[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018228253A1 - 一种发送缓存状态报告的方法及用户设备 - Google Patents

一种发送缓存状态报告的方法及用户设备 Download PDF

Info

Publication number
WO2018228253A1
WO2018228253A1 PCT/CN2018/090133 CN2018090133W WO2018228253A1 WO 2018228253 A1 WO2018228253 A1 WO 2018228253A1 CN 2018090133 W CN2018090133 W CN 2018090133W WO 2018228253 A1 WO2018228253 A1 WO 2018228253A1
Authority
WO
WIPO (PCT)
Prior art keywords
bsr
lcg
cache index
value
lcgs
Prior art date
Application number
PCT/CN2018/090133
Other languages
English (en)
French (fr)
Inventor
李宏
韩锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019569836A priority Critical patent/JP2020523945A/ja
Priority to AU2018284726A priority patent/AU2018284726B2/en
Priority to RU2020101215A priority patent/RU2020101215A/ru
Priority to EP18818960.9A priority patent/EP3512237B1/en
Priority to KR1020207001458A priority patent/KR20200015944A/ko
Priority to BR112019026607-0A priority patent/BR112019026607A2/pt
Publication of WO2018228253A1 publication Critical patent/WO2018228253A1/zh
Priority to US16/410,865 priority patent/US10887790B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method for transmitting a buffer status report and a user equipment.
  • LTE Long Term Evolution
  • SR uplink scheduling request
  • BSR Buffer Status Report
  • the UE may establish a large number of radio bearers.
  • Each radio bearer corresponds to one logical channel (LC). If the UE reports a BSR for each logical channel, a large amount of signaling is generated. Overhead.
  • the concept of a logical channel group (LCG) is introduced in the LTE communication, and each logical channel is assigned to one of the four LCGs of the UE, and the UE reports the BSR based on the LCG instead of A BSR is reported for each logical channel.
  • LCG logical channel group
  • BSR has two formats in LTE communication:
  • Short BSR Short BSR
  • Trnated BSR truncated BSR
  • the BSR occupies 1 byte, including the 2G-bit LCG identity (ID) and The 6-bit LCG cache index (also known as the Buffer Size), which is used to characterize the upstream buffer size of the LCG.
  • Long BSR Long BSR
  • the long BSR does not need to include the LCG ID, but encodes a 6-bit cache index from LCG ID0 to LCG ID3, where One cache index is used to characterize the upstream buffer of LCG ID0, the second cache index is used to characterize the upstream buffer of LCG ID1, and so on.
  • the UE may establish more radio bearers, and the UE will use more LCs, which in turn requires more LCGs.
  • the above-mentioned BSRs in the prior art are only applicable to the UE configuring 4 LCGs.
  • the cache When the cache is reported, it cannot meet the cache reporting requirements when the UE configures more LCGs.
  • the present invention provides a method for transmitting a buffer status report and a user equipment, which are used to solve the problem that the BSR in the prior art cannot meet the cache reporting requirement when the UE is configured with more than four LCGs.
  • the present application provides a method for transmitting a buffer status report BSR, including: a user equipment UE generates a BSR, where the UE is configured with eight LCGs, and the BSR includes a cache index of at least one LCG of the eight LCGs, and a cache of the LCG.
  • the index represents the uplink buffer of the LCG.
  • the uplink buffer of the LCG is the sum of the uplink buffers of all the LCs included in the LCG.
  • the BSR occupies X bytes, and the buffer index of one LCG occupies N bits. An integer ranging from 1 to 17, where N is an integer ranging from 5 to 16, and X is 1 and N is not equal to 6.
  • the UE sends the generated BSR to the network side device.
  • the BSR may include a cache index of one of the eight LCGs configured by the UE, and reporting the BSR to the network side device may allow the network side device to allocate an uplink resource for sending the uplink buffer of the LCG to the UE.
  • the BSR may also include a cache index of the plurality of LCGs in the eight LCGs that are configured by the UE.
  • the reporting of the BSR to the network side device may enable the network side device to allocate, to the UE, an uplink resource that sends an uplink buffer of each of the multiple LCGs.
  • the BSR may also include a cache index of each of the eight LCGs configured by the UE, and reporting the BSR to the network side device may allow the network side device to allocate, to the UE, an uplink resource that sends an uplink buffer of each of the eight LCGs.
  • the BSR is used to identify an uplink buffer quantity of one of the eight LCGs, where the BSR further includes an LCG identifier. ID, the LCG ID occupies 3 bits, the value of X is 1 or 2, and the value of N ranges from 5 to 13.
  • X is equal to 1 and N is equal to 5.
  • the BSR occupies only one byte, which can save the uplink resources used for transmitting the BSR and reduce the transmission time.
  • X is equal to 2, and the value of N ranges from 6 to 13.
  • the cache index of the LCG is configured to be no less than 6 bits, so that each cache index is characterized.
  • the uplink buffer range is small, which improves the accuracy of the network side device for allocating uplink resources to the UE.
  • the BSR when the N is less than 13, the BSR includes the LCG ID and the cache index.
  • the (13-N) bit is configured as a reserved bit or padding bit.
  • the information carried by the reserved bit can be configured according to actual needs, thereby enhancing the scalability of the BSR.
  • the BSR is used to represent an uplink buffer of the eight LCGs, where the BSR includes a cache of each of the eight LCGs. Index, where N is an integer from 5 to 13, and X is equal to N.
  • the BSR can carry the buffer index of the eight LCGs at the same time, and then report the uplink buffer of all the LCGs of the UE by using one BSR, and the network side device can allocate uplink resources according to the BSR for all uplink data to be sent by the UE. , high efficiency.
  • the 8 bits of the first byte of the BSR are in one-to-one correspondence with the 8 LCGs, the first byte Each bit is used to indicate whether the corresponding LCG has an uplink buffer, and the BSR includes the cache index of each of the K LCGs having the uplink buffer in the 8 LCGs, and K is a positive integer.
  • the BSR indicates, by using the first byte, all the LCGs that have the uplink buffer in the eight LCGs, and the BSR carries the cache index of all the LCGs with the uplink buffer, and the network side device can determine which UEs according to the BSR.
  • the LCG has an uplink buffer and an uplink buffer amount of each LCG in the LCG with an uplink buffer, and further allocates corresponding uplink resources to the UE.
  • the BSR can not only carry the cache index of multiple LCGs, but also does not carry the cache index of the LCG that does not have the uplink buffer, and avoids the BSR being too long to carry unnecessary information (the cache index of the LCG without the uplink cache), taking into account the LCG.
  • the BSR configures the K caches corresponding to the K LCGs from the second byte Index, the order of the K cache indexes is consistent with the order of the corresponding bits of the K LCGs in the first byte.
  • it is not necessary to configure a 3-bit LCG ID for each cache index which can reduce the length of the BSR, save the bandwidth of transmitting the BSR, and reduce the transmission time of the BSR.
  • the BSR further configures a padding bit after the K index caches.
  • the uplink buffer of the LCG cache index is satisfied: Where i is the value of the cache index, i ranges from 0 to 31, and S i represents the amount of uplink buffer represented by the cache index when the value is i. Indicates the amount of uplink buffer represented by the cache index defined in the Long Term Evolution (LTE) protocol when the value is j. The value of j ranges from 0 to 63, and ⁇ is the union operator.
  • LTE Long Term Evolution
  • is the union operator.
  • the uplink cache amount represented by the cache index in this application is set based on the definition of the uplink buffer size represented by the cache index in the existing LTE protocol, and the compatibility of the application scheme is enhanced.
  • the present application provides a user equipment for performing the method in any of the foregoing first aspect or any possible implementation of the first aspect.
  • the user equipment comprises means for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the user equipment includes a generating module and a sending module.
  • the generating module is configured to: generate a BSR, where the UE is configured with 8 logical channel groups, the BSR includes a cache index of at least one of the 8 LCGs, and the cache index of the LCG represents an uplink buffer of the LCG.
  • the BSR occupies X bytes.
  • the cache index of an LCG occupies N bits.
  • the value of X ranges from 1 to 17 integers.
  • the value of N ranges from 5 to 16 integers.
  • the value of X is 1 and The value of N is 6 when the value is different.
  • the sending module is configured to: send the BSR to the network side device.
  • the present application provides a user equipment for performing the method in any of the foregoing first aspect or any possible implementation of the first aspect.
  • the user equipment includes a processor, a memory, and a transceiver, and the processor can communicate with the memory and the transceiver through a bus.
  • the memory stores computer instructions that, when executed by the processor, cause the processor to generate the BSR generated in the method of any of the first aspect or any of the possible implementations of the first aspect.
  • the transceiver is configured to send the BSR generated by the processor to a network side device.
  • the present application provides a computer readable storage medium having stored therein computer instructions that, when executed on a computer, cause the computer to perform any of the first aspect or the first aspect The method in the implementation.
  • the present application provides a computer program product, when run on a computer, causes the computer to perform the method of performing the first aspect or any possible implementation of the first aspect.
  • FIG. 1 is a schematic flowchart of a UE transmitting a BSR
  • 2a is a schematic diagram of a short BSR or a truncated BSR in the prior art
  • 2b is a schematic diagram of a long BSR in the prior art
  • FIG. 3 is a schematic flowchart of a BSR generated by a UE according to an embodiment of the present disclosure
  • 4a-4d are schematic diagrams of a type 1-BSR in an embodiment of the present application.
  • 5a-5b are schematic diagrams of a type 2-BSR in an embodiment of the present application.
  • 6a is a schematic diagram of a first byte of a type 3-BSR in the embodiment of the present application.
