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送参考信号的方法,其特征在于,该方法包括:确定资源集合,该资源集合用于承载解调参考信号和下行信息,该下行信息为下行控制信息或者下行数据,该解调参考信号用于解调该下行信息,该资源集合包括第一时频资源组和第二时频资源组,该第一时频资源组为预留时频资源,该第二时频资源组用于承载该解调参考信号;在该第一时频资源组与该第二时频资源组具有重叠部分时,根据该第二时频资源组的位置和预设的偏移量,确定第三时频资源组;通过该第三时频资源组,发送该解调参考信号。从而,能够可靠地实现解调参考信号的发送,进而,提高通信的可靠性。

Description

发送参考信号的方法、接收参考信号的方法和通信装置
本申请要求于2017年06月16日提交中国专利局、申请号为201710459603.1、申请名称为“发送参考信号的方法和装置及接收参考信号的方法和装置”以及于2017年09月29日提交中国专利局、申请号为201710910063.4、申请名称为“发送参考信号的方法、接收参考信号的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及领域通信,并且更具体地,涉及发送参考信号的方法和装置及接收参考信号的方法和装置。
背景技术
目前,参考信号已经得到广泛应用。在现有技术的参考信号的使用过程中,发送端设备在发送数据的同时发送解调参考信号,接收端设备先按照解调参考信号做信道估计,根据信道估计的结果,进一步解调数据。
并且,在该现有技术中,参考信号的设计主要是针对数据量较大的业务,例如,演进的移动宽带(Evolved Mobile Broadband,eMBB)业务,该类业务对数据解调的可靠性要求较低(例如,90%)。
随着通信技术的发展,出现了对传输可靠性较高(例如,99.999%)的业务,例如,超高可靠低时延通信(ultra reliability low latency communication,URLLC),现有的参考信号的设计已经无法满足对于高可靠性的业务的传输。
因此,希望提供一种技术,能够满足具有不同可靠性需求的业务对于参考信号的要求。
发明内容
本申请提供一种发送参考信号的方法和装置及接收参考信号的方法和装置,能够满足具有不同可靠性需求的业务对于参考信号的配置要求。
第一方面,提供了一种发送参考信号的方法,该方法包括:网络设备向终端设备发送配置信息第一指示信息,该第一指示信息指示第一解调参考信号对应的至少两种配置信息中的第一配置信息,该至少两种配置信息中的每种配置信息包括以下至少一个参数:解调参考信号使用的序列、承载解调参考信号的时频资源在一个时频资源组内的密度、解调参考信号关联的天线端口、承载解调参考信号的时频资源的位置,并且任意两种配置信息包括的至少一个参数不同;该网络设备根据该第一配置信息,通过第一时频资源组向该终端设备发送第一下行信息以及该第一解调参考信号,其中,该第一下行信息包括第一下行数据或第一下行控制信息,该第一解调参考信号用于解调该第一下行信息。
第二方面,提供了一种接收参考信号的方法,该方法包括:终端设备从网络设备接 收第一指示信息,该第一指示信息指示第一解调参考信号对应的至少两种配置信息中的第一配置信息,该至少两种配置信息中的每种配置信息包括以下至少一个参数:解调参考信号使用的序列、承载解调参考信号的时频资源在一个时频资源组内的密度、解调参考信号关联的天线端口、承载解调参考信号的时频资源的位置,并且任意两种配置信息之间至少一个参数相异;该终端设备根据该第一配置信息,通过第一时频资源组从该网络设备接收第一下行信息以及该第一解调参考信号,其中,该第一下行信息包括第一下行数据或第一下行控制信息;该终端设备根据该第一解调参考信号,解调该第一下行信息。
本申请实施例中,第一指示信息指示第一解调参考信号对应的至少两种配置信息中的第一配置信息,任意两种配置信息包括的至少一个参数不同,从而使用于解调数据参考信号对应多种配置信息,或使用于解调控制信息的参考信号对应多种配置信息,在实际业务传输中,能够支持网络设备从该多种配置信息中选择一种与当前业务对可靠性的要求相匹配的配置信息来传输参考信号,满足具有不同可靠性需求的业务对于解调参考信号的配置要求。
可选地,该第一下行信息包括该第一下行控制信息,以及该第一配置信息是根据该第一下行控制信息的信息格式和第一映射关系确定的,该第一映射关系是至少两种信息格式与该至少两种配置信息之间的映射关系。
可选地,该第一下行信息包括该第一下行控制信息,以及该网络设备从第一解调参考信号对应的至少两种配置信息中确定第一配置信息,包括:该网络设备根据该第一下行控制信息的信息格式和第一映射关系从该至少两种配置信息中确定该第一配置信息,该第一映射关系是至少两种信息格式与该至少两种配置信息之间的映射关系。
根据本申请实施例的发送参考信号的方法,通过预先获取多种信息格式与多种配置信息之间的映射关系,能够使网络设备根据当前需要传输控制信息的信息格式,选择与当前传输的业务相匹配的配置信息,进而,能够提高确定配置信息的效率和可实现性。
可选地,该第一配置信息是根据该第一下行信息所对应的业务的业务类型和第二映射关系确定的,该第二映射关系是至少两种业务类型与该至少两种配置信息之间的映射关系。
可选地,网络设备从第一解调参考信号对应的至少两种配置信息中确定第一配置信息,包括:该网络设备根据该第一下行信息所对应的业务的业务类型和第二映射关系从该至少两种配置信息中确定该第一配置信息,该第二映射关系是至少两种业务类型与该至少两种配置信息之间的映射关系。
可选地,该第一下行信息包括该第一下行控制信息,以及该第一配置信息是根据承载该第一下行控制信息的下行控制信道的控制信道格式(或聚合等级)和第三映射关系确定的,该第三映射关系是至少两种控制信道格式(或聚合等级)与该至少两种配置信息之间的映射关系。
可选地,该第一下行信息包括该第一下行控制信息,以及该网络设备从第一解调参考信号对应的至少两种配置信息中确定第一配置信息,包括:该网络设备根据承载该第一下行控制信息的下行控制信道的控制信道格式(或聚合等级)和第三映射关系从该至少两种配置信息中确定该第一配置信息,该第三映射关系是至少两种控制信道格式(或聚合等级)与该至少两种配置信息之间的映射关系。
可选地,该第一时频资源组属于第一资源集合,该第一下行信息包括该第一下行控制信息,以及该第一解调参考信号还用于解调第二下行数据,其中该第二下行数据是该网络设备通过第二资源集合发送的数据,该第二下行数据是该终端设备通过第二资源集合从该网络设备接收的数据,其中该第二资源集合与该第一资源集合在时域上连续,或者该第二资源集合与该第一资源集合在时域上的间隔小于或等于第一阈值,并且,该第二资源集合与该第一资源集合在频域上连续,或者该第二资源集合与该第一资源集合在频域上的间隔小于或等于第二阈值。相应的,该方法还包括:该终端设备根据该第一解调参考信号解调第二下行数据。
从而,能够实现基于同一参考信号对控制信息和数据双方的解调,能够减少参考信号对资源的占用,能够提高通信效率。
可选地,该第一解调参考信号是经过基于第一预编码矩阵进行预编码处理后获得的,以及该方法还包括:该网络设备根据该第一预编码矩阵对该第二下行数据进行预编码处理。
通过基于相同的预编码矩阵对共用同一参考信号进行解调数据和控制信息使用同一预编码矩阵进行预编码处理,能够减小预编码处理的复杂度以及信道设计的复杂度,从而,能够减小网络设备的处理负担,提高通信效率。
可选地,该第二下行数据具体是该网络设备通过第二资源集合中的第三时频资源组发送的,其中该第三时频资源组与该第一时频资源组在时域上连续,或者该第三时频资源组与该第一时频资源组在时域上的间隔小于或等于第三阈值,并且,该第三时频资源组与该第一时频资源组在频域上连续,或者该第三时频资源组与该第一时频资源组在频域上的间隔小于或等于第四阈值。
可选地,该第一时频资源组属于第一资源集合,该第一资源集合包括至少两个时频资源组,该第一下行信息包括该第一下行控制信息,以及该方法还包括:
该网络设备通过该第一资源集合中的第二时频资源组向该终端设备发送第二解调参考信号和第三下行数据,该第二解调参考信号用于该第三下行数据的解调。
相应的,该方法还包括:该终端设备通过该第一资源集合中的第二时频资源组从该网络设备接收第二解调参考信号和第三下行数据;该终端设备根据该第二解调参考信号对该第三下行数据进行解调。
通过使用同一资源集合发送控制信息和下行数据,能够提高资源的利用效率,进而提高通信效率。
可选地,该终端设备通过该第一资源集合中的第二时频资源组从该网络设备接收第二解调参考信号和第三下行数据,包括:该终端设备根据该第一配置信息,通过该第一资源集合中的第二时频资源组从该网络设备接收该第二解调参考信号;或该终端设备根据该第二解调参考信号对应的至少两种配置信息中的第二配置信息,通过该第一资源集合中的第二时频资源组从该网络设备接收该第二解调参考信号。
可选地,该第二解调参考信号在该第二时频资源组中的配置信息为该第一配置信息。
可选地,该第二解调参考信号在该第二时频资源组中的配置信息为该第二解调参考信号对应的至少两种配置信息中的第二配置信息。
可选地,该网络设备向终端设备发送第一指示信息,相应的,该终端设备从网络侧 设备接收第一指示信息。该第一指示信息用于指示该第二解调参考信号在该第二时频资源组中使用的配置信息。
可选地,该第一解调参考信号对应的至少两个配置信息中还包括第五配置信息,第一密度小于第二密度,且第一位置是第二位置中的部分位置,其中,该第一密度是在该第一配置信息包括的承载参考信号的时频资源在一个时频资源组内的密度,该第二密度时在该第五配置信息包括的承载参考信号的时频资源在一个时频资源组内的密度,第一位置是第一配置信息包括的承载参考信号的时频资源的位置,第二位置是第五配置信息包括的承载参考信号的时频资源的位置。
可选地,该第一位置对应的时频资源是第二位置对应的时频资源的子集。
可选地,该第一位置对应的时频资源与第二位置对应的时频资源的交集包含的元素个数不为0。
可选地,该第一解调参考信号对应的至少两种配置信息与至少两种密度一一对应,且,该第一解调参考信号对应的至少两种配置信息与至少两种位置一一对应,其中,该第一解调参考信号对应的至少两种配置信息中的第三配置信息对应的密度小于该第一解调参考信号对应的至少两种配置信息中的第四配置信息对应的密度,且该第三配置信息对应的位置中的至少部分位置属于该第四配置信息对应的位置。
其中,“配置信息对应的密度”是指:配置信息包括(或者说,指示)的“承载解调参考信号的时频资源在一个时频资源组内的密度”。
“配置信息对应的位置”是指:配置信息包括(或者说,指示)的“承载解调参考信号的时频资源的位置”。
可选地,该第一配置信息是该第三配置信息或该第四配置信息。
可选地,该方法还包括:该网络设备向该终端设备发送第二指示信息,该第二指示信息用于指示该第一解调参考信号用于解调该第二下行数据。
相应地,该终端设备根据该第一解调参考信号解调第二下行数据,包括:该终端设备从该网络设备接收第二指示信息,该第二指示信息用于指示该第一解调参考信号用于解调该第二下行数据;该终端设备根据该第二指示信息,使用该第一解调参考信号解调该第二下行数据。
通过使网络设备指示终端设备使用同一解调参考信号解调下行控制信息和下行数据,能够减少终端设备的处理负担,提高通信的可靠性。
可选地,该第一时频资源组属于第一资源集合,该第一下行信息包括该第一下行控制信息,该第一资源集合还包括第四时频资源组,该第四时频资源组用于承载第三解调参考信号,该第三解调参考信号用于解调第四下行数据,该第四下行数据承载于第三资源集合。
通过在同一资源集合内发送不同资源集合内承载的控制信息和下行数据的解调参考信号,能够实现解调参考信号的集中发送,提高网络设备和终端设备的处理效率。
可选地,该方法还包括:在该第四时频资源组与该第一时频资源中的第一时频资源具有重叠部分时,该网络设备根据该第四时频资源组的位置和预设的偏移量,确定第五时频资源组;该网络设备通过该第五时频资源组,发送该第三解调参考信号,所述第一时频资源是所述第一时频资源组中用于承载所述第一解调参考信号的时频资源。
相应地,该方法还包括:在该第四时频资源组与该第一时频资源组中的第一时频资源具有重叠部分时,该终端设备根据该第四时频资源组的位置和预设的偏移量,确定第五时频资源组;该终端设备通过该第五时频资源组,从该网络设备接收该第三解调参考信号,所述第一时频资源是所述第一时频资源组中用于承载所述第一解调参考信号的时频资源。
可选地,该第五时频资源组包括至少一个第二时频资源和至少一个第三时频资源,其中,该第二时频资源是该第四时频资源组中不与该第一时频资源重叠的时频资源,该第三时频资源是该第四时频资源组中与该第一时频资源重叠的时频资源按该预设的偏移量偏移后的时频资源;或该第五时频资源组中的时频资源是该第四时频资源组中每个时频资源按该预设的偏移量偏移后的时频资源。
通过在用于解调控制信息的解调参考信号与用于解调下行数据的解调参考信号的承载资源发生重叠时,按照规定的偏移量对用于承载下行数据的解调参考信号的资源进行偏移,从而,能够可靠地实现控制信息和下行数据双方的解调参考信号的发送,进而,提高通信的可靠性。
可选地,该偏移量包括时域上的偏移量。
可选地,基于该偏移量的偏移包括在时域上向后方偏移一个或多个符号。
可选地,该偏移量包括频域偏移量。
可选地,基于该偏移量的偏移包括在频域上向高频方向或低频方向偏移一个或多个RE。
可选地,该方法还包括:该网络设备向该终端设备发送第三指示信息,该第三指示信息用于指示该第四下行数据通过该第三解调参考信号解调。
相应地,该方法还包括:该终端设备从该网络设备接收第三指示信息,该第三指示信息用于指示该第四下行数据通过该第三解调参考信号解调;该终端设备根据该第三指示信息,使用该第三解调参考信号解调该第四下行数据。
可选地,该“预设的偏移量”可以是指该偏移量可以按照预先设置的规则确定。
可选地,该“预设的偏移量”可以是指该偏移量可以由网络设备配置,并指示终端设备。
其中,网络设备可以通过高层信令(如SIB或者RRC信令)半静态地指示该预设的偏移量。
或者,网络设备可以通过通过物理层信令(如下行控制信息DCI)动态地指示该预设的偏移量。
第三方面,提供一种发送参考信号的方法,该方法包括:网络设备通过第一资源集合向终端设备发送下行控制信息以及解调参考信号,该解调参考信号用于解调该下行控制信息;该网络设备通过第二资源集合向该终端设备发送下行数据,该解调参考信号还用于解调该下行数据。
第四方面,提供一种接收参考信号的方法,该方法包括:终端设备通过第一资源集合从网络设备接收下行控制信息以及解调参考信号;该终端设备通过第二资源集合从该网络设备接收第二下行数据;该终端设备根据该第一解调参考信号对该下行控制信息和该下行数据进行解调。
可选地,该第二资源集合与该第一资源集合在时域上连续,或者该第二资源集合与 该第一资源集合在时域上的间隔小于或等于第一阈值,并且,该第二资源集合与该第一资源集合在频域上连续,或者该第二资源集合与该第一资源集合在频域上的间隔小于或等于第二阈值。
根据本申请实施例的发送参考信号的方法,能使实现基于同一参考信号解调控制信息和数据双方,从而,能够减少参考信号对资源的占用,能够提高通信效率。
可选地,针对该下行数据的预编码处理所使用的预编码矩阵与和针对该解调参考信号(或该下行控制信息)的预编码处理所使用的预编码矩阵相同。
通过基于相同的预编码矩阵对共用同一参考信号进行解调数据和控制信息使用同一预编码矩阵进行预编码处理,能够减小预编码处理的复杂度以及信道设计的复杂度,从而,能够减小网络设备的处理负担,提高通信效率。