  • Figure 6b is a schematic diagram of a type 3-BSR in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a user equipment 300 according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a user equipment 400 according to an embodiment of the present application.
  • the present application provides a method for transmitting a buffer status report and a user equipment, which are used to solve the problem that the BSR in the prior art cannot meet the cache reporting requirement when the UE is configured with more than four LCGs.
  • the method and the device are based on the same inventive concept. Since the method and the user equipment solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • the plurality referred to in the present application means two or more.
  • the terms "first”, “second” and the like are used for the purpose of distinguishing the description, and are not to be construed as indicating or implying a relative importance, and are not to be construed as indicating or implying the order.
  • the embodiments of the present application can be applied to a fifth-generation mobile communications (5G) system, such as a 5G wireless access (New Radio, NR) network, and can also be applied to other wireless communication systems, such as long-term evolution ( Long Term Evolution (LTE) system, as well as new network equipment systems.
  • 5G fifth-generation mobile communications
  • NR New Radio, NR
  • LTE Long Term Evolution
  • the user equipment UE involved in the embodiment of the present application may be a device that provides voice and/or data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem.
  • the wireless user equipment can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDAs Personal Digital Assistants
  • a wireless user equipment may also be referred to as a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, and an Access Point. , Remote Terminal, Access Terminal, User Terminal, User Agent (User Agent or User Device).
  • the network side device related to the embodiment of the present application may be a base station, where the base station may be used to convert the received air frame and the IP packet into each other as a router between the wireless terminal device and the rest of the access network.
  • the remaining portion of the access network may include an Internet Protocol (IP) network side device.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Next Generation Node B (gNB) in the NR network, or may be an evolved base station (eNB or e-NodeB) in the LTE.
  • gNB Next Generation Node B
  • eNB evolved base station
  • e-NodeB evolved base station
  • the process includes:
  • Step 101 The UE sends an uplink scheduling request SR to the network side device, where the uplink SR is used to notify the network side device that the uplink data needs to be transmitted.
  • Step 102 The network side device sends an uplink grant grant (UL grant) to the UE, and allocates an uplink resource to the UE.
  • the number of the uplink resource depends on the specific implementation of the network side device. Generally, the network side device allocates enough uplink to the UE. Upstream resources of the BSR.
  • Step 103 The UE sends a BSR to the network side device.
  • Step 104 The network side device determines, according to the BSR sent by the UE, the number of uplink resources allocated to the UE, and sends a corresponding UL grant to the UE.
  • FIG. 2a is a schematic diagram of a short BSR or a truncated BSR defined by LTE in the prior art.
  • the LCG ID occupies two bits, and the value ranges from 0 to 3.
  • Each value of the LCG ID corresponds to the UE.
  • FIG. 2b is a schematic diagram of a long BSR defined by LTE in the prior art.
  • the long BSR sequentially encodes a cache index of four LCGs (cache index #0 to cache index #3), and each cache index occupies 6 bytes. .
  • cache index #0 to cache index #3 LCGs
  • each cache index occupies 6 bytes.
  • the long BSR cannot continue to be used.
  • the method includes:
  • Step 201 The UE generates a BSR, where the UE is configured with eight LCGs, and the BSR includes a cache index of at least one LCG of the eight LCGs, the cache index of the LCG represents the uplink buffer of the LCG, and the uplink buffer of the LCG is included in the LCG.
  • the BSR occupies X bytes.
  • the buffer index of an LCG occupies N bits.
  • the value of X ranges from 1 to 17 integers.
  • the value of N ranges from 5 to 16 integers.
  • the value of X is 1 and N. A value of 6 is not true.
  • each radio bearer established by the UE corresponds to one LC, and each LC is assigned to one of the foregoing eight LCGs, and each LCG may include one or more LCs.
  • each LCG which LCG is assigned to it is configured when the LC is established. For example, it can be through the logical channel group field of the information element: Information Element: Logical Channel Config. Settings.
  • Step 202 The UE sends the generated BSR to the network side device.
  • the BSR can be used as part of a Protocol Data Unit (PDU) as a Media Access Control (MAC) layer, and the BSR transmits the MAC layer PDU transmitted by the UE to the network side device.
  • PDU Protocol Data Unit
  • MAC Media Access Control
  • the BSR may include a cache index of one of the eight LCGs configured by the UE, and reporting the BSR to the network side device may allow the network side device to allocate an uplink resource for sending the uplink buffer of the LCG to the UE.
  • the BSR may also include a cache index of the plurality of LCGs in the eight LCGs that are configured by the UE.
  • the reporting of the BSR to the network side device may enable the network side device to allocate, to the UE, an uplink resource that sends an uplink buffer of each of the multiple LCGs.
  • the BSR may also include a cache index of each of the eight LCGs configured by the UE, and reporting the BSR to the network side device may allow the network side device to allocate, to the UE, an uplink resource that sends an uplink buffer of each of the eight LCGs.
  • the BSR can have multiple implementation manners, which are respectively introduced below:
  • the type 1-BSR is used to report the uplink buffer amount of one of the 8 LCGs configured by the UE.
  • the LCG ID is 3 bits, and the value is 0 to 7. Each value corresponds to one of the 8 LCGs.
  • the LCG ID0 indicates the first LCG of the 8 LCGs.
  • ID1 represents the second LCG of the 8 LCGs, and so on.
  • FIG. 4a shows a possible implementation of a type 1-BSR, where the BSR occupies 1 byte, wherein the LCG ID occupies the first three bits, and the LCG cache index occupies the last five bits.
  • the LCG ID may also occupy the last three bits, and the LCG's cache index accounts for the first five bits.
  • the BSR occupies only one byte, which can save the uplink resources used for transmitting the BSR and reduce the transmission time.
  • Figure 4b shows another possible implementation of the type 1-BSR, where the BSR occupies 2 bytes, wherein the LCG ID occupies 3 bits, and the location of the LCG ID can be the first 3 of the first byte of the BSR. Bits; in some embodiments, the LCG ID may also be located elsewhere, such as the first bit of the first byte being a reserved bit, and the LCG ID occupying the second to fourth bits of the first byte. For another example, the LCG ID occupies the last three bits of the second byte, and so on.
  • the cache index of the LCG in the BSR occupies N bits, and the value of N ranges from 6 to 13.
  • the cache index of an LCG represents the uplink buffer of the LCG.
  • the uplink buffer can be a buffer range.
  • Table 1 is a schematic diagram of a cache index and a cache range mapping table. In the table, a and b are both positive numbers, and a is less than b.
  • Cache index value Cache range 0 0 1 (0,a] 2 (a,b] ... ...
  • the network side device After receiving the BSR, the network side device obtains the cache index from the BSR, determines the buffer range of the LCG of the UE according to the mapping table shown in Table 1, and allocates the uplink resource to the UE according to the buffer range. It can be seen that if the range of the cache index is larger, the smaller the range of the buffer range corresponding to each cache index, the network side device can more accurately estimate the actual line buffer size of the UE's LCG, thereby enabling more accurate Allocate uplink resources to the UE to avoid waste of uplink resources. In the technical solution shown in FIG. 4b to FIG.
  • the LCG ID is configured to be 3 bits, and the LCG ID is configured to distinguish the 8 LCGs configured by the UE, and the LCG cache index is configured to be no less than 6 bits.
  • the uplink buffer range represented by each cache index is smaller, thereby improving the accuracy of the network side device for allocating uplink resources to the UE.
  • the bit can be located at the end of the BSR or between the LCG ID and the cache index, and the information carried by the reserved bits can be configured according to actual needs, thereby enhancing the scalability of the BSR.
  • the type 2-BSR is used to report the uplink buffer of the eight LCGs configured by the UE. Specifically, since the UE is configured with a total of eight LCGs, the type 2-BSR carries the uplink buffer of all the LCGs. Therefore, type 2 The BSR can no longer include the LCG ID, and can sequentially encode the buffer indexes of the eight LCGs. Each cache index occupies N bits. The value of N ranges from 5 to 13 integers. The total number of bytes X occupied by the type 2-BSR is equal to N.
  • FIG. 5a a schematic diagram of a type 2-BSR when N is 5, and a cache index of LCG ID0 to LCG ID7 is sequentially encoded in the BSR.
  • FIG. 5b a schematic diagram of a type 2-BSR when N is taken as 6.
  • the cache index #S represents the cache index of the LCG IDS, and the value of S is 0 to 7.
  • the BSR can carry the buffer index of the eight LCGs at the same time, and then report the uplink buffer of all the LCGs of the UE by using one BSR, and the network side device can allocate uplink resources according to the BSR for all uplink data to be sent by the UE. , high efficiency.
  • the Type 3-BSR is used to report the uplink buffer amount of one or more LCGs of the 8 LCGs configured by the UE.
  • 8 bits of the first byte of the BSR are associated with 8 LCGs, and each bit of the first byte is used to indicate whether the corresponding LCG has an uplink buffer, for example, in a bit position.
  • a value of 0 indicates that the LCG corresponding to the bit has no uplink buffer.
  • the value of the bit is 1, it indicates that the LCG corresponding to the bit has an uplink buffer.
  • the first byte of the type 3-BSR may be referred to as a Buffer Indicator (BI) byte, and each bit of the first byte may be referred to as a BI bit.
  • BI Buffer Indicator
  • the Type 3-BSR only carries the cache index of the K LCGs with the upstream cache, and K is a positive integer.