第五方面,提供一种发送参考信号的方法,该方法包括:网络设备确定资源集合,所述资源集合用于承载解调参考信号和下行信息,所述下行信息为下行控制信息或者下行数据,所述解调参考信号用于解调该下行信息,该资源集合包括第一时频资源组和第二时频资源组,该第一时频资源组为预留时频资源,该第二时频资源组用于承载该解调参考信号;在该第一时频资源组与该第二时频资源组具有重叠部分时,该网络设备根据该第二时频资源组的位置和预设的偏移量,确定第三时频资源组;该网络设备通过该第三时频资源组,发送该解调参考信号。
第六方面,提供一种接收参考信号的方法,该方法包括:终端设备确定资源集合,所述资源集合用于承载解调参考信号和下行信息,所述下行信息为下行控制信息或者下行数据,所述解调参考信号用于解调该下行信息,该资源集合包括第一时频资源组和第二时频资源组,该第一时频资源组为预留时频资源,该第二时频资源组用于承载该解调参考信号;在该第一时频资源组与该第二时频资源组具有重叠部分时,该终端设备根据该第二时频资源组的位置和预设的偏移量,确定第三时频资源组;该终端设备通过该第三时频资源组,接收该解调参考信号。
通过在用于解调下行信息的解调参考信号与预留资源发生重叠时,按照规定的偏移量对用于承载下行信息的解调参考信号的资源进行偏移,从而,能够可靠地实现解调参考信号的发送,进而,提高通信的可靠性。
可选地,在该网络设备根据该第二时频资源组的位置和预设的偏移量,确定第三时频资源组之前,该方法还包括:该网络设备向该终端设备发送指示信息,该指示信息用于指示所述第一时频资源组为预留时频资源。
相应地,该在该第一时频资源组与该第二时频资源组具有重叠部分时,该终端设备根据该第二时频资源组的位置和预设的偏移量,确定第三时频资源组,包括:该终端设备从该网络设备接收指示信息,该指示信息用于指示所述第一时频资源组为预留时频资源;该终端设备根据该指示信息确定该第一时频资源为预留时频资源后,在该第一时频资源组与该第二时频资源组具有重叠部分时,根据该第二时频资源组的位置和预设的偏移量,确定第三时频资源组。
可选地,该预留时频资源可以是指该终端设备确定为不承载参考信号的时频资源。
可选地,该预留时频资源可以是指不被网络设备用于发送或接收的时频资源。
可选地,该“预设的偏移量”可以是指该偏移量可以按照预先设置的规则确定。
可选地,该“预设的偏移量”可以是指该偏移量可以由网络设备配置,并指示终端设备。
其中,网络设备可以通过高层信令(如SIB或者RRC信令)半静态地指示该预设的偏移量。
或者,网络设备可以通过通过物理层信令(如下行控制信息DCI)动态地指示指示该预设的偏移量。
结合上述各方面及其上述实现方式,在另一种实现方式中,该一个资源集合包括多个控制信道单元CCE。其中,每个控制信道单元包括至少一个资源单元组REG或者物理资源块PRB。
结合上述各方面及其上述实现方式,在另一种实现方式中,一个资源集合包括多个资源单元组REG。
结合上述各方面及其上述实现方式,在另一种实现方式中,一个资源集合包括多个物理资源块PRB。
结合上述各方面及其上述实现方式,在另一种实现方式中,一个时频资源组为一个或多个资源单元组REG。
结合上述各方面及其上述实现方式,在另一种实现方式中,该第一资源集合为控制资源集合CORESET。
结合上述各方面及其上述实现方式,在另一种实现方式中,该第一资源集合占用至少一个物理资源块PRB组。
结合上述各方面及其上述实现方式,在另一种实现方式中,该第一资源集合与该第二资源集合属于同一PRB组。
结合上述各方面及其上述实现方式,在另一种实现方式中,该第一资源集合占用的PRB组与该第二资源集合占用的PRB组在频域上连续,例如,该第一资源集合占用的PRB组与该第二资源集合占用的PRB组在频域上相邻或具有重叠部分。
结合上述各方面及其上述实现方式,在另一种实现方式中,该第一资源集合占用的PRB组与该第二资源集合占用的PRB组在频域上的间隔小于或等于预设的频域阈值。
结合上述各方面及其上述实现方式,在另一种实现方式中,该第一资源集合占用的PRB组与该第二资源集合占用的PRB组在时域上连续,例如,该第一资源集合占用的PRB组与该第二资源集合占用的PRB组在时域上相邻或具有重叠部分。
结合上述各方面及其上述实现方式,在另一种实现方式中,该第一资源集合占用的PRB组与该第二资源集合占用的PRB组在时域上的间隔小于或等于预设的时域阈值。
结合上述各方面及其上述实现方式,在另一种实现方式中,该第一时频资源组与该第三时频资源组在时域上占用不同符号,在频域上占用相同的子载波,且该第一时频资源组与该第三时频资源组在时域上占用的符号之间的间隔小于或等于规定的时间阈值,例如,该第一时频资源组与该第三时频资源组在时域上占用的符号相邻。
结合上述各方面及其上述实现方式,在另一种实现方式中,该第一时频资源组与该第三时频资源组在时域上占用相同符号,在频域上占用不同的子载波,例如,该第一时频资源组与该第三时频资源组在频域上占用的子载波相邻或具有重叠部分。
结合上述各方面及其上述实现方式,在另一种实现方式中,当第一解调参考信号还 用于第二下行数据的解调,该方法还包括:该网络设备禁止通过第二资源集合发送用于解调该第二下行数据的参考信号。
结合上述各方面及其上述实现方式,在另一种实现方式中,当第一解调参考信号还用于第二下行数据的解调,且第二下行数据通过第三时频资源组发送时,该方法还包括:该网络设备禁止通过第三时频资源组发送用于解调该第二下行数据的参考信号。
第七方面,提供一种发送参考信号的方法,该方法包括:网络设备通过资源集合中的第一时频资源组向终端设备发送下行控制信息和第一解调参考信号,该第一解调参考信号用于解调该下行控制信息,该第一解调参考信号的配置信息为至少两种配置信息中的第一配置信息,该至少两种配置信息中的每种配置信息包括以下至少一个参数:解调参考信号使用的序列、承载解调参考信号的时频资源在一个时频资源组内的密度、解调参考信号关联的天线端口、承载解调参考信号的时频资源的位置,并且任意两种配置信息包括的至少一个参数不同;该网络设备通过该资源集合中的第二时频资源组向该终端设备发送第二解调参考信号和下行数据,该第二解调参考信号用于解调下行数据。
可选地,该第二解调参考信号在第二时频资源组中使用的配置信息为该第一配置信息。
可选地,该第二解调解调参考信号在第二时频资源组中使用的配置信息为该至少两种配置信息中的第二配置信息。
可选地,该网络设备给终端设备发送第一指示信息,该第一指示信息用于指示该第二解调参考信号在第二时频资源组中使用的配置信息。
根据本申请实施例的发送参考信号的方法,当用于传输控制信息的资源集合中有剩余(或者说,未被控制信息占用)的时频资源组时,能够通过该剩余的时频资源组发送数据,并且,该数据与控制信息基于不同的参考信号解调,能够确保数据和控制信息双方的解调,并且,能够提高资源利用效率。
第八方面,提供一种接收参考信号的方法,该方法包括:终端设备通过资源集合中的第一时频资源组从网络设备接收下行控制信息和第一解调参考信号,该终端设备通过该资源集合中的第二时频资源组从该网络设备接收第二解调参考信号和下行数据,其中,该第一解调参考信号的配置信息为至少两种配置信息中的第一配置信息,该至少两种配置信息中的每种配置信息包括以下至少一个参数:解调参考信号使用的序列、承载解调参考信号的时频资源在一个时频资源组内的密度、解调参考信号关联的天线端口、承载解调参考信号的时频资源的位置,并且任意两种配置信息包括的至少一个参数不同;该终端设备根据该第一解调参考信号对该下行控制信息进行解调,根据该第二解调参考信号对该第二下行数据进行解调。
可选地,该第二解调参考信号在第二时频资源组中使用的配置信息为该第一配置信息。
可选地,该第二解调参考信号在第二时频资源组中使用的配置信息为至少两种配置信息中的第二配置信息。
可选地,该终端设备接收网络设备发送的第一指示信息,该第一指示信息用于指示该第二解调参考信号在第二时频资源组中使用的配置信息。
结合上述第七和第八方面及其上述实现方式,在另一种实现方式中,该第一解调参 考信号与该第二解调参考信号是经过相同的预编码矩阵处理后得到的。
结合上述第七和第八方面及其上述实现方式,在另一种实现方式中,该下行控制信息与该下行数据是经过相同的预编码矩阵处理后得到的。
结合上述第七和第八方面及其上述实现方式,在另一种实现方式中,该第一解调参考信号与该第二解调参考信号是经过相同的预编码矩阵处理后得到的。
第九方面,提供了一种发送参考信号的装置,包括用于执行上述第一方面、第三方面、第五方面和第七方面中的任一方面及其实施方式中的各步骤的单元。
可选地,该装置包括芯片或电路,如可设置于网络设备内的芯片或电路。
可选地,该装置为网络设备。
第十方面,提供了一种接收参考信号的装置,包括用于执行上述第二方面、第四方面、第六方面和第八方面中的任一方面及其实施方式中的各步骤的单元。
可选的,该装置包括芯片或电路,如可设置于终端设备内的芯片或电路。
可选地,该装置为终端设备。
第十一方面,提供了一种通信设备,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得通信设备执行上述第一方面至第六方面中的任一方面及其实施方式中的方法。
第十二方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一方面至第六方面中的任一方面及其实施方式中的方法。
第十三方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被通信设备(例如,网络设备或终端设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述第一方面至第六方面中的任一方面及其实施方式中的方法。
第十四方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序使得通信设备(例如,网络设备或终端设备)执行上述第一方面至第六方面中的任一方面及其实施方式中的方法。
根据本申请实施例的发送参考信号的方法和装置,及接收参考信号的方法和装置,能够灵活的实现参考信号的传输过程,能够满足具有不同可靠性需求的业务对于参考信号的要求。
附图说明
图1是本申请实施例的传通信系统的一例的示意性图。
图2是本申请实施例的参考信号的传输过程的一例的示意性交互图。
图3是本申请实施例的参考信号的密度和位置的示意图。
图4是本申请实施例的资源分布的一例的示意图。
图5是本申请实施例的资源分布的另一例的示意图。
图6是本申请实施例的资源分布的再一例的示意图。
图7是本申请实施例的资源分布的再一例的示意图。
图8是本申请实施例的资源分布的再一例的示意图。
图9是本申请实施例的参考信号的传输过程的另一例的示意性交互图。
图10是本申请实施例的参考信号的传输过程的再一例的示意性交互图。
图11是本申请实施例的参考信号的传输过程的再一例的示意性交互图。
图12是本申请实施例的发送参考信号的装置的一例的示意性框图。
图13是本申请实施例的接收参考信号的装置的另一例的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中:
终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,网络设备可以是网络设备等用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station, BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
此外,LTE系统或5G系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为上述载波与小区的概念等同。例如在载波聚合(Carrier Aggregation,CA)场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell Indentify,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
本申请实施例提供的方法和装置,可以应用于终端设备或网络设备,该终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(Central Processing Unit,CPU)、内存管理单元(Memory Management Unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本申请实施例的无线通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括1个天线或多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或终端设备122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路(也称为下行链路)118向终端设备116发送信息,并通过反向链路(也称为上行链路)120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可与反向链路120使用不同的频带,前向链路124可与反向链路126使用不同的频带。
再例如,在时分双工(Time Division Duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。网络设备可以通过单个天线或多天线发射分集向其对应的扇区内所有的终端设备发送信号。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线也可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线或多天线发射分集向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是PLMN网络或者D2D网络或者M2M网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
下面,结合图2,以网络设备#A(即,网络设备的一例)与终端设备#A(即,终端设备的一例)之间传输参考信号#A 1(即,第一解调参考信号的一例)的过程为例,对本申请实施例的发送和接收参考信号的方法200进行详细说明,图2是本申请实施例的发送和接收参考信号的方法200的示意性交互图。在适用该方法200的通信系统(例如,上述通信系统100)中,可以存在至少两种类型的参考信号。
作为示例而非限定,在本申请实施例中,参考信号可以用于信道测量,进而用于解调,例如,本申请实施例中的参考信号可以包括解调参考信号(Demodulation Reference Signal,DMRS)。
该至少两种类型的参考信号包括:用于解调控制信息(或者说,控制信道)的参考 信号(以下,为了便于理解和区分,记作参考信号#1),并且,作为示例而非限定,该控制信息可以包括下行控制信息(Downlink Control Information,DCI),该控制信道可以包括物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
并且,该至少两种类型的参考信号包括:用于解调数据(或者说,数据信道)的参考信号(以下,为了便于理解和区分,记作参考信号#2),并且,作为示例而非限定,该数据可以包括下行数据,该数据信道可以包括物理下行数据信道(Physical Downlink Shared Channel,PDSCH)。
应理解,参考信号作为一种用于信道测量或信道估计的参考信号,仅为示例性说明,不应对本申请实施例构成任何限定,本申请并不排除在现有或未来的协议中采用其他的名称代替参考信号以实现其相同功能的可能。
在本申请实施例中,该至少两种类型的参考信号中的至少一种类型的参考信号对应至少两种配置信息,例如,上述参考信号#1可以具有两种或两种以上配置信息,和/或上述参考信号#2可以具有两种或两种以上配置信息。
在本申请实施例中,“配置信息”是下述各种参数的总称的一例,本申请并未特别限定,例如,“配置信息”也可以称为“模式”。
下面,对本申请实施例中的“配置信息”进行详细说明。
在本申请实施例中,该“配置信息”可以包括以下一种或多种参数。
参数A.密度(具体地说,是承载参考信号的时频资源在一个时频资源组中的密度)
作为示例而非限定,在本申请实施例中,每个时频资源组可以是包括至少两个时频资源。
作为示例而非限定,例如,该时频资源可以是资源单元(Resource Element,RE),此情况下,该时频资源组可以为资源单元组(Resource Element Group,REG)。
以下,为了便于理解和区分,以REG作为时频资源组,对本申请实施例的发送和接收参考信号的方法进行详细说明。
在本申请实施例中,“密度”也可以称为参考信号密度,可以是指在一个时频资源组(例如,REG)中,用于承载参考信号的时频资源(例如,RE)所占的比例。
设参考信号密度为ρ,则ρ=B/P。
其中,B表示在一个时频资源组(例如,REG)内,承载参考信号的时频资源(例如,RE)的数量,P表示该时频资源组所包括的全部时频资源的数量。
应理解,以上列举的时频资源的具体单位仅为示例性说明,本申请并未限定于此,本领域技术任意可以根据需要以任意单位对时频资源进行定义,相应地,以上列举的时频资源组中包括的元素也可以是以任意形式定义时频资源。
例如,该时频资源组可以定义为在时域上对应规定数量的符号、在频域上对应规定数量的子载波的时频资源。
此情况下,参考信号密度也可以是指,在一个时频资源组中,承载参考信号的子载波在该时频资源组所包括的全部子载波中的比例。
或者,此情况下,参考信号密度还可以是指,在一个时频资源组中,承载参考信号的符号在该时频资源组所包括的全部符号中的比例。
在本发发明实施例中,两种配置信息的参数相异可以是指:该两种配置信息中的一 方对应的参考信号密度与该两种配置信息中的另一方对应的参考信号密度相异。
图3示出了本申请实施例的可能的参考信号密度的一例的示意图。例如,如图3所示,某一类型的参考信号(例如,上述参考信号#1或参考信号#2)对应的配置信息a和配置信息d中,承载该参考信号的RE的数量为4,该REG中的总的RE数量为12,则该参考信号对应的配置信息a和配置信息d中该参考信号密度为4/12=1/3。
再例如,如图3所示,该参考信号对应的配置信息b、配置信息c、配置信息e和配置信息f中,承载该参考信号的RE的数量为6,该REG中的总的RE数量为12,则该参考信号对应的配置信息b中参考信号密度为6/12=1/2。
参数B.位置(具体地说,是承载参考信号的时频资源在一个时频资源组中的位置)
在本申请实施例中,“位置”也可以称为参考信号位置,可以是指在一个时频资源组(例如,REG)中,用于承载参考信号的时频资源(例如,RE)在该时频资源中的位置。其中,时频资源组的定义与针对“密度”的描述相似,这里,为了避免赘述,省略其详细说明。
应理解,以上列举的“位置”的定义仅为示例性说明,本申请并未限定于此,例如,该时频资源组可以定义为在时域上对应规定数量的符号、在频域上对应规定数量的子载波的时频资源。
此情况下,参考信号位置也可以是指,在一个时频资源组中,承载参考信号的子载波在该时频资源组所包括的全部子载波中的频域位置。
或者,此情况下,参考信号密度还可以是指,在一个时频资源组中,承载参考信号的符号在该时频资源组所包括的全部符号中的时域位置。
在本发发明实施例中,两种配置信息的参数相异可以指示:该两种配置信息中的一方对应的参考信号位置与该两种配置信息中的另一方对应的参考信号位置相异。
图3示出了本申请实施例的可能的参考信号位置的一例的示意图。例如,如图3所示,在本申请实施例中,对于具有不同密度的任意两个配置信息之间,参考信号的位置可以不同,例如,配置信息a和配置信息b中的任一配置信息(密度为1/3)对应的参考信号位置,可以与配置信息d、配置信息c、配置信息e和配置信息f中的任一配置信息(密度为1/2)对应的参考信号位置相异。
并且,在本申请实施例中,对于具有相同密度的两个配置信息之间,参考信号的位置可以可以不同,例如,配置信息a和配置信息b(密度为1/3)对应的参考信号位置可以不同。再例如,配置信息d、配置信息c、配置信息e和配置信息f中的任意两个配置信息(密度为1/2)对应的参考信号位置可以不同。
另外,需要说明的是,对于具有不同密度的任意两个配置信息之间,密度较小的配置信息对应的参考信号位置中的部分位置(或者说,该部分位置对应的时频资源)可以属于密度较大的配置信息对应的参考信号位置(或者说,该参考信号位置对应的时频资源)。
例如,配置信息a对应的参考信号位置中的部分参考信号位置可以属于配置信息d或配置信息c对应的参考信号位置。
再例如,配置信息d对应的参考信号位置中的部分参考信号位置可以属于配置信息e或配置信息f对应的参考信号位置。
作为示例而非限定,在本申请实施例中,密度较小的配置信息对应的参考信号位置 还可以是密度较大的配置信息对应的参考信号位置的子集。
参数C.序列(具体地说,是参考信号使用的序列)
在本申请实施例中,“序列”也可以称为参考信号序列,可以是指一个参考信号使用的序列。
作为示例而非限定,在本申请实施例中,参考信号使用的序列可以包括伪随机(pseudo-noise,PN)序列。
可选地,在本申请实施例中,参考信号可以通过以下公式计算得到:
Figure PCTCN2018091447-appb-000001
Figure PCTCN2018091447-appb-000002
或者
Figure PCTCN2018091447-appb-000003
或者
Figure PCTCN2018091447-appb-000004
当参考信号用作发现参考信号(discovery reference signal,DRS)一部分时,
Figure PCTCN2018091447-appb-000005
其他情况下(即,参考信号用作除发现参考信号以外的功能),n′ s=n s
其中,
Figure PCTCN2018091447-appb-000006
表示n s个时隙中第l个符号上的第m个序列元素,
Figure PCTCN2018091447-appb-000007
所呈现的形式是PN序列通过调制得到的复数形式。
其中,c init_1和c init_3用于确定一个符号上的参考信号的序列,c init_2用于确定一个时间单位(例如,子帧)上的参考信号的序列。
其中,当使用c init_1和c init_3时,h表示每个PRB中承载的参考信号的数量,或者说,h表示每个PRB中用于承载的参考信号的资源(例如,RE)的数量。其中,h可以基于所希望里的参考信号的密度确定,作为示例而非限定,例如,当希望一个PRB(即,时频资源组的一例)中参考信号的密度为1/2时,可以令h=6。再例如,例如,当希望一个PRB(即,时频资源组的一例)中参考信号的密度为1/3时,可以令h=4。应理解,以上列举的h的取值仅为示例性说明,本申请并未限定于此。
其中,当使用c init_2时,h=r×h',h'表示每个PRB中承载的参考信号的数量,或者说,h'表示每个PRB中用于承载的参考信号的资源(例如,RE)的数量。r表示一个时间单位(例如,子帧)包括的符号的数量,其中,h'可以基于所希望里的参考信号的密度确定,作为示例而非限定,例如,当希望一个PRB(即,时频资源组的一例)中参考信号的密度为1/2时,可以令h'=6。再例如,例如,当希望一个PRB(即,时频资源组的一例)中参考信号的密度为1/3时,可以令h'=4。应理解,以上列举的h'的取值仅为示例性说明,本申请并未限定于此。
可选地,该符号可以为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,或者也可以为在未来协议中定义的用于表示时间单元的符号,本申请实施例对此并未特别限定。
Figure PCTCN2018091447-appb-000008
表示下行信道所包含的资源块(Resource Block,RB)的最大数量。c为PN序列,可以由PN序列生成器(例如,金(Gold)序列生成器)根据初 始化序列c init生成。
Figure PCTCN2018091447-appb-000009
为解调参考信号的标识,可以为小区标识
Figure PCTCN2018091447-appb-000010
也可以为高层配置的标识。N CP为循环前缀标识,对应普通CP(normal CP),N CP=1;对于扩展CP(extended CP),N CP=0。n RNTI为UE的标识。
通过上述公式可以看到,当m在
Figure PCTCN2018091447-appb-000011
内遍历取值时,可以得到PN序列。该PN序列包括
Figure PCTCN2018091447-appb-000012
个序列元素,每个序列元素是一个复数信号,每个序列元素可以称为解调参考信号的一个值,
Figure PCTCN2018091447-appb-000013
个序列元素可以称序列长度为
Figure PCTCN2018091447-appb-000014
在本发发明实施例中,两种配置信息的参数相异可以指示:该两种配置信息中的一方对应的参考信号的序列与该两种配置信息中的另一方对应的参考信号的序列相异。
其中,序列相异可以是指:序列的长度不同。
或者,序列相异可以是指:伪随机序列产生器初始化时采用不同的初始化值时,产生出的伪随机序列是不同的(即使序列长度相同)。
参数D.端口(具体地说,是参考信号对应的天线端口)
在本申请实施例中,同一网络设备可通过CDM、频分复用(frequency division multiplexing,FDM)、时分复用(time division multiplexing,TDM)等方式来区分不同的天线端口(antenna port)。若采用FDM或者TDM,则不同天线端口的参考信号所占用的频域资源或者时域资源可以是不同的。若采用CDM,则不同天线端口的参考信号所占用的时频资源可以是相同的,而通过复用码来区分不同的天线端口。
另外,在本申请实施例中,CDM可以包括频域CDM和时域CDM。
并且,在本申请实施例中,可以支持将不同的参考信号配置于同一个符号内,即,多个(两个或两个以上)参考信号可以基于频域CDM方式发送。
需要说明的是,天线端口,也可以称为参考信号端口,或者,更具体地说,可以理解为未经过波束赋形(beamforming)预编码的参考信号端口。参考信号是由参考信号端口定义的,每个参考信号对应一个天线端口。
在本发发明实施例中,两种配置信息的参数相异可以指示:该两种配置信息中的一方对应的天线端口与该两种配置信息中的另一方对应的天线端口相异。
应理解,以上列举的“配置信息”包括的参数仅为示例性说明,本申请并未特别限定,其他能够区分不同配置信息的参数均落入本申请实施例的保护范围内。
在本申请实施例中,同一类型的参考信号(例如,上述参考信号#1或参考信号#2)可以对应多种(两种或两种以上)配置信息,或者说,同一参考信号(例如,属于参考信号#1或属于参考信号#2)可以对应多种配置信息,其中,同一参考信号对应的多个配置信息之间的上述参数A、参数B、参数C和参数D中的至少一种参数相异。
即,在本申请实施例中,参考信号#1可以对应多种配置信息。
并且,在本申请实施例中,参考信号#2可以对应多种配置信息。
另外,作为示例而非限定,参考信号#1和参考信号#2对应的配置信息中,可以存在一个或多个相同的配置信息。或者,参考信号#1对应的每个配置信息和参考信号#2对应的每个配置信息可以均相异,本申请并未特别限定。
从而,在S210,网络设备#A可以确定该参考信号#A 1对应的多个(两个或两个以上)配置信息,具体的说,网络设备#A可以确定参考信号#A 1所属于的参考信号类型(或者说,解调对象),并根据参考信号#A 1所属于的参考信号类型,确定给参考信号#A 1对应的多 个配置信息。
例如,如果参考信号#A 1属于用于解调控制信息的参考信号(即,上述参考信号#1),则网络设备#A可以根据该参考信号#1对应的多个配置信息,确定为该参考信号#A 1对应的多个配置信息。
例如,如果参考信号#A 1属于用于解调数据的参考信号(即,上述参考信号#2),则网络设备#A可以根据该参考信号#2对应的多个配置信息,确定为该参考信号#A 1对应的多个配置信息。
其后,网络设备#A可以从该参考信号#A 1对应的多个配置信息中,确定在向终端设备#A发送该参考信号#A 1时使用的配置信息(以下,为了便于理解和区分,记作:配置信息#A)。
作为示例而非限定,在本申请实施例中,网络设备#A可以采用以下任意一种方法,确定配置信息#A。
方法1
在本申请实施例中,网络设备#A可以保存映射关系#1(即,第一映射关系的一例),该映射关系#1可以用于指示多种(两种或两种以上)信息格式与多种(两种或两种以上)配置信息之间的一一映射关系。
作为示例而非限定,在本申请实施例中,信息格式可以是指控制信息(例如,下行控制信息的)的信息格式。
在本申请实施例中,控制信息的功能可以包括但不限定于以下方面:上行传输或者下行传输的调度,请求非周期信道质量指示(Channel Quality Indicator,CQI)上报,通知上行功率控制命令等。其中不同的信息格式可以与有不同的功能。
另外,在本申请实施例中,不同的业务可以使用不同的信息格式。
另外,作为示例而非限定,在本申请实施例中,多个信息格式可以与多种业务类型具有一一映射关系。
并且,作为示例而非限定,在本申请实施例中,该多种业务类型可以包括但不限于:
超高可靠低时延通信(Ultra Reliability Low Latency Communication,URLLC)类型;
演进的移动宽带(Evolved Mobile Broadband,eMBB)类型。
具体地说,国际电信联盟无线通信委员会(ITU-R,International Telecommunications Union-Radio Communications Sector)定义了未来5G的3大类应用场景,分别是eMBB业务、海量连接的物联网(mMTC,Massive Machine Type Communication)业务和超高可靠性与超低时延(URLLC,Ultra Reliable & Low Latency Communication)业务,并从吞吐率、时延、连接密度和频谱效率提升等8个维度定义了对5G网络的能力要求。其中,eMBB业务主要要求大速率,广覆盖、传输时延以及移动性。URLLC业务的主要需求为极高可靠性、极低移动性和传输时延,一般要求无线空口在1毫秒(ms)内达到99.999%的传输可靠性。即,由于不同业务(或者说业务类型)对于传输可靠性的要求不同,因此,可以使不同的业务(或者说业务类型)使用不同配置信息的参考信号。
即,在本申请实施例中,不同的业务类型可以对应不同的信息格式,例如,信息格式A用于调度eMBB业务的传输,信息格式B用于调度eMBB业务的传输