  • the value of the first, third, fourth, seventh, and eighth bits in the first byte of the BSR is 1, and the BSR carries five cache indexes, namely, LCG ID0, LCG ID2, LCG ID3, and LCG ID6. , LCG ID7 cache index.
  • each cache index occupies 6 bits.
  • each cache index can occupy any length of 5 to 16 bits, but the lengths of all cache indexes in one BSR should be the same.
  • the BSR identifies all the LCGs having the uplink buffer in the eight LCGs by using the first byte, and carries the cache index of all the LCGs with the uplink buffer in the BSR, and the network side device can determine which of the UEs according to the BSR.
  • the LCG has an uplink buffer and an uplink buffer amount of each LCG in the LCG with an uplink buffer, and further allocates corresponding uplink resources to the UE.
  • the BSR can not only carry the cache index of multiple LCGs, but also does not carry the cache index of the LCG that does not have the uplink buffer, and avoids the BSR being too long to carry unnecessary information (the cache index of the LCG without the uplink cache), taking into account the LCG.
  • the completeness of the uplink buffer report and the transmission efficiency of the BSR.
  • the type 3-BSR may configure K cache indexes corresponding to K LCGs from the second byte, and the order of the K cache indexes is the same as the order of the corresponding bits of the K LCGs in the first byte.
  • the cache index corresponding to LCG ID0 is encoded first, followed by the cache index encoding LCG ID2, and so on.
  • the network side device determines the first cache index according to the length of the cache index N bits from the second byte, and determines that it is the LCG corresponding to the first bit of the first byte of the BSR. Cache index.
  • the second cache index after the first cache index is determined, and it is determined to be the cache index of the LCG corresponding to the second bit of the first byte of the BSR, and so on.
  • it is not necessary to configure a 3-bit LCG ID for each cache index which can reduce the length of the BSR, save the bandwidth of transmitting the BSR, and reduce the transmission time of the BSR.
  • the subsequent bits can be configured as padding bits or reserved bits, and can be fully configured when the bits are configured as padding bits. 0 or full configuration is 1.
  • the value of the cache index ranges from 0 to 63, and each value corresponds to an uplink buffer quantity, and the uplink buffer quantity It can be a buffer range, and the cache range can continue to use the correspondence between the cache index and the uplink buffer range defined in the existing LTE protocol to enhance the compatibility of the solution in the embodiment of the present application.
  • the cache range of the LCG when the cache index of the LCG is 5 bits, the value of the cache index ranges from 0 to 31, and each value corresponds to an uplink buffer, and the uplink buffer may be a cache.
  • the cache range can be expressed as: Where i is the value of the cache index, i ranges from 0 to 31, S i represents the cache size represented by the cache index when i is taken, and Sj LTE indicates that the cache index defined in the LTE protocol is The value of the upstream buffer represented by j is j. The value of j ranges from 0 to 63, and the symbol "U" is the union operator.
  • the foregoing three types of BSRs can be implemented separately, that is, when the UE reports the uplink buffer amount to the network side device, only the type 1-BSR is sent, or only the type 2-BSR is sent, or only the type 3 is sent. -BSR.
  • any two of the above three types of BSRs may be implemented in combination.
  • the UE sends a type 1-BSR when only one LCG has an uplink buffer, and sends a type 2 when there is more than one LCG having an uplink buffer.
  • -BSR the UE sends a type 1-BSR when only one LCG has an uplink buffer, and sends a type 2 when there is more than one LCG having an uplink buffer.
  • the UE sends a Type 1-BSR when only one LCG has an uplink buffer, and transmits a Type 3-BSR when there is more than one LCG having an uplink buffer.
  • the UE sends a Type 2-BSR when all LCGs have an upstream buffer, otherwise sends a Type 3-BSR.
  • the foregoing three types of BSRs may be implemented in combination.
  • the UE sends a type 1-BSR when only one LCG has an uplink buffer, and sends a type 2-BSR when all LCGs have an uplink buffer, except the above two. Transmit type 3-BSR outside of the case.
  • the number of bits occupied by one cache index in different types of BSRs is consistent.
  • the concept of the embodiment of the present application can still be used.
  • the LCG ID is configured to occupy 4 bits in the type 1-BSR;
  • each bit of the first two bytes corresponds to an LCG of the UE, and the bit is used to indicate whether the corresponding LCG has an uplink buffer, and only the cache index of the LCG of the uplink buffer is carried in the BSR.
  • FIG. 7 is a schematic diagram of a user equipment 300 according to an embodiment of the present disclosure.
  • the user equipment 300 includes a generating module 31 and a sending module 32.
  • the generating module 31 is configured to: generate a BSR, where the UE is configured with eight logical channel groups, the BSR includes a cache index of at least one of the eight LCGs, and the cache index of the LCG represents an uplink buffer of the LCG.
  • the value of the XSR is X bytes.
  • the cache index of an LCG occupies N bits.
  • the value of X ranges from 1 to 17.
  • the value of N ranges from 5 to 16 and the value of X is 1. It is established when the value of N is different from 6;
  • the sending module 32 is configured to send the BSR to the network side device.
  • each functional module in each embodiment of the present application may be integrated into one processing. In the device, it can also be physically existed alone, or two or more modules can be integrated into one module.
  • the above integrated modules may be implemented in the form of hardware or in the form of software function modules for performing the steps in the method for transmitting BSRs described in FIG. 3 to FIG. 6b.
  • FIG. 8 is a schematic diagram of a user equipment 400 according to an embodiment of the present disclosure.
  • the user equipment 400 includes a memory 41, a transceiver 42 and a processor 43.
  • the processor 43 can communicate with the memory 41 and the transceiver 42 through a bus.
  • the memory 41 stores computer instructions that, when the processor 43 executes the computer instructions, cause
  • the processor generates the BSR, where the UE is configured with eight logical channel groups, the BSR, which includes a cache index of at least one of the eight LCGs, and the cache index of the LCG represents an uplink buffer of the LCG, the BSR
  • the X-bytes occupy an X-byte.
  • the cache index of an LCG occupies N bits.
  • the value of X ranges from 1 to 17.
  • the value of N ranges from 5 to 16.
  • the value of X is 1 and N. 6 is not established at the same time;
  • the transceiver 42 is configured to: send the BSR generated by the processor to the network side device.
  • the above processor 43 may be a processing component or a general term of multiple processing components.
  • the processor 43 may be a Central Processing Unit (CPU), an Application Specific Integrated Circuit (ASIC), or one or more integrated systems configured to implement the embodiments of the present invention.
  • the circuit for example: one or more microprocessors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • the memory 41 may be a storage element or a collective name of a plurality of storage elements, and is used to store executable program code, parameters, data, etc. required for the operation of the resident access network device or the terminal.
  • the memory 41 may include a random access memory (RAM), and may also include a non-volatile memory (NVM), such as a magnetic disk memory, a flash memory, or the like.
  • the transceiver 42 can include discrete transceivers as well as receivers, as well as transceiver and receiver integration.
  • the BSR is used to identify an uplink buffer quantity of one of the eight LCGs, where the BSR further includes an LCG identifier ID, the LCG The ID occupies 3 bits, the value of X is 1 or 2, and the value of N ranges from 5 to 13.
  • X is equal to 1
  • N is equal to 5.
  • N is the third possible implementation manner of the user equipment 300 or the user equipment 400.
  • An integer ranging from 6 to 13.
  • the BSR is The (13-N) bits other than the LCG ID and the cache index are configured as reserved bits or padding bits.
  • the BSR is used to represent an uplink buffer of the eight LCGs, where the BSR includes a buffer of each of the eight LCGs.
  • Index where N is an integer from 5 to 13, and X is equal to N.
  • the 8 bits of the first byte of the BSR are in one-to-one correspondence with the 8 LCGs, the first byte.
  • Each bit is used to indicate whether the corresponding LCG has an uplink buffer, and the BSR includes the cache index of each of the K LCGs having the uplink buffer in the 8 LCGs, and K is a positive integer.
  • the BSR is from the second byte.
  • the K cache indexes corresponding to the K LCGs are configured, and the order of the K cache indexes is consistent with the order of the corresponding bits of the K LCGs in the first byte.
  • the BSR is still in the The padding bits are configured after the K index caches.
  • the uplink cache amount represented by the cache index of the LCG satisfies: Where i is the value of the cache index, i ranges from 0 to 31, and S i represents the amount of uplink buffer represented by the cache index when the value is i. Indicates the amount of uplink buffer represented by the cache index defined in the Long Term Evolution (LTE) protocol when the value is j. The value of j ranges from 0 to 63, and ⁇ is the union operator.
  • LTE Long Term Evolution
  • the user equipment 300 and the user equipment 400 refer to the implementation manner of the method for transmitting the BSR described in FIG. 3 to FIG. 6b.
  • the embodiment of the present invention further provides a computer readable storage medium, where the readable storage medium stores computer instructions, and when the instructions are run on a computer, the computer causes the computer to execute the method for transmitting the BSR described in FIG. 3 to FIG. 6b. .
  • Computer software instructions for storing the execution of the processor for execution including programs for executing the above-described processor.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种发送缓存状态报告BSR的方法及用户设备,用以解决现有技术中的BSR无法满足UE配置多于4个LCG时的缓存上报需求的问题。该发送BSR的方法包括:用户设备UE生成所述BSR,其中,所述UE配置有8个逻辑信道组LCG,所述BSR包括所述8个LCG中至少一个LCG的缓存索引,所述LCG的缓存索引表征所述LCG的上行缓存量,所述BSR占用X个字节,一个LCG的所述缓存索引占N个比特,X的取值范围为1至17的整数,N的取值范围为5至16的整数,X取值为1与N取值为6不同时成立;所述UE向网络侧设备发送所述BSR。