以下表1示出了上述映射关系#1的一例。
表1
控制信息的信息格式 参考信号的配置信息
信息格式A 配置信息#1(例如,密度为1/2)
信息格式B 配置信息#2(例如,密度为1/3)
应理解,以上表1列举的具体对应关系仅为示例性说明,本申请实施例并未限定于此,本领域技术人员可以根据实际需要,对映射关系#1进行任意设置或变更,只要能够确保基于某个信息格式能够唯一地确定一个配置信息即可。
从而,网络设备#A可以确定参考信号#A 1所解调的控制信息(以下,为了便于理解和区分,记作下行控制信息#A)的信息格式。
进而,网络设备#A可以基于下行控制信息#A的信息格式,将参考信号#A 1对应的多个配置信息中与下行控制信息#A的信息格式相对应的配置信息作为配置信息#A。
方法2
在本申请实施例中,网络设备#A可以保存映射关系#3(即,第三映射关系的一例),该映射关系#3可以用于指示多种(两种或两种以上)信道格式与多种(两种或两种以上)配置信息之间的一一映射关系。
作为示例而非限定,在本申请实施例中,信道格式可以是指用于承载控制信息的资源使用形式(例如,聚合等级)。
可选地,在本申请实施例中,可以根据控制信息所占用的控制信道单元(Control Channel Element,CCE)和REG的数量,而确定多种信道格式,以下表2示出了不同的信道格式之间的区别。
表2
Figure PCTCN2018091447-appb-000015
具体地说,如表2所示,不同的信道格式可以占用不同数量的CCE和REG。
需要说明的是,在本申请实施例中,控制信息“占用”CCE(或REG)可以是指:控制信息承载于所“占用”的CCE(或REG)中的部分资源,或者,控制信息“占用”CCE(或REG)也可以是指:控制信息承载于所“占用”的CCE(或REG)中的全部资源,本申请并未特别限定。
以下表3示出了上述映射关系#3的一例。
表3
控制信息的信道格式 参考信号的配置信息
信道格式0 配置信息#1(例如,密度为1/3)
信道格式1 配置信息#2(例如,密度为1/3)
信道格式2 配置信息#3(例如,密度为1/2)
信道格式3 配置信息#4(例如,密度为1/2)
应理解,以上表2列举的具体对应关系仅为示例性说明,本申请实施例并未限定于此,本领域技术人员可以根据实际需要,对映射关系#3进行任意设置或变更,只要能够确保基于某个信道格式能够唯一地确定一个配置信息即可。
从而,网络设备#A可以确定参考信号#A 1所解调的控制信息(以下,为了便于理解和区分,记作下行控制信息#A)对应的(具体的说,所承载于的信道的)信道格式(或者说,聚合等级)。
进而,网络设备#A可以基于下行控制信息#A对应的信道格式,将参考信号#A 1对应的多个配置信息中与下行控制信息#A对应的信道格式相对应的配置信息作为配置信息#A。
另外,作为示例而非限定,在本申请实施例中,多个信道格式可以与多种业务类型具有一一映射关系。
并且,作为示例而非限定,在本申请实施例中,该多种业务类型可以包括但不限于上述URLLC类型和eMBB类型。
并且,当参考信号的密度较高时,解调成功的可能性增大,因此传输的可靠性较大,因此,例如,对于参考信号#1,该参考信号#1用于解调URLLC业务的控制信息,则在传输该参考信号#1时,可以使用具有较大的密度(例如,1/2)的配置信息。此情况下,可以规定在传输URLLC业务时,可以使用信道格式2或信道格式3的控制信道传输控制信息,进而,可以基于上述表3,确定使用信道格式2或信道格式3对应的配置信息,传输参考信号。
再例如,对于参考信号#1,该参考信号#1用于解调eMBB业务的控制信息,则在传输该参考信号#1时,可以使用具有较小的密度(例如,1/3)的配置信息。此情况下,可以规定在传输eMBB业务时,可以使用信道格式0或信道格式1的控制信道传输控制信息,进而,可以基于上述表3,确定使用信道格式0或信道格式1对应的配置信息,传输参考信号。
方法3
在本申请实施例中,网络设备#A可以保存映射关系#2(即,第二映射关系的一例),该映射关系#2可以用于指示多种(两种或两种以上)业务类型与多种(两种或两种以上)配置信息之间的一一映射关系。
作为示例而非限定,在本申请实施例中,该多种业务类型可以包括但不限于:
URLLC类型;
eMBB类型。
由于不同业务(或者说业务类型)对于传输可靠性的要求不同,因此,可以使不同的业务(或者说业务类型)使用不同配置信息的参考信号。
并且,当参考信号的密度较高时,解调成功的可能性增大,因此传输的可靠性较大,因此,例如,对于参考信号#1,该参考信号#1用于解调URLLC业务的控制信息,则在传输该参考信号#1时,可以使用具有较大密度(例如,1/2)的配置信息。
再例如,对于参考信号#1,该参考信号#1用于解调eMBB业务的控制信息,则在传输该参考信号#1时,可以使用具有较小密度(例如,1/3)的配置信息。
例如,对于参考信号#2,该参考信号#2用于解调URLLC业务的数据,则在传输该参考信号#2时,可以使用具有较大密度(例如,1/2)的配置信息。
再例如,对于参考信号#2,该参考信号#2用于解调eMBB业务的数据,则在传输该参考信号#2时,可以使用具有较小密度(例如,1/3)的配置信息。
以下表4示出了上述映射关系#2的一例。
表4
业务类型 配置信息
eMBB 配置信息#1(例如,密度为1/3)
eMBB 配置信息#2(例如,密度为1/3)
URLLC 配置信息#3(例如,密度为1/2)
URLLC 配置信息#4(例如,密度为1/2)
应理解,以上表4列举的具体对应关系仅为示例性说明,本申请实施例并未限定于此,本领域技术人员可以根据实际需要,对映射关系#2进行任意设置或变更,只要能够确保基于某个业务类型能够确定传输该业务时使用的参考信号的配置信息即可。
从而,网络设备#A可以确定参考信号#A 1所解调的控制信息或数据所属于的业务的业务类型(以下,为了便于理解,记作:业务类型#A)。
进而,网络设备#A可以基于业务类型#A,将参考信号#A 1对应的多个配置信息中与业务类型#A相对应的配置信息作为配置信息#A。
并且,在S210,网络设备#A可以将该配置信息#A的指示信息(即,第一指示信息的一例)发送给终端设备#A。
从而,终端设备#A可以基于该指示信息,获知网络设备#A发送参考信号#A 1时(具体的说,是通过下述时频资源组#1发送参考信号#A 1时)使用的配置信息(即,配置信息#A)。
在S220,网络设备#A可以基于该配置信息#A,使用一个或多个时频资源组(以下,为了便于理解和区分,记作:时频资源组#1),向终端设备#A发送参考信号#A 1,并且,网络设备可以向终端设备#A发送需要通过该参考信号#A 1解调的下行信息。
例如,当该配置信息#A的参数包括参考信号密度时,在上述一个或多个时频资源组#1中的每个时频资源组#1中,参考信号的密度为该配置信息#A对应的参考信号密度。
再例如,当该配置信息#A的参数包括参考信号位置时,参考信号#A 1在上述一个或多个时频资源组#1中位置为该配置信息#A对应的参考信号位置。
再例如,当该配置信息#A的参数包括参考信号使用的序列时,参考信号#A 1在上述一个或多个时频资源组#1中使用的序列为该配置信息#A对应的序列。
再例如,当该配置信息#A的参数包括参考信号关联的天线端口时,通过上述一个或多个时频资源组#1发送参考信号#A 1使用的天线端口为该配置信息#A对应的天线端口。
相应地,终端设备#A可以基于该配置信息#A,使用一个或多个时频资源组#1,从网络设备#A接收参考信号#A 1,并且,终端设备#A可以从网络设备#A接收需要通过该参考信号#A 1解调的下行信息,并基于该参考信号#A 1对该下行信息进行解调。
根据本申请实施例的发送或接收参考信号的方法,通过使一个参考信号对应多种配置信息,在实际业务传输中,能够支持网络设备从该多种配置信息中选择一种与当前业务 相匹配,或者说,能够确保当前业务传输的可靠性的配置信息,从而,能够满足具有不同可靠性需求的业务对于参考信号的要求。
需要说明的是,在本申请实施例中,上述需要通过该参考信号#A解调的下行信息可以包括,下行数据#A 1(即,第一下行数据的一例)或下行控制信息#A(即,第一下行控制信息的一例)。
并且,当该下行信息包括下行控制信息#A时,在本申请实施例中,该参考信号#A还可以用于解调下行数据#A 2(即,第二下行数据的一例)
下面,对上述过程进行详细说明。
在本申请实施例中,数据或信息可以通过资源集合进行发送,其中,一个资源集合可以包括一个或多个时频资源组。
作为示例而非限定,在本申请实施例中,用于传输控制信息的资源集合也可以称为控制资源集合(Control Resource Set,CORESET)。
并且,一个CORESET可以包括多个REG(即,时频资源组的一例)。
以下,为了便于理解和区分,将用于承载下行控制信息#A和参考信号#A的COREST记作资源集合#1(即,第一资源集合的一例)。
作为示例而非限定,例如,如图4所示,该资源集合#1在时域上可以占用一个符号,在频域上可以占用6个子载波。再例如,如图5所示,该资源集合#1在时域上可以占用一个符号,在频域上可以占用16个子载波。
应理解,以上列举的资源集合#1的结构(例如,占用的子载波或符号的数量)仅为示例性说明,本申请并未特别限定,本领域技术人员可以根据需要,对资源集合#1占用的符号或子载波的数量进行任意设置或变更。
可选地,在本申请实施例中,网络设备#A还可以通过资源集合#2向终端设备#A发送下行数据#A 2
此情况下,在本申请实施例中,可以提供两种方式传输下行数据#A 2
方式1,下行数据#A 2基于参考信号#A解调。
在本申请实施例中,基于同一参考信号解调的控制信息(例如,下行控制信息#A)和数据(例如,下行数据#A 2)所分别占用的两个资源集合(例如,资源集合#2与资源集合#1)之间需要满足规定的(时域或频域)位置关系。
可选地,在本申请实施例中,资源集合#2与资源集合#1在频域上的间隔需要小于或等于预设的阈值#1(即,第二阈值的一例),作为示例而非限定,该阈值#1可以是通信系统或协议规定的值,例如,该阈值#1可以是1个RB或RB组对应的频域资源的大小(例如,6个子载波)。
作为示例而非限定,例如,如图4所示,资源集合#2_1(即,资源集合#2的一例)占用的子载波与资源集合#1_1(即,资源集合#1的一例)占用的子载波可以相同(即,频域上的间隔为0的一例)。
再例如,如图4所示,资源集合#2_2(即,资源集合#2的另一例)占用的子载波与资源集合#1_1占用的子载波可以相邻(即,频域上的间隔为0的另一例)。
再例如,如图4所示,资源集合#2_3(即,资源集合#2的再一例)占用的子载波与资源集合#1_1占用的子载波可以相邻(即,频域上的间隔为0的一例)。
再例如,如图5所示,资源集合#2_4(即,资源集合#2的再一例)占用的子载波与资源集合#1_2(即,资源集合#1的另一例)占用的子载波可以相同(即,频域上的间隔为0的一例)。
应理解,以上图4或图5所列举的资源集合#2与资源集合#1之间的位置关系仅为示例性说明,本申请并未限定于此,例如,该资源集合#2占用的子载波与资源集合#1占用的子载波之间也可以间隔有一个或多个(小于或等于阈值#1)子载波。
可选地,在本申请实施例中,资源集合#2与资源集合#1在时域上的间隔需要小于或等于预设的阈值#2(即,第一阈值的一例),作为示例而非限定,该阈值#2可以是通信系统配置或预设置的值。配置是指需要网络设备给终端终端发送配置信息的,例如,该阈值#2可以是1个RB或RB组对应的时域资源的大小(例如,1或2个符号)。
作为示例而非限定,例如,如图4所示,资源集合#2_1或资源集合#2_3占用的符号与资源集合#1_1占用的符号可以相邻(即,频域上的间隔为0的一例)。
例如,如图4所示,资源集合#2_2占用的符号与资源集合#1_1占用的符号可以相同(即,频域上的间隔为0的另一例)。
再例如,如图5所示,资源集合#2_4占用的子载波与资源集合#1_2占用的符号可以相邻(即,频域上的间隔为0的另一例)。
应理解,以上列举的位置关系,仅为示例性说明,本申请并未限定于此。例如,当一个资源集合为RB或RB组时。可能存在尽管资源集合#2与资源集合#1之间满足上述位置关系,但是资源集合#1中用于承载控制信息#A和参考信号#A的时频资源组#1(例如,一个或多个REG)与资源集合#2中的部分时频资源组(以下,为了便于理解和说明,记作时频资源组#2)之间的(在频域上或时域上)的间隔较大,此情况下,如果基于参考信号#A对承载于时频资源组#2中的数据进行解调,则解调的成功率较低,可能导致传输的可靠性下降。
对此,在本申请实施例中,资源集合#1中用于承载控制信息#A和参考信号#A的时频资源组#1与资源集合#2中用于承载下行数据#A 2的时频资源组(即,第三时频资源组的一例,以下,为了便于理解和说明,记作:时频资源组#3)需要满足规定的(时域或频域)位置关系。
可选地,该位置关系可为:时频资源组#1与时频资源组#3在频域上的间隔需要小于或等于预设的阈值#3(即,第四阈值的一例)。作为示例而非限定,该阈值#3可以是通信系统或协议规定的值,例如,该阈值#3可以是1个RB或RB组对应的频域资源的大小(例如,6个子载波)。
或者,该位置关系可为:时频资源组#1与时频资源组#3在时域上的间隔需要小于或等于预设的阈值#4(即,第三阈值的一例)。作为示例而非限定,该阈值#4可以是通信系统或协议规定的值,例如,该阈值#4可以是1个RB或RB组对应的时域资源的大小(例如,1或2个符号)。
作为示例而非限定,例如,设用于解调下行数据的参考信号(以下,为了便于理解和区分,记作:参考信号#X)的序列长度(例如,在一个符号上的序列的长度)为t,其中,该参考信号#X的序列长度t可以根据用于承载该参考信号#X的时频资源(例如,PRB)的数量确定,例如,该长度t可以基于公式(1)确定。
设该用于承载该参考信号#X的(例如,连续的)时频资源为时频资源#0~时频资源#n(例如,该时频资源#0~时频资源#n对应一个符号),其中,该时频资源#0~时频资源#n中的(例如,连续的)时频资源#m~时频资源#k被配置为用于承载控制信息的CORESET,并且,设该时频资源#m~时频资源#k承载的用于解调控制信息的参考信号(以下,为了便于理解和区分,记作:参考信号#Y)的序列长度为u。
则,网络设备可以在时频资源#0~时频资源#m-1中,承载参考信号#X的序列中的前p个序列(或者说,参考信号#X的长度为t的序列中的第1个序列至第p个序列),其中,该p个序列的具体值可以与该时频资源#0~时频资源#m-1的大小相对应。
并且,网络设备可以不在时频资源#m~时频资源#k中承载参考信号#X的序列中自该p个序列之后的u个序列(或者说,参考信号#X的长度为t的序列中的第p+1个序列至第p+u个序列),并且,下行数据可以基于在时频资源#m~时频资源#k中承载的参考信号#Y进行解调。
并且,网络设备可以在时频资源#k~时频资源#n承载参考信号#X的序列中的后t-p-u个序列(或者说,参考信号#X的长度为t的序列中的第p+u+1个序列至第t个序列)。
即,在本申请实施例中,参考信号#X的长度为t的序列中,自第p+1个序列至第p+u个序列被跳过。
需要说明的是,在本申请实施例中,上述参考序列的长度可以指一个符号上的序列的长度,即,基于上述公式(1)产生的序列的长度是一个符号上的序列的长度,上述t的值可以是基于上述公式(1)产生的序列的长度。