Description

一种发送缓存状态报告的方法及用户设备
本申请要求于2017年6月16日提交中国专利局、申请号为201710459268.5、申请名称为“一种发送缓存状态报告的方法及用户设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种发送缓存状态报告的方法及用户设备。
背景技术
在长期演进(Long Term Evolution,LTE)通信中,用户设备(User Equipment,UE)通过上行调度请求(Scheduling Request,SR)向网络侧设备请求上行资源时,只指明了UE是否有上行数据需要发送,而没有指明自己需要发送多少上行数据。UE需要向网络侧设备发送缓存状态报告(Buffer Status Report,BSR),告知网络侧设备自身上行缓冲区(buffer)里有多少数据需要发送,以便网络侧设备决定给该UE分配多少上行资源。
根据业务的不同,UE可能建立大量的无线承载(radio bearer),每个无线承载对应一个逻辑信道(Logical Channel,LC),如果UE为每一个逻辑信道上报一个BSR,会带来大量的信令开销。为了避免这种开销,在LTE通信中引入了逻辑信道组(LC Group,LCG)的概念,将每个逻辑信道归属到UE的四个LCG中的一个LCG,UE基于LCG来上报BSR,而不是为每个逻辑信道上报一个BSR。
LTE通信中BSR有两种格式:
(1)短BSR(Short BSR)格式或者截断BSR(Truncated BSR),用于上报一个LCG的上行缓存量,BSR占1个字节,包括占2个比特的LCG标识(identity,ID)以及占6个比特的LCG的缓存索引(又可称为缓存大小(Buffer Size)),缓存索引用于表征该LCG的上行缓存量。
(2)长BSR(Long BSR),用于上报所有4个LCG的上行缓存量,长BSR中无需包括LCG ID,而是从LCG ID0到LCG ID3依次编码6个比特的缓存索引,其中,第一个缓存索引用于表征LCG ID0的上行缓存量,第二个缓存索引用于表征LCG ID1的上行缓存量,以此类推。
随着UE的业务量增多,UE可能会建立更多的无线承载,UE会使用更多的LC,进而需要更多的LCG,但是,上述现有技术中的BSR只适用于UE配置4个LCG时的缓存上报,无法满足UE配置更多LCG时的缓存上报需求。
发明内容
本申请提供一种发送缓存状态报告的方法及用户设备,用以解决现有技术中的BSR无法满足UE配置多于4个LCG时的缓存上报需求的问题。
第一方面,本申请提供一种发送缓存状态报告BSR的方法,包括:用户设备UE生成BSR,其中,UE配置有8个LCG,BSR包括8个LCG中至少一个LCG的缓存索引,LCG 的缓存索引表征LCG的上行缓存量,LCG的上行缓存量为该LCG包括的所有LC的上行缓存量之和,该BSR占用X个字节,一个LCG的缓存索引占N个比特,X的取值范围为1至17的整数,N的取值范围为5至16的整数,X取值为1与N取值为6不同时成立。UE向网络侧设备发送生成的BSR。
上述技术方案中,BSR可以包括UE被配置的8个LCG中一个LCG的缓存索引,向网络侧设备上报BSR可以让网络侧设备为UE分配发送该LCG的上行缓存的上行资源。BSR也可以包括UE被配置的8个LCG中多个LCG的缓存索引,向网络侧设备上报BSR可以让网络侧设备为UE分配发送该多个LCG中每个LCG的上行缓存的上行资源。BSR也可以包括UE被配置的8个LCG中每个LCG的缓存索引,向网络侧设备上报BSR可以让网络侧设备为UE分配发送该8个LCG中每个LCG的上行缓存的上行资源。通过上述技术方案,解决了现有技术中的BSR无法满足UE配置多于4个LCG时的缓存上报需求的问题。
作为一种可选的设计,结合第一方面,在第一方面的第一种可能的实现方式中,该BSR用于表征该8个LCG中一个LCG的上行缓存量,该BSR还包括LCG标识ID,该LCG ID占3个比特,X的取值为1或2,N的取值范围为5至13的整数。
作为一种可选的设计,结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,X等于1,N等于5。本实现方式中,BSR只占用一个字节,能够节约传输BSR所用的上行资源以及减小传输耗时。
可选的,结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,X等于2,N的取值范围为6至13的整数。本实现方式中,在将LCG ID配置为3个比特,保证LCG ID能够区分UE被配置的8个LCG的情况下,将LCG的缓存索引配置为不小于6比特,使得每个缓存索引表征的上行缓存范围较小,进而提高网络侧设备为UE分配上行资源的准确度。
可选的,结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,在N小于13时,该BSR中除该LCG ID以及该缓存索引之外的(13-N)位被配置为预留位或填充位。其中,该预留位所承载的信息可以根据实际需要进行配置,进而增强BSR的可扩展性
可选的,结合第一方面,在第一方面的第五种可能的实现方式中,该BSR用于表征该8个LCG的上行缓存量,该BSR包括该8个LCG中每个LCG的缓存索引,N的取值范围为5至13的整数,X等于N。本实现方式中,BSR可以同时携带8个LCG的缓存索引,进而通过1个BSR上报UE的所有LCG的上行缓存量,网络侧设备可以根据该BSR为UE的所有待发送的上行数据分配上行资源,效率较高。
可选的,结合第一方面,在第一方面的第六种可能的实现方式中,该BSR的第一个字节的8个比特与该8个LCG一一对应,该第一个字节的每个比特用于表征对应的LCG是否有上行缓存,该BSR包括该8个LCG中具有上行缓存的K个LCG中每个LCG的该缓存索引,K为正整数。
本实现方式中,BSR通过第一个字节表征8个LCG中所有具有上行缓存的LCG,并在BSR中携带所有具有上行缓存的LCG的缓存索引,网络侧设备根据该BSR可以确定UE的哪些LCG具有上行缓存以及具有上行缓存的LCG中每个LCG的上行缓存量,进而 可以为UE分配对应的上行资源。上述BSR不仅可以携带多个LCG的缓存索引,而且并不携带不具有上行缓存的LCG的缓存索引,避免BSR因携带无用信息(不具有上行缓存的LCG的缓存索引)而过长,兼顾了LCG的上行缓存量上报的完备性以及BSR的传输效率。
可选的,结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,该BSR从第二个字节起配置该K个LCG对应的K个缓存索引,该K个缓存索引的顺序与该K个LCG在该第一个字节中对应比特的顺序一致。本实现方式中,无需为每个缓存索引配置占3个比特LCG ID,能够减少BSR的长度,节约传输BSR的带宽以及减少BSR的传输耗时。
可选的,结合第一方面的第六或第七种可能的实现方式,在第一方面的第八种可能的实现方式中,该BSR还在该K个索引缓存之后配置填充位。
可选的,结合第一方面、第一方面的第一至第二种可能的实现方式、第一方面的第五至第八种可能的实现方式中任一可能的实现方式,在第一方面的第九种可能的实现方式中,在N等于5时,该LCG的缓存索引表征的上行缓存量满足:
Figure PCTCN2018090133-appb-000001
其中,i为该缓存索引的取值,i的取值范围为0至31的整数,S i表示缓存索引在取值为i时所表征的上行缓存量,
Figure PCTCN2018090133-appb-000002
表示长期演进LTE协议中定义的缓存索引在取值为j时所表征的上行缓存量,j的取值范围为0至63的整数,∪为并集运算符。本实现方式中,基于现有LTE协议中对缓存索引所表征的上行缓存量的定义设置本申请中缓存索引所表征的上行缓存量,增强本申请方案的兼容性。
第二方面,本申请提供一种用户设备,该用户设备用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体的,该用户设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的模块。
第二方面的一种可能的实现方式中,该用户设备包括生成模块以及发送模块。该生成模块,用于:生成BSR,其中,该UE配置有8个逻辑信道组LCG,该BSR包括该8个LCG中至少一个LCG的缓存索引,该LCG的缓存索引表征该LCG的上行缓存量,该BSR占用X个字节,一个LCG的该缓存索引占N个比特,X的取值范围为1至17的整数,N的取值范围为5至16的整数,X取值为1与N取值为6不同时成立;该发送模块,用于:向网络侧设备发送该BSR。
第三方面,本申请提供一种用户设备,该设备设备用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体的,该用户设备包括处理器、存储器以及收发器,该处理器可以通过总线与存储器以及收发器通信。该存储器,存储有计算机指令,当该处理器执行该计算机指令时,使得,该处理器生成上述第一方面或第一方面的任意可能的实现方式中的方法中生成的BSR。该收发器用于向网络侧设备发送该处理器生成的该BSR。
第四方面,本申请提供了一种计算机可读存储介质,该可读存储介质中存储有计算机指令,所述指令在计算机上运行时,使得计算机执行执行第一方面或第一方面的任意可能的实现中的方法。
第五方面,本申请提供了一种计算机程序产品,所述计算机程序产品在计算机上运行时,使得计算机执行执行第一方面或第一方面的任意可能的实现中的方法。
本申请在上述各方面提供的实现的基础上,还可以进行进一步组合以提供更多实现。
附图说明
图1为UE发送BSR的流程示意图;
图2a为现有技术中短BSR或截断BSR的示意图;
图2b为现有技术中长BSR的示意图;
图3为本申请实施例中UE生成BSR的流程示意图;
图4a-图4d为本申请实施例中类型1-BSR的示意图;
图5a-图5b为本申请实施例中类型2-BSR的示意图;
图6a为本申请实施例中类型3-BSR的第一个字节的示意图;
图6b为本申请实施例中类型3-BSR的示意图;
图7为本申请实施例提供的用户设备300的示意图;
图8为本申请实施例提供的用户设备400的示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请提供一种发送缓存状态报告的方法及用户设备,用以解决现有技术中存在的BSR无法满足UE配置多于4个LCG时的缓存上报需求的问题。其中,方法和装置是基于同一发明构思的,由于方法及用户设备解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请中所涉及的多个,是指两个或两个以上。另外,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例可以适用于第五代移动通信(fifth-generation mobile communications,5G)系统,如5G的无线接入(New Radio,NR)网络,也可以适用于其他无线通信系统,例如长期演进(Long Term Evolution,LTE)系统,以及新的网络设备系统等。
本申请实施例涉及的用户设备UE,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线用户设备也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent或用户设备(User Device)。
本申请实施例所涉及网络侧设备,该网络侧设备可以为基站,该基站可用于将收到的 空中帧与IP分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(Internet Protocol,IP)网络侧设备。该基站还可协调对空中接口的属性管理。例如,基站可以是NR网络中的下一代基站(Next generation Node B,gNB),也可以为LTE中的演进型基站(evolutional Node B,eNB或e-NodeB),本申请实施例并不限定。
下面首先介绍UE向网络侧设备发送BSR的流程,参照图1,该流程包括:
步骤101、UE向网络侧设备发送上行调度请求SR,该上行SR用于告知网络侧设备UE是否有上行数据需要传输。
步骤102、网络侧设备向UE发送上行调度授权(Up Link grant,UL grant),为UE分配上行资源,该上行资源的多少取决于网络侧设备的具体实现,通常网络侧设备向UE分配足够发送BSR的上行资源。
步骤103、UE向网络侧设备发送BSR。
步骤104、网络侧设备根据UE发送的BSR确定为UE分配的上行资源数量,向UE发送对应的UL grant。
描述上述流程的目的在于方便理解本申请实施例提供的方案,需要说明的是,本申请实施例提供的方案在实际应用时,UE向网络侧设备发送BSR的流程也可以与上述流程不同。
图2a为现有技术中LTE定义的短BSR或截断BSR的示意图,在短BSR以及截断BSR中,LCG ID占两个比特,取值为0~3,LCG ID的每个取值分别对应UE配置的4个LCG中的一个。由于图2a所示的BSR的LCG ID最多只能区分4个LCG,因此,在UE配置的LCG的数目多于4个时,上述短BSR或截断BSR无法继续使用。
图2b所示为现有技术中LTE定义的长BSR的示意图,该长BSR顺次编码4个LCG的缓存索引(缓存索引#0~缓存索引#3),每个缓存索引占6个字节。同样的,在UE配置的LCG的数目多于4个时,上述长BSR无法继续使用。
下面介绍本申请实施例提供的一种发送BSR的方法,参照图3,该方法包括:
步骤201、UE生成BSR,其中,UE配置有8个LCG,BSR包括8个LCG中至少一个LCG的缓存索引,LCG的缓存索引表征LCG的上行缓存量,LCG的上行缓存量为该LCG包括的所有LC的上行缓存量之和。该BSR占用X个字节,一个LCG的缓存索引占N个比特,X的取值范围为1至17的整数,N的取值范围为5至16的整数,X取值为1与N取值为6不同时成立。
具体的,UE建立的每个无线承载对应一个LC,每个LC均归属到上述8个LCG中的一个,每个LCG可以包括1个或多个LC。对某个LC而言,其归属到哪个LCG是在该LC建立时配置的,例如,可以通过信息元素:逻辑通道配置(Information Element:Logical Channel Config)的逻辑信道组(logical Channel Group)字段来设置。
步骤202、UE向网络侧设备发送生成的BSR。该BSR可以作为作为介质访问控制(Media Access Control,MAC)层的协议数据单元(Protocol Data Unit,PDU)的一部分,BSR通过UE发送的MAC层PDU传输至网络侧设备。
上述技术方案中,BSR可以包括UE被配置的8个LCG中一个LCG的缓存索引,向网络侧设备上报BSR可以让网络侧设备为UE分配发送该LCG的上行缓存的上行资源。 BSR也可以包括UE被配置的8个LCG中多个LCG的缓存索引,向网络侧设备上报BSR可以让网络侧设备为UE分配发送该多个LCG中每个LCG的上行缓存的上行资源。BSR也可以包括UE被配置的8个LCG中每个LCG的缓存索引,向网络侧设备上报BSR可以让网络侧设备为UE分配发送该8个LCG中每个LCG的上行缓存的上行资源。通过上述技术方案,解决了现有技术中的BSR无法满足UE配置多于4个LCG时的缓存上报需求的问题。
本申请实施例中,BSR可以有多种实现方式,下面分别予以介绍:
(一)、类型1-BSR
与图2a定义的短BSR或截断BSR一样,类型1-BSR用于上报UE被配置的8个LCG中的一个LCG的上行缓存量。在类型1-BSR中,LCG ID占3个比特,取值为0~7,每个取值对应8个LCG中的一个LCG,例如,LCG ID0表示8个LCG中的第一个LCG,LCG ID1表示8个LCG中的第二个LCG,以此类推。
图4a所示为类型1-BSR的一种可能实现,该BSR占1个字节,其中,LCG ID占前三个比特,LCG的缓存索引占后五个比特。在一些实施例中,LCG ID也可以占后三个比特,LCG的缓存索引占前五个比特。本实现方式中,BSR只占用一个字节,能够节约传输BSR所用的上行资源以及减小传输耗时。
图4b所示为类型1-BSR的另一种可能实现,该BSR占2个字节,其中,LCG ID占3个比特,LCG ID的位置可以为BSR的第一个字节的前3个比特;在一些实施例中,LCG ID也可以位于其他位置,如第一个字节的第一个比特为预留位,LCG ID占第一个字节的第二个比特至第四个比特,又例如,LCG ID占第二个字节的最后三个比特,等等。该BSR中LCG的缓存索引占N个比特,N的取值为6~13。
一个LCG的缓存索引表征该LCG的上行缓存量,该上行缓存量可以为一个缓存范围,表1为缓存索引与缓存范围的映射表的示意图。表中a、b均为正数,a小于b。
缓存索引值 缓存范围
0 0
1 (0,a]
2 (a,b]
表1
网络侧设备在接收BSR之后,从BSR获取缓存索引,根据表1所示的映射表确定出UE的LCG的缓存范围,根据该缓存范围为UE分配上行资源。可以看出,如果缓存索引的取值范围越大,每个缓存索引所对应的缓存范围的范围越小,网络侧设备能够更精确地估计UE的LCG的实际上行缓存大小,进而能够更准确地为UE分配上行资源,避免上行资源的浪费。图4b至图4d所示的技术方案中,在将LCG ID配置为3个比特,保证LCG ID能够区分UE被配置的8个LCG的情况下,将LCG的缓存索引配置为不小于6比特,使得每个缓存索引表征的上行缓存范围较小,进而提高网络侧设备为UE分配上行资源的准确度。
在图4b所示的BSR中,在N=13,BSR由LCG ID以及LCG的缓存索引两部分组成。 而在图4c以及图4d所示的BSR中,N小于13,BSR中除了LCG ID以及LCG的缓存索引所占比特之外的比特可以被配置为预留位或填充位,预留位或填充位可以位于BSR的末尾,也可以位于LCG ID与缓存索引之间,且预留位所承载的信息可以根据实际需要进行配置,进而增强BSR的可扩展性。
(二)类型2-BSR
类型2-BSR用于上报UE被配置的8个LCG的上行缓存量,具体的,由于UE一共被配置了8个LCG,而类型2-BSR携带全部LCG的上行缓存量,因此,类型2-BSR可以不再包括LCG ID,可以依次编码8个LCG的缓存索引,每个缓存索引占N比特,N的取值范围为5至13的整数,类型2-BSR占用的全部字节数X等于N。
例如,参照图5a,为N取5时类型2-BSR的示意图,在BSR中依次编码LCG ID0至LCG ID7的缓存索引。又例如,参照图5b,为N取6时类型2-BSR的示意图。图5a以及图5b中,缓存索引#S表示LCG IDS的缓存索引,S取值为0至7。
上述技术方案中,BSR可以同时携带8个LCG的缓存索引,进而通过1个BSR上报UE的所有LCG的上行缓存量,网络侧设备可以根据该BSR为UE的所有待发送的上行数据分配上行资源,效率较高。
(三)类型3-BSR
类型3-BSR用于上报UE被配置的8个LCG中一个或多个LCG的上行缓存量。参照图6a,该BSR的第一个字节的8个比特与8个LCG一一对应,第一个字节的每个比特用于表征对应的LCG是否有上行缓存,例如,在比特位的值为0时,表示该比特位对应的LCG没有上行缓存,反之,在比特位的值为1时,表示该比特位对应的LCG有上行缓存。本申请实施例中,类型3-BSR的第一个字节又可以称为缓存指示(Buffer Indicator,BI)字节,第一个字节的每个比特可以称为BI比特。类型3-BSR只携带具有上行缓存的K个LCG的缓存索引,K为正整数。