或者,上述参考序列的长度可以指多个符号(例如,一个传输时间间隔TTI包括的多个符号)上的序列的长度,即,基于上述公式(1)产生的序列的长度是多个符号上的序列的长度,上述t的值可以是基于上述公式(1)产生的序列的长度中位于包括该CORESET的一个符号上的序列的长度。
如图4所示,在本申请实施例中,当同一个符号(例如,符号#1)上承载有下行数据和下行控制信息双方时,如果用于解调下行数据(例如,下行数据#A 2)的DMRS所需要映射在的时频资源(例如,RE#1)与用于解调下行控制信息(例如,下行控制信息#A)的DMRS所需要映射在的时频资源(例如,RE#1)相同时,则该RE#1上不映射解调下行数据的DMRS。此情况下,可以基于用于解调下行控制信息(例如,下行控制信息#A)的DMRS对该下行数据(例如,下行数据#A 2)进行解调。
并且,如图5所示,当同一个符号(例如,符号#2)上未承载下行控制信息,即,只承载下行数据(例如,下行数据#A 2)时,如果用于解调该下行数据(例如,下行数据#A 2)的DMRS需要映射在的时频资源(例如,RE#2)所对应的频率范围与用于解调下行控制信息(例如,下行控制信息#A)的DMRS所需要映射在的时频资源(例如,RE#3)所对应的频率范围相同,则在RE#2上不映射解调下行数据的DMRS。此情况下,可以基于用于解调下行控制信息(例如,下行控制信息#A)的DMRS对该下行数据(例如,下行数据#A 2)进行解调。
可选地,在本申请实施例中,网络设备#A可以基于预编码矩阵#A(即,第一预编码矩阵的一例)对参考信号#A和下行控制信息#A进行预编码处理。
并且,网络设备#A还可以基于该预编码矩阵#A对用于承载下行数据#A 2的资源集合 (即,资源集合#2)中承载的数据(包括下行数据#A 2)进行预编码处理。
并且,当资源集合#2中承载有参考信号(以下,为了便于理解和说明,记作:参考信号#A 2)时,网络设备#A还可以基于该预编码矩阵#A对参考信号#A 2进行预编码处理。
需要说明的是,该参考信号#A 2和参考信号#A 1的配置信息(具体的说,是配置信息所包括的各参数)可以相同也可以不同,本申请并未特别限定。
可选地,当资源集合#1占用一个或多个RB(或RB组)时,网络设备#A还可以根据预编码矩阵#A对RB组#A 1中承载的数据进行预编码处理,其中,RB组#A 1包括资源集合#1所占用的RB(或RB组)。
并且,当RB组#A 1中承载有参考信号(以下,为了便于理解和说明,记作:参考信号#A 3)时,网络设备#A还可以基于该预编码矩阵#A对参考信号#A 3进行预编码处理。
可选地,当资源集合#2占用一个或多个RB(或RB组)时,网络设备#A还可以根据预编码矩阵#A对RB组#A 2中承载的数据进行预编码处理,其中,RB组#A 2包括资源集合#2所占用的RB(或RB组)。
并且,当RB组#A 2中承载有参考信号(以下,为了便于理解和说明,记作:参考信号#A 4)时,网络设备#A还可以基于该预编码矩阵#A对参考信号#A 4进行预编码处理。
例如,如图6所示,在符号#A中,资源集合#1(占用1~6号RE)占用RB组#1和RB组#2(具体的说,是RB组#1和RB组#2中的部分RE),因此,可以网络设备#A可以基于预编码矩阵#A,对RB组#1和RB组#2中承载的参考信号和数据进行预编码处理。
再例如,如图6所示,在符号#A中,资源集合#1未占用RB组#3中的时频资源,并且,RB组#3中未承载需要基于参考信号#A进行解调的数据或控制信息,因此,可以网络设备#A可以不基于预编码矩阵#A,对RB组#3中承载的参考信号和数据进行预编码处理。
再例如,如图6所示,在符号#B中,资源集合#2(占用7~12号RE)占用RB组#4和RB组#5(具体的说,是RB组#4和RB组#5中的部分RE),或者说,RB组#4和RB组#5中承载有需要基于参考信号#A解调的数据,因此,可以网络设备#A可以基于预编码矩阵#A,对RB组#4和RB组#5中承载的参考信号和数据进行预编码处理。
再例如,如图6所示,在符号#B中,资源集合#6未占用RB组#3中的时频资源,并且,RB组#6中未承载需要基于参考信号#A进行解调的数据或控制信息,因此,可以网络设备#A可以不基于预编码矩阵#A,对RB组#6中承载的参考信号和数据进行预编码处理。
即,在本申请实施例中,如果下行控制信道在同一个或连续N个REG内,则下行控制信道以及其关联的DMRS要使用相同的预编码矩阵,其中,N可以为系统预设的值,例如,N可以为一个RB组包括的REG的数量。
并且,在本申请实施例中,在同一个或者连续M个RB内下行数据信道以及其关联的DMRS要使用相同的预编码矩阵,其中,M可以为系统预设的值,例如,N可以为一个RB组包括的RB的数量。
例如,如图6所示,资源集合#1中一个资源单元组REG内使用同一个预编码矩阵,在符号#B上,下行数据信道映射时,在一个RB组内,下行数据信道和其关联的DMRS使用同一个预编码矩阵。因为符号#B上资源单元5和6和资源集合#1在频域上位于相同 的位置,则PRB组4内所有RE使用和REG内的下行控制信道相同的预编码矩阵。同理,PRB组5内所有RE也使用和REG内的下行控制信道相同的预编码矩阵。
为便于理解本申请实施例,下面,对预编码处理在无线通信中的过程进行简单说明。下行物理信道处理过程的处理对象为码字,码字通常为经过编码(至少包括信道编码)的比特流。码字(code word)经过加扰(scrambling),生成加扰比特流。加扰比特流经过调制映射(modulation mapping),得到调制符号流。调制符号流经过层映射(layer mapping),被映射到多个层(layer),为便于区分和说明,在本申请实施例以中,可以将经层映射之后的符号流称为层映射空间层(或者称,层映射空间流、层映射符号流)。层映射空间层经过基于预编码矩阵的预编码(precoding)处理,得到多个预编码数据流(或者称,预编码符号流)。预编码符号流经过资源粒子(RE)映射,被映射到多个RE上。这些RE随后经过正交频分复用(orthogonal frequency division multiplexing,OFDM)调制,生成OFDM符号流。OFDM符号流随后通过天线端口(antenna port)发射出去。
根据本申请实施例的发送或接收参考信号的方法,通过基于相同的预编码矩阵对共用同一参考信号进行解调数据和控制信息使用同一预编码矩阵进行预编码处理,能够减小预编码处理的复杂度以及信道设计的复杂度,从而,能够减小网络设备的处理负担,提高通信效率。
方式2,下行数据#A 2基于参考信号#A’解调。
其中,该下行数据#A 2所承载于的资源(即,上述资源集合#2)可以与上述方式2中的相似,这里为了避免赘述,省略其详细说明。
设用于承载该参考信号#A’的时频资源组为时频资源组#1’。
则在本申请实施例中,该时频资源组#1’可以属于上述资源集合#1。
或者,该时频资源组#1’可以属于上述资源集合#2。
其中,当该时频资源组#1’可以属于上述资源集合#2时,下行数据#A 2和参考信号#A’的传输方式可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
以下,主要对该时频资源组#1’可以属于上述资源集合#1时的处理方式进行详细说明。
在本申请实施例中,参考信号#A’与参考信号#A使用的预编码矩阵可以相异,此情况下,为了确保通信的准确性和可靠性,优选不使参考信号#A’和参考信号#A对时频资源进行复用,或者说,优选不使时频资源组#1’与时频资源组#1存在交集。
但是,由于参考信号在一个资源集合中的配置图案是预先规定的,因此,存在时频资源组#1’与时频资源组#1在资源集合#1中存在重叠部分的情况,或者说,时频资源组#1’与时频资源组#1之间包括至少一个相同的时频资源。
此情况下,可以基于基于预设的偏移量,对用于解调下行数据(例如,下行数据#A 2)的DMRS所需要映射在的时频资源,例如,时频资源组#1’中的时频资源进行偏移,并在偏移后的时频资源上发送用于解调下行数据(例如,下行数据#A 2)的DMRS。
其中,该偏移量可以包括时域上的偏移量(例如,一个或多个符号),此情况下,例如,对用于解调下行数据的DMRS所需要映射在的时频资源进行偏移,可以包括在时域上将该时频资源向后偏移该偏移量(一个或多个符号),或者说,可以将在时域上与该时频资源之间的间隔与该偏移量对应的时频资源作为用于发送下行数据的DMRS的时频 资源。
或者,该偏移量可以包括频域上的偏移量(例如,一个或多个RE),此情况下,例如,对用于解调下行数据的DMRS所需要映射在的时频资源进行偏移,可以包括在频域上将该时频资源向高配(或低频)方向偏移该偏移量(一个或多个RE),或者说,可以将在频域上与该时频资源之间的间隔与该偏移量对应的时频资源作为用于发送下行数据的DMRS的时频资源。
并且,在本申请实施例中,“时频资源组#1’中的时频资源进行偏移”可以是指,对时频资源组#1’中的每个时频资源进行偏移。
或者,在本申请实施例中,“时频资源组#1’中的时频资源进行偏移”可以是指,对时频资源组#1’中的与时频资源组#1重叠的时频资源进行偏移。
可选地,在本申请实施例中,网络设备还可以向终端设备发送用于下行数据#A 2的传输方式(例如,上述方式1或上述方式2)的指示信息,即,该指示信息可以用于指示用于解调下行数据#A 2的参考信号和用于解调下行控制信息#A的参考信号是否相同。
从而,终端设备能够基于该指示信息,确定用于解调下行数据#A 2的参考信号。
在本申请实施例中,该预设的偏移量可以是通信系统或通信协议规定的,从而,网络设备和终端设备可以基于通信系统或通信协议的规定,确定该偏移量,并且,能够使网络设备和终端设备确定的偏移量一致。
或者,在本申请实施例中,该偏移量可以由网络设备确定,并通知终端设备。
其中,网络设备可以通过高层信令(如SIB或者RRC信令)半静态地指示该预设的偏移量。
或者,网络设备可以通过物理层信令(如下行控制信息DCI)动态地指示该预设的偏移量。可选地,在本申请实施例中,当时频资源组#1是资源集合#1中的部分时频资源组时,不失一般性,资源集合#1中除该时频资源组#1以外的一个或多个时频资源组为时频资源组#4(即,第二时频资源组的一例),则网络设备#A还可以通过时频资源组#4中的向终端设备#A发送下行数据#A 4和参考信号#A 4(即,第二解调参考信号的一例)。其中,下行数据#A 4基于参考信号#A 4解调。
作为示例而非限定,如图7示所示,该参考信号#A 4在时频资源集合#1中使用的配置信息可以与参考信号#A 1在时频资源集合#1中使用的配置信息相同。
或者,作为示例而非限定,如图8示所示,该参考信号#A 4在时频资源集合#1中使用的配置信息可以与参考信号#A 1在时频资源集合#1中使用的配置信息不同。
具体的说,在本申请实施例中,网络设备#A可以为终端设备#A配置用于传输控制信息(例如,控制信息#A)的资源集合(即,CORESET,例如,资源集合#1),并且,网络设备#A可以向终端设备#A发送配置信息#A,该配置信息#A可以包括用于指示该资源集合#1在时域上占用的资源(例如,符号)的信息#A_1,并且,该配置信息#A可以包括用于指示该资源集合#1在频域上占用的资源(例如,子载波)的信息#A_2。应理解,以上列举的配置信息#A包括的信息(或者说,指示的内容)仅为示例性说明,本申请并未限定于此,例如,配置信息#A还可以用于指示资源集合#1占用的RE、REG或PRB等。
另外,作为示例而非限定,在本申请实施例中,该配置信息#A还可以包括上述配置信息#A的指示信息。
并且,在本申请实施例中,网络设备#A具体发送下行控制信息时,可能存在资源集合#1中有剩余资源的情况,从而,网络设备#A可以使用该剩余资源发送数据。
例如,网络设备#A在资源集合#1中的剩余资源上发送下行数据时,用于解调该数据的DMRS的配置信息可以与用于解调下行控制信息的DMRS的配置信息相同。
或者,网络设备#A在资源集合#1中的剩余资源上发送下行数据时,用于解调该数据的DMRS的配置信息可以与用于解调下行控制信息的DMRS的配置信息不同。
另外,作为示例而非限定,在本申请实施例中,资源集合#1中承载的参考信号、下行控制信息和数据可以是被基于相同的预编码矩阵进行预编码处理的。
如图7所示,资源集合#1在时域上占用符号#α,并且,网络设备#A发送给终端设备#A的数据(例如,控制信息#A调度的数据)占用符号#β。当资源集合#1内有剩余资源用于发送数据时,在符号#α上,在资源集合#1内发送的下行数据关联的DMRS和控制信息#A关联的DMRS相同(具体地说,是参考信号的配置信息相同)。从而,能够降低终端信道估计的复杂度
如图8所示,在符号#α上资源集合#1内发送的下行数据关联的DMRS和符号#β上发送的下行数据关联的DMRS相同。从而能够减低DMRS的密度。
可选地,网络设备#A还可以向终端设备#A发送指示信息#A,该指示信息#A用于指示网络设备#A使用资源集合#1的剩余资源发送数据时,该数据关联的DMRS的配置信息,或者说,该指示信息#A用于指示该数据关联的DMRS是使用控制信息关联的DMRS,还是使用符号#β上数据信道关联的DMRS。
从而,能够实现DMRS配置信息的灵活使用,例如,如果资源集合#1中的剩余资源较少,则可以使剩余资源上承载的数据关联的DMRS使用控制信息关联的DMRS的配置信息;或者,如果资源集合#1中的剩余资源较多,则可以使剩余资源上承载的数据关联的DMRS使用符号#β上承载的数据关联的DMRS的配置信息。
另外,在本申请实施例中,一个控制信息关联的DMRS可以是指:该控制信息关联的DMRS用于解调该控制信息。
类似的,一个数据关联的DMRS可以是指:该数据关联的DMRS用于解调该数据。
需要说明的是,参考信号#A 4也可以对应多种配置信息,并且,参考信号#A 4的多种配置信息的设置和使用方式可以与上述参考信号#A 4相似,这里,为了避免赘述,省略其详细说明,并且,参考信号#A 4在资源集合#1使用的配置信息可以是上述配置信息#A,或者,参考信号#A 4在资源集合#1使用的配置信息可以网络设备从参考信号#A 4对应多种配置信息是中确定的与该配置信息#A相异的配置信息。
根据本申请实施例的发送和接收参考信号的方法,通过使用同一资源集合发送控制信息和下行数据,能够提高资源的利用效率,进而提高通信效率。
下面,结合图9,以网络设备#B(即,网络设备的另一例)与终端设备#B(即,终端设备的另一例)之间传输参考信号#B(即,第一解调参考信号的一例)的过程为例,对本申请实施例的发送和接收参考信号的方法300进行详细说明,图9是本申请实施例的发送和接收参考信号的方法300的示意性交互图。在适用该方法300的通信系统(例如,上述通信系统100)中,可以存在至少两种类型的参考信号。
作为示例而非限定,在本申请实施例中,参考信号可以用于信道测量,进而用于解 调,例如,本申请实施例中的参考信号可以包括DMRS。
该至少两种类型的参考信号包括:用于解调控制信息(或者说,控制信道)的参考信息号(即,参考信号#1),并且,作为示例而非限定,该控制信息可以包括下行控制信息,该控制信道可以包括物理下行控制信道。
并且,该至少两种类型的参考信号包括:用于解调数据(或者说,数据信道)的参考信息号(即,参考信号#2),并且,作为示例而非限定,该数据可以包括下行数据,该数据信道可以包括物理下行数据信道。
在本申请实施例中,该参考信号#1和该参考信号#2的配置信息相异。
在本申请实施例中,该参考信号#1可以具有一种配置信息,并且,该参考信号#1可以具有一种配置信息。
并且,除了每种参考信号仅对应一种配置信息以外,在方法300中参考信号的配置信息的定义和相关描述可以与上述方法200中关于“配置信息”的描述类似,例如,方法300中配置信息包括的参数可以与方法200中描述的配置信息所包括的参数相似,这里,为了避免赘述,省略其详细说明。
这里,该参考信号#1和该参考信号#2的配置信息相异可以是指,该参考信号#1的配置信息和该参考信号#2的配置信息之间至少存在一种相异的参数。
在S310,网络设备#B可以通过资源集合#A(即,第一资源集合的一例),向终端设备#B发送参考信号#B,并且,网络设备#B可以向终端设备#B发送需要通过该参考信号#B解调的下行控制信息#B(即,第一下行控制信息的一例)。其中,该资源集合#A的确定方法和结构可以与上述方法200中的资源集合#1的确定方法和结构相似,这里,为了避免赘述,省略其详细说明。
并且,在S320,网络设备#B可以通过资源集合#B,向终端设备#B发送下行数据#B(即,第二下行数据的一例),其中,该下行数据#B基于参考信号#B解调。其中,该资源集合#B的确定方法和结构可以与上述方法200中的资源集合#2的确定方法和结构相似,这里,为了避免赘述,省略其详细说明。
并且,在本申请实施例中,该资源集合#B与资源集合#A之间需要满足预设的(频域或时域上)的位置关系,这里该资源集合#B与资源集合#A之间需要满足的位置关系可以与上述该资源集合#2与资源集合#1之间需要满足的位置关系相似,这里,为了避免赘述,省略其详细说明。
可选地,设该参考信号#B和该下行控制信息#B承载于资源集合#A中的时频资源组#A,设该下行数据#B承载于资源集合#B中的时频资源组#B,则该时频资源组#A与时频资源组#B之间需要满足预设的(频域或时域上)的位置关系,这里该时频资源组#A与时频资源组#B之间需要满足的位置关系可以与上述该时频资源组#1与时频资源组#3之间需要满足的位置关系相似,这里,为了避免赘述,省略其详细说明。
可选地,在本申请实施例中,网络设备#B可以基于预编码矩阵#B(即,第一预编码矩阵的另一例)对参考信号#B和下行控制信息#B进行预编码处理。
并且,网络设备#A还可以基于该预编码矩阵#B对用于承载下行数据#B的资源集合(即,资源集合#B)中承载的数据进行预编码处理。
并且,当资源集合#B中承载有参考信号时,网络设备#B还可以基于该预编码矩阵 #B对该参考信号进行预编码处理。
可选地,当资源集合#A(或资源集合#B)占用一个或多个RB(或RB组)时,网络设备#B还可以根据预编码矩阵#B对该RB(或RB组)中承载的数据进行预编码处理。
并且,当上述RB(或RB组)承载有参考信号时,网络设备#B还可以基于该预编码矩阵#B对参考信号进行预编码处理。
根据本申请实施例的发送或接收参考信号的方法,通过基于相同的预编码矩阵对共用同一参考信号进行解调数据和控制信息使用同一预编码矩阵进行预编码处理,能够减小预编码处理的复杂度以及信道涉及的复杂度,从而,能够减小网络设备的处理负担,提高通信效率。
可选地,在本申请实施例中,该参考信号#B和下行控制信息#B可以是通过至少一个时频资源组#A发送的,并且,当该时频资源组#A是资源集合#A中的部分时频资源组时,不失一般性,资源集合#A中除该时频资源组#A以外的一个或多个时频资源组为时频资源组#B(即,第二时频资源组的一例),则网络设备#A还可以通过时频资源组#B中的向终端设备#B发送下行数据#C和参考信号#C(即,第二解调参考信号的一例)。其中,下行数据#C基于参考信号#C解调。
该参考信号#C配置信息可以与参考信号#B的配置信息相同。
或者,该参考信号#C的配置信息可以与参考信号#B的配置信息不同。
这里,除参考信号#C和参考信号#B均可以仅对应一种配置信息以外,该参考信号#C和参考信号#B之间的关系可以与上述方法200中描述的该参考信号#A 4与参考信号#A 1之间的关系类似,这里,为了避免赘述,省略其详细说明。
在方法300中,除网络设备无需确定配置信息并向终端设备下发配置信息的第一指示信息外,其他过程可以与上述方法200中描述的过程相似,这里,为了避免赘述,省略其详细说明。
根据本申请实施例的发送和接收参考信号的方法,通过使用同一资源集合发送控制信息和下行数据,能够提高资源的利用效率,进而提高通信效率。
下面,结合图10,以网络设备#C(即,网络设备的另一例)与终端设备#C(即,终端设备的另一例)之间传输参考信号#α(即,第一解调参考信号的一例)的过程为例,对本申请实施例的发送和接收参考信号的方法400进行详细说明,图10是本申请实施例的发送和接收参考信号的方法400的示意性交互图。在适用该方法400的通信系统(例如,上述通信系统100)中,可以存在至少两种类型的参考信号。
作为示例而非限定,在本申请实施例中,参考信号可以用于信道测量,进而用于解调,例如,本申请实施例中的参考信号可以包括DMRS。
该至少两种类型的参考信号包括:用于解调控制信息(或者说,控制信道)的参考信息号(即,参考信号#1),并且,作为示例而非限定,该控制信息可以包括下行控制信息,该控制信道可以包括物理下行控制信道。
并且,该至少两种类型的参考信号包括:用于解调数据(或者说,数据信道)的参考信息号(即,参考信号#2),并且,作为示例而非限定,该数据可以包括下行数据,该数据信道可以包括物理下行数据信道。
在本申请实施例中,该参考信号#1和该参考信号#2的配置信息相异。
在本申请实施例中,该参考信号#1可以具有一种配置信息,并且,该参考信号#1可以具有一种配置信息。
并且,除了每种参考信号仅对应一种配置信息以外,在方法400中参考信号的配置信息的定义和相关描述可以与上述方法200中关于“配置信息”的描述类似,例如,方法400中配置信息包括的参数可以与方法200中描述的配置信息所包括的参数相似,这里,为了避免赘述,省略其详细说明。
这里,该参考信号#1和该参考信号#2的配置信息相异可以是指,该参考信号#1的配置信息和该参考信号#2的配置信息之间至少存在一种相异的参数。
在S410,网络设备#C可以通过资源集合#α(即,第一资源集合的一例),向终端设备#C发送参考信号#α,并且,网络设备#C可以向终端设备#C发送需要通过该参考信号#α解调的下行控制信息#α(即,第一下行控制信息的一例)。其中,该资源集合#α的确定方法和结构可以与上述方法200中的资源集合#1的确定方法和结构相似,这里,为了避免赘述,省略其详细说明。
并且,在本申请实施例中,该参考信号#α和下行控制信息#α可以是通过至少一个时频资源组#α发送的,并且,当该时频资源组#α是资源集合#α中的部分时频资源组时,不失一般性,设资源集合#α中除该时频资源组#α以外的一个或多个时频资源组为时频资源组#β(即,第二时频资源组的一例),则网络设备#C还可以通过时频资源组#β中的向终端设备#C发送下行数据#β和参考信号#β(即,第二解调参考信号的一例)。其中,下行数据#β基于参考信号#β解调。
该参考信号#β配置信息可以与参考信号#α的配置信息相同。
或者,该参考信号#β配置信息可以与参考信号#α的配置信息不同。
这里,除参考信号#α和参考信号#β均可以仅对应一种配置信息以外,该参考信号#α和参考信号#β之间的关系可以与上述方法200中描述的该参考信号#A 4与参考信号#A 1之间的关系类似,这里,为了避免赘述,省略其详细说明。
在方法400中,除网络设备无需确定配置信息并向终端设备下发配置信息的第一指示信息外,其他过程可以与上述方法200中描述的过程相似,这里,为了避免赘述,省略其详细说明。
根据本申请实施例的发送和接收参考信号的方法,通过使用同一资源集合发送控制信息和下行数据,能够提高资源的利用效率,进而提高通信效率。
下面,结合图11,以网络设备#D(即,网络设备的另一例)与终端设备#D(即,终端设备的另一例)之间传输参考信号#D(即,第一解调参考信号的一例)和下行信息#E的过程为例,对本申请实施例的发送和接收参考信号的方法700进行详细说明,图11是本申请实施例的发送和接收参考信号的方法700的示意性交互图。在适用该方法700的通信系统(例如,上述通信系统100)中,可以存在至少两种类型的参考信号。
作为示例而非限定,在本申请实施例中,参考信号可以用于信道测量,进而用于解调,例如,本申请实施例中的参考信号可以包括DMRS。
该至少两种类型的参考信号包括:用于解调控制信息(或者说,控制信道)的参考信息号(即,参考信号#1),并且,作为示例而非限定,该控制信息可以包括下行控制信息,该控制信道可以包括物理下行控制信道。
并且,该至少两种类型的参考信号包括:用于解调数据(或者说,数据信道)的参考信息号(即,参考信号#2),并且,作为示例而非限定,该数据可以包括下行数据,该数据信道可以包括物理下行数据信道。
在本申请实施例中,该参考信号#1和该参考信号#2的配置信息相异。
在本申请实施例中,该参考信号#1可以具有一种配置信息,并且,该参考信号#1可以具有一种配置信息。
并且,除了每种参考信号仅对应一种配置信息以外,在方法700中参考信号的配置信息的定义和相关描述可以与上述方法200中关于“配置信息”的描述类似,例如,方法700中配置信息包括的参数可以与方法200中描述的配置信息所包括的参数相似,这里,为了避免赘述,省略其详细说明。
这里,该参考信号#1和该参考信号#2的配置信息相异可以是指,该参考信号#1的配置信息和该参考信号#2的配置信息之间至少存在一种相异的参数。
相应地,在本申请实施例中,该下行信息#E可以为下行控制信息或下行数据。
在S710,网络设备#D可以确定资源集合#D。
其中,资源集合#D可以包括时频资源组#D和时频资源组#E,其中,时频资源组#D为预留资源,时频资源组#E是基于预先配置的配置图案确定的资源集合#D中用于承载参考信号#E的时频资源,其中,参考信号#E用于解调下行信息#E。
其中,预留时频资源可以是指该终端设备确定为不承载参考信号的时频资源。
可选地,在本申请实施例中,网络设备#D可以向终端设备#D发送指示信息Y,该指示信息Y用于指示该时频资源组#D中的时频资源为预留时频资源。
从而,终端设备可以基于该指示信息Y确定该时频资源组#D中的时频资源为预留时频资源,进而判定该时频资源组#D与时频资源组#E是否具有重叠部分。
其中,该资源集合#D的确定方法和结构可以与上述方法200中的资源集合#1的确定方法和结构相似,这里,为了避免赘述,省略其详细说明。
由于时频资源#D为预留资源,因此,优选使时频资源组#D和时频资源组#E的交集为空。
但是,由于参考信号的配置图案是预先规定的,因此,存在时频资源组#E与时频资源组#D在资源集合#D中存在重叠部分的情况。
此情况下,网络设备#D可以基于基于预设的偏移量,对时频资源组#E中的时频资源进行偏移。
在S720,网络设备#D可以在偏移后的时频资源(以下,为了便于理解和区分,记作时频资源组#F)上发送参考信号#E。
其中,该偏移量可以包括时域上的偏移量(例如,一个或多个符号),此情况下,“对时频资源组#E中的时频资源进行偏移”可以包括在时域上将该时频资源向后偏移该偏移量(一个或多个符号),或者说,可以将在时域上与该时频资源之间的间隔与该偏移量对应的时频资源作为时频资源组#F。
或者,该偏移量可以包括频域上的偏移量(例如,一个或多个RE),此情况下,“对时频资源组#E中的时频资源进行偏移”可以包括在频域上将该时频资源向高配(或低频)方向偏移该偏移量(一个或多个RE),或者说,可以将在频域上与该时频资源之间的间 隔与该偏移量对应的时频资源作为时频资源组#F。
并且,在本申请实施例中,“对时频资源组#E中的时频资源进行偏移”可以是指,对时频资源组#E中的每个时频资源进行偏移。即,此情况下,时频资源组#F中的每个时频资源均是由时频资源组#E中的时频资源偏移后得到。
或者,在本申请实施例中,“对时频资源组#E中的时频资源进行偏移”可以是指,仅对时频资源组#E中的与时频资源组#D重叠的时频资源进行偏移,即,此情况下,时频资源组#F中的时频资源包括时频资源组#E中不与时频资源组#D重叠的时频资源,并且,时频资源组#F中的时频资源包括时频资源组#E中与时频资源组#D重叠的时频资源经过偏移后得到的时频资源。
在本申请实施例中,该预设的偏移量可以是通信系统或通信协议规定的,从而,网络设备#D和终端设备#D可以基于通信系统或通信协议的规定,确定该偏移量,并且,能够使网络设备#D和终端设备#D确定的偏移量一致。或者,在本申请实施例中,该偏移量可以由网络设备#D确定,并通知终端设备#D。
其中,网络设备可以通过高层信令(如SIB或者RRC信令)半静态地指示该预设的偏移量。
或者,网络设备可以通过通过物理层信令(如下行控制信息DCI)动态地指示该预设的偏移量。
并且,终端设备#D确定资源集合#D、资源集合#E和时频资源组#F的方法和过程可以与网络设备#D的处理相似,这里,为了避免赘述,省略其详细说明。
图12示出了本申请实施例的发送参考信号的装置500的示意性框图,该发送参考信号的装置500可以对应(例如,可以配置于或本身即为)上述方法200、300、400或700描述的网络设备,并且,发送参考信号的装置500中各模块或单元分别用于执行上述方法200、300、400或700中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置500可以为网络设备,此情况下,该装置500可以包括:处理器和收发器,处理器和收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图12所示的装置500中的收发单元可以对应该收发器,图12所示的装置500中的处理单元可以对应该处理器。
在本申请实施例中,该装置500可以为安装在网络设备中的芯片(或者说,芯片系统),此情况下,该装置500可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与网络设备的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图12所示的装置500中的收发单元可以对应该输入输出接口,图12所示的装置500中的处理单元可以对应该处理器。
图13示出了本申请实施例的接收参考信号的装置600的示意性框图,该接收参考信号的装置600可以对应(例如,可以配置用于实现)上述方法200、300、400或700描述 的终端设备,并且,接收参考信号的装置600中各模块或单元分别用于执行上述方法200、300、400或700中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置600可以为终端设备,此情况下,该装置600可以包括:处理器和收发器,处理器和收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图13所示的装置600中的收发单元可以对应该收发器,图13所示的装置600中的处理单元可以对应该处理器。
在本申请实施例中,该装置600可以为安装在网络设备中的芯片(或者说,芯片系统),此情况下,该装置600可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与网络设备的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图13所示的装置600中的收发单元可以对应输入输入接口,图12所示的装置600中的处理单元可以对应该处理器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人 计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (27)