参照图6b,BSR的第一个字节中第1、3、4、7、8个比特的值为1,则BSR携带5个缓存索引,分别为LCG ID0、LCG ID2、LCG ID3、LCG ID6、LCG ID7的缓存索引。
在图6b中,每个缓存索引占6个比特,除此之外,每个缓存索引还可以占5~16比特中的任意长度,但一个BSR中所有缓存索引的长度应当一致。
上述技术方案中,BSR通过第一个字节表征8个LCG中所有具有上行缓存的LCG,并在BSR中携带所有具有上行缓存的LCG的缓存索引,网络侧设备根据该BSR可以确定UE的哪些LCG具有上行缓存以及具有上行缓存的LCG中每个LCG的上行缓存量,进而可以为UE分配对应的上行资源。上述BSR不仅可以携带多个LCG的缓存索引,而且并不携带不具有上行缓存的LCG的缓存索引,避免BSR因携带无用信息(不具有上行缓存的LCG的缓存索引)而过长,兼顾了LCG的上行缓存量上报的完备性以及BSR的传输效率。
参照图6b,类型3-BSR可以从第二个字节起配置K个LCG对应的K个缓存索引,K个缓存索引的顺序与K个LCG在第一个字节中对应比特的顺序一致,例如首先编码LCG ID0对应的缓存索引,紧接着编码LCG ID2的缓存索引,以此类推。网络侧设备接收BSR之后,从第二个字节起根据缓存索引的长度N比特确定第一个缓存索引,确定其为BSR的第一字节中第一个值为1的比特对应的LCG的缓存索引。然后,确定第一个缓存索引 之后的第二个缓存索引,确定其为BSR的第一字节中第二个值为1的比特对应的LCG的缓存索引,以此类推。上述技术方案中,无需为每个缓存索引配置占3个比特LCG ID,能够减少BSR的长度,节约传输BSR的带宽以及减少BSR的传输耗时。
参照图6b,在类型3-BSR的携带的最后一个缓存索引没有占满整个字节时,可以将之后的比特配置为填充位或预留位,在将这些比特配置为填充位时可以全配置为0或全配置为1。
可选的,在上述所有可能的方案中,在缓存索引所占的比特数N等于6时,缓存索引的取值范围为0~63,每一个取值对应一个上行缓存量,该上行缓存量可以为一个缓存范围,该缓存范围可以继续沿用现有LTE协议中定义的缓存索引与上行缓存范围的对应关系,以增强本申请实施例方案的兼容性。
可选的,本申请实施例中,在LCG的缓存索引占5个比特时,缓存索引的取值范围为0~31,每一个取值对应一个上行缓存量,该上行缓存量可以为一个缓存范围,该缓存范围可以表示为:
Figure PCTCN2018090133-appb-000003
其中,i为缓存索引的取值,i的取值范围为0至31的整数,S i表示缓存索引在取值为i时所表征的缓存量,Sj LTE表示LTE协议中定义的缓存索引在取值为j时所表征的上行缓存量,j的取值范围为0至63的整数,符号“U”为并集运算符。例如,
Figure PCTCN2018090133-appb-000004
表示N=5时,若LCG的缓存索引的取值为0,则该LCG的缓存范围为LTE中缓存索引分别取值0、1时缓存范围的并集。
需要说明的是,上述三种类型的BSR均可以单独实施,即,UE在向网络侧设备上报上行缓存量时,只发送类型1-BSR,或者只发送类型2-BSR,或者只发送类型3-BSR。在一些实施例中,上述三种类型的BSR中的任意两种可以结合实施,例如,UE在只有一个LCG有上行缓存时发送类型1-BSR,在有不止一个LCG有上行缓存时发送类型2-BSR。又例如,UE在只有一个LCG有上行缓存时发送类型1-BSR,在有不止一个LCG有上行缓存时发送类型3-BSR。再例如,UE在所有LCG有上行缓存时发送类型2-BSR,否则发送类型3-BSR。在另一实施例中,上述三种类型的BSR可以结合实施,例如,UE在只有一个LCG有上行缓存时发送类型1-BSR,在所有LCG有上行缓存时发送类型2-BSR,除上述两种情形之外的发送类型3-BSR。可选的,上述三种类型的BSR中的两种或三种结合实施时,不同类型的BSR中一个缓存索引所占的比特数相一致。
另外,在UE的LCG数量被配置为大于8时,仍然可以沿用本申请实施例的构思,例如,在LCG的数量为16时,在类型1-BSR中将LCG ID配置为占4比特;在类型3-BSR中将前两个字节的每一个比特对应UE的一个LCG,该比特用于表征对应的LCG是否有上行缓存,在BSR中只携带有上行缓存的LCG的缓存索引。
图7为本申请实施例提供的一种用户设备300的示意图,该用户设备300包括生成模块31以及发送模块32。
上述生成模块31,用于:生成BSR,其中,该UE配置有8个逻辑信道组LCG,该BSR包括该8个LCG中至少一个LCG的缓存索引,该LCG的缓存索引表征该LCG的上行缓存量,该BSR占用X个字节,一个LCG的该缓存索引占N个比特,X的取值范围为1至17的整数,N的取值范围为5至16的整数,X取值为1与N取值为6不同时成立;
上述发送模块32,用于:向网络侧设备发送该BSR。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可 以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现,这些软件功能模块用于执行图3至图6b所述的发送BSR的方法中的步骤。
图8为本申请实施例提供的一种用户设备400的示意图,该用户设备400包括存储器41,收发器42和处理器43;该处理器43可以通过总线与存储器41以及收发器42通信。
该存储器41,存储有计算机指令,当该处理器43执行该计算机指令时,使得,
该处理器生成该BSR,其中,该UE配置有8个逻辑信道组LCG,该BSR包括该8个LCG中至少一个LCG的缓存索引,该LCG的缓存索引表征该LCG的上行缓存量,该BSR占用X个字节,一个LCG的该缓存索引占N个比特,X的取值范围为1至17的整数,N的取值范围为5至16的整数,X取值为1与N取值为6不同时成立;
该收发器42用于:向网络侧设备发送该处理器生成的该BSR。
需要说明的是,以上处理器43可以是一个处理元件,也可以是多个处理元件的统称。例如,该处理器43可以是中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(Digital Signal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。存储器41可以是一个存储元件,也可以是多个存储元件的统称,且用于存储可执行程序代码、居民接入网设备或终端运行所需要参数、数据等。且存储器41可以包括随机存储器(Random-Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如磁盘存储器,闪存(Flash)等。收发器42可以包括分立的收发器以及接收器,也可以为收发器与接收器的集成。
可选的,在上述用户设备300或用户设备400的第一种可能的实现方式中,该BSR用于表征该8个LCG中一个LCG的上行缓存量,该BSR还包括LCG标识ID,该LCG ID占3个比特,X的取值为1或2,N的取值范围为5至13的整数。
可选的,结合在上述用户设备300或用户设备400的第一种可能的实现方式,在上述用户设备300或用户设备400的第二种可能的实现方式中,X等于1,N等于5。
可选的,结合在上述用户设备300或用户设备400的第一种可能的实现方式,在上述用户设备300或用户设备400的第三种可能的实现方式中,X等于2,N的取值范围为6至13的整数。
可选的,结合在上述用户设备300或用户设备400的第三种可能的实现方式,在上述用户设备300或用户设备400的第四种可能的实现方式中,在N小于13时,该BSR中除该LCG ID以及该缓存索引之外的(13-N)位被配置为预留位或填充位。
可选的,在上述用户设备300或用户设备400的第五种可能的实现方式中,该BSR用于表征该8个LCG的上行缓存量,该BSR包括该8个LCG中每个LCG的缓存索引,N的取值范围为5至13的整数,X等于N。
可选的,在上述用户设备300或用户设备400的第六种可能的实现方式中,该BSR的第一个字节的8个比特与该8个LCG一一对应,该第一个字节的每个比特用于表征对应的LCG是否有上行缓存,该BSR包括该8个LCG中具有上行缓存的K个LCG中每个LCG 的该缓存索引,K为正整数。
可选的,结合在上述用户设备300或用户设备400的第六种可能的实现方式,在上述用户设备300或用户设备400的第七种可能的实现方式中,该BSR从第二个字节起配置该K个LCG对应的K个缓存索引,该K个缓存索引的顺序与该K个LCG在该第一个字节中对应比特的顺序一致。
可选的,结合在上述用户设备300或用户设备400的第六或第七种可能的实现方式,在上述用户设备300或用户设备400的第八种可能的实现方式中,该BSR还在该K个索引缓存之后配置填充位。
可选的,在上述用户设备300或用户设备400的所有可能的实现方式中,在N等于5时,该LCG的缓存索引表征的上行缓存量满足:
Figure PCTCN2018090133-appb-000005
其中,i为该缓存索引的取值,i的取值范围为0至31的整数,S i表示缓存索引在取值为i时所表征的上行缓存量,
Figure PCTCN2018090133-appb-000006
表示长期演进LTE协议中定义的缓存索引在取值为j时所表征的上行缓存量,j的取值范围为0至63的整数,∪为并集运算符。
上述用户设备300以及用户设备400的实现方式可以参照图3至图6b所述的发送BSR的方法的实现方式。
本发明实施例还提供了一种计算机可读存储介质,该可读存储介质中存储有计算机指令,所述指令在计算机上运行时,使得计算机执行图3至图6b所述的发送BSR的方法。
用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和 范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (57)

  1. 一种发送缓存状态报告BSR的方法,其特征在于,包括:
    用户设备UE生成所述BSR,其中,所述UE配置有8个逻辑信道组LCG,所述BSR包括所述8个LCG中至少一个LCG的缓存索引,所述LCG的缓存索引表征所述LCG的上行缓存量,所述BSR占用X个字节,一个LCG的所述缓存索引占N个比特,X的取值范围为1至17的整数,N的取值范围为5至16的整数,X取值为1与N取值为6不同时成立;
    所述UE向网络侧设备发送所述BSR。
  2. 一种发送缓存状态报告BSR的方法,其特征在于,包括:
    用户设备UE生成所述BSR,其中,所述BSR包括一个或者多个LCG的缓存索引,所述LCG的缓存索引表征所述LCG的上行缓存量,所述BSR占用X个字节,一个LCG的所述缓存索引占N个比特,X的取值范围为1至17的整数,N的取值范围为5至16的整数,X取值为1与N取值为6不同时成立;
    所述UE向网络侧设备发送所述BSR。
  3. 一种接收缓存状态报告BSR的方法,其特征在于,包括:
    网络侧设备接收所述BSR,其中,所述BSR包括一个或者多个LCG的缓存索引,所述LCG的缓存索引表征所述LCG的上行缓存量,所述BSR占用X个字节,一个LCG的所述缓存索引占N个比特,X的取值范围为1至17的整数,N的取值范围为5至16的整数,X取值为1与N取值为6不同时成立。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述BSR用于表征所述8个LCG中一个LCG的上行缓存量,所述BSR还包括LCG标识ID,所述LCG ID占3个比特,X的取值为1或2,N的取值范围为5至13的整数。
  5. 根据权利要求4所述的方法,其特征在于,X等于1,N等于5。
  6. 根据权利要求4所述的方法,其特征在于,X等于2,N的取值范围为6至13的整数。
  7. 根据权利要求6所述的方法,在N小于13时,所述BSR中除所述LCG ID以及所述缓存索引之外的(13-N)位被配置为预留位或填充位。
  8. 根据权利要求1-3所述的方法,其特征在于,所述BSR用于表征所述8个LCG的上行缓存量,所述BSR包括所述8个LCG中每个LCG的缓存索引,N的取值范围为5至13的整数,X等于N。
  9. 根据权利要求1-3任一项所述的方法,其特征在于,所述BSR的第一个字节的8个比特与所述8个LCG一一对应,所述第一个字节的每个比特用于表征对应的LCG是否有上行缓存。
  10. 根据权利要求9所述的方法,其特征在于,所述BSR包括所述8个LCG中具有 上行缓存的K个LCG中每个LCG的所述缓存索引,K为正整数。
  11. 根据权利要求9或10所述的方法,其特征在于,
    所述第一个字节中一个比特的值为0,表示该比特对应的LCG没有上行缓存;
    所述第一个字节中一个比特的值为1,表示该比特对应的LCG有上行缓存。
  12. 根据权利要求1-3任一项所述的方法,其特征在于,所述BSR的第一个字节的8个比特与所述8个LCG一一对应,所述第一个字节的每个比特用于表征所述BSR中是否包含对应的LCG的缓存索引。
  13. 根据权利要求12所述的方法,其特征在于,所述BSR包括所述第一个字节中表征BSR包含缓存索引的比特所对应的K个LCG的缓存索引,K为正整数.。
  14. 根据权利要求12或13所述的方法,其特征在于,
    所述第一个字节中一个比特的值为0,表示所述BSR中包含所述比特对应的LCG有缓存索引;
    所述第一个字节中一个比特的值为1,表示所述BSR中没有所述比特对应的LCG没有缓存索引。
  15. 根据权利要求9-14任一项所述的方法,其特征在于,K小于等于8。
  16. 根据权利要求9-15任一项所述的方法,其特征在于,X=K+1。
  17. 根据权利要求9-16所述的方法,其特征在于,所述BSR从第二个字节起配置所述K个LCG对应的K个缓存索引,所述K个缓存索引的顺序与所述K个LCG在所述第一个字节中对应比特的顺序一致。
  18. 根据权利要求9-17任一项所述的方法,其特征在于,N等于8。
  19. 根据权利要求9-18任一项所述的方法,其特征在于,所述BSR还在所述K个索引缓存之后配置填充位。
  20. 根据权利要求1-19中任一项所述的方法,其特征在于,在N等于5时,所述LCG的缓存索引表征的上行缓存量满足:Si=S2iLTE∪S2i+1LTE,其中,i为所述缓存索引的取值,i的取值范围为0至31的整数,Si表示缓存索引在取值为i时所表征的上行缓存量,SjLTE表示长期演进LTE协议中定义的缓存索引在取值为j时所表征的上行缓存量,j的取值范围为0至63的整数,∪为并集运算符。
  21. 根据权利要求1-20任一项所述的方法,其特征在于,
    当所述UE在只有一个LCG有上行缓存或者只有一个LCG有缓存索引上报时,则所述BRS占用1个字节,其中,LCG标识ID占用该1个字节中的3个比特,该LCG标识ID对应的LCG的缓存索引占用该1个字节中剩下的5个比特;
    当所述UE有M个LCG有上行缓存时,则所述BSR占用(M+1)个字节,其中,该BSR的第一个字节中对应所述M个LCG的M个比特表征所述BSR包含各自对应的LCG的缓存索引,每个LCG的缓存索引占用一个字节。
  22. 一种用户设备,其特征在于,包括:收发器和处理器;
    所述处理器,生成缓存状态报告BSR,其中,所述UE配置有8个逻辑信道组LCG,所述BSR包括所述8个LCG中至少一个LCG的缓存索引,所述LCG的缓存索引表征所述LCG的上行缓存量,所述BSR占用X个字节,一个LCG的所述缓存索引占N个比特,X的取值范围为1至17的整数,N的取值范围为5至16的整数,X取值为1与N取值为6不同时成立;
    所述收发器,发送所述处理器生成的所述BSR。
  23. 一种用户设备,其特征在于,包括:收发器和处理器;
    所述处理器,用于生成缓存状态报告BSR,其中,所述BSR包括一个或者多个LCG的缓存索引,所述LCG的缓存索引表征所述LCG的上行缓存量,所述BSR占用X个字节,一个LCG的所述缓存索引占N个比特,X的取值范围为1至17的整数,N的取值范围为5至16的整数,X取值为1与N取值为6不同时成立;
    所述收发器用于,发送所述BSR。
  24. 根据权利要求22或23所述的用户设备,其特征在于,所述设备还包括存储器,所述存储器存储有计算机指令,所述计算机指令能够被所述处理器执行。
  25. 一种用户设备,其特征在于,包括:收发模块和处理模块;
    所述处理模块,用于生成缓存状态报告BSR,其中,所述BSR包括一个或者多个LCG的缓存索引,所述LCG的缓存索引表征所述LCG的上行缓存量,所述BSR占用X个字节,一个LCG的所述缓存索引占N个比特,X的取值范围为1至17的整数,N的取值范围为5至16的整数,X取值为1与N取值为6不同时成立;
    所述收发模块用于,发送所述BSR。
  26. 根据权利要25所述的用户设备,其特征在于,所述用户设备还包括存储模块,所述存储模块存储有计算机指令,所述计算机指令能够被所述处理模块执行。
  27. 根据权利要求22-26任一项所述的用户设备,其特征在于,所述BSR用于表征所述8个LCG中一个LCG的上行缓存量,所述BSR还包括LCG ID,所述LCG ID占3个比特,X的取值为1或2,N的取值范围为5至13的整数。
  28. 根据权利要求27所述的用户设备,其特征在于,X等于1,N等于5。
  29. 根据权利要求22-26所述的用户设备,其特征在于,所述BSR的第一个字节的8个比特与所述8个LCG一一对应,所述第一个字节的每个比特用于表征对应的LCG是否有上行缓存。
  30. 根据权利要求29所述的用户设备,所述BSR包括所述8个LCG中具有上行缓存的K个LCG中每个LCG的所述缓存索引,K为正整数。
  31. 根据权利要求29或30所述的用户设备,其特征在于,
    所述第一个字节中一个比特的值为0,表示该比特对应的LCG没有上行缓存;
    所述第一个字节中一个比特的值为1,表示该比特对应的LCG有上行缓存。
  32. 根据权利要求22-26任一项所述的用户设备,其特征在于,所述BSR的第一个字节的8个比特与所述8个LCG一一对应,所述第一个字节的每个比特用于表征所述BSR中是否包含对应的LCG的缓存索引。
  33. 根据权利要求32所述的用户设备,其特征在于,所述BSR包括所述第一个字节中表征BSR包含缓存索引的比特所对应的K个LCG的缓存索引,K为正整数.。
  34. 根据权利要求32或33所述的用户设备,其特征在于,
    所述第一个字节中一个比特的值为0,表示所述BSR中包含所述比特对应的LCG有缓存索引;
    所述第一个字节中一个比特的值为1,表示所述BSR中没有所述比特对应的LCG没有缓存索引。
  35. 根据权利要求29-34任一项所述的用户设备,其特征在于,K小于等于8。
  36. 根据权利要求29-35任一项所述的用户设备,其特征在于,X=K+1。37、根据权利要求29-36所述的用户设备,其特征在于,所述BSR从第二个字节起配置所述K个LCG对应的K个缓存索引,所述K个缓存索引的顺序与所述K个LCG在所述第一个字节中对应比特的顺序一致。
  37. 根据权利要求29-37任一项所述的用户设备,其特征在于,N等于8。
  38. 根据权利要求22-38任一项所述的用户设备,其特征在于,
    当所述UE在只有一个LCG有上行缓存或者只有一个LCG有缓存索引上报时,则所述BRS占用1个字节,其中,LCG标识ID占用该1个字节中的3个比特,该LCG标识ID对应的LCG的缓存索引占用该1个字节中剩下的5个比特;
    当所述UE有M个LCG有上行缓存时,则所述BSR占用(M+1)个字节,其中,该BSR的第一个字节中对应所述M个LCG的M个比特表征所述BSR包含各自对应的LCG的缓存索引,每个LCG的缓存索引占用一个字节。
  39. 一种网络侧设备,其特征在于,包括:收发器和处理器;
    所述收发器用于,接收缓存状态报告BSR,其中,所述BSR包括一个或者多个LCG的缓存索引,所述LCG的缓存索引表征所述LCG的上行缓存量,所述BSR占用X个字节,一个LCG的所述缓存索引占N个比特,X的取值范围为1至17的整数,N的取值范围为5至16的整数,X取值为1与N取值为6不同时成立;
    所述处理器用于:处理所述BSR。
  40. 一种网络侧设备,其特征在于,包括:收发模块和处理模块;
    所述收发模块用于,接收缓存状态报告BSR,其中,所述BSR包括一个或者多个LCG的缓存索引,所述LCG的缓存索引表征所述LCG的上行缓存量,所述BSR占用X个字节,一个LCG的所述缓存索引占N个比特,X的取值范围为1至17的整数,N的取值范围为5至16的整数,X取值为1与N取值为6不同时成立;
    所述处理模块用于:处理所述BSR。
  41. 根据权利要求40所述的网络侧设备,其特征在于,所述网络侧设备还包括存储器,所述存储器存储有计算机指令,所述计算机指令能够被所述处理器执行。
  42. 根据权利要41所述的网络侧设备,其特征在于,所述网络侧设备还包括存储模块,所述存储模块存储有计算机指令,所述计算机指令能够被所述处理模块执行。
  43. 根据权利要求40-43任一项所述的网络侧设备,其特征在于,所述BSR用于表征所述8个LCG中一个LCG的上行缓存量,所述BSR还包括LCG ID,所述LCG ID占3个比特,X的取值为1或2,N的取值范围为5至13的整数。
  44. 根据权利要求44所述的网络侧设备,其特征在于,X等于1,N等于5。
  45. 根据权利要求40-43所述的网络侧设备,其特征在于,所述BSR的第一个字节的8个比特与所述8个LCG一一对应,所述第一个字节的每个比特用于表征对应的LCG是否有上行缓存。
  46. 根据权利要求46所述的网络侧设备,所述BSR包括所述8个LCG中具有上行缓存的K个LCG中每个LCG的所述缓存索引,K为正整数。
  47. 根据权利要求46或47所述的网络侧设备,其特征在于,
    所述第一个字节中一个比特的值为0,表示该比特对应的LCG没有上行缓存;
    所述第一个字节中一个比特的值为1,表示该比特对应的LCG有上行缓存。
  48. 根据权利要求40-43任一项所述的网络侧设备,其特征在于,所述BSR的第一个字节的8个比特与所述8个LCG一一对应,所述第一个字节的每个比特用于表征所述BSR中是否包含对应的LCG的缓存索引。
  49. 根据权利要求49所述的网络侧设备,其特征在于,所述BSR包括所述第一个字节中表征BSR包含缓存索引的比特所对应的K个LCG的缓存索引,K为正整数.。
  50. 根据权利要求49或50所述的网络侧设备,其特征在于,
    所述第一个字节中一个比特的值为0,表示所述BSR中包含所述比特对应的LCG有缓存索引;
    所述第一个字节中一个比特的值为1,表示所述BSR中没有所述比特对应的LCG没有缓存索引。
  51. 根据权利要求46-51任一项所述的网络侧设备,其特征在于,K小于等于8。
  52. 根据权利要求46-52任一项所述的网络侧设备,其特征在于,X=K+1。54、根据权利要求46-53所述的网络侧设备,其特征在于,所述BSR从第二个字节起配置所述K个LCG对应的K个缓存索引,所述K个缓存索引的顺序与所述K个LCG在所述第一个字节中对应比特的顺序一致。
  53. 根据权利要求46-54任一项所述的网络侧设备,其特征在于,N等于8。
  54. 根据权利要求40-55任一项所述的网络侧设备,其特征在于,
    当所述UE在只有一个LCG有上行缓存或者只有一个LCG有缓存索引上报时,则所 述BRS占用1个字节,其中,LCG标识ID占用该1个字节中的3个比特,该LCG标识ID对应的LCG的缓存索引占用该1个字节中剩下的5个比特;
    当所述UE有M个LCG有上行缓存时,则所述BSR占用(M+1)个字节,其中,该BSR的第一个字节中对应所述M个LCG的M个比特表征所述BSR包含各自对应的LCG的缓存索引,每个LCG的缓存索引占用一个字节。
  55. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有计算机指令,所述指令在计算机上运行时,使得计算机执行如权利要求1至21任一项所述的发送BSR的方法。
  56. 一种计算机程序产品,其特征在于,所述计算机程序产品在计算机上运行时,使得计算机执行执行,使得计算机执行如权利要求1至21任一项所述的发送BSR的方法。
  57. 一种通信系统,其特征在于,所述通信系统包括权利要求22-39任一项所述的用户设备和权利要求40-56任一项所述的网络侧设备。
PCT/CN2018/090133 2017-06-16 2018-06-06 一种发送缓存状态报告的方法及用户设备 WO2018228253A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019569836A JP2020523945A (ja) 2017-06-16 2018-06-06 バッファステータス報告を送信するための方法およびユーザ機器
AU2018284726A AU2018284726B2 (en) 2017-06-16 2018-06-06 Method for sending buffer status report and user equipment
RU2020101215A RU2020101215A (ru) 2017-06-16 2018-06-06 Способ передачи отчета о состоянии буфера и оборудование пользователя
EP18818960.9A EP3512237B1 (en) 2017-06-16 2018-06-06 Method for transmitting buffer status report and user equipment
KR1020207001458A KR20200015944A (ko) 2017-06-16 2018-06-06 버퍼 상태 보고를 전송하기 위한 방법 및 사용자 장치
BR112019026607-0A BR112019026607A2 (pt) 2017-06-16 2018-06-06 Método para envio de relatório de status de armazenamento temporário e equipamento de usuário
US16/410,865 US10887790B2 (en) 2017-06-16 2019-05-13 Method for sending buffer status report and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459268.5 2017-06-16
CN201710459268.5A CN109152073A (zh) 2017-06-16 2017-06-16 一种发送缓存状态报告的方法及用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/410,865 Continuation US10887790B2 (en) 2017-06-16 2019-05-13 Method for sending buffer status report and user equipment