  1. 一种发送参考信号的方法,其特征在于,所述方法包括:
    确定资源集合,所述资源集合用于承载解调参考信号和下行信息,所述下行信息为下行控制信息或者下行数据,所述解调参考信号用于解调所述下行信息,所述资源集合包括第一时频资源组和第二时频资源组,所述第一时频资源组为预留时频资源,所述第二时频资源组用于承载所述解调参考信号;
    在所述第一时频资源组与所述第二时频资源组具有重叠部分时,根据所述第二时频资源组的位置和预设的偏移量,确定第三时频资源组;
    通过所述第三时频资源组,发送所述解调参考信号。
  2. 根据权利要求1所述的方法,其特征在于,在根据所述第二时频资源组的位置和预设的偏移量,确定第三时频资源组之前,所述方法还包括:
    向所述终端设备发送指示信息,所述指示信息用于指示所述第一时频资源组为预留时频资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述偏移量是通信协议预定义的;或
    所述偏移量是通信协议预定义的是由网络设备确定并通知终端设备的。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述在所述第一时频资源组与所述第二时频资源组具有重叠部分时,根据所述第二时频资源组的位置和预设的偏移量,确定第三时频资源组,包括:
    在所述第一时频资源组与所述第二时频资源组包括至少一个相同的资源单元RE时,根据所述第二时频资源组的位置和预设的偏移量,确定第三时频资源组。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述偏移量包括N个时间单元,N为正整数,N是通信协议规定的,或N是网络设备确定并通知终端设备的。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述根据所述第二时频资源组的位置和预设的偏移量,确定第三时频资源组,包括:
    将所述第二时频资源组中的每个RE按所述偏移量偏移后,作为所述第三时频资源组中的RE。
  7. 一种接收参考信号的方法,其特征在于,所述方法包括:
    确定资源集合,所述资源集合用于承载解调参考信号和下行信息,所述下行信息为下行控制信息或者下行数据,所述解调参考信号用于解调所述下行信息,所述资源集合包括第一时频资源组和第二时频资源组,所述第一时频资源组为预留时频资源,所述第二时频资源组用于承载所述解调参考信号;
    在所述第一时频资源组与所述第二时频资源组具有重叠部分时,根据所述第二时频资源组的位置和预设的偏移量,确定第三时频资源组;
    通过所述第三时频资源组,接收所述解调参考信号。
  8. 根据权利要求7所述的方法,其特征在于,在根据所述第二时频资源组的位置和预设的偏移量,确定第三时频资源组之前,所述方法还包括:
    接收网络设备发送的指示信息,所述指示信息用于指示所述第一时频资源组为预留时频资源。
  9. 根据权利要求7或8所述的方法,其特征在于,所述偏移量是通信协议预定义的;或
    所述偏移量是通信协议预定义的是由网络设备确定并通知终端设备的。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述在所述第一时频资源组与所述第二时频资源组具有重叠部分时,根据所述第二时频资源组的位置和预设的偏移量,确定第三时频资源组,包括:
    在所述第一时频资源组与所述第二时频资源组包括至少一个相同的资源单元RE时,根据所述第二时频资源组的位置和预设的偏移量,确定第三时频资源组。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,所述偏移量包括N个时间单元,N为正整数,N是通信协议规定的,或N是网络设备确定并通知终端设备的。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述根据所述第二时频资源组的位置和预设的偏移量,确定第三时频资源组,包括:
    将所述第二时频资源组中的每个RE按所述偏移量偏移后,作为所述第三时频资源组中的RE。
  13. 一种发送参考信号的装置,其特征在于,所述装置包括:
    处理单元,用于确定资源集合,所述资源集合用于承载解调参考信号和下行信息,所述下行信息为下行控制信息或者下行数据,所述解调参考信号用于解调所述下行信息,所述资源集合包括第一时频资源组和第二时频资源组,所述第一时频资源组为预留时频资源,所述第二时频资源组用于承载所述解调参考信号;在所述第一时频资源组与所述第二时频资源组具有重叠部分时,根据所述第二时频资源组的位置和预设的偏移量,确定第三时频资源组;
    通信单元,用于通过所述第三时频资源组,发送所述解调参考信号。
  14. 根据权利要求13所述的装置,其特征在于,所述通信单元还用于向所述终端设备发送指示信息,所述指示信息用于指示所述第一时频资源组为预留时频资源。
  15. 根据权利要求13或14所述的装置,其特征在于,所述偏移量是通信协议预定义的;或
    所述偏移量是通信协议预定义的是由网络设备确定并通知终端设备的。
  16. 根据权利要求13至15中任一项所述的装置,其特征在于,所述处理单元具体用于在所述第一时频资源组与所述第二时频资源组包括至少一个相同的资源单元RE时,根据所述第二时频资源组的位置和预设的偏移量,确定第三时频资源组。
  17. 根据权利要求13至16中任一项所述的装置,其特征在于,所述偏移量包括N个时间单元,N为正整数,N是通信协议规定的,或N是网络设备确定并通知终端设备的。
  18. 根据权利要求13至17中任一项所述的装置,其特征在于,所述处理单元具体用于将所述第二时频资源组中的每个RE按所述偏移量偏移后,作为所述第三时频资源组中的RE。
  19. 一种接收参考信号的装置,其特征在于,所述装置包括:
    处理单元,用于确定资源集合,所述资源集合用于承载解调参考信号和下行信息, 所述下行信息为下行控制信息或者下行数据,所述解调参考信号用于解调所述下行信息,所述资源集合包括第一时频资源组和第二时频资源组,所述第一时频资源组为预留时频资源,所述第二时频资源组用于承载所述解调参考信号;在所述第一时频资源组与所述第二时频资源组具有重叠部分时,根据所述第二时频资源组的位置和预设的偏移量,确定第三时频资源组;
    通信单元,用于通过所述第三时频资源组,接收所述解调参考信号。
  20. 根据权利要求19所述的装置,其特征在于,所述通信单元还用于接收网络设备发送的指示信息,所述指示信息用于指示所述第一时频资源组为预留时频资源。
  21. 根据权利要求19或20所述的装置,其特征在于,所述偏移量是通信协议预定义的;或
    所述偏移量是通信协议预定义的是由网络设备确定并通知终端设备的。
  22. 根据权利要求19至21中任一项所述的装置,其特征在于,所述处理单元具体用于在所述第一时频资源组与所述第二时频资源组包括至少一个相同的资源单元RE时,根据所述第二时频资源组的位置和预设的偏移量,确定第三时频资源组。
  23. 根据权利要求19至22中任一项所述的装置,其特征在于,所述偏移量包括N个时间单元,N为正整数,N是通信协议规定的,或N是网络设备确定并通知终端设备的。
  24. 根据权利要求19至23中任一项所述的装置,其特征在于,所述处理单元具体用于将所述第二时频资源组中的每个RE按所述偏移量偏移后,作为所述第三时频资源组中的RE。
  25. 一种通信装置,其特征在于,包括:处理器,用于执行存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至12中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至12中任意一项所述的方法。
  27. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行如权利要求1至12中任意一项所述的方法。
PCT/CN2018/091447 2017-06-16 2018-06-15 发送参考信号的方法、接收参考信号的方法和通信装置 WO2018228522A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019569352A JP7246327B2 (ja) 2017-06-16 2018-06-15 参照信号送信方法、参照信号受信方法及び通信装置
EP18816854.6A EP3627732A4 (en) 2017-06-16 2018-06-15 METHOD FOR SENDING REFERENCE SIGNALS, METHOD FOR RECEIVING REFERENCE SIGNALS, AND COMMUNICATION DEVICE
BR112019026840-5A BR112019026840A2 (pt) 2017-06-16 2018-06-15 método de transmissão de sinal de referência, método de recepção de sinal de referência e aparelho de comunicações
US16/712,566 US11239970B2 (en) 2017-06-16 2019-12-12 Reference signal sending method, reference signal receiving method, and communications apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710459603 2017-06-16
CN201710459603.1 2017-06-16
CN201710910063.4A CN109150387B (zh) 2017-06-16 2017-09-29 发送参考信号的方法、接收参考信号的方法和通信装置
CN201710910063.4 2017-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/712,566 Continuation US11239970B2 (en) 2017-06-16 2019-12-12 Reference signal sending method, reference signal receiving method, and communications apparatus

Publications (1)

Publication Number Publication Date
WO2018228522A1 true WO2018228522A1 (zh) 2018-12-20

Family

ID=64658965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091447 WO2018228522A1 (zh) 2017-06-16 2018-06-15 发送参考信号的方法、接收参考信号的方法和通信装置

Country Status (1)

Country Link
WO (1) WO2018228522A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114125694A (zh) * 2020-08-31 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114616851A (zh) * 2019-10-29 2022-06-10 华为技术有限公司 一种测量方法及装置
CN117178510A (zh) * 2021-03-31 2023-12-05 华为技术有限公司 一种资源调度方法、通信装置与终端设备
WO2024065305A1 (zh) * 2022-09-28 2024-04-04 华为技术有限公司 一种通信方法、装置、可读存储介质和芯片系统
US12063573B2 (en) 2020-08-12 2024-08-13 Shanghai Langbo Communication Technology Company Limited Method and device in communication nodes for wireless communication
WO2024208162A1 (zh) * 2023-04-07 2024-10-10 展讯通信(上海)有限公司 符号传输方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711253A (zh) * 2012-03-21 2012-10-03 电信科学技术研究院 E-pdcch的资源映射方法及装置
CN103702430A (zh) * 2013-12-28 2014-04-02 杨学志 一种多级软时频复用和资源分配的方法、设备和系统
CN103841649A (zh) * 2014-03-19 2014-06-04 宇龙计算机通信科技(深圳)有限公司 终端直连通信方法和终端直连通信系统
CN106793146A (zh) * 2016-11-03 2017-05-31 展讯通信(上海)有限公司 用户终端及其随机接入的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711253A (zh) * 2012-03-21 2012-10-03 电信科学技术研究院 E-pdcch的资源映射方法及装置
CN103702430A (zh) * 2013-12-28 2014-04-02 杨学志 一种多级软时频复用和资源分配的方法、设备和系统
CN103841649A (zh) * 2014-03-19 2014-06-04 宇龙计算机通信科技(深圳)有限公司 终端直连通信方法和终端直连通信系统
CN106793146A (zh) * 2016-11-03 2017-05-31 展讯通信(上海)有限公司 用户终端及其随机接入的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3627732A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114616851A (zh) * 2019-10-29 2022-06-10 华为技术有限公司 一种测量方法及装置
US12063573B2 (en) 2020-08-12 2024-08-13 Shanghai Langbo Communication Technology Company Limited Method and device in communication nodes for wireless communication
CN114125694A (zh) * 2020-08-31 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN117178510A (zh) * 2021-03-31 2023-12-05 华为技术有限公司 一种资源调度方法、通信装置与终端设备
CN117178510B (zh) * 2021-03-31 2024-07-19 华为技术有限公司 一种资源调度方法、通信装置与终端设备
WO2024065305A1 (zh) * 2022-09-28 2024-04-04 华为技术有限公司 一种通信方法、装置、可读存储介质和芯片系统
WO2024208162A1 (zh) * 2023-04-07 2024-10-10 展讯通信(上海)有限公司 符号传输方法及通信装置

Similar Documents

Publication Publication Date Title
CN109150387B (zh) 发送参考信号的方法、接收参考信号的方法和通信装置
US12022454B2 (en) Integrated circuit
US9860732B2 (en) User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
WO2018082544A1 (zh) 无线通信的方法和装置
WO2018228522A1 (zh) 发送参考信号的方法、接收参考信号的方法和通信装置
EP3133848B1 (en) User equipment for packet based device-to-device (d2d) discovery in an lte network
EP3369229B1 (en) Systems and methods for multi-physical structure system
US20220368501A1 (en) Information transmission method, terminal device, and network device
US10681587B2 (en) Method and apparatus for wireless communication
WO2017000291A1 (zh) 传输上行数据的方法和设备
WO2018027982A1 (zh) 发送参考信号的方法和装置及接收参考信号的方法和装置
WO2019052334A1 (zh) 一种通信方法及设备
WO2018006752A1 (zh) 无线通信的方法和装置
WO2020063275A1 (zh) 一种信息指示方法及装置
EP4187830A1 (en) Methods for sending and receiving phase tracking reference signal, and communication device
EP3589042B1 (en) Information sending method and apparatus and information receiving method and apparatus
CN111147204B (zh) 通信方法、装置及存储介质
CN116458236A (zh) 重复传输数据信道的方法和设备
WO2024000591A1 (zh) 无线通信方法和通信设备
WO2023287537A1 (en) Secret key verification in wireless communication
CN115883039A (zh) 一种解调参考信号dmrs端口的指示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569352

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019026840

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018816854

Country of ref document: EP

Effective date: 20191219

ENP Entry into the national phase

Ref document number: 112019026840

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191216