Publications (1)

Publication Number Publication Date
WO2018228253A1 true WO2018228253A1 (zh) 2018-12-20

Family

ID=64497554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090133 WO2018228253A1 (zh) 2017-06-16 2018-06-06 一种发送缓存状态报告的方法及用户设备

Country Status (9)

Country Link
US (1) US10887790B2 (zh)
EP (1) EP3512237B1 (zh)
JP (1) JP2020523945A (zh)
KR (1) KR20200015944A (zh)
CN (5) CN109041114B (zh)
AU (1) AU2018284726B2 (zh)
BR (1) BR112019026607A2 (zh)
RU (1) RU2020101215A (zh)
WO (1) WO2018228253A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392009A (zh) 2017-08-11 2019-02-26 华为技术有限公司 数据传输方法、设备和通信系统
WO2019241972A1 (en) * 2018-06-21 2019-12-26 Nokia Shanghai Bell Co., Ltd. Optimal bsr for limited traffic mix
US11877301B2 (en) * 2018-10-24 2024-01-16 Lg Electronics Inc. Method and apparatus for transmitting buffer size information in wireless communication system
CN111726830B (zh) * 2019-03-21 2023-01-03 中国移动通信有限公司研究院 Bsr的上报方法、配置方法、装置、终端及网络设备
CN112469076A (zh) * 2019-09-06 2021-03-09 深圳市中兴微电子技术有限公司 一种上报缓存状态报告的方法及装置和用户终端
US11671971B2 (en) * 2019-12-03 2023-06-06 Samsung Electronics Co., Ltd. Method and system for allocating resource in wireless communication network
US20240314625A1 (en) * 2021-01-14 2024-09-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and network nodes for handling buffer status report (bsr) formats
CN113316255B (zh) * 2021-05-13 2023-05-02 中国联合网络通信集团有限公司 一种数据处理方法、装置、设备及存储介质
CN113727390B (zh) * 2021-08-23 2023-07-07 中国联合网络通信集团有限公司 一种数据传输方法、装置及通信系统
CN117917056A (zh) * 2022-08-19 2024-04-19 北京小米移动软件有限公司 Bsr增强调度方法以及装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291760A (zh) * 2010-06-21 2011-12-21 电信科学技术研究院 一种上报和确认缓存状态信息的方法、系统及设备
CN103313396A (zh) * 2012-03-07 2013-09-18 普天信息技术研究院有限公司 一种lte系统中的逻辑信道分组方法
WO2017052106A1 (en) * 2015-09-24 2017-03-30 Lg Electronics Inc. Method for transmitting a buffer status report in a d2d communication system and device therefor
CN106576336A (zh) * 2014-08-08 2017-04-19 Lg 电子株式会社 在无线通信系统中配置d2d发现特定的逻辑信道组的方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932019B (zh) * 2009-06-19 2015-06-03 中兴通讯股份有限公司 一种实现上报缓冲区状态报告的方法、终端及网络系统
EP2584714B1 (en) * 2010-06-18 2019-05-01 LG Electronics Inc. Method for transmitting buffer state report from terminal in wireless communication system
ES2951761T3 (es) * 2015-05-14 2023-10-24 Ntt Docomo Inc Terminal de usuario y método
CN106304370B (zh) * 2015-05-15 2019-11-29 上海诺基亚贝尔股份有限公司 在基于载波聚合增强的通信系统中用于设置bsr mac ce的方法
US10511994B2 (en) * 2017-06-15 2019-12-17 Kt Corporation Methods for configuring buffer status report for next-generation mobile communication and apparatuses thereof
WO2018227483A1 (zh) * 2017-06-15 2018-12-20 富士通株式会社 资源配置方法、确定方法及其装置、通信系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291760A (zh) * 2010-06-21 2011-12-21 电信科学技术研究院 一种上报和确认缓存状态信息的方法、系统及设备
CN103313396A (zh) * 2012-03-07 2013-09-18 普天信息技术研究院有限公司 一种lte系统中的逻辑信道分组方法
CN106576336A (zh) * 2014-08-08 2017-04-19 Lg 电子株式会社 在无线通信系统中配置d2d发现特定的逻辑信道组的方法和装置
WO2017052106A1 (en) * 2015-09-24 2017-03-30 Lg Electronics Inc. Method for transmitting a buffer status report in a d2d communication system and device therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3512237A4 *

Also Published As

Publication number Publication date
CN109152073A (zh) 2019-01-04
US20190281493A1 (en) 2019-09-12
CN108966358A (zh) 2018-12-07
CN108966358B (zh) 2019-11-19
BR112019026607A2 (pt) 2020-06-23
RU2020101215A (ru) 2021-07-16
CN109041114B (zh) 2020-03-10
CN109041114A (zh) 2018-12-18
US10887790B2 (en) 2021-01-05
CN109041116A (zh) 2018-12-18
EP3512237B1 (en) 2021-09-22
AU2018284726B2 (en) 2021-07-29
CN109041116B (zh) 2020-03-10
CN109041115B (zh) 2020-01-21
EP3512237A4 (en) 2019-08-21
AU2018284726A1 (en) 2020-01-23
JP2020523945A (ja) 2020-08-06
EP3512237A1 (en) 2019-07-17
KR20200015944A (ko) 2020-02-13
CN109041115A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
WO2018228253A1 (zh) 一种发送缓存状态报告的方法及用户设备
TWI713402B (zh) 業務傳輸的方法和裝置
US9924405B2 (en) Method for buffer status report in dual connectivity
US10484984B2 (en) Resource allocation method and apparatus
TW201919431A (zh) D2d通訊中資源配置的方法、終端設備和網路設備
WO2020088253A1 (zh) 用于无线回传网络的数据传输方法和装置
WO2020125573A1 (zh) 通信方法、装置、终端、网络设备及存储介质
WO2018059583A1 (zh) 信息的传输方法、终端设备和网络设备
WO2018121522A1 (zh) 数据传输方法及用户设备、无线接入设备
WO2021016774A1 (zh) 无线通信方法和设备
WO2019085741A1 (zh) 上行数据包资源分配方法和用户终端
WO2020088400A1 (zh) 资源调度方法、装置及设备
WO2018171710A1 (zh) 信息的处理方法和设备
JP6560450B2 (ja) データ送信方法、ユーザ機器、およびネットワークデバイス
WO2015014244A1 (zh) 一种发送信息方法和装置
WO2021228252A1 (zh) 一种缓存确定方法及装置
WO2021030943A1 (zh) 一种确定重复传输资源的方法及装置
WO2023011620A1 (zh) 一种通信方法及装置
WO2017185907A1 (zh) 一种共享物理资源的方法和装置
WO2023116403A1 (zh) 一种缓存状态报告发送方法及通信装置
WO2019157674A1 (zh) 一种信息指示方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018818960

Country of ref document: EP

Effective date: 20190409

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019569836

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019026607

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207001458

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018284726

Country of ref document: AU

Date of ref document: 20180606

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019026607

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191